National Library of Energy BETA

Sample records for water flow rate

  1. Does Water Content or Flow Rate Control Colloid Transport in Unsaturated Porous Media?

    SciTech Connect (OSTI)

    Thorsten Knappenberger; Markus Flury; Earl D. Mattson; James B. Harsh

    2014-03-01

    Mobile colloids can play an important role in contaminant transport in soils: many contaminants exist in colloidal form, and colloids can facilitate transport of otherwise immobile contaminants. In unsaturated soils, colloid transport is, among other factors, affected by water content and flow rate. Our objective was to determine whether water content or flow rate is more important for colloid transport. We passed negatively charged polystyrene colloids (220 nm diameter) through unsaturated sand-filled columns under steady-state flow at different water contents (effective water saturations Se ranging from 0.1 to 1.0, with Se = (? – ?r)/(?s – ?r)) and flow rates (pore water velocities v of 5 and 10 cm/min). Water content was the dominant factor in our experiments. Colloid transport decreased with decreasing water content, and below a critical water content (Se < 0.1), colloid transport was inhibited, and colloids were strained in water films. Pendular ring and water film thickness calculations indicated that colloids can move only when pendular rings are interconnected. The flow rate affected retention of colloids in the secondary energy minimum, with less colloids being trapped when the flow rate increased. These results confirm the importance of both water content and flow rate for colloid transport in unsaturated porous media and highlight the dominant role of water content.

  2. Does Water Content or Flow Rate Control Colloid Transport in...

    Office of Scientific and Technical Information (OSTI)

    was inhibited, and colloids were strained in water films. Pendular ring and water film thickness calculations indicated that colloids can move only when pendular rings are...

  3. Effect of transpiration rate on internal plant resistance to water flow 

    E-Print Network [OSTI]

    Hailey, James Lester

    1971-01-01

    transpiration rate, and the other plants were used for leaf water potential measurements ~ 15 G I 0 3 0 OOOOPOG 0 O0 0 I I Jl & I 4I I I r I I i 01 I IJI I C D ~E o D LI 1 ~ 0 m A. Plant compartment 6 ~ Root compartment CD Cooling coil... transpiration causes a cooling effect on the plant leaves ~ The stem diameter remained relatively...

  4. Corrosion fatigue crack growth in clad low-alloy steel. Part 2, Water flow rate effects in high sulfur plate steel

    SciTech Connect (OSTI)

    James, L.A; Lee, H.B.; Wire, G.L.; Novak, S.R.; Cullen, W.H.

    1996-04-01

    Corrosion fatigue crack propagation tests were conducted on a high- sulfur ASTM A302-B plate steel overlaid with weld-deposited Alloy EN82H cladding. The specimens featured semi-elliptical surface cracks penetrating approximately 6.3 mm of cladding into the underlying steel. The initial crack sizes were relatively large with surface lengths of 22.8--27.3 mm, and depths of 10.5--14.1 mm. The experiments were initiated in a quasi-stagnant low-oxygen (O{sub 2} < 10 ppb) aqueous environment at 243{degrees}C, under loading conditions ({Delta}K, R, cyclic frequency) conducive to environmentally-assisted cracking (EAC) under quasi-stagnant conditions. Following fatigue testing under quasi-stagnant conditions where EAC was observed, the specimens were then fatigue tested under conditions where active water flow of either 1.7 m/sec. or 4.7 m/sec. was applied parallel to the crack. Earlier experiments on unclad surface-cracked specimens of the same steel exhibited EAC under quasi- stagnant conditions, but water flow rates at 1.7 m/sec. and 5.0 m/sec. parallel to the crack mitigated EAC. In the present experiments on clad specimens, water flow at approximately the same as the lower of these velocities did not mitigate EAC, and a free stream velocity approximately the same as the higher of these velocities resulted in sluggish mitigation of EAC. The lack of robust EAC mitigation was attributed to the greater crack surface roughness in the cladding interfering with flow induced within the crack cavity. An analysis employing the computational fluid dynamics code, FIDAP, confirmed that frictional forces associated with the cladding crack surface roughness reduced the interaction between the free stream and the crack cavity.

  5. Delta Flow Factors Influencing Stray Rate of Escaping Adult San Joaquin River Fall-Run Chinook Salmon (Oncorhynchus tshawytscha)

    E-Print Network [OSTI]

    2012-01-01

    due to insufficient instream flow releases. Report preparedhead of Old River barrier on flow and water quality in theeffects of San Joaquin River flows and Delta export rates

  6. Flow rate--pressure drop relation for deformable shallow microfluidic...

    Office of Scientific and Technical Information (OSTI)

    Conference: Flow rate--pressure drop relation for deformable shallow microfluidic channels Citation Details In-Document Search Title: Flow rate--pressure drop relation for...

  7. Control Strategies for Centrifugal Pumps with Variable Flow Rate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Control Strategies for Centrifugal Pumps with Variable Flow Rate Requirements Control Strategies for Centrifugal Pumps with Variable Flow Rate Requirements This tip sheet discusses...

  8. Rate Setting for Small Water Systems 

    E-Print Network [OSTI]

    Dozier, Monty; Theodori, Gene L.; Jensen, Ricard

    2007-03-28

    Knowing how to set the proper rate for water service is a challenge for small water systems. They must generate enough revenue to remain solvent, but offer affordable service. This publication describes the various types of rates and explains...

  9. Smokeless Control of Flare Steam Flow Rate 

    E-Print Network [OSTI]

    Agar, J.; Balls, B. W.

    1979-01-01

    inside the glass. The instrument has a vibrating spool accu rately machined from a material resistant to wet H2S, The patented flow path through the transducer (Figure 8) inhibits moisture and dirt from contaminating the spool and enables installation..., also the inclusion of average values for ZG and ZA' REFERENCES 1. API Publication 931, Chapter 15, "Flares", Manual on Disposal of Refinery Wastes, Volume on Atmospheric Emissions, 1977 American Petroleum Institute, Refinery Department, 2120 L...

  10. Solids flow rate measurement in dense slurries

    SciTech Connect (OSTI)

    Porges, K.G.; Doss, E.D.

    1993-09-01

    Accurate and rapid flow rate measurement of solids in dense slurries remains an unsolved technical problem, with important industrial applications in chemical processing plants and long-distance solids conveyance. In a hostile two-phase medium, such a measurement calls for two independent parameter determinations, both by non-intrusive means. Typically, dense slurries tend to flow in laminar, non-Newtonian mode, eliminating most conventional means that usually rely on calibration (which becomes more difficult and costly for high pressure and temperature media). These issues are reviewed, and specific solutions are recommended in this report. Detailed calculations that lead to improved measuring device designs are presented for both bulk density and average velocity measurements. Cross-correlation, chosen here for the latter task, has long been too inaccurate for practical applications. The cause and the cure of this deficiency are discussed using theory-supported modeling. Fluid Mechanics are used to develop the velocity profiles of laminar non-Newtonian flow in a rectangular duct. This geometry uniquely allows the design of highly accurate `capacitive` devices and also lends itself to gamma transmission densitometry on an absolute basis. An absolute readout, though of less accuracy, is also available from a capacitive densitometer and a pair of capacitive sensors yields signals suitable for cross-correlation velocity measurement.

  11. PERFORMANCE OF A SINGLE-ROW HEAT EXCHANGER AT LOW IN-TUBE FLOW RATES

    E-Print Network [OSTI]

    Sen, Mihir

    PERFORMANCE OF A SINGLE-ROW HEAT EXCHANGER AT LOW IN-TUBE FLOW RATES A Thesis Submitted April 1995 #12;PERFORMANCE OF A SINGLE-ROW HEAT EXCHANGER AT LOW IN-TUBE FLOW RATES by Xiangwei Zhao Abstract The steady and time-dependentbehavior of a single-row heat exchanger with water and air in the in

  12. Control Strategies for Centrifugal Pumps with Variable Flow Rate...

    Broader source: Energy.gov (indexed) [DOE]

    This tip sheet discusses control strategies for centrifugal pumps with variable flow rate requirements in pumping systems and includes installation considerations. PUMPING SYSTEMS...

  13. Control Strategies for Centrifugal Pumps with Variable Flow Rate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    pumping applications with variable flow rate requirements, adjustable speed drives (ASDs) are an efficient control alternative to throttling or bypass methods. ASDs save energy by...

  14. Environmental Flows in Water Availability Modeling 

    E-Print Network [OSTI]

    Wurbs, R.; Hoffpauir, R.

    2013-07-18

    Report No. 440 Texas Water Resources Institute The Texas A&M University System College Station, Texas 77843-2118 May 2013 TABLE OF CONTENTS Chapter 1 Introduction..., and alternative variations thereof. The Brazos WAM is large and complex, providing opportunities to explore a number of issues involved in integrating environmental flow, water supply, flood control, hydropower, multiple-reservoir system operations, and other...

  15. EVALUATING TRADEOFFS BETWEEN ENVIRONMENTAL FLOW PROTECTIONS AND AGRICULTURAL WATER SECURITY

    E-Print Network [OSTI]

    Merenlender, Adina

    environmental policy associated with the greatest impacts to water users. Surprisingly, the moderate environmental flow policy had larger impacts to bypass flows than the unregulated management scenarioEVALUATING TRADEOFFS BETWEEN ENVIRONMENTAL FLOW PROTECTIONS AND AGRICULTURAL WATER SECURITY T. E

  16. Cooling rate, heating rate and aging effects in glassy water

    E-Print Network [OSTI]

    Nicolas Giovambattista; H. Eugene Stanley; Francesco Sciortino

    2004-03-03

    We report a molecular dynamics simulation study of the properties of the potential energy landscape sampled by a system of water molecules during the process of generating a glass by cooling, and during the process of regenerating the equilibrium liquid by heating the glass. We study the dependence of these processes on the cooling/heating rates as well as on the role of aging (the time elapsed in the glass state). We compare the properties of the potential energy landscape sampled during these processes with the corresponding properties sampled in the liquid equilibrium state to elucidate under which conditions glass configurations can be associated with equilibrium liquid configurations.

  17. VARIABLE FIRING RATE OIL BURNER USING PULSE FUEL FLOW CONTROL.

    SciTech Connect (OSTI)

    KRISHNA,C.R.; BUTCHER,T.A.; KAMATH,B.R.

    2004-10-01

    The residential oil burner market is currently dominated by the pressure-atomized retention head burner, which has an excellent reputation for reliability and efficiency. In this burner, oil is delivered to a fuel nozzle at pressures from 100 to 150 psi. In addition, to atomizing the fuel, the small, carefully controlled size of the nozzle exit orifice serves to control the burner firing rate. Burners of this type are currently available at firing rates of more than 0.5 gallons-per-hour (70,000 Btu/hr). Nozzles have been made for lower firing rates, but experience has shown that such nozzles suffer rapid fouling of the necessarily small passages, leading to bad spray patterns and poor combustion performance. Also, traditionally burners and the nozzles are oversized to exceed the maximum demand. Typically, this is figured as follows. The heating load of the house on the coldest day for the location is considered to define the maximum heat load. The contractor or installer adds to this to provide a safety margin and for future expansion of the house. If the unit is a boiler that provides domestic hot water through the use of a tankless heating coil, the burner capacity is further increased. On the contrary, for a majority of the time, the heating system is satisfying a much smaller load, as only rarely do all these demands add up. Consequently, the average output of the heating system has to be much less than the design capacity and this is accomplished by start and stop cycling operation of the system so that the time-averaged output equals the demand. However, this has been demonstrated to lead to overall efficiencies lower than the steady-state efficiency. Therefore, the two main reasons for the current practice of using oil burners much larger than necessary for space heating are the unavailability of reliable low firing rate oil burners and the desire to assure adequate input rate for short duration, high draw domestic hot water loads. One approach to solve this problem is to develop a burner, which can operate at two firing rates, with the lower rate being significantly lower than 0.5 gallons per hour. This paper describes the initial results of adopting this approach through a pulsed flow nozzle. It has been shown that the concept of flow modulation with a small solenoid valve is feasible. Especially in the second configuration tested, where the Lee valve was integrated with the nozzle, reasonable modulation in flow of the order of 1.7 could be achieved. For this first prototype, the combustion performance is still not quite satisfactory. Improvements in operation, for example by providing a sharp and positive shut-off so that there is no flow under low pressures with consequent poor atomization could lead to better combustion performance. This could be achieved by using nozzles that have shut off or check valves for example. It is recommended that more work in cooperation with the valve manufacturer could produce a technically viable system. Marketability is of course a far more complex problem to be addressed once a technically viable product is available.

  18. Cosmogenic 3 He production rates from Holocene lava flows

    E-Print Network [OSTI]

    Licciardi, Joseph M.

    rights reserved. Keywords: cosmogenic nuclides; helium; production rates; Icelandic Low; surface exposureCosmogenic 3 He production rates from Holocene lava flows in Iceland J.M. Licciardi a,, M.D. Kurz b Available online 25 April 2006 Editor: K. Farley Abstract We measured cosmogenic 3 He production rates

  19. Experimental on two sensors combination used in horizontal pipe gas-water two-phase flow

    SciTech Connect (OSTI)

    Wu, Hao; Dong, Feng

    2014-04-11

    Gas-water two phase flow phenomenon widely exists in production and living and the measurement of it is meaningful. A new type of long-waist cone flow sensor has been designed to measure two-phase mass flow rate. Six rings structure of conductance probe is used to measure volume fraction and axial velocity. The calibration of them have been made. Two sensors have been combined in horizontal pipeline experiment to measure two-phase flow mass flow rate. Several model of gas-water two-phase flow has been discussed. The calculation errors of total mass flow rate measurement is less than 5% based on the revised homogeneous flow model.

  20. Dependence of Up-scaled Reaction Rate on Flow Rate in Porous Media

    E-Print Network [OSTI]

    New York at Stoney Brook, State University of

    to inherent heterogeneities in structure, mineral placement and fluid velocity in rock, bulk reaction rates1 Dependence of Up-scaled Reaction Rate on Flow Rate in Porous Media D. Kim · W. B. Lindquist model simulations of anorthite and kaolinite reactions in two sandstone pore networks under acidic

  1. Water and Solute Flow in a Highly-Structured Soil 

    E-Print Network [OSTI]

    Hallmark, C. Tom; Wilding, Larry P.; McInnes, Kevin J.; Heuvelman, Willem J.

    1993-01-01

    to groundwater may be related to the degree of flow path channelization (convergence or divergence of water flow paths). This project was designed to test the feasibility of measuring the degree of channelization as water percolates through structured soils. A...

  2. Cash Flow and Discount Rate news estimation: which method to choose?

    E-Print Network [OSTI]

    Khimich, Natalya V.

    2012-01-01

    Cash Flow and Discount Rate News estimates obtained form theCash Flow and Discount Rate News estimates obtained form theTrue’ simulated Cash Flow News and Discount Rate News and

  3. On Exploiting Flow Allocation with Rate Adaptation for Green Networking

    E-Print Network [OSTI]

    Tang, Jian "Neil"

    proposed for the MF-RAP provide close-to-optimal solutions. Index Terms--Green networking, power efficiency is known to have a negative impact on global climate. Therefore, green (power efficient) networking hasOn Exploiting Flow Allocation with Rate Adaptation for Green Networking Jian Tang, Brendan Mumey

  4. Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow

    E-Print Network [OSTI]

    Marchese, Francis

    Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow

  5. Original article Irrigation, faecal water content and development rate

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Original article Irrigation, faecal water content and development rate of free-living stages- ent faecal water contents (FWC) simulating a submersion (7 or 16 h) or an alternance of spraying, T vitrinus in summer, but higher rates were observed in autumn. The action of water had more effect

  6. Water Modeling of Steel Flow, Air Entrainment and Filtration

    E-Print Network [OSTI]

    Beckermann, Christoph

    Water Modeling of Steel Flow, Air Entrainment and Filtration Christoph Beckermann Associate Beckermann, C., "Water Modeling of Steel Flow, Air Entrainment and Filtration," in Proceedings of the 46th, 1992. #12;Abstract This paper presents an analysis of water modeling of steel pouring to study (1) air

  7. Water and Mercury Pipe Flow Simulation in FLUENTSimulation in FLUENT

    E-Print Network [OSTI]

    McDonald, Kirk

    Water and Mercury Pipe Flow Simulation in FLUENTSimulation in FLUENT Yan Zhan, Foluso Ladeinde;Straight Pipe flow Ph i l bl-- Physical problem Isothermal mercury/ water flow through a 60D straight pipe* Mercury 1500 41.844 m 4.04 m/s 18.5 bar 15.67 bar Water 1500 331.404 m 4.04 m/s 18.5 bar 18.291bar *uave

  8. Model Reduction of Turbulent Fluid Flows Using the Supply Rate

    E-Print Network [OSTI]

    Sharma, A S

    2013-01-01

    A method for finding reduced-order approximations of turbulent flow models is presented. The method preserves bounds on the production of turbulent energy in the sense of the $\\curly{L}_2$ norm of perturbations from a notional laminar profile. This is achieved by decomposing the Navier-Stokes system into a feedback arrangement between the linearised system and the remaining, normally neglected, nonlinear part. The linear system is reduced using a method similar to balanced truncation, but preserving bounds on the supply rate. The method involves balancing two algebraic Riccati equations. The bounds are then used to derive bounds on the turbulent energy production. An example of the application of the procedure to flow through a long straight pipe is presented. Comparison shows that the new method approximates the supply rate at least as well as, or better than, canonical balanced truncation.

  9. Cooling rate, heating rate, and aging effects in glassy water Nicolas Giovambattista,1

    E-Print Network [OSTI]

    Sciortino, Francesco

    Cooling rate, heating rate, and aging effects in glassy water Nicolas Giovambattista,1 H. Eugene of water molecules during the process of generating a glass by cooling, and during the process on the cooling/heating rates as well as on the role of aging (the time elapsed in the glass state). We compare

  10. Mass flow rate measurements in gas-liquid flows by means of a venturi or orifice plate coupled to a void fraction sensor

    SciTech Connect (OSTI)

    Oliveira, Jorge Luiz Goes; Passos, Julio Cesar [Departamento de Engenharia Mecanica-LEPTEN/Boiling-UFSC, Campus Universitario, Trindade, 88.040-900 Florianopolis-SC (Brazil); Verschaeren, Ruud; Geld, Cees van der [Eindhoven University of Technology, Faculty of Mechanical Engineering, W-hoog 2.135, P.O. Box 513, 5600 MB, Eindhoven (Netherlands)

    2009-01-15

    Two-phase flow measurements were carried out using a resistive void fraction meter coupled to a venturi or orifice plate. The measurement system used to estimate the liquid and gas mass flow rates was evaluated using an air-water experimental facility. Experiments included upward vertical and horizontal flow, annular, bubbly, churn and slug patterns, void fraction ranging from 2% to 85%, water flow rate up to 4000 kg/h, air flow rate up to 50 kg/h, and quality up to almost 10%. The fractional root mean square (RMS) deviation of the two-phase mass flow rate in upward vertical flow through a venturi plate is 6.8% using the correlation of Chisholm (D. Chisholm, Pressure gradients during the flow of incompressible two-phase mixtures through pipes, venturis and orifice plates, British Chemical Engineering 12 (9) (1967) 454-457). For the orifice plate, the RMS deviation of the vertical flow is 5.5% using the correlation of Zhang et al. (H.J. Zhang, W.T. Yue, Z.Y. Huang, Investigation of oil-air two-phase mass flow rate measurement using venturi and void fraction sensor, Journal of Zhejiang University Science 6A (6) (2005) 601-606). The results show that the flow direction has no significant influence on the meters in relation to the pressure drop in the experimental operation range. Quality and slip ratio analyses were also performed. The results show a mean slip ratio lower than 1.1, when bubbly and slug flow patterns are encountered for mean void fractions lower than 70%. (author)

  11. Exchange flow between open water and floating vegetation

    E-Print Network [OSTI]

    Zhang, Xueyan

    This study describes the exchange flow between a region with open water and a region with a partial-depth porous obstruction, which represents the thermally-driven exchange that occurs between open water and floating ...

  12. Uncertainty Analysis for a Virtual Flow Meter Using an Air-Handling Unit Chilled Water Valve

    SciTech Connect (OSTI)

    Song, Li; Wang, Gang; Brambley, Michael R.

    2013-04-28

    A virtual water flow meter is developed that uses the chilled water control valve on an air-handling unit as a measurement device. The flow rate of water through the valve is calculated using the differential pressure across the valve and its associated coil, the valve command, and an empirically determined valve characteristic curve. Thus, the probability of error in the measurements is significantly greater than for conventionally manufactured flow meters. In this paper, mathematical models are developed and used to conduct uncertainty analysis for the virtual flow meter, and the results from the virtual meter are compared to measurements made with an ultrasonic flow meter. Theoretical uncertainty analysis shows that the total uncertainty in flow rates from the virtual flow meter is 1.46% with 95% confidence; comparison of virtual flow meter results with measurements from an ultrasonic flow meter yielded anuncertainty of 1.46% with 99% confidence. The comparable results from the theoretical uncertainty analysis and empirical comparison with the ultrasonic flow meter corroborate each other, and tend to validate the approach to computationally estimating uncertainty for virtual sensors introduced in this study.

  13. WATER FLOW THROUGH TEMPERATE GLACIERS Andrew G. Fountain1

    E-Print Network [OSTI]

    Fountain, Andrew G.

    WATER FLOW THROUGH TEMPERATE GLACIERS Andrew G. Fountain1 Department of Geology Portland State, Washington Abstract. Understanding water movement through a glacier is fundamental to several critical issues glacierized drainage basins. To this end we have synthesized a conceptual model of water movement through

  14. UpStream: Motivating Water Conservation with Low-Cost Water Flow Sensing and Persuasive Displays

    E-Print Network [OSTI]

    Paulos, Eric

    - another byproduct of excessive water use, which leads to pollution. While reduced water usage in the USUpStream: Motivating Water Conservation with Low-Cost Water Flow Sensing and Persuasive Displays, Pittsburgh, PA, USA {stace, paulos}@cs.cmu.edu ABSTRACT Water is our most precious and most rapidly declining

  15. A Realistic Hot Water Draw Specification for Rating Solar Water Heaters

    SciTech Connect (OSTI)

    Burch, J.

    2012-06-01

    In the United States, annual performance ratings for solar water heaters are simulated, using TMY weather and specified water draw. This paper proposes a more realistic ratings draw that eliminates most bias by improving mains inlet temperature and by specifying realistic hot water use. Presented at the 2012 World Renewable Energy Forum; Denver, Colorado; May 13-17, 2012.

  16. Method and apparatus for controlling the flow rate of mercury in a flow system

    SciTech Connect (OSTI)

    Grossman, M.W.; Speer, R.

    1991-01-01

    This patent describes a process for increasing the mercury flow rate {ital Q{sub Hg}} to a photochemical mercury enrichment process. It comprises: utilizing an entrainment system having a temperature regulated pool of mercury, a bubbler or sparger system, and a carrier gas for entraining mercury vapor; passing the carrier gas over a pool of mercury maintained at a first temperature, T{sub 1} wherein the carrier gas entrains mercury vapor; and passing the mercury vapor entrained carrier gas to a second temperature zone, maintained at a temperature T{sub 2}, such that T{sub 2} is less than T{sub 1}, in which the entrained mercury vapor is condensed, thereby producing a saturated Hg conditioning the carrier gas; and passing the saturated Hg carrier gas to the photochemical enrichment reactor, yielding a high flow rate {ital Q{sub Hg}}.

  17. A thermodynamic hypothesis regarding optimality principles for flow processes in geosystems

    E-Print Network [OSTI]

    Liu, Hui-Hai

    2015-01-01

    basin has larger energy than the downstream water. Thus, thea way that the energy expenditure rate for water flow shouldhypothesis. The energy expenditure rate, EE, for water flow

  18. Properties of water surface discharge at different pulse repetition rates

    SciTech Connect (OSTI)

    Ruma,; Yoshihara, K. [Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555 (Japan); Hosseini, S. H. R., E-mail: hosseini@kumamoto-u.ac.jp; Sakugawa, T.; Akiyama, H. [Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555 (Japan); Institute of Pulsed Power Science, Kumamoto University, Kumamoto 860-8555 (Japan); Akiyama, M. [Department of Electrical and Electronic Engineering, Kagoshima University, Kagoshima 890-0065 (Japan); Lukeš, P. [Institute of Plasma Physics, AS CR, Prague, Prague 18200 (Czech Republic)

    2014-09-28

    The properties of water surface discharge plasma for variety of pulse repetition rates are investigated. A magnetic pulse compression (MPC) pulsed power modulator able to deliver pulse repetition rates up to 1000 Hz, with 0.5 J per pulse energy output at 25 kV, was used as the pulsed power source. Positive pulse with a point-to-plane electrode configuration was used for the experiments. The concentration and production yield of hydrogen peroxide (H?O?) were quantitatively measured and orange II organic dye was treated, to evaluate the chemical properties of the discharge reactor. Experimental results show that the physical and chemical properties of water surface discharge are not influenced by pulse repetition rate, very different from those observed for under water discharge. The production yield of H?O? and degradation rate per pulse of the dye did not significantly vary at different pulse repetition rates under a constant discharge mode on water surface. In addition, the solution temperature, pH, and conductivity for both water surface and underwater discharge reactors were measured to compare their plasma properties for different pulse repetition rates. The results confirm that surface discharge can be employed at high pulse repetition rates as a reliable and advantageous method for industrial and environmental decontamination applications.

  19. Temperatures, heat flow, and water chemistry from drill holes...

    Open Energy Info (EERE)

    Temperatures, heat flow, and water chemistry from drill holes in the Raft River geothermal system, Cassia County, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to...

  20. A study of boiling water flow regimes at low pressures

    E-Print Network [OSTI]

    Fiori, Mario P.

    1966-01-01

    "A comprehensive experimental program to examine flow regimes at pressures below 100 psia for boiling of water in tubes was carried out. An electrical probe, which measures the resistance of the fluid between the centerline ...

  1. Realistic Hot Water Draw Specification for Rating Solar Water Heaters: Preprint

    SciTech Connect (OSTI)

    Burch, J.

    2012-06-01

    In the United States, annual performance ratings for solar water heaters are simulated, using TMY weather and specified water draw. A more-realistic ratings draw is proposed that eliminates most bias by improving mains inlet temperature and by specifying realistic hot water use. This paper outlines the current and the proposed draws and estimates typical ratings changes from draw specification changes for typical systems in four cities.

  2. Propeller Flow Meter 

    E-Print Network [OSTI]

    Enciso, Juan; Santistevan, Dean; Hla, Aung K.

    2007-10-01

    Propeller flow meters are commonly used to measure water flow rate. They can also be used to estimate irrigation water use. This publication explains how to select, install, read and maintain propeller flow meters....

  3. WaterSense: Water Flow Disaggregation Using Motion Sensors Vijay Srinivasan

    E-Print Network [OSTI]

    Whitehouse, Kamin

    WaterSense: Water Flow Disaggregation Using Motion Sensors Vijay Srinivasan Department of Computer of Computer Science University of Virginia, Charlottesville whitehouse@cs.virginia.edu Abstract Smart water meters will soon provide real-time access to instantaneous water usage in many homes, and disaggrega

  4. Method and apparatus for controlling the flow rate of mercury in a flow system

    DOE Patents [OSTI]

    Grossman, Mark W. (Belmont, MA); Speer, Richard (Reading, MA)

    1991-01-01

    A method for increasing the mercury flow rate to a photochemical mercury enrichment utilizing an entrainment system comprises the steps of passing a carrier gas over a pool of mercury maintained at a first temperature T1, wherein the carrier gas entrains mercury vapor; passing said mercury vapor entrained carrier gas to a second temperature zone T2 having temperature less than T1 to condense said entrained mercury vapor, thereby producing a saturated Hg condition in the carrier gas; and passing said saturated Hg carrier gas to said photochemical enrichment reactor.

  5. Particle trajectories in linearized irrotational shallow water flows

    E-Print Network [OSTI]

    Delia Ionescu-Kruse

    2011-06-20

    We investigate the particle trajectories in an irrotational shallow water flow over a flat bed as periodic waves propagate on the water's free surface. Within the linear water wave theory, we show that there are no closed orbits for the water particles beneath the irrotational shallow water waves. Depending on the strength of underlying uniform current, we obtain that some particle trajectories are undulating path to the right or to the left, some are looping curves with a drift to the right and others are parabolic curves or curves which have only one loop.

  6. Sliding Mode Flow Rate Observer Design Song Liu and Bin Yao

    E-Print Network [OSTI]

    Yao, Bin

    with the control valves (i.e., the cylinder internal and external leakage flows, and so on). It is assumed that: a rate information is needed in a lot of applications, such as automated modelling of valve flow mapping

  7. Hydraulic Transport Across Hydrophilic and Hydrophobic Nanopores: Flow Experiments with Water and n-Hexane

    E-Print Network [OSTI]

    Gruener, Simon; Greulich, Stefanie; Busch, Mark; Huber, Patrick

    2015-01-01

    We experimentally explore pressure-driven flow of water and n-hexane across nanoporous silica (Vycor glass monoliths with 7 or 10 nm pore diameters, respectively) as a function of temperature and surface functionalization (native and silanized glass surfaces). Hydraulic flow rates are measured by applying hydrostatic pressures via inert gases (argon and helium, pressurized up to 70 bar) on the upstream side in a capacitor-based membrane permeability setup. For the native, hydrophilic silica walls, the measured hydraulic permeabilities can be quantitatively accounted for by bulk fluidity provided we assume a sticking boundary layer, i.e. a negative velocity slip length of molecular dimensions. The thickness of this boundary layer is discussed with regard to previous capillarity-driven flow experiments (spontaneous imbibition) and with regard to velocity slippage at the pore walls resulting from dissolved gas. Water flow across the silanized, hydrophobic nanopores is blocked up to a hydrostatic pressure of at l...

  8. Flow rate of polygonal grains through a bottleneck: Interplay between shape and size

    E-Print Network [OSTI]

    Ezequiel Goldberg; C. Manuel Carlevaro; Luis A. Pugnaloni

    2015-05-21

    We report two-dimensional simulations of circular and polygonal grains passing through an aperture at the bottom of a silo. The mass flow rate for regular polygons is lower than for disks as observed by other authors. We show that both the exit velocity of the grains and the packing fraction are lower for polygons, which leads to the reduced flow rate. We point out the importance of the criteria used to define when two objects of different shape are considered to be of the same size. Depending on this criteria, the mass flow rate may vary significantly for some polygons. Moreover, the particle flow rate is non-trivially related to a combination of mass flow rate, particle shape and particle size. For some polygons, the particle flow rate may be lower or higher than that of the corresponding disks depending on the size comparison criteria.

  9. Demonstration of a plasma mirror based on a laminar flow water film

    E-Print Network [OSTI]

    Panasenko, Dmitriy

    2012-01-01

    Benjamin, “Wave Formation in Laminar Flow down an Inclineda plasma mirror based on a laminar flow water film. DmitriyA plasma mirror based on a laminar water film with low flow

  10. Energy Policy Act Transportation Study: Interim Report on Natural Gas Flows and Rates

    Reports and Publications (EIA)

    1995-01-01

    This report, summarized data and studies that could be used to address the impact of legislative and regulatory actions on natural gas transportation rates and flow patterns.

  11. Effect of flow rate of ethanol on growth dynamics of VA-SWNT -Transition from no-flow CVD to normal ACCVD

    E-Print Network [OSTI]

    Maruyama, Shigeo

    Effect of flow rate of ethanol on growth dynamics of VA-SWNT - Transition from no-flow CVD a growth model [2]. In this study, the flow rate of ethanol during the CVD was controlled precisely. Figure 1 shows the growth curve of VA-SWNT film for various ethanol flow rates. In the figure, "No

  12. Reduced heat flow in light water (H2O) due to heavy water (D2O)

    E-Print Network [OSTI]

    William R. Gorman; James D. Brownridge

    2008-09-04

    The flow of heat, from top to bottom, in a column of light water can be decreased by over 1000% with the addition of heavy water. A column of light water cools from 25 C to 0 C in 11 hours, however, with the addition of heavy water it takes more than 100 hours. There is a concentration dependence where the cooling time increases as the concentration of added (D2O) increases, with a near maximum being reached with as little as 2% of (D2O) added. This phenomenon will not occur if the water is mixed after the heavy water is added.

  13. Random field models for hydraulic conductivity in ground water flow

    E-Print Network [OSTI]

    Meerschaert, Mark M.

    Random field models for hydraulic conductivity in ground water flow Special Session on Random random fields to interpolate sparse data on hydraulic conductivity. The result- ing random field is used and Probability, Michigan State U Hans-Peter Scheffler, Mathematics, Uni Siegen, Germany Remke Van Dam, Institute

  14. Flow rate analysis of a surface tension driven passive micropump{{ Erwin Berthiera

    E-Print Network [OSTI]

    Beebe, David J.

    , causing fluid flow. The behavior of the input drop occurs in two characteristic phases. An analytical value of Re = rU0L0/g # 1, meaning that the flow is very laminar, allowing the use of the Washburn lawFlow rate analysis of a surface tension driven passive micropump{{ Erwin Berthiera and David J

  15. Utilizing Distributed Temperature Sensors in Predicting Flow Rates in Multilateral Wells 

    E-Print Network [OSTI]

    Al Mulla, Jassim Mohammed A.

    2012-07-16

    in the study and inversion procedure is then added to interpret the data to flow profiles. The forward model starts from an assumed well flow pressure in a specified reservoir with a defined well structure. Pressure, temperature and flow rate in the well system...

  16. A Guide for Using the Transient Ground-Water Flow Model of the Death Valley Regional Ground-Water Flow System, Nevada and California

    SciTech Connect (OSTI)

    Joan B. Blainey; Claudia C. Faunt, and Mary C. Hill

    2006-05-16

    This report is a guide for executing numerical simulations with the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California using the U.S. Geological Survey modular finite-difference ground-water flow model, MODFLOW-2000. Model inputs, including observations of hydraulic head, discharge, and boundary flows, are summarized. Modification of the DVRFS transient ground-water model is discussed for two common uses of the Death Valley regional ground-water flow system model: predictive pumping scenarios that extend beyond the end of the model simulation period (1998), and model simulations with only steady-state conditions.

  17. Second law analysis of water flow through smooth microtubes under adiabatic conditions

    SciTech Connect (OSTI)

    Parlak, Nezaket; Guer, Mesut; Ari, Vedat; Kuecuek, Hasan; Engin, Tahsin [The University of Sakarya, Faculty of Engineering, Department of Mechanical Engineering, Esentepe Campus, 54187 Sakarya (Turkey)

    2011-01-15

    In the study, a second law analysis for a steady-laminar flow of water in adiabatic microtubes has been conducted. Smooth microtubes with the diameters between 50 and 150 {mu}m made of fused silica were used in the experiments. Considerable temperature rises due to viscous dissipation and relatively high pressure losses of flow were observed in experiments. To identify irreversibility of flow, rate of entropy generation from the experiments have been determined in the laminar flow range of Re = 20-2200. The second law of thermodynamics was applied to predict the entropy generation. The results of model taken from the literature, proposed to predict the temperature rise caused by viscous heating, correspond well with the experimental data. The second law analysis results showed that the flow characteristics in the smooth microtubes distinguish substantially from the conventional theory for flow in the larger tubes with respect to viscous heating/dissipation (temperature rise of flow) total entropy generation rate and lost work. (author)

  18. High-frame rate, fast neutron imaging of two-phase flow in a thin rectangular channel

    E-Print Network [OSTI]

    Zboray, R; Dangendorf, V; Stark, M; Tittelmeier, K; Cortesi, M; Adams, R

    2015-01-01

    We have demonstrated the feasibility of performing high-frame-rate, fast neutron radiography of air-water two-phase flows in a thin channel with rectangular cross section. The experiments have been carried out at the accelerator facility of the Physikalisch-Technische Bundesanstalt. A polychromatic, high-intensity fast neutron beam with average energy of 6 MeV was produced by 11.5 MeV deuterons hitting a thick Be target. Image sequences down to 10 millisecond exposure times were obtained using a fast-neutron imaging detector developed in the context of fast-neutron resonance imaging. Different two-phase flow regimes such as bubbly slug and churn flows have been examined. Two phase flow parameters like the volumetric gas fraction, bubble size and bubble velocities have been measured. The first results are promising, improvements for future experiments are also discussed.

  19. High flow rate nozzle system with production of uniform size droplets

    DOE Patents [OSTI]

    Stockel, I.H.

    1990-10-16

    Method steps for production of substantially uniform size droplets from a flow of liquid include forming the flow of liquid, periodically modulating the momentum of the flow of liquid in the flow direction at controlled frequency, generating a cross flow direction component of momentum and modulation of the cross flow momentum of liquid at substantially the same frequency and phase as the modulation of flow direction momentum, and spraying the so formed modulated flow through a first nozzle outlet to form a desired spray configuration. A second modulated flow through a second nozzle outlet is formed according to the same steps, and the first and second modulated flows impinge upon each other generating a liquid sheet. Nozzle apparatus for modulating each flow includes rotating valving plates interposed in the annular flow of liquid. The plates are formed with radial slots. Rotation of the rotating plates is separably controlled at differential angular velocities for a selected modulating frequency to achieve the target droplet size and production rate for a given flow. The counter rotating plates are spaced to achieve a desired amplitude of modulation in the flow direction, and the angular velocity of the downstream rotating plate is controlled to achieve the desired amplitude of modulation of momentum in the cross flow direction. Amplitude of modulation is set according to liquid viscosity. 5 figs.

  20. High flow rate nozzle system with production of uniform size droplets

    DOE Patents [OSTI]

    Stockel, Ivar H. (Bangor, ME)

    1990-01-01

    Method steps for production of substantially uniform size droplets from a flow of liquid include forming the flow of liquid, periodically modulating the momentum of the flow of liquid in the flow direction at controlled frequency, generating a cross flow direction component of momentum and modulation of the cross flow momentum of liquid at substantially the same frequency and phase as the modulation of flow direction momentum, and spraying the so formed modulated flow through a first nozzle outlet to form a desired spray configuration. A second modulated flow through a second nozzle outlet is formed according to the same steps, and the first and second modulated flows impinge upon each other generating a liquid sheet. Nozzle apparatus for modulating each flow includes rotating valving plates interposed in the annular flow of liquid. The plates are formed with radial slots. Rotation of the rotating plates is separably controlled at differential angular velocities for a selected modulating frequency to achieve the target droplet size and production rate for a given flow. The counter rotating plates are spaced to achieve a desired amplitude of modulation in the flow direction, and the angular velocity of the downstream rotating plate is controlled to achieve the desired amplitude of modulation of momentum in the cross flow direction. Amplitude of modulation is set according to liquid viscosity.

  1. Acoustic measurement of the Deepwater Horizon Macondo well flow rate

    E-Print Network [OSTI]

    Camilli, Richard

    On May 31, 2010, a direct acoustic measurement method was used to quantify fluid leakage rate from the Deepwater Horizon Macondo well prior to removal of its broken riser. This method utilized an acoustic imaging sonar and ...

  2. Effect of flow rate on clogging processes in small diameter aquifer storage and recovery injection wells

    E-Print Network [OSTI]

    Thompson, Angela R.

    2014-12-31

    (KGS) investigates a low-cost, slow flow alternative to traditional ASR recharge systems. The project utilizes gravity-induced recharge and small diameter wells installed with direct-push technology to recharge and store ground water. The KGS ASR...

  3. Numerical Investigation of turbulent coupling boundary layer of air-water interaction flow

    E-Print Network [OSTI]

    Liu, Song, S.M. Massachusetts Institute of Technology

    2005-01-01

    Air-water interaction flow between two parallel flat plates, known as Couette flow, is simulated by direct numerical simulation. The two flowing fluids are coupled through continuity of velocity and shear stress condition ...

  4. Dealing with big circulation flow, small temperature difference based on verified dynamic model simulations of a hot water district heating system 

    E-Print Network [OSTI]

    Zhong, L.

    2014-01-01

    d design en enclosure ex exchanger f fuel h heater int internal n number of HES o outside r return s supply sp set point sols solar radiation from south side v verify w, w2i water, water in secondary system for each HES z zone ESL... temperatures, solar radiation and wind speed; the heat balance has been regulated based on the average water temperature in the secondary system by adjusting the water mass flow rate (u1) of each HES in the primary system; and the water mass flow rate...

  5. Method and apparatus for measuring the mass flow rate of a fluid

    DOE Patents [OSTI]

    Evans, Robert P. (Idaho Falls, ID); Wilkins, S. Curtis (Idaho Falls, ID); Goodrich, Lorenzo D. (Shelley, ID); Blotter, Jonathan D. (Pocatello, ID)

    2002-01-01

    A non invasive method and apparatus is provided to measure the mass flow rate of a multi-phase fluid. An accelerometer is attached to a pipe carrying a multi-phase fluid. Flow related measurements in pipes are sensitive to random velocity fluctuations whose magnitude is proportional to the mean mass flow rate. An analysis of the signal produced by the accelerometer shows a relationship between the mass flow of a fluid and the noise component of the signal of an accelerometer. The noise signal, as defined by the standard deviation of the accelerometer signal allows the method and apparatus of the present invention to non-intrusively measure the mass flow rate of a multi-phase fluid.

  6. Hydroecological factors governing surface water flow on a low-gradient floodplain

    E-Print Network [OSTI]

    to flow reductions associated with flood control. We measured flow velocity, water depth, and wind with the square of water surface slope and the fourth power of stem diameter, decreases in direct proportionHydroecological factors governing surface water flow on a low-gradient floodplain Judson W. Harvey

  7. Global energy conversion rate from geostrophic flows into internal lee waves in the deep ocean

    E-Print Network [OSTI]

    Nikurashin, Maxim

    A global estimate of the energy conversion rate from geostrophic flows into internal lee waves in the ocean is presented. The estimate is based on a linear theory applied to bottom topography at O(1–10) km scales obtained ...

  8. Up-Scaling Geochemical Reaction Rates Accompanying Acidic CO2-Saturated Brine Flow in Sandstone Aquifers

    E-Print Network [OSTI]

    New York at Stoney Brook, State University of

    1 Up-Scaling Geochemical Reaction Rates Accompanying Acidic CO2-Saturated Brine Flow in Sandstone in the pore networks corresponding to three different sandstones. The simulations were used to study up

  9. Environmentally related water trading, transfers and environmental flows: welfare, water demand and flows 

    E-Print Network [OSTI]

    Han, Man Seung

    2008-10-10

    long run water management strategies. This is especially needed since state law requires agencies to weigh the 50 year impacts of any suggested IBT. 2.2. Analytical Framework This research will depict water availability and use in 21 Texas river...-Guadalupe, San Antonio-Nueces, Nueces. The Nueces-Rio Grande and Rio Grande river basins are excluded as of now. The optimal set of IBT projects is determined on the basis of maximizing the annualized expected net benefit of using agricultural, municipal...

  10. Dissipation Scale Fluctuations and Chemical Reaction Rates in Turbulent Flows

    E-Print Network [OSTI]

    Victor Yakhot

    2007-06-29

    Small separation between reactants, not exceeding $10^{-8}-10^{-7}cm$, is the necessary condition for various chemical reactions. It is shown that random advection and stretching by turbulence leads to formation of scalar-enriched sheets of {\\it strongly fluctuating thickness} $\\eta_{c}$. The molecular-level mixing is achieved by diffusion across these sheets (interfaces) separating the reactants. Since diffusion time scale is $\\tau_{d}\\propto \\eta_{c}^{2}$, the knowledge of probability density $Q(\\eta_{c},Re)$ is crucial for evaluation of chemical reaction rates. In this paper we derive the probability density $Q(\\eta_{c},Re,Sc)$ and predict a transition in the reaction rate behavior from ${\\cal R}\\propto \\sqrt{Re}$ ($Re\\leq 10^{4}$) to the high-Re asymptotics ${\\cal R}\\propto Re^{0}$. The theory leads to an approximate universality of transitional Reynolds number $Re_{tr}\\approx 10^{4}$. It is also shown that if chemical reaction involves short-lived reactants, very strong anomalous fluctuations of the length-scale $\\eta_{c}$ may lead to non-negligibly small reaction rates.

  11. RATE SENSITIVITY OF PLASTIC FLOW AND IMPLICATIONS FOR YIELD-SURFACE VERTICES

    E-Print Network [OSTI]

    RATE SENSITIVITY OF PLASTIC FLOW AND IMPLICATIONS FOR YIELD-SURFACE VERTICES Jwo PAN Stress; in recked form 29 Norember 1982) &tract-When crystalline slip is considered as the micromechanism of plastic sensitivity of plastic flow may be central to understanding the ambiguous conclusions from experimental

  12. Coal flow aids reduce coke plant operating costs and improve production rates

    SciTech Connect (OSTI)

    Bedard, R.A.; Bradacs, D.J.; Kluck, R.W.; Roe, D.C.; Ventresca, B.P.

    2005-06-01

    Chemical coal flow aids can provide many benefits to coke plants, including improved production rates, reduced maintenance and lower cleaning costs. This article discusses the mechanisms by which coal flow aids function and analyzes several successful case histories. 2 refs., 10 figs., 1 tab.

  13. Using multi-layer models to forecast gas flow rates in tight gas reservoirs 

    E-Print Network [OSTI]

    Jerez Vera, Sergio Armando

    2007-04-25

    USING MULTI-LAYER MODELS TO FORECAST GAS FLOW RATES IN TIGHT GAS RESERVOIRS A Thesis by SERGIO ARMANDO JEREZ VERA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE December 2006 Major Subject: Petroleum Engineering USING MULTI-LAYER MODELS TO FORECAST GAS FLOW RATES IN TIGHT GAS RESERVOIRS A Thesis by SERGIO ARMANDO JEREZ VERA Submitted...

  14. Enhanced flow boiling heat transfer in microchannels with structured surfaces at varied mass flow rates

    E-Print Network [OSTI]

    Bian, David (David Wei)

    2015-01-01

    This thesis investigates the role of mass flux on flow boiling heat transfer in microchannels with surface micropillar arrays. The motivation for this investigation was to determine the general trends of the optimal ...

  15. THERMAL DESIGN METHODOLOGY FOR LOW FLOW RATE SINGLE-PHASE AND TWO-PHASE MICRO-CHANNEL HEAT SINKS

    E-Print Network [OSTI]

    Qu, Weilin

    THERMAL DESIGN METHODOLOGY FOR LOW FLOW RATE SINGLE-PHASE AND TWO-PHASE MICRO-CHANNEL HEAT SINKS-phase micro- channel heat sinks under a fixed liquid coolant flow rate. The parameters relevant to heat sink-channel dimensions corresponding to the prescribed dissipative heat flux and liquid coolant flow rate. Heat sink

  16. Modeling and Test-and-Rate Methods for Innovative Thermosiphon Solar Water Heaters: Preprint

    SciTech Connect (OSTI)

    Burch, J.; Shoukas, G.; Brandemuhl, M.; Krarti, M.

    2006-05-01

    Conference paper regarding research in modeling and test-and-rate methods for thermosiphon solar domestic water heaters.

  17. Simulating Vibrational Energy Flow in Proteins: Relaxation Rate and Mechanism for Heme Cooling in Cytochrome c

    E-Print Network [OSTI]

    Straub, John E.

    Simulating Vibrational Energy Flow in Proteins: Relaxation Rate and Mechanism for Heme Cooling 02215 ReceiVed: April 30, 2003; In Final Form: July 24, 2003 The rate and mechanism of the kinetic was found to proceed via a spatially anisotropic "funneling" mechanism as a single-exponential process

  18. Molecule-based approach for computing chemical-reaction rates in upper atmosphere hypersonic flows.

    SciTech Connect (OSTI)

    Gallis, Michail A.; Bond, Ryan Bomar; Torczynski, John Robert

    2009-08-01

    This report summarizes the work completed during FY2009 for the LDRD project 09-1332 'Molecule-Based Approach for Computing Chemical-Reaction Rates in Upper-Atmosphere Hypersonic Flows'. The goal of this project was to apply a recently proposed approach for the Direct Simulation Monte Carlo (DSMC) method to calculate chemical-reaction rates for high-temperature atmospheric species. The new DSMC model reproduces measured equilibrium reaction rates without using any macroscopic reaction-rate information. Since it uses only molecular properties, the new model is inherently able to predict reaction rates for arbitrary nonequilibrium conditions. DSMC non-equilibrium reaction rates are compared to Park's phenomenological non-equilibrium reaction-rate model, the predominant model for hypersonic-flow-field calculations. For near-equilibrium conditions, Park's model is in good agreement with the DSMC-calculated reaction rates. For far-from-equilibrium conditions, corresponding to a typical shock layer, the difference between the two models can exceed 10 orders of magnitude. The DSMC predictions are also found to be in very good agreement with measured and calculated non-equilibrium reaction rates. Extensions of the model to reactions typically found in combustion flows and ionizing reactions are also found to be in very good agreement with available measurements, offering strong evidence that this is a viable and reliable technique to predict chemical reaction rates.

  19. Update to the Ground-Water Withdrawals Database for the Death Valley REgional Ground-Water Flow System, Nevada and California, 1913-2003

    SciTech Connect (OSTI)

    Michael T. Moreo; and Leigh Justet

    2008-07-02

    Ground-water withdrawal estimates from 1913 through 2003 for the Death Valley regional ground-water flow system are compiled in an electronic database to support a regional, three-dimensional, transient ground-water flow model. This database updates a previously published database that compiled estimates of ground-water withdrawals for 1913–1998. The same methodology is used to construct each database. Primary differences between the 2 databases are an additional 5 years of ground-water withdrawal data, well locations in the updated database are restricted to Death Valley regional ground-water flow system model boundary, and application rates are from 0 to 1.5 feet per year lower than original estimates. The lower application rates result from revised estimates of crop consumptive use, which are based on updated estimates of potential evapotranspiration. In 2003, about 55,700 acre-feet of ground water was pumped in the DVRFS, of which 69 percent was used for irrigation, 13 percent for domestic, and 18 percent for public supply, commercial, and mining activities.

  20. Water Quality, Lake Sensitivity Ratings, and Septic Seepage Surveys of Six Lakes in the

    E-Print Network [OSTI]

    #12;Water Quality, Lake Sensitivity Ratings, and Septic Seepage Surveys of Six Lakes in the Bridge..................................................................................... 6 3.1.4 Water Clarity................................................................................... 12 3.2.4 Water Clarity

  1. Improving parameter estimation and water table depth simulation in a land surface model using GRACE water storage and estimated base flow data

    E-Print Network [OSTI]

    Lo, Min-Hui; Famiglietti, James S; Yeh, P. J.-F.; Syed, T. H

    2010-01-01

    model using GRACE water storage and estimated base flow data,model using GRACE water storage and estimated base flow datawith esti- mated base flow data in the model calibration.

  2. A Model of Electrodiffusion and Osmotic Water Flow and its Energetic Structure

    E-Print Network [OSTI]

    Ciocan-Fontanine, Ionut

    A Model of Electrodiffusion and Osmotic Water Flow and its Energetic Structure Yoichiro Moria 60612, U.S.A. Abstract We introduce a model for ionic electrodiffusion and osmotic water flow through are dissipated through viscous, electrodiffusive and osmotic flows. We discuss limiting models when certain

  3. Effects of drinking water temperature on water consumption, respiration rates, and body temperatures of lactating Holstein cows in summer 

    E-Print Network [OSTI]

    Lanham, Jeffrey Kent

    1985-01-01

    EFFECTS OF DRINKING WATER TEMPERATURE ON WATER CONSUMPTION, RESPIRATION RATES, AND BODY TEMPERATURES OF LACTATING HOLSTEIN COWS IN SUMMER A Thesis by JEFFREY KENT LANHAM Submitted to the Graduate College of Texas A&M University in partial... fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1985 Major Subject: Nutrition EFFECTS OF DRINKING WATER TEMPERATURE ON WATER CONSUMPTION, RESPIRATION RATES, AND BODY TEMPERATURES OF LACTATING HOLSTEIN COWS IN SUMMER A Thesis...

  4. Sculpting of an erodible body by flowing water Leif Ristropha,1

    E-Print Network [OSTI]

    in the context of erodible bodies molded from clay and immersed in a fast, unidirec- tional water flow. Although that persist as the solid shrinks. We explain these observations using flow visualization and a fluid

  5. A penalization method for calculating the flow beneath travelling water waves of large amplitude

    E-Print Network [OSTI]

    Adrian Constantin; Konstantinos Kalimeris; Otmar Scherzer

    2014-08-08

    A penalization method for a suitable reformulation of the governing equations as a constrained optimization problem provides accurate numerical simulations for large-amplitude travelling water waves in irrotational flows and in flows with constant vorticity.

  6. A high sensitivity fiber optic macro-bend based gas flow rate transducer for low flow rates: Theory, working principle, and static calibration

    SciTech Connect (OSTI)

    Schena, Emiliano; Saccomandi, Paola; Silvestri, Sergio [Center for Integrated Research, Unit of Measurements and Biomedical Instrumentation, Universita Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome (Italy)

    2013-02-15

    A novel fiber optic macro-bend based gas flowmeter for low flow rates is presented. Theoretical analysis of the sensor working principle, design, and static calibration were performed. The measuring system consists of: an optical fiber, a light emitting diode (LED), a Quadrant position sensitive Detector (QD), and an analog electronic circuit for signal processing. The fiber tip undergoes a deflection in the flow, acting like a cantilever. The consequent displacement of light spot center is monitored by the QD generating four unbalanced photocurrents which are function of fiber tip position. The analog electronic circuit processes the photocurrents providing voltage signal proportional to light spot position. A circular target was placed on the fiber in order to increase the sensing surface. Sensor, tested in the measurement range up to 10 l min{sup -1}, shows a discrimination threshold of 2 l min{sup -1}, extremely low fluid dynamic resistance (0.17 Pa min l{sup -1}), and high sensitivity, also at low flow rates (i.e., 33 mV min l{sup -1} up to 4 l min{sup -1} and 98 mV min l{sup -1} from 4 l min{sup -1} up to 10 l min{sup -1}). Experimental results agree with the theoretical predictions. The high sensitivity, along with the reduced dimension and negligible pressure drop, makes the proposed transducer suitable for medical applications in neonatal ventilation.

  7. X-ray computed-tomography observations of water flow through anisotropic methane hydrate-bearing sand

    SciTech Connect (OSTI)

    Seol, Yongkoo; Kneafsey, Timothy J.

    2009-06-01

    We used X-ray computed tomography (CT) to image and quantify the effect of a heterogeneous sand grain-size distribution on the formation and dissociation of methane hydrate, as well as the effect on water flow through the heterogeneous hydrate-bearing sand. A 28 cm long sand column was packed with several segments having vertical and horizontal layers with sands of different grain-size distributions. During the hydrate formation, water redistribution occurred. Observations of water flow through the hydrate-bearing sands showed that water was imbibed more readily into the fine sand, and that higher hydrate saturation increased water imbibition in the coarse sand due to increased capillary strength. Hydrate dissociation induced by depressurization resulted in different flow patterns with the different grain sizes and hydrate saturations, but the relationships between dissociation rates and the grain sizes could not be identified using the CT images. The formation, presence, and dissociation of hydrate in the pore space dramatically impact water saturation and flow in the system.

  8. Pattern of shallow ground water flow at Mount Princeton Hot Springs...

    Open Energy Info (EERE)

    Pattern of shallow ground water flow at Mount Princeton Hot Springs, Colorado, using geoelectrical methods Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  9. Energy policy act transportation study: Interim report on natural gas flows and rates

    SciTech Connect (OSTI)

    1995-11-17

    This report, Energy Policy Act Transportation Study: Interim Report on Natural Gas Flows and Rates, is the second in a series mandated by Title XIII, Section 1340, ``Establishment of Data Base and Study of Transportation Rates,`` of the Energy Policy Act of 1992 (P.L. 102--486). The first report Energy Policy Act Transportation Study: Availability of Data and Studies, was submitted to Congress in October 1993; it summarized data and studies that could be used to address the impact of legislative and regulatory actions on natural gas transportation rates and flow patterns. The current report presents an interim analysis of natural gas transportation rates and distribution patterns for the period from 1988 through 1994. A third and final report addressing the transportation rates and flows through 1997 is due to Congress in October 2000. This analysis relies on currently available data; no new data collection effort was undertaken. The need for the collection of additional data on transportation rates will be further addressed after this report, in consultation with the Congress, industry representatives, and in other public forums.

  10. Subsurface water flow simulated for hill slopes with spatially dependent soil hydraulic characteristics

    SciTech Connect (OSTI)

    Sharma, M.L.; Luxmoore, R.J.; DeAngelis, R.; Ward, R.C.; Yeh, G.T.

    1987-08-01

    Water flow through hill slopes consisting of five soil layers, with varying spatial dependence in hydraulic characteristics in the lateral plane was simulated by solving Richards' equation in three dimensions under varying rainfall intensities and for two complexities of terrain. By concepts of similar media the variability in soil hydraulic characteristics was expressed by a single dimensionless parameter, the scaling factor ..cap alpha... The moments of log normally distributed ..cap alpha.. were set as: Mean = 1.0 and standard deviation = 1.0. Four cases of spatial dependence of ..cap alpha.. in the lateral plane were selected for simulation, using exponential variogram functions ranging in spatial structure from random (no spatial dependence) to large dependence (large correlation lengths). The simulations showed that the rates of subsurface flow from the 30/sup 0/ hillslope, during and following rainfall, were significantly enhanced with an increase in spatial dependence. Subsurface drainage was also increased with increases in rainfall intensity and slop complexity. For hill slopes the relative effects of spatial dependence in soil hydraulic characteristics was smaller with 30/sup 0/ horizontal pitching than without pitching. Hill slopes with a random distribution of hydraulic characteristics provided greater opportunity for soil units with differing water capacities to interact than in cases with spatially correlated distributions. This greater interaction is associated with a greater lag in subsurface flow generation. These studies illustrate some of the expected effects of spatial dependence of soil hydraulic characteristics of the integrated hydrologic response of land areas.

  11. Wall pressure measurements of flooding in vertical countercurrent annular air–water flow

    SciTech Connect (OSTI)

    Choutapalli, I., Vierow, K.

    2010-01-01

    An experimental study of flooding in countercurrent air-water annular flow in a large diameter vertical tube using wall pressure measurements is described in this paper. Axial pressure profiles along the length of the test section were measured up to and after flooding using fast response pressure transducers for three representative liquid flow rates representing a wide range of liquid Reynolds numbers (ReL = 4?/?; ? is the liquid mass flow rate per unit perimeter; ? is the dynamic viscosity) from 3341 to 19,048. The results show that flooding in large diameter tubes cannot be initiated near the air outlet and is only initiated near the air inlet. Fourier analysis of the wall pressure measurements shows that up to the point of flooding, there is no dominant wave frequency but rather a band of frequencies encompassing both the low frequency and the broad band that are responsible for flooding. The data indicates that flooding in large diameter vertical tubes may be caused by the constructive superposition of a plurality of waves rather than the action of a single large-amplitude wave.

  12. Prediction of Influent Flow Rate: Data-Mining Approach Xiupeng Wei1

    E-Print Network [OSTI]

    Kusiak, Andrew

    based on experience and local weather forecasts (Kim et al. 2006). Such estimations, however data-mining applications in weather forecasting, manufacturing, science, and engineering have been on the influent flow rate, which has not been discussed in the literature. Data provided by weather radar

  13. Microfluidic chemostat and turbidostat with flow rate, oxygen, and temperature control for dynamic continuous culture

    E-Print Network [OSTI]

    Sinskey, Anthony J.

    Microfluidic chemostat and turbidostat with flow rate, oxygen, and temperature control for dynamic are not reasonable. Microfluidics offers a way to address the difficulties relating to conventional continuous.4 Integrating all of these microfluidic components into a working continuous culture system can

  14. Assessing various carbon dioxide flow rates to minimize distress during laboratory mouse euthanasia

    E-Print Network [OSTI]

    Farrell, Anthony P.

    Assessing various carbon dioxide flow rates to minimize distress during laboratory mouse euthanasia, University of British Columbia · Laboratory rodents are commonly euthanized by exposure to carbon dioxide (CO Carly Moody, Beverly Chua, I. Joanna Makowska, Daniel M. Weary Faculty of Land and Food Systems

  15. Ambient aerosol sampling inlet for flow rates of 100 and 400 l/min 

    E-Print Network [OSTI]

    Baehl, Michael Matthew

    2009-05-15

    New bioaerosol sampling inlets were designed and tested that have nominal exhaust flow rates of 100 L/min to 400 L/min, and which have internal fractionators and screens to scalp large, unwanted particles and debris from the transmitted size...

  16. Flow stress of Nitronic-50 stainless steel over a wide range of strain rates and temperatures

    E-Print Network [OSTI]

    Nemat-Nasser, Sia

    Flow stress of Nitronic-50 stainless steel over a wide range of strain rates and temperatures Wei August 2005 Abstract To understand and model the thermomechanical response of Nitronic-50 stainless steel are examined by optical microscopy. These experimental results show that: (1) Nitronic-50 stainless steel

  17. Spatial association between the locations of roots and water flow paths in highly structured soil 

    E-Print Network [OSTI]

    Gardiner, Nathan Thomas

    2005-02-17

    relative to the location of water flow paths is important in understanding how plants obtain nutrients and water for growth, and it would also be of considerable importance in phytoremediation research and research into the prevention of groundwater...

  18. 16/05/12 3:57 PMWATER: Floating robots use GPS-enabled smartphones to track water flow, help water management Page 1 of 4http://www.lakeconews.com/index.php?option=com_content&view=article...o-track-water-flow-help-water-management&catid=1:latest&Itemid=1

    E-Print Network [OSTI]

    management Page 1 of 4http://www.lakeconews.com/index.php?option=com_content&view=article...o-track-water-flow-help-water=com_content&view=article...o-track-water-flow-help-water-management&catid=1:latest&Itemid=19716/05/12 3:57 PMWATER: Floating robots use GPS-enabled smartphones to track water flow, help water

  19. PARAMETRIC STUDY ON THE WATER CONTENT PROFILES AND OXIDATION RATES IN NEARLY SATURATED TAILINGS ABOVE THE

    E-Print Network [OSTI]

    Aubertin, Michel

    PARAMETRIC STUDY ON THE WATER CONTENT PROFILES AND OXIDATION RATES IN NEARLY SATURATED TAILINGS of various factors on the water content profiles in reactive tailings. The results presented here show that the position of the water table has a large influence on the water content profiles and on the oxygen flux

  20. Related Rates Introduction: Consider water draining from the bottom of a circular cylin-

    E-Print Network [OSTI]

    Tavener, Simon

    . On the tape, mark a 2cm interval l centered at b (from 1cm above b to 1cm below b). Fill the funnel with water until the water level is approximately 2cm above b. 6. When the water level reaches the top mark (1cmRelated Rates Introduction: Consider water draining from the bottom of a circular cylin- der

  1. Oil and Gas CDT Coupled flow of water and gas

    E-Print Network [OSTI]

    Henderson, Gideon

    , and experimental `toolbox' grounded in fluid mechanics and geomechanics, and specializing in multiphase flow

  2. Dependence of heat transport on the strength and shear rate of prescribed circulating flows

    E-Print Network [OSTI]

    Emily S. C. Ching; K. M. Pang

    2001-11-28

    We study numerically the dependence of heat transport on the maximum velocity and shear rate of physical circulating flows, which are prescribed to have the key characteristics of the large-scale mean flow observed in turbulent convection. When the side-boundary thermal layer is thinner than the viscous boundary layer, the Nusselt number (Nu), which measures the heat transport, scales with the normalized shear rate to an exponent 1/3. On the other hand, when the side-boundary thermal layer is thicker, the dependence of Nu on the Peclet number, which measures the maximum velocity, or the normalized shear rate when the viscous boundary layer thickness is fixed, is generally not a power law. Scaling behavior is obtained only in an asymptotic regime. The relevance of our results to the problem of heat transport in turbulent convection is also discussed.

  3. Deep-Sea Research II 52 (2005) 495512 Variability of Antarctic bottom water flow into

    E-Print Network [OSTI]

    Cenedese, Claudia

    2005-01-01

    Deep-Sea Research II 52 (2005) 495­512 Variability of Antarctic bottom water flow into the North a 500-m-deep layer of bottom water. The deep Antarctic bottom water current into the North Atlantic as earlier at revisited locations. The long-term drift of the deep Antarctic bottom water temperature

  4. Griswold Tempered Water Flow Regulator Valves Used as Anti Siphon Valves

    SciTech Connect (OSTI)

    MISKA, C.

    2000-09-03

    FCV-1*22 and 1*23 are Griswold constant flow regulators used as anti-siphon valves in the tempered water system, they fail closed but valve cartridge orifice allows minimum flow to prevent loss of water from the MCO/CASK annulus.

  5. Liquid Water Dynamics in a Model Polymer Electrolyte Fuel Cell Flow Channel

    E-Print Network [OSTI]

    Victoria, University of

    Liquid Water Dynamics in a Model Polymer Electrolyte Fuel Cell Flow Channel by Chris Miller in a Model Polymer Electrolyte Fuel Cell Flow Channel by Chris Miller Bachelors of Engineering, University in a polymer electrolyte fuel cell is a critical issue in ensuring high cell performance. The water production

  6. The design of water markets when instream flows have value James J. Murphy

    E-Print Network [OSTI]

    Murphy, James J.

    The design of water markets when instream flows have value James J. Murphy (corresponding author markets when instream flows have value Abstract The main objective of this paper is to design and test. This article uses laboratory experiments to test three different water market institutions designed

  7. Numerical simulation of air/water multiphase flows for ceramic sanitary ware design by multiple GPUs

    E-Print Network [OSTI]

    8 Numerical simulation of air/water multiphase flows for ceramic sanitary ware design by multiple and manufacturing of plumbing products such as ceramic sanitary wares. In order to re-produce the complex/water multiphase flows for ceramic sanitary ware design by multiple GPUs Being a world-wide leading company, TOTO

  8. Low rank coal upgrading in a flow of hot water

    SciTech Connect (OSTI)

    Masato Morimoto; Hiroyuki Nakagawa; Kouichi Miura

    2009-09-15

    Simultaneous hydrothermal degradation and extraction at around 350{sup o}C using flowing solvent as a reaction/extraction medium were proposed for upgrading brown coal, more specifically, for converting brown coal into several fractions having different molecular weight and chemical structure under mild conditions. When an Australian brown coal, Loy Yang coal, was treated by water at 350{sup o}C under 18 MPa, the coal was separated into four fractions: gaseous product by 8% yield, water-soluble extract at room temperature (soluble) by 23% yield, extract precipitates as solid at room temperature (deposit) by 23% yield, and residual coal (upgraded coal) by 46% yield on daf basis. The separation was found to be realized by in situ extraction of low-molecular-weight substances released from coal macromolecular structure and/or those generated by hydrothermal decomposition reactions at 350{sup o}C. The solid products obtained, deposit and upgraded coal, were characterized in detail to examine the possibility of their effective utilization as solid fuel and chemical feed stock. The upgraded coal showed higher heating value and higher gasification reactivity than the parent coal, indicating that the upgraded coal can be a better solid fuel than the parent coal. The solid extract, deposit, was found to show thermoplasticity at less than 200{sup o}C, suggesting the possibility of utilizing the deposit as a raw material of high performance carbon materials. Several variables affecting the performance of the proposed method are also examined in detail in this paper. 12 refs., 8 figs., 3 tabs.

  9. Review of International Methods of Test to Rate the Efficiency of Water Heaters

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01

    as the ratio of the useful energy provided by the waterspecified in terms of flow rate and useful energy content.For most draws, the useful energy content is measured once

  10. The Coordinated Control of a Central Air Conditioning System Based on Variable Chilled Water Temperature and Variable Chilled Water Flow 

    E-Print Network [OSTI]

    Liu, J.; Mai, Y.; Liu, X.

    2006-01-01

    At present, regulation of water flow by means of pump frequency conversion is one of the major methods for power-saving in central air conditioning systems. In this article, optimization regulation for central air conditioning system on the basis...

  11. Unsaturated properties for non-Darcian water flow in clay

    E-Print Network [OSTI]

    Liu, H.H.

    2014-01-01

    Physical chemistry of clay-water interaction, Advance inporous media. Advances in Water Resources 2, 351-362. Zou,Newtonian fluids Figure 2. A water element in a capillary

  12. MEASURE-EENT OF WATER CONTENT I N POROUS MEDIA UNDER GEOTHERMAL FLUID FLOW CONDITIONS

    E-Print Network [OSTI]

    Stanford University

    MEASURE-EENT OF WATER CONTENT I N POROUS MEDIA UNDER GEOTHERMAL FLUID FLOW CONDITIONS for t h e i n - s i t u measurement of water content i n porous media, expressed as a volume f r a c t i o n of t h e pore space; ( 2 ) t o measure water content i n t h e two-phase geothermal f l u i d flow

  13. Water-Level Data Analysis for the Saturated Zone Site-Scale Flow and Transport Model

    SciTech Connect (OSTI)

    P. Tucci

    2001-12-20

    This Analysis/Model Report (AMR) documents an updated analysis of water-level data performed to provide the saturated-zone, site-scale flow and transport model (CRWMS M&O 2000) with the configuration of the potentiometric surface, target water-level data, and hydraulic gradients for model calibration. The previous analysis was presented in ANL-NBS-HS-000034, Rev 00 ICN 01, Water-Level Data Analysis for the Saturated Zone Site-Scale Flow and Transport Model (USGS 2001). This analysis is designed to use updated water-level data as the basis for estimating water-level altitudes and the potentiometric surface in the SZ site-scale flow and transport model domain. The objectives of this revision are to develop computer files containing (1) water-level data within the model area (DTN: GS010908312332.002), (2) a table of known vertical head differences (DTN: GS0109083 12332.003), and (3) a potentiometric-surface map (DTN: GS010608312332.001) using an alternate concept from that presented in ANL-NBS-HS-000034, Rev 00 ICN 01 for the area north of Yucca Mountain. The updated water-level data include data obtained from the Nye County Early Warning Drilling Program (EWDP) and data from borehole USW WT-24. In addition to being utilized by the SZ site-scale flow and transport model, the water-level data and potentiometric-surface map contained within this report will be available to other government agencies and water users for ground-water management purposes. The potentiometric surface defines an upper boundary of the site-scale flow model, as well as provides information useful to estimation of the magnitude and direction of lateral ground-water flow within the flow system. Therefore, the analysis documented in this revision is important to SZ flow and transport calculations in support of total system performance assessment.

  14. THEORY OF THREE-PHASE FLOW APPLIED TO WATER-ALTERNATING-GAS ENHANCED OIL RECOVERY

    E-Print Network [OSTI]

    THEORY OF THREE-PHASE FLOW APPLIED TO WATER-ALTERNATING-GAS ENHANCED OIL RECOVERY D. MARCHESIN is the key to this improvement. 1. Introduction In secondary oil recovery, water or gas is injected in three-phase ow in a porous medium, we consider the idealized ow of water, oil, and gas

  15. 16/05/12 3:54 PMFloating, smartphone-equipped robots track water flow | SmartPlanet Page 1 of 4http://www.smartplanet.com/blog/smart-takes/floating-smartphone-equipped-robots-track-water-flow/26331

    E-Print Network [OSTI]

    ://www.smartplanet.com/blog/smart-takes/floating-smartphone-equipped-robots-track-water-flow/26331http://www.smartplanet.com/blog/smart-takes/floating-smartphone-equipped-robots-track-water-flow/26331-equipped robots track water flow | SmartPlanet Page 3 of 4http://www.smartplanet.com/blog

  16. Analytical solutions for benchmarking cold regions subsurface water flow and energy transport models: One-dimensional soil thaw

    E-Print Network [OSTI]

    McKenzie, Jeffrey M.

    Analytical solutions for benchmarking cold regions subsurface water flow and energy transport Freezing and thawing a b s t r a c t Numerous cold regions water flow and energy transport models have of powerful simulators of cold regions subsurface water flow and energy transport have emerged in recent years

  17. Vulnerability assessment of water supply systems for insufficient fire flows 

    E-Print Network [OSTI]

    Kanta, Lufthansa Rahman

    2009-05-15

    Water supply systems’ vulnerability towards physical, chemical, biological, and cyber threats was recognized and was under study long before September 11, 2001. But greater attention toward security measures for water ...

  18. Structural transformation in supercooled water controls the crystallization rate of ice

    E-Print Network [OSTI]

    Emily B. Moore; Valeria Molinero

    2011-09-27

    One of water's unsolved puzzles is the question of what determines the lowest temperature to which it can be cooled before freezing to ice. The supercooled liquid has been probed experimentally to near the homogeneous nucleation temperature TH{\\approx}232 K, yet the mechanism of ice crystallization - including the size and structure of critical nuclei - has not yet been resolved. The heat capacity and compressibility of liquid water anomalously increase upon moving into the supercooled region according to a power law that would diverge at Ts{\\approx}225 K,(1,2) so there may be a link between water's thermodynamic anomalies and the crystallization rate of ice. But probing this link is challenging because fast crystallization prevents experimental studies of the liquid below TH. And while atomistic studies have captured water crystallization(3), the computational costs involved have so far prevented an assessment of the rates and mechanism involved. Here we report coarse-grained molecular simulations with the mW water model(4) in the supercooled regime around TH, which reveal that a sharp increase in the fraction of four-coordinated molecules in supercooled liquid water explains its anomalous thermodynamics and also controls the rate and mechanism of ice formation. The simulations reveal that the crystallization rate of water reaches a maximum around 225 K, below which ice nuclei form faster than liquid water can equilibrate. This implies a lower limit of metastability of liquid water just below TH and well above its glass transition temperature Tg{\\approx}136 K. By providing a relationship between the structural transformation in liquid water, its anomalous thermodynamics and its crystallization rate, this work provides a microscopic foundation to the experimental finding that the thermodynamics of water determines the rates of homogeneous nucleation of ice.(5)

  19. Optimization of Chilled Water Flow and Its Distribution in Central Cooling System 

    E-Print Network [OSTI]

    Maheshwari, G. P.; Hajiah, A. E.; ElSherbini, A. I.

    2007-01-01

    This paper analyzes the impact of chilled water flow and its distribution on energy efficiency and comfort quality, using the results of a field study conducted for a central cooling production system during 2006 in Kuwait. The paper identifies...

  20. A MONTE CARLO SIMULATION OF WATER FLOW IN VARIABLY ...

    E-Print Network [OSTI]

    1910-10-30

    Se utiliza un m?etodo de simulaci?on Monte Carlo para estudiar el flujo de aguas ... A Monte Carlo simulation method is employed to study groundwater flow in ...

  1. Ground-water flow and ground- and surface-water interaction at the Weldon Spring quarry, St. Charles County, Missouri

    SciTech Connect (OSTI)

    Imes, J.L.; Kleeschulte, M.J.

    1997-12-31

    Ground-water-level measurements to support remedial actions were made in 37 piezometers and 19 monitoring wells during a 19-month period to assess the potential for ground-water flow from an abandoned quarry to the nearby St. Charles County well field, which withdraws water from the base of the alluvial aquifer. From 1957 to 1966, low-level radioactive waste products from the Weldon Spring chemical plant were placed in the quarry a few hundred feet north of the Missouri River alluvial plain. Uranium-based contaminants subsequently were detected in alluvial ground water south of the quarry. During all but flood conditions, lateral ground-water flow in the bedrock from the quarry, as interpreted from water-table maps, generally is southwest toward Little Femme Osage Creek or south into the alluvial aquifer. After entering the alluvial aquifer, the ground water flows southeast to east toward a ground-water depression presumably produced by pumping at the St. Charles County well field. The depression position varies depending on the Missouri River stage and probably the number and location of active wells in the St. Charles County well field.

  2. Feasibility Study of Developing a Virtual Chilled Water Flow Meter at Air Handling Unit Level 

    E-Print Network [OSTI]

    Song, L.; Swamy, A.; Shim, G.

    2011-01-01

    In this paper, a virtual Air handling unit (AHU) level water flow meter is explored by using a control valve as a measurement device. The flow through the valve is indirectly calculated using differential pressure over both the valve and its...

  3. INTRODUCTION Fish that live in moving water must contend with complex flows

    E-Print Network [OSTI]

    Liao, James C.

    3442 INTRODUCTION Fish that live in moving water must contend with complex flows arising from current moving past objects. Understanding how fish swim in unsteady flows has attracted attention from many disciplines, ranging from stream ecologists investigating how fish relate to habitat, to engineers

  4. A Multiscale Investigation of Ground Water Flow at Clear Lake, Iowa

    E-Print Network [OSTI]

    Simpkins, William W.

    ground water flow in a 700-km2 region using 31 hydraulic head and base flow measurements as calibration outflow. A wave-induced Bernoulli effect probably compromised both inflow and outflow measurements. Darcy coliform and E. coli counts as high as 8500 colony-forming units per 100 milliliters (Mason City Globe

  5. A study of the minimum wetting rate of isothermal films flowing down on outer surface of vertical pipes

    SciTech Connect (OSTI)

    Koizumi, Yasuo; Ohtake, Hiroyasu; Ueda, Tatsuhiro

    1999-07-01

    The minimum wetting rate (MWR) was investigated experimentally with an isothermal water film flowing down on the outer surface of test pipes arranged vertically. A dry patch was generated by blowing a small air jet onto the film temporally, and observation was made to discriminate whether the dry patch was rewetted or not. The contact angle of the film at the top edge of the dry patch and the amplitude, length and velocity of large waves on the film were measured. The MWR decreased rapidly as the film flowed down and reached a nearly constant value at a position around 0.6 m down from the film inlet. There were large waves on the film. The tendency of the variation of MWR with the distance coincided well with the growth of the amplitude of large waves with the distance. The contact angle at the top edge of the dry patch varied periodically in a range synchronizing with the arrival of the waves. When the contact angle exceeded the maximum advancing contact angle, the rewetting of the dry patch was initiated. The existing correlations where the smooth surface film was assumed considerably over-predicted the MWR. The MWR was properly given by supposing that the dry patch is rewetted when the maximum of the fluctuating dynamic pressure of the film exceeds the upward component of the surface tension corresponding to the maximum advancing contact angle at the top edge of the dry patch.

  6. RELATIONSHIPS FOR MODELLING WATER FLOW IN GEOTECHNICAL CENTRIFUGE MODELS [abstract

    E-Print Network [OSTI]

    Goodings, Deborah

    1984-01-01

    relationships between centrifuge model and prototype waterADVANCES IN GEOTECHNICAL CENTRIFUGE MODELING A symposium onAdvances in Geotechnical Centrifuge Modeling was held on

  7. Water-Level Data Analysis for the Saturated Zone Site-Scale Flow and Transport Model

    SciTech Connect (OSTI)

    K. Rehfeldt

    2004-10-08

    This report is an updated analysis of water-level data performed to provide the ''Saturated Zone Site-Scale Flow Model'' (BSC 2004 [DIRS 170037]) (referred to as the saturated zone (SZ) site-scale flow model or site-scale SZ flow model in this report) with the configuration of the potentiometric surface, target water-level data, and hydraulic gradients for calibration of groundwater flow models. This report also contains an expanded discussion of uncertainty in the potentiometric-surface map. The analysis of the potentiometric data presented in Revision 00 of this report (USGS 2001 [DIRS 154625]) provides the configuration of the potentiometric surface, target heads, and hydraulic gradients for the calibration of the SZ site-scale flow model (BSC 2004 [DIRS 170037]). Revision 01 of this report (USGS 2004 [DIRS 168473]) used updated water-level data for selected wells through the year 2000 as the basis for estimating water-level altitudes and the potentiometric surface in the SZ site-scale flow and transport model domain based on an alternative interpretation of perched water conditions. That revision developed computer files containing: Water-level data within the model area (DTN: GS010908312332.002); A table of known vertical head differences (DTN: GS010908312332.003); and A potentiometric-surface map (DTN: GS010608312332.001) using an alternative concept from that presented by USGS (2001 [DIRS 154625]) for the area north of Yucca Mountain. The updated water-level data presented in USGS (2004 [DIRS 168473]) include data obtained from the Nye County Early Warning Drilling Program (EWDP) Phases I and II and data from Borehole USW WT-24. This document is based on Revision 01 (USGS 2004 [DIRS 168473]) and expands the discussion of uncertainty in the potentiometric-surface map. This uncertainty assessment includes an analysis of the impact of more recent water-level data and the impact of adding data from the EWDP Phases III and IV wells. In addition to being utilized by the SZ site-scale flow model, the water-level data and potentiometric-surface map contained within this report will be available to other government agencies and water users for groundwater management purposes. The potentiometric surface defines an upper boundary of the site-scale flow model and provides information useful to estimation of the magnitude and direction of lateral groundwater flow within the flow system. Therefore, the analysis documented in this revision is important to SZ flow and transport calculations in support of total system performance assessment (TSPA).

  8. UNSAT-H Version 3.0: Unsaturated Soil Water and Heat Flow Model Theory, User Manual, and Examples

    SciTech Connect (OSTI)

    MJ Fayer

    2000-06-12

    The UNSAT-H model was developed at Pacific Northwest National Laboratory (PNNL) to assess the water dynamics of arid sites and, in particular, estimate recharge fluxes for scenarios pertinent to waste disposal facilities. During the last 4 years, the UNSAT-H model received support from the Immobilized Waste Program (IWP) of the Hanford Site's River Protection Project. This program is designing and assessing the performance of on-site disposal facilities to receive radioactive wastes that are currently stored in single- and double-shell tanks at the Hanford Site (LMHC 1999). The IWP is interested in estimates of recharge rates for current conditions and long-term scenarios involving the vadose zone disposal of tank wastes. Simulation modeling with UNSAT-H is one of the methods being used to provide those estimates (e.g., Rockhold et al. 1995; Fayer et al. 1999). To achieve the above goals for assessing water dynamics and estimating recharge rates, the UNSAT-H model addresses soil water infiltration, redistribution, evaporation, plant transpiration, deep drainage, and soil heat flow as one-dimensional processes. The UNSAT-H model simulates liquid water flow using Richards' equation (Richards 1931), water vapor diffusion using Fick's law, and sensible heat flow using the Fourier equation. This report documents UNSAT-H .Version 3.0. The report includes the bases for the conceptual model and its numerical implementation, benchmark test cases, example simulations involving layered soils and plants, and the code manual. Version 3.0 is an, enhanced-capability update of UNSAT-H Version 2.0 (Fayer and Jones 1990). New features include hysteresis, an iterative solution of head and temperature, an energy balance check, the modified Picard solution technique, additional hydraulic functions, multiple-year simulation capability, and general enhancements.

  9. The evaporation rate, free energy, and entropy of amorphous water Robin J. Speedy

    E-Print Network [OSTI]

    The evaporation rate, free energy, and entropy of amorphous water at 150 K Robin J. Speedy can be interpreted as giving a measure of their free energy difference, i a G 150 K 1100 100 J of amorphous water (a) and ice (i) near 150 K and suppose that their ratio gives a measure of their free energy

  10. CALCULATION OF SCALED NUCLEATION RATES FOR WATER USING MONTE CARLO GENERATED CLUSTER FREE ENERGY DIFFERENCES

    E-Print Network [OSTI]

    Hale, Barbara N.

    CALCULATION OF SCALED NUCLEATION RATES FOR WATER USING MONTE CARLO GENERATED CLUSTER FREE ENERGYMattio All Rights Reserved #12;iii ABSTRACT Helmholtz free energy differences, -dFn , are calculated inconsistent with the experimental properties of water. Summation of the scaled TIP4P free energy differences

  11. Estimation and Effects of the mass outflow rate from shock compressed flow around compact objects

    E-Print Network [OSTI]

    Sandip K. Chakrabarti

    1999-10-01

    Outflows are common in many astrophysical systems which contain black holes and neutron stars. Difference between stellar outflows and outflows from these systems is that the outflows in these systems have to form out of the inflowing material only. The inflowing material can form a hot and dense cloud surrounding the compact object, either because of a centrifugal barrier, or a denser barrier due to pair plasma or pre-heating effects. This barrier behaves like a stellar surface as far as the mass loss is concerned. We estimate the outflow rate from the regions of shock compressed flow. The outflow rate is directly related to the compression ratio of the gas at the shocks. These estimated rates roughly match the rates in real observations as well as those obtained from numerical experiments. In special geometries, where the solid angle of the outflow is higher, the disk evacuation takes place creating quiescence states. Outflows are shown to be important in deciding the spectral states and Quasi Periodic Oscillations (QPO)s of observed X-rays.

  12. Flowmeter for determining average rate of flow of liquid in a conduit

    DOE Patents [OSTI]

    Kennerly, John M. (Knoxville, TN); Lindner, Gordon M. (Oak Ridge, TN); Rowe, John C. (Oak Ridge, TN)

    1982-01-01

    This invention is a compact, precise, and relatively simple device for use in determining the average rate of flow of a liquid through a conduit. The liquid may be turbulent and contain bubbles of gas. In a preferred embodiment, the flowmeter includes an electrical circuit and a flow vessel which is connected as a segment of the conduit conveying the liquid. The vessel is provided with a valved outlet and is partitioned by a vertical baffle into coaxial chambers whose upper regions are vented to permit the escape of gas. The inner chamber receives turbulent downflowing liquid from the conduit and is sized to operate at a lower pressure than the conduit, thus promoting evolution of gas from the liquid. Lower zones of the two chambers are interconnected so that the downflowing liquid establishes liquid levels in both chambers. The liquid level in the outer chamber is comparatively calm, being to a large extent isolated from the turbulence in the inner chamber once the liquid in the outer chamber has risen above the liquid-introduction zone for that chamber. Lower and upper probes are provided in the outer chamber for sensing the liquid level therein at points above its liquid-introduction zone. An electrical circuit is connected to the probes to display the time required for the liquid level in the outer chamber to successively contact the lower and upper probes. The average rate of flow through the conduit can be determined from the above-mentioned time and the vessel volume filled by the liquid during that time.

  13. Flowmeter for determining average rate of flow of liquid in a conduit

    DOE Patents [OSTI]

    Kennerly, J.M.; Lindner, G.M.; Rowe, J.C.

    1981-04-30

    This invention is a compact, precise, and relatively simple device for use in determining the average rate of flow of a liquid through a conduit. The liquid may be turbulent and contain bubbles of gas. In a preferred embodiment, the flowmeter includes an electrical circuit and a flow vessel which is connected as a segment of the conduit conveying the liquid. The vessel is provided with a valved outlet and is partitioned by a vertical baffle into coaxial chambers whose upper regions are vented to permit the escape of gas. The inner chamber receives turbulent downflowing liquid from the conduit and is sized to operate at a lower pressure than the conduit, thus promoting evolution of gas from the liquid. Lower zones of the two chambers are interconnected so that the downflowing liquid establishes liquid levels in both chambers. The liquid level in the outer chamber is comparatively calm, being to a large extent isolated from the turbulence in the inner chamber once the liquid in the outer chamber has risen above the liquid-introduction zone for that chamber. Lower and upper probes are provided in the outer chamber for sensing the liquid level therein at points above its liquid-introduction zone. An electrical circuit is connected to the probes to display the time required for the liquid level in the outer chamber to successively contact the lower and upper probes. The average rate of flow through the conduit can be determined from the above-mentioned time and the vessel volume filled by the liquid during that time.

  14. Level Set Based Simulations of Two-Phase Oil-Water Flows in Pipes

    E-Print Network [OSTI]

    Soatto, Stefano

    the assumption that the densities of the two uids are di#11;erent and that the viscosity of the oil core is veryLevel Set Based Simulations of Two-Phase Oil-Water Flows in Pipes Hyeseon Shim July 31, 2000 Abstract We simulate the axisymmetric pipeline transportation of oil and water numerically under

  15. Development of a Water Based, Critical Flow, Non-Vapor Compression cooling Cycle

    SciTech Connect (OSTI)

    Hosni, Mohammad H.

    2014-03-30

    Expansion of a high-pressure liquid refrigerant through the use of a thermostatic expansion valve or other device is commonplace in vapor-compression cycles to regulate the quality and flow rate of the refrigerant entering the evaporator. In vapor-compression systems, as the condensed refrigerant undergoes this expansion, its pressure and temperature drop, and part of the liquid evaporates. We (researchers at Kansas State University) are developing a cooling cycle that instead pumps a high-pressure refrigerant through a supersonic converging-diverging nozzle. As the liquid refrigerant passes through the nozzle, its velocity reaches supersonic (or critical-flow) conditions, substantially decreasing the refrigerant’s pressure. This sharp pressure change vaporizes some of the refrigerant and absorbs heat from the surrounding conditions during this phase change. Due to the design of the nozzle, a shockwave trips the supersonic two-phase refrigerant back to the starting conditions, condensing the remaining vapor. The critical-flow refrigeration cycle would provide space cooling, similar to a chiller, by running a secondary fluid such as water or glycol over one or more nozzles. Rather than utilizing a compressor to raise the pressure of the refrigerant, as in a vapor-cycle system, the critical-flow cycle utilizes a high-pressure pump to drive refrigerant liquid through the cooling cycle. Additionally, the design of the nozzle can be tailored for a given refrigerant, such that environmentally benign substances can act as the working fluid. This refrigeration cycle is still in early-stage development with prototype development several years away. The complex multi-phase flow at supersonic conditions presents numerous challenges to fully understanding and modeling the cycle. With the support of DOE and venture-capital investors, initial research was conducted at PAX Streamline, and later, at Caitin. We (researchers at Kansas State University) have continued development of the cycle and have gained an in-depth understanding of the governing fundamental knowledge, based on the laws of physics and thermodynamics and verified with our testing results. Through this research, we are identifying optimal working fluid and operating conditions to eventually demonstrate the core technology for space cooling or other applications.

  16. Shallow Water Simulation of Overland Flows in Idealised Catchments

    E-Print Network [OSTI]

    Liang, Dongfang; Özgen, Ilhan; Hinkelmann, Reinhard; Xiao, Yang; Chen, Jack M.

    2015-01-01

    This paper investigates the relationship between the rainfall and runoff in idealised catchments, either with or without obstacle arrays, using an extensively-validated fullydynamic shallow water model. This two-dimensional hydrodynamic model allows...

  17. Demonstration of a plasma mirror based on a laminar flow water film

    SciTech Connect (OSTI)

    Panasenko, Dmitriy; Shu, Anthony; Gonsalves, Anthony; Nakamura, Kei; Matlis, Nicholas; Toth, Csaba; Leemans, Wim

    2011-07-22

    A plasma mirror based on a laminar water film with low flow speed 0.5-2 cm/s has been developed and characterized, for use as an ultrahigh intensity optical reflector. The use of flowing water as atarget surface automatically results in each laser pulse seeing a new interaction surface and avoids the need for mechanical scanning of the target surface. In addition, the breakdown of water does notproduce contaminating debris that can be deleterious to vacuum chamber conditions and optics, such as is the case when using conventional solid targets. The mirror exhibits 70percent reflectivity, whilemaintaining high-quality of the reflected spot.

  18. Demonstration of a plasma mirror based on a laminar flow water film

    SciTech Connect (OSTI)

    Panasenko, Dmitriy; Shu, Anthony J.; Gonsalves, Anthony; Nakamura, Kei; Matlis, Nicholas H.; Toth, Csaba; Leemans, Wim P. [Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720 (United States)

    2010-08-15

    A plasma mirror based on a laminar water film with low flow speed (0.5-2 cm/s) has been developed and characterized, for use as an ultrahigh intensity optical reflector. The use of flowing water as a target surface automatically results in each laser pulse seeing a new interaction surface and avoids the need for mechanical scanning of the target surface. In addition, the breakdown of water does not produce contaminating debris that can be deleterious to vacuum chamber conditions and optics, such as is the case when using conventional solid targets. The mirror exhibits 70% reflectivity, while maintaining high-quality of the reflected spot.

  19. Water gate array for current flow or tidal movement pneumatic harnessing system

    DOE Patents [OSTI]

    Gorlov, Alexander M. (Brookline, MA)

    1991-01-01

    The invention, which provides a system for harnessing power from current flow or tidal movement in a body of water, comprises first and second hydro-pneumatic chambers each having ingress and egress below the water surface near the river or ocean floor and water gates operative to open or seal the ports to the passage of water. In an exemplary embodiment, the gates are sychronized by shafts so that the ingress ports of each chamber are connected to the egress ports of each other chamber. Thus, one set of gates is closed, while the other is open, thereby allowing water to flow into one chamber and build air pressure therein and allowing water to flow out of the other chamber and create a partial vacuum therein. A pipe connects the chambers, and an air turbine harnesses the air movement within the pipe. When water levels are equilibrated, the open set of gates is closed by a counterweight, and the other set is allowed to open by natural force of the water differential. The water gates may be comprised of a plurality of louvers which are ganged for simultaneous opening and closing. The system is designed to operate with air turbines or other pneumatic devices. Its design minimizes construction cost and environmental impact, yet provides a clean renewable energy source.

  20. 16/05/12 3:58 PMFloating robots use GPS-enabled smartphones to track water flow Page 1 of 5http://www.spacedaily.com/reports/Floating_robots_use_GPS_enabled_smartphones_to_track_water_flow_999.html

    E-Print Network [OSTI]

    's field test gave researchers a picture of how water moves through a junction in the river16/05/12 3:58 PMFloating robots use GPS-enabled smartphones to track water flow Page 1 of 5http://www.spacedaily.com/reports/Floating_robots_use_GPS_enabled_smartphones_to_track_water_flow_999.html

  1. RATES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and PACI Final FRN for Rate Order No. WAPA-139 - Notice of Order Temporarily Extending Formula Rates for Power, Transmission and Ancillary Services (PDF - 49K) Final FRN for Rate...

  2. RATES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - 392K) Final FRN for Rate Order No. WAPA-139 - Notice of Order Temporarily Extending Formula Rates for Power, Transmission and Ancillary Services (PDF - 49K) Final FRN for Rate...

  3. Heat transfer to air-water two-phase flow in slug/churn region

    SciTech Connect (OSTI)

    Wadekar, V.V. [AEA Technology, Harwell (United Kingdom). Heat Transfer and Fluid Flow Service; Tuzla, K.; Chen, J.C. [Lehigh Univ., Bethlehem, PA (United States). Dept. of Chemical Engineering

    1996-12-31

    Measured heat transfer data for air-water two-phase flow in the slug/churn flow region are reported. The measurements were obtained from a 1.3 m tall, 15.7 mm diameter vertical tube test-section. It is observed that the data exhibit different heat transfer characteristics to those predicted by the standard correlations for the convective component of flow boiling heat transfer. Comparison with the predictions of a slug flow model for evaporation shows a significant overprediction of the data. The reason for the overprediction is attributed to the sensible heating requirement of the gas phase. The slug flow model is therefore suitably modified for non-evaporating two-phase flow. This specially adapted model is found to give reasonably good predictions of the measured data.

  4. A Tale of Tails: Photon Rates and Flow in Ultra-Relativistic Heavy Ion Collisions

    E-Print Network [OSTI]

    Larry McLerran; Bjoern Schenke

    2015-04-28

    We consider the possibility that quark and gluon distributions in the medium created in high energy heavy ion collisions may be modified by a power law tail at energies much higher than the temperature. We parametrize such a tail by Tsallis distributions with an exponent motivated by phenomenology. These distributions are characterized by an effective temperature scale that we assume to evolve in time like the temperature for thermal distributions. We find that including such a tail increases the rates for photon production and significantly delays the emission times for photons of a fixed energy. We argue that these effects are sufficiently large that they should be able to account for photon yields and flow patterns seen in LHC and RHIC experiments.

  5. Method and apparatus for simultaneous determination of fluid mass flow rate, mean velocity and density

    DOE Patents [OSTI]

    Hamel, William R. (Farragut, TN)

    1984-01-01

    This invention relates to a new method and new apparatus for determining fluid mass flowrate and density. In one aspect of the invention, the fluid is passed through a straight cantilevered tube in which transient oscillation has been induced, thus generating Coriolis damping forces on the tube. The decay rate and frequency of the resulting damped oscillation are measured, and the fluid mass flowrate and density are determined therefrom. In another aspect of the invention, the fluid is passed through the cantilevered tube while an electrically powered device imparts steady-state harmonic excitation to the tube. This generates Coriolis tube-damping forces which are dependent on the mass flowrate of the fluid. Means are provided to respond to incipient flow-induced changes in the amplitude of vibration by changing the power input to the excitation device as required to sustain the original amplitude of vibration. The fluid mass flowrate and density are determined from the required change in power input. The invention provides stable, rapid, and accurate measurements. It does not require bending of the fluid flow.

  6. Improving Heating System Operations Using Water Re-Circulation 

    E-Print Network [OSTI]

    Li, F.; Han, J.

    2006-01-01

    indicates that consumer- regulated indoor temperature is the primary factor that affects the flow rate and temperature of return water....

  7. Numerical simulation of water flow around a rigid fishing net

    E-Print Network [OSTI]

    Roger Lewandowski; Géraldine Pichot

    2006-12-20

    This paper is devoted to the simulation of the flow around and inside a rigid axisymmetric net. We describe first how experimental data have been obtained. We show in detail the modelization. The model is based on a Reynolds Averaged Navier-Stokes turbulence model penalized by a term based on the Brinkman law. At the out-boundary of the computational box, we have used a "ghost" boundary condition. We show that the corresponding variational problem has a solution. Then the numerical scheme is given and the paper finishes with numerical simulations compared with the experimental data.

  8. Revisions to the SRCC Rating Process for Solar Water Heaters: Preprint

    SciTech Connect (OSTI)

    Burch, J.; Huggins, J.; Long, S.; Thornton, J.

    2012-06-01

    In the United States, annual performance ratings for solar water heaters are computed with component-based simulation models driven by typical meteorological year weather and specified water draw. Changes in the process are being implemented to enhance credibility through increased transparency and accuracy. Changes to the process include using a graphical rather than text-based model-building tool, performing analytical tests on all components and systems, checking energy balances on every component, loop, and system at every time step, comparing the results to detect outliers and potential errors, and documenting the modeling process in detail. Examples of changes in ratings are shown, along with analytical and comparative testing results.

  9. Pressure drop, heat transfer, critical heat flux, and flow stability of two-phase flow boiling of water and ethylene glycol/water mixtures - final report for project "Efficent cooling in engines with nucleate boiling."

    SciTech Connect (OSTI)

    Yu, W.; France, D. M.; Routbort, J. L.

    2011-01-19

    Because of its order-of-magnitude higher heat transfer rates, there is interest in using controllable two-phase nucleate boiling instead of conventional single-phase forced convection in vehicular cooling systems to remove ever increasing heat loads and to eliminate potential hot spots in engines. However, the fundamental understanding of flow boiling mechanisms of a 50/50 ethylene glycol/water mixture under engineering application conditions is still limited. In addition, it is impractical to precisely maintain the volume concentration ratio of the ethylene glycol/water mixture coolant at 50/50. Therefore, any investigation into engine coolant characteristics should include a range of volume concentration ratios around the nominal 50/50 mark. In this study, the forced convective boiling heat transfer of distilled water and ethylene glycol/water mixtures with volume concentration ratios of 40/60, 50/50, and 60/40 in a 2.98-mm-inner-diameter circular tube has been investigated in both the horizontal flow and the vertical flow. The two-phase pressure drop, the forced convective boiling heat transfer coefficient, and the critical heat flux of the test fluids were determined experimentally over a range of the mass flux, the vapor mass quality, and the inlet subcooling through a new boiling data reduction procedure that allowed the analytical calculation of the fluid boiling temperatures along the experimental test section by applying the ideal mixture assumption and the equilibrium assumption along with Raoult's law. Based on the experimental data, predictive methods for the two-phase pressure drop, the forced convective boiling heat transfer coefficient, and the critical heat flux under engine application conditions were developed. The results summarized in this final project report provide the necessary information for designing and implementing nucleate-boiling vehicular cooling systems.

  10. A Model of Electrodiffusion and Osmotic Water Flow and its Energetic Structure

    E-Print Network [OSTI]

    Mori, Yoichiro; Eisenberg, Robert S

    2011-01-01

    We introduce a model for ionic electrodiffusion and osmotic water flow through cells and tissues. The model consists of a system of partial differential equations for ionic concentration and fluid flow with interface conditions at deforming membrane boundaries. The model satisfies a natural energy equality, in which the sum of the entropic, elastic and electrostatic free energies are dissipated through viscous, electrodiffusive and osmotic flows. We discuss limiting models when certain dimensionless parameters are small. Finally, we develop a numerical scheme for the one-dimensional case and present some simple applications of our model to cell volume control.

  11. A Model of Electrodiffusion and Osmotic Water Flow and its Energetic Structure

    E-Print Network [OSTI]

    Yoichiro Mori; Chun Liu; Robert S. Eisenberg

    2011-01-27

    We introduce a model for ionic electrodiffusion and osmotic water flow through cells and tissues. The model consists of a system of partial differential equations for ionic concentration and fluid flow with interface conditions at deforming membrane boundaries. The model satisfies a natural energy equality, in which the sum of the entropic, elastic and electrostatic free energies are dissipated through viscous, electrodiffusive and osmotic flows. We discuss limiting models when certain dimensionless parameters are small. Finally, we develop a numerical scheme for the one-dimensional case and present some simple applications of our model to cell volume control.

  12. RATES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Washoe Project, Stampede Division FERC Order Approving Extension of Non-Firm Power Formula Rate - Rate Order No. WAPA-160 (Sept. 5, 2013) (PDF - 22K) Notice of Extension of...

  13. Installation of River and Drain Instrumentation Stations to Monitor Flow and Water Quality and Internet Data Sharing 

    E-Print Network [OSTI]

    Sheng, Z.; Brown, C.; Creel, B.; Srinivasan, R.; Michelsen, A.; Fahy, M. P.

    2008-01-01

    IMS, data sharing and transfer, user needs assessment, Rio Grande, Rio Grande Project, gage station, surface water flow, groundwater, downloadable Microsoft Access database....

  14. Effect of direct liquid water injection and interdigitated flow field on the performance of proton exchange membrane fuel cells

    E-Print Network [OSTI]

    Wood, D. L.; Yi, Y. S.; Van Nguyen, Trung

    1998-01-01

    Proper water management is vital to ensuring successful performance of proton exchange membrane fuel cells. The effectiveness of the direct liquid water injection scheme and the interdigitated flow field design towards providing adequate gas...

  15. Response of fish to different simulated rates of water temperature increase

    SciTech Connect (OSTI)

    Wike, L.D.; Tuckfield, R.C.

    1992-08-01

    We initiated this study to define the limits of effluent-temperature rate increases during reactor restart, which will help minimize fish kills. We constructed an apparatus for exposing fish to various temperature-increase regimens and conducted two experiments based on information from system tests and scoping runs. In the rate experiment, we acclimated the fish to 20{degree}C, and then raised the temperature to 40{degree}C at varying rates. Because scoping runs and literature suggested that acclimation temperature may affect temperature-related mortality, we conducted an acclimation experiment. We acclimated the fish to various temperatures, then raised the temperatures to 39--40{degree}C at a rate of 2{degree}C every 12 hours. Based on the analysis of the data, we recommend temperature-increase rates during reactor restart of 2.5{degree}C every nine hours if ambient water temperatures are over 20{degree}C. If water temperatures are at or below 20{degree}C, we recommend temperature-increase rates of 2.5{degree}C every 12 hours. No regulation of temperature is required after effluent temperatures reach 40{degree}C. We recommend further studies, including expanded testing with the simulation system and behavioral and bioenergetic investigations that may further refine acceptable rates of effluent-temperature increases.

  16. Dose rate estimates from irradiated light-water-reactor fuel assemblies in air

    SciTech Connect (OSTI)

    Lloyd, W.R.; Sheaffer, M.K.; Sutcliffe, W.G.

    1994-01-31

    It is generally considered that irradiated spent fuel is so radioactive (self-protecting) that it can only be moved and processed with specialized equipment and facilities. However, a small, possibly subnational, group acting in secret with no concern for the environment (other than the reduction of signatures) and willing to incur substantial but not lethal radiation doses, could obtain plutonium by stealing and processing irradiated spent fuel that has cooled for several years. In this paper, we estimate the dose rate at various distances and directions from typical pressurized-water reactor (PWR) and boiling-water reactor (BWR) spent-fuel assemblies as a function of cooling time. Our results show that the dose rate is reduced rapidly for the first ten years after exposure in the reactor, and that it is reduced by a factor of {approx}10 (from the one year dose rate) after 15 years. Even for fuel that has cooled for 15 years, a lethal dose (LD50) of 450 rem would be received at 1 m from the center of the fuel assembly after several minutes. However, moving from 1 to 5 m reduces the dose rate by over a factor of 10, and moving from 1 to 10 m reduces the dose rate by about a factor of 50. The dose rates 1 m from the top or bottom of the assembly are considerably less (about 10 and 22%, respectively) than 1 m from the center of the assembly, which is the direction of the maximum dose rate.

  17. Influence of Gas Flow Rate for Formation of Aligned Nanorods in ZnO Thin Films for Solar-Driven Hydrogen Production

    SciTech Connect (OSTI)

    Shet, S.; Chen, L.; Tang, H.; Nuggehalli, R.; Wang, H.; Yan, Y.; Turner, J.; Al-Jassim, M.

    2012-04-01

    ZnO thin films have been deposited in mixed Ar/N{sub 2} gas ambient at substrate temperature of 500 C by radiofrequency sputtering of ZnO targets. We find that an optimum N{sub 2}-to-Ar ratio in the deposition ambient promotes the formation of well-aligned nanorods. ZnO thin films grown in ambient with 25% N{sub 2} gas flow rate promoted nanorods aligned along c-axis and exhibit significantly enhanced photoelectrochemical (PEC) response, compared with ZnO thin films grown in an ambient with different N{sub 2}-to-Ar gas flow ratios. Our results suggest that chamber ambient is critical for the formation of aligned nanostructures, which offer potential advantages for improving the efficiency of PEC water splitting for H{sub 2} production.

  18. Flow pattern, void fraction and pressure drop of two-phase air-water flow in a horizontal circular micro-channel

    SciTech Connect (OSTI)

    Saisorn, Sira [Energy Division, The Joint Graduate School of Energy and Environment (JGSEE), King Mongkut's University of Technology Thonburi, Bangmod, Bangkok 10140 (Thailand); Wongwises, Somchai [Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Laboratory (FUTURE), Department of Mechanical Engineering, King Mongkut's University of Technology Thonburi, Bangmod, Bangkok 10140 (Thailand)

    2008-01-15

    Adiabatic two-phase air-water flow characteristics, including the two-phase flow pattern as well as the void fraction and two-phase frictional pressure drop, in a circular micro-channel are experimentally studied. A fused silica channel, 320 mm long, with an inside diameter of 0.53 mm is used as the test section. The test runs are done at superficial velocity of gas and liquid ranging between 0.37-16 and 0.005-3.04 m/s, respectively. The flow pattern map is developed from the observed flow patterns i.e. slug flow, throat-annular flow, churn flow and annular-rivulet flow. The flow pattern map is compared with those of other researchers obtained from different working fluids. The present single-phase experiments also show that there are no significant differences in the data from the use of air or nitrogen gas, and water or de-ionized water. The void fraction data obtained by image analysis tends to correspond with the homogeneous flow model. The two-phase pressure drops are also used to calculate the frictional multiplier. The multiplier data show a dependence on flow pattern as well as mass flux. A new correlation of two-phase frictional multiplier is also proposed for practical application. (author)

  19. Mapping steam and water flow in petroleum reservoirs

    SciTech Connect (OSTI)

    Wilt, M.; Schenkel, C. [Lawrence Livermore National Lab., CA (United States); Daley, T.; Peterson, J.; Majer, E. [Lawrence Berkeley National Lab., CA (United States); Murer, A.S. [Mobil Exploration and Producing US (United States); Johnston, R.M. [SPE, CalResources LLC (United States); Klonsky, L. [Chevron USA Production Co. (United States)

    1996-11-01

    Over the past 5 years, we have applied high-resolution geophysical methods (crosswell seismic and electromagnetics (EM), and passive seismic) to map and characterize petroleum reservoirs in the San Joaquin Valley and to monitor changes during secondary recovery operations. The two techniques provide complementary information. Seismic data reveal the reservoir structure, whereas EM measurements are more sensitive to the pore fluid distribution. Seismic surveys at the south Belridge field were used to map fracture generation and monitor formation changes due to the onset of steam flooding. Early results show possible sensitivity to changes in gas saturation caused by the steam flooding. Crosswell EM surveys were applied at a shallow pilot at Lost Hills for reservoir characterization and steamflood monitoring. Images made from baselines data clearly show the distribution of the target oil sands; repeated surveys during the steam flood allowed us to identify the boundaries of the steam chest and to accurately predict breakthrough. Applications of the EM techniques in steel-cased wells are at an early stage, but preliminary results at Lost Hills show sensitivity to formation resistivity in a water-flood pilot. Finally, passive seismic surveys during hydrofracture operations measured events corelatable in frequency content and magnitude with the size and orientation of induced fractures.

  20. The Role of Water Vapour in Earth's Energy Flows Richard P. Allan

    E-Print Network [OSTI]

    Allan, Richard P.

    energy flows in Earth's climate system through transfer of latent heat by evaporation and condensation on (1) the powerful thermodynamic constraint of the Clausius Cla- peyron equation, (2) dynamical for changes in the atmospheric hydrological cycle. Keywords Water vapour Á Hydrological cycle Á Radiative

  1. JUSTIFICATION OF THE SHALLOW WATER LIMIT FOR A RIGID LID FLOW WITH BOTTOM TOPOGRAPHY

    E-Print Network [OSTI]

    Oliver, Marcel

    JUSTIFICATION OF THE SHALLOW WATER LIMIT FOR A RIGID LID FLOW WITH BOTTOM TOPOGRAPHY MARCEL OLIVER with bottom topography. We prove an a priori estimate in the Sobolev space H m for m #21; 3 which shows and the magnitude of the initial data in H m , the gradient of the bottom topography in H m+1 , and the aspect ratio

  2. Exact solution describing a shallow water flow in an extending stripe

    E-Print Network [OSTI]

    Sergey V. Golovin

    2008-02-28

    Partially invariant solution to (2+1)D shallow water equation is constructed and investigated. The solution describes an extension of a stripe, bounded by linear source and drain of fluid. Realizations of smooth flow and of hydraulic jump are possible. Particle trajectories and sonic characteristics on the obtained solution are calculated.

  3. Optimizing flow rate and bacterial removal performance of ceramic pot filters in Tamale, Ghana

    E-Print Network [OSTI]

    Zhang, Yiyue, S.M. Massachusetts Institute of Technology

    2015-01-01

    Pure Home Water (PHW) is an organization that seeks to improve the drinking water quality for those who do not have access to clean water in Northern Ghana. This study focuses on the further optimization of ceramic pot ...

  4. SPH Study of the Evolution of Water-Water Interfaces in Dam Break Flows

    E-Print Network [OSTI]

    Jian, Wei; Liang, Dongfang; Shao, Songdong; Chen, Ridong; Liu, Xingnian

    2015-04-08

    but also tides and tsunamis. 465 466 467 20 5.1 Model setup and computational parameters 468 469 The numerical setup of this hypothetical dam-break problem consists of a 2000 m long 470 horizontal water tank. Water is initially...

  5. Water Source Distance and Its Effects on Population and Water Rate Miyashiro ESM 121 Water Science and Management

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    with price. This was more challenging than originally imagined since many residential water use pricing basic bodily needs to food, manufacturing, irrigation, production of energy, recreation, etc if proximity and price had a negative effect on population size and if proximity had a positive correlation

  6. Reducing pumping energy by using different flow rates of high and low concentration solutions in reverse electrodialysis cells

    E-Print Network [OSTI]

    Reducing pumping energy by using different flow rates of high and low concentration solutions Keywords: Salinity gradient energy RED Renewable energy production a b s t r a c t Energy use for pumping to reduce the energy needed for pumping, electrical performance and hydrodynamic power losses in a RED stack

  7. Investigation of Groundwater Flow in Foothill and Mountain regions using Heat Flow measurements

    E-Print Network [OSTI]

    Fogg, Graham E.; Trask, James C

    2009-01-01

    1965) Rates of Vertical Groundwater Movement Estimated fromCrystalline Rocks. Groundwater, Vol. 2, pp. 6-12. Dettinger,horizontal and vertical groundwater flow components. Water

  8. A study of the rate of dissolution of rock salt in drilling mud flowing under down hole conditions 

    E-Print Network [OSTI]

    Forsyth, Jackie Lee

    1990-01-01

    , at this and higher temperatures, the flow rate was determined from the total volume displaced and the total run time, and the salt dissolution rate was determined primarily from the weight loss measurements. MATERIALS The mud used in the tests was supplied..., the transfer of a full reservoir of mud was timed to estimate the flowrate for some of the tests at 375 F [191 Cj. Again, the polymer was tested only at room temperature. 16 DATA The rate of salt dissolution per unit area of salt surface (R...

  9. Dispersion equation for water waves with vorticity and Stokes waves on flows with counter-currents

    E-Print Network [OSTI]

    Vladimir Kozlov; Nikolay Kuznetsov

    2014-06-05

    The two-dimensional free-boundary problem of steady periodic waves with vorticity is considered for water of finite depth. We investigate how flows with small-amplitude Stokes waves on the free surface bifurcate from a horizontal parallel shear flow in which counter-currents may be present. Two bifurcation mechanisms are described: for waves with fixed Bernoulli's constant and fixed wavelength. In both cases the corresponding dispersion equations serve for defining wavelengths from which Stokes waves bifurcate. Sufficient conditions guaranteeing the existence of roots of these equations are obtained. Two particular vorticity distributions are considered in order to illustrate general results.

  10. Rate of deformation in the Pasco Basin during the Miocene as determined by distribution of Columbia River basalt flows

    SciTech Connect (OSTI)

    Reidel, S.P.; Ledgerwood, R.K.; Myers, C.W.; Jones, M.G.; Landon, R.D.

    1980-03-01

    Detailed mapping of over 8000 square kilometers and logs from 20 core holes were used to determine the distribution and thickness of basalt flows and interbeds in the Pasco Basin. The data indicate the high-MgO Grande Ronde Basalt and Wanapum Basalt thicken from the northeast to the southwest. Deformation began in late Frenchman Springs time in the Saddle Mountains along a northwest-southeast trend and in Roza time along an east-west trend. By late Wanapum time, basalt flows were more restricted on the east side. Saddle Mountains Basalt flows spread out in the basin from narrow channels to the east. The Umatilla Member entered from the southeast and is confined to the south-central basin, while the Wilbur Creek, Asotin, Esquatzel, Pomona, and Elephant Mountain Members entered from the east and northeast. The distribution of these members is controlled by flow volume, boundaries of other flows, and developing ridges. The Wilbur Creek, Asotin, and Esquatzel flows exited from the basin in a channel along the northern margin of the Umatilla flow, while the Pomona and Elephant Mountain flows exited between Umtanum Ridge and Wallula Gap. The thickness of sedimentary interbeds and basalt flows indicated subsidence and/or uplift began in post-Grande Ronde time (14.5 million years before present) and continued through Saddle Mountains time (10.5 million years before present). Maximum subsidence occurred 40 kilometers (24 miles) north of Richland, Washington with an approximate rate of 25 meters (81 feet) per million years during the eruption of the basalt. Maximum uplift along the developing ridges was 70 meters (230 feet) per million years.

  11. The Effects of Heterogeneity in Magma Water Concentration on the Development of Flow Banding and Spherulites in Rhyolitic Lava

    SciTech Connect (OSTI)

    Seaman, S.; Dyar, D; Marinkovic, N

    2009-01-01

    This study focuses on the origin of flow-banded rhyolites that consist of compositionally similar darker and lighter flow bands of contrasting texture and color. Infrared radiation was used to obtain Fourier transform infrared (FTIR) spectra from which water concentrations were calculated, and to map variations in water concentrations across zones of spherulites and glass from the 23 million year old Sycamore Canyon lava flow of southern Arizona. Lighter-colored, thicker flow bands consist of gray glass, fine-grained quartz, and large (1.0 to 1.5 mm) spherulites. Darker-colored, thinner flow bands consist of orange glass and smaller (0.1 to 0.2 mm) spherulites. The centers of both large and small spherulites are occupied by either (1) a quartz or sanidine crystal, (2) a granophyric intergrowth, or (3) a vesicle. Mapping of water concentration (dominantly OH- in glass and OH- and H2O in sanidine crystals) illustrates fluctuating water availability during quenching of the host melt. Textures of large spherulites in the lighter (gray) bands in some cases indicate complex quenching histories that suggest that local water concentration controlled the generation of glass versus crystals. Small spherulites in darker (orange) bands have only one generation of radiating crystal growth. Both the glass surrounding spherulites, and the crystals in the spherulites contain more water in the gray flow bands than in the orange flow bands. Flow banding in the Sycamore Canyon lava flow may have originated by the stretching of a magma that contained pre-existing zones (vesicles or proto-vesicles) of contrasting water concentration, as the magma flowed in the conduit and on the surface. Variation in the original water concentration in the alternating layers is interpreted to have resulted in differences in undercooling textures in spherulites in the lighter compared to the darker flow bands.

  12. An investigation of the effect of pore scale flow on average geochemical reaction rates using direct numerical simulation

    SciTech Connect (OSTI)

    Rafa, S. Molins; Trebotich, D.; Steefel, C. I.; Shen, C.

    2012-02-01

    The scale-dependence of geochemical reaction rates hinders their use in continuum scale models intended for the interpretation and prediction of chemical fate and transport in subsurface environments such as those considered for geologic sequestration of CO{sub 2}. Processes that take place at the pore scale, especially those involving mass transport limitations to reactive surfaces, may contribute to the discrepancy commonly observed between laboratory-determined and continuum-scale or field rates. Here, the dependence of mineral dissolution rates on the pore structure of the porous media is investigated by means of pore scale modeling of flow and multicomponent reactive transport. The pore scale model is comprised of high performance simulation tools and algorithms for incompressible flow and conservative transport combined with a general-purpose multicomponent geochemical reaction code. The model performs direct numerical simulation of reactive transport based on an operator-splitting approach to coupling transport and reactions. The approach is validated with a Poiseuille flow single-pore experiment and verified with an equivalent 1D continuum-scale model of a capillary tube packed with calcite spheres. Using the case of calcite dissolution as an example, the high resolution model is used to demonstrate that non-uniformity in the flow field at the pore scale has the effect of decreasing the overall reactivity of the system, even when systems with identical reactive surface area are considered. The effect becomes more pronounced as the heterogeneity of the reactive grain packing increases, particularly where the flow slows sufficiently such that the solution approaches equilibrium locally and the average rate becomes transport-limited.

  13. Measurement of the pure dissolution rate constant of a mineral in water

    E-Print Network [OSTI]

    Jean Colombani

    2009-11-26

    We present here a methodology, using holographic interferometry, enabling to measure the pure surface reaction rate constant of the dissolution of a mineral in water, unambiguously free from the influence of mass transport. We use that technique to access to this value for gypsum and we demonstrate that it was never measured before but could be deduced a posteriori from the literature results if hydrodynamics is taken into account with accuracy. It is found to be much smaller than expected. This method enables to provide reliable rate constants for the test of dissolution models and the interpretation of in situ measurements, and gives clues to explain the inconsistency between dissolution rates of calcite and aragonite, for instance, in the literature.

  14. Measurement of the pure dissolution rate constant of a mineral in water

    E-Print Network [OSTI]

    Colombani, Jean

    2009-01-01

    We present here a methodology, using holographic interferometry, enabling to measure the pure surface reaction rate constant of the dissolution of a mineral in water, unambiguously free from the influence of mass transport. We use that technique to access to this value for gypsum and we demonstrate that it was never measured before but could be deduced a posteriori from the literature results if hydrodynamics is taken into account with accuracy. It is found to be much smaller than expected. This method enables to provide reliable rate constants for the test of dissolution models and the interpretation of in situ measurements, and gives clues to explain the inconsistency between dissolution rates of calcite and aragonite, for instance, in the literature.

  15. Particle trajectories beneath small amplitude shallow water waves in constant vorticity flows

    E-Print Network [OSTI]

    Delia Ionescu-Kruse

    2011-06-20

    We investigate the particle trajectories in a constant vorticity shallow water flow over a flat bed as periodic waves propagate on the water's free surface. Within the framework of small amplitude waves, we find the solutions of the nonlinear differential equations system which describes the particle motion in the considered case, and we describe the possible particle trajectories. Depending on the relation between the initial data and the constant vorticity, some particle trajectories are undulating curves to the right, or to the left, others are loops with forward drift, or with backward drift, others can follow some peculiar shapes.

  16. The Properties of Confined Water and Fluid Flow at the Nanoscale

    SciTech Connect (OSTI)

    Schwegler, E; Reed, J; Lau, E; Prendergast, D; Galli, G; Grossman, J C; Cicero, G

    2009-03-09

    This project has been focused on the development of accurate computational tools to study fluids in confined, nanoscale geometries, and the application of these techniques to probe the structural and electronic properties of water confined between hydrophilic and hydrophobic substrates, including the presence of simple ions at the interfaces. In particular, we have used a series of ab-initio molecular dynamics simulations and quantum Monte Carlo calculations to build an understanding of how hydrogen bonding and solvation are modified at the nanoscale. The properties of confined water affect a wide range of scientific and technological problems - including protein folding, cell-membrane flow, materials properties in confined media and nanofluidic devices.

  17. Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single Family Homes (Revised)

    SciTech Connect (OSTI)

    Cummings, J.; Withers, C.; Martin, E.; Moyer, N.

    2012-10-01

    This document focuses on managing the driving forces which move air and moisture across the building envelope. While other previously published Measure Guidelines focus on elimination of air pathways, the ultimate goal of this Measure Guideline is to manage drivers which cause air flow and water vapor transport across the building envelope (and also within the home), control air infiltration, keep relative humidity (RH) within acceptable limits, avoid combustion safety problems, improve occupant comfort, and reduce house energy use.

  18. Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single-Family Homes

    SciTech Connect (OSTI)

    Cummings, James; Withers, Charles; Martin, Eric; Moyer, Neil

    2012-10-01

    This report is a revision of an earlier report titled: Measure Guideline: Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single-Family Homes. Revisions include: Information in the text box on page 1 was revised to reflect the most accurate information regarding classifications as referenced in the 2012 International Residential Code. “Measure Guideline” was dropped from the title of the report. An addition was made to the reference list.

  19. Flow at Low Water Contents: A Simple Approach for Inverse Estimation of van Genuchten-Mualem Soil Hydraulic Parameters

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Flow at Low Water Contents: A Simple Approach for Inverse Estimation of van Genuchten-Mualem Soil and civil engineering. Because of the strong dependency of these properties on water content. For gravimetric water contents greater than 0.04, numeral results agreed well with experimental data, while some

  20. An SF6 Tracer Study of the Flow Dynamics in the Stockton Deep Water Ship Channel: Implications

    E-Print Network [OSTI]

    Ho, David

    An SF6 Tracer Study of the Flow Dynamics in the Stockton Deep Water Ship Channel: Implications6) tracer release experi- ment was conducted in the Stockton Deep Water Ship Channel (DWSC. Keywords Dissolved oxygen . Sacramento­San Joaquin delta . Stockton deep water ship channel . SF6 . Tracer

  1. Design and testing of a microvalve capable of precisely controlling low fluidic flow rates

    E-Print Network [OSTI]

    Daniel, Cody R

    2011-01-01

    Development of the design, manufacture, and testing for a gas flow regulating microvalve is presented herein. The microvalve project served as a test bed for new micromachining techniques and for exploration of MEMS devices ...

  2. Design and installation of continuous flow and water qualitymonitoring stations to improve water quality forecasting in the lower SanJoaquin River

    SciTech Connect (OSTI)

    Quinn, Nigel W.T.

    2007-01-20

    This project deliverable describes a number ofstate-of-the-art, telemetered, flow and water quality monitoring stationsthat were designed, instrumented and installed in cooperation with localirrigation water districts to improve water quality simulation models ofthe lower San Joaquin River, California. This work supports amulti-disciplinary, multi-agency research endeavor to develop ascience-based Total Maximum Daily Load for dissolved oxygen in the SanJoaquin River and Stockton Deep Water Ship Channel.

  3. Shallow ground-water flow, water levels, and quality of water, 1980-84, Cowles Unit, Indiana Dunes National Lakeshore

    SciTech Connect (OSTI)

    Cohen, D.A.; Shedlock, R.J.

    1986-01-01

    The Cowles Unit of Indiana Dunes National Lakeshore in Porter County, northwest Indiana, contains a broad dune-beach complex along the southern shoreline of Lake Michigan and a large wetland, called the Great Marsh, that occupies the lowland between the shoreline dunes and an older dune-beach complex farther inland. Water levels and water quality in the surficial aquifer were monitored from 1977 to 1984 near settling ponds on adjacent industrial property at the western end of the Cowles Unit. Since 1980, when the settling pond bottoms were sealed, these intradunal lowlands contained standing water only during periods of high snowmelt or rainfall. Water level declines following the cessation of seepage ranged from 6 feet at the eastern-most settling pond to nearly 14 feet at the western-most pond. No general pattern of water table decline was observed in the Great Marsh or in the shoreline dune complex at distances > 3,000 ft east or north of the settling ponds. Since the settling ponds were sealed, the concentration of boron has decreased while concentrations of cadmium, arsenic, zinc, and molybdenum in shallow ground-water downgradient of the ponds show no definite trends in time. Arsenic, boron and molybdenum have remained at concentrations above those of shallow groundwater in areas unaffected by settling pond seepage. 11 refs., 10 figs., 1 tab.

  4. Spent fuel dissolution rates as a function of burnup and water chemistry

    SciTech Connect (OSTI)

    Gray, W.J.

    1998-06-01

    To help provide a source term for performance-assessment calculations, dissolution studies on light-water-reactor (LWR) spent fuel have been conducted over the past few years at Pacific Northwest National Laboratory in support of the Yucca Mountain Site Characterization Project. This report describes that work for fiscal years 1996 through mid-1998 and includes summaries of some results from previous years for completeness. The following conclusions were based on the results of various flowthrough dissolution rate tests and on tests designed to measure the inventories of {sup 129}I located within the fuel/cladding gap region of different spent fuels: (1) Spent fuels with burnups in the range 30 to 50 MWd/kgM all dissolved at about the same rate over the conditions tested. To help determine whether the lack of burnup dependence extends to higher and lower values, tests are in progress or planned for spent fuels with burnups of 13 and {approximately} 65 MWd/kgM. (2) Oxidation of spent fuel up to the U{sub 4}O{sub 9+x} stage does not have a large effect on intrinsic dissolution rates. However, this degree of oxidation could increase the dissolution rates of relatively intact fuel by opening the grain boundaries, thereby increasing the effective surface area that is available for contact by water. From a disposal viewpoint, this is a potentially more important consideration than the effect on intrinsic rates. (3) The gap inventories of {sup 129}I were found to be smaller than the fission gas release (FGR) for the same fuel rod with the exception of the rod with the highest FGR. Several additional fuels would have to be tested to determine whether a generalized relationship exists between FGR and {sup 129}I gap inventory for US LWR fuels.

  5. Modelling water flow and transport of contaminants from mine wastes stored in open pits

    E-Print Network [OSTI]

    Aubertin, Michel

    conditions. The effects of material hydraulic properties (i.e. the water retention curve and hydraulic conductivity function), fracture network characteristics, variable recharge rates and saturated hydraulic and petroleum energy resources. In addition, the search for safe storage of hazardous wastes, where the primary

  6. Hydrogeologic evaluation and numerical simulation of the Death Valley regional ground-water flow system, Nevada and California

    SciTech Connect (OSTI)

    D`Agnese, F.A.; Faunt, C.C.; Turner, A.K.; Hill, M.C.

    1997-12-31

    Yucca Mountain is being studied as a potential site for a high-level radioactive waste repository. In cooperation with the U.S. Department of Energy, the U.S. Geological Survey is evaluating the geologic and hydrologic characteristics of the ground-water system. The study area covers approximately 100,000 square kilometers between lat 35{degrees}N., long 115{degrees}W and lat 38{degrees}N., long 118{degrees}W and encompasses the Death Valley regional ground-water flow system. Hydrology in the region is a result of both the and climatic conditions and the complex described as dominated by interbasinal flow and may be conceptualized as having two main components: a series of relatively shallow and localized flow paths that are superimposed on deeper regional flow paths. A significant component of the regional ground-water flow is through a thick Paleozoic carbonate rock sequence. Throughout the regional flow system, ground-water flow is probably controlled by extensive and prevalent structural features that result from regional faulting and fracturing. Hydrogeologic investigations over a large and hydrogeologically complex area impose severe demands on data management. This study utilized geographic information systems and geoscientific information systems to develop, store, manipulate, and analyze regional hydrogeologic data sets describing various components of the ground-water flow system.

  7. Flow rate dictates permeability enhancement during fluid pressure oscillations in laboratory experiments

    E-Print Network [OSTI]

    Candela, Thibault; Brodsky, Emily E; Marone, Chris; Elsworth, Derek

    2015-01-01

    between   the   upstream  and  downstream  pore  pressure  because   the  upstream  and  downstream  reservoirs  are  rate  at  the  upstream  and  downstream  before  the  

  8. A thermal method for measuring the rate of water movement in plants 

    E-Print Network [OSTI]

    Bloodworth, Morris Elkins

    1958-01-01

    L?BP A 8 V a L ?BPA8B8 op A THERMAL METHOD FOR MEASURING THE RATE OF WATER MOVEMENT IN PLANTS A Dissertation By Morris Elkins Bloodworth Vao Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in Partial... ??BLA? ? ? ? ? ? ?? ?B?8?8?A B? ??A8? o? ????A???????????? ?? ??? ?????????^pP ??^i?? ?????????????????????????? ?? p? ??B?8???8? ??? ???A???8?A?AoB? ? ? ? ? ?? ?? ^8?A ???o?oAo8? ? ????A ???o?B??8?A?? ?B?A?B? ? ? o A...

  9. Momentum rate probe for use with two-phase flows S. G. Bush,a)

    E-Print Network [OSTI]

    Panchagnula, Mahesh

    of flows including nuclear reactor coolant streams, refrigerants in heating-ventilating air , supercritical fuel injection in Diesel engines, for instance , and consumer product sprays such as hair overwhelm the force measurements. Oscillation damping results from a viscous fluid damper whose resistance

  10. No steady water waves of small amplitude are supported by a shear flow with still free surface

    E-Print Network [OSTI]

    Vladimir Kozlov; Nikolay Kuznetsov

    2012-09-17

    The two-dimensional free-boundary problem describing steady gravity waves with vorticity on water of finite depth is considered. It is proved that no small-amplitude waves are supported by a horizontal shear flow whose free surface is still in a coordinate frame such that the flow is time-independent in it. The class of vorticity distributions for which such flows exist includes all positive constant distributions, as well as linear and quadric ones with arbitrary positive coefficients.

  11. Vadose zone water fluxmeter

    DOE Patents [OSTI]

    Faybishenko, Boris A.

    2005-10-25

    A Vadose Zone Water Fluxmeter (WFM) or Direct Measurement WFM provides direct measurement of unsaturated water flow in the vadose zone. The fluxmeter is a cylindrical device that fits in a borehole or can be installed near the surface, or in pits, or in pile structures. The fluxmeter is primarily a combination of tensiometers and a porous element or plate in a water cell that is used for water injection or extraction under field conditions. The same water pressure measured outside and inside of the soil sheltered by the lower cylinder of the fluxmeter indicates that the water flux through the lower cylinder is similar to the water flux in the surrounding soil. The fluxmeter provides direct measurement of the water flow rate in the unsaturated soils and then determines the water flux, i.e. the water flow rate per unit area.

  12. USDA Forest Service Gen. Tech. Rep. PSW-GTR-168. 1998. 35 The Summer Flow and Water Yield Response

    E-Print Network [OSTI]

    USDA Forest Service Gen. Tech. Rep. PSW-GTR-168. 1998. 35 The Summer Flow and Water Yield Response to Timber Harvest1 Elizabeth T. Keppeler2 Abstract:Abstract:Abstract:Abstract:Abstract: Continuous harvest methods (selection and clearcut) on summer flows and annual yield. Although all Caspar Creek

  13. Measuring the CO2 flux at the air/water interface in lakes using flow injection analysis

    E-Print Network [OSTI]

    Jardim, Wilson de Figueiredo

    measurements. The use of flow analysis for the determination of dissolved carbon dioxide by membrane separation a hydrophobic membrane into a flow of deionized water, generating a gradient of conductivity proportional the processes related to the carbon cycle within the aquatic environment. The direction of CO2 gas exchange

  14. Polymer Growth Rate in a Wire Chamber with Oxygen,Water, or Alcohol Gas Additives

    SciTech Connect (OSTI)

    Boyarski, Adam; /SLAC

    2008-07-02

    The rate of polymer growth on wires was measured in a wire chamber while the chamber was aged initially with helium-isobutane (80:20) gas, and then with either oxygen, water, or alcohol added to the gas. At the completion of the aging process for each gas mixture, the carbon content on the wires was measured in a SEM/EDX instrument. The same physical wires were used in all the gas mixtures, allowing measurement of polymer build up or polymer depletion by each gas additive. It is found that the rate of polymer growth is not changed by the presence of oxygen, water or alcohol. Conjecture that oxygen reduces breakdown by removing polymer deposits on field wires is negated by these measurements. Instead, it appears that the reduced breakdown is due to lower resistance in the polymer from oxygen ions being transported into the polymer. It is also observed that field wires bombarded by the electrons in the SEM and then placed back into the chamber show an abundance of single electrons being emitted, indicating that electron charge is stored in the polymer layer and that a high electric field is necessary to remove the charge.

  15. The effect of N{sub 2} flow rate on discharge characteristics of microwave electron cyclotron resonance plasma

    SciTech Connect (OSTI)

    Ding Wanyu [Institute of Optoelectronic Materials and Devices, Dalian Jiaotong University, Dalian 116028 (China); State Key Laboratory of Material Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Dalian 116024 (China); Xu Jun; Lu Wenqi; Deng Xinlu; Dong Chuang [State Key Laboratory of Material Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Dalian 116024 (China)

    2009-05-15

    The properties of plasma in Ar/N{sub 2} microwave electron cyclotron resonance discharge with a percentage of N{sub 2} flow rate ranging from 5% to 50% have been studied in order to understand the effect of N{sub 2} flow rate on the mechanical properties of silicon nitride films. N{sub 2}{sup +} radicals as well as N{sub 2}, N{sup +} are found by optical emission spectroscopy analysis. The evolution of plasma density, electron kinetic energy, N{sub 2}{sup +}, N{sub 2}, and N{sup +} emission lines from mixed Ar/N{sub 2} plasma on changing mixture ratio has been studied. The mechanisms of their variations have been discussed. Moreover, an Ar/N{sub 2} flow ratio of 2/20 is considered to be the best condition for synthesizing a-Si{sub 3}N{sub 4}, which has been confirmed in the as-deposited silicon nitride films with quite good mechanical properties by nanoindentation analyses.

  16. UNSAT-H Version 2. 0: Unsaturated soil water and heat flow model

    SciTech Connect (OSTI)

    Fayer, M.J.; Jones, T.L.

    1990-04-01

    This report documents UNSAT-H Version 2.0, a model for calculating water and heat flow in unsaturated media. The documentation includes the bases for the conceptual model and its numerical implementation, benchmark test cases, example simulations involving layered soils and plant transpiration, and the code listing. Waste management practices at the Hanford Site have included disposal of low-level wastes by near-surface burial. Predicting the future long-term performance of any such burial site in terms of migration of contaminants requires a model capable of simulating water flow in the unsaturated soils above the buried waste. The model currently used to meet this need is UNSAT-H. This model was developed at Pacific Northwest Laboratory to assess water dynamics of near-surface, waste-disposal sites at the Hanford Site. The code is primarily used to predict deep drainage as a function of such environmental conditions as climate, soil type, and vegetation. UNSAT-H is also used to simulate the effects of various practices to enhance isolation of wastes. 66 refs., 29 figs., 7 tabs.

  17. National and Regional Water and Wastewater Rates For Use in Cost-Benefit Models and Evaluations of Water Efficiency Programs

    E-Print Network [OSTI]

    Fisher, Diane C.; Whitehead, Camilla Dunham; Melody, Moya

    2008-01-01

    excel/aeotab_19.xls Fisher, D.C. , and J.D. Lutz. Water andWaste Water Tariffs for New Residential Construction inNational Association of Clean Water Agencies. 2005 Financial

  18. The effects of production rates and some reservoir parameters on recovery in a strong water drive gas reservoir 

    E-Print Network [OSTI]

    Soemarso, Christophorus

    1978-01-01

    THE EFFECTS OF PRODUCTION RATES AND SOME RESERVOIR PARAMETERS ON RECOVERY IN A STRONG WATER DRIVE GAS RESERVOIR A Thesis by CHRISTOPHORUS SOEMARSO Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE December 1978 Major Subject: Petroleum Engineering THE EFFECTS OF PRODUCTION RATES AND SOME RESERVOIR PARAMETERS ON RECOVERY IN A STRONG WATER DRIVE GAS RESERVOIR A Thesis by CHRISTOPHORUS SOEMARSO...

  19. Dry-season soil water repellency affects Tahoe Basin infiltration rates

    E-Print Network [OSTI]

    Rice, Erin C; Grismer, Mark E

    2010-01-01

    the intrinsic sorptivity water repellency index on a rangeaverage from the untreated- water plots. Sediment yield andMean SE Meyers road cut Mean SE Water Surfactant Water SE

  20. IEEE INFOCOMM'99 1 Performance Evaluation of the RateBased Flow

    E-Print Network [OSTI]

    ­ naling to them their allowable transmission rate. The behavior of the source and destination is specified][14]. The behavior of the switches, however, is left to the designer of the switch. Several controllers have been by a single bot­ tleneck queue [5][16][19][22]. Bounds for the buffer occupancy are then computed for EFCI

  1. Does Water Content or Flow Rate Control Colloid Transport in Unsaturated

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journal Article) | SciTech Connect Discrimination ofDynamics ModelPorous Media?

  2. Steam-water two-phase flow in large diameter vertical piping at high pressures and temperatures

    SciTech Connect (OSTI)

    Hasanein, H.A.; Kawaji, Masahiro [Univ. of Toronto, Ontario (Canada); Chan, A.M.C. [Ontario Hydro Technologies, Toronto, Ontario (Canada); Yoshioka, Yuzuru [Japan Atomic Power Co., Tokyo (Japan)

    1996-08-01

    No information on steam/water two-phase flow behavior in large diameter pipes (10 inch or larger) at elevated pressures is available in the open literature. However, there are many applications, in the nuclear, chemical and petroleum industries among others where two-phase flows in large diameter pipes at elevated pressures and temperatures are encountered routinely or under accident scenarios. Experimental data on steam-water two-phase flow in a large diameter (20 inch, 50.08 cm I.D.) vertical pipe at elevated pressures and temperatures (2.8 MPa/230 C--6.4 MPa/280 C) have been obtained. Void fraction, two-phase mass flux, phase and velocity distributions as well as pressure drop along the test pipe have been measured using the Ontario Hydro Technologies (OHT) Pump Test Loop. The void fraction distributions were found to be axially symmetric and nearly flat over a wide range of two-phase flow conditions. The two-phase flow regime could be inferred from the dynamic void fluctuations data. For the 280 C tests, the flow was found to be relatively stable with bubbly flow at low average void fractions and churn turbulent or wispy-annular flow at higher void fractions. At 230 C, the flow became rather oscillatory and slugging was suspected at relatively low voids. It has also been found that the average void fractions in the test section can be determined reasonably accurately using the axial pressure drop data.

  3. Understanding order flow

    E-Print Network [OSTI]

    Evans, MDD; Lyons, Richard K.

    2006-01-01

    Understanding Order Flow October 2005 Martin D. D. Evans 1Rate Fundamentals and Order Flow, typescript, Georgetown2005), Customer Order Flow and Exchange Rate Movements: Is

  4. Direct Calculation of Ice Homogeneous Nucleation Rate for a Molecular Model of Water

    E-Print Network [OSTI]

    Amir Haji-Akbari; Pablo G. Debenedetti

    2015-07-08

    Ice formation is ubiquitous in nature, with important consequences in a variety of environments, including biological cells, soil, aircraft, transportation infrastructure and atmospheric clouds. However, its intrinsic kinetics and microscopic mechanism are difficult to discern with current experiments. Molecular simulations of ice nucleation are also challenging, and direct rate calculations have only been performed for coarse-grained models of wate. For molecular models, only indirect estimates have been obtained, e.g. by assuming the validity of classical nucleation theory. We use a path sampling approach to perform the first direct rate calculation of homogeneous nucleation of ice in a molecular model of water. We use TIP4P/Ice, the most accurate among existing molecular models for studying ice polymorphs. By using a novel topological approach to distinguish different polymorphs, we are able to identify a freezing mechanism that involves a competition between cubic and hexagonal ice in the early stages of nucleation. In this competition, the cubic polymorph takes over since the addition of new topological structural motifs consistent with cubic ice leads to the formation of more compact crystallites. This is not true for topological hexagonal motifs, which give rise to elongated crystallites that are not able to grow. This leads to transition states that are rich in cubic ice, and not the thermodynamically stable hexagonal polymorph. This mechanism provides a molecular explanation to the earlier experimental and computational observations of the preference for cubic ice in the literature.

  5. Review of International Methods of Test to Rate the Efficiency of Water Heaters

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01

    day and delivered hot water energy varies according to the60% of the indicated hot water energy specified in the testterms of wasted water and startup energy. The startup energy

  6. Review of International Methods of Test to Rate the Efficiency of Water Heaters

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01

    test procedures for solar water heaters characterizes systemWasted water Solar Heat pump water heater Australia/Newheaters/Annex_IV_8July08 International Organization for Standardization, "Draft International Standard ISO/DIS 9459-4 Solar

  7. Review of International Methods of Test to Rate the Efficiency of Water Heaters

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01

    associated with the EU water heater test procedure loadEU test procedure for water heaters. Load No. Delivered Max.period to allow the water heater to adjust completely to

  8. The Development of a Coordinated Database for Water Resources and Flow Model in the Paso Del Norte Watershed (Phase III) Part II Availability of Flow and Water Quality Data for the Rio Grande Project Area 

    E-Print Network [OSTI]

    Tillery, Sue; Sheng, Zhuping; King, J. Phillip; Creel, Bobby; Brown, Christopher; Michelsen, Ari; Srinivasan, Raghavan; Granados, Alfredo

    2009-01-01

    of the Rio Grande flow between Elephant Butte Dam and American Dam by using data collected in the first development phase of the PdNWC/Corps Coor dinated Water Resources Database and to enhance the data portal capabilities of the PdNWC Coordinated... monitoring sites from associated canals, drains, and dams along the Rio Grande. Flow data for the years from 1908 through 2002 and water quality data for the years 1938 to 2005 collected periodically by different agencies include historic chemical...

  9. DEVELOPMENT OF A LOW COST INFERENTIAL NATURAL GAS ENERGY FLOW RATE PROTOTYPE RETROFIT MODULE

    SciTech Connect (OSTI)

    E. Kelner; D. George; T. Morrow; T. Owen; M. Nored; R. Burkey; A. Minachi

    2005-05-01

    In 1998, Southwest Research Institute began a multi-year project to develop a working prototype instrument module for natural gas energy measurement. The module will be used to retrofit a natural gas custody transfer flow meter for energy measurement, at a cost an order of magnitude lower than a gas chromatograph. Development and evaluation of the prototype energy meter in 2002-2003 included: (1) refinement of the algorithm used to infer properties of the natural gas stream, such as heating value; (2) evaluation of potential sensing technologies for nitrogen content, improvements in carbon dioxide measurements, and improvements in ultrasonic measurement technology and signal processing for improved speed of sound measurements; (3) design, fabrication and testing of a new prototype energy meter module incorporating these algorithm and sensor refinements; and (4) laboratory and field performance tests of the original and modified energy meter modules. Field tests of the original energy meter module have provided results in close agreement with an onsite gas chromatograph. The original algorithm has also been tested at a field site as a stand-alone application using measurements from in situ instruments, and has demonstrated its usefulness as a diagnostic tool. The algorithm has been revised to use measurement technologies existing in the module to measure the gas stream at multiple states and infer nitrogen content. The instrumentation module has also been modified to incorporate recent improvements in CO{sub 2} and sound speed sensing technology. Laboratory testing of the upgraded module has identified additional testing needed to attain the target accuracy in sound speed measurements and heating value.

  10. Review of International Methods of Test to Rate the Efficiency of Water Heaters

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01

    test procedures for solar water heaters characterizes systemWasted water Solar Heat pump water heater Australia/Newheaters/Annex_IV_8July08 International Organization for Standardization, "Draft International Standard ISO/DIS 9459-4 Solar heating — Domestic water

  11. Oscillation and collective conveyor of water-in-oil droplets by microfluidic bolus flow

    E-Print Network [OSTI]

    Ohmura, Takuya; Kamei, Ken-ichiro; Maeda, Yusuke T

    2015-01-01

    Microfluidic techniques have been extensively developed to realize micro-total analysis systems in a small chip. For microanalysis, the trapping or arranging of objects in a line is a critical step. Physical effects such as inertial lift force have been utilized so far, however, hydrodynamic interaction in a many body system is yet to be explored despite its relevance to pattern formation. Here, we report water-in-oil (W/O) droplets can be transported with sequential order in the grid of one-dimensional array of another large W/O droplets. As each droplet comes close to an interspace of the large droplet array, while exhibiting persistent back-and-forth motion, it is conveyed at a velocity equal to the droplet array. The droplet also makes asymmetric orbit to and from the large droplet behind, suggesting vortex like stream was involved. We confirm the appearance of closed streamlines, which called bolus flow, in numerical simulation based on lattice Boltzmann method. The existence region of bolus flow account...

  12. Piyahu Nadu - Land of Flowing Waters: The Water Transfer from Owens Valley to Los Angeles 1913-1939

    E-Print Network [OSTI]

    Walker, Chantal

    2014-01-01

    Exchanging of Certain Land and Water Rights in California. ”of the West’s First Great Water Transfer. Stanford: StanfordThe Euro-Americans monopolized water for their cattle while

  13. A study on the characteristics of upward air-water two-phase flow in a large diameter pipe

    SciTech Connect (OSTI)

    Shen, Xiuzhong; Saito, Yasushi; Mishima, Kaichiro [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Nakamura, Hideo [Nuclear Safety Research Center, Japan Atomic Energy Agency, Tokai-mura, Ibaraki 319-1195 (Japan)

    2006-10-15

    An adiabatic upward co-current air-water two-phase flow in a vertical large diameter pipe (inner diameter, D: 0.2m, ratio of pipe length to diameter, L/D: 60.5) was experimentally investigated under various inlet conditions. Flow regimes were visually observed, carefully analyzed and classified into five, i.e. undisturbed bubbly, agitated bubbly, churn bubbly, churn slug and churn froth. Void fraction, bubble frequency, Sauter mean diameter, interfacial area concentration (IAC) and interfacial direction were measured with four-sensor optical probes. Both the measured void fraction and the measured IAC demonstrated radial core-peak distributions in most of the flow regimes and radial wall peak in the undisturbed bubbly flow only. The bubble frequency also showed a wall-peak radial distribution only when the bubbles were small in diameter and the flow was in the undisturbed bubbly flow. The Sauter mean diameter of bubbles did not change much in the radial direction in undisturbed bubbly, agitated bubbly and churn bubbly flows and showed a core-peak radial distribution in the churn slug flow due to the existence of certain amount of large and deformed bubbles in this flow regime. The measurements of interfacial direction showed that the main and the secondary bubbly flow could be displayed by the main flow peak and the secondary flow peak, respectively, in the probability density function (PDF) of the interfacial directional angle between the interfacial direction and the z-axis, {eta}{sub zi}. The local average {eta}{sub zi }at the bubble front or rear hemisphere ({eta}{sub zi}{sup F} and {eta}{sub zi}{sup R}) reflected the local bubble movement and was in direct connection with the flow regimes. Based on the analysis, the authors classified the flow regimes in the vertical large diameter pipe quantitatively by the cross-sectional area-averaged {eta}{sub zi }at bubbly front hemisphere ({eta}{sub zi}{sup F}-bar). Bubbles in the undisturbed bubbly flow moved in a vertical way with some swerving motions and those in other flow regimes moved along the lateral secondary flow with an averaging net upward velocity. (author)

  14. 16/05/12 4:04 PMSmartphones used on floating robots to track water flow | Ubergizmo Page 1 of 4http://www.ubergizmo.com/2012/05/smartphones-used-on-floating-robots-to-track-water-flow/

    E-Print Network [OSTI]

    .1 Review Home > CellPhones > Smartphones used on floating robots to track water flow Network: Ubergizmo the floating robots to become an invaluable tool for the future. Related articles: Personal Power Generator Prototype Powered By Organic Viruses Android now covers 51 percent of all smartphones in the U.S. One

  15. Time-resolved fast-neutron radiography of air-water two-phase flows in a rectangular channel by an improved detection system

    E-Print Network [OSTI]

    Zboray, Robert; Mor, Ilan; Bromberger, Benjamin; Tittelmeier, Kai

    2015-01-01

    In a previous work we have demonstrated the feasibility of high-frame-rate, fast-neutron radiography of generic air-water two-phase flows in a 1.5 cm thick, rectangular flow channel. The experiments have been carried out at the high-intensity, white-beam facility of the Physikalisch-Technische Bundesanstalt, Germany, using an multi-frame, time-resolved detector developed for fast neutron resonance radiography. The results were however not fully optimal and therefore we have decided to modify the detector and optimize it for the given application, which is described in the present work. Furthermore, we managed to improve the image post-processing methodology and the noise suppression. Using the tailored detector and the improved post-processing significant increase in the image quality and an order of magnitude lower exposure times, down to 3.33 ms, have been achieved with minimized motion artifacts. Similar to the previous study, different two-phase flow regimes such as bubbly slug and churn flows have been e...

  16. Bubble Size Control to Improve Oxygen-Based Bleaching: Characterization of Flow Regimes in Pulp-Water-Gas Three-Phase Flows

    SciTech Connect (OSTI)

    S.M. Ghiaasiaan and Seppo Karrila

    2006-03-20

    Flow characteristics of fibrous paper pulp-water-air slurries were investigated in a vertical circular column 1.8 m long, with 5.08 cm diameter. Flow structures, gas holdup (void fraction), and the geometric and population characteristics of gas bubbles were experimentally investigated, using visual observation, Gamma-ray densitometry, and flash X-ray photography. Five distinct flow regimes could be visually identified: dispersed bubbly, layered bubbly, plug, churn-turbulent, and slug. Flow regime maps were constructed, and the regime transition lines were found to be sensitive to consistency. The feasibility of using artificial neural networks (ANNs) for the identification of the flow regimes, using the statistical characteristics of pressure fluctuations measured by a single pressure sensor, was demonstrated. Local pressure fluctuations at a station were recorded with a minimally-intrusive transducer. Three-layer, feed-forward ANNs were designed that could identify the four major flow patterns (bubbly, plug, churn, and slug) well. The feasibility of a transportable artificial neural network (ANN) - based technique for the classification of flow regimes was also examined. Local pressures were recorded at three different locations using three independent but similar transducers. An ANN was designed, trained and successfully tested for the classification of the flow regimes using one of the normalized pressure signals (from Sensor 1). The ANN trained and tested for Sensor 1 predicted the flow regimes reasonably well when applied directly to the other two sensors, indicating a good deal of transportability. An ANN-based method was also developed, whereby the power spectrum density characteristics of other sensors were adjusted before they were used as input to the ANN that was based on Sensor 1 alone. The method improved the predictions. The gas-liquid interfacial surface area concentration was also measured in the study. The gas absorption technique was applied, using CO2 as the transferred species and sodium hydroxide as the alkaline agent in water. Statistical analysis was performed to identify the parametric dependencies. The experimental data were empirically correlated.

  17. Delta Flow Factors Influencing Stray Rate of Escaping Adult San Joaquin River Fall-Run Chinook Salmon (Oncorhynchus tshawytscha)

    E-Print Network [OSTI]

    2012-01-01

    to the State Water Resources Control Board. Stockton (CA):Central Valley Water Resources Control Board. San Anselmo (the California Water Resources Control Board in compliance

  18. Decision support tool seeks to aid stream-flow recovery and enhance water security

    E-Print Network [OSTI]

    Merenlender, Adina; Deitch, Matthew J; Feirer, Shane

    2008-01-01

    Watershed. SWRCB Division of Water Rights. Sacramento, CA.2007 draft. Division of Water Rights. Sacramento, CA.of streamflow. Vol 1. Water Supply Paper 2175. US Geo-

  19. Author's personal copy How large is the subducted water flux? New constraints on mantle regassing rates

    E-Print Network [OSTI]

    Mukhopadhyay, Sujoy

    as pore water and chemically- bound water in sediments, altered oceanic crust and serpentinized lith (Fig. 1). A quantitative assessment of the long-term water cycle is critical to our understanding and Kohlstedt, 1996; Karato and Jung, 2003; Mei and Kohlstedt, 2000), structure and style of convection (Crowley

  20. Review of International Methods of Test to Rate the Efficiency of Water Heaters

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01

    hot water distribution losses and waste heat recovery.heat recovery parameter is the assumed fraction of the waste heat from the waterWaste heat recovery accounts for the space-heating benefits of the heat lost from a water

  1. The effect of in-situ noble metal chemical addition on crack growth rate behavior of structural materials in 288 C water

    SciTech Connect (OSTI)

    Andresen, P.L.; Angeliu, T.

    1996-10-01

    Stress corrosion cracking (SCC), especially in existing boiling water reactor (BVM) components, is most effectively accomplished by reducing the corrosion potential. This was successfully demonstrated by adding hydrogen to BNM water, which reduced oxidant concentration and corrosion potential by recombining with the radiolytically formed oxygen and hydrogen peroxide. However, reduction in the corrosion potential for some vessel internals is difficult, and others require high hydrogen addition rates, which results in an increase in the main steam radiation level from volatile N{sup 16}. Noble metal electrocatalysis provides a unique opportunity to efficiently achieve a dramatic reduction in corrosion potential and SCC in BWRs, by catalytically reacting all oxidants that diffuse to a (catalytic) metal surface with hydrogen. There are many techniques for creating catalytic surfaces, including alloying with noble metals or applying noble metal alloy powders to existing BWR components by thermal spraying or weld cladding. A novel system-wide approach for producing catalytic surfaces on all wetted components has been developed which employs the reactor coolant water as the medium of transport. This approach is termed in-situ noble metal chemical addition (NMCA), and has been successfully used in extensive laboratory tests to coat a wide range of pre-oxidized structural materials. In turn, these specimens have maintained catalytic response in long term, cyclic exposures to extremes in dissolved gases, impurity levels, pH, flow rate, temperature, straining, etc. With stoichiometric excess H{sub 2}, the corrosion potential drops dramatically and crack initiation and growth are greatly reduced, even at high O{sub 2} or H{sub 2}O{sub 2} levels. Without excess H{sub 2} (i.e., in normal BWR water chemistry), noble metals do not increase the corrosion potential or SCC.

  2. Transverse slope of bed and turbid-clear water interface of channelized turbidity currents flowing around bends

    E-Print Network [OSTI]

    Parker, Gary

    1 Transverse slope of bed and turbid-clear water interface of channelized turbidity currents Production Research Company Houston, Texas USA ABSTRACT Turbidity currents are sediment-laden bottom flows in lakes and the ocean that derive their momentum from the force of gravity acting on the sediment held

  3. Analytical solutions for benchmarking cold regions subsurface water flow and energy transport models: One-dimensional soil thaw

    E-Print Network [OSTI]

    Freezing and thawing a b s t r a c t Numerous cold regions water flow and energy transport models have. Simulated and/or observed climate change impacts in cryogenic soils include permafrost degradation, active that include the dynamic freeze­thaw process have been tested against analytical solutions, such as the Neumann

  4. A low diffusive Lagrange-Remap scheme for the simulation of violent air-water free-surface flows.

    E-Print Network [OSTI]

    using a five-equation model. In this paper, we explore a simplified variant approach for gas-liquid petroleum, the sizing of Liquified Natural Gas (LNG) carriers, processes of phase separation, waste water of the flows and the process optimization in the industrial case. For gas-liquid applications involving fast

  5. Investigation of Temperature-Driven Water Transport in Polymer Electrolyte Fuel Cell: Phase-Change-Induced Flow

    E-Print Network [OSTI]

    Mench, Matthew M.

    Investigation of Temperature-Driven Water Transport in Polymer Electrolyte Fuel Cell: Phase and durability for polymer electrolyte fuel cells PEFCs . The most commonly used polymer electrolyte membranes-Change-Induced Flow Soowhan Kim* and M. M. Mench**,z Fuel Cell Dynamics and Diagnostics Laboratory, Department

  6. Thin power law film flow down an inclined plane: consistent shallow water models and stability under large scale perturbations

    E-Print Network [OSTI]

    Noble, Pascal

    2012-01-01

    In this paper we derive consistent shallow water equations for thin films of power law fluids down an incline. These models account for the streamwise diffusion of momentum which is important to describe accurately the full dynamic of the thin film flows when instabilities like roll-waves arise. These models are validated through a comparison with Orr Sommerfeld equations for large scale perturbations. We only consider laminar flow for which the boundary layer issued from the interaction of the flow with the bottom surface has an influence all over the transverse direction to the flow. In this case the concept itself of thin film and its relation with long wave asymptotic leads naturally to flow conditions around a uniform free surface Poiseuille flow. The apparent viscosity diverges at the free surface which, in turn, introduces a singularity in the formulation of the Orr-Sommerfeld equations and in the derivation of shallow water models. We remove this singularity by introducing a weaker formulation of Cauc...

  7. Development of Interfacial Structure in a Confined Air-Water Cap-Turbulent and Churn-Turbulent Flow

    SciTech Connect (OSTI)

    Xiaodong Sun; Seungjin Kim; Ling Cheng; Mamoru Ishii [Purdue University, West Lafayette, IN 47907 (United States); Beus, Stephen G. [Bechtel Bettis, Inc., Bettis Atomic Power Laboratory, Post Office Box 79, West Mifflin, PA 15122-0079 (United States)

    2002-07-01

    The objective of the present work is to study and model the interfacial structure development of air-water two-phase flow in a confined test section. Experiments of a total of 9 flow conditions in cap-turbulent and churn-turbulent flow regimes are carried out in a vertical air-water upward two-phase flow experimental loop with a test section of 200-mm in width and 10-mm in gap. Miniaturized four-sensor conductivity probes are used to measure local two-phase parameters at three different elevations for each flow condition. The bubbles captured by the probes are categorized into two groups in view of the two-group interfacial area transport equation, i.e., spherical/distorted bubbles as Group 1 and cap/churn-turbulent bubbles as Group 2. The acquired parameters are time-averaged local void fraction, interfacial velocity, bubble number frequency, interfacial area concentration, and bubble Sauter mean diameter for both groups of bubbles. Also, the line-averaged and area-averaged data are presented and discussed. The comparisons of these parameters at different elevations demonstrate the development of interfacial structure along the flow direction due to bubble interactions. (authors)

  8. Development of Interfacial Structure in a Confined Air-Water Cap-Turbulent and Churn-Turbulent Flow

    SciTech Connect (OSTI)

    X. Sun; S. Kim; L. Cheng; M. Ishii; S.G. Beus

    2001-10-31

    The objective of the present work is to study and model the interfacial structure development of air-water two-phase flow in a confined test section. Experiments of a total of 9 flow conditions in a cap-turbulent and churn-turbulent flow regimes are carried out in a vertical air-water upward two-phase flow experimental loop with a test section of 20-cm in width and 1-cm in gap. The miniaturized four-sensor conductivity probes are used to measure local two-phase parameters at three different elevations for each flow condition. The bubbles captured by the probes are categorized into two groups in view of the two-group interfacial area transport equation, i.e., spherical/distorted bubbles as Group 1 and cap/churn-turbulent bubbles as Group 2. The acquired parameters are time-averaged local void fraction, interfacial velocity, bubble number frequency, interfacial area concentration, and bubble Sauter mean diameter for both groups of bubbles. Also, the line-averaged and area-averaged data are presented and discussed. The comparisons of these parameters at different elevations demonstrate the development of interfacial structure along the flow direction due to bubble interactions.

  9. Liquid water quantification in the cathode side gas channels of a proton exchange membrane fuel cell through two-phase flow

    E-Print Network [OSTI]

    Kandlikar, Satish

    t s Liquid water in the cathode side channels of PEM fuel cell is quantified. Algorithm developed in MATLABÒ electrolyte membrane fuel cell Two-phase flow visualization Gas channels Area coverage ratio Water quantification a b s t r a c t Water management is crucial to the performance of PEM fuel cells. Water

  10. Conservation rates: the best `new' source of urban water during William James Smith Jr.1

    E-Print Network [OSTI]

    Delaware, University of

    of Nevada, Las Vegas, NV , USA; 2 Center for Energy & Environmental Policy and School of Urban Affairs rates (DDR), can produce with minimal regulation the quadruple objectives of conservation rates: (1

  11. Dry-season soil water repellency affects Tahoe Basin infiltration rates

    E-Print Network [OSTI]

    Rice, Erin C; Grismer, Mark E

    2010-01-01

    sites. In this study, higher infiltration rates measured byin the study. For example, at Blackwood Canyon infiltrationinfiltration rate of about 4 inches (100 millimeters) per hour was practically identical to that measured in this study.

  12. Comparison of Subantarctic Mode Water and Antarctic Intermediate Water formation rates in the South Pacific between NCAR-CCSM4 and observations

    SciTech Connect (OSTI)

    Hartin, Corinne A.; Fine, Rana A.; Kamenkovich, Igor; Sloyan, Bernadette M.

    2014-01-28

    Average formation rates for Subantarctic Mode (SAMW) and Antarctic Intermediate Waters (AAIW) in the South Pacific are calculated from the National Center for Atmospheric Research Community Climate System Model version 4 (NCAR-CCSM4), using chlorofluorocarbon inventories. CFC-12 inventories and formation rates are compared to ocean observations. CCSM4 accurately simulates the southeast Pacific as the main formation region for SAMW and AAIW. CCSM4 formation rates for SAMW are 3.4 Sv, about half of the observational rate. Shallow mixed layers and a thinner SAMW in CCSM4 are responsible for lower formation rates. A formation rate of 8.1 Sv for AAIW in CCSM4 is higher than observations. Higher inventories in CCSM4 in the southwest and central Pacific, and higher surface concentrations are the main reasons for higher formation rates of AAIW. This comparison of model and observations is useful for understanding the uptake and transport of other gases, e.g., CO2 by the model.

  13. Experimental Investigation of Sphere Slamming to Quiescent Water Surface-Pressure Distribution and Jetting Flow Field 

    E-Print Network [OSTI]

    Wei, Wan-Yi

    2014-11-26

    Sphere slamming pressures and corresponding jetting flow fields were studied in an experimental approach. Correlations between sphere impacting forces and jetting flow occurrences were explored. Pressure sensor was used to investigate the slamming...

  14. High-nitrogen-metal complexes as burning-rate modifiers for the aluminum-water propellant system

    SciTech Connect (OSTI)

    Tappan, Bryce C; Mason, Benjamin A

    2009-01-01

    The reactions of electropositive metals, such as aluminum, with water have long been utilized in explosive and propellant formulations, but until recently this has mostly been limited to the water formed as a product gas from the decomposition of another energetic system . Recently, however, with the increased availability of nano-particulate materials, the direct reaction of nano-aluminum (nAl) with water as an oxidizer has been investigated as a propellant system due to high reaction temperatures and the production of hydrogen as the primary gaseous species. This system could be useful for intra-planetary travel where non-terrestrial water is harvested for the oxidizer. Here we present the study of nAl, mixed at a stoichiometric ratio with water ({Phi} = 1) with the highly water soluble metal complexes of bis(tetrazolato)amine (BTA) added at 5, 15,30 and 50 wt% in the case of FeBTA and 5 and 15 wt% in the case of NiBTA and CoBTA. The basic structure of the BTA complexes is shown below where M = Fe, Ni or Co, and x = 3 for Fe and Co and x = 2 for Ni. The particle size of nAl studied was primarily 38 nm with various studies with the particle size of 80 nm. The FeBT A at a loading of 15 wt% gave the highest burning rate enhancement (4.6x at {approx}6.8 MPa), while retaining a low pressure exponent (0.21 compared to 0.24 for nA/H{sub 2}O). At 15 wt% the Ni and Co increased the burning rate, but also increased the pressure exponents. The burning rate of the FeBTA modified material with 80 nm Al decreased as the weight percent of FeBTA was increased, which also tracked decrease in the calculated specific impulse of the mixtures.

  15. 7-88 A geothermal power plant uses geothermal liquid water at 160C at a specified rate as the heat source. The actual and maximum possible thermal efficiencies and the rate of heat rejected from this power plant

    E-Print Network [OSTI]

    Bahrami, Majid

    7-31 7-88 A geothermal power plant uses geothermal liquid water at 160ºC at a specified rate and potential energy changes are zero. 3 Steam properties are used for geothermal water. Properties Using saturated liquid properties, the source and the sink state enthalpies of geothermal water are (Table A-4) k

  16. Influence of Atmospheric Pressure and Water Table Fluctuations on Gas Phase Flow and Transport of Volatile Organic Compounds (VOCs) in Unsaturated Zones 

    E-Print Network [OSTI]

    You, Kehua

    2013-04-19

    solution in a three-layered unsaturated zone in response to field atmospheric pressure fluctuations at the Hanford site in Richland, Washington... ................................................................................................. 92 4.3 Comparison of gas flow rate calculated by the ML solution with measured flow rates in a three-layered unsaturated zone in response to field atmospheric pressure variations at the Hanford site in Richland...

  17. The effect of water content, cooling rate, and growth temperature on the freezing temperature of 4 Tillandsia species 

    E-Print Network [OSTI]

    Hagar, Christopher Flint

    1990-01-01

    the exotherm initiation temperatures (EIT) of leaf sections. The effect of 2 growth temperatures (5 and 25oC) on the absolute water content and EIT of T. recurvata and T. usneoides was also determined. All p * * pt T. mb'1 ', f o t ld temperatures at 80... minimum winter temperatures of their different northern boundaries. Cooling rate affected the EIT of T. recurvata and T. d* b t t T. b~l' T. o tll . L f t of the former 2 species froze at colder temperatures when cooled at a rate of 25oC per hour than...

  18. Comparative evapotranspiration rates of thirteen turfgrasses grown under both non-limiting soil moisture and progressive water stress conditions 

    E-Print Network [OSTI]

    Kim, Ki Sun

    1983-01-01

    by wind when the radiation heat is high, particularly if leaf resistance is also high. Under such conditions, the leaf temperature may be far above the air temperature, accounting for a high transpiration rate. The wind cools the leaf and this cooling...) rates of twelve C-4 warm season turfgrasses and one. C-3 cool season turfgrass were evaluated in mini-lysimeters utilizing the water balance method. The turf plots were constructed to insure a natural environment surrounding each mini-lysimeter. ET...

  19. Power plant degradation : a modular secondary plant and integral flow accelerated corrosion model

    E-Print Network [OSTI]

    Van der Helm, Mark Johan, 1972-

    2001-01-01

    Flow Accelerated Corrosion (FAC) is the most prevalent material degradation mechanism for low carbon steel in steam-water flow systems. The band of uncertainty in predictions of wear rate due to FAC spans one to two orders ...

  20. Seepage flow-stability analysis of the riverbank of Saigon river due to river water level fluctuation

    E-Print Network [OSTI]

    Oya, A; Hiraoka, N; Fujimoto, M; Fukagawa, R

    2015-01-01

    The Saigon River, which flows through the center of Ho Chi Minh City, is of critical importance for the development of the city as forms as the main water supply and drainage channel for the city. In recent years, riverbank erosion and failures have become more frequent along the Saigon River, causing flooding and damage to infrastructures near the river. A field investigation and numerical study has been undertaken by our research group to identify factors affecting the riverbank failure. In this paper, field investigation results obtained from multiple investigation points on the Saigon River are presented, followed by a comprehensive coupled finite element analysis of riverbank stability when subjected to river water level fluctuations. The river water level fluctuation has been identified as one of the main factors affecting the riverbank failure, i.e. removal of the balancing hydraulic forces acting on the riverbank during water drawdown.

  1. UNSAT-H, an unsaturated soil water flow code for use at the Hanford site: code documentation

    SciTech Connect (OSTI)

    Fayer, M.J.; Gee, G.W.

    1985-10-01

    The unsaturated soil moisture flow code, UNSAT-H, which was developed at Pacific Northwest Laboratory for assessing water movement at waste sites on the Hanford site, is documented in this report. This code is used in simulating the water dynamics of arid sites under consideration for waste disposal. The results of an example simulation of constant infiltration show excellent agreement with an analytical solution and another numerical solution, thus providing some verification of the UNSAT-H code. Areas of the code are identified for future work and include runoff, snowmelt, long-term climate and plant models, and parameter measurement. 29 refs., 7 figs., 2 tabs.

  2. Do constructed flow through wetlands improve water quality in the San Joaquin River?

    E-Print Network [OSTI]

    O'Geen, Anthony T

    2006-01-01

    disposal of agricultural tailwaters and total maximum daily load (TMDL) efforts related water quality

  3. The influence of irrigation water salinity on optimal nitrogen, phosphorus, and potassium liquid fertilizer rates 

    E-Print Network [OSTI]

    Campos Nu?n?ez, Ricardo

    1990-01-01

    of nitrogen fertilizer to compensate for leaching losses (Miyamoto, 1984). The effect of salt stress on mineral status of plants has been studied extensively for many agronomic and horticultural crops (Al-Saidi and Alawi, 1984; Al-Saidi et al. , 1985... cultivars (Al-Saidi and Alawi, 1984; Al- Saidi et al. , 1985). Ten flowering annuals were grown in saline water with electrical conductivities of 0. 8, 1. 5, 3. 0, or 4. 5 dS m from a 2:1 equivalent weight basis of CaCI2 and NaCI in tap water (Devitt...

  4. Thermal signature reduction through liquid nitrogen and water injection 

    E-Print Network [OSTI]

    Guarnieri, Jason Antonio

    2005-02-17

    to the flow rate of exhaust gases, producing a small temperature reduction in the exhaust but no infrared shielding. Second, water was injected at a flow rate of 13% of the flow of exhaust gases, producing a greater temperature reduction and some shielding...

  5. Heavy Flags Undergo Spontaneous Oscillations in Flowing Water Michael Shelley,1

    E-Print Network [OSTI]

    Shelley, Michael

    bending modulus, is the density of the fluid, d is the height of the fluid layer interacting with a flowing fluid. Flapping dynamics occurs also in industrial processes like paper or thin-film processing [1 couple potential flow theory with the mechanics of a flag with inertia and bending rigidity, and extend

  6. Effect of argon gas flow rate on properties of film electrodes prepared by thermal vacuum evaporation from synthesized Cu{sub 2}SnSe{sub 3} source

    SciTech Connect (OSTI)

    Sabli, Nordin; Talib, Zainal Abidin; Yunus, Wan Mahmood Mat [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang (Malaysia); Zainal, Zulkarnain [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang (Malaysia); Hilal, Hikmat S. [SSERL, Department of Chemistry An-Najah N. University, PO Box 7, Nablus, West Bank (Country Unknown); Fujii, Masatoshi [Department of Molecular Science, School of Medicine, Shimane University, Izumo, Shimane, 693-8501 (Japan)

    2014-03-05

    This work describes a new technique to enhance photoresponse of metal chalcogenide-based semiconductor film electrodes deposited by thermal vacuum evaporation under argon gas flow from synthesized Cu{sub 2}SnSe{sub 3} sources. SnSe formation with Cu-doped was obtained under higher argon gas flow rate (V{sub A} = 25 cm{sup 3}/min). Higher value of photoresponse was observed for films deposited under V{sub A} = 25 cm{sup 3}/min which was 9.1%. This finding indicates that Cu atoms inside the SnSe film were important to increase carrier concentrations that promote higher photoresponse.

  7. Incorporating and Evaluating Environmental Instream Flows in a Priority Order Based Surface Water Allocation Model 

    E-Print Network [OSTI]

    Pauls, Mark

    2014-03-18

    -step versions of the authorized use scenario water availability models using existing and recently added features of the Water Rights Analysis Package (WRAP). Various metrics are developed by this research to characterize the degree to which the environmental...

  8. Coupled effects of flow field geometry and diffusion media material structure on evaporative water removal from

    E-Print Network [OSTI]

    Mench, Matthew M.

    (PEFC) is responsible for many degradation and durability issues [1e4]. To remove water from the stack

  9. Entrained-flow dry-bottom gasification of high-ash coals in coal-water slurries

    SciTech Connect (OSTI)

    E.G. Gorlov; V.G. Andrienko; K.B. Nefedov; S.V. Lutsenko; B.K. Nefedov

    2009-04-15

    It was shown that the effective use of dry ash removal during entrained-flow gasification of coal-water slurries consists in simplification of the ash storage system and utilization of coal ash, a decrease in the coal demand, a reduction in the atmospheric emissions of noxious substances and particulate matter, and abandonment of the discharge of water used for ash slurry. According to the results of gasification of coal-water slurries (5-10 {mu}m) in a pilot oxygen-blow unit at a carbon conversion of >91%, synthesis gas containing 28.5% CO, 32.5% H{sub 2}, 8.2% CO{sub 2}, 1.5% CH{sub 4}, the rest being nitrogen, was obtained. The fly ash in its chemical composition, particle size, and density meets the requirements of the European standard EN 450 as a cement additive for concrete manufacture.

  10. LINEAR TRANSIENT FLOW SOLUTION FOR PRIMARY OIL RECOVERY

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    in a low-permeability, compressible, layered reservoir filled with oil, water and gas. The sample for pressure support and incremental oil recovery. We analyze the pressure response and fluid flow ratesLINEAR TRANSIENT FLOW SOLUTION FOR PRIMARY OIL RECOVERY WITH INFILL AND CONVERSION TO WATER

  11. Delta Flow Factors Influencing Stray Rate of Escaping Adult San Joaquin River Fall-Run Chinook Salmon (Oncorhynchus tshawytscha)

    E-Print Network [OSTI]

    2012-01-01

    Escaping Adult San Joaquin River Fall-run Chinook Salmon (comparable with Sacramento River fall-run stray rates (i.e.reported a Mokelumne River wild fall-run Chinook stray rate

  12. Role of viscoelasticity and non-linear rheology in flows of complex fluids at high deformation rates

    E-Print Network [OSTI]

    Ober, Thomas J. (Thomas Joseph)

    2013-01-01

    We combine pressure, velocimetry and birefringence measurements to study three phenomena for which the fluid rheology plays a dominant role: 1) shear banding in micellar fluids, 2) extension-dominated flows in microfluidic ...

  13. Delta Flow Factors Influencing Stray Rate of Escaping Adult San Joaquin River Fall-Run Chinook Salmon (Oncorhynchus tshawytscha)

    E-Print Network [OSTI]

    2012-01-01

    pulse flow of 6,000 (in cfs; U.S. ) for a group of salmoncubic feet per second (cfs; U.S. ) units, simply substitutefor cubic feet per second (cfs; U.S. ) unit calculations.

  14. Development of analytical and numerical models predicting the deposition rate of electrically charged particles in turbulent channel flows 

    E-Print Network [OSTI]

    Ko, Hanseo

    1994-01-01

    An analytical model is established to predict an electrostatically charged particle deposition as a function of particle size in fully-developed turbulent pipe flow. The convectivediffusion flux equation is solved for the particle concentration as a...

  15. Improving parameter estimation and water table depth simulation in a land surface model using GRACE water storage and estimated base flow data

    E-Print Network [OSTI]

    Lo, Min-Hui; Famiglietti, James S; Yeh, P. J.-F.; Syed, T. H

    2010-01-01

    Calibration Using GRACE Data and Base Flow Estimates [ 17 ]ESTIMATION USING GRACE DATA base flow data. In this casemeasured GRACE data and estimated base flow simultaneously

  16. The effect of cross flow in a stratified reservoir during a water flood 

    E-Print Network [OSTI]

    Sommers, Gordon Edmund

    1970-01-01

    of the displacement of oil by water in a porous medium. In most conventional engineer- ing methods used to predict the reservoir performance of a water- flood, crossflow between beds of different permeability is neglected, This study was concerned... in a water flood. Conventional engineering methods assuming no crossflow and the numerical model solution were in agreement when the effects of vertical communication were neglected. However, when vertical communication was considered, model...

  17. Mass transport around comets and its impact on the seasonal differences in water production rates

    SciTech Connect (OSTI)

    Rubin, M.; Altwegg, K.; Thomas, N.; Fougere, N.; Combi, M. R.; Tenishev, V. M.; Le Roy, L.

    2014-06-20

    Comets are surrounded by a thin expanding atmosphere, and although the nucleus' gravity is small, some molecules and grains, possibly with the inclusion of ices, can get transported around the nucleus through scattering (atoms/molecules) and gravitational pull (grains). Based on the obliquity of the comet, it is also possible that volatile material and icy grains get trapped in regions, which are in shadow until the comet passes its equinox. When the Sun rises above the horizon and the surface starts to heat up, this condensed material starts to desorb and icy grains will sublimate off the surface, possibly increasing the comet's neutral gas production rate on the outbound path. In this paper we investigate the mass transport around the nucleus, and based on a simplified model, we derive the possible contribution to the asymmetry in the seasonal gas production rate that could arise from trapped material released from cold areas once they come into sunlight. We conclude that the total amount of volatiles retained by this effect can only contribute up to a few percent of the asymmetry observed in some comets.

  18. Procedures to identify Energy Conservation Opportunities applied to HVAC system: example of VSD of chilled water pumps

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    passing through the heat exchanger of the terminal units. There are two types of water circuit layout surplus is bypassed at each heat exchanger level to maintain the same flow rate in the other branches flow rate at nominal condition and the flow rate delivered to the heat exchangers. These two layouts

  19. Calcite dissolution and Ca/Na ion-exchange reactions in columns with different flow rates through high ESR soil 

    E-Print Network [OSTI]

    Navarre, Audrey

    1999-01-01

    min?¹ under conditions of saturated flow. Column eluate was monitored for pH, carbonate alkalinity, and Na, Ca and Cl concentrations to evaluate the elution of SAR 10 solution, dissolution of CaCO? and exchange of Na by Ca on the cation...

  20. Shallow water flow is a serious drilling hazard encoun-tered across several areas of the Gulf of Mexico (GoM).

    E-Print Network [OSTI]

    Texas at Austin, University of

    , marine environmental impact, and drilling costs across the GoM, with a time-delay factor usu- ally of Mexico (GoM). Numerous incidents have occurred in which intense shallow water flows have disrupted question: "How does fresh- water come to be near the seafloor in deepwater areas of the Gulf of Mexico

  1. 1 Flow in Porous Media Oil companies often pump water into the cavities of the earth where the oil is situated to drive

    E-Print Network [OSTI]

    Gander, Martin J.

    1 Flow in Porous Media Oil companies often pump water into the cavities of the earth where the oil is situated to drive out the oil. In a simplified situation, as given in figure 1 we have a rectangular block of porous material filled with oil. Water is pumped in from the left, creating a presure difference between

  2. Effects of drinking water temperature on respiration rates, body temperatures, dry matter intake, and milk production in lactating Holstein cows in summer 

    E-Print Network [OSTI]

    Milam, Kyle Zohn

    1985-01-01

    EFFECTS OF DRINKING WATER TEMPERATURE ON RESPIRATION RATES, BODY TEMPERATURES, DRY MATTER INTAKE, AND MILK PRODUCTION IN LACTATING HOLSTEIN COWS IN SUMMER A Thesis by KYLE ZOHN MILAM Submitted to the Graduate College of Texas A&M University... in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1985 Major Subject: Nutrition EFFECTS OF DRINKING WATER TEMPERATURE ON RESPIRATION RATES, BODY TEMPERATURES, DRY MATTER INTAKE, AND MILK PRODUCTION IN LACTATING HOLSTEIN...

  3. A pore-scale model of two-phase flow in water-wet rock

    SciTech Connect (OSTI)

    Silin, Dmitriy; Patzek, Tad

    2009-02-01

    A finite-difference discretization of Stokes equations is used to simulate flow in the pore space of natural rocks. Numerical solutions are obtained using the method of artificial compressibility. In conjunction with Maximal Inscribed Spheres method, these computations produce relative permeability curves. The results of computations are in agreement with laboratory measurements.

  4. Dynamic pressure response of water flow between closely spaced roughened flat plates 

    E-Print Network [OSTI]

    Hess, John Charles

    1993-01-01

    . The friction factors were found to differ significantly from the Moody diagram in that at small clearances, laminar flow appears to not always conform to the [] line predicted by theory. In addition, it is seen that increasing the gap between the plates from...

  5. Critical controls in transcritical shallow-water flow over obstacles Roger H.J. Grimshaw1

    E-Print Network [OSTI]

    upstream and a depression chock propagating downstream. Classical shock closure conditions are used the obstacle, which has an upstream elevation and a downstream depression, each terminated by upstream. The upstream flow can be characterised as subcritical, supercritical, and transcritical respectively. We review

  6. Under consideration for publication in J. Fluid Mech. 1 Transcritical shallow-water flow past

    E-Print Network [OSTI]

    wave amplitudes for the upstream and downstream undular bores, the speeds of the undular bores edges is with the upstream and downstream waves that may be generated for flow over a one-dimensional localized obstacle lee waves are found downstream, together with transients propagating both upstream and downstream

  7. Static and flowing regions in granular collapses down channels: Insights from a sedimenting shallow water model

    E-Print Network [OSTI]

    Huppert, Herbert

    Static and flowing regions in granular collapses down channels: Insights from a sedimenting shallow extend the model of Larrieu 2006 to include an estimation for the interface between the static, 043301 2007 . An empirical sedimentation term Ls and the instantaneous removal of a static deposit wedge

  8. The rate of nutrient supply to normal and denervated, slow and fast muscle, and its relation to muscle blood flow

    E-Print Network [OSTI]

    Bondy, SC; Purdy, JL; Carroll, JE; Kaiser, KK

    1976-01-01

    in terms of an altered inulin space. There is no correlationin extracellular water, the inulin space of tissues was100 p.Ci of [ methoxy- 3 H] inulin (875 mCi/ mole). Plasma

  9. Quantitative imaging of the air-water flow fields formed by unsteady breaking waves

    E-Print Network [OSTI]

    Belden, Jesse (Jesse Levi)

    2009-01-01

    An experimental method for simultaneously measuring the velocity fields on the air and water side of unsteady breaking waves is presented. The method is applied to breaking waves to investigate the physics of the air and ...

  10. Mechanics of exchange flow between open water and an aquatic canopy

    E-Print Network [OSTI]

    Zhang, Xueyan, Ph. D. Massachusetts Institute of Technology

    2010-01-01

    The presence of aquatic vegetation is a common feature in shallow water systems. It alters the dynamics of the system by producing additional drag and by generating differential heating between regions of vegetation and ...

  11. Air and water flows in a large sand box with a two-layer aquifer system

    E-Print Network [OSTI]

    Jiao, Jiu Jimmy

    the initial water table, the larger the vacuum, and the longer the time to reach the maximum vacuum table is close to the interface of the two layers. Keywords Sand box . Groundwater hydraulics

  12. Unsaturated subsurface flow with surface water and nonlinear in-and outflow conditions

    E-Print Network [OSTI]

    , the permeability k depends only on the saturation s. In the Richards model, the air pressure in the pore space, 1] and the water pressure p : � [0, T] R nts - div k(s)µ-1 ( p + e) = f in � [0, T]. (1) Here n is assumed to be constant. We consider it normalized to pgas = 0 and replace the water pressure in (1

  13. Modeling corrosion rates in non-annular gas condensate wells containing CO{sub 2}

    SciTech Connect (OSTI)

    Garber, J.D.; Polaki, V. [Univ. of Southwestern Louisiana, Lafayette, LA (United States); Adams, C. [C.D.A. and Associates, Lafayette, LA (United States); Varanasi, N.R. [Weatherly Labs., Lafayette, LA (United States)

    1998-12-31

    New gas condensate wells are typically producing in annular flow. As the water production increases, the flow dynamics of these wells change to a non-annular flow regime. The flow regime could become chum or slug. A mathematical model has been developed to physically describe this condition. Corrosion rates have been measured in the laboratory and the corrosion rate in slug flow was consistently higher than in churn flow regardless of the experimental conditions selected. A number of non-annular flow wells from the field have been physically described using the new non-annular flow model. There appears to be a correlation between the Taylor bubble length and the corrosion rate. A corrosion rate model has been developed which uses 4 parameters from the non-annular flow model.

  14. *Corresponding author.Email contacts: nenes@its.caltech.edu, assim@chemeng.ntua.gr Simulation of Airlift Pumps for Moderate-Depth Water Wells

    E-Print Network [OSTI]

    Nenes, Athanasios

    -27, Athens, Greece Abstract A model is developed which simulates water airlift pumps. The water flow rate can be predicted for a given airlift system, or, the required air flow can be estimated for a desired water flow for applications such as pumping corrosive fluids and in geothermal wells, [1]. It is also used for pumping

  15. Improving parameter estimation and water table depth simulation in a land surface model using GRACE water storage and estimated base flow data

    E-Print Network [OSTI]

    Lo, Min-Hui; Famiglietti, James S; Yeh, P. J.-F.; Syed, T. H

    2010-01-01

    spatially variable water and energy balance processes, Waterdistributed land surface water and energy balance model, J.

  16. Investigation of injection-induced seismicity using a coupled fluid flow and rate/state friction model

    E-Print Network [OSTI]

    Santos, Juan

    is a simple analog for shear stimulation in enhanced geothermal systems (EGS) during which water is injected of dc caused slip to occur aseismically. INTRODUCTION Overview Enhanced geothermal systems (EGS the fractures slip, their permeability is permanently enhanced, and well productivity can be improved

  17. Reduction of water evaporation in polymerase chain reaction microfluidic devices based on oscillating-flow

    E-Print Network [OSTI]

    devices, realized by glass microchannels for avoiding water dif- fusion toward the elastomer used for chip-temperature microfluidic biochemical reactors. © 2010 American Insti- tute of Physics. doi:10.1063/1.3481776 I, compact alternative to conventional equipments and technologies, offering advantages in terms of reduced

  18. Quadratic Programming based data assimilation with passive drifting sensors for shallow water flows

    E-Print Network [OSTI]

    , transportation, hydroelectric power, and waste disposal; the growing world population, and societal shifts variational methods [14], Kalman filtering and its extensions [6], optimal statistical interpolation [13: · A linearization of the Shallow Water Equations (SWE) that can be used for formulating the optimization prob- lem

  19. Some Specific CASL Requirements for Advanced Multiphase Flow Simulation of Light Water Reactors

    SciTech Connect (OSTI)

    R. A. Berry

    2010-11-01

    Because of the diversity of physical phenomena occuring in boiling, flashing, and bubble collapse, and of the length and time scales of LWR systems, it is imperative that the models have the following features: • Both vapor and liquid phases (and noncondensible phases, if present) must be treated as compressible. • Models must be mathematically and numerically well-posed. • The models methodology must be multi-scale. A fundamental derivation of the multiphase governing equation system, that should be used as a basis for advanced multiphase modeling in LWR coolant systems, is given in the Appendix using the ensemble averaging method. The remainder of this work focuses specifically on the compressible, well-posed, and multi-scale requirements of advanced simulation methods for these LWR coolant systems, because without these are the most fundamental aspects, without which widespread advancement cannot be claimed. Because of the expense of developing multiple special-purpose codes and the inherent inability to couple information from the multiple, separate length- and time-scales, efforts within CASL should be focused toward development of a multi-scale approaches to solve those multiphase flow problems relevant to LWR design and safety analysis. Efforts should be aimed at developing well-designed unified physical/mathematical and high-resolution numerical models for compressible, all-speed multiphase flows spanning: (1) Well-posed general mixture level (true multiphase) models for fast transient situations and safety analysis, (2) DNS (Direct Numerical Simulation)-like models to resolve interface level phenmena like flashing and boiling flows, and critical heat flux determination (necessarily including conjugate heat transfer), and (3) Multi-scale methods to resolve both (1) and (2) automatically, depending upon specified mesh resolution, and to couple different flow models (single-phase, multiphase with several velocities and pressures, multiphase with single velocity and pressure, etc.) A unified, multi-scale approach is advocated to extend the necessary foundations and build the capability to simultaneously solve the fluid dynamic interface problems (interface resolution) as well as multiphase mixtures (homogenization).

  20. European Conference on the Mathematics of Oil Recovery --Freiberg, Germany, 3 -6 September 2002 We consider a model for immiscible three-phase (e.g., water, oil, and gas) flow in a porous

    E-Print Network [OSTI]

    New York at Stoney Brook, State University of

    2002 Abstract We consider a model for immiscible three-phase (e.g., water, oil, and gas) flow of three-phase (water-oil-gas) flow in a core sample of porous rock, taking into account hysteresis effects the effects of hysteresis on the Water-Alternating-Gas (WAG) oil-recovery process. In outline, the remainder

  1. Experimental investigation on the slip between oil and water in horizontal pipes

    SciTech Connect (OSTI)

    Xu, Jing-yu; Wu, Ying-xiang; Feng, Fei-fei; Chang, Ying; Li, Dong-hui [Division of Engineering Sciences, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China)

    2008-10-15

    This work is devoted to study of the slip phenomenon between phases in water-oil two-phase flow in horizontal pipes. The emphasis is placed on the effects of input fluids flow rates, pipe diameter and viscosities of oil phase on the slip. Experiments were conducted to measure the holdup in two horizontal pipes with 0.05 m diameter and 0.025 m diameter, respectively, using two different viscosities of white oil and tap water as liquid phases. Results showed that the ratios of in situ oil to water velocity at the pipe of small diameter are higher than those at the pipe of big diameter when having same input flow rates. At low input water flow rate, there is a large deviation on the holdup between two flow systems with different oil viscosities and the deviation becomes gradually smaller with further increased input water flow rate. (author)

  2. Improving parameter estimation and water table depth simulation in a land surface model using GRACE water storage and estimated base flow data

    E-Print Network [OSTI]

    Lo, Min-Hui; Famiglietti, James S; Yeh, P. J.-F.; Syed, T. H

    2010-01-01

    variations of river water storage from a multiple satellite2007), Estimating ground water storage changes in theAnalysis of terrestrial water storage changes from GRACE and

  3. Water and gas coning: two and three phase system correlations for the critical oil production rate and optimum location of the completion interval 

    E-Print Network [OSTI]

    Gonzalez, Francisco Manuel

    1987-01-01

    . 1, dpwo 0. 3, 6pog 0 6 24 Figure 4 Effect of re/rw on Critical Rate for Two Phase Problem. rDe 10, xD 0. 1, dpwo 0. 3, &pog 0. 6 . . . 26 Figure 5 Critical Oil Rate as a Function of Completion Interval Location and Length for the Three Phase... 9 Effect of re/rw on Critical Rate for Three Phase Problem. (Water Influenced Zone). rDe = 5, e = 0. 1, dpwo 3 &Pog 32 xi i Page Figure 10 - Two Phase Critical Rate Correlation. qDc predicted vs. qDc actual. 38 Figure 11 - Three Phase Critical...

  4. REVIEW SHEET 3 (1) A tank contains 100 gallon of salt water which ...

    E-Print Network [OSTI]

    2014-04-30

    minute while a flow of fresh water runs into the tank at a rate of 5 gallons per minute. The well-stirred solution runs out of the tank at a rate of 7 gallons per minute ...

  5. Predicted macroinvertebrate response to water diversion from a montane stream using two-dimensional hydrodynamic models and zero flow approximation

    E-Print Network [OSTI]

    Holmquist, Jeffrey G; Waddle, Terry J

    2013-01-01

    rivers with differing water extraction. Fundamental andecological effects of water extraction in small, unregulated

  6. Simulated effects of changes in the infiltration rate and the hydraulic conductivity structure on the location and configuration of the water table at Yucca Mountain, Nevada 

    E-Print Network [OSTI]

    Jasek, Noreen Ann

    1991-01-01

    dh/dl is the hydraulic gradient where h is the hydraulic head and 1 is the length of the flow path over which the head change is measured. Because both h and 1 have units of length, dh/dl itself is unitless. The deterministic flow equation used... of the steep gradients causing the step- like configuration have been related to two mechanisms: ground water barriers or gradual permeability variations. This study was designed to determine if either or both of the mechanisms could produce the observed...

  7. A Simple and Quick Chilled Water Loop Balancing for Variable Flow System 

    E-Print Network [OSTI]

    Zhu, Y.; Batten, T.; Turner, W. D.; Claridge, D. E.; Liu, M.

    2000-01-01

    of the AHUs are double duct units. The HVAC systems are controlled by a modem EMCS. Chilled Water Risers The entire complex includes five major buildings and a research building. Ther~ arc a total of 14 risers for the cnmplex. Each riser has two... their gratitude to the Johnson Controls at BAMC and BAMC Facility Management for the building commissioning project. A special thanks for the support fiom Ms Lydia Decker of Johnson Controls at BAMC, Mr. Scott Smith and Mr. Ruben Garcia of BAMC Facility...

  8. Development of Next Generation Multiphase Pipe Flow Prediction Tools

    SciTech Connect (OSTI)

    Tulsa Fluid Flow

    2008-08-31

    The developments of fields in deep waters (5000 ft and more) is a common occurrence. It is inevitable that production systems will operate under multiphase flow conditions (simultaneous flow of gas-oil-and water possibly along with sand, hydrates, and waxes). Multiphase flow prediction tools are essential for every phase of the hydrocarbon recovery from design to operation. The recovery from deep-waters poses special challenges and requires accurate multiphase flow predictive tools for several applications including the design and diagnostics of the production systems, separation of phases in horizontal wells, and multiphase separation (topside, seabed or bottom-hole). It is very crucial to any multiphase separation technique that is employed either at topside, seabed or bottom-hole to know inlet conditions such as the flow rates, flow patterns, and volume fractions of gas, oil and water coming into the separation devices. The overall objective was to develop a unified model for gas-oil-water three-phase flow in wells, flow lines, and pipelines to predict the flow characteristics such as flow patterns, phase distributions, and pressure gradient encountered during petroleum production at different flow conditions (pipe diameter and inclination, fluid properties and flow rates). The project was conducted in two periods. In Period 1 (four years), gas-oil-water flow in pipes were investigated to understand the fundamental physical mechanisms describing the interaction between the gas-oil-water phases under flowing conditions, and a unified model was developed utilizing a novel modeling approach. A gas-oil-water pipe flow database including field and laboratory data was formed in Period 2 (one year). The database was utilized in model performance demonstration. Period 1 primarily consisted of the development of a unified model and software to predict the gas-oil-water flow, and experimental studies of the gas-oil-water project, including flow behavior description and closure relation development for different flow conditions. Modeling studies were performed in two parts, Technology Assessment and Model Development and Enhancement. The results of the Technology assessment study indicated that the performance of the current state of the art two-phase flow models was poor especially for three-phase pipeline flow when compared with the existing data. As part of the model development and enhancement study, a new unified model for gas-oil-water three-phase pipe flow was developed. The new model is based on the dynamics of slug flow, which shares transition boundaries with all the other flow patterns. The equations of slug flow are used not only to calculate the slug characteristics, but also to predict transitions from slug flow to other flow patterns. An experimental program including three-phase gas-oil-water horizontal flow and two-phase horizontal and inclined oil-water flow testing was conducted utilizing a Tulsa University Fluid Flow Projects Three-phase Flow Facility. The experimental results were incorporated into the unified model as they became available, and model results were used to better focus and tailor the experimental study. Finally, during the Period 2, a new three-phase databank has been developed using the data generated during this project and additional data available in the literature. The unified model to predict the gas-oil-water three phase flow characteristics was tested by comparing the prediction results with the data. The results showed good agreements.

  9. DETERMINATION OF AN UPPER LIMIT FOR THE WATER OUTGASSING RATE OF MAIN-BELT COMET P/2012 T1 (PANSTARRS)

    SciTech Connect (OSTI)

    O'Rourke, L.; Teyssier, D.; Kueppers, M. [European Space Astronomy Centre, ESAC, Villanueva de la Canada, E-28691 Madrid (Spain); Snodgrass, C.; De Val-Borro, M.; Hartogh, P. [Max Planck Institute for Solar System Research, Max-Planck-Str. 2, D-37191 Katlenburg-Lindau (Germany); Biver, N.; Bockelee-Morvan, D. [LESIA, Observatoire de Paris, CNRS, UPMC, Universite Paris-Diderot, 5 place Jules Janssen, F-92195 Meudon (France); Hsieh, H.; Micheli, M. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Fernandez, Y., E-mail: lorourke@esa.int [Department of Physics, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL 32816-2385 (United States)

    2013-09-01

    A new Main-Belt Comet (MBC) P/2012 T1 (PANSTARRS) was discovered on 2012 October 6, approximately one month after its perihelion, by the Pan-STARRS1 survey based in Hawaii. It displayed cometary activity upon its discovery with one hypothesis being that the activity was driven by sublimation of ices; as a result, we searched for emission assumed to be driven by the sublimation of subsurface ices. Our search was of the H{sub 2}O 1{sub 10}-1{sub 01} ground state rotational line at 557 GHz from P/2012 T1 (PANSTARRS) with the Heterodyne Instrument for the Far Infrared on board the Herschel Space Observatory on 2013 January 16, when the object was at a heliocentric distance of 2.504 AU and a geocentric distance of 2.064 AU. Perihelion was in early 2012 September at a distance of 2.411 AU. While no H{sub 2}O line emission was detected in our observations, we were able to derive sensitive 3{sigma} upper limits for the water production rate and column density of <7.63 Multiplication-Sign 10{sup 25} molecules s{sup -1} and of <1.61 Multiplication-Sign 10{sup 11} cm{sup -2}, respectively. An observation taken on 2013 January 15 using the Very Large Telescope found the MBC to be active during the Herschel observation, suggesting that any ongoing sublimation due to subsurface ice was lower than our upper limit.

  10. A three-dimensional numerical model of predevelopment conditions in the Death Valley regional ground-water flow system, Nevada and California

    SciTech Connect (OSTI)

    D'Agnese, F.A.; O'Brien, G.M.; Faunt, C.C.; Belcher, W.R.; San Juan, Carma

    2002-11-22

    In the early 1990's, two numerical models of the Death Valley regional ground-water flow system were developed by the U.S. Department of Energy. In general, the two models were based on the same basic hydrogeologic data set. In 1998, the U.S. Department of Energy requested that the U.S. Geological Survey develop and maintain a ground-water flow model of the Death Valley region in support of U.S. Department of Energy programs at the Nevada Test Site. The purpose of developing this ''second-generation'' regional model was to enhance the knowledge and understanding of the ground-water flow system as new information and tools are developed. The U.S. Geological Survey also was encouraged by the U.S. Department of Energy to cooperate to the fullest extent with other Federal, State, and local entities in the region to take advantage of the benefits of their knowledge and expertise. The short-term objective of the Death Valley regional ground-water flow system project was to develop a steady-stat e representation of the predevelopment conditions of the ground-water flow system utilizing the two geologic interpretations used to develop the previous numerical models. The long-term objective of this project was to construct and calibrate a transient model that simulates the ground-water conditions of the study area over the historical record that utilizes a newly interpreted hydrogeologic conceptual model. This report describes the result of the predevelopment steady-state model construction and calibration.

  11. Water's Way at Sleepers River watershed - revisiting flow generation in a post-glacial landscape, Vermont USA

    E-Print Network [OSTI]

    Shanley, JB; Sebestyen, SD; Mcdonnell, JJ; Mcdonnell, JJ; Mcglynn, BL; Dunne, T

    2015-01-01

    production in permeable soils. Water Resources Research 6:New England watershed. Water Resources Research 6: 1296–processes during snowmelt. Water Resources Research 7: 1160–

  12. Design and installation of continuous flow and water quality monitoring stations to improve water quality forecasting in the lower San Joaquin River

    E-Print Network [OSTI]

    Quinn, Nigel W.T.

    2007-01-01

    Flow and EC data at each site are collected using battery-battery Design Analysis datalogger YSI 600XL temperature compensated EC probe Flowbattery Design Analysis datalogger YSI 600XL temperature compensated EC probe Flow

  13. UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Coupled flow of water and gas during hydraulic fracture in shale (EARTH-15-CM1)

    E-Print Network [OSTI]

    Henderson, Gideon

    UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Coupled flow of water and gas during hydraulic fracture in shale (EARTH-15-CM1) Host institution: University of Oxford Cartwright Project description: Recovery of natural gas from mudstone (shale) formations has triggered

  14. Measurement of flow maldistribution in parallel channels and its application to ex-situ and in-situ experiments in PEMFC water management studies

    E-Print Network [OSTI]

    Kandlikar, Satish

    -situ experiments in PEMFC water management studies S.G. Kandlikar *, Z. Lu, W.E. Domigan, A.D. White, M.W. Benedict in the effective operation of a proton exchange membrane fuel cell (PEMFC). Presently there are a few theoretically fuel cell stacks in PEMFCs, but little or no experimental data has been published on the actual flow

  15. Video-rate optical dosimetry and dynamic visualization of IMRT and VMAT treatment plans in water using Cherenkov radiation

    SciTech Connect (OSTI)

    Glaser, Adam K. E-mail: Brian.W.Pogue@dartmouth.edu; Andreozzi, Jacqueline M.; Davis, Scott C.; Zhang, Rongxiao; Pogue, Brian W. E-mail: Brian.W.Pogue@dartmouth.edu; Fox, Colleen J.; Gladstone, David J.

    2014-06-15

    Purpose: A novel technique for optical dosimetry of dynamic intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) plans was investigated for the first time by capturing images of the induced Cherenkov radiation in water. Methods: A high-sensitivity, intensified CCD camera (ICCD) was configured to acquire a two-dimensional (2D) projection image of the Cherenkov radiation induced by IMRT and VMAT plans, based on the Task Group 119 (TG-119) C-Shape geometry. Plans were generated using the Varian Eclipse treatment planning system (TPS) and delivered using 6 MV x-rays from a Varian TrueBeam Linear Accelerator (Linac) incident on a water tank doped with the fluorophore quinine sulfate. The ICCD acquisition was gated to the Linac target trigger pulse to reduce background light artifacts, read out for a single radiation pulse, and binned to a resolution of 512 × 512 pixels. The resulting videos were analyzed temporally for various regions of interest (ROI) covering the planning target volume (PTV) and organ at risk (OAR), and summed to obtain an overall light intensity distribution, which was compared to the expected dose distribution from the TPS using a gamma-index analysis. Results: The chosen camera settings resulted in 23.5 frames per second dosimetry videos. Temporal intensity plots of the PTV and OAR ROIs confirmed the preferential delivery of dose to the PTV versus the OAR, and the gamma analysis yielded 95.9% and 96.2% agreement between the experimentally captured Cherenkov light distribution and expected TPS dose distribution based upon a 3%/3 mm dose difference and distance-to-agreement criterion for the IMRT and VMAT plans, respectively. Conclusions: The results from this initial study demonstrate the first documented use of Cherenkov radiation for video-rate optical dosimetry of dynamic IMRT and VMAT treatment plans. The proposed modality has several potential advantages over alternative methods including the real-time nature of the acquisition, and upon future refinement may prove to be a robust and novel dosimetry method with both research and clinical applications.

  16. Ground-water flow and recharge in the Mahomet Bedrock Valley Aquifer, east-central Illinois: A conceptual model based on hydrochemistry

    SciTech Connect (OSTI)

    Panno, S.V.; Hackley, K.C.; Cartwright, K.; Liu, C.L. (Illinois State Geological Survey, Champaign, IL (United States))

    1994-04-01

    Major-ion and isotopic analyses of ground water have been used to develop a conceptual model of flow and recharge to the Mahomet Bedrock Valley Aquifer (MVA). The MVA is composed of clean, permeable sands and gravels and forms a basal'' fill up to 60 m thick in a buried, west-trending bedrock valley. A thick succession of glacial tills, some containing interbedded lenses of sand and gravel, covers the MVA. Three regions within the MVA have hydrochemically distinct ground-water types. A fourth ground-water type was found at the confluence of the MVA and the Mackinaw Bedrock Valley Aquifer (MAK) to the west.

  17. WATER RESOURCES RESEARCH, VOL. 25, NO. 3, PAGES 577-579, MARCH 1989 Comment on "Are Rain Rate Processes Self-Similar?"

    E-Print Network [OSTI]

    Lovejoy, Shaun

    WATER RESOURCES RESEARCH, VOL. 25, NO. 3, PAGES 577-579, MARCH 1989 Comment on "Are Rain Rate the properties of the rain field with those of its fluctu- ations in such a way that neither of their theorems are rele- vant to the problem of stochasticself-similar rain modeling. We would thereforelike to take

  18. Pipe Flow System Holly Guest

    E-Print Network [OSTI]

    Clement, Prabhakar

    Pipe Flow System Design Holly Guest #12;Problem · An engineer is asked to compute the flow rate · Flow type: Turbulent or Laminar flow · Flow rate · Frictional head loss · Optimal diameters if a pump · = - ( . + . ) · f = friction factor · = relative roughness = · = Reynolds Number = · Laminar flow: 2000

  19. Thermofluidics and energetics of a manifold microchannel heat sink for electronics with recovered hot water as working fluid

    E-Print Network [OSTI]

    Daraio, Chiara

    expectation of laminar flow in electronic cooling, high flow rate and high fluid temperatures result in tur- bulent flow conditions in the inlet and outlet manifolds of the heat sink with predominantly laminar flow hot water as working fluid Chander Shekhar Sharma a , Manish K. Tiwari a , Bruno Michel b , Dimos

  20. Fracture Propagation, Fluid Flow, and Geomechanics of Water-Based Hydraulic Fracturing in Shale Gas Systems and Electromagnetic Geophysical Monitoring of Fluid Migration

    SciTech Connect (OSTI)

    Kim, Jihoon; Um, Evan; Moridis, George

    2014-12-01

    We investigate fracture propagation induced by hydraulic fracturing with water injection, using numerical simulation. For rigorous, full 3D modeling, we employ a numerical method that can model failure resulting from tensile and shear stresses, dynamic nonlinear permeability, leak-off in all directions, and thermo-poro-mechanical effects with the double porosity approach. Our numerical results indicate that fracture propagation is not the same as propagation of the water front, because fracturing is governed by geomechanics, whereas water saturation is determined by fluid flow. At early times, the water saturation front is almost identical to the fracture tip, suggesting that the fracture is mostly filled with injected water. However, at late times, advance of the water front is retarded compared to fracture propagation, yielding a significant gap between the water front and the fracture top, which is filled with reservoir gas. We also find considerable leak-off of water to the reservoir. The inconsistency between the fracture volume and the volume of injected water cannot properly calculate the fracture length, when it is estimated based on the simple assumption that the fracture is fully saturated with injected water. As an example of flow-geomechanical responses, we identify pressure fluctuation under constant water injection, because hydraulic fracturing is itself a set of many failure processes, in which pressure consistently drops when failure occurs, but fluctuation decreases as the fracture length grows. We also study application of electromagnetic (EM) geophysical methods, because these methods are highly sensitive to changes in porosity and pore-fluid properties due to water injection into gas reservoirs. Employing a 3D finite-element EM geophysical simulator, we evaluate the sensitivity of the crosswell EM method for monitoring fluid movements in shaly reservoirs. For this sensitivity evaluation, reservoir models are generated through the coupled flow-geomechanical simulator and are transformed via a rock-physics model into electrical conductivity models. It is shown that anomalous conductivity distribution in the resulting models is closely related to injected water saturation, but not closely related to newly created unsaturated fractures. Our numerical modeling experiments demonstrate that the crosswell EM method can be highly sensitive to conductivity changes that directly indicate the migration pathways of the injected fluid. Accordingly, the EM method can serve as an effective monitoring tool for distribution of injected fluids (i.e., migration pathways) during hydraulic fracturing operations

  1. Development of Next Generation Multiphase Pipe Flow Prediction Tools

    SciTech Connect (OSTI)

    Cem Sarica; Holden Zhang

    2006-05-31

    The developments of oil and gas fields in deep waters (5000 ft and more) will become more common in the future. It is inevitable that production systems will operate under multiphase flow conditions (simultaneous flow of gas, oil and water possibly along with sand, hydrates, and waxes). Multiphase flow prediction tools are essential for every phase of hydrocarbon recovery from design to operation. Recovery from deep-waters poses special challenges and requires accurate multiphase flow predictive tools for several applications, including the design and diagnostics of the production systems, separation of phases in horizontal wells, and multiphase separation (topside, seabed or bottom-hole). It is crucial for any multiphase separation technique, either at topside, seabed or bottom-hole, to know inlet conditions such as flow rates, flow patterns, and volume fractions of gas, oil and water coming into the separation devices. Therefore, the development of a new generation of multiphase flow predictive tools is needed. The overall objective of the proposed study is to develop a unified model for gas-oil-water three-phase flow in wells, flow lines, and pipelines to predict flow characteristics such as flow patterns, phase distributions, and pressure gradient encountered during petroleum production at different flow conditions (pipe diameter and inclination, fluid properties and flow rates). In the current multiphase modeling approach, flow pattern and flow behavior (pressure gradient and phase fractions) prediction modeling are separated. Thus, different models based on different physics are employed, causing inaccuracies and discontinuities. Moreover, oil and water are treated as a pseudo single phase, ignoring the distinct characteristics of both oil and water, and often resulting in inaccurate design that leads to operational problems. In this study, a new model is being developed through a theoretical and experimental study employing a revolutionary approach. The basic continuity and momentum equations is established for each phase, and used for both flow pattern and flow behavior predictions. The required closure relationships are being developed, and will be verified with experimental results. Gas-oil-water experimental studies are currently underway for the horizontal pipes. Industry-driven consortia provide a cost-efficient vehicle for developing, transferring, and deploying new technologies into the private sector. The Tulsa University Fluid Flow Projects (TUFFP) is one of the earliest cooperative industry-university research consortia. TUFFP's mission is to conduct basic and applied multiphase flow research addressing the current and future needs of hydrocarbon production and transportation. TUFFP participants and The University of Tulsa are supporting this study through 55% cost sharing.

  2. Design and installation of continuous flow and water quality monitoring stations to improve water quality forecasting in the lower San Joaquin River

    E-Print Network [OSTI]

    Quinn, Nigel W.T.

    2007-01-01

    CONTINUOUS FLOW, EC AND TEMPERATURE MONITORING STATIONS FORMonitoring Group Name Your Name Date Parameter Temperature onutrients, temperature) 4. Existing monitoring stations

  3. Systematic Method for Evaluating Extraction and Injection Flow Rates for 100-KR-4 and 100-HR-3 Groundwater Operable Unit Pump-and-Treat Interim Actions for Hydraulic Containment

    SciTech Connect (OSTI)

    Spiliotopoulos, Alexandros A.

    2013-03-20

    This document describes a systematic method to develop flow rate recommendations for Pump-and-Treat (P&T) extraction and injection wells in 100-KR-4 and 100-HR-3 Groundwater Operable Units (OU) of the Hanford Site. Flow rate recommendations are developed as part of ongoing performance monitoring and remedy optimization of the P&T interim actions to develop hydraulic contairnnent of the dissolved chromium plume in groundwater and protect the Columbia River from further discharges of groundwater from inland. This document details the methodology and data required to infer the influence of individual wells near the shoreline on hydraulic containment and river protection and develop flow rate recommendations to improve system performance and mitigate potential shortcomings of the system configuration in place.

  4. Induced-charge electro-osmosis around metal and Janus spheres in water: Patterns of flow and breaking symmetries

    E-Print Network [OSTI]

    Chenhui Peng; Israel Lazo; Sergij V. Shiyanovskii; Oleg D. Lavrentovich

    2014-11-06

    We establish experimentally the flow patterns of induced-charge electro-osmosis (ICEO) around immobilized metallic spheres in aqueous electrolyte. The AC field modifies local electrolyte concentration and causes quadrupolar flows with inward velocities being smaller than the outward ones. At high fields, the flow becomes irregular, with vortices smaller than the size of the sphere. Janus metallo-dielectric spheres create dipolar flows and pump the fluid from the dielectric toward the metallic part. The experimentally determined far-field flows decay with the distance as r-3.

  5. Water bell and sheet instabilities Jeffrey M. Aristoff, Chad Lieberman,

    E-Print Network [OSTI]

    Bush, John W.M.

    Water bell and sheet instabilities Jeffrey M. Aristoff, Chad Lieberman, Erica Chan, and John W. M­3 In our study, glycerol-water solutions with vis- cosities of 1­60 cS were pumped at flow rates of 10 nozzle before collapsing. In Fig. 2, we see the oscillations of a closed water bell formed

  6. Multivariate analysis of homogeneous nucleation rate measurements. Nucleation in the p-toluic acid/sulfuric acid/water system

    E-Print Network [OSTI]

    Multivariate analysis of homogeneous nucleation rate measurements. Nucleation in the p-toluic acid. Building on these results, the powerful utility of multivariate statistical methods is demonstrated here

  7. Flow regimes

    SciTech Connect (OSTI)

    Liles, D.R.

    1982-01-01

    Internal boundaries in multiphase flow greatly complicate fluid-dynamic and heat-transfer descriptions. Different flow regimes or topological configurations can have radically dissimilar interfacial and wall mass, momentum, and energy exchanges. To model the flow dynamics properly requires estimates of these rates. In this paper the common flow regimes for gas-liquid systems are defined and the techniques used to estimate the extent of a particular regime are described. Also, the current computer-code procedures are delineated and introduce a potentially better method is introduced.

  8. A scenario for impacts of water availability loss due to climate change on riverine fish extinction rates

    E-Print Network [OSTI]

    Grenouillet, Gael

    rue Cuvier, 75231 Paris cedex, France; 2 Netherlands Institute for Sea Research (NIOZ), Korringaweg 7 future active drainage basin area losses and combine them with the extinction rate­area curve to estimate the future change in extinc- tion rate for each river basin. We then project the number of extinct species

  9. Multiphase flow calculation software

    DOE Patents [OSTI]

    Fincke, James R. (Idaho Falls, ID)

    2003-04-15

    Multiphase flow calculation software and computer-readable media carrying computer executable instructions for calculating liquid and gas phase mass flow rates of high void fraction multiphase flows. The multiphase flow calculation software employs various given, or experimentally determined, parameters in conjunction with a plurality of pressure differentials of a multiphase flow, preferably supplied by a differential pressure flowmeter or the like, to determine liquid and gas phase mass flow rates of the high void fraction multiphase flows. Embodiments of the multiphase flow calculation software are suitable for use in a variety of applications, including real-time management and control of an object system.

  10. Grains, Water Introduction

    E-Print Network [OSTI]

    Wirosoetisno, Djoko

    Grains, Water & Wet Sand Onno Bokhove Introduction Dry Granular Chute Flows: Cantilever Water Waves: Bores Near the Shore Surf Induced Sand Dynamics Discussion Dry Granular Flows, Water Waves & Surf, Water & Wet Sand Onno Bokhove Introduction Dry Granular Chute Flows: Cantilever Water Waves: Bores Near

  11. The growth rate of gas hydrate from refrigerant R12

    SciTech Connect (OSTI)

    Kendoush, Abdullah Abbas; Jassim, Najim Abid [Centre of Engineering Physics, Ministry of Sciences and Technology, P.O. Box 765, Baghdad (Iraq); Joudi, Khalid A. [Al-Nahrain University, Baghdad (Iraq)

    2006-07-15

    Experimental and theoretical investigations were presented dealing with three phase direct-contact heat transfer by evaporation of refrigerant drops in an immiscible liquid. Refrigerant R12 was used as the dispersed phase, while water and brine were the immiscible continuous phase. A numerical solution is presented to predict the formation rate of gas hydrates in test column. The solution provided an acceptable agreement when compared with experimental results. The gas hydrate growth rate increased with time. It increased with increasing dispersed phase flow rate. The presence of surface-active sodium chloride in water had a strong inhibiting effect on the gas hydrate formation rate. (author)

  12. Reassessing Fast Water Transport Through Carbon Nanotubes

    E-Print Network [OSTI]

    McGaughey, Alan

    carbon nanotubes (CNTs) with diameters ranging from 1.66 to 4.99 nm is examined using molecular dynamics rates of pressure-driven water through membranes of 1.6 and 7 nm diameter carbon nanotubes (CNTs in the molecular sieving, chemical detection, and drug delivery fields, where such high flow rates would

  13. A PV Dynamics for Rotating Shallow Water on the Sphere search for a theory of balanced flow on the full sphere

    E-Print Network [OSTI]

    Muraki, David J.

    A PV Dynamics for Rotating Shallow Water on the Sphere search for a theory of balanced flow -1.5 -1 -0.5 0 0.5 1 1.5 longitude latitude pv (sPV = color & contour) -0.3 -0.2 -0.1 0 0.1 0.2 0 Quasigeostrophy (QG) balanced dynamics: NO fast waves, PV dynamics, 0 asymptotic limit restrict to short

  14. Measurement of the Electron Neutrino Charged-current Interaction Rate on Water with the T2K ND280 pi-zero Detector

    E-Print Network [OSTI]

    Abe, K; Aihara, H; Andreopoulos, C; Aoki, S; Ariga, A; Assylbekov, S; Autiero, D; Barbi, M; Barker, G J; Barr, G; Bartet-Friburg, P; Bass, M; Batkiewicz, M; Bay, F; Berardi, V; Berger, B E; Berkman, S; Bhadra, S; Blaszczyk, F d M; Blondel, A; Bolognesi, S; Bordoni, S; Boyd, S B; Brailsford, D; Bravar, A; Bronner, C; Buchanan, N; Calland, R G; Caravaca, J; Cartwright, S L; Castillo, R; Catanesi, M G; Cervera, A; Cherdack, D; Christodoulou, G; Clifton, A; Coleman, J; Coleman, S J; Collazuol, G; Connolly, K; Cremonesi, L; Dabrowska, A; Das, R; Davis, S; de, P; De, G; Dealtry, T; Dennis, S R; Densham, C; Dewhurst, D; Di, F; Di, S; Dolan, S; Drapier, O; Duffy, K; Dumarchez, J; Dytman, S; Dziewiecki, M; Emery-Schrenk, S; Ereditato, A; Escudero, L; Feusels, T; Finch, A J; Fiorentini, G A; Friend, M; Fujii, Y; Fukuda, Y; Furmanski, A P; Galymov, V; Garcia, A; Giffin, S; Giganti, C; Gilje, K; Goeldi, D; Golan, T; Gonin, M; Grant, N; Gudin, D; Hadley, D R; Haegel, L; Haesler, A; Haigh, M D; Hamilton, P; Hansen, D; Hara, T; Hartz, M; Hasegawa, T; Hastings, N C; Hayashino, T; Hayato, Y; Helmer, R L; Hierholzer, M; Hignight, J; Hillairet, A; Himmel, A; Hiraki, T; Hirota, S; Holeczek, J; Horikawa, S; Huang, K; Ichikawa, A K; Ieki, K; Ieva, M; Ikeda, M; Imber, J; Insler, J; Irvine, T J; Ishida, T; Ishii, T; Iwai, E; Iwamoto, K; Iyogi, K; Izmaylov, A; Jacob, A; Jamieson, B; Jiang, M; Johnson, S; Jo, J H; Jonsson, P; Jung, C K; Kabirnezhad, M; Kaboth, A C; Kajita, T; Kakuno, H; Kameda, J; Kanazawa, Y; Karlen, D; Karpikov, I; Katori, T; Kearns, E; Khabibullin, M; Khotjantsev, A; Kielczewska, D; Kikawa, T; Kilinski, A; Kim, J; King, S; Kisiel, J; Kitching, P; Kobayashi, T; Koch, L; Koga, T; Kolaceke, A; Konaka, A; Kormos, L L; Korzenev, A; Koshio, Y; Kropp, W; Kubo, H; Kudenko, Y; Kurjata, R; Kutter, T; Lagoda, J; Lamont, I; Larkin, E; Laveder, M; Lawe, M; Lazos, M; Lindner, T; Lister, C; Litchfield, R P; Longhin, A; Lopez, J P; Ludovici, L; Magaletti, L; Mahn, K; Malek, M; Manly, S; Marino, A D; Marteau, J; Martin, J F; Martins, P; Martynenko, S; Maruyama, T; Matveev, V; Mavrokoridis, K; Mazzucato, E; McCarthy, M; McCauley, N; McFarland, K S; McGrew, C; Mefodiev, A; Metelko, C; Mezzetto, M; Mijakowski, P; Miller, C A; Minamino, A; Mineev, O; Missert, A; Miura, M; Moriyama, S; Mueller, Th A; Murakami, A; Murdoch, M; Murphy, S; Myslik, J; Nakadaira, T; Nakahata, M; Nakamura, K G; Nakamura, K; Nakayama, S; Nakaya, T; Nakayoshi, K; Nantais, C; Nielsen, C; Nirkko, M; Nishikawa, K; Nishimura, Y; Nowak, J; O'Keeffe, H M; Ohta, R; Okumura, K; Okusawa, T; Oryszczak, W; Oser, S M; Ovsyannikova, T; Owen, R A; Oyama, Y; Palladino, V; Palomino, J L; Paolone, V; Payne, D; Perevozchikov, O; Perkin, J D; Petrov, Y; Pickard, L; Pinzon, E S; Pistillo, C; Plonski, P; Poplawska, E; Popov, B; Posiadala-Zezula, M; Poutissou, J -M; Poutissou, R; Przewlocki, P; Quilain, B; Radicioni, E; Ratoff, P N; Ravonel, M; Rayner, M A M; Redij, A; Reeves, M; Reinherz-Aronis, E; Riccio, C; Rodrigues, P A; Rojas, P; Rondio, E; Roth, S; Rubbia, A; Ruterbories, D; Rychter, A; Sacco, R; Sakashita, K; S, F; Sato, F; Scantamburlo, E; Scholberg, K; Schoppmann, S; Schwehr, J; Scott, M; Seiya, Y; Sekiguchi, T; Sekiya, H; Sgalaberna, D; Shah, R; Shaker, F; Shaw, D; Shiozawa, M; Short, S; Shustrov, Y; Sinclair, P; Smith, B; Smy, M; Sobczyk, J T; Sobel, H; Sorel, M; Southwell, L; Stamoulis, P; Steinmann, J; Suda, Y; Suzuki, A; Suzuki, K; Suzuki, S Y; Suzuki, Y; Tacik, R; Tada, M; Takahashi, S; Takeda, A; Takeuchi, Y; Tanaka, H K; Tanaka, H A; Tanaka, M M; Terhorst, D; Terri, R; Thompson, L F; Thorley, A; Tobayama, S; Toki, W; Tomura, T; Totsuka, Y; Touramanis, C; Tsukamoto, T; Tzanov, M; Uchida, Y; Vacheret, A; Vagins, M; Vasseur, G; Wachala, T; Wakamatsu, K; Walter, C W; Wark, D; Warzycha, W; Wascko, M O; Weber, A; Wendell, R; Wilkes, R J; Wilking, M J; Wilkinson, C; Williamson, Z; Wilson, J R; Wilson, R J; Wongjirad, T; Yamada, Y; Yamamoto, K; Yanagisawa, C; Yano, T; Yen, S; Yershov, N; Yokoyama, M; Yoshida, K; Yuan, T; Yu, M; Zalewska, A; Zalipska, J; Zambelli, L; Zaremba, K; Ziembicki, M; Zimmerman, E D; Zito, M; Zmuda, J

    2015-01-01

    The first direct observation of the appearance of electron neutrinos in a muon neutrino beam through neutrino oscillation was recently reported by the T2K experiment. The main background in this observation was the presence of the electron neutrino component of the beam, which accounts for 1.2 % of the beam below the 1.2 GeV threshold. This paper presents a measurement of the charged current interaction rate of the electron neutrino beam component using the large fiducial mass of the T2K $\\pi^0$ detector. The measured ratio of the observed beam interaction rate to the predicted rate in the detector with water targets filled is 0.89 $\\pm$ 0.08 (stat.) $\\pm$ 0.11 (sys.), and with the water targets emptied is 0.90 $\\pm$ 0.09 (stat.) $\\pm$ 0.13 (sys.). The ratio obtained for the interactions on water only from an event subtraction method is 0.87 $\\pm$ 0.33 (stat.) $\\pm$ 0.21 (sys.). These are pioneering measurements of the $\

  15. Estimation of free-living energy expenditure by heart rate and movement sensing: A doubly-labelled water study

    E-Print Network [OSTI]

    Brage, Søren; Westgate, Kate; Franks, Paul W.; Stegle, Oliver; Wright, Antony; Ekelund, Ulf; Wareham, Nicholas J.

    2015-01-01

    Background: Accurate assessment of energy expenditure (EE) is important for the study of energy balance and metabolic disorders. Combined heart rate (HR) and acceleration (ACC) sensing may increase precision of physical activity EE (PAEE) which...

  16. Design and installation of continuous flow and water quality monitoring stations to improve water quality forecasting in the lower San Joaquin River

    E-Print Network [OSTI]

    Quinn, Nigel W.T.

    2007-01-01

    Velocity (ft/s) Discharge (cfs) Data Source Temp_F LBC-T-ulmthe flow and EC readings in cfs and uS/cm respectively, tois in cubic feet per second [cfs], EC is in miro Siemens per

  17. Stream flows for salmon and society: managing water for human and ecosystem needs in Mediterranean-climate California

    E-Print Network [OSTI]

    Grantham, Theodore Evan William

    2010-01-01

    Hydraulic assessment of environmental flow regimes to facilitate fish passage through natural riffles: Shoalhaven River below Tallowa Dam,hydraulic models have to evaluate habitat- discharge relationships have focused on relatively large rivers regulated by upstream dams (hydraulic modeling for salmon passage flow assessments in northern California streams A BSTRACT The fragmentation of river networks from dams

  18. Initial Commissioning of a Water-to-Water GHP System in KIER 

    E-Print Network [OSTI]

    Kim, J.; Jang, J.C.; Kang, E.C.; Chang, K.C.; Lee, E.J.; Kim, Y.

    2011-01-01

    (entering water temperature), LWT(leaving water temperature), capacity, flow rate, power and COP. This technique has been verified to a w to w GHP system designed and installed at KIER site. The verification study showed that actual performance was lower than...

  19. Water management studies in PEM fuel cells, Part II: Ex situ investigation of flow maldistribution, pressure drop

    E-Print Network [OSTI]

    Kandlikar, Satish

    the proton conductivity of the polymer electrolyte membrane; however, excess water must be removed from the cell to avoid flooding. Flooding is a phenomenon in which liquid water accumulation inside

  20. Design and installation of continuous flow and water quality monitoring stations to improve water quality forecasting in the lower San Joaquin River

    E-Print Network [OSTI]

    Quinn, Nigel W.T.

    2007-01-01

    district telemetry and/or SCADA systems. Water Districtsintegrated with the current District SCADA systems (TID andMID use different SCADA systems, requiring different system

  1. 86 Water Resources and the Urban Environment Review of Analytical Studies of Tidal Groundwater Flow in Coastal

    E-Print Network [OSTI]

    Jiao, Jiu Jimmy

    . For example, Carr (1969) investigated the tide-related salt-water intrusion in Prince Edward Island; Lanyon et

  2. WATER RESOURCES RESEARCH, VOL. , NO. , PAGES 110, The Impact of Wettability Alteration on Two-Phase Flow

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    WATER RESOURCES RESEARCH, VOL. , NO. , PAGES 1­10, The Impact of Wettability Alteration on Two (NAPLs) and gases that co-exist with water in soils and rocks, is of fundamental interest to subsurface water management. Any prediction of temporal and spatial distributions of these fluids is sensitive

  3. Portable wastewater flow meter

    DOE Patents [OSTI]

    Hunter, Robert M. (320 S. Wilson Ave., Bozeman, MT 59715)

    1999-02-02

    A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under fill pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

  4. Portable wastewater flow meter

    DOE Patents [OSTI]

    Hunter, Robert M. (320 S. Wilson Ave., Bozeman, MT 59715)

    1990-01-01

    A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under full pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

  5. Schwarz, T. and Wells, S. (1999) "Storm Water Particle Removal using Cross-Flow Filtration and Sedimentation," in Advances in Filtration and Separation Technology, Volume 12, ed. by W. Leung, American Filtrations and Separations Society, pp.219-226.

    E-Print Network [OSTI]

    Wells, Scott A.

    1999-01-01

    on the water surface by the incoming flow. This keeps the solids in the chamber from blocking the screen (Hopke et al. 1980). With the prohibition of lead based petroleum products in many parts of North America

  6. Imbibition flooding with CO?-enriched water 

    E-Print Network [OSTI]

    Grape, Steven George

    1990-01-01

    Imbibition of water into the pore space of the matrix is the dominant oil production factor in fractured reservoirs. Conventional water and gas injection methods fail to improve oil recovery in these reservoirs because of fluid channeling through... the fracture system. The largest fractured reservoirs in Texas are tight, dual porosity limestone reservoirs such as the Austin Chalk. Imbibition flooding is limited in tight fractured reservoirs because of low countercurrent water-oil imbibition flow rates...

  7. The influence of free gas saturation on water flood performance - variations caused by changes in flooding rate 

    E-Print Network [OSTI]

    Dandona, Anil Kumar

    1971-01-01

    , 1971) Anil Kumar Dandona, B. S. , Indian School of Mines Directed by: Dr. R. A. Morse It has been recognised that the presence of a free gas satura- tion prior to water flooding can have an important influence on oil recovery. The published results... studies such as the disappearance of part or all of the free gas by solution in the oil bank. Also, it has been realised that gravity forces make it impossible to initiate and maintain a uniforxn gas saturation fram top to bottom of the production...

  8. Control Optimization for a Chilled Water Thermal Storage System Under a Complicated Time-of-Use Electricity Rate Schedule 

    E-Print Network [OSTI]

    Zhou, J.; Wei, G.; Turner, W.D.; Deng, S.; Claridge, D.E.; Contreras, O.

    2005-01-01

    .6 m) in diameter with a total volume capacity of 1,400,000 gallon (5,299,560 L). Under design conditions, the fully charged thermal storage tank can hold a cooling capacity of 12,000 ton-hr (42,204 kWh). The temperatures of the stratified chilled... of time for the tank to discharge is selected, as many higher-priced hours as possible. The time charge the tank is automatically determined as n, the average chiller production rate required e charging period is calculated from the total campus load...

  9. Rotordynamics/discharge water-hammer coupling via seals in pump rotordynamics 

    E-Print Network [OSTI]

    Zhang, Kaikai

    2004-09-30

    A new closed-loop frequency-domain model is developed to incorporate the water hammer effect with pump rotordynamics, in order to investigate the sub-synchronous instability problem observed in a field pump. Seal flow-rate ...

  10. Sustainable systems rating program: Marketing ``Green`` Building in Austin, Texas

    SciTech Connect (OSTI)

    Not Available

    1991-12-01

    Four major resource issues for home construction were identified: water, energy, materials, and waste. A systems flow model was then developed that tracked the resource issues through interactive matrices in the areas of sourcing, processing, using, and disposing or recycling. This model served as the basis for a rating system used in an educational and marketing tool called the Eco-Home Guide.

  11. Sustainable systems rating program: Marketing Green'' Building in Austin, Texas

    SciTech Connect (OSTI)

    Not Available

    1991-12-01

    Four major resource issues for home construction were identified: water, energy, materials, and waste. A systems flow model was then developed that tracked the resource issues through interactive matrices in the areas of sourcing, processing, using, and disposing or recycling. This model served as the basis for a rating system used in an educational and marketing tool called the Eco-Home Guide.

  12. Groundwater flow to the coastal ocean Ann E. Mulligan and Matthew A. Charette

    E-Print Network [OSTI]

    of high hydraulic head to areas of low hydraulic head terrain, such as karst. In addition to typically low flow rates, groundwater discharge is temporally is driven by differences in energy ­ water flows from high energy areas to low energy. The energy content

  13. Application of direct-fitting, mass-integral, and multi-rate methods to analysis of flowing fluid electric conductivity logs from Horonobe, Japan

    E-Print Network [OSTI]

    Doughty, C.; Tsang, C.-F.; Hatanaka, K.; Yabuuchi, S.; Kurikami, H.

    2008-01-01

    of direct-fitting, mass-integral, and multi-rate methods todirect- fitting, mass-integral, and the multi-rate methodthe so-called mass-integral or M(t) method) provides an

  14. Ice shelf-ocean interactions in a general circulation model : melt-rate modulation due to mean flow and tidal currents

    E-Print Network [OSTI]

    Dansereau, Véronique

    2012-01-01

    Interactions between the ocean circulation in sub-ice shelf cavities and the overlying ice shelf have received considerable attention in the context of observed changes in flow speeds of marine ice sheets around Antarctica. ...

  15. Please cite this article in press as: G. Prez, et al., Optimized mass flow rate distribution analysis for cooling the ITER Blanket System, Fusion Eng. Des. (2014), http://dx.doi.org/10.1016/j.fusengdes.2014.03.002

    E-Print Network [OSTI]

    Raffray, A. René

    2014-01-01

    analysis for cooling the ITER Blanket System, Fusion Eng. Des. (2014), http://dx.doi.org/10.1016/j.elsevier.com/locate/fusengdes Optimized mass flow rate distribution analysis for cooling the ITER Blanket System Germán Pérez , Raphaël: ITER Blanket System Mass flow rate Critical heat flux a b s t r a c t This paper presents the rationale

  16. Supraoptimal root-zone temperature effects on water use of three Cercis spp 

    E-Print Network [OSTI]

    Lawrence, Beth Jez

    1993-01-01

    Committee: Dr. Jayne M. Zajicek Stem flow rates of three Cercis spp. exposed to supraoptimal root- zone temperatures were characterized in a controlled environment chamber using a water bath to maintain treatment temperatures. Flow rates of sap... in the xylem were measured every 15 sec and averaged over 15 min intervals. Sap flow measurements were correlated to root-zone temperatures recorded during the same time intervals. Whole plant transpiration was also measured gravimetrically. Root...

  17. Removal of nutrients from combined sewer overflows and lake water in a vertical-flow constructed wetland system

    E-Print Network [OSTI]

    Brix, Hans

    and human activities in the catch- ment of the lakes, the water quality is often poor and reduces. Combined sewer overflows occur during rain events when large amounts of rainwater are added to the normal

  18. Subcooled flow boiling heat transfer and critical heat flux in water-based nanofluids at low pressure

    E-Print Network [OSTI]

    Kim, Sung Joong, Ph. D. Massachusetts Institute of Technology

    2009-01-01

    A nanofluid is a colloidal suspension of nano-scale particles in water, or other base fluids. Previous pool boiling studies have shown that nanofluids can improve the critical heat flux (CHF) by as much as 200%. In this ...

  19. Deserts are water-controlled ecosystems characterized by high ambient temperature (Ta), intense solar radiation,

    E-Print Network [OSTI]

    Williams, Jos. B.

    , it can be argued that rates of energy flow through desert ecosystems are controlled by available water dominated by, the availability of water in desert ecosystems. Animals that occupy arid climes face the challenge of meeting their daily energy and water requirements in an environment that, on average, provides

  20. Development test report for the high pressure water jet system nozzles

    SciTech Connect (OSTI)

    Takasumi, D.S.

    1995-09-28

    The high pressure water jet nozzle tests were conducted to identify optimum water pressure, water flow rate, nozzle orifice size and fixture configuration needed to effectively decontaminate empty fuel storage canisters in KE-Basin. This report gives the tests results and recommendations from the these tests.

  1. Water Resources Milind Sohoni

    E-Print Network [OSTI]

    Sohoni, Milind

    TD 603 Water Resources Milind Sohoni www.cse.iitb.ac.in/sohoni/ Building Numerical Models () August of surface flow of water and infiltration which may include time to flow, movement of solids etc. () August

  2. Forests, Water, and the Atmosphere in Northern California: Insights from Sap-Flow Data Analysis and Numerical Atmospheric Model Simulations

    E-Print Network [OSTI]

    Link, Percy

    2015-01-01

    point near- est the Solano wind farm, for the wet backgroundenergy of 15-40% of a wind farm’s maximum rated power. i Fornearest the Solano wind farm, for (b) the wet background/dry

  3. Variations of self-potential and unsaturated water flow with time in sandy loam and clay loam soils

    E-Print Network [OSTI]

    Sailhac, Pascal

    the current hydraulic measurements. The aim of this study is to experimentally investigate the existence Claude Doussana,*, Laurence Jouniauxb , Jean-Louis Thonyc a INRA, Unite´ Climat, Sol & Environnement, agronomical or hydrological applications. Field estimations of soil­water fluxes by `classical' hydraulic

  4. Ultra-high current density water management in polymer electrolyte fuel cell with porous metallic flow field

    E-Print Network [OSTI]

    Mench, Matthew M.

    Ultra-high current density water management in polymer electrolyte fuel cell with porous metallic with the open metallic element architecture and high current density. Flooding is not limiting at high current. Stable operation was demonstrated at 90 C using a polymer electrolyte membrane. Real time NWD

  5. UBC Social Ecological Economic Development Studies (SEEDS) Student Report Water Conservation at Koerner's Pub Using Faucet Aerators

    E-Print Network [OSTI]

    . The maximum possible flow rates (valves fully opened) of the double sink and hand sink are 11.7 GPM and 8 faucet noise and prevent faucet leakage. Conserving water even in small amounts, such as through the use

  6. Elbow mass flow meter

    DOE Patents [OSTI]

    McFarland, Andrew R. (College Station, TX); Rodgers, John C. (Santa Fe, NM); Ortiz, Carlos A. (Bryan, TX); Nelson, David C. (Santa Fe, NM)

    1994-01-01

    Elbow mass flow meter. The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity.

  7. An upper limit for the water outgassing rate of the main-belt comet 176P/LINEAR observed with Herschel/HIFI

    E-Print Network [OSTI]

    de Val-Borro, M; Hartogh, P; Biver, N; Bockelée-Morvan, D; Crovisier, J; Küppers, M; Lis, D C; Szutowicz, S; Blake, G A; Emprechtinger, M; Jarchow, C; Jehin, E; Kidger, M; Lara, L -M; Lellouch, E; Moreno, R; Rengel, M

    2012-01-01

    176P/LINEAR is a member of the new cometary class known as main-belt comets (MBCs). It displayed cometary activity shortly during its 2005 perihelion passage that may be driven by the sublimation of sub-surface ices. We have therefore searched for emission of the H2O 110-101 ground state rotational line at 557 GHz toward 176P/LINEAR with the Heterodyne Instrument for the Far Infrared (HIFI) on board the Herschel Space Observatory on UT 8.78 August 2011, about 40 days after its most recent perihelion passage, when the object was at a heliocentric distance of 2.58 AU. No H2O line emission was detected in our observations, from which we derive sensitive 3-sigma upper limits for the water production rate and column density of < 4e25 molec/s and of < 3e10 cm^{-2}, respectively. From the peak brightness measured during the object's active period in 2005, this upper limit is lower than predicted by the relation between production rates and visual magnitudes observed for a sample of comets by Jorda et al. (2008...

  8. A conductivity relationship for steady-state unsaturated flow processes under optimal flow conditions

    E-Print Network [OSTI]

    Liu, Hui-Hai

    2011-01-01

    gradient because water flux, energy gradient, and K areis equal to the energy carried by the water flowing into thevolume minus the energy carried by the water flowing out of

  9. Nambe Pueblo Water Budget and Forecasting model.

    SciTech Connect (OSTI)

    Brainard, James Robert

    2009-10-01

    This report documents The Nambe Pueblo Water Budget and Water Forecasting model. The model has been constructed using Powersim Studio (PS), a software package designed to investigate complex systems where flows and accumulations are central to the system. Here PS has been used as a platform for modeling various aspects of Nambe Pueblo's current and future water use. The model contains three major components, the Water Forecast Component, Irrigation Scheduling Component, and the Reservoir Model Component. In each of the components, the user can change variables to investigate the impacts of water management scenarios on future water use. The Water Forecast Component includes forecasting for industrial, commercial, and livestock use. Domestic demand is also forecasted based on user specified current population, population growth rates, and per capita water consumption. Irrigation efficiencies are quantified in the Irrigated Agriculture component using critical information concerning diversion rates, acreages, ditch dimensions and seepage rates. Results from this section are used in the Water Demand Forecast, Irrigation Scheduling, and the Reservoir Model components. The Reservoir Component contains two sections, (1) Storage and Inflow Accumulations by Categories and (2) Release, Diversion and Shortages. Results from both sections are derived from the calibrated Nambe Reservoir model where historic, pre-dam or above dam USGS stream flow data is fed into the model and releases are calculated.

  10. Forced Granular Orifice Flow

    E-Print Network [OSTI]

    Zheng Peng; Hepeng Zheng; Yimin Jiang

    2009-09-06

    The flow of granular material through an orifice is studied experimentally as a function of force $F$ pushing the flow. It is found that the flow rate increases linearly with $F$ -- a new, unexpected result that is in contrast to the usual view that $F$, completely screened by an arch formed around the orifice, has no way of altering the rate. Employing energy balance, we show that this behavior results mainly from dissipation in the granular material.

  11. Solids mass flow determination

    DOE Patents [OSTI]

    Macko, Joseph E. (Hempfield Township, Westmoreland County, PA)

    1981-01-01

    Method and apparatus for determining the mass flow rate of solids mixed with a transport fluid to form a flowing mixture. A temperature differential is established between the solids and fluid. The temperature of the transport fluid prior to mixing, the temperature of the solids prior to mixing, and the equilibrium temperature of the mixture are monitored and correlated in a heat balance with the heat capacities of the solids and fluid to determine the solids mass flow rate.

  12. Status of understanding of the saturated-zone ground-water flow system at Yucca Mountain, Nevada, as of 1995

    SciTech Connect (OSTI)

    Luckey, R.R.; Tucci, P.; Faunt, C.C.; Ervin, E.M.

    1996-12-31

    Yucca Mountain, which is being studied extensively because it is a potential site for a high-level radioactive-waste repository, consists of a thick sequence of volcanic rocks of Tertiary age that are underlain, at least to the southeast, by carbonate rocks of Paleozoic age. Stratigraphic units important to the hydrology of the area include the alluvium, pyroclastic rocks of Miocene age (the Timber Mountain Group; the Paintbrush Group; the Calico Hills Formation; the Crater Flat Group; the Lithic Ridge Tuff; and older tuffs, flows, and lavas beneath the Lithic Ridge Tuff), and sedimentary rocks of Paleozoic age. The saturated zone generally occurs in the Calico Hills Formation and stratigraphically lower units. The saturated zone is divided into three aquifers and two confining units. The flow system at Yucca Mountain is part of the Alkali Flat-Furnace Creek subbasin of the Death Valley groundwater basin. Variations in the gradients of the potentiometric surface provided the basis for subdividing the Yucca Mountain area into zones of: (1) large hydraulic gradient where potentiometric levels change at least 300 meters in a few kilometers; (2) moderate hydraulic gradient where potentiometric levels change about 45 meters in a few kilometers; and (3) small hydraulic gradient where potentiometric levels change only about 2 meters in several kilometers. Vertical hydraulic gradients were measured in only a few boreholes around Yucca Mountain; most boreholes had little change in potentiometric levels with depth. Limited hydraulic testing of boreholes in the Yucca Mountain area indicated that the range in transmissivity was more than 2 to 3 orders of magnitude in a particular hydrogeologic unit, and that the average values for the individual hydrogeologic units generally differed by about 1 order of magnitude. The upper volcanic aquifer seems to be the most permeable hydrogeologic unit, but this conclusion was based on exceedingly limited data.

  13. Rate of decline in serum PFOA concentrations after granular activated carbon filtration at two public water systems in Ohio and West Virginia.

    E-Print Network [OSTI]

    Bartell, Scott M; Calafat, Antonia M; Lyu, Christopher; Kato, Kayoko; Ryan, P Barry; Steenland, Kyle

    2010-01-01

    to PFOA-contaminated drinking water. Int J Hygiene Environ2009]. Hunt S. 2006. Bottled water given to residents alsonews/science/355950/bottled_water_given_ to_residents_also_

  14. Rate of Decline in Serum PFOA Concentrations after Granular Activated Carbon Filtration at Two Public Water Systems in Ohio and West Virginia

    E-Print Network [OSTI]

    Bartell, Scott M; Calafat, Antonia M; Lyu, Christopher; Kato, Kayoko; Ryan, P. Barry; Steenland, Kyle

    2009-01-01

    to PFOA-contaminated drinking water. Int J Hygiene Environ2009]. Hunt S. 2006. Bottled water given to residents alsonews/science/355950/bottled_water_given_ to_residents_also_

  15. Water injected fuel cell system compressor

    DOE Patents [OSTI]

    Siepierski, James S. (Williamsville, NY); Moore, Barbara S. (Victor, NY); Hoch, Martin Monroe (Webster, NY)

    2001-01-01

    A fuel cell system including a dry compressor for pressurizing air supplied to the cathode side of the fuel cell. An injector sprays a controlled amount of water on to the compressor's rotor(s) to improve the energy efficiency of the compressor. The amount of water sprayed out the rotor(s) is controlled relative to the mass flow rate of air inputted to the compressor.

  16. Water Resources Milind Sohoni

    E-Print Network [OSTI]

    Sohoni, Milind

    TD 603 Water Resources Milind Sohoni www.cse.iitb.ac.in/sohoni/ Lecture 2: Water cycle, stocks and flows () July 28, 2013 1 / 30 #12;The basic movement of water source: USGS. () July 28, 2013 2 / 30 #12, humidity and air flow. Formation of liquid-water in the Atmosphere-Cloud-Formation Coming Down Rain

  17. A study on the flow of molten iron in the hearth of blast furnace

    SciTech Connect (OSTI)

    Suh, Y.K.; Lee, Y.J.; Baik, C.Y. [Pohang Iron and Steel Co., Ltd. (Korea, Republic of). Technical Research Labs.

    1996-12-31

    The flow of molten iron in the hearth of blast furnace was investigated by using a water model test and a numerical simulation. The water model apparatus was set up in order to evaluate the effects of coke size, coke bed structure, drain rate, and coke free space on the fluidity of molten iron through measurement of residence time and visualization of flow pattern. In addition, the flow was calculated by solving momentum equation in porous media using finite element method. The residence time increased with the coke size decrease, but decreased with the drain rate increase. If small coke was placed in the center of deadman, peripheral flow was enhanced. The flow path was changed due to the coke free space.

  18. An ECT/ERT dual-modality sensor for oil-water two-phase flow measurement

    SciTech Connect (OSTI)

    Wang, Pitao; Wang, Huaxiang; Sun, Benyuan; Cui, Ziqiang; Huang, Wenrui

    2014-04-11

    This paper presents a new sensor for ECT/ERT dual-modality system which can simultaneously obtain the permittivity and conductivity of the materials in the pipeline. Quasi-static electromagnetic fields are produced by the inner electrodes array sensor of electrical capacitance tomography (ECT) system. The results of simulation show that the data of permittivity and conductivity can be simultaneously obtained from the same measurement electrode and the fusion of two kinds of data may improve the quality of the reconstructed images. For uniform oil-water mixtures, the performance of designed dual-modality sensor for measuring the various oil fractions has been tested on representative data and the results of experiments show that the designed sensor broadens the measurement range compared to single modality.

  19. Electrokinetic Power Generation from Liquid Water Microjets

    E-Print Network [OSTI]

    Duffin, Andrew M.

    2008-01-01

    changing the volumetric flow rate at the pump (velocity (m/pressure and volumetric flow rate from the pump are also

  20. Random excitation forces in tube bundles subjected to two-phase cross-flow

    SciTech Connect (OSTI)

    Taylor, C.E.; Pettigrew, M.J. [AECL Research, Chalk River, Ontario (Canada). Chalk River Labs.; Currie, I.G. [Univ. of Toronto, Ontario (Canada). Dept. of Mechanical Engineering

    1996-08-01

    Data from two experimental programs have been analyzed to determine the characteristics of the random excitation forces associated with two-phase cross-flow in tube bundles. Large-scale air-water flow loops in France and Canada were used to generate the data. Tests were carried out on cantilevered, clamped-pinned, and clamped-clamped tubes in normal-square, parallel-triangular, and normal-triangular configurations. Either strain gages or force transducers were used to measure the vibration response of a centrally located tube as the tue array was subjected to a wide range of void fractions and flow rates. Power spectra were analyzed to determine the effect of parameters such as tube diameter, frequency, flow rate, void fraction, and flow regime on the random excitation forces. Normalized expressions for the excitation force power spectra were found to be flow-regime dependent. In the churn flow regime, flow rate and void fraction had very little effect on the magnitude of the excitation forces. In the bubble-plug flow regime, the excitation forces increased rapidly with flow rate and void fraction.

  1. Siting algae cultivation facilities for biofuel production in the United States: trade-offs between growth rate, site constructability, water availability, and infrastructure

    SciTech Connect (OSTI)

    Venteris, Erik R.; McBride, Robert; Coleman, Andre M.; Skaggs, Richard; Wigmosta, Mark S.

    2014-02-21

    Locating sites for new algae cultivation facilities is a complex task. The climate must support high growth rates, and cultivation ponds require appropriate land and water resources as well as key utility and transportation infrastructure. We employ our spatiotemporal Biomass Assessment Tool (BAT) to select promising locations based on the open-pond cultivation of Arthrospira sp. and a strain of the order Desmidiales. 64,000 potential sites across the southern United States were evaluated. We progressively apply a range of screening criteria and track their impact on the number of selected sites, geographic location, and biomass productivity. Both strains demonstrate maximum productivity along the Gulf of Mexico coast, with the highest values on the Florida peninsula. In contrast, sites meeting all selection criteria for Arthrospira were located along the southern coast of Texas and for Desmidiales were located in Louisiana and southern Arkansas. Site selection was driven mainly by the lack of oil pipeline access in Florida and elevated groundwater salinity in southern Texas. The requirement for low salinity freshwater (<400 mg L-1) constrained Desmidiales locations; siting flexibility is greater for salt-tolerant species such as Arthrospira. Combined siting factors can result in significant departures from regions of maximum productivity but are within the expected range of site-specific process improvements.

  2. Computeer-based decision support tools for evaluation of actions affecting flow and water quality in the San Joaquin Basin

    SciTech Connect (OSTI)

    Quinn, N.W.T.

    1993-01-01

    This document is a preliminary effort to draw together some of the important simulation models that are available to Reclamation or that have been developed by Reclamation since 1987. This document has also attempted to lay out a framework by which these models might be used both for the purposes for which they were originally intended and to support the analysis of other issues that relate to the hydrology and to salt and water quality management within the San Joaquin Valley. To be successful as components of a larger Decision Support System the models should to be linked together using custom designed interfaces that permit data sharing between models and that are easy to use. Several initiatives are currently underway within Reclamation to develop GIS - based and graphics - based decision support systems to improve the general level of understanding of the models currently in use, to standardize the methodology used in making planning and operations studies and to permit improved data analysis, interpretation and display. The decision support systems should allow greater participation in the planning process, allow the analysis of innovative actions that are currently difficult to study with present models and should lead to better integrated and more comprehensive plans and policy decisions in future years.

  3. Plugging Abandoned Water Wells 

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    2002-02-28

    is abandoned without proper plugging, upward flow of salty water from the deeper aquifer may cause contamination of the shallow, fresh water aquifer. Also, any pollu- tants that occur in one zone can migrate to another zone through a well. Unplugged abandoned... wells may deplete pres- sure within an aquifer. Pressure in artesian aquifers decreases as water discharges at land surface or to less pressurized aquifers. Eventually a drop in pres- sure causes flowing wells to stop flowing and the water level...

  4. Cavitation on a modern ship propeller.This photograph was taken by Mark Duttweiler (PhD '01) in Caltech's Mechanical Engineering, Low Turbulence Water Tunnel. The flow is from right to left. Enter the second issue of ENGenious.

    E-Print Network [OSTI]

    Haile, Sossina M.

    ) in Caltech's Mechanical Engineering, Low Turbulence Water Tunnel. The flow is from right to left. #12;4 5 of Engineering and Applied Science itself is ever evolving--a collection of exceptional people doing exceptional of Engineering and Applied Science. Finally, before you read on, I would like to take this opportunity to thank

  5. Recovery of Water from Boiler Flue Gas

    SciTech Connect (OSTI)

    Edward Levy; Harun Bilirgen; Kwangkook Jeong; Michael Kessen; Christopher Samuelson; Christopher Whitcombe

    2008-09-30

    This project dealt with use of condensing heat exchangers to recover water vapor from flue gas at coal-fired power plants. Pilot-scale heat transfer tests were performed to determine the relationship between flue gas moisture concentration, heat exchanger design and operating conditions, and water vapor condensation rate. The tests also determined the extent to which the condensation processes for water and acid vapors in flue gas can be made to occur separately in different heat transfer sections. The results showed flue gas water vapor condensed in the low temperature region of the heat exchanger system, with water capture efficiencies depending strongly on flue gas moisture content, cooling water inlet temperature, heat exchanger design and flue gas and cooling water flow rates. Sulfuric acid vapor condensed in both the high temperature and low temperature regions of the heat transfer apparatus, while hydrochloric and nitric acid vapors condensed with the water vapor in the low temperature region. Measurements made of flue gas mercury concentrations upstream and downstream of the heat exchangers showed a significant reduction in flue gas mercury concentration within the heat exchangers. A theoretical heat and mass transfer model was developed for predicting rates of heat transfer and water vapor condensation and comparisons were made with pilot scale measurements. Analyses were also carried out to estimate how much flue gas moisture it would be practical to recover from boiler flue gas and the magnitude of the heat rate improvements which could be made by recovering sensible and latent heat from flue gas.

  6. Interfacial colloidal monolayers under steady shear: structure and flow profiles

    E-Print Network [OSTI]

    Ivo Buttinoni; Zachary A. Zell; Todd M. Squires; Lucio Isa

    2015-09-11

    We study the coupling between the structural dynamics and rheological response of charged colloidal monolayers at water/oil interfaces, driven into steady shear by a microdisk rotating at a controlled angular velocity. The flow causes particles to layer into rotating concentric rings linked to the local, position-dependent shear rate, which triggers two distinct dynamical regimes: particles move continuously "Flowing") close to the microdisk, or exhibit intermittent "Hopping" between local energy minima farther away. The shear-rate dependent surface viscosity of a monolayer can be extracted from an interfacial stress balance, giving "macroscopic" flow curves whose behavior corresponds to the distinct microscopic regimes of particle motion. Hopping Regions correspond to a surface yield stress $\\eta \\sim \\tau_S^Y \\dot{\\gamma}^{-1}$, whereas Flowing Regions exhibit surface viscosities with power-law shear-thinning characteristics.

  7. Interfacial colloidal monolayers under steady shear: structure and flow profiles

    E-Print Network [OSTI]

    Ivo Buttinoni; Zachary A. Zell; Todd M. Squires; Lucio Isa

    2015-04-01

    We study the coupling between the structural dynamics and rheological response of charged colloidal monolayers at water/oil interfaces, driven into steady shear by a microdisk rotating at a controlled angular velocity. The flow causes particles to layer into rotating concentric rings linked to the local, position-dependent shear rate, which triggers two distinct dynamical regimes: particles move continuously "Flowing") close to the microdisk, or exhibit intermittent "Hopping" between local energy minima farther away. The shear-rate dependent surface viscosity of a monolayer can be extracted from an interfacial stress balance, giving "macroscopic" flow curves whose behavior corresponds to the distinct microscopic regimes of particle motion. Hopping Regions correspond to a surface yield stress $\\eta \\sim \\tau_S^Y \\dot{\\gamma}^{-1}$, whereas Flowing Regions exhibit surface viscosities with power-law shear-thinning characteristics.

  8. Department of Mathematics and Statistics Colloquium Modeling Geophysical Fluid Flows

    E-Print Network [OSTI]

    Arnold, Elizabeth A.

    , caves, sinkholes, fissures, etc. Because of this, water can flow through conduits or pipes in addition

  9. Water Heating | Department of Energy

    Energy Savers [EERE]

    Water Heating Water Heating September 2, 2015 - 11:07am Addthis Low-flow fixtures will help you reduce your hot water use and save money on your water heating bills. | Photo...

  10. Contact mechanics of and Reynolds flow through saddle points: On the coalescence of contact patches and the leakage rate through near-critical constrictions

    E-Print Network [OSTI]

    Wolf B. Dapp; Martin H. Müser

    2015-01-26

    We study numerically local models for the mechanical contact between two solids with rough surfaces. When the solids softly touch either through adhesion or by a small normal load $L$, contact only forms at isolated patches and fluids can pass through the interface. When the load surpasses a threshold value, $L_c$, adjacent patches coalesce at a critical constriction, i.e., near points where the interfacial separation between the undeformed surfaces forms a saddle point. This process is continuous without adhesion and the interfacial separation near percolation is fully defined by scaling factors and the sign of $L_c-L$. The scaling factors lead to a Reynolds flow resistance which diverges as $(L_c-L)^\\beta$ with $\\beta = 3.45$. Contact merging and destruction near saddle points becomes discontinuous when either short-range adhesion or specific short-range repulsion are added to the hard-wall repulsion. These results imply that coalescence and break-up of contact patches can contribute to Coulomb friction and contact aging.

  11. A quantitative application of the thermoelectric method for measuring water uptake by cotton plants 

    E-Print Network [OSTI]

    Naghshineh-Pour, Bahman

    1965-01-01

    they measured sap veloc- ties in intact plants with a minimum of injury (8). Dixon (9) measured flow rates in a branch of a young ash tree by using a thermocouple arrangement for detecting heat f'low. His results indicated mass flow in the stem both upward... oxy- gen and carbon dioxide levels within the soil could be detected. The thermoelectric method is based on the assumption that since Personal Communication. most of the water absorbed by plants is transpired, the rate of sap flow in the stem is a...

  12. Performance evaluation of three infiltration models under a surge flow irrigation regime 

    E-Print Network [OSTI]

    Benham, Brian Leslie

    1990-01-01

    ). They described the rate of advance with: Tx 88 QTx =CX + Z(T?-T ) ~ dTs 0 (5) where: the flow rate (L /T), 3 the average cross-sectional area of flow (L ), 2 the distance along the furrow (L), 13 Z (T?- Ts) = the cumulative infiltration per unit...), and S = the distance that water had advanced at a prior time Ts (L). Note that X is always greater than S, and Tx is always greater than Ts. The term (QTx) in eqn. (5) represents the total volume of water applied to the furrow at time T?, the term (CX) represents...

  13. Effect of temperature, WPS (water-phase salt) and phenolic contents on4 Listeria monocytogenes growth rates on cold-smoked salmon and evaluation5

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 2 3 Effect of temperature, WPS (water-phase salt) and phenolic contents on4 Listeria models, taking into account the effects of temperature, water24 phase salt content, phenolic content

  14. Productivity & Energy Flow

    E-Print Network [OSTI]

    Mitchell, Randall J.

    1 Productivity & Energy Flow Ecosystem approach, focuses: on flow of energy, water, and nutrients (capture) of energy by autotrophs Gross (total) Net (total ­ costs) Secondary productivity- capture of energy by herbivores http://sciencebitz.com/?page_id=204 What Controls the Primary Productivity

  15. Computerized tomographic analysis of fluid flow in fractured tuff

    SciTech Connect (OSTI)

    Felice, C.W.; Sharer, J.C.; Springer, E.P.

    1992-05-01

    The purpose of this summary is to demonstrate the usefulness of X-ray computerized tomography to observe fluid flow down a fracture and rock matrix imbibition in a sample of Bandelier tuff. This was accomplished by using a tuff sample 152.4 mm long and 50.8 mm in diameter. A longitudinal fracture was created by cutting the core with a wire saw. The fractured piece was then coupled to its adjacent section to that the fracture was not expected. Water was injected into a dry sample at five flow rates and CT scanning performed at set intervals during the flow. Cross sectional images and longitudinal reconstructions were built and saturation profiles calculated for the sample at each time interval at each flow rate. The results showed that for the test conditions, the fracture was not a primary pathway of fluid flow down the sample. At a slow fluid injection rate into the dry sample, the fluid was imbibed into the rock uniformly down the length of the core. With increasing injection rates, the flow remained uniform over the core cross section through complete saturation.

  16. Computerized tomographic analysis of fluid flow in fractured tuff

    SciTech Connect (OSTI)

    Felice, C.W.; Sharer, J.C. ); Springer, E.P. )

    1992-01-01

    The purpose of this summary is to demonstrate the usefulness of X-ray computerized tomography to observe fluid flow down a fracture and rock matrix imbibition in a sample of Bandelier tuff. This was accomplished by using a tuff sample 152.4 mm long and 50.8 mm in diameter. A longitudinal fracture was created by cutting the core with a wire saw. The fractured piece was then coupled to its adjacent section to that the fracture was not expected. Water was injected into a dry sample at five flow rates and CT scanning performed at set intervals during the flow. Cross sectional images and longitudinal reconstructions were built and saturation profiles calculated for the sample at each time interval at each flow rate. The results showed that for the test conditions, the fracture was not a primary pathway of fluid flow down the sample. At a slow fluid injection rate into the dry sample, the fluid was imbibed into the rock uniformly down the length of the core. With increasing injection rates, the flow remained uniform over the core cross section through complete saturation.

  17. Computerized Waters 

    E-Print Network [OSTI]

    Wythe, Kathy

    2006-01-01

    supply diversions, several hydroelectric plants and numerous environ- mental instream flow requirements. Each of these active permits is included in the datasets. Besides the commission using the WAM/WRAP modeling system in water rights permiting... actions be consistent with relevant regional plans. River authorities, water districts and other water management organizations are beginning to use the WRAP model in operational planning studies to optimize operations of their facilities...

  18. gtp_flow_power_estimator.xlsx

    Broader source: Energy.gov [DOE]

    This simple spreadsheet model estimates either the flow rate required to produce a specified level of power output, or the power output that can be produced from a specified flow rate.

  19. Groundwater and Terrestrial Water Storage, 

    E-Print Network [OSTI]

    Rodell, M; Chambers, D P; Famiglietti, J S

    2011-01-01

    T. E. Reilly, 2002: Flow and storage in groundwater systems.Estimating ground water storage changes in the Mississippistorage..

  20. Lithospheric Heat Flow and Dynamics! obvious signals!

    E-Print Network [OSTI]

    Sandwell, David T.

    · $d( ) heat = flow scalar subsidence rate constant X #12;heat flow related to subsidence rate (qb ! quLithospheric Heat Flow and Dynamics! ! · obvious signals! - heat flow, depth, and geoid height?! - are transform faults thermal contraction cracks?! #12;global heat budget! 7.5 TW 44 TW 25-15 TW 3-13 TW

  1. Elbow mass flow meter

    DOE Patents [OSTI]

    McFarland, A.R.; Rodgers, J.C.; Ortiz, C.A.; Nelson, D.C.

    1994-08-16

    The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity. 3 figs.

  2. Anisotropic flow

    E-Print Network [OSTI]

    S. A. Voloshin

    2002-11-20

    Recent experimental results on directed and elliptic flow, theoretical developments, and new techniques for anisotropic flow analysis are reviewed.

  3. Multifunctional Riverscapes: Stream restoration, Capability Brown’s water features, and artificial whitewater

    E-Print Network [OSTI]

    Podolak, Kristen

    2012-01-01

    courses all have filters and water treatment since they arebed habitats, and filter the water flowing into the lakeeffective filter, which would reduce the flow of water into

  4. Multifunctional Riverscapes: Stream restoration, Capability Brown's water features, and artificial whitewater

    E-Print Network [OSTI]

    Podolak, Kristen

    2012-01-01

    courses all have filters and water treatment since they arebed habitats, and filter the water flowing into the lakeeffective filter, which would reduce the flow of water into

  5. Critical heat-flux experiments under low-flow conditions in a vertical annulus. [PWR; BWR; LMFBR

    SciTech Connect (OSTI)

    Mishima, K.; Ishii, M.

    1982-03-01

    An experimental study was performed on critical heat flux (CHF) at low flow conditions for low pressure steam-water upward flow in an annulus. The test section was transparent, therefore, visual observations of dryout as well as various instrumentations were made. The data indicated that a premature CHF occurred due to flow regime transition from churn-turbulent to annular flow. It is shown that the critical heat flux observed in the experiment is essentially similar to a flooding-limited burnout and the critical heat flux can be well reproduced by a nondimensional correlation derived from the previously obtained criterion for flow regime transition. The observed CHF values are much smaller than the standard high quality CHF criteria at low flow, corresponding to the annular flow film dryout. This result is very significant, because the coolability of a heater surface at low flow rates can be drastically reduced by the occurrence of this mode of CHF.

  6. A Method to Determine the Optimal Tank Size for a Chilled Water Storage System Under a Time-of-Use Electricity Rate Structure 

    E-Print Network [OSTI]

    Zhang, Z.; Turner, W. D.; Chen, Q.; Xu, C.; Deng, S.

    2010-01-01

    In the downtown area of Austin, it is planned to build a new naturally stratified chilled water storage tank and share it among four separated chilled water plants. An underground piping system is to be established to connect these four plants...

  7. Analytical Investigation by Using the Two-fluid-model to Study the Interfacial Behavior of Air-water Horizontal Stratified Flow

    E-Print Network [OSTI]

    Kuntoro, Hadiyan Yusuf; Indarto,

    2015-01-01

    In the chemical, petroleum and nuclear industries, pipelines are often used to transport fluids from one process site to another one. The understanding of the fluids behavior inside the pipelines is the most important consideration for the engineers and scientists. From the previous studies, there are several two-phase flow patterns in horizontal pipe. One of them is stratified flow pattern, which is characterized by the liquid flowing along the bottom of the pipe and the gas moving above it cocurrently. Another flow patterns are slug and plug flow patterns. This kind of flow triggers the damage in pipelines, such as corrosion, abrasion, and blasting pipe. Therefore, slug and plug flow patterns are undesirable in pipelines, and the flow is maintained at the stratified flow condition for safety reason. In this paper, the analytical-based study on the experiment of the stratified flow pattern in a 26 mm i.d. horizontal pipe is presented. The experiment is performed to develop a high quality database of the stra...

  8. Flow visualization study of inverted U-bend two-phase flow

    SciTech Connect (OSTI)

    Ishii, M.; Kim, S.B.; Lee, R.

    1986-12-01

    A hot-leg U-bend experiment was performed. The experimental condition simulated the two-phase flow in a B and W primary loop during a small break loss of coolant accident or during some other abnormal transients. The loop design was based on the scaling criteria developed previously and the loop was operated either in a natural circulation mode or in a forced circulation mode using nitrogen gas and water. The two-phase flow regimes at the hot-leg were identified on the basis of visual observation. The phase separation at the top of the inverted U-bend was observed at low gas flow rate. The void fractions were measured using differential pressure transducers and compared with the prediction from the drift-flux model. The natural circulation flow interruption occurred in two different modes, namely, quasi-periodic and semi-permanent modes. This phenomenon is mainly dependent on the difference in the hydrostatic head in the riser and downcomer, and the flow regime at hot-leg. Besides this flow interruption phenomenon, dynamic flow instabilities of considerable amplitudes have been observed.

  9. Experimental studies on heat transfer and friction factor characteristics of Al{sub 2}O{sub 3}/water nanofluid in a circular pipe under laminar flow with wire coil inserts

    SciTech Connect (OSTI)

    Chandrasekar, M.; Suresh, S. [Department of Mechanical Engineering, National Institute of Technology, Tiruchirappalli 620015 (India); Chandra Bose, A. [Nanomaterials Laboratory, Department of Physics, National Institute of Technology, Tiruchirappalli 620015 (India)

    2010-02-15

    In this paper, fully developed laminar flow convective heat transfer and friction factor characteristics of Al{sub 2}O{sub 3}/water nanofluid flowing through a uniformly heated horizontal tube with and without wire coil inserts is presented. For this purpose, Al{sub 2}O{sub 3} nanoparticles of 43 nm size were synthesized, characterized and dispersed in distilled water to form stable suspension containing 0.1% volume concentration of nanoparticles. The Nusselt number in the fully developed region were measured and found to increase by 12.24% at Re = 2275 for plain tube with nanofluid compared to distilled water. Two wire coil inserts made of stainless steel with pitch ratios 2 and 3 were used which increased the Nusselt numbers by 15.91% and 21.53% respectively at Re = 2275 with nanofluid compared to distilled water. The better heat transfer performance of nanofluid with wire coil insert is attributed to the effects of dispersion or back-mixing which flattens the temperature distribution and make the temperature gradient between the fluid and wall steeper. The measured pressure loss with the use of nanofluids is almost equal to that of the distilled water. The empirical correlations developed for Nusselt number and friction factor in terms of Reynolds/Peclet number, pitch ratio and volume concentration fits with the experimental data within {+-}15%. (author)

  10. A saturated zone site-scale flow model for Yucca mountain

    SciTech Connect (OSTI)

    Eddebbarh, Al Aziz

    2008-01-01

    A saturated zone site-scale flow model (YMSZFM) was developed for licensing requirements for the Yucca Mountain nuclear waste repository to incorporate recent data and analyses including recent stratigraphic and water-level data from Nye County wells, single-and multiple-well hydraulic testing data, and recent hydrochemistry data. Analyses include use of data from the 2004 transient Death Valley Regional (ground-water) Flow System (DVRFS) model, the 2003 unsaturated zone flow model, and the latest hydrogeologic framework model (HFM). This model includes: (1) the latest understanding of SZ flow, (2) enhanced model validation and uncertainty analyses, (3) improved locations and definitions of fault zones, (4) refined grid resolution (500-to 250-m grid spacing), and (5) use of new data. The flow model was completed using the three-dimensional, Finite-Element Heat and Mass Transfer computer code (FEHM). The SZ site-scale flow model was calibrated with the commercial parameter estimation code, PEST to achieve a minimum difference between observed water levels and predicted water levels, and also between volumetric/mass flow rates along specific boundary segments as supplied by the DVRFS. A total of 161 water level and head measurements with varied weights were used for calibration. A comparison between measured water-level data and the potentiometric surface yielded an RMSE of 20.7 m (weighted RMSE of 8.8 m). The calibrated model was used to generate flow paths and specific discharge predictions. Model confidence was built by comparing: (l) calculated to observed hydraulic heads, and (2) calibrated to measured permeabilities (and therefore specific discharge). In addition, flowpaths emanating from below the repository footprint are consistent with those inferred both from gradients of measured head and from independent water-chemistry data. Uncertainties in the SZ site-scale flow model were quantified because all uncertainty contributes to inaccuracy in system representation and response. Null space and solution space uncertainties were determined.

  11. Rate Schedules

    Broader source: Energy.gov [DOE]

    One of the major responsibilities of Southeastern is to design, formulate, and justify rate schedules. Repayment studies prepared by the agency determine revenue requirements and appropriate rate...

  12. Chemical Treatment Fosters Zero Discharge by Making Cooling Water Reusable 

    E-Print Network [OSTI]

    Boffardi, B. P.

    1996-01-01

    controlled by adding sulfuric acid to convert the scale to calcium sulfate, which is more soluble. Because fluctuations in the acid feed rate can produce variability in pH levels, which can accelerate corrosion, close control of feed is essential. More... blowdown. Foulants Foulants are water-borne deposits that can settle on heat-transfer equipment and interfere with cooling water flow, as well as stimulate corrosion. They include such diverse substances as particulate matter scrubbed from air...

  13. Single- and Two-Phase Diversion Cross-Flows Between Triangle Tight Lattice Rod Bundle Subchannels - Data on Flow Resistance and Interfacial Friction Coefficients for the Cross-Flow

    SciTech Connect (OSTI)

    Tatsuya Higuchi; Akimaro Kawahara; Michio Sadatomi; Hiroyuki Kudo [Kumamoto University, 39-1, Kurokami 2-chome, Kumamoto 860-8555 (Japan)

    2006-07-01

    Single- and two-phase diversion cross-flows arising from the pressure difference between tight lattice subchannels are our concern in this study. In order to obtain a correlation of the diversion cross-flow, we conducted adiabatic experiments using a vertical multiple-channel with two subchannels simplifying the triangle tight lattice rod bundle for air-water flows at room temperature and atmospheric pressure. In the experiments, data were obtained on the axial variations in the pressure difference between the subchannels, the ratio of flow rate in one subchannel to the whole channel, the void fraction in each subchannel for slug-churn and annular flows in two-phase flow case. These data were analyzed by use of a lateral momentum equation based on a two-fluid model to determine both the cross-flow resistance coefficient between liquid phase and channel wall and the gas-liquid interfacial friction coefficient. The resulting coefficients have been correlated in a way similar to that developed for square lattice subchannel case by Kano et al. (2002); the cross-flow resistance coefficient data can be well correlated with a ratio of the lateral velocity due to the cross-flow to the axial one irrespective of single- and two-phase flows; the interfacial friction coefficient data were well correlated with a Reynolds number, which is based on the relative velocity between gas and liquid cross-flows as the characteristic velocity. (authors)

  14. Experimental Measurement of Multiphase Flow and CFD Erosion Modeling in Electrical Submersible Pumps 

    E-Print Network [OSTI]

    Pirouzpanah, Sahand

    2015-01-05

    on the performance of a 3-stage MVP along with detail study on the performance of two stages of the pump are performed. Overall pump performance for different operating conditions such as different inlet pressure, inlet gas volume fraction, water flow rate...

  15. Chiller Start/Stop Optimization for a Campus-wide Chilled Water System with a Thermal Storage Tank Under a Four-Period Electricity Rate Schedule 

    E-Print Network [OSTI]

    Zhou, J.; Wei, G.; Turner, W. D.; Deng, S.; Claridge, D.; Contreras, O.

    2002-01-01

    be expected, the complication in the rate structure also requires more involved control over the tank charging and discharging processes. A chiller start-stop optimization program has been developed and implemented into the Energy Management and Control System...

  16. 8/9/12 Global water sustainability flows through natural and human challenges 1/2www.sciencedaily.com/releases/2012/08/120809141621.htm

    E-Print Network [OSTI]

    . Authorized service center. www.ipepumps.com Water Quality Instruments -- Crude oil, Optical DO, pH, cond Us! EasyWater.com/NoSaltConditioner CR Series Vertical Pumps -- Large stock of pumps and parts

  17. Collisions of particles advected in random flows

    E-Print Network [OSTI]

    K. Gustavsson; B. Mehlig; M. Wilkinson

    2008-01-18

    We consider collisions of particles advected in a fluid. As already pointed out by Smoluchowski [Z. f. physik. Chemie XCII, 129-168, (1917)], macroscopic motion of the fluid can significantly enhance the frequency of collisions between the suspended particles. This effect was invoked by Saffman and Turner [J. Fluid Mech. 1, 16-30, (1956)] to estimate collision rates of small water droplets in turbulent rain clouds, the macroscopic motion being caused by turbulence. Here we show that the Saffman-Turner theory is unsatisfactory because it describes an initial transient only. The reason for this failure is that the local flow in the vicinity of a particle is treated as if it were a steady hyperbolic flow, whereas in reality it must fluctuate. We derive exact expressions for the steady-state collision rate for particles suspended in rapidly fluctuating random flows and compute how this steady state is approached. For incompressible flows, the Saffman-Turner expression is an upper bound.

  18. T2Well/ECO2N Version 1.0: Multiphase and Non-Isothermal Model for Coupled Wellbore-Reservoir Flow of Carbon Dioxide and Variable Salinity Water

    SciTech Connect (OSTI)

    Pan, L.; Oldenburg, C.M.; Wu, Y.-S.; Pruess, K.

    2011-02-14

    At its most basic level, the injection of CO{sub 2} into geologic CO{sub 2} storage sites involves a system comprising the wellbore and the target reservoir. The wellbore is the only conduit available to emplace CO{sub 2} into reservoirs for long-term storage. At the same time, wellbores in general have been identified as the most likely conduit for CO{sub 2} and brine leakage from geologic carbon sequestration (GCS) sites, especially those in sedimentary basins with historical hydrocarbon production. We have developed a coupled wellbore and reservoir model for simulating the dynamics of CO{sub 2} injection and leakage through wellbores. The model describes the following processes: (1) upward or downward wellbore flow of CO{sub 2} and variable salinity water with transition from supercritical to gaseous CO{sub 2} including Joule-Thomson cooling, (2) exsolution of CO{sub 2} from the aqueous phase as pressure drops, and (3) cross flow into or interaction with layers of surrounding rock (reservoirs). We use the Drift-Flux Model and related conservation equations for describing transient two-phase non-isothermal wellbore flow of CO{sub 2}-water mixtures under different flow regimes and interacting with surrounding rock. The mass and thermal energy balance equations are solved numerically by a finite difference scheme with wellbore heat transmission to the surrounding rock handled either semi-analytically or numerically. The momentum balance equation for the flow in the wellbore is solved numerically with a semi-explicit scheme. This manual provides instructions for compilation and use of the new model, and presents some example problems to demonstrate its use.

  19. Two-phase flow studies

    SciTech Connect (OSTI)

    Hanold, R.J.

    1983-12-01

    The two-phase flow program is directed at understanding the hydrodynamics of two-phase flows. The two-phase flow regime is characterized by a series of flow patterns that are designated as bubble, slug, churn, and annular flow. Churn flow has received very little scientific attention. This lack of attention cannot be justified because calculations predict that the churn flow pattern will exist over a substantial portion of the two-phase flow zone in producing geothermal wells. The University of Houston is experimentally investigating the dynamics of churn flow and is measuring the holdup over the full range of flow space for which churn flow exists. These experiments are being conducted in an air/water vertical two-phase flow loop. Brown University has constructed and is operating a unique two-phase flow research facility specifically designed to address flow problems of relevance to the geothermal industry. An important feature of the facility is that it is dedicated to two-phase flow of a single substance (including evaporation and condensation) as opposed to the case of a two-component two-phase flow. This facility can be operated with horizontal or vertical test sections of constant diameter or with step changes in diameter to simulate a geothermal well profile.

  20. Trip Report-Produced-Water Field Testing

    SciTech Connect (OSTI)

    Sullivan, Enid J.

    2012-05-25

    Los Alamos National Laboratory (LANL) conducted field testing of a produced-water pretreatment apparatus with assistance from faculty at the Texas A&M University (TAMU) protein separation sciences laboratory located on the TAMU main campus. The following report details all of the logistics surrounding the testing. The purpose of the test was to use a new, commercially-available filter media housing containing modified zeolite (surfactant-modified zeolite or SMZ) porous medium for use in pretreatment of oil and gas produced water (PW) and frac-flowback waters. The SMZ was tested previously in October, 2010 in a lab-constructed configuration ('old multicolumn system'), and performed well for removal of benzene, toluene, ethylbenzene, and xylenes (BTEX) from PW. However, a less-expensive, modular configuration is needed for field use. A modular system will allow the field operator to add or subtract SMZ filters as needed to accommodate site specific conditions, and to swap out used filters easily in a multi-unit system. This test demonstrated the use of a commercial filter housing with a simple flow modification and packed with SMZ for removing BTEX from a PW source in College Station, Texas. The system will be tested in June 2012 at a field site in Pennsylvania for treating frac-flowback waters. The goals of this test are: (1) to determine sorption efficiency of BTEX in the new configuration; and (2) to observe the range of flow rates, backpressures, and total volume treated at a given flow rate.

  1. Water-heating dehumidifier

    DOE Patents [OSTI]

    Tomlinson, John J. (Knoxville, TN)

    2006-04-18

    A water-heating dehumidifier includes a refrigerant loop including a compressor, at least one condenser, an expansion device and an evaporator including an evaporator fan. The condenser includes a water inlet and a water outlet for flowing water therethrough or proximate thereto, or is affixed to the tank or immersed into the tank to effect water heating without flowing water. The immersed condenser design includes a self-insulated capillary tube expansion device for simplicity and high efficiency. In a water heating mode air is drawn by the evaporator fan across the evaporator to produce cooled and dehumidified air and heat taken from the air is absorbed by the refrigerant at the evaporator and is pumped to the condenser, where water is heated. When the tank of water heater is full of hot water or a humidistat set point is reached, the water-heating dehumidifier can switch to run as a dehumidifier.

  2. Estimated recharge rates at the Hanford Site

    SciTech Connect (OSTI)

    Fayer, M.J.; Walters, T.B.

    1995-02-01

    The Ground-Water Surveillance Project monitors the distribution of contaminants in ground water at the Hanford Site for the U.S. Department of Energy. A subtask called {open_quotes}Water Budget at Hanford{close_quotes} was initiated in FY 1994. The objective of this subtask was to produce a defensible map of estimated recharge rates across the Hanford Site. Methods that have been used to estimate recharge rates at the Hanford Site include measurements (of drainage, water contents, and tracers) and computer modeling. For the simulations of 12 soil-vegetation combinations, the annual rates varied from 0.05 mm/yr for the Ephrata sandy loam with bunchgrass to 85.2 mm/yr for the same soil without vegetation. Water content data from the Grass Site in the 300 Area indicated that annual rates varied from 3.0 to 143.5 mm/yr during an 8-year period. The annual volume of estimated recharge was calculated to be 8.47 {times} 10{sup 9} L for the potential future Hanford Site (i.e., the portion of the current Site bounded by Highway 240 and the Columbia River). This total volume is similar to earlier estimates of natural recharge and is 2 to 10x higher than estimates of runoff and ground-water flow from higher elevations. Not only is the volume of natural recharge significant in comparison to other ground-water inputs, the distribution of estimated recharge is highly skewed to the disturbed sandy soils (i.e., the 200 Areas, where most contaminants originate). The lack of good estimates of the means and variances of the supporting data (i.e., the soil map, the vegetation/land use map, the model parameters) translates into large uncertainties in the recharge estimates. When combined, the significant quantity of estimated recharge, its high sensitivity to disturbance, and the unquantified uncertainty of the data and model parameters suggest that the defensibility of the recharge estimates should be improved.

  3. Measurement of the Electron Neutrino Charged-current Interaction Rate on Water with the T2K ND280 pi-zero Detector

    E-Print Network [OSTI]

    T2K Collaboration; K. Abe; J. Adam; H. Aihara; C. Andreopoulos; S. Aoki; A. Ariga; S. Assylbekov; D. Autiero; M. Barbi; G. J. Barker; G. Barr; P. Bartet-Friburg; M. Bass; M. Batkiewicz; F. Bay; V. Berardi; B. E. Berger; S. Berkman; S. Bhadra; F. d. M. Blaszczyk; A. Blondel; S. Bolognesi; S. Bordoni; S. B. Boyd; D. Brailsford; A. Bravar; C. Bronner; N. Buchanan; R. G. Calland; J. Caravaca Rodríguez; S. L. Cartwright; R. Castillo; M. G. Catanesi; A. Cervera; D. Cherdack; N. Chikuma; G. Christodoulou; A. Clifton; J. Coleman; S. J. Coleman; G. Collazuol; K. Connolly; L. Cremonesi; A. Dabrowska; R. Das; S. Davis; P. de Perio; G. De Rosa; T. Dealtry; S. R. Dennis; C. Densham; D. Dewhurst; F. Di Lodovico; S. Di Luise; S. Dolan; O. Drapier; K. Duffy; J. Dumarchez; S. Dytman; M. Dziewiecki; S. Emery-Schrenk; A. Ereditato; L. Escudero; T. Feusels; A. J. Finch; G. A. Fiorentini; M. Friend; Y. Fujii; Y. Fukuda; A. P. Furmanski; V. Galymov; A. Garcia; S. Giffin; C. Giganti; K. Gilje; D. Goeldi; T. Golan; M. Gonin; N. Grant; D. Gudin; D. R. Hadley; L. Haegel; A. Haesler; M. D. Haigh; P. Hamilton; D. Hansen; T. Hara; M. Hartz; T. Hasegawa; N. C. Hastings; T. Hayashino; Y. Hayato; R. L. Helmer; M. Hierholzer; J. Hignight; A. Hillairet; A. Himmel; T. Hiraki; S. Hirota; J. Holeczek; S. Horikawa; F. Hosomi; K. Huang; A. K. Ichikawa; K. Ieki; M. Ieva; M. Ikeda; J. Imber; J. Insler; T. J. Irvine; T. Ishida; T. Ishii; E. Iwai; K. Iwamoto; K. Iyogi; A. Izmaylov; A. Jacob; B. Jamieson; M. Jiang; S. Johnson; J. H. Jo; P. Jonsson; C. K. Jung; M. Kabirnezhad; A. C. Kaboth; T. Kajita; H. Kakuno; J. Kameda; Y. Kanazawa; D. Karlen; I. Karpikov; T. Katori; E. Kearns; M. Khabibullin; A. Khotjantsev; D. Kielczewska; T. Kikawa; A. Kilinski; J. Kim; S. King; J. Kisiel; P. Kitching; T. Kobayashi; L. Koch; T. Koga; A. Kolaceke; A. Konaka; A. Kopylov; L. L. Kormos; A. Korzenev; Y. Koshio; W. Kropp; H. Kubo; Y. Kudenko; R. Kurjata; T. Kutter; J. Lagoda; I. Lamont; E. Larkin; M. Laveder; M. Lawe; M. Lazos; T. Lindner; C. Lister; R. P. Litchfield; A. Longhin; J. P. Lopez; L. Ludovici; L. Magaletti; K. Mahn; M. Malek; S. Manly; A. D. Marino; J. Marteau; J. F. Martin; P. Martins; S. Martynenko; T. Maruyama; V. Matveev; K. Mavrokoridis; E. Mazzucato; M. McCarthy; N. McCauley; K. S. McFarland; C. McGrew; A. Mefodiev; C. Metelko; M. Mezzetto; P. Mijakowski; C. A. Miller; A. Minamino; O. Mineev; S. Mine; A. Missert; M. Miura; S. Moriyama; Th. A. Mueller; A. Murakami; M. Murdoch; S. Murphy; J. Myslik; T. Nakadaira; M. Nakahata; K. G. Nakamura; K. Nakamura; S. Nakayama; T. Nakaya; K. Nakayoshi; C. Nantais; C. Nielsen; M. Nirkko; K. Nishikawa; Y. Nishimura; J. Nowak; H. M. O'Keeffe; R. Ohta; K. Okumura; T. Okusawa; W. Oryszczak; S. M. Oser; T. Ovsyannikova; R. A. Owen; Y. Oyama; V. Palladino; J. L. Palomino; V. Paolone; D. Payne; O. Perevozchikov; J. D. Perkin; Y. Petrov; L. Pickard; E. S. Pinzon Guerra; C. Pistillo; P. Plonski; E. Poplawska; B. Popov; M. Posiadala-Zezula; J. -M. Poutissou; R. Poutissou; P. Przewlocki; B. Quilain; E. Radicioni; P. N. Ratoff; M. Ravonel; M. A. M. Rayner; A. Redij; M. Reeves; E. Reinherz-Aronis; C. Riccio; P. A. Rodrigues; P. Rojas; E. Rondio; S. Roth; A. Rubbia; D. Ruterbories; A. Rychter; R. Sacco; K. Sakashita; F. Sánchez; F. Sato; E. Scantamburlo; K. Scholberg; S. Schoppmann; J. D. Schwehr; M. Scott; Y. Seiya; T. Sekiguchi; H. Sekiya; D. Sgalaberna; R. Shah; A. Shaikhiev; F. Shaker; D. Shaw; M. Shiozawa; S. Short; Y. Shustrov; P. Sinclair; B. Smith; M. Smy; J. T. Sobczyk; H. Sobel; M. Sorel; L. Southwell; P. Stamoulis; J. Steinmann; Y. Suda; A. Suzuki; K. Suzuki; S. Y. Suzuki; Y. Suzuki; R. Tacik; M. Tada; S. Takahashi; A. Takeda; Y. Takeuchi; H. K. Tanaka; H. A. Tanaka; M. M. Tanaka; D. Terhorst; R. Terri; L. F. Thompson; A. Thorley; S. Tobayama; W. Toki; T. Tomura; C. Touramanis; T. Tsukamoto; M. Tzanov; Y. Uchida; A. Vacheret; M. Vagins; G. Vasseur; T. Wachala; K. Wakamatsu; C. W. Walter; D. Wark; W. Warzycha; M. O. Wascko; A. Weber; R. Wendell; R. J. Wilkes; M. J. Wilking; C. Wilkinson; Z. Williamson; J. R. Wilson; R. J. Wilson; T. Wongjirad; Y. Yamada; K. Yamamoto; C. Yanagisawa; T. Yano; S. Yen; N. Yershov; M. Yokoyama; J. Yoo; K. Yoshida; T. Yuan; M. Yu; A. Zalewska; J. Zalipska; L. Zambelli; K. Zaremba; M. Ziembicki; E. D. Zimmerman; M. Zito; J. ?muda

    2015-05-19

    This paper presents a measurement of the charged current interaction rate of the electron neutrino beam component of the beam above $1.5$~GeV using the large fiducial mass of the T2K $\\pi^0$ detector. The predominant poriton of the $\

  4. Quantitative supersonic flow visualization by hydraulic analogy 

    E-Print Network [OSTI]

    Rani, Sarma Laxminarasimha

    1998-01-01

    The hydraulic analogy, which forms the basis for the phics. current investigation, can be used to study supersonic gas flows with great ease by means of a water table. As a result of the analogy, water heights in free surface water flow correspond...

  5. Performance mapping studies in Redox flow cells

    SciTech Connect (OSTI)

    Hoberecht, M.A.; Thaller, L.H.

    1981-09-01

    Pumping power requirements in any flow battery system constitute a direct parasitic energy loss. It is therefore useful to determine the practical lower limit for reactant flow rates. Through the use of a theoretical framework based on electrochemical first principles, two different experimental flow mapping techniques are developed to evaluate and compare electrodes as a function of flow rate. For the carbon felt electrodes presently used in NASA-Lewis Redox cells, a flow rate 1.5 times greater than the stoichiometric rate seems to be the required minimum.

  6. Electromagnetically Induced Flows Michiel de Reus

    E-Print Network [OSTI]

    Vuik, Kees

    Electromagnetically Induced Flows in Water Michiel de Reus 8 maart 2013 () Electromagnetically Conclusion and future research () Electromagnetically Induced Flows 2 / 56 #12;1 Introduction 2 Maxwell Navier Stokes equations 5 Simulations 6 Conclusion and future research () Electromagnetically Induced

  7. Water supply analysis for restoring the Colorado River Delta, Mexico

    E-Print Network [OSTI]

    Medellin-Azuara, Josue; Lund, Jay R.; Howitt, Richard E.

    2007-01-01

    to Pay for Additional Transboundary Water Flows from the US.2001). "Improving California Water Management: Optimizingloss functions to value urban water scarcity in California."

  8. UNDERSTANDING THE EFFECT OF DYNAMIC FEED CONDITIONS ON WATER RECOVERY FROM IC ENGINE EXHAUST BY CAPILLARY CONDENSATION WITH INORGANIC MEMBRANES

    SciTech Connect (OSTI)

    DeBusk, Melanie Moses [ORNL] [ORNL; Bischoff, Brian L [ORNL] [ORNL; Hunter, James A [ORNL] [ORNL; Klett, James William [ORNL] [ORNL; Nafziger, Eric J [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL

    2014-01-01

    An inorganic membrane water recovery concept is evaluated as a method to recovering water from the exhaust of an internal combustion engine. Integrating the system on-board a vehicle would create a self-sustaining water supply that would make engine water injection technologies consumer transparent . In laboratory experiments, water recovery from humidified air was measured to evaluate how different operating parameters affect the membrane system s efficiency. The observed impact of transmembrane pressure and gas flow rate suggest that gas residence time is more important than water flux through the membrane. Heat transfer modeling suggests that increasing membrane length can be used to improve efficiency and allow greater flow per membrane, an important parameter for practical applications where space is limited. The membrane water recovery concept was also experimentally validated by extracting water from diesel exhaust coming from a stationary generator. The insight afforded by these studies provides a basis for developing improved membrane designs that balance both efficiency and cost.

  9. Pilot Phase of a Field Study to Determine Waste of Water and Energy in Residential Hot-Water Distribution Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01

    Flow Sensor for potable water applications, Series VTY 10Metering Residential Hot Water by End-Use Development ofin a Typical Household Water System," Oak Ridge National

  10. A Water Conservation Scenario for the Residential and Industrial Sectors in California: Potential Saveings of Water and Related Energy

    E-Print Network [OSTI]

    Benenson, P.

    2010-01-01

    flow data for municipal waste water treatment facilities inBulletin 68-73: Inventory of Waste Water Productionand Waste Water Reclamation in California, 1973. Sacramento,

  11. Radial flow pulse jet mixer

    DOE Patents [OSTI]

    VanOsdol, John G.

    2013-06-25

    The disclosure provides a pulse jet mixing vessel for mixing a plurality of solid particles. The pulse jet mixing vessel is comprised of a sludge basin, a flow surface surrounding the sludge basin, and a downcoming flow annulus between the flow surface and an inner shroud. The pulse jet mixing vessel is additionally comprised of an upper vessel pressurization volume in fluid communication with the downcoming flow annulus, and an inner shroud surge volume separated from the downcoming flow annulus by the inner shroud. When the solid particles are resting on the sludge basin and a fluid such as water is atop the particles and extending into the downcoming flow annulus and the inner shroud surge volume, mixing occurs by pressurization of the upper vessel pressurization volume, generating an inward radial flow over the flow surface and an upwash jet at the center of the sludge basin.

  12. Experimental and numerical study of mixed convection with flow reversal in coaxial double-duct heat exchangers

    SciTech Connect (OSTI)

    Mare, Thierry; Voicu, Ionut; Miriel, Jacques [Laboratoire de Genie Civil et de Genie Mecanique (LGCGM), INSA de Rennes, IUT Saint Malo, 35043 Rennes (France); Galanis, Nicolas [Faculte de genie, Universite de Sherbrooke, Sherbrooke, QC (Canada); Sow, Ousmane [Laboratoire d'Energie Appliquee, Ecole superieure Polytechnique, Dakar (Senegal)

    2008-04-15

    Velocity vectors in a vertical coaxial double-duct heat exchanger for parallel ascending flow of water under conditions of laminar mixed convection have been determined experimentally using the particle image velocimetry technique. The measured velocity distributions for large annular flow rates, resulting in an essentially isothermal environment for the stream in the inner tube, are in very good agreement with corresponding numerical predictions. For flow rates of the same order of magnitude in the inner tube and the annulus, and corresponding temperature differences of about 20 C, experimental observations show that flow reversal occurs simultaneously in both streams over large axial distances for both heating and cooling of the flow in the inner tube. (author)

  13. A STUDY OF ATES THERMAL BEHAVIOR USING A STEADY FLOW MODEL

    E-Print Network [OSTI]

    Doughty, Christine

    2013-01-01

    Buoyancy flow and thermal stratification problems."a reference. to thermal stratification and water chemistry.

  14. On the relationship between water-flux and hydraulic gradient for unsaturated and saturated clay

    E-Print Network [OSTI]

    Liu, H.H.

    2014-01-01

    Threshold gradient for water flow in clay systems. Soil.Darcy’s law for the flow of water in soils. Soil Science 93:1970. Saturated flow of water through clay loam subsoil

  15. ABSTRACT: A network of 32 drought sensitive tree-ring chronolo-gies is used to reconstruct mean water year flow on the Columbia

    E-Print Network [OSTI]

    Gedalof, Ze'ev

    - ing hydroelectric production, agricultural irrigation, navigation, fish stocks (including endangered vulnerable to low flow years (Cohen et al., 2000; Miles et al., 2000). The storage potential of the Columbia contingency plans for extreme events by providing a longer con- text for drought assessment (Stockton, 1990

  16. DIFFERENTIAL EQUATIONS FOR FLOW IN RESERVOIRS By ...

    E-Print Network [OSTI]

    2008-08-23

    phases (water, oil, and gas) flow simultaneously, while mass transfer may take place ..... netic field theory and in hydrodynamics of incompressible fluids.

  17. Longitudinal dispersion in vegetated flow

    E-Print Network [OSTI]

    Murphy, Enda

    2006-01-01

    Vegetation is ubiquitous in rivers, estuaries and wetlands, strongly influencing both water conveyance and mass transport. The plant canopy affects both mean and turbulent flow structure, and thus both advection and ...

  18. Flow assurance and multiphase pumping 

    E-Print Network [OSTI]

    Nikhar, Hemant G.

    2009-05-15

    ????????????????????????????????????????. xvii NOMENCLATURE???????????????????????????????????????. xviii 1. INTRODUCTION??????????????????????????????????????? 1 2. LITERATURE REVIEW???????????????????????????????????.. 5 Deepwater Oilfields???????????????????????????????????.. 7 Flow...????????????????????????????????.. 71 Limited Energy Reservoirs and Deep Waters???????????????????? 71 5. SOLIDS FORMATION AND DEPOSITION??????????????????????????. 72 Gas Hydrates??????????????????????????????????????? 72 Field Problems??????????????????????????????????????. 74...

  19. Deep-Water Flow over the Lomonosov Ridge in the Arctic Ocean M.-L. TIMMERMANS, P. WINSOR, AND J. A. WHITEHEAD

    E-Print Network [OSTI]

    Winsor, Peter

    the geothermal heat flux or diffusive fluxes at the deep-water boundaries. 1. Introduction The two main basins horizontal or vertical gradients in 14 C in the Canadian Basin (Makarov and Canada Ba- sins) below 2250 m

  20. Estimating the Annual Water and Energy Savings in Texas A & M University Cafeterias using Low Flow Pre-Rinse Spray Valves 

    E-Print Network [OSTI]

    Rebello, Harsh Varun

    2011-08-08

    Improving the efficiency of a Pre- Rinse Spray Valve (PRSV) is one of the most cost effective water conservation methods in the Food Services Industry. A significant contributor to this cost efficiency is the reduction ...

  1. Insertable fluid flow passage bridgepiece and method

    DOE Patents [OSTI]

    Jones, Daniel O. (Glenville, NV)

    2000-01-01

    A fluid flow passage bridgepiece for insertion into an open-face fluid flow channel of a fluid flow plate is provided. The bridgepiece provides a sealed passage from a columnar fluid flow manifold to the flow channel, thereby preventing undesirable leakage into and out of the columnar fluid flow manifold. When deployed in the various fluid flow plates that are used in a Proton Exchange Membrane (PEM) fuel cell, bridgepieces of this invention prevent mixing of reactant gases, leakage of coolant or humidification water, and occlusion of the fluid flow channel by gasket material. The invention also provides a fluid flow plate assembly including an insertable bridgepiece, a fluid flow plate adapted for use with an insertable bridgepiece, and a method of manufacturing a fluid flow plate with an insertable fluid flow passage bridgepiece.

  2. Microelectromechanical flow control apparatus

    SciTech Connect (OSTI)

    Okandan, Murat (NE Albuquerque, NM)

    2009-06-02

    A microelectromechanical (MEM) flow control apparatus is disclosed which includes a fluid channel formed on a substrate from a first layer of a nonconducting material (e.g. silicon nitride). A first electrode is provided on the first layer of the nonconducting material outside the flow channel; and a second electrode is located on a second layer of the nonconducting material above the first layer. A voltage applied between the first and second electrodes deforms the fluid channel to increase its cross-sectional size and thereby increase a flow of a fluid through the channel. In certain embodiments of the present invention, the fluid flow can be decreased or stopped by applying a voltage between the first electrode and the substrate. A peristaltic pumping of the fluid through the channel is also possible when the voltage is applied in turn between a plurality of first electrodes and the substrate. A MEM flow control assembly can also be formed by providing one or more MEM flow control devices on a common substrate together with a submicron filter. The MEM flow control assembly can optionally include a plurality of pressure sensors for monitoring fluid pressure and determining flow rates through the assembly.

  3. The flow in an under-floor plenum

    E-Print Network [OSTI]

    Choi, Jun Myoung

    2009-01-01

    forced convection dominant flow. REFERENCES Bauman F. , HuiOF CALIFORNIA, SAN DIEGO The Flow in an Under-Floor Plenum A10 3 THE EFFECT OF FLOW RATE AND PLENUM DEPTH…………………15

  4. 3 IRROTATIONAL FLOWS, aka POTENTIAL FLOWS Irrotational flows are also known as `potential flows' because the velocity field can be taken to be the

    E-Print Network [OSTI]

    Cambridge, University of

    a lifting aerofoil (bottom of p. 17, details in §3.8 below). Kelvin's circulation theorem suggests · Flow of water toward a small drainage hole in the bottom of a large tank containing water previously

  5. Water Resources Milind Sohoni

    E-Print Network [OSTI]

    Sohoni, Milind

    TD 603 Water Resources Milind Sohoni www.cse.iitb.ac.in/sohoni/ Lecture 10: Minor Structures for Ground and Surface Water () March 23, 2010 1 / 31 #12;Classification by Purpose We may classify the velocity of water-flow (ii) increasing the infiltration coefficient (iii) explicit groundwater recharge

  6. An investigation of the water balance of the basin of the Gulf of Mexico 

    E-Print Network [OSTI]

    Hall, Clyde Stanley

    1969-01-01

    v" luce o!'. discha. . -ge occurred in the wintez and spring months, The 1965 water year 1 ad the greatest rate of river discharge, 29. D X 10 !gm sec', whi!? the 1963 a?d 1966 "atez years had rates of 19. 8 X 10" !cgm sec and 22. 5 X 10 Icgm sec... of Florida of water with salinity S . A11 quantities are 0 averages, and the salinity of river discharge is considered negligible. The ratio of the average salinities of waters flowing through both straits is /S. = I/O = (D+0)/0 0 i (8) where D =- I-0...

  7. Morphology of rain water channelization in systematically varied model sandy soils

    E-Print Network [OSTI]

    Y. Wei; C. M. Cejas; R. Barrois; R. Dreyfus; D. J. Durian

    2014-03-13

    We visualize the formation of fingered flow in dry model sandy soils under different raining conditions using a quasi-2d experimental set-up, and systematically determine the impact of soil grain diameter and surface wetting property on water channelization phenomenon. The model sandy soils we use are random closely-packed glass beads with varied diameters and surface treatments. For hydrophilic sandy soils, our experiments show that rain water infiltrates into a shallow top layer of soil and creates a horizontal water wetting front that grows downward homogeneously until instabilities occur to form fingered flows. For hydrophobic sandy soils, in contrast, we observe that rain water ponds on the top of soil surface until the hydraulic pressure is strong enough to overcome the capillary repellency of soil and create narrow water channels that penetrate the soil packing. Varying the raindrop impinging speed has little influence on water channel formation. However, varying the rain rate causes significant changes in water infiltration depth, water channel width, and water channel separation. At a fixed raining condition, we combine the effects of grain diameter and surface hydrophobicity into a single parameter and determine its influence on water infiltration depth, water channel width, and water channel separation. We also demonstrate the efficiency of several soil water improvement methods that relate to rain water channelization phenomenon, including pre-wetting sandy soils at different level before rainfall, modifying soil surface flatness, and applying superabsorbent hydrogel particles as soil modifiers.

  8. Self-regulating flow control device

    DOE Patents [OSTI]

    Humphreys, Duane A. (Pittsburgh, PA)

    1984-01-01

    A variable, self-regulating valve having a hydraulic loss coefficient proportional to a positive exponential power of the flow rate. The device includes two objects in a flow channel and structure which assures that the distance between the two objects is an increasing function of the flow rate. The range of spacing between the objects is such that the hydraulic resistance of the valve is an increasing function of the distance between the two objects so that the desired hydraulic loss coefficient as a function of flow rate is obtained without variation in the flow area.

  9. Laser Sheet Light Flow Visualization For Evaluating Room Air Flows From

    E-Print Network [OSTI]

    LBNL-56483 Laser Sheet Light Flow Visualization For Evaluating Room Air Flows From Registers Iain S using a Planar Laser-Induced Fluorescence (PLIF) measurement technique. Water marked with fluorescent

  10. Gas–Liquid Flow and Mass Transfer in an Advanced-Flow Reactor

    E-Print Network [OSTI]

    Kulkarni, Amol A.

    Hydrodynamics and mass transfer of gas–liquid flow are explored under ambient conditions in an Advanced-Flow Reactor (AFR), an emerging commercial system designed for continuous manufacture. Carbon dioxide/water is the ...

  11. Tool for Generating Realistic Residential Hot Water Event Schedules: Preprint

    SciTech Connect (OSTI)

    Hendron, B.; Burch, J.; Barker, G.

    2010-08-01

    The installed energy savings for advanced residential hot water systems can depend greatly on detailed occupant use patterns. Quantifying these patterns is essential for analyzing measures such as tankless water heaters, solar hot water systems with demand-side heat exchangers, distribution system improvements, and recirculation loops. This paper describes the development of an advanced spreadsheet tool that can generate a series of year-long hot water event schedules consistent with realistic probability distributions of start time, duration and flow rate variability, clustering, fixture assignment, vacation periods, and seasonality. This paper also presents the application of the hot water event schedules in the context of an integral-collector-storage solar water heating system in a moderate climate.

  12. Flow cytometry apparatus

    DOE Patents [OSTI]

    Pinkel, Daniel (Walnut Creek, CA)

    1991-01-01

    An obstruction across the flow chamber creates a one dimensional convergence of a sheath fluid. A passageway in the construction directs flat cells near to the area of one dimensional convergence in the sheath fluid to provide proper orientation of flat cells at fast rates.

  13. Flow cytometry apparatus

    DOE Patents [OSTI]

    Pinkel, D.

    1987-11-30

    An obstruction across the flow chamber creates a one-dimensional convergence of a sheath fluid. A passageway in the obstruction directs flat cells near to the area of one-dimensional convergence in the sheath fluid to provide proper orientation of flat cells at fast rates. 6 figs.

  14. WaterSense Program: Methodology for National Water Savings Analysis Model Indoor Residential Water Use

    SciTech Connect (OSTI)

    Whitehead, Camilla Dunham; McNeil, Michael; Dunham_Whitehead, Camilla; Letschert, Virginie; della_Cava, Mirka

    2008-02-28

    The U.S. Environmental Protection Agency (EPA) influences the market for plumbing fixtures and fittings by encouraging consumers to purchase products that carry the WaterSense label, which certifies those products as performing at low flow rates compared to unlabeled fixtures and fittings. As consumers decide to purchase water-efficient products, water consumption will decline nationwide. Decreased water consumption should prolong the operating life of water and wastewater treatment facilities.This report describes the method used to calculate national water savings attributable to EPA?s WaterSense program. A Microsoft Excel spreadsheet model, the National Water Savings (NWS) analysis model, accompanies this methodology report. Version 1.0 of the NWS model evaluates indoor residential water consumption. Two additional documents, a Users? Guide to the spreadsheet model and an Impacts Report, accompany the NWS model and this methodology document. Altogether, these four documents represent Phase One of this project. The Users? Guide leads policy makers through the spreadsheet options available for projecting the water savings that result from various policy scenarios. The Impacts Report shows national water savings that will result from differing degrees of market saturation of high-efficiency water-using products.This detailed methodology report describes the NWS analysis model, which examines the effects of WaterSense by tracking the shipments of products that WaterSense has designated as water-efficient. The model estimates market penetration of products that carry the WaterSense label. Market penetration is calculated for both existing and new construction. The NWS model estimates savings based on an accounting analysis of water-using products and of building stock. Estimates of future national water savings will help policy makers further direct the focus of WaterSense and calculate stakeholder impacts from the program.Calculating the total gallons of water the WaterSense program saves nationwide involves integrating two components, or modules, of the NWS model. Module 1 calculates the baseline national water consumption of typical fixtures, fittings, and appliances prior to the program (as described in Section 2.0 of this report). Module 2 develops trends in efficiency for water-using products both in the business-as-usual case and as a result of the program (Section 3.0). The NWS model combines the two modules to calculate total gallons saved by the WaterSense program (Section 4.0). Figure 1 illustrates the modules and the process involved in modeling for the NWS model analysis.The output of the NWS model provides the base case for each end use, as well as a prediction of total residential indoor water consumption during the next two decades. Based on the calculations described in Section 4.0, we can project a timeline of water savings attributable to the WaterSense program. The savings increase each year as the program results in the installation of greater numbers of efficient products, which come to compose more and more of the product stock in households throughout the United States.

  15. Kauai Groundwater Flow Model

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nicole Lautze

    2015-01-01

    Groundwater flow model for Kauai. Data is from the following sources: Whittier, R. and A.I. El-Kadi. 2014. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems For the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii – Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. September 2014.; and Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report – Volume IV – Island of Kauai Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2015.

  16. Drains Debubbler Transport Liq. Flow

    E-Print Network [OSTI]

    Weber, Rodney

    Drains Debubbler Transport Liq. Flow (LiF) aq. Anion Cation Waste Vacuum Pump LiF H2 O Pure H2 O 1 Denuders Cyclon 16 L/min 2.5 µm cut Sample Tubing ColourFlow, mL/minTubing green/green-1 green/green-2, and Liquid Flow Rates Are Possible Cation: metrosep 2100B-100x4.0mm Eluent: 0.250g/L Dipicolinic acid 1000 u

  17. Active Water Management for PEM Fuel Cells Shawn Litster, Cullen R. Buie, Tibor Fabian,

    E-Print Network [OSTI]

    Santiago, Juan G.

    , excessive air flow rates and serpentine channel designs are used to mitigate flooding at the cost of system that simple passive water transport through the porous carbon alone can prevent flooding at certain operating challenge for polymer electro- lyte membrane PEM fuel cells with perfluorosulfonic acid PFSA type membranes

  18. Experimental damage-gas flow correlations for cyclically loaded reinforced concrete walls

    E-Print Network [OSTI]

    Soppe, Travis E.

    2009-01-01

    will be on cracked concrete permeability and flow rates.Concrete Permeability..Concrete Permeability

  19. Multi-dimensional Mixing Behavior of Steam-Water Flow in a Downcomer Annulus during LBLOCA Reflood Phase with a DVI Injection Mode

    SciTech Connect (OSTI)

    Kwon, T.S.; Yun, B.J.; Euh, D.J.; Chu, I.C.; Song, C.H. [Korea Atomic Energy Research Institute (KAERI), Yusung P.O. Box 105, Daejeon 305-600 (Korea, Republic of)

    2002-07-01

    Multi-dimensional thermal-hydraulic behavior in the downcomer annulus of a pressurized water reactor vessel with a Direct Vessel Injection (DVI) mode is presented based on the experimental observation in the MIDAS (Multi-dimensional Investigation in Downcomer Annulus Simulation) steam-water test facility. From the steady-state test results to simulate the late reflood phase of a Large Break Loss-of-Coolant Accidents(LBLOCA), isothermal lines show the multidimensional phenomena of a phasic interaction between steam and water in the downcomer annulus very well. MIDAS is a steam-water separate effect test facility, which is 1/4.93 linearly scaled-down of 1400 MWe PWR type of a nuclear reactor, focused on understanding multi-dimensional thermalhydraulic phenomena in downcomer annulus with various types of safety injection during the refill or reflood phase of a LBLOCA. The initial and the boundary conditions are scaled from the pre-test analysis based on the preliminary calculation using the TRAC code. The superheated steam with a superheating degree of 80 K at a given downcomer pressure of 180 kPa is injected equally through three intact cold legs into the downcomer. (authors)

  20. Multidimensional Mixing Behavior of Steam-Water Flow in a Downcomer Annulus During LBLOCA Reflood Phase with a Direct Vessel Injection Mode

    SciTech Connect (OSTI)

    Kwon, Tae-Soon; Yun, Byong-Jo; Euh, Dong-Jin; Chu, In-Cheol; Song, Chul-Hwa [Korea Atomic Energy Research Institute (Korea, Republic of)

    2003-07-15

    Multidimensional thermal-hydraulic behavior in the downcomer annulus of a pressurized water reactor (PWR) vessel with a direct vessel injection mode is presented based on the experimental observation in the MIDAS (multidimensional investigation in downcomer annulus simulation) steam-water test facility. From the steady-state test results to simulate the late reflood phase of a large-break loss-of-coolant accident (LBLOCA), isothermal lines show the multidimensional phenomena of a phasic interaction between steam and water in the downcomer annulus very well. MIDAS is a steam-water separate effect test facility, which is 1/4.93 linearly scaled down to a 1400-MW(electric) PWR type of a nuclear reactor, focused on understanding multidimensional thermal-hydraulic phenomena in a downcomer annulus with various types of safety injection during the refill or reflood phase of an LBLOCA. The initial and the boundary conditions are scaled from the pretest analysis based on the preliminary calculation using the TRAC code. The superheated steam with a superheating degree of 80 K at a given downcomer pressure of 180 kPa is injected equally through three intact cold legs into the downcomer.

  1. Investigation of two-phase flow phenomena associated with corrosion in an SF/HLW repository in Opalinus Clay, Switzerland

    SciTech Connect (OSTI)

    Senger, R.; Marschall, P.; Finsterle, S.

    2008-08-04

    Gas generation from corrosion of the waste canisters and gas accumulation in the backfilled emplacement tunnels is a key issue in the assessment of long-term radiological safety of the proposed repository for spent fuel and high-level waste (SF/HLW) sited in the Opalinus Clay formation of Northern Switzerland. Previous modeling studies indicated a significant pressure buildup in the backfilled emplacement tunnels for those sensitivity runs, where corrosion rates were high and the permeability of the Opalinus Clay was very low. As an extension to those studies, a refined process model of the canister corrosion phenomena has been developed, which accounts not only for the gas generation but also for the water consumption associated with the chemical reaction of corrosion of steel under anaerobic conditions. The simulations with the new process model indicate, that with increasing corrosion rates and decreasing host-rock permeability, pressure buildup increased, as expected. However, the simulations taking into account water consumption show that the pressure buildup is reduced compared to the simulation considering only gas generation. The pressure reduction is enhanced for lower permeability of the Opalinus Clay and for higher corrosion rates, which correspond to higher gas generations rates and higher water consumption rates. Moreover, the simulated two-phase flow patterns in the engineered barrier system (EBS) and surrounding Opalinus Clay show important differences at late time of the gas production phase as the generated gas continues to migrate outward into the surrounding host rock. For the case without water consumption, the water flow indicates overall downward flow due to a change in the overall density of the gas-fluid mixture from that based on the initially prescribed hydrostatic pressure gradient. For the case with water consumption, water flow converges toward the waste canister at a rate corresponding to the water consumption rate associated with the corrosion reaction. The water flow toward the canister is maintained even for very low permeabilities of the Opalinus clay, sustaining the anaerobic corrosion of the steel canister.

  2. EXPERIMENTS OF RISER SLUG FLOW USING TOPSIDE MEASUREMENTS: PART I

    E-Print Network [OSTI]

    Skogestad, Sigurd

    flow in pipelines is of great concern in the offshore oil and gas industry, and a lot of time due to varying flow rates and pressure in the system. This usually happens in the end of the life cycle of a well, when flow rates are lower than the system was designed for. The rate and pressure

  3. Proceedings of the 1992 EPRI heat rate improvement conference

    SciTech Connect (OSTI)

    Henry, R.E. (Sargent and Lundy, Chicago, IL (United States))

    1993-03-01

    Diverse but compelling forces such as increasing fuel prices, greater power demands, growing competition, and ever more aggressive regulatory incentives are causing utilities to place additional focus on power plant heat rate. The 1992 heat rate improvement conference was a gathering of utility industry experts to share knowledge and concerns on such key issues as on-line measurement of stack gas mass flow rate-increasingly important because of the regulations of the Clean Air Act of 1990. These proceedings present the latest developments by EPRI and the utility industry to improve heat rate. Representatives of utilities, architect/engineering firms, research firms, and manufacturers presented 71 papers, and a panel discussion by the ASME performance test code committee on PTC 46 provided a forum on the overall plant performance test code. These proceedings report on a number of heat rate improvement programs, both in development and in place, including EPRI's Plant Monitoring Workstation (PMW), the State-of-the-Art Power Plant (SOAPP) conceptual design tool, and several developments in boiler performance monitoring, including an on-line system at PEPCO's Morgantown unit 2. Other conference papers describe advances in heat rate improvement through (1) computer software tools modeling boiler cleanliness, heat balance, duct system dynamics, heat rate root cause diagnosis, and conceptual plant design; (2) new instruments and testing systems in the areas of performance testing, heat rate monitoring, circulating water flow measurement, and low-pressure turbine efficiency measurement; and (3) auxiliary equipment improvements such as condensing heat exchangers, macrobiofouling control, condenser in-leakage and air binding control, air heater monitoring, and feedwater heater level control. Individual papers are indexed separately.

  4. Selecting a new water heater

    SciTech Connect (OSTI)

    1995-03-01

    This fact sheet describes the types of water heaters available (storage water heaters, demand water heaters, heat pump water heaters, tankless coil and indirect water heaters, and solar water heaters). The criteria for selection are discussed. These are capacity, efficiency rating, and cost. A resource list is provided for further information.

  5. Unsteady two-phase flow instrumentation and measurement

    SciTech Connect (OSTI)

    Bernier, R.J.N.

    1982-01-01

    The performance of a transverse field electromagnetic flowmeter in a steady two-phase flow was investigated analytically for a disperse and an annular flow regime. In both cases the flowmeter output voltage was found to be proportional to the mean velocity of the liquid phase. Experiments in a steady air-water mixture showed good agreement with the analysis. An impedance void fraction meter was designed and built to conduct measurements of unsteady void fractions. Short electrodes excited by voltages of opposite polarity were used in combination with a highly sensitive signal processor. The steady state calibration indicated that the meter was somewhat sensitive to the void fraction distribution for the bubbly flow regime. However, the transition to a churn turbulent regime greatly affected the meter steady state response. The dynamic capability of the void fraction meter was estimated by comparison of the statistical properties of the voltage fluctuations in a nominally steady bubbly flow with those of a shot-noise process. Also some properties of the disperse phase could be inferred from the statistical analysis. Two void fraction meters were used to measure the propagation speed of kinematic shocks in an air-water bubbly mixture for various void fractions and water flow rates. Measurements of the propagation speed of shocks of decreasing strength provided a good verification of the kinematic wave theory. The shock thicknesses could also be determined leading to the conclusion that an important diffusion mechanism was responsible for arresting the steepening of the wave. Cross-correlations of the fluctuating voltage of two void fraction meters in a steady bubbly flow were determined. The speed measured by this technique was identified as the infinitesimal wave speed of the void fraction and not the velocity of the dispersed phase as postulated by some authors. The cross spectral density revealed that the waves present in these disturbances were non-dispersive.

  6. Pore-Water Extraction Intermediate-Scale Laboratory Experiments and Numerical Simulations

    SciTech Connect (OSTI)

    Oostrom, Martinus; Freedman, Vicky L.; Wietsma, Thomas W.; Truex, Michael J.

    2011-06-30

    A series of flow cell experiments was conducted to demonstrate the process of water removal through pore-water extraction in unsaturated systems. In this process, a vacuum (negative pressure) is applied at the extraction well establishing gas and water pressure gradients towards the well. The gradient may force water and dissolved contaminants, such as 99Tc, to move towards the well. The tested flow cell configurations consist of packings, with or without fine-grained well pack material, representing, in terms of particle size distribution, subsurface sediments at the SX tank farm. A pore water extraction process should not be considered to be equal to soil vapor extraction because during soil vapor extraction, the main goal may be to maximize gas removal. For pore water extraction systems, pressure gradients in both the gas and water phases need to be considered while for soil vapor extraction purposes, gas phase flow is the only concern. In general, based on the limited set (six) of flow experiments that were conducted, it can be concluded that pore water extraction rates and cumulative outflow are related to water content, the applied vacuum, and the dimensions of the sediment layer providing the extracted water. In particular, it was observed that application of a 100-cm vacuum (negative pressure) in a controlled manner leads to pore-water extraction until the water pressure gradients towards the well approach zero. Increased cumulative outflow was obtained with an increase in initial water content from 0.11 to 0.18, an increase in the applied vacuum to 200 cm, and when the water-supplying sediment was not limited. The experimental matrix was not sufficiently large to come to conclusions regarding maximizing cumulative outflow.

  7. Cooling Water System Optimization 

    E-Print Network [OSTI]

    Aegerter, R.

    2005-01-01

    During summer months, many manufacturing plants have to cut back in rates because the cooling water system is not providing sufficient cooling to support higher production rates. There are many low/no-cost techniques available to improve tower...

  8. The transition from the annular to the slug flow regime in two-phase flow

    E-Print Network [OSTI]

    Haberstroh, Robert D.

    1964-01-01

    Experiments were conducted to determine the transition from annular to semiannular flow regimes for two-phase, gas-liquid upflow in vertical tubes. The influencesof liquid flow rate, tube diameter, liquid viscosity, surface ...

  9. A Holistic Framework for Environmental Flows Determination in Hydropower Contexts

    SciTech Connect (OSTI)

    McManamay, Ryan A; Bevelhimer, Mark S

    2013-05-01

    Among the ecological science community, the consensus view is that the natural flow regime sustains the ecological integrity of river systems. This prevailing viewpoint by many environmental stakeholders has progressively led to increased pressure on hydropower dam owners to change plant operations to affect downstream river flows with the intention of providing better conditions for aquatic biological communities. Identifying the neccessary magnitude, frequency, duration, timing, or rate of change of stream flows to meet ecological needs in a hydropower context is challenging because the ecological responses to changes in flows may not be fully known, there are usually a multitude of competing users of flow, and implementing environmental flows usually comes at a price to energy production. Realistically, hydropower managers must develop a reduced set of goals that provide the most benefit to the identified ecological needs. As a part of the Department of Energy (DOE) Water Power Program, the Instream Flow Project (IFP) was carried out by Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), and Argon National Laboratory (ANL) as an attempt to develop tools aimed at defining environmental flow needs for hydropower operations. The application of these tools ranges from national to site-specific scales; thus, the utility of each tool will depend on various phases of the environmental flow process. Given the complexity and sheer volume of applications used to determine environmentally acceptable flows for hydropower, a framework is needed to organize efforts into a staged process dependent upon spatial, temporal, and functional attributes. By far, the predominant domain for determining environmental flows related to hydropower is within the Federal Energy Regulatory Commission (FERC) relicensing process. This process can take multiple years and can be very expensive depending on the scale of each hydropower project. The utility of such a framework is that it can expedite the environmental flow process by 1) organizing data and applications to identify predictable relationships between flows and ecology, and 2) suggesting when and where tools should be used in the environmental flow process. In addition to regulatory procedures, a framework should also provide the coordination for a comprehensive research agenda to guide the science of environmental flows. This research program has further reaching benefits than just environmental flow determination by providing modeling applications, data, and geospatial layers to inform potential hydropower development. We address several objectives within this document that highlight the limitations of existing environmental flow paradigms and their applications to hydropower while presenting a new framework catered towards hydropower needs. Herein, we address the following objectives: 1) Provide a brief overview of the Natural Flow Regime paradigm and existing environmental flow frameworks that have been used to determine ecologically sensitive stream flows for hydropower operations. 2) Describe a new conceptual framework to aid in determining flows needed to meet ecological objectives with regard to hydropower operations. The framework is centralized around determining predictable relationships between flow and ecological responses. 3) Provide evidence of how efforts from ORNL, PNNL, and ANL have filled some of the gaps in this broader framework, and suggest how the framework can be used to set the stage for a research agenda for environmental flow.

  10. Flow chamber

    DOE Patents [OSTI]

    Morozov, Victor (Manassas, VA)

    2011-01-18

    A flow chamber having a vacuum chamber and a specimen chamber. The specimen chamber may have an opening through which a fluid may be introduced and an opening through which the fluid may exit. The vacuum chamber may have an opening through which contents of the vacuum chamber may be evacuated. A portion of the flow chamber may be flexible, and a vacuum may be used to hold the components of the flow chamber together.

  11. Electrokinetic Hydrogen Generation from Liquid WaterMicrojets

    SciTech Connect (OSTI)

    Duffin, Andrew M.; Saykally, Richard J.

    2007-05-31

    We describe a method for generating molecular hydrogen directly from the charge separation effected via rapid flow of liquid water through a metal orifice, wherein the input energy is the hydrostatic pressure times the volume flow rate. Both electrokinetic currents and hydrogen production rates are shown to follow simple equations derived from the overlap of the fluid velocity gradient and the anisotropic charge distribution resulting from selective adsorption of hydroxide ions to the nozzle surface. Pressure-driven fluid flow shears away the charge balancing hydronium ions from the diffuse double layer and carries them out of the aperture. Downstream neutralization of the excess protons at a grounded target electrode produces gaseous hydrogen molecules. The hydrogen production efficiency is currently very low (ca. 10-6) for a single cylindrical jet, but can be improved with design changes.

  12. Fresh Water Increased temperature means higher proportion of water

    E-Print Network [OSTI]

    Houston, Paul L.

    Fresh Water Increased temperature means higher proportion of water falling on surface higher evaporation higher rainfall greater intensity of floods and droughts. Water use has grown four on How much storage compared to average flow Demand as percentage of supply How much ground water is used

  13. Amphiphilic mediated sample preparation for micro-flow cytometry

    DOE Patents [OSTI]

    Clague, David S. (Livermore, CA); Wheeler, Elizabeth K. (Livermore, CA); Lee, Abraham P. (Irvine, CA)

    2009-03-17

    A flow cytometer includes a flow cell for detecting the sample, an oil phase in the flow cell, a water phase in the flow cell, an oil-water interface between the oil phase and the water phase, a detector for detecting the sample at the oil-water interface, and a hydrophobic unit operatively connected to the sample. The hydrophobic unit is attached to the sample. The sample and the hydrophobic unit are placed in an oil and water combination. The sample is detected at the interface between the oil phase and the water phase.

  14. Amphiphilic mediated sample preparation for micro-flow cytometry

    DOE Patents [OSTI]

    Clague, David S. (Livermore, CA); Wheeler, Elizabeth K. (Livermore, CA); Lee, Abraham P. (Irvine, CA)

    2006-07-25

    A flow cytometer includes a flow cell for detecting the sample, an oil phase in the flow cell, a water phase in the flow cell, an oil-water interface between the oil phase and the water phase, a detector for detecting the sample at the oil-water interface, and a hydrophobic unit operatively connected to the sample. The hydrophobic unit is attached to the sample. The sample and the hydrophobic unit are placed in an oil and water combination. The sample is detected at the interface between the oil phase and the water phase.

  15. Geological flows

    E-Print Network [OSTI]

    Yu. N. Bratkov

    2008-11-19

    In this paper geology and planetology are considered using new conceptual basis of high-speed flow dynamics. Recent photo technics allow to see all details of a flow, 'cause the flow is static during very short time interval. On the other hand, maps and images of many planets are accessible. Identity of geological flows and high-speed gas dynamics is demonstrated. There is another time scale, and no more. All results, as far as the concept, are new and belong to the author. No formulae, pictures only.

  16. Leaching study of PNL 76-68 glass beads using the LLNL continuous-flow method and the PNL modified IAEA method. Final report

    SciTech Connect (OSTI)

    Coles, D.G.; Mensing, R.W.; Rego, J.; Weed, H.C.; Buddemeier, R.W.

    1982-10-04

    A long-term single-pass continuous-flow (SPCF) leaching test was conducted on the glass waste form PNL 76-68. Leaching rates of Np, Pu and various stable elements were measured at 25 and 75/sup 0/C with three different solutions and three different flow rates. The SPCF leaching results were compared with results of a modified IAEA leach test performed by Pacific Northwest Laboratories (PNL). Elemental leach rates and their variation with temperature, flow rate and solution composition were established. The LLNL and PNL leach test results appear to agree within experimental uncertainties. The magnitude of the leach rates determined for Np and the glass matrix elements is 10/sup -5/ grams of glass/cm/sup 2/ geometric solid surface area/day. The rates increase with temperature and with solution flow rate, and are similar in brine and distilled water but higher in a bicarbonate solution. Other cations exhibit somewhat different behavior, and Pu in particular yields a much lower apparent leach rate, probably because of sorption or precipitation effects after release from the glass matrix. After the initial few days, most elements are leached at a constant rate. Matrix dissolution appears to be the most probable rate controlling step for the leaching of most elements. 23 figures, 12 tables.

  17. Module bay with directed flow

    SciTech Connect (OSTI)

    Torczynski, John R. (Albuquerque, NM)

    2001-02-27

    A module bay requires less cleanroom airflow. A shaped gas inlet passage can allow cleanroom air into the module bay with flow velocity preferentially directed toward contaminant rich portions of a processing module in the module bay. Preferential gas flow direction can more efficiently purge contaminants from appropriate portions of the module bay, allowing a reduced cleanroom air flow rate for contaminant removal. A shelf extending from an air inlet slit in one wall of a module bay can direct air flowing therethrough toward contaminant-rich portions of the module bay, such as a junction between a lid and base of a processing module.

  18. Analytical solution for two-phase flow in a wellbore using the drift-flux model

    SciTech Connect (OSTI)

    Pan, L.; Webb, S.W.; Oldenburg, C.M.

    2011-11-01

    This paper presents analytical solutions for steady-state, compressible two-phase flow through a wellbore under isothermal conditions using the drift flux conceptual model. Although only applicable to highly idealized systems, the analytical solutions are useful for verifying numerical simulation capabilities that can handle much more complicated systems, and can be used in their own right for gaining insight about two-phase flow processes in wells. The analytical solutions are obtained by solving the mixture momentum equation of steady-state, two-phase flow with an assumption that the two phases are immiscible. These analytical solutions describe the steady-state behavior of two-phase flow in the wellbore, including profiles of phase saturation, phase velocities, and pressure gradients, as affected by the total mass flow rate, phase mass fraction, and drift velocity (i.e., the slip between two phases). Close matching between the analytical solutions and numerical solutions for a hypothetical CO{sub 2} leakage problem as well as to field data from a CO{sub 2} production well indicates that the analytical solution is capable of capturing the major features of steady-state two-phase flow through an open wellbore, and that the related assumptions and simplifications are justified for many actual systems. In addition, we demonstrate the utility of the analytical solution to evaluate how the bottomhole pressure in a well in which CO{sub 2} is leaking upward responds to the mass flow rate of CO{sub 2}-water mixture.

  19. Controlling the Actuation Rate of Low Density Shape Memory Polymer...

    Office of Scientific and Technical Information (OSTI)

    Controlling the Actuation Rate of Low Density Shape Memory Polymer Foams in Water Citation Details In-Document Search Title: Controlling the Actuation Rate of Low Density Shape...

  20. Generalized correlation for foam flow in tubes 

    E-Print Network [OSTI]

    Cotter, Carol Lynnette

    1996-01-01

    with respect to foam in the laminar flow region. A semi-automated system to collect pressure drop-flow rate data for gas in liquid foams was constructed in which foam is created by a foam generator and the pressure drop resulting from the foam flow is measured...

  1. Turbid water Clear water

    E-Print Network [OSTI]

    Jaffe, Jules

    Turbid water Clear water pixel position cameraresponsecameraresponse pixel position ABSTRACT: A new underwater laser scanning system, providing microbathymetric information in coastal waters is described the backscatter component resulting in enhanced performance in turbid waters. The system is expected to provide

  2. Experimental investigation of nucleate boiling heat transfer mechanisms for cylinders in water and FC-72

    SciTech Connect (OSTI)

    Ammerman, C.N.; You, S.M.; Hong, Y.S. [Univ. of Texas, Arlington, TX (United States). Dept. of Mechanical and Aerospace Engineering

    1995-12-31

    A recently developed photographic method is used to quantify vapor volumetric flow rate above a boiling wire. The volumetric flow rate is combined with additional analyses to determine the overall contributions to the total heat flux from four nucleate boiling heat transfer mechanisms (latent heat, natural convection, Marangoni flow, and micro-convection). This technique is used to quantify the boiling heat transfer mechanisms versus heat flux for a 510-{micro}m wire immersed in saturated water and in water with a small amount of liquid soap added. These data are compared with similar data taken for a 75-{micro}m wire boiling in saturated FC-72. For all cases, latent heat is the dominant heat transfer mechanism in the fully developed nucleate boiling regime. In addition, the latent heat component is significantly increased by the addition of small amounts of soap (surfactant).

  3. Active combustion flow modulation valve

    DOE Patents [OSTI]

    Hensel, John Peter; Black, Nathaniel; Thorton, Jimmy Dean; Vipperman, Jeffrey Stuart; Lambeth, David N; Clark, William W

    2013-09-24

    A flow modulation valve has a slidably translating hollow armature with at least one energizable coil wound around and fixably attached to the hollow armature. The energizable coil or coils are influenced by at least one permanent magnet surrounding the hollow armature and supported by an outer casing. Lorentz forces on the energizable coils which are translated to the hollow armature, increase or decrease the flow area to provide flow throttling action. The extent of hollow armature translation depends on the value of current supplied and the direction of translation depends on the direction of current flow. The compact nature of the flow modulation valve combined with the high forces afforded by the actuator design provide a flow modulation valve which is highly responsive to high-rate input control signals.

  4. Rate of Water Evaporation in Texas. 

    E-Print Network [OSTI]

    Karper, R. E. (Robert Earl)

    1933-01-01

    are available Length 1 re, Jan. 1 I?. March 1 April 1 May 1 June 1 July Aug. I Sept. Oct. ) No.. 1 Dec. Annual years I Nacogdoches Evaporation, inches I 18 Precipitation, inches 20 Mean max. temp. Mean min. temp. Mean mean temp. Av. rel. humidity.... Mean mean temp. Av. rel. humidity Wind run, miles Iowa Park: Evaporation, inches Precipitation, inches Mean max. temp. Mean min. temp. Mean mean temp. Av. rel. humidity Wind run, miles March April 1 May 1 June July / Aug. / Sept. Oct. I Nov...

  5. Prefabricated vertical drains flow resistance under vacuum conditions

    SciTech Connect (OSTI)

    Quaranta, J.D.; Gabr, M.A.

    2000-01-01

    The results of experimental research are presented and discussed with focus on the internal well resistance of prefabricated vertical drains (PVD) under vacuum-induced water flow. Measured results included fluid flow rates for two different cross-sectional hydraulic profiles (Types 1 and 2 PVDs). Experimental results indicated linear relationship, independent of the PVD widths, between extracted fluid velocity and the applied hydraulic gradient. Data showed a laminar flow regime to predominate for test velocities corresponding to hydraulic gradients {lt}0.5. The larger nominal hydraulic radius of the Type 2 PVD is credited with providing a flow rate equal to approximately 3.2 times that of the Type 1 PVD at approximately the same operating total head. There was no apparent dependency of the transmissivity {theta} on the width or lengths (3, 4, and 5 m) of the PVDs tested. In the case of the 100-mm-wide Type 1 PVD, {theta} = 618 mm{sup 2}/s was estimated from the measured data versus {theta} = 1,996 mm{sup 2}/s for Type 2 PVD with the same dimensions.

  6. Engineering the use of green plants to reduce produced water disposal volume.

    SciTech Connect (OSTI)

    Hinchman, R.; Mollock, G. N.; Negri, M. C.; Settle, T.

    1998-01-29

    In 1990, the Laboratory began an investigation into biological approaches for the reduction of water produced from oil and gas wells. In the spring of 1995, the Company began an on-site experiment at an oil/gas lease in Oklahoma using one of these approaches. The process, known as phytoremediation, utilizes the ability of certain salt tolerant plants to draw the produced water through their roots, transpire the water from their leaves, and thereby reduce overall water disposal volumes and costs. At the Company experimental site, produced water flows through a trough where green plants (primarily cordgrass) have been planted in pea gravel. The produced water is drawn into the plant through its roots, evapotranspirates and deposits a salt residue on the plant leaves. The plant leaves are then harvested and used by a local rancher as cattle feed. The produced water is tested to assure it contains nothing harmful to cattle. In 1996, the Company set up another trough to compare evaporation rates using plants versus using an open container without plants. Data taken during all four seasons (water flow rate, temperature, pH, and conductivity) have shown that using plants to evapotranspirate produced water is safe, more cost effective than traditional methods and is environmentally sound.

  7. Visualization of Fuel Cell Water Transport and Performance Characterization under Freezing Conditions

    SciTech Connect (OSTI)

    Kandlikar, S.G.; Lu, Z.; Rao, N.; Sergi, J.; Rath, C.; Dade, C.; Trabold, T.; Owejan, J.; Gagliardo, J.; Allen, J.; Yassar, R.S.; Medici, E.; Herescu, A.

    2010-05-30

    In this program, Rochester Institute of Technology (RIT), General Motors (GM) and Michigan Technological University (MTU) have focused on fundamental studies that address water transport, accumulation and mitigation processes in the gas diffusion layer and flow field channels of the bipolar plate. These studies have been conducted with a particular emphasis on understanding the key transport phenomena which control fuel cell operation under freezing conditions. Technical accomplishments are listed below: • Demonstrated that shutdown air purge is controlled predominantly by the water carrying capacity of the purge stream and the most practical means of reducing the purge time and energy is to reduce the volume of liquid water present in the fuel cell at shutdown. The GDL thermal conductivity has been identified as an important parameter to dictate water accumulation within a GDL. • Found that under the normal shutdown conditions most of the GDL-level water accumulation occurs on the anode side and that the mass transport resistance of the membrane electrode assembly (MEA) thus plays a critically important role in understanding and optimizing purge. • Identified two-phase flow patterns (slug, film and mist flow) in flow field channel, established the features of each pattern, and created a flow pattern map to characterize the two-phase flow in GDL/channel combination. • Implemented changes to the baseline channel surface energy and GDL materials and evaluated their performance with the ex situ multi-channel experiments. It was found that the hydrophilic channel (contact angle ? ? 10?) facilitates the removal of liquid water by capillary effects and by reducing water accumulation at the channel exit. It was also found that GDL without MPL promotes film flow and shifts the slug-to-film flow transition to lower air flow rates, compared with the case of GDL with MPL. • Identified a new mechanism of water transport through GDLs based on Haines jump mechanism. The breakdown and redevelopment of the water paths in GDLs lead to an intermittent water drainage behavior, which is characterized by dynamic capillary pressure and changing of breakthrough location. MPL was found to not only limit the number of water entry locations into the GDL (thus drastically reducing water saturation), but also stabilizes the water paths (or morphology). • Simultaneously visualized the water transport on cathode and anode channels of an operating fuel cell. It was found that under relatively dry hydrogen/air conditions at lower temperatures, the cathode channels display a similar flow pattern map to the ex-situ experiments under similar conditions. Liquid water on the anode side is more likely formed via condensation of water vapor which is transported through the anode GDL. • Investigated the water percolation through the GDL with pseudo-Hele-Shaw experiments and simulated the capillary-driven two-phase flow inside gas diffusion media, with the pore size distributions being modeled by using Weibull distribution functions. The effect of the inclusion of the microporous layer in the fuel cell assembly was explored numerically. • Developed and validated a simple, reliable computational tool for predicting liquid water transport in GDLs. • Developed a new method of determining the pore size distribution in GDL using scanning electron microscope (SEM) image processing, which allows for separate characterization of GDL wetting properties and pore size distribution. • Determined the effect of surface wettability and channel cross section and bend dihedral on liquid holdup in fuel cell flow channels. A major thrust of this research program has been the development of an optimal combination of materials, design features and cell operating conditions that achieve a water management strategy which facilitates fuel cell operation under freezing conditions. Based on our various findings, we have made the final recommendation relative to GDL materials, bipolar design and surface properties, and the combination of materials, design featur

  8. Identification of two-phase flow patterns in a nuclear reactor by high-frequency contribution fraction

    SciTech Connect (OSTI)

    Wang, Y.W.; Pei, B.S. (National Tsing Hua Univ., Hsinchu (Taiwan). Dept. of Nuclear Engineering); King, C.H.; Lee, S.C. (Institute of Nuclear Energy Research, Lung-Tan (Taiwan))

    1990-02-01

    A method based on noise analysis techniques that can be applied to the identification of two-phase flow patterns in nuclear reactors is proposed. The identifying criterion, the high-frequency contribution fraction (HFCF), offers new potential to the in-core recognition of two-phase flow patterns. By analyzing 76 sets of signals acquired from a research nuclear reactor where two-phase flow patterns are generated in an in-core air/water loop, the typical signal, autocorrelogram, and spectrum of each flow pattern are demonstrated and evaluated. The identification success rate is 87 or 93%, depending on whether churn flow is counted. A method to improve the identification rate is also presented. This study demonstrates that the fluctuation characteristics above 10 Hz are induced by two-phase flow itself and are independent of the driving source; thus, it is adequate to apply the HFCF to the identification of two-phase flow patters. This study shows that it is possible to identify two-phase flow patterns by HFCF values.

  9. Liquid metal Flow Meter - Final Report

    SciTech Connect (OSTI)

    Andersen, C.; Hoogendoom, S.; Hudson, B.; Prince, J.; Teichert, K.; Wood, J.; Chase, K.

    2007-01-30

    Measuring the flow of liquid metal presents serious challenges. Current commercially-available flow meters use ultrasonic, electromagnetic, and other technologies to measure flow, but are inadequate for liquid metal flow measurement because of the high temperatures required by most liquid metals. As a result of the reactivity and high temperatures of most liquid metals, corrosion and leakage become very serious safety concerns. The purpose of this project is to develop a flow meter for Lockheed Martin that measures the flow rate of molten metal in a conduit.

  10. 3-103 The power that could be produced by a water wheel is to be determined. Properties The density of water is taken to be 1000 m3

    E-Print Network [OSTI]

    Bahrami, Majid

    3-52 3-103 The power that could be produced by a water wheel is to be determined. Properties The density of water is taken to be 1000 m3 /kg (Table A-3). Analysis The power production is determined from The mass flow rate through the wind mill is kg/s7.457 /kg)m4(0.8409 m/s)(10m)7( 3 2 11 S v VA m The power

  11. Numerical simulation of gas flow through unsaturated fractured rock at Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Cooper, C.A.

    1990-01-01

    Numerical analysis is used to identify the physical phenomena associated with barometrically driven gas (air and water vapor) flow through unsaturated fractured rock at Yucca Mountain, Nevada. Results from simple finite difference simulations indicate that for a fractured rock scenario, the maximum velocity of air out of an uncased 10 cm borehole is 0.002 m s{sub {minus}1}. An equivalent porous medium (EPM) model was incorporated into a multiphase, multicomponent simulator to test more complex conceptual models. Results indicate that for a typical June day, a diurnal pressure wave propagates about 160 m into the surrounding Tiva Canyon hydrogeologic unit. Dry air that enters the formation evaporates water around the borehole which reduces capillary pressure. Multiphase countercurrent flow develops in the vicinity of the hole; the gas phase flows into the formation while the liquid phase flows toward the borehole. The effect occurs within 0.5 m of the borehole. The amount of water vapor leaving the formation during 1 day is 900 cm{sup 3}. This is less than 0.1% of the total recharge into the formation, suggesting that the barometric effect may be insignificant in drying the unsaturated zone. However, gas phase velocities out of the borehole (3 m s{sup {minus}1}), indicating that observed flow rates from wells along the east flank of Yucca Mountain were able to be simulated with a barometric model.

  12. Wynkoop Building Performance Measurement: Water

    SciTech Connect (OSTI)

    Fowler, Kimberly M.; Kora, Angela R.

    2012-08-26

    This report is a summary of the water analysis performance for the Denver, Colorado Wynkoop Building. The Wynkoop Building (Figure 1) was built in 2006 as the Environmental Protection Agency (EPA) Region 8 Headquarters intended to house over 900 occupants in the 301,292 gross square feet (248,849 rentable square feet). The building was built on a brownfield in the Lower Downtown Historic District as part of an urban redevelopment effort. The building was designed and constructed through a public-private partnership with the sustainable design elements developed jointly by General Services Administration (GSA) and EPA. That partnership is still active with all parties still engaged to optimize building operations and use the building as a Learning Laboratory. The building design achieved U.S. Green Building Council Leadership in Energy and Environmental Design for New Construction (LEED-NC) Gold Certification in 2008 (Figure 2) and a 2008 EPA Energy Star Rating of 96 with design highlights that include: (1) Water use was designed to use 40% less than a typical design baseline. The design included low flow fixtures, waterless urinals and dual flush toilets; (2) Native and adaptive vegetation were selected to minimize the need for irrigation water for landscaping; and (3) Energy use intensity was modeled at 66.1 kBtus/gross square foot, which is 39% better than ASHRAE 90.1 1999. The Wynkoop Building water use (10 gallons/square foot) was measured at lower than industry average (15 gallons/square foot) and GSA goals (13 gallons/square foot), however, it was higher than building management expected it would be. The type of occupants and number of occupants can have a significant impact on fixture water use. The occupancy per floor varied significantly over the study time period, which added uncertainty to the data analysis. Investigation of the fixture use on the 2nd, 5th, and 7th floors identified potential for water use reduction if the flush direction of the dual-flush toilet handles was reversed. The building management retrofitted the building's toilets with handles that operated on reduced flush when pushed down (0.8 gallons) and full flush when pulled up (1.1 gallons). The water pressure on the 5th floor (< 30 psi) is less than half the pressure on the 7th floor (>80 psi). The measured water savings post-retrofit was lower on the 5th floor than the 7th floor. The differences in water pressure may have had an impact on the quantity of water used per floor. The second floor water use was examined prior to and following the toilet fixture retrofit. This floor is where conference rooms for non-building occupants are available for use, thus occupancy is highly variable. The 3-day average volume per flush event was higher post-retrofit (0.79 gallons per event), in contrast to pre-retrofit (0.57 gallons per event). There were 40% more flush events post retrofit, which impacted the findings. Water use in the third floor fitness center was also measured for a limited number of days. Because of water line accessibility, only water use on the men's side of the fitness center was measured and from that the total fitness center water use was estimated. Using the limited data collected, the fitness center shower water use is approximately 2% of the whole building water use. Overall water use in the Wynkoop Building is below the industry baseline and GSA expectations. The dual flush fixture replacement appears to have resulted in additional water savings that are expected to show a savings in the total annual water use.

  13. 1 INTRODUCTION The modular finitedifference groundwater flow

    E-Print Network [OSTI]

    Russell, Thomas F.

    1 INTRODUCTION The modular finite­difference ground­water flow model (MODFLOW) developed by the U­dimensional ground­water systems (McDonald & Harbaugh, 1988, Harbaugh & McDonald, 1996). MOC3D is a solute is optimal for advection­ dominated systems, which are typical of many field problems involving ground­water

  14. Numerical simulations of the Macondo well blowout reveal strong control of oil flow by reservoir permeability and exsolution of gas

    E-Print Network [OSTI]

    Oldenburg, C.M.

    2013-01-01

    for estimates of the oil and gas flow rate from the Macondooil-gas system. The flow of oil and gas was simulated usingmaximal flow rates of oil and gas. With the conceptual model

  15. Water Resources Milind Sohoni

    E-Print Network [OSTI]

    Sohoni, Milind

    TD 603 Water Resources Milind Sohoni www.cse.iitb.ac.in/sohoni/ Lecture 6: Mathematics, z). velocity vx (x, y, z, t) : in the x-direction. vx = Kx h/x saturated/water- table. Continuity Equation What is vx x + vy y + vz z ? It is the rate of accumulation of water at the point (x, y

  16. Cerro Grande Fire Impact to Water Quality and Stream Flow near Los Alamos National Laboratory: Results of Four Years of Monitoring

    SciTech Connect (OSTI)

    B.M. Gallaher; R.J. Koch

    2004-09-15

    In May 2000, the Cerro Grande fire burned about 7400 acres of mixed conifer forest on the Los Alamos National Laboratory (LANL), and much of the 10,000 acres of mountainside draining onto LANL was severely burned. The resulting burned landscapes raised concerns of increased storm runoff and transport of contaminants by runoff in the canyons traversing LANL. The first storms after the fire produced runoff peaks that were more than 200 times greater than prefire levels. Total runoff volume for the year 2000 increased 50% over prefire years, despite a decline in total precipitation of 13% below normal and a general decrease in the number of monsoonal thunderstorms. The majority of runoff in 2000 occurred in the canyons at LANL south of Pueblo Canyon (70%), where the highest runoff volume occurred in Water Canyon and the peak discharge occurred in Pajarito Canyon. This report describes the observed effects of the Cerro Grande fire and related environmental impacts to watersheds at and near Los Alamos National Laboratory (LANL) for the first four runoff seasons after the fire, from 2000 through 2003. Spatial and temporal trends in radiological and chemical constituents that were identified as being associated with the Cerro Grande fire and those that were identified as being associated with historic LANL discharges are evaluated with regard to impacts to the Rio Grande and area reservoirs downstream of LANL. The results of environmental sampling performed by LANL, the New Mexico Environment Department (NMED), and U.S. Geological Survey (USGS) after the Cerro Grande fire are included in the evaluation. Effects are described for storm runoff, baseflow, stream sediments, and area regional reservoir sediment.

  17. Reduce Hot Water Use for Energy Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Low-flow fixtures and showerheads can achieve water savings of 25%60%. | Photo courtesy of iStockphotoDaveBolton. Low-flow fixtures and showerheads can achieve water...

  18. Liquid-Liquid Two-Phase Flow Systems Neima Brauner

    E-Print Network [OSTI]

    Brauner, Neima

    prediction of oil-water flow charac- teristics, such as flow pattern, water holdup and pressure gradient in the petroleum industry, where mixtures of oil and water are transported in pipes over long distances. Accurate particular extreme of two-fluid systems characterized by low-density ratio and low viscosity ratio. In liquid

  19. Water Resources Water Quality and Water Treatment

    E-Print Network [OSTI]

    Sohoni, Milind

    Water Resources TD 603 Lecture 1: Water Quality and Water Treatment CTARA Indian Institute of Technology, Bombay 2nd November, 2011 #12;OVERVIEW Water Quality WATER TREATMENT PLANTS WATER TREATMENT PLANTS WATER TREATMENT PLANTS WATER TRE OVERVIEW OF THE LECTURE 1. Water Distribution Schemes Hand Pump

  20. Article accepted for publication in: Land and Water Magazine

    E-Print Network [OSTI]

    that flow to a waste water treatment plant. During large storm events, when the capacity of the treatment

  1. Flow transitions in two-dimensional foams

    E-Print Network [OSTI]

    Christopher Gilbreth; Scott Sullivan; Michael Dennin

    2006-08-08

    For sufficiently slow rates of strain, flowing foam can exhibit inhomogeneous flows. The nature of these flows is an area of active study in both two-dimensional model foams and three dimensional foam. Recent work in three-dimensional foam has identified three distinct regimes of flow [S. Rodts, J. C. Baudez, and P. Coussot, Europhys. Lett. {\\bf 69}, 636 (2005)]. Two of these regimes are identified with continuum behavior (full flow and shear-banding), and the third regime is identified as a discrete regime exhibiting extreme localization. In this paper, the discrete regime is studied in more detail using a model two dimensional foam: a bubble raft. We characterize the behavior of the bubble raft subjected to a constant rate of strain as a function of time, system size, and applied rate of strain. We observe localized flow that is consistent with the coexistence of a power-law fluid with rigid body rotation. As a function of applied rate of strain, there is a transition from a continuum description of the flow to discrete flow when the thickness of the flow region is approximately 10 bubbles. This occurs at an applied rotation rate of approximately $0.07 {\\rm s^{-1}}$.

  2. TYPICAL HOT WATER DRAW PATTERNS BASED ON FIELD DATA

    E-Print Network [OSTI]

    Lutz, Jim

    2014-01-01

    for Rating Residential Water Heaters. Atlanta, GA: ASHRAE,Procedures for Residential Water Heaters, Direct HeatingY. Qin, and M. Melody. "Hot Water Draw Patterns in Single-

  3. FEMP Designated Product Assessment for Commercial Gas Water Heaters

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01

    Water Heaters Appliance Gas storage water heaters Definitionto use for rating gas-fired storage and instantaneous waterefficiency for all gas-fired storage and instantaneous water

  4. Loading rate dependence of permeability evolution in porous aeolian sandstones 

    E-Print Network [OSTI]

    Ojala, Ira O; Ngwenya, Bryne T; Main, Ian G

    2004-01-01

    Mechanical properties of rocks are characterized by their notable dependence on the applied deformation rate. However, little is known about the strain rate dependence of fluid flow properties since most laboratory tests ...

  5. Transient eddy current flow metering

    E-Print Network [OSTI]

    Forbriger, Jan

    2015-01-01

    Measuring local velocities or entire flow rates in liquid metals or semiconductor melts is a notorious problem in many industrial applications, including metal casting and silicon crystal growth. We present a new variant of an old technique which relies on the continuous tracking of a flow-advected transient eddy current that is induced by a pulsed external magnetic field. This calibration-free method is validated by applying it to the velocity of a spinning disk made of aluminum. First tests at a rig with a flow of liquid GaInSn are also presented.

  6. Surface Water Data at Los Alamos National Laboratory 2006 Water Year

    SciTech Connect (OSTI)

    R.P. Romero, D. Ortiz, G. Kuyumjian

    2007-08-01

    The principal investigators collected and computed surface water discharge data from 44 stream-gaging stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs--two that flow into Canon de Valle and one that flows into Water Canyon--and peak flow data for 44 stations.

  7. Surface Water Data at Los Alamos National Laboratory: 2002 Water Year

    SciTech Connect (OSTI)

    D.A. Shaull; D. Ortiz; M.R. Alexander; R.P. Romero

    2003-03-03

    The principal investigators collected and computed surface water discharge data from 34 stream-gaging stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs--two that flow into Canon de Valle and one that flows into Water Canyon--and peak flow data from 16 stations.

  8. PACKAGE (Plasma Analysis, Chemical Kinetics and Generator Efficiency): a computer program for the calculation of partial chemical equilibrium/partial chemical rate controlled composition of multiphased mixtures under one dimensional steady flow

    SciTech Connect (OSTI)

    Yousefian, V.; Weinberg, M.H.; Haimes, R.

    1980-02-01

    The NASA CEC Code was the starting point for PACKAGE, whose function is to evaluate the composition of a multiphase combustion product mixture under the following chemical conditions: (1) total equilibrium with pure condensed species; (2) total equilibrium with ideal liquid solution; (3) partial equilibrium/partial finite rate chemistry; and (4) fully finite rate chemistry. The last three conditions were developed to treat the evolution of complex mixtures such as coal combustion products. The thermodynamic variable pairs considered are either pressure (P) and enthalpy, P and entropy, at P and temperature. Minimization of Gibbs free energy is used. This report gives detailed discussions of formulation and input/output information used in the code. Sample problems are given. The code development, description, and current programming constraints are discussed. (DLC)

  9. 7-29 A coal-burning power plant produces 300 MW of power. The amount of coal consumed during a one-day period and the rate of air flowing through the furnace are to be determined.

    E-Print Network [OSTI]

    Bahrami, Majid

    7-11 7-29 A coal-burning power plant produces 300 MW of power. The amount of coal consumed during The power plant operates steadily. 2 The kinetic and potential energy changes are zero. Properties The heating value of the coal is given to be 28,000 kJ/kg. Analysis (a) The rate and the amount of heat inputs

  10. Water Clean Water Clean

    E-Print Network [OSTI]

    Ishida, Yuko

    Keep Our Water Clean Keep Our Water Clean Home and garden pesticides and fertilizers are polluting residues wash into gutters, storm drains, and streams by rain,garden watering,or cleaning up drinking water. Follow these tips to keep our rivers, creeks, and oceans clean. What can you do to protect

  11. Water, water everywhere,

    E-Print Network [OSTI]

    Eberhard, Marc O.

    1 Water, water everywhere, but is it safe to drink? An Inquiry-based unit investigating the journey of your drinking water from source to tap of drinking water will contain different contaminants, based on surrounding land uses (guided inquiry activity

  12. Water Resources Forests & Water

    E-Print Network [OSTI]

    Water Resources Forests & Water More than half of the nation's freshwater supply originates on forestland. Healthy and sustainable forests can help ensure a continuous supply of clean and abundant water. Not only does forestland provide the cleanest water of any land use, it also helps absorb rainfall

  13. Flow cytometer

    DOE Patents [OSTI]

    Van den Engh, G.

    1995-11-07

    A Faraday cage is described which encloses the flow chamber of a cytometer. Ground planes associated with each field deflection plate inhibit electric fields from varying the charge on designated events/droplets and further concentrates. They also increase forces applied to a passing charged event for accurate focus while concomitantly inhibiting a potential shock hazard. 4 figs.

  14. Society of Petroleum Engineers Staggered In Time Coupling of Reservoir Flow Simulation and Geomechanical Defor-

    E-Print Network [OSTI]

    Minkoff, Susan E.

    ) the flow of oil, gas, and water fluid phases in the reservoir while the lat- ter has been specialized

  15. Dynamic wettability alteration in immiscible two-phase flow in porous media: Effect on transport properties and critical slowing down

    E-Print Network [OSTI]

    Flovik, Vegard; Hansen, Alex

    2015-01-01

    The change in contact angles due to the injection of low salinity water or any other wettability altering agent in an oil-rich porous medium is modeled by a network model of disordered pores transporting two immiscible fluids. We introduce a dynamic wettability altering mechanism, where the time dependent wetting property of each pore is determined by the cumulative flow of water through it. Simulations are performed to reach steady-state for different possible alterations in the wetting angle ($\\theta$). We find that deviation from oil-wet conditions re-mobilizes the stuck clusters and increases the oil fractional flow. However, the rate of increase in the fractional flow depends strongly on $\\theta$ and as $\\theta\\to 90^\\circ$, a critical angle, the system shows critical slowing down which is characterized by two dynamic critical exponents.

  16. Two-phase flow regimes and carry-over in a large-diameter model of a PWR hot leg. Final report

    SciTech Connect (OSTI)

    Hashemi, A.

    1986-04-01

    This report describes a series of tests investigating two-phase flow characterization and carryover in a transparent model of a Babcock and Wilson (B and W) Pressurized Water Reactor (PWR) hot leg geometry. This work was performed, inpart, to support the interpretation of results from the Once-Through Integral System (OTIS) and Multi-loop Integral Test (MIST) facilities. Test conditions were selected to cover a wide range of gas and liquid superficial velocities (0.01 m/s < j/sub g/ < 2 m/s, 0 < j/sub l/ < 0.5 m/s) expected to occur in a prototypical reactor geometry during a small break loss of coolant accident (SBLOCA). Tests at high gas superficial velocities (j/sub g/ > 2 m/s) were also performed for comparison with semi-analytical predictions. Tests were conducted in two different test rigs, one with 10.2-cm (4-inch) diameter pipe, and the other with 30.5-cm (12-inch) diameter pipe. Results include average void fraction, amount of water carryover through the U-bend, transient flow rates and pressure histories, and video movies of the two-phase flow phenomena. Results of the 10.2-cm (4-inch) pipe tests show generally good agreement with the Taitel and Dukler (1) flow regime map for vertical pipes. For the 30.5-cm pipe tests, slug flow was not observed. Instead, as the air flow rate was increased, the flow regime progressed from bubbly to churn-type flow with the presence of large bubbles (approximately 15-cm diameter). The results also indicate that flow regimes and collapsed liquid level are more strongly dependent on air superficial velocity than the water superficial velocity and that the amount of water carryover for a given air flow rate is a strong function of collapsed water level (void fraction). Furthermore, the results show that similar thresholds for breakdown in natural circulation flow exist between the 10.2-cm and 30.5-cm pipe tests for gas and liquid superficial velocities expected in a SBLOCA. 20 refs., 24 figs.

  17. Air/water subchannel measurements of the equilibrium quality and mass-flux distribution in a rod bundle. [BWR

    SciTech Connect (OSTI)

    Sterner, R.W.; Lahey, R.T. Jr.

    1983-07-01

    Subchannel measurements were performed in order to determine the equilibrium quality and mass flux distribution in a four rod bundle, using air/water flow. An isokinetic technique was used to sample the flow in the center, side and corner subchannels of this test section. Flow rates of the air and water in each sampled subchannel were measured. Experiments were performed for two test-section-average mass fluxes (0.333x10/sup 6/ and 0.666x10/sup 6/ lb/sub m//h-ft/sup 2/), and the test-section-average quality was varied from 0% to 0.54% for each mass flux. Single-phase liquid, bubbly, slug and churn-turbulent two-phase flow regimes were achieved. The observed data trends agreed with previous diabatic measurements in which the center subchannel had the highest quality and mass flux, while the corner subchannel had the lowest.

  18. Classification of Two-Phase Flow Patterns by Ultrasonic Sensing

    E-Print Network [OSTI]

    Ray, Asok

    in addition to several other factors such as the bulk flow rate, fluid properties, and flow boundary of their departure from the single-phase liquid as bubbly, capillary (also called cap-bubbly), slug, churn, annular

  19. Promising Technology: Tankless Gas Water Heaters

    Broader source: Energy.gov [DOE]

    A tankless gas water heater does not have a storage tank, as a conventional water heater does. Instead, a tankless water heater instantaneously heats water flowing over the heat exchanger coils when there is hot water demand. Because there is no tank, tankless water heaters have no standby energy losses that are associated with storage units. Another non-energy saving benefit is that a tankless water heater is much more compact.

  20. Chemical preconcentrator with integral thermal flow sensor

    DOE Patents [OSTI]

    Manginell, Ronald P. (Albuquerque, NM); Frye-Mason, Gregory C. (Cedar Crest, NM)

    2003-01-01

    A chemical preconcentrator with integral thermal flow sensor can be used to accurately measure fluid flow rate in a microanalytical system. The thermal flow sensor can be operated in either constant temperature or constant power mode and variants thereof. The chemical preconcentrator with integral thermal flow sensor can be fabricated with the same MEMS technology as the rest of the microanlaytical system. Because of its low heat capacity, low-loss, and small size, the chemical preconcentrator with integral thermal flow sensor is fast and efficient enough to be used in battery-powered, portable microanalytical systems.