Powered by Deep Web Technologies
Note: This page contains sample records for the topic "water flow rate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Does Water Content or Flow Rate Control Colloid Transport in Unsaturated Porous Media?  

SciTech Connect (OSTI)

Mobile colloids can play an important role in contaminant transport in soils: many contaminants exist in colloidal form, and colloids can facilitate transport of otherwise immobile contaminants. In unsaturated soils, colloid transport is, among other factors, affected by water content and flow rate. Our objective was to determine whether water content or flow rate is more important for colloid transport. We passed negatively charged polystyrene colloids (220 nm diameter) through unsaturated sand-filled columns under steady-state flow at different water contents (effective water saturations Se ranging from 0.1 to 1.0, with Se = (? – ?r)/(?s – ?r)) and flow rates (pore water velocities v of 5 and 10 cm/min). Water content was the dominant factor in our experiments. Colloid transport decreased with decreasing water content, and below a critical water content (Se < 0.1), colloid transport was inhibited, and colloids were strained in water films. Pendular ring and water film thickness calculations indicated that colloids can move only when pendular rings are interconnected. The flow rate affected retention of colloids in the secondary energy minimum, with less colloids being trapped when the flow rate increased. These results confirm the importance of both water content and flow rate for colloid transport in unsaturated porous media and highlight the dominant role of water content.

Thorsten Knappenberger; Markus Flury; Earl D. Mattson; James B. Harsh

2014-03-01T23:59:59.000Z

2

Effects of soil water repellency on infiltration rate and flow instability  

E-Print Network [OSTI]

. They are difficult to manage and pose negative effects on agricultural productivity and environmental sustain the contaminant transport to ground water. The purpose of this paper is to quantify the effects of soil waterEffects of soil water repellency on infiltration rate and flow instability Z. Wanga,*, Q.J. Wua,1

Wang, Zhi "Luke"

3

Effect of transpiration rate on internal plant resistance to water flow  

E-Print Network [OSTI]

models for liquid water flow in plants. because it enables one to estimate leaf water potential from known or estimated transpiration rates. The predicted leaf water potential can be used for scheduling irrigation ~ The leaf diffusion resistance... OF LITERATURE Soil Resistance Internal Plant Resistance Ohm's Law Analogy Mathematical Models of Water Transport in the Soil-Plant- Atmosphere System . ~ Poiseuille's Law . ~ ~ ~ ~ Leaf Diffusion and Aerodynamic Resistances ~ Conclusions of Literature...

Hailey, James Lester

1971-01-01T23:59:59.000Z

4

Piping flow erosion in water retaining structures: inferring erosion rates from hole erosion tests and quantifying the failure time  

E-Print Network [OSTI]

Piping flow erosion in water retaining structures: inferring erosion rates from hole erosion tests-en-Provence Cedex 5, France E-mail: stephane.bonelli@cemagref.fr Abstract The piping flow erosion process, involving structures. Such a pipe can be imputed to roots or burrows. The coefficient of erosion must be known in order

Paris-Sud XI, Université de

5

Historical river flow rates for dose calculations  

SciTech Connect (OSTI)

Annual average river flow rates are required input to the LADTAP Computer Code for calculating offsite doses from liquid releases of radioactive materials to the Savannah River. The source of information on annual river flow rates used in dose calculations varies, depending on whether calculations are for retrospective releases or prospective releases. Examples of these types of releases are: Retrospective - releases from routine operations (annual environmental reports) and short term release incidents that have occurred. Prospective - releases that might be expected in the future from routine or abnormal operation of existing or new facilities (EIS`s, EID`S, SAR`S, etc.). This memorandum provides historical flow rates at the downstream gauging station at Highway 301 for use in retrospective dose calculations and derives flow rate data for the Beaufort-Jasper and Port Wentworth water treatment plants.

Carlton, W.H.

1991-06-10T23:59:59.000Z

6

Smokeless Control of Flare Steam Flow Rate  

E-Print Network [OSTI]

measurement of mass flow rate of flare gas, in spite of the hostile environment. Its use for initiating control of flare steam flow rate and the addition of molecular weight compensation, using specific gravity (relative density) measurement to achieve...

Agar, J.; Balls, B. W.

1979-01-01T23:59:59.000Z

7

Control Strategies for Centrifugal Pumps with Variable Flow Rate...  

Broader source: Energy.gov (indexed) [DOE]

Control Strategies for Centrifugal Pumps with Variable Flow Rate Requirements Control Strategies for Centrifugal Pumps with Variable Flow Rate Requirements This tip sheet discusses...

8

Multi-rate flowing Wellbore electric conductivity logging method  

SciTech Connect (OSTI)

The flowing wellbore electric conductivity logging method involves the replacement of wellbore water by de-ionized or constant-salinity water, followed by constant pumping with rate Q, during which a series of fluid electric conductivity logs are taken. The logs can be analyzed to identify depth locations of inflow, and evaluate the transmissivity and electric conductivity (salinity) of the fluid at each inflow point. The present paper proposes the use of the method with two or more pumping rates. In particular it is recommended that the method be applied three times with pumping rates Q, Q /2, and 2Q. Then a combined analysis of the multi-rate data allows an efficient means of determining transmissivity and salinity values of all inflow points along a well with a confidence measure, as well as their inherent or far-field pressure heads. The method is illustrated by a practical example.

Tsang, Chin-Fu; Doughty, Christine

2003-04-22T23:59:59.000Z

9

International Borders, Ground Water Flow, and Hydroschizophrenia  

E-Print Network [OSTI]

beginning to be recognized. The hidden nature of ground water and the lack of international law governingInternational Borders, Ground Water Flow, and Hydroschizophrenia by Todd Jarvis1,2, Mark Giordano3 conducted on transboundary water, transboundary water law, and the mitigation of transboundary water

Wolf, Aaron

10

Solids flow rate measurement in dense slurries  

SciTech Connect (OSTI)

Accurate and rapid flow rate measurement of solids in dense slurries remains an unsolved technical problem, with important industrial applications in chemical processing plants and long-distance solids conveyance. In a hostile two-phase medium, such a measurement calls for two independent parameter determinations, both by non-intrusive means. Typically, dense slurries tend to flow in laminar, non-Newtonian mode, eliminating most conventional means that usually rely on calibration (which becomes more difficult and costly for high pressure and temperature media). These issues are reviewed, and specific solutions are recommended in this report. Detailed calculations that lead to improved measuring device designs are presented for both bulk density and average velocity measurements. Cross-correlation, chosen here for the latter task, has long been too inaccurate for practical applications. The cause and the cure of this deficiency are discussed using theory-supported modeling. Fluid Mechanics are used to develop the velocity profiles of laminar non-Newtonian flow in a rectangular duct. This geometry uniquely allows the design of highly accurate `capacitive` devices and also lends itself to gamma transmission densitometry on an absolute basis. An absolute readout, though of less accuracy, is also available from a capacitive densitometer and a pair of capacitive sensors yields signals suitable for cross-correlation velocity measurement.

Porges, K.G.; Doss, E.D.

1993-09-01T23:59:59.000Z

11

Transition Path Sampling of Water Exchange Rates and Mechanisms...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Path Sampling of Water Exchange Rates and Mechanisms around Aqueous Ions . Transition Path Sampling of Water Exchange Rates and Mechanisms around Aqueous Ions . Abstract: The rates...

12

Cocurrent gas - liquid flow at high rates in small particle beds  

SciTech Connect (OSTI)

Gas liquid cocurrent flow at high pressure drop often occurs near the well bore and in grabel filled perforations during production of oil and geothermal energy. Available studies have, however, emphasized large particles and low pressure drops. Here, results for air-water flows to high fluxes in beds of small glass spheres and in 0.44 mm sand, show the influence of particle size, and flow composition and rate, on pressure drop enhancement and flow regime extent.

Wilemon, M.; Torrest, R.S. (Dept. of Chemical Engineering, Arizona State Univ., Tempe, AZ (US))

1988-01-01T23:59:59.000Z

13

Flow Rate Estimates Qs and As Q: What is the Flow Rate Technical Group?  

E-Print Network [OSTI]

to the BP oil spill in the Gulf of Mexico be stepped up as a result of the new flow rate estimates released their initial estimate. · The first approach analyzed how much oil is on the surface of the Gulf of Mexico using,000 and 270,000 barrels of oil are on the surface of the Gulf of Mexico and that a similar amount had already

Fleskes, Joe

14

Scaling of the magnetic reconnection rate with symmetric shear flow  

SciTech Connect (OSTI)

The scaling of the reconnection rate during (fast) Hall magnetic reconnection in the presence of an oppositely directed bulk shear flow parallel to the reconnecting magnetic field is studied using two-dimensional numerical simulations of Hall reconnection with two different codes. Previous studies noted that the reconnection rate falls with increasing flow speed and shuts off entirely for super-Alfvenic flow, but no quantitative expression for the reconnection rate in sub-Alfvenic shear flows is known. An expression for the scaling of the reconnection rate is presented.

Cassak, P. A. [Department of Physics, West Virginia University, Morgantown, West Virginia 26506 (United States); Otto, A. [Geophysical Institute, University of Alaska-Fairbanks, Fairbanks, Alaska 99775 (United States)

2011-07-15T23:59:59.000Z

15

VARIABLE FIRING RATE OIL BURNER USING PULSE FUEL FLOW CONTROL.  

SciTech Connect (OSTI)

The residential oil burner market is currently dominated by the pressure-atomized retention head burner, which has an excellent reputation for reliability and efficiency. In this burner, oil is delivered to a fuel nozzle at pressures from 100 to 150 psi. In addition, to atomizing the fuel, the small, carefully controlled size of the nozzle exit orifice serves to control the burner firing rate. Burners of this type are currently available at firing rates of more than 0.5 gallons-per-hour (70,000 Btu/hr). Nozzles have been made for lower firing rates, but experience has shown that such nozzles suffer rapid fouling of the necessarily small passages, leading to bad spray patterns and poor combustion performance. Also, traditionally burners and the nozzles are oversized to exceed the maximum demand. Typically, this is figured as follows. The heating load of the house on the coldest day for the location is considered to define the maximum heat load. The contractor or installer adds to this to provide a safety margin and for future expansion of the house. If the unit is a boiler that provides domestic hot water through the use of a tankless heating coil, the burner capacity is further increased. On the contrary, for a majority of the time, the heating system is satisfying a much smaller load, as only rarely do all these demands add up. Consequently, the average output of the heating system has to be much less than the design capacity and this is accomplished by start and stop cycling operation of the system so that the time-averaged output equals the demand. However, this has been demonstrated to lead to overall efficiencies lower than the steady-state efficiency. Therefore, the two main reasons for the current practice of using oil burners much larger than necessary for space heating are the unavailability of reliable low firing rate oil burners and the desire to assure adequate input rate for short duration, high draw domestic hot water loads. One approach to solve this problem is to develop a burner, which can operate at two firing rates, with the lower rate being significantly lower than 0.5 gallons per hour. This paper describes the initial results of adopting this approach through a pulsed flow nozzle. It has been shown that the concept of flow modulation with a small solenoid valve is feasible. Especially in the second configuration tested, where the Lee valve was integrated with the nozzle, reasonable modulation in flow of the order of 1.7 could be achieved. For this first prototype, the combustion performance is still not quite satisfactory. Improvements in operation, for example by providing a sharp and positive shut-off so that there is no flow under low pressures with consequent poor atomization could lead to better combustion performance. This could be achieved by using nozzles that have shut off or check valves for example. It is recommended that more work in cooperation with the valve manufacturer could produce a technically viable system. Marketability is of course a far more complex problem to be addressed once a technically viable product is available.

KRISHNA,C.R.; BUTCHER,T.A.; KAMATH,B.R.

2004-10-01T23:59:59.000Z

16

Water and Mercury Pipe Flow Simulation in FLUENTSimulation in FLUENT  

E-Print Network [OSTI]

Water and Mercury Pipe Flow Simulation in FLUENTSimulation in FLUENT Yan Zhan, Foluso Ladeinde Stony Brook University thSep.21th , 2010 #12;OutlineOutline · Straight Pipe flowStraight Pipe flow · Curved pipe flow #12;OutlineOutline · Straight Pipe flowStraight Pipe flow · Curved pipe flow #12

McDonald, Kirk

17

Position paper -- Tank ventilation system design air flow rates  

SciTech Connect (OSTI)

The purpose of this paper is to document a project position on required ventilation system design air flow rates for the waste storage tanks currently being designed by project W-236A, the Multi-Function Waste Tank Facility (MWTF). The Title 1 design primary tank heat removal system consists of two systems: a primary tank vapor space ventilation system; and an annulus ventilation system. At the conclusion of Title 1 design, air flow rates for the primary and annulus ventilation systems were 960 scfm and 4,400 scfm, respectively, per tank. These design flow rates were capable of removing 1,250,000 Btu/hr from each tank. However, recently completed and ongoing studies have resulted in a design change to reduce the extreme case heat load to 700,000 Btu/hr. This revision of the extreme case heat load, coupled with results of scale model evaporative testing performed by WHC Thermal Hydraulics, allow for a reduction of the design air flow rates for both primary and annulus ventilation systems. Based on the preceding discussion, ICF Kaiser Hanford Co. concludes that the design should incorporate the following design air flow rates: Primary ventilation system--500 scfm maximum and Annulus ventilation system--1,100 scfm maximum. In addition, the minimum air flow rates in the primary and annulus ventilation systems will be investigated during Title 2 design. The results of the Title 2 investigation will determine the range of available temperature control using variable air flows to both ventilation systems.

Goolsby, G.K.

1995-01-04T23:59:59.000Z

18

Experimental on two sensors combination used in horizontal pipe gas-water two-phase flow  

SciTech Connect (OSTI)

Gas-water two phase flow phenomenon widely exists in production and living and the measurement of it is meaningful. A new type of long-waist cone flow sensor has been designed to measure two-phase mass flow rate. Six rings structure of conductance probe is used to measure volume fraction and axial velocity. The calibration of them have been made. Two sensors have been combined in horizontal pipeline experiment to measure two-phase flow mass flow rate. Several model of gas-water two-phase flow has been discussed. The calculation errors of total mass flow rate measurement is less than 5% based on the revised homogeneous flow model.

Wu, Hao; Dong, Feng [Tianjin Key Laboratory of Process Measurement and Control, School of Electrical Engineering and Automation, Tianjin University, Tianjin (China)

2014-04-11T23:59:59.000Z

19

Two-phase air-water stratified flow measurement using ultrasonic techniques  

SciTech Connect (OSTI)

In this paper, a time resolved ultrasound system was developed for investigating two-phase air-water stratified flow. The hardware of the system includes a pulsed wave transducer, a pulser/receiver, and a digital oscilloscope. The time domain cross correlation method is used to calculate the velocity profile along ultrasonic beam. The system is able to provide velocities with spatial resolution of around 1mm and the temporal resolution of 200?s. Experiments were carried out on single phase water flow and two-phase air-water stratified flow. For single phase water flow, the flow rates from ultrasound system were compared with those from electromagnetic flow (EM) meter, which showed good agreement. Then, the experiments were conducted on two-phase air-water stratified flow and the results were given. Compared with liquid height measurement from conductance probe, it indicated that the measured velocities were explainable.

Fan, Shiwei; Yan, Tinghu; Yeung, Hoi [School of Engineering, Cranfield University, Cranfield, Bedfordshire MK43 0AL (United Kingdom)

2014-04-11T23:59:59.000Z

20

Effects of external pressure on the terminal lymphatic flow rate  

E-Print Network [OSTI]

pressure applied to the skin of the canine cause the terminal lymphat- ic flow rate to increase until the external pressure reaches 60mm Hg. At an external pressure of 60mm Hg reduced lymphatic flow is observed in some of the test animals. At 75mm Hg... resulting from the external pressure begins to col- lapse the lymph vessels. External pressure between 60 and 75mm Hg restricts or completely occludes the terminal lymphatic flow rate. ACKNOWLEDGENENTS I would like to express my appreciation...

Seale, James Lewis

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water flow rate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Connectivity due to preferential flow controls water flow and solute transport at the hillslope scale  

E-Print Network [OSTI]

feedback, flow through the fractured bedrock, kinematic wave routing and flow through discrete preferentialConnectivity due to preferential flow controls water flow and solute transport at the hillslope the major controls on water flow and solute transport at the hillslope scale remains a major topic

Weiler, Markus

22

Flow Analysis on a Limited Volume Chilled Water System  

SciTech Connect (OSTI)

LANL Currently has a limited volume chilled water system for use in a glove box, but the system needs to be updated. Before we start building our new system, a flow analysis is needed to ensure that there are no high flow rates, extreme pressures, or any other hazards involved in the system. In this project the piping system is extremely important to us because it directly affects the overall design of the entire system. The primary components necessary for the chilled water piping system are shown in the design. They include the pipes themselves (perhaps of more than one diameter), the various fitting used to connect the individual pipes to form the desired system, the flow rate control devices (valves), and the pumps that add energy to the fluid. Even the most simple pipe systems are actually quite complex when they are viewed in terms of rigorous analytical considerations. I used an 'exact' analysis and dimensional analysis considerations combined with experimental results for this project. When 'real-world' effects are important (such as viscous effects in pipe flows), it is often difficult or impossible to use only theoretical methods to obtain the desired results. A judicious combination of experimental data with theoretical considerations and dimensional analysis are needed in order to reduce risks to an acceptable level.

Zheng, Lin [Los Alamos National Laboratory

2012-07-31T23:59:59.000Z

23

A Multiscale Investigation of Ground Water Flow at Clear Lake, Iowa  

E-Print Network [OSTI]

targets. The model produced ground water inflow and outflow rates of 14,300 and 9200 m3/d, respectively­related problems in the lake and its water- shed, their likely causes, and potential remedial measuresA Multiscale Investigation of Ground Water Flow at Clear Lake, Iowa by William W. Simpkins Abstract

Simpkins, William W.

24

Integrated Water Management for Environmental Flows in the Rio Grande  

E-Print Network [OSTI]

flows; Reservoir reoperation; Integrated water management; Adaptive management; Rio Grande. IntroductionIntegrated Water Management for Environmental Flows in the Rio Grande S. Sandoval-Solis, A.M.ASCE1 the environment. This paper presents an integrated water management approach to meet current and future water

Pasternack, Gregory B.

25

Minimum Stream Flow and Water Sale Contracts (Indiana)  

Broader source: Energy.gov [DOE]

The Indiana Natural Resources Commission may provide certain minimum quantities of stream flow or sell water on a unit pricing basis for water supply purposes from the water supply storage in...

26

Rate Setting for Small Water Systems  

E-Print Network [OSTI]

in detail the many resources that are available to help managers of small water systems make wise business decisions....

Dozier, Monty; Theodori, Gene L.; Jensen, Ricard

2007-03-28T23:59:59.000Z

27

SHORT COMMUNICATION Flow rate-modified streaming effects in heterogeneous  

E-Print Network [OSTI]

the streaming potential (Norde and Rouwendal 1990; Elgersma et al. 1992; Werner et al. 1999) or streamingSHORT COMMUNICATION Flow rate-modified streaming effects in heterogeneous microchannels Junjie Zhu relations is developed to study the streaming potential and streaming current in heterogeneous micro

Xuan, Xiangchun "Schwann"

28

Application Study of the Pump Water Flow Station for Building Energy Consumption Monitoring and Control Optimization  

E-Print Network [OSTI]

. For example, the Venturi meter is commonly used for steam flow measurement, but it is less commonly used for water flow measurement because of the poor accuracy at low flow rates and high installation cost. 2) Displacement flow meter: The meter works... by using the fluid to rotate or displace a device inserted into the flow stream, e.g., a turbine flow meter, tangential paddlewheel meter, etc. It causes extra pressure drop. The bearing wears out and calibration is often needed to ensure accuracy...

Liu, G.; Liu, M.

2006-01-01T23:59:59.000Z

29

Water Modeling of Steel Flow, Air Entrainment and Filtration  

E-Print Network [OSTI]

Water Modeling of Steel Flow, Air Entrainment and Filtration Christoph Beckermann Associate Beckermann, C., "Water Modeling of Steel Flow, Air Entrainment and Filtration," in Proceedings of the 46th, 1992. #12;Abstract This paper presents an analysis of water modeling of steel pouring to study (1) air

Beckermann, Christoph

30

Cooling rate, heating rate, and aging effects in glassy water Nicolas Giovambattista,1  

E-Print Network [OSTI]

be glassified by cooling using hyper- quenching techniques (i.e., with rates of the order of 105 K/s [8Cooling rate, heating rate, and aging effects in glassy water Nicolas Giovambattista,1 H. Eugene of water molecules during the process of generating a glass by cooling, and during the process

Sciortino, Francesco

31

EVALUATING TRADEOFFS BETWEEN ENVIRONMENTAL FLOW PROTECTIONS AND AGRICULTURAL WATER SECURITY  

E-Print Network [OSTI]

EVALUATING TRADEOFFS BETWEEN ENVIRONMENTAL FLOW PROTECTIONS AND AGRICULTURAL WATER SECURITY T. E Department of Environmental Science, Policy and Management, University of California, Berkeley, California, USA ABSTRACT River basin managers responsible for water allocation decisions are increasingly required

Merenlender, Adina

32

THEORY OF THREE-PHASE FLOW APPLIED TO WATER-ALTERNATING-GAS ENHANCED OIL RECOVERY  

E-Print Network [OSTI]

is the key to this improvement. 1. Introduction In secondary oil recovery, water or gas is injectedTHEORY OF THREE-PHASE FLOW APPLIED TO WATER-ALTERNATING-GAS ENHANCED OIL RECOVERY D. MARCHESIN, we show that this theory can be applied to increase the rate of oil recovery, during certain

33

Uncertainty Analysis for a Virtual Flow Meter Using an Air-Handling Unit Chilled Water Valve  

SciTech Connect (OSTI)

A virtual water flow meter is developed that uses the chilled water control valve on an air-handling unit as a measurement device. The flow rate of water through the valve is calculated using the differential pressure across the valve and its associated coil, the valve command, and an empirically determined valve characteristic curve. Thus, the probability of error in the measurements is significantly greater than for conventionally manufactured flow meters. In this paper, mathematical models are developed and used to conduct uncertainty analysis for the virtual flow meter, and the results from the virtual meter are compared to measurements made with an ultrasonic flow meter. Theoretical uncertainty analysis shows that the total uncertainty in flow rates from the virtual flow meter is 1.46% with 95% confidence; comparison of virtual flow meter results with measurements from an ultrasonic flow meter yielded anuncertainty of 1.46% with 99% confidence. The comparable results from the theoretical uncertainty analysis and empirical comparison with the ultrasonic flow meter corroborate each other, and tend to validate the approach to computationally estimating uncertainty for virtual sensors introduced in this study.

Song, Li; Wang, Gang; Brambley, Michael R.

2013-04-28T23:59:59.000Z

34

Flow from a Tank Consider water flowing from a tank with water through a hole in its bottom. Denote  

E-Print Network [OSTI]

Flow from a Tank Consider water flowing from a tank with water through a hole in its bottom. Denote by h(t) the height of water in the tank at time t, v(t) the speed of the water leaving through the hole at time t, A(h) the cross-sectional area of the tank at height h and a the cross- sectional area

Feldman, Joel

35

Forced convective flow and heat transfer of upward cocurrent air-water slug flow in vertical plain and swirl tubes  

SciTech Connect (OSTI)

This experimental study comparatively examined the two-phase flow structures, pressured drops and heat transfer performances for the cocurrent air-water slug flows in the vertical tubes with and without the spiky twisted tape insert. The two-phase flow structures in the plain and swirl tubes were imaged using the computerized high frame-rate videography with the Taylor bubble velocity measured. Superficial liquid Reynolds number (Re{sub L}) and air-to-water mass flow ratio (AW), which were respectively in the ranges of 4000-10000 and 0.003-0.02 were selected as the controlling parameters to specify the flow condition and derive the heat transfer correlations. Tube-wise averaged void fraction and Taylor bubble velocity were well correlated by the modified drift flux models for both plain and swirl tubes at the slug flow condition. A set of selected data obtained from the plain and swirl tubes was comparatively examined to highlight the impacts of the spiky twisted tape on the air-water interfacial structure and the pressure drop and heat transfer performances. Empirical heat transfer correlations that permitted the evaluation of individual and interdependent Re{sub L} and AW impacts on heat transfer in the developed flow regions of the plain and swirl tubes at the slug flow condition were derived. (author)

Chang, Shyy Woei [Thermal Fluids Laboratory, National Kaohsiung Marine University, No. 142, Haijhuan Road, Nanzih District, Kaohsiung City 81143 (China); Yang, Tsun Lirng [Department of Marine Engineering, National Kaohsiung Marine University, No. 142, Haijhuan Road, Nanzih District, Kaohsiung City 81143 (China)

2009-10-15T23:59:59.000Z

36

(Preview Draft) Chapter 5. Water Flows in the Mono Basin  

E-Print Network [OSTI]

of people began a campaign to save a dying lake, taking on not only the City of Los Angeles, but the entire a modeling point of view, Mono Lake is well suited to demonstrate the power of stock and flow modeling. We will be simulating the flows and accumulation of water, so the stock and flow concepts will be easy to understand

Ford, Andrew

37

DRAFT: Mass Balance Team, part of Flow Rate Technical Group, Completes Estimate of Oil Flow  

E-Print Network [OSTI]

with the reservoir will also be addressed by integration with the MMS team and by incorporation of some degree) The Department of Energy (DOE) was asked to conduct a nodal analysis to estimate flow rates from reservoir to release points. This effort will rely on input from a research team coordinated by the Minerals Management

Fleskes, Joe

38

WATER FLOW THROUGH TEMPERATE GLACIERS Andrew G. Fountain1  

E-Print Network [OSTI]

WATER FLOW THROUGH TEMPERATE GLACIERS Andrew G. Fountain1 Department of Geology Portland State, Washington Abstract. Understanding water movement through a glacier is fundamental to several critical issues glacierized drainage basins. To this end we have synthesized a conceptual model of water movement through

Fountain, Andrew G.

39

Properties of water surface discharge at different pulse repetition rates  

SciTech Connect (OSTI)

The properties of water surface discharge plasma for variety of pulse repetition rates are investigated. A magnetic pulse compression (MPC) pulsed power modulator able to deliver pulse repetition rates up to 1000?Hz, with 0.5?J per pulse energy output at 25?kV, was used as the pulsed power source. Positive pulse with a point-to-plane electrode configuration was used for the experiments. The concentration and production yield of hydrogen peroxide (H{sub 2}O{sub 2}) were quantitatively measured and orange II organic dye was treated, to evaluate the chemical properties of the discharge reactor. Experimental results show that the physical and chemical properties of water surface discharge are not influenced by pulse repetition rate, very different from those observed for under water discharge. The production yield of H{sub 2}O{sub 2} and degradation rate per pulse of the dye did not significantly vary at different pulse repetition rates under a constant discharge mode on water surface. In addition, the solution temperature, pH, and conductivity for both water surface and underwater discharge reactors were measured to compare their plasma properties for different pulse repetition rates. The results confirm that surface discharge can be employed at high pulse repetition rates as a reliable and advantageous method for industrial and environmental decontamination applications.

Ruma,; Yoshihara, K. [Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555 (Japan); Hosseini, S. H. R., E-mail: hosseini@kumamoto-u.ac.jp; Sakugawa, T.; Akiyama, H. [Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555 (Japan); Institute of Pulsed Power Science, Kumamoto University, Kumamoto 860-8555 (Japan); Akiyama, M. [Department of Electrical and Electronic Engineering, Kagoshima University, Kagoshima 890-0065 (Japan); Lukeš, P. [Institute of Plasma Physics, AS CR, Prague, Prague 18200 (Czech Republic)

2014-09-28T23:59:59.000Z

40

Realistic Hot Water Draw Specification for Rating Solar Water Heaters: Preprint  

SciTech Connect (OSTI)

In the United States, annual performance ratings for solar water heaters are simulated, using TMY weather and specified water draw. A more-realistic ratings draw is proposed that eliminates most bias by improving mains inlet temperature and by specifying realistic hot water use. This paper outlines the current and the proposed draws and estimates typical ratings changes from draw specification changes for typical systems in four cities.

Burch, J.

2012-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "water flow rate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Optimality and Conductivity for Water Flow: From Landscapes, to Unsaturated Soils, to Plant Leaves  

SciTech Connect (OSTI)

Optimality principles have been widely used in many areas. Based on an optimality principle that any flow field will tend toward a minimum in the energy dissipation rate, this work shows that there exists a unified form of conductivity relationship for three different flow systems: landscapes, unsaturated soils and plant leaves. The conductivity, the ratio of water flux to energy gradient, is a power function of water flux although the power value is system dependent. This relationship indicates that to minimize energy dissipation rate for a whole system, water flow has a small resistance (or a large conductivity) at a location of large water flux. Empirical evidence supports validity of the relationship for landscape and unsaturated soils (under gravity dominated conditions). Numerical simulation results also show that the relationship can capture the key features of hydraulic structure for a plant leaf, although more studies are needed to further confirm its validity. Especially, it is of interest that according to this relationship, hydraulic conductivity for gravity-dominated unsaturated flow, unlike that defined in the classic theories, depends on not only capillary pressure (or saturation), but also the water flux. Use of the optimality principle allows for determining useful results that are applicable to a broad range of areas involving highly non-linear processes and may not be possible to obtain from classic theories describing water flow processes.

Liu, H.H.

2012-02-23T23:59:59.000Z

42

Stream flows for salmon and society: managing water for human and ecosystem needs in Mediterranean-climate California  

E-Print Network [OSTI]

of vineyard water management on environmental flows to (i)in water management practices on environmental flows.of environmental flow allocations in water management has

Grantham, Theodore Evan William

2010-01-01T23:59:59.000Z

43

Stream flows for salmon and society: managing water for human and ecosystem needs in Mediterranean-climate California  

E-Print Network [OSTI]

of vineyard water management on environmental flows to (i)of environmental flow allocations in water management hasin water management practices on environmental flows.

Grantham, Theodore Evan William

2010-01-01T23:59:59.000Z

44

A study of boiling water flow regimes at low pressures  

E-Print Network [OSTI]

"A comprehensive experimental program to examine flow regimes at pressures below 100 psia for boiling of water in tubes was carried out. An electrical probe, which measures the resistance of the fluid between the centerline ...

Fiori, Mario P.

1966-01-01T23:59:59.000Z

45

Water and Solute Flow in a Highly-Structured Soil  

E-Print Network [OSTI]

Prevention of groundwater contamination by agricultural activities is a high priority in the United States. Water and contaminants often follow particular flow paths through the soil that lead to rapid movement of pesticides out of the rootzone...

Hallmark, C. Tom; Wilding, Larry P.; McInnes, Kevin J.; Heuvelman, Willem J.

46

Temperatures, heat flow, and water chemistry from drill holes...  

Open Energy Info (EERE)

Temperatures, heat flow, and water chemistry from drill holes in the Raft River geothermal system, Cassia County, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to...

47

UpStream: Motivating Water Conservation with Low-Cost Water Flow Sensing and Persuasive Displays  

E-Print Network [OSTI]

in the world does not have access to safe drinking water (1.1 billion people), over 2.5 billion lack adequateUpStream: Motivating Water Conservation with Low-Cost Water Flow Sensing and Persuasive Displays, Pittsburgh, PA, USA {stace, paulos}@cs.cmu.edu ABSTRACT Water is our most precious and most rapidly declining

Paulos, Eric

48

E-Print Network 3.0 - apoplastic water flow Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

apoplastic water flow Search Powered by Explorit Topic List Advanced Search Sample search results for: apoplastic water flow Page: << < 1 2 3 4 5 > >> 1 RESEARCH PAPER High...

49

Propeller Flow Meter  

E-Print Network [OSTI]

Propeller flow meters are commonly used to measure water flow rate. They can also be used to estimate irrigation water use. This publication explains how to select, install, read and maintain propeller flow meters....

Enciso, Juan; Santistevan, Dean; Hla, Aung K.

2007-10-01T23:59:59.000Z

50

Slip ratio in dispersed viscous oil-water pipe flow  

SciTech Connect (OSTI)

In this article, dispersed flow of viscous oil and water is investigated. The experimental work was performed in a 26.2-mm-i.d. 12-m-long horizontal glass pipe using water and oil (viscosity of 100 mPa s and density of 860 kg/m{sup 3}) as test fluids. High-speed video recording and a new wire-mesh sensor based on capacitance (permittivity) measurements were used to characterize the flow. Furthermore, holdup data were obtained using quick-closing-valves technique (QCV). An interesting finding was the oil-water slip ratio greater than one for dispersed flow at high Reynolds number. Chordal phase fraction distribution diagrams and images of the holdup distribution over the pipe cross-section obtained via wire-mesh sensor indicated a significant amount of water near to the pipe wall for the three different dispersed flow patterns identified in this study: oil-in-water homogeneous dispersion (o/w H), oil-in-water non-homogeneous dispersion (o/w NH) and Dual continuous (Do/w and Dw/o). The phase slip might be explained by the existence of a water film surrounding the homogeneous mixture of oil-in-water in a hidrofilic-oilfobic pipe. (author)

Rodriguez, Iara H.; Yamaguti, Henrique K.B.; de Castro, Marcelo S.; Rodriguez, Oscar M.H. [Department of Mechanical Engineering, Engineering School of Sao Carlos, University of Sao Paulo (USP), Av. Trabalhador Sao Carlense, 400, 13566-970 Sao Carlos, SP (Brazil); Da Silva, Marco J. [Forschungszentrum Dresden-Rossendorf e. V., Institute of Safety Research, PO Box 510119, 01314 Dresden (Germany)

2011-01-15T23:59:59.000Z

51

Introduction Application of numerical models of ground water flow  

E-Print Network [OSTI]

(Portniaguine and Solomon 1998), and ground water temperature (Doussan et al. 1994). Compared to calibration depended on calibration methodology; models calibrated with multiple targets simulated q more accurately of Calibration Methodology on Ground Water Flow Predictions by James E. Saiers1, David P. Genereux2, and Carl H

Saiers, James

52

Insights into Cold Water Injection Stimulation Effects through Analytical Solutions to Flow and Heat Transport  

SciTech Connect (OSTI)

Wells in traditional hydrothermal reservoirs are used to extract heat and to dispose of cooled water. In the first case, high productivity (the ratio of production flow rate to the pressure differential required to produce that rate) to is preferred in order to maximize power generation, while minimizing the parasitic energy loss of pumping. In the second case, high injectivity (the ratio of injection flow rate to the pressure differential required to produce that rate) is preferred, in order to reduce pumping costs. In order to improve productivity or injectivity, cold water is sometimes injected into the reservoir in an attempt to cool and contract the surrounding rock matrix and thereby induce dilation and/or extension of existing fractures or to generate new fractures. Though the increases in permeability associated with these changes are likely localized, by improving connectivity to more extensive high-permeability fractures they can at least temporarily provide substantially improved productivity or injectivity.

M.A. Plummer

2013-09-01T23:59:59.000Z

53

Water Exchange Rates and Molecular Mechanism around Aqueous Halide Ions  

SciTech Connect (OSTI)

Molecular dynamics simulations were performed to systematically study the water-exchange mechanism around aqueous chloride, bromide, and iodide ions. Transition state theory, Grote-Hynes theory, and the reactive flux method were employed to compute water exchange rates. We computed the pressure dependence of rate constants and the corresponding activation volumes to investigate the mechanism of the solvent exchange event. The activation volumes obtained using the transition state theory rate constants are negative for all the three anions, thus indicating an associative mechanism. Contrary to the transition state theory results, activation volumes obtained using rate constants from Grote-Hynes theory and the reactive flux method are positive, thus indicating a dissociative mechanism. The Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences (BES), of the U.S. Department of Energy (DOE) funded this work. Battelle operates Pacific Northwest National Laboratory for DOE. The calculations were carried out using computer resources provided by BES.

Annapureddy, Harsha V.; Dang, Liem X.

2014-07-17T23:59:59.000Z

54

Flow Rate Dependence of Soil Hydraulic Characteristics D. Wildenschild,* J. W. Hopmans, J. Simunek  

E-Print Network [OSTI]

Flow Rate Dependence of Soil Hydraulic Characteristics D. Wildenschild,* J. W. Hopmans, J. Simunek that some of the pores in theanalyzed using both steady state and transient flow analysis. One before their air-entry pres- loamy soil to evaluate the influence of flow rate on the calculated sure

Wildenschild, Dorthe

55

Method and apparatus for controlling the flow rate of mercury in a flow system  

DOE Patents [OSTI]

A method for increasing the mercury flow rate to a photochemical mercury enrichment utilizing an entrainment system comprises the steps of passing a carrier gas over a pool of mercury maintained at a first temperature T1, wherein the carrier gas entrains mercury vapor; passing said mercury vapor entrained carrier gas to a second temperature zone T2 having temperature less than T1 to condense said entrained mercury vapor, thereby producing a saturated Hg condition in the carrier gas; and passing said saturated Hg carrier gas to said photochemical enrichment reactor.

Grossman, Mark W. (Belmont, MA); Speer, Richard (Reading, MA)

1991-01-01T23:59:59.000Z

56

Variational bounds on the energy dissipation rate in body-forced shear flow  

E-Print Network [OSTI]

, the bulk (space and time averaged) dissipation rate per unit mass is proportional to the power required applied to many flows driven by boundary conditions, including shear flows and a variety of thermal

Petrov, Nikola

57

Application of Multi-rate Flowing Fluid Electric ConductivityLogging Method to Well DH-2, Tono Site, Japan  

SciTech Connect (OSTI)

The flowing fluid electric conductivity (FEC) logging method, wellbore fluid is replaced with de-ionized water, following which FEC profiles in the wellbore are measured at a series of times while the well is pumped at a constant rate. Locations were fluid enters the wellbore show peaks in the FEC logs, which may be analyzed to infer inflow strengths and salinities of permeable features intersected by the wellbore. In multi-rate flowing FEC logging, the flowing FEC logging method is repeated using two or more pumping rates, which enables the transmissivities and inherent pressure heads of these features to be estimated as well. We perform multi-rate FEC logging on a deep borehole in fractured granitic rock, using three different pumping rates. Results identify 19 hydraulically conducting fractures and indicate that transmissivity, pressure head, and salinity vary significantly among them. By using three pumping rates rather than the minimum number of two, we obtain an internal consistency check on the analysis that provides a measure of the uncertainty of the results. Good comparisons against static FEC profiles and against independent chemical, geological, and hydrogeological data have further enhanced confidence in the results of the multi-rate flowing FEC logging method.

Doughty, Christine; Takeuchi, Shinji; Amano, Kenji; Shimo, Michito; Tsang, Chin-Fu

2004-10-04T23:59:59.000Z

58

E-Print Network 3.0 - attenuate water flow Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

water flow Search Powered by Explorit Topic List Advanced Search Sample search results for: attenuate water flow Page: << < 1 2 3 4 5 > >> 1 Water Quality and Sediment Behaviour of...

59

Reduced heat flow in light water (H2O) due to heavy water (D2O)  

E-Print Network [OSTI]

The flow of heat, from top to bottom, in a column of light water can be decreased by over 1000% with the addition of heavy water. A column of light water cools from 25 C to 0 C in 11 hours, however, with the addition of heavy water it takes more than 100 hours. There is a concentration dependence where the cooling time increases as the concentration of added (D2O) increases, with a near maximum being reached with as little as 2% of (D2O) added. This phenomenon will not occur if the water is mixed after the heavy water is added.

William R. Gorman; James D. Brownridge

2008-09-04T23:59:59.000Z

60

Oil and Gas CDT Coupled flow of water and gas  

E-Print Network [OSTI]

Oil and Gas CDT Coupled flow of water and gas during hydraulic fracture in shale The University of Oxford http://www.earth.ox.ac.uk/people/profiles/academic/joec Key Words Shale gas, hydraulic fracture, groundwater contamination, transport in porous media Overview Recovery of natural gas from mudstone (shale

Henderson, Gideon

Note: This page contains sample records for the topic "water flow rate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

A Guide for Using the Transient Ground-Water Flow Model of the Death Valley Regional Ground-Water Flow System, Nevada and California  

SciTech Connect (OSTI)

This report is a guide for executing numerical simulations with the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California using the U.S. Geological Survey modular finite-difference ground-water flow model, MODFLOW-2000. Model inputs, including observations of hydraulic head, discharge, and boundary flows, are summarized. Modification of the DVRFS transient ground-water model is discussed for two common uses of the Death Valley regional ground-water flow system model: predictive pumping scenarios that extend beyond the end of the model simulation period (1998), and model simulations with only steady-state conditions.

Joan B. Blainey; Claudia C. Faunt, and Mary C. Hill

2006-05-16T23:59:59.000Z

62

Dolomitization by ground-water flow systems in carbonate platforms  

SciTech Connect (OSTI)

Dolomite occurs throughout the subsurface of modern carbonate platforms such as the Bahamas. Groundwater flow systems must be responsible for delivery of reactants needed for dolomitization. Reflux, freshwater lens flows, and thermal convection are large-scale flow systems that may be widespread in active platforms. The author has evaluated some aspects of the dynamics and characteristics of these processes with ground-water flow theory and by scaled sandbox experiments. Reflux is not restricted to hypersaline brines, but can occur with bankwaters of only slightly elevated salinity such as those found on the Bahama Banks today (42%). The lack of evaporites in a stratigraphic section, therefore, does not rule out the possibility that reflux may have operated. Flows associated with freshwater lenses include flow in the lens, in the mixing zone, and in the seawater beneath and offshore of the lens. Upward transfer of seawater through the platform margins occurs when surrounding cold ocean water migrates into the platform and is heated. This type of thermal convection (Kohout convection) has been studied by Francis Kohout in south Florida. The ranges of mass flux of magnesium in these processes are all comparable and are all sufficient to account for young dolomites beneath modern platforms. Each process yields dolomitized zones of characteristic shape and location and perhaps may be distinguishable in ancient rocks. The concepts presented here may have application to exploration for dolomite reservoirs in the Gulf Coast and elsewhere.

Simms, M.

1984-09-01T23:59:59.000Z

63

Effect of flow rate of ethanol on growth dynamics of VA-SWNT -Transition from no-flow CVD to normal ACCVD  

E-Print Network [OSTI]

Effect of flow rate of ethanol on growth dynamics of VA-SWNT - Transition from no-flow CVD a growth model [2]. In this study, the flow rate of ethanol during the CVD was controlled precisely. Figure 1 shows the growth curve of VA-SWNT film for various ethanol flow rates. In the figure, "No

Maruyama, Shigeo

64

Downward flow of water with entrained air in a nonuniformaly heated subdivided annulus  

SciTech Connect (OSTI)

This paper describes an experimental study in which water was fed to a vertical annulus, entraining air in downward flow. The annulus was subdivided by longitudinal fins into four subchannels and was heated with an azimuthally varying heat flux. A bypass was provided to simulate flow in parallel channels. For steady liquid flow, inlet temperature, and pressure boundary conditions, the power was increased until critical heat flux was reached. Overheating characteristics were grouped according to the prevailing flow pattern. In annular flows (j{sub L} < 0.3 m/s) overheating of the whole test section occurs when steam production causes countercurrent flooding. In intermittent flows (0.3 < j{sub L} < 0.9 m/s) the overheating is confined to a portion of the hot subchannel. The mechanism is postulated to be stagnation of a large bubble. In bubble flows (0.9 m/s < j{sub L}) overheating occurs by diverting inlet flow to the bypass and again involves the whole test section. Except at the very lowest flow rates, critical heat flux occurs when the effluent liquid temperature is below saturation.

Johnston, B.S.; May, C.P.

1992-10-01T23:59:59.000Z

65

Downward flow of water with entrained air in a nonuniformaly heated subdivided annulus  

SciTech Connect (OSTI)

This paper describes an experimental study in which water was fed to a vertical annulus, entraining air in downward flow. The annulus was subdivided by longitudinal fins into four subchannels and was heated with an azimuthally varying heat flux. A bypass was provided to simulate flow in parallel channels. For steady liquid flow, inlet temperature, and pressure boundary conditions, the power was increased until critical heat flux was reached. Overheating characteristics were grouped according to the prevailing flow pattern. In annular flows (j{sub L} < 0.3 m/s) overheating of the whole test section occurs when steam production causes countercurrent flooding. In intermittent flows (0.3 < j{sub L} < 0.9 m/s) the overheating is confined to a portion of the hot subchannel. The mechanism is postulated to be stagnation of a large bubble. In bubble flows (0.9 m/s < j{sub L}) overheating occurs by diverting inlet flow to the bypass and again involves the whole test section. Except at the very lowest flow rates, critical heat flux occurs when the effluent liquid temperature is below saturation.

Johnston, B.S.; May, C.P.

1992-01-01T23:59:59.000Z

66

air flow rates: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 41 Overheat Instability in an Ascending Moist Air Flow as a Mechanism of Hurricane Formation...

67

air flow rate: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 41 Overheat Instability in an Ascending Moist Air Flow as a Mechanism of Hurricane Formation...

68

Momentum rate probe for use with two-phase flows S. G. Bush,a)  

E-Print Network [OSTI]

of flows including nuclear reactor coolant streams, refrigerants in heating-ventilating air flow rates of these flows span a wide range of values, from those in nuclear power plant cooling systems, through supercritical diesel fuel injection, heating-ventilating and air-conditioning HVAC

Panchagnula, Mahesh

69

Measurements of Film Flow Rate in Heated Tubes with Various Axial Power Distributions  

E-Print Network [OSTI]

Measurements of Film Flow Rate in Heated Tubes with Various Axial Power Distributions by Carl, Measurements of Film Flow Rate in Heated Tubes with Various Axial Power Distributions KTH Nuclear Reactor power is limited by a phenomenon called critical heat flux (CHF). It appears as a sudden detoriation

Haviland, David

70

Second law analysis of water flow through smooth microtubes under adiabatic conditions  

SciTech Connect (OSTI)

In the study, a second law analysis for a steady-laminar flow of water in adiabatic microtubes has been conducted. Smooth microtubes with the diameters between 50 and 150 {mu}m made of fused silica were used in the experiments. Considerable temperature rises due to viscous dissipation and relatively high pressure losses of flow were observed in experiments. To identify irreversibility of flow, rate of entropy generation from the experiments have been determined in the laminar flow range of Re = 20-2200. The second law of thermodynamics was applied to predict the entropy generation. The results of model taken from the literature, proposed to predict the temperature rise caused by viscous heating, correspond well with the experimental data. The second law analysis results showed that the flow characteristics in the smooth microtubes distinguish substantially from the conventional theory for flow in the larger tubes with respect to viscous heating/dissipation (temperature rise of flow) total entropy generation rate and lost work. (author)

Parlak, Nezaket; Guer, Mesut; Ari, Vedat; Kuecuek, Hasan; Engin, Tahsin [The University of Sakarya, Faculty of Engineering, Department of Mechanical Engineering, Esentepe Campus, 54187 Sakarya (Turkey)

2011-01-15T23:59:59.000Z

71

E-Print Network 3.0 - air-water bubbly flow Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

; Chemistry 6 Hydrodynamic and statistical parameters of slug flow Lev Shemer * Summary: identification from dynamic void fraction measurements in vertical air-water flows. Int....

72

High flow rate nozzle system with production of uniform size droplets  

DOE Patents [OSTI]

Method steps for production of substantially uniform size droplets from a flow of liquid include forming the flow of liquid, periodically modulating the momentum of the flow of liquid in the flow direction at controlled frequency, generating a cross flow direction component of momentum and modulation of the cross flow momentum of liquid at substantially the same frequency and phase as the modulation of flow direction momentum, and spraying the so formed modulated flow through a first nozzle outlet to form a desired spray configuration. A second modulated flow through a second nozzle outlet is formed according to the same steps, and the first and second modulated flows impinge upon each other generating a liquid sheet. Nozzle apparatus for modulating each flow includes rotating valving plates interposed in the annular flow of liquid. The plates are formed with radial slots. Rotation of the rotating plates is separably controlled at differential angular velocities for a selected modulating frequency to achieve the target droplet size and production rate for a given flow. The counter rotating plates are spaced to achieve a desired amplitude of modulation in the flow direction, and the angular velocity of the downstream rotating plate is controlled to achieve the desired amplitude of modulation of momentum in the cross flow direction. Amplitude of modulation is set according to liquid viscosity.

Stockel, Ivar H. (Bangor, ME)

1990-01-01T23:59:59.000Z

73

High flow rate nozzle system with production of uniform size droplets  

DOE Patents [OSTI]

Method steps for production of substantially uniform size droplets from a flow of liquid include forming the flow of liquid, periodically modulating the momentum of the flow of liquid in the flow direction at controlled frequency, generating a cross flow direction component of momentum and modulation of the cross flow momentum of liquid at substantially the same frequency and phase as the modulation of flow direction momentum, and spraying the so formed modulated flow through a first nozzle outlet to form a desired spray configuration. A second modulated flow through a second nozzle outlet is formed according to the same steps, and the first and second modulated flows impinge upon each other generating a liquid sheet. Nozzle apparatus for modulating each flow includes rotating valving plates interposed in the annular flow of liquid. The plates are formed with radial slots. Rotation of the rotating plates is separably controlled at differential angular velocities for a selected modulating frequency to achieve the target droplet size and production rate for a given flow. The counter rotating plates are spaced to achieve a desired amplitude of modulation in the flow direction, and the angular velocity of the downstream rotating plate is controlled to achieve the desired amplitude of modulation of momentum in the cross flow direction. Amplitude of modulation is set according to liquid viscosity. 5 figs.

Stockel, I.H.

1990-10-16T23:59:59.000Z

74

Acoustic measurement of the Deepwater Horizon Macondo well flow rate  

E-Print Network [OSTI]

On May 31, 2010, a direct acoustic measurement method was used to quantify fluid leakage rate from the Deepwater Horizon Macondo well prior to removal of its broken riser. This method utilized an acoustic imaging sonar and ...

Camilli, Richard

75

Vulnerability assessment of water supply systems for insufficient fire flows  

E-Print Network [OSTI]

VULNERABILITY ASSESSMENT OF WATER SUPPLY SYSTEMS FOR INSUFFICIENT FIRE FLOWS A Thesis by LUFTHANSA RAHMAN KANTA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved by: Chair of Committee, Kelly Brumbelow Committee Members, Francisco Olivera Sergiy Butenko Head of Department...

Kanta, Lufthansa Rahman

2009-05-15T23:59:59.000Z

76

Density-driven exchange flow between open water and an aquatic canopy  

E-Print Network [OSTI]

Differences in water density can drive an exchange flow between the vegetated and open regions of surface water systems. A laboratory experiment has been conducted to investigate this exchange flow, using a random array ...

Zhang, Xueyan

77

Prediction of Room Air Diffusion for Reduced Diffuser Flow Rates  

E-Print Network [OSTI]

?, IEA Annex 20 project. The simulated results, in terms of maximum velocity, distribution of velocity and temperature in the room are validated against the experimental data. 3.1.1 Study the effect of various parameters on the CFD simulation. A study... and the walls of the room. The window is assumed to have a surface temperature of 30 0C.The diffuser used is a ?HESCO? type diffuser, which was used in the International Energy Agency (IEA) Annex 20 project (1993): ?Room air and contaminant flow, evaluation...

Gangisetti, Kavita

2011-02-22T23:59:59.000Z

78

Method and apparatus for measuring the mass flow rate of a fluid  

DOE Patents [OSTI]

A non invasive method and apparatus is provided to measure the mass flow rate of a multi-phase fluid. An accelerometer is attached to a pipe carrying a multi-phase fluid. Flow related measurements in pipes are sensitive to random velocity fluctuations whose magnitude is proportional to the mean mass flow rate. An analysis of the signal produced by the accelerometer shows a relationship between the mass flow of a fluid and the noise component of the signal of an accelerometer. The noise signal, as defined by the standard deviation of the accelerometer signal allows the method and apparatus of the present invention to non-intrusively measure the mass flow rate of a multi-phase fluid.

Evans, Robert P. (Idaho Falls, ID); Wilkins, S. Curtis (Idaho Falls, ID); Goodrich, Lorenzo D. (Shelley, ID); Blotter, Jonathan D. (Pocatello, ID)

2002-01-01T23:59:59.000Z

79

Global energy conversion rate from geostrophic flows into internal lee waves in the deep ocean  

E-Print Network [OSTI]

A global estimate of the energy conversion rate from geostrophic flows into internal lee waves in the ocean is presented. The estimate is based on a linear theory applied to bottom topography at O(1–10) km scales obtained ...

Nikurashin, Maxim

80

Coal flow aids reduce coke plant operating costs and improve production rates  

SciTech Connect (OSTI)

Chemical coal flow aids can provide many benefits to coke plants, including improved production rates, reduced maintenance and lower cleaning costs. This article discusses the mechanisms by which coal flow aids function and analyzes several successful case histories. 2 refs., 10 figs., 1 tab.

Bedard, R.A.; Bradacs, D.J.; Kluck, R.W.; Roe, D.C.; Ventresca, B.P.

2005-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "water flow rate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

RATE SENSITIVITY OF PLASTIC FLOW AND IMPLICATIONS FOR YIELD-SURFACE VERTICES  

E-Print Network [OSTI]

RATE SENSITIVITY OF PLASTIC FLOW AND IMPLICATIONS FOR YIELD-SURFACE VERTICES Jwo PAN Stress; in recked form 29 Norember 1982) &tract-When crystalline slip is considered as the micromechanism of plastic sensitivity of plastic flow may be central to understanding the ambiguous conclusions from experimental

82

Environmentally related water trading, transfers and environmental flows: welfare, water demand and flows  

E-Print Network [OSTI]

43 44 47 48 48 59 62 66 74 75 77 78 78 80 81 82 87 92 95 96 107 111 113 x CHAPTER IV ECONOMIC AND ENVIRONMENTAL EFFECTS OF FRESHWATER INFLOWS TO TEXAS BAYS AND ESTUARIES………………………. 4.1. Introduction.../Flows…………………... Table IV-1. Recommended Freshwater Inflows (MinQ) to Estuaries……………... Table IV-2. Annual Net Benefit (NB) under the FWIB Constraint Scenarios…….. Table IV-3. NB under the FWIB-Avg by Sector………………………………....... Page 92 94 96 97 99...

Han, Man Seung

2008-10-10T23:59:59.000Z

83

The effects of flow rate on in vivo fluorescence measurements  

E-Print Network [OSTI]

. 0 0 Te pe:lf 340 2 iZ 15 io I 4 Ti e (GMT) 2( 0 3 6 9 I 15 Io I 4 T [Gl I I I b. p(M 4. 0 3. 0 51 2. 5 'I 0 1. 5 0. 1 I. o 0$ 0. 0 21 4 3 6 9 12 15 Ti e (Ghrrl 10 21 24 0, 0 zr 0 3 6 9 12 )S 10 I Ti e (GI(IT) 150 100 fc ep... the ring ((36. 1 ppt) was lower than surrounding waters of the Gulf of Mexico (36. 4 to 36. 5 ppt). Lower surface salinities within the cyclonic eddy are consistent with previous work in the western Gulf of Mexico ( Elliott, 1979; Sweet and Guinasso...

Sweet, Stephen Thomas

1988-01-01T23:59:59.000Z

84

Improving Managed Environmental Water Use: Shasta River Flow and Temperature Modeling  

E-Print Network [OSTI]

i Improving Managed Environmental Water Use: Shasta River Flow and Temperature Modeling By SARAH and perhaps reduce some water management conflicts. Additional research for managing environmental water use manage water supplies and demands to increase water use efficiency through conservation, water markets

Lund, Jay R.

85

Molecule-based approach for computing chemical-reaction rates in upper atmosphere hypersonic flows.  

SciTech Connect (OSTI)

This report summarizes the work completed during FY2009 for the LDRD project 09-1332 'Molecule-Based Approach for Computing Chemical-Reaction Rates in Upper-Atmosphere Hypersonic Flows'. The goal of this project was to apply a recently proposed approach for the Direct Simulation Monte Carlo (DSMC) method to calculate chemical-reaction rates for high-temperature atmospheric species. The new DSMC model reproduces measured equilibrium reaction rates without using any macroscopic reaction-rate information. Since it uses only molecular properties, the new model is inherently able to predict reaction rates for arbitrary nonequilibrium conditions. DSMC non-equilibrium reaction rates are compared to Park's phenomenological non-equilibrium reaction-rate model, the predominant model for hypersonic-flow-field calculations. For near-equilibrium conditions, Park's model is in good agreement with the DSMC-calculated reaction rates. For far-from-equilibrium conditions, corresponding to a typical shock layer, the difference between the two models can exceed 10 orders of magnitude. The DSMC predictions are also found to be in very good agreement with measured and calculated non-equilibrium reaction rates. Extensions of the model to reactions typically found in combustion flows and ionizing reactions are also found to be in very good agreement with available measurements, offering strong evidence that this is a viable and reliable technique to predict chemical reaction rates.

Gallis, Michail A.; Bond, Ryan Bomar; Torczynski, John Robert

2009-08-01T23:59:59.000Z

86

Process For Controlling Flow Rate Of Viscous Materials Including Use Of Nozzle With Changeable Openings  

DOE Patents [OSTI]

Apparatus and a method for controlling the flow rate of viscous materials through a nozzle includes an apertured main body and an apertured end cap coupled together and having an elongated, linear flow channel extending the length thereof. An end of the main body is disposed within the end cap and includes a plurality of elongated slots concentrically disposed about and aligned with the flow channel. A generally flat cam plate having a center aperture is disposed between the main body and end cap and is rotatable about the flow channel. A plurality of flow control vane assemblies are concentrically disposed about the flow channel and are coupled to the cam plate. Each vane assembly includes a vane element disposed adjacent the end of the flow channel. Rotation of the cam plate in a first direction causes a corresponding rotation of each of the vane elements for positioning the individual vane elements over the aperture in the end cap blocking flow through the flow channel, while rotation in an opposite direction removes the vane elements from the aperture and positions them about the flow channel in a nested configuration in the full open position, with a continuous range of vane element positions available between the full open and closed positions.

Ellingson, William A. (Naperville, IL); Forster, George A. (Westmont, IL)

1999-11-02T23:59:59.000Z

87

Gas temperature profiles at different flow rates and heating rates suffice to estimate kinetic parameters for fluidised bed combustion  

SciTech Connect (OSTI)

Experimental work on estimation kinetic parameters for combustion was conducted in a bench-scale fluidised bed (FB: 105x200mm). Combustion medium was obtained by using an electrical heater immersed into the bed. The ratio of heating rate (kJ/s) to molar flow rate of air (mol/s) regulated by a rheostat so that the heat of combustion (kJ/mol) can be synthetically obtained by an electrical power supply for relevant O{sub 2}-feedstock concentration (C{sub 0}). O{sub 2}-restriction ratio ({beta}) was defined by the ratio of O{sub 2}-feedstock concentration to O{sub 2}-air concentration (C{sub O{sub 2}-AIR}) at prevailing heating rates. Compressed air at further atmospheric pressure ({approx_equal}102.7kPa) entered the bed that was alumina particles (250{mu}m). Experiments were carried out at different gas flow rates and heating rates. FB was operated with a single charge of (1300g) particles for obtaining the T/T{sub 0} curves, and than C/C{sub 0} curves. The mathematical relationships between temperature (T) and conversion ratio (X) were expressed by combining total energy balance and mass balance in FB. Observed surface reaction rate constants (k{sub S}) was obtained from the combined balances and proposed model was also tested for these kinetic parameters (frequency factor: k{sub 0}, activation energy: E{sub A}, and reaction order: n) obtained from air temperature measurements. It was found that the model curves allow a good description of the experimental data. Thus, reaction rate for combustion was sufficiently expressed. (author)

Suyadal, Y. [Faculty of Engineering, Department of Chemical Engineering, Ankara University, 06100-Tandogan, Ankara (Turkey)

2006-07-15T23:59:59.000Z

88

16/05/12 3:57 PMWATER: Floating robots use GPS-enabled smartphones to track water flow, help water management Page 1 of 4http://www.lakeconews.com/index.php?option=com_content&view=article...o-track-water-flow-help-water-management&catid=1:latest&Itemid=1  

E-Print Network [OSTI]

management Page 1 of 4http://www.lakeconews.com/index.php?option=com_content&view=article...o-track-water-flow-help-water-management management WATER:'Floating'robots'use'GPS8 enabled'smartphones'to'track'water flow,'help'water'management-enabled smartphones to track water flow, help water management Page 2 of 4http://www.lakeconews.com/index.php?option

89

A kinetic scheme for pressurised flows in non uniform closed water pipes  

E-Print Network [OSTI]

A kinetic scheme for pressurised flows in non uniform closed water pipes C. Bourdarias1 , M. Ersoy1- tions of transient pressurised flows in closed water pipe with non uniform sections. Firstly, we detail is lastly performed in the case of a water hammer in an uniform pipe: we compare the numerical results

Paris-Sud XI, Université de

90

152 / JOURNAL OF HYDROLOGIC ENGINEERING / APRIL 1999 UNCERTAINTY OF ONE-DIMENSIONAL GROUND-WATER FLOW IN  

E-Print Network [OSTI]

-WATER FLOW IN STRONGLY HETEROGENEOUS FORMATIONS By Hongbin Zhan1 and Stephen W. Wheatcraft2 ABSTRACT

Zhan, Hongbin

91

A high sensitivity fiber optic macro-bend based gas flow rate transducer for low flow rates: Theory, working principle, and static calibration  

SciTech Connect (OSTI)

A novel fiber optic macro-bend based gas flowmeter for low flow rates is presented. Theoretical analysis of the sensor working principle, design, and static calibration were performed. The measuring system consists of: an optical fiber, a light emitting diode (LED), a Quadrant position sensitive Detector (QD), and an analog electronic circuit for signal processing. The fiber tip undergoes a deflection in the flow, acting like a cantilever. The consequent displacement of light spot center is monitored by the QD generating four unbalanced photocurrents which are function of fiber tip position. The analog electronic circuit processes the photocurrents providing voltage signal proportional to light spot position. A circular target was placed on the fiber in order to increase the sensing surface. Sensor, tested in the measurement range up to 10 l min{sup -1}, shows a discrimination threshold of 2 l min{sup -1}, extremely low fluid dynamic resistance (0.17 Pa min l{sup -1}), and high sensitivity, also at low flow rates (i.e., 33 mV min l{sup -1} up to 4 l min{sup -1} and 98 mV min l{sup -1} from 4 l min{sup -1} up to 10 l min{sup -1}). Experimental results agree with the theoretical predictions. The high sensitivity, along with the reduced dimension and negligible pressure drop, makes the proposed transducer suitable for medical applications in neonatal ventilation.

Schena, Emiliano; Saccomandi, Paola; Silvestri, Sergio [Center for Integrated Research, Unit of Measurements and Biomedical Instrumentation, Universita Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome (Italy)

2013-02-15T23:59:59.000Z

92

The Adjustment of Avian Metabolic Rates and Water Fluxes to Desert Environments  

E-Print Network [OSTI]

ambient air temperatures (Ta), low primary productivity, and lack of surface water place deserts among and Seely 1982; Williams and Tieleman 2000b). Likewise, lack of surface water ostensibly limits water intake461 The Adjustment of Avian Metabolic Rates and Water Fluxes to Desert Environments B. Irene

Williams, Jos. B.

93

Sudangrass uses water at rates similar to alfalfa, depending on location  

E-Print Network [OSTI]

and water-use efficiency of an alfalfa crop before and afterDrain Eng Grismer ME. 2001. Alfalfa-hay yield, water use andwater at rates similar to alfalfa, depending on location

Grismer, Mark E.

2001-01-01T23:59:59.000Z

94

Reduced heat flow in light water (H2O) due to heavy water (D2O) William R. Gormana)  

E-Print Network [OSTI]

Reduced heat flow in light water (H2O) due to heavy water (D2O) William R. Gormana) and James D by over 1000% with the addition of heavy water. A column of light water cools from 25°C to 0°C in 11 hours, however, with the addition of heavy water it takes more than 100 hours. There is a concentration

Suzuki, Masatsugu

95

E-Print Network 3.0 - air-water flow experimental Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: air-water flow experimental Page: << < 1 2 3 4 5 > >> 1 Mechanical engineering Department...

96

Integrated Water Treatment System (IWTS) Process Flow Diagram Mass Balance Calculations for K West Basin  

SciTech Connect (OSTI)

The purpose of this calculation is to develop the rational for the material balances that are documented in the KW Basin water system Level 1 process flow diagrams.

REED, A.V.

2000-02-28T23:59:59.000Z

97

Energy policy act transportation study: Interim report on natural gas flows and rates  

SciTech Connect (OSTI)

This report, Energy Policy Act Transportation Study: Interim Report on Natural Gas Flows and Rates, is the second in a series mandated by Title XIII, Section 1340, ``Establishment of Data Base and Study of Transportation Rates,`` of the Energy Policy Act of 1992 (P.L. 102--486). The first report Energy Policy Act Transportation Study: Availability of Data and Studies, was submitted to Congress in October 1993; it summarized data and studies that could be used to address the impact of legislative and regulatory actions on natural gas transportation rates and flow patterns. The current report presents an interim analysis of natural gas transportation rates and distribution patterns for the period from 1988 through 1994. A third and final report addressing the transportation rates and flows through 1997 is due to Congress in October 2000. This analysis relies on currently available data; no new data collection effort was undertaken. The need for the collection of additional data on transportation rates will be further addressed after this report, in consultation with the Congress, industry representatives, and in other public forums.

NONE

1995-11-17T23:59:59.000Z

98

Microfluidic chemostat and turbidostat with flow rate, oxygen, and temperature control for dynamic continuous culture  

E-Print Network [OSTI]

Microfluidic chemostat and turbidostat with flow rate, oxygen, and temperature control for dynamic are not reasonable. Microfluidics offers a way to address the difficulties relating to conventional continuous.4 Integrating all of these microfluidic components into a working continuous culture system can

Sinskey, Anthony J.

99

Utilizing Distributed Temperature Sensors in Predicting Flow Rates in Multilateral Wells  

E-Print Network [OSTI]

and pressure data to determine the flow rate in real time out of a multilateral well. Temperature and pressure changes are harder to predict in horizontal laterals compared with vertical wells because of the lack of variation in elevation and geothermal...

Al Mulla, Jassim Mohammed A.

2012-07-16T23:59:59.000Z

100

Toward compressed DMD: spectral analysis of fluid flows using sub-Nyquist-rate PIV data  

E-Print Network [OSTI]

Dynamic mode decomposition (DMD) is a powerful and increasingly popular tool for performing spectral analysis of fluid flows. However, it requires data that satisfy the Nyquist-Shannon sampling criterion. In many fluid flow experiments, such data are impossible to capture. We propose a new approach that combines ideas from DMD and compressed sensing. Given a vector-valued signal, we take measurements randomly in time (at a sub-Nyquist rate) and project the data onto a low-dimensional subspace. We then use compressed sensing to identify the dominant frequencies in the signal and their corresponding modes. We demonstrate this method using two examples, analyzing both an artificially constructed test dataset and particle image velocimetry data collected from the flow past a cylinder. In each case, our method correctly identifies the characteristic frequencies and oscillatory modes dominating the signal, proving the proposed method to be a capable tool for spectral analysis using sub-Nyquist-rate sampling.

Tu, Jonathan H; Kutz, J Nathan; Shang, Jessica K

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water flow rate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Liquid Water Dynamics in a Model Polymer Electrolyte Fuel Cell Flow Channel  

E-Print Network [OSTI]

Liquid Water Dynamics in a Model Polymer Electrolyte Fuel Cell Flow Channel by Chris Miller in a Model Polymer Electrolyte Fuel Cell Flow Channel by Chris Miller Bachelors of Engineering, University in a polymer electrolyte fuel cell is a critical issue in ensuring high cell performance. The water production

Victoria, University of

102

Heavy Flags Undergo Spontaneous Oscillations in Flowing Water Michael Shelley,1  

E-Print Network [OSTI]

Heavy Flags Undergo Spontaneous Oscillations in Flowing Water Michael Shelley,1 Nicolas; published 9 March 2005) By immersing a compliant yet self-supporting sheet into flowing water, we study locomotion. This transition is subcritical. Our results agree qualitatively with a simple fluid dynamical

Shelley, Michael

103

Low rank coal upgrading in a flow of hot water  

SciTech Connect (OSTI)

Simultaneous hydrothermal degradation and extraction at around 350{sup o}C using flowing solvent as a reaction/extraction medium were proposed for upgrading brown coal, more specifically, for converting brown coal into several fractions having different molecular weight and chemical structure under mild conditions. When an Australian brown coal, Loy Yang coal, was treated by water at 350{sup o}C under 18 MPa, the coal was separated into four fractions: gaseous product by 8% yield, water-soluble extract at room temperature (soluble) by 23% yield, extract precipitates as solid at room temperature (deposit) by 23% yield, and residual coal (upgraded coal) by 46% yield on daf basis. The separation was found to be realized by in situ extraction of low-molecular-weight substances released from coal macromolecular structure and/or those generated by hydrothermal decomposition reactions at 350{sup o}C. The solid products obtained, deposit and upgraded coal, were characterized in detail to examine the possibility of their effective utilization as solid fuel and chemical feed stock. The upgraded coal showed higher heating value and higher gasification reactivity than the parent coal, indicating that the upgraded coal can be a better solid fuel than the parent coal. The solid extract, deposit, was found to show thermoplasticity at less than 200{sup o}C, suggesting the possibility of utilizing the deposit as a raw material of high performance carbon materials. Several variables affecting the performance of the proposed method are also examined in detail in this paper. 12 refs., 8 figs., 3 tabs.

Masato Morimoto; Hiroyuki Nakagawa; Kouichi Miura [Kyoto University, Kyoto (Japan). Department of Chemical Engineering

2009-09-15T23:59:59.000Z

104

Reaction rates and apparent toxicity of Houston Ship Channel water  

E-Print Network [OSTI]

through funds provided by the Department of Interior, Federal Water Pollution Cor trol Administration Training Grant iio. 5T1- WP-'?4. My research was financed through funds provided by the Galveston Bay Study of the Texas Water Quality Board Contract... AND DISCUSSIONS V. CI'NCLUSIONS AND RECONNE!IOATIGNS IBO APPENDIX A APPENDIX B REFERENCES. VITA 13g 155 157 V I I LIST OF FIGURES Figure 1. The Kreb's Cycle 2. Cytochrome System 3. Warburg Apparatus Constant Volume Respirometer . 5. Functional...

Schneider, Peter William

1969-01-01T23:59:59.000Z

105

Elastic capsules in shear flow: Analytical solutions for constant and time-dependent shear rates  

E-Print Network [OSTI]

We investigate the dynamics of microcapsules in linear shear flow within a reduced model with two degrees of freedom. In previous work for steady shear flow, the dynamic phases of this model, i.e. swinging, tumbling and intermittent behaviour, have been identified using numerical methods. In this paper, we integrate the equations of motion in the quasi-spherical limit analytically for time-constant and time-dependent shear flow using matched asymptotic expansions. Using this method, we find analytical expressions for the mean tumbling rate in general time-dependent shear flow. The capsule dynamics is studied in more detail when the inverse shear rate is harmonically modulated around a constant mean value for which a dynamic phase diagram is constructed. By a judicious choice of both modulation frequency and phase, tumbling motion can be induced even if the mean shear rate corresponds to the swinging regime. We derive expressions for the amplitude and width of the resonance peaks as a function of the modulation frequency.

Steffen Kessler; Reimar Finken; Udo Seifert

2009-02-26T23:59:59.000Z

106

The Coordinated Control of a Central Air Conditioning System Based on Variable Chilled Water Temperature and Variable Chilled Water Flow  

E-Print Network [OSTI]

At present, regulation of water flow by means of pump frequency conversion is one of the major methods for power-saving in central air conditioning systems. In this article, optimization regulation for central air conditioning system on the basis...

Liu, J.; Mai, Y.; Liu, X.

2006-01-01T23:59:59.000Z

107

BWeb Notes for Chapter 5: Water Flows in the Mono Basin  

E-Print Network [OSTI]

BWeb Notes for Chapter 5: Water Flows in the Mono Basin Most of the BWeb notes in chapter 5 refer pages show a photo of me kneeling at the plaque. Other In and Other Out Flows: These flows are listed in Table 5.1. They are assumed to remain constant over time. The Other Out flow is 33.6 KAF/year based

Ford, Andrew

108

Water-Level Data Analysis for the Saturated Zone Site-Scale Flow and Transport Model  

SciTech Connect (OSTI)

This Analysis/Model Report (AMR) documents an updated analysis of water-level data performed to provide the saturated-zone, site-scale flow and transport model (CRWMS M&O 2000) with the configuration of the potentiometric surface, target water-level data, and hydraulic gradients for model calibration. The previous analysis was presented in ANL-NBS-HS-000034, Rev 00 ICN 01, Water-Level Data Analysis for the Saturated Zone Site-Scale Flow and Transport Model (USGS 2001). This analysis is designed to use updated water-level data as the basis for estimating water-level altitudes and the potentiometric surface in the SZ site-scale flow and transport model domain. The objectives of this revision are to develop computer files containing (1) water-level data within the model area (DTN: GS010908312332.002), (2) a table of known vertical head differences (DTN: GS0109083 12332.003), and (3) a potentiometric-surface map (DTN: GS010608312332.001) using an alternate concept from that presented in ANL-NBS-HS-000034, Rev 00 ICN 01 for the area north of Yucca Mountain. The updated water-level data include data obtained from the Nye County Early Warning Drilling Program (EWDP) and data from borehole USW WT-24. In addition to being utilized by the SZ site-scale flow and transport model, the water-level data and potentiometric-surface map contained within this report will be available to other government agencies and water users for ground-water management purposes. The potentiometric surface defines an upper boundary of the site-scale flow model, as well as provides information useful to estimation of the magnitude and direction of lateral ground-water flow within the flow system. Therefore, the analysis documented in this revision is important to SZ flow and transport calculations in support of total system performance assessment.

P. Tucci

2001-12-20T23:59:59.000Z

109

Observation of pressure gradient and related flow rate effect on the plasma parameters in plasma processing reactor  

SciTech Connect (OSTI)

In industrial plasma processes, flow rate has been known to a key to control plasma processing results and has been discussed with reactive radical density, gas residence time, and surface reaction. In this study, it was observed that the increase in the flow rate can also change plasma parameters (electron temperature and plasma density) and electron energy distribution function in plasma processing reactor. Based on the measurement of gas pressure between the discharge region and the pumping port region, the considerable differences in the gas pressure between the two regions were found with increasing flow rate. It was also observed that even in the discharge region, the pressure gradient occurs at the high gas flow rate. This result shows that increasing the flow rate results in the pressure gradient and causes the changes in the plasma parameters.

Lee, Hyo-Chang; Kim, Aram; Chung, Chin-Wook [Department of Electrical Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Moon, Se Youn [Solar Energy Group, LG Electronics Advanced Research Institute, 16 Woomyeon-Dong, Seocho-Gu, Seoul 137-724 (Korea, Republic of)

2011-02-15T23:59:59.000Z

110

I/O-Efficient Computation of Water Flow Across a Terrain University of Aarhus  

E-Print Network [OSTI]

of the terrain. In reality, water does collect in the terrain's basins, particularly during heavy rainfallI/O-Efficient Computation of Water Flow Across a Terrain Lars Arge MADALGO University of Aarhus. Over time, water collects in the basins of T , forming lakes that spill into ad- jacent basins. Our

Zeh, Norbert

111

Level Set Based Simulations of Two-Phase Oil-Water Flows in Pipes  

E-Print Network [OSTI]

application is the lubricated pipelining of crude oil by the addition of water. We want to eÃ?ciently transportLevel Set Based Simulations of Two-Phase Oil-Water Flows in Pipes Hyeseon Shim July 31, 2000 Abstract We simulate the axisymmetric pipeline transportation of oil and water numerically under

Soatto, Stefano

112

Structural transformation in supercooled water controls the crystallization rate of ice  

E-Print Network [OSTI]

One of water's unsolved puzzles is the question of what determines the lowest temperature to which it can be cooled before freezing to ice. The supercooled liquid has been probed experimentally to near the homogeneous nucleation temperature TH{\\approx}232 K, yet the mechanism of ice crystallization - including the size and structure of critical nuclei - has not yet been resolved. The heat capacity and compressibility of liquid water anomalously increase upon moving into the supercooled region according to a power law that would diverge at Ts{\\approx}225 K,(1,2) so there may be a link between water's thermodynamic anomalies and the crystallization rate of ice. But probing this link is challenging because fast crystallization prevents experimental studies of the liquid below TH. And while atomistic studies have captured water crystallization(3), the computational costs involved have so far prevented an assessment of the rates and mechanism involved. Here we report coarse-grained molecular simulations with the mW water model(4) in the supercooled regime around TH, which reveal that a sharp increase in the fraction of four-coordinated molecules in supercooled liquid water explains its anomalous thermodynamics and also controls the rate and mechanism of ice formation. The simulations reveal that the crystallization rate of water reaches a maximum around 225 K, below which ice nuclei form faster than liquid water can equilibrate. This implies a lower limit of metastability of liquid water just below TH and well above its glass transition temperature Tg{\\approx}136 K. By providing a relationship between the structural transformation in liquid water, its anomalous thermodynamics and its crystallization rate, this work provides a microscopic foundation to the experimental finding that the thermodynamics of water determines the rates of homogeneous nucleation of ice.(5)

Emily B. Moore; Valeria Molinero

2011-09-27T23:59:59.000Z

113

Comparison of entropy production rates in two different types of self-organized flows: Benard convection and zonal flow  

SciTech Connect (OSTI)

Two different types of self-organizing and sustaining ordered motion in fluids or plasmas--one is a Benard convection (or streamer) and the other is a zonal flow--have been compared by introducing a thermodynamic phenomenological model and evaluating the corresponding entropy production rates (EP). These two systems have different topologies in their equivalent circuits: the Benard convection is modeled by parallel connection of linear and nonlinear conductances, while the zonal flow is modeled by series connection. The ''power supply'' that drives the systems is also a determinant of operating modes. When the energy flux is a control parameter (as in usual plasma experiments), the driver is modeled by a constant-current power supply, and when the temperature difference between two separate boundaries is controlled (as in usual computational studies), the driver is modeled by a constant-voltage power supply. The parallel (series)-connection system tends to minimize (maximize) the total EP when a constant-current power supply drives the system. This minimum/maximum relation flips when a constant-voltage power supply is connected.

Kawazura, Y.; Yoshida, Z. [Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8561 (Japan)

2012-01-15T23:59:59.000Z

114

Pipeline Flow Behavior of Water-In-Oil Emulsions.  

E-Print Network [OSTI]

??Water-in-oil (W/O) emulsions consist of water droplets dispersed in continuous oil phase. They are encountered at various stages of oil production. The oil produced from… (more)

Omer, Ali

2009-01-01T23:59:59.000Z

115

Coastal Dynamics 2013 A 3-D PHASE-AVERAGED MODEL FOR SHALLOW WATER FLOW WITH WAVES IN  

E-Print Network [OSTI]

Coastal Dynamics 2013 1915 A 3-D PHASE-AVERAGED MODEL FOR SHALLOW WATER FLOW WITH WAVES in coastal vegetated waters with short waves. The model adopts the 3-D phase-averaged shallow water flow mesh in the vertical direction. The flow model is coupled with a spectral wave deformation model called

US Army Corps of Engineers

116

The evaporation rate, free energy, and entropy of amorphous water Robin J. Speedy  

E-Print Network [OSTI]

The evaporation rate, free energy, and entropy of amorphous water at 150 K Robin J. Speedy can be interpreted as giving a measure of their free energy difference, i a G 150 K 1100 100 J of amorphous water (a) and ice (i) near 150 K and suppose that their ratio gives a measure of their free energy

117

Water-Splitting Photoelectrolysis Reaction Rate via Microscopic Imaging of Evolved Oxygen Bubbles  

E-Print Network [OSTI]

to directly split water in a semiconductor photoelectrochemical cell is a promising source of carbon-free fuel Institute of Technology, Pasadena, California 91125, USA Bubble formation and growth on a water of the gas-evolving reaction rate. Optical microscopy was used to record the bubble growth on single

Atwater, Harry

118

Green Water Flow Kinematics and Impact Pressure on a Three Dimensional Model Structure  

E-Print Network [OSTI]

Flow kinematics of green water due to plunging breaking waves interacting with a simplified, three-dimensional model structure was investigated in laboratory. Two breaking wave conditions were tested: one with waves impinging and breaking...

Ariyarathne, Hanchapola Appuhamilage Kusalika Suranjani

2011-10-21T23:59:59.000Z

119

E-Print Network 3.0 - air-water cross flow Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: air-water cross flow Page: << < 1 2 3 4 5 > >> 1 Journal of Colloid and Interface Science 326...

120

E-Print Network 3.0 - air-water two-phase flow Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: air-water two-phase flow Page: << < 1 2 3 4 5 > >> 1 Heat and Mass Transfer Laboratory Gnie...

Note: This page contains sample records for the topic "water flow rate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Feasibility Study of Developing a Virtual Chilled Water Flow Meter at Air Handling Unit Level  

E-Print Network [OSTI]

In this paper, a virtual Air handling unit (AHU) level water flow meter is explored by using a control valve as a measurement device. The flow through the valve is indirectly calculated using differential pressure over both the valve and its...

Song, L.; Swamy, A.; Shim, G.

2011-01-01T23:59:59.000Z

122

A numerical investigation of high-rate gas flow for gravel-packed completions  

E-Print Network [OSTI]

OF SCIENCE December 1983 Major Subject: Petroleum Engineering A NUMERICAL INVESTIGATION OF HIGH-RATE GAS FLOW FOR GRAVEL-PACKED COMPLETIONS A Thesis by JAMES KENYON FORREST Approved as to style and content by: C. . WU ( Chairman of Coamittee) R... used a radius of 30rw. In order to investigate this, several runs were made with various model radii. Three runs were made to determine the effect of radial discretization and model radius on the simulation results. One run used a radius of 30r...

Forrest, James Kenyon

1983-01-01T23:59:59.000Z

123

Water-Level Data Analysis for the Saturated Zone Site-Scale Flow and Transport Model  

SciTech Connect (OSTI)

This report is an updated analysis of water-level data performed to provide the ''Saturated Zone Site-Scale Flow Model'' (BSC 2004 [DIRS 170037]) (referred to as the saturated zone (SZ) site-scale flow model or site-scale SZ flow model in this report) with the configuration of the potentiometric surface, target water-level data, and hydraulic gradients for calibration of groundwater flow models. This report also contains an expanded discussion of uncertainty in the potentiometric-surface map. The analysis of the potentiometric data presented in Revision 00 of this report (USGS 2001 [DIRS 154625]) provides the configuration of the potentiometric surface, target heads, and hydraulic gradients for the calibration of the SZ site-scale flow model (BSC 2004 [DIRS 170037]). Revision 01 of this report (USGS 2004 [DIRS 168473]) used updated water-level data for selected wells through the year 2000 as the basis for estimating water-level altitudes and the potentiometric surface in the SZ site-scale flow and transport model domain based on an alternative interpretation of perched water conditions. That revision developed computer files containing: Water-level data within the model area (DTN: GS010908312332.002); A table of known vertical head differences (DTN: GS010908312332.003); and A potentiometric-surface map (DTN: GS010608312332.001) using an alternative concept from that presented by USGS (2001 [DIRS 154625]) for the area north of Yucca Mountain. The updated water-level data presented in USGS (2004 [DIRS 168473]) include data obtained from the Nye County Early Warning Drilling Program (EWDP) Phases I and II and data from Borehole USW WT-24. This document is based on Revision 01 (USGS 2004 [DIRS 168473]) and expands the discussion of uncertainty in the potentiometric-surface map. This uncertainty assessment includes an analysis of the impact of more recent water-level data and the impact of adding data from the EWDP Phases III and IV wells. In addition to being utilized by the SZ site-scale flow model, the water-level data and potentiometric-surface map contained within this report will be available to other government agencies and water users for groundwater management purposes. The potentiometric surface defines an upper boundary of the site-scale flow model and provides information useful to estimation of the magnitude and direction of lateral groundwater flow within the flow system. Therefore, the analysis documented in this revision is important to SZ flow and transport calculations in support of total system performance assessment (TSPA).

K. Rehfeldt

2004-10-08T23:59:59.000Z

124

Air and water flows in a large sand box with a two-layer aquifer system  

E-Print Network [OSTI]

Air and water flows in a large sand box with a two-layer aquifer system Xingxing Kuang & Jiu Jimmy negative air pressure can be generated in the vadose zone during pumping. The negative air pressure. The initial water-table depth has a significant effect on the generated negative air pressure. The shallower

Jiao, Jiu Jimmy

125

Ice Shelf Water plume flow beneath Filchner-Ronne Ice Shelf, Antarctica  

E-Print Network [OSTI]

Ice Shelf Water plume flow beneath Filchner-Ronne Ice Shelf, Antarctica Paul R. Holland,1 Daniel L Filchner- Ronne Ice Shelf, Antarctica and its underlying ocean cavity. Ice Shelf Water (ISW) plumes are initiated by the freshwater released from a melting ice shelf and, if they rise, may become supercooled

Feltham, Daniel

126

Dealing with big circulation flow, small temperature difference based on verified dynamic model simulations of a hot water district heating system  

E-Print Network [OSTI]

DEALING WITH “BIG CIRCULATION FLOW RATE, SMALL TEMPERATURE DIFFERENCE” BASED ON VERIFIED DYNAMIC MODEL SIMULATIONS OF A HOT WATER DISTRICT HEATING SYSTEM Li Lian Zhong, Senior Sales Consultant, Danfoss Automatic Controls Management (Shanghai...) Co.,Ltd, Anshan, China ABSTRACT Dynamic models of an indirect hot water district heating system were developed based on the first principle of thermodynamics. The ideal model was verified by using measured operational data. The ideal...

Zhong, L.

2014-01-01T23:59:59.000Z

127

A MONTE CARLO SIMULATION OF WATER FLOW IN VARIABLY ...  

E-Print Network [OSTI]

A Monte Carlo simulation method is employed to study groundwater flow in variably saturated fractal porous ... Richards' equation which is solved using a hybridized mixed finite element procedure. ... INTRODUCTION ... This conclusion has led to the development of stochastic models for the basic un- ... different soils.

1910-10-30T23:59:59.000Z

128

Development of a Water Based, Critical Flow, Non-Vapor Compression cooling Cycle  

SciTech Connect (OSTI)

Expansion of a high-pressure liquid refrigerant through the use of a thermostatic expansion valve or other device is commonplace in vapor-compression cycles to regulate the quality and flow rate of the refrigerant entering the evaporator. In vapor-compression systems, as the condensed refrigerant undergoes this expansion, its pressure and temperature drop, and part of the liquid evaporates. We (researchers at Kansas State University) are developing a cooling cycle that instead pumps a high-pressure refrigerant through a supersonic converging-diverging nozzle. As the liquid refrigerant passes through the nozzle, its velocity reaches supersonic (or critical-flow) conditions, substantially decreasing the refrigerant’s pressure. This sharp pressure change vaporizes some of the refrigerant and absorbs heat from the surrounding conditions during this phase change. Due to the design of the nozzle, a shockwave trips the supersonic two-phase refrigerant back to the starting conditions, condensing the remaining vapor. The critical-flow refrigeration cycle would provide space cooling, similar to a chiller, by running a secondary fluid such as water or glycol over one or more nozzles. Rather than utilizing a compressor to raise the pressure of the refrigerant, as in a vapor-cycle system, the critical-flow cycle utilizes a high-pressure pump to drive refrigerant liquid through the cooling cycle. Additionally, the design of the nozzle can be tailored for a given refrigerant, such that environmentally benign substances can act as the working fluid. This refrigeration cycle is still in early-stage development with prototype development several years away. The complex multi-phase flow at supersonic conditions presents numerous challenges to fully understanding and modeling the cycle. With the support of DOE and venture-capital investors, initial research was conducted at PAX Streamline, and later, at Caitin. We (researchers at Kansas State University) have continued development of the cycle and have gained an in-depth understanding of the governing fundamental knowledge, based on the laws of physics and thermodynamics and verified with our testing results. Through this research, we are identifying optimal working fluid and operating conditions to eventually demonstrate the core technology for space cooling or other applications.

Hosni, Mohammad H.

2014-03-30T23:59:59.000Z

129

Prediction of flow rates through an orifice at pressures corresponding to the transition between molecular and isentropic flow  

SciTech Connect (OSTI)

A model of compressible flow through an orifice, in the region of transition from free molecular to isentropic expansion flow, has been developed and tested for accuracy. The transitional or slip regime is defined as the conditions where molecular interactions are too many for free molecular flow modeling, yet not great enough for isentropic expansion flow modeling. Due to a lack of literature establishing a well-accepted model for predicting transitional flow, it was felt such work would be beneficial. The model is nonlinear and cannot be satisfactorily linearized for a linear regression analysis. Consequently, a computer routine was developed which minimized the sum of the squares of the residual flow for the nonlinear model. The results indicate an average accuracy within 15% of the measured flow throughout the range of test conditions. Furthermore, the results of the regression analysis indicate that the transitional regime lies between Knudsen numbers of approximately 2 and 45. 4 refs., 3 figs., 1 tab.

DeMuth, S.F.; Watson, J.S.

1985-01-01T23:59:59.000Z

130

Water gate array for current flow or tidal movement pneumatic harnessing system  

DOE Patents [OSTI]

The invention, which provides a system for harnessing power from current flow or tidal movement in a body of water, comprises first and second hydro-pneumatic chambers each having ingress and egress below the water surface near the river or ocean floor and water gates operative to open or seal the ports to the passage of water. In an exemplary embodiment, the gates are sychronized by shafts so that the ingress ports of each chamber are connected to the egress ports of each other chamber. Thus, one set of gates is closed, while the other is open, thereby allowing water to flow into one chamber and build air pressure therein and allowing water to flow out of the other chamber and create a partial vacuum therein. A pipe connects the chambers, and an air turbine harnesses the air movement within the pipe. When water levels are equilibrated, the open set of gates is closed by a counterweight, and the other set is allowed to open by natural force of the water differential. The water gates may be comprised of a plurality of louvers which are ganged for simultaneous opening and closing. The system is designed to operate with air turbines or other pneumatic devices. Its design minimizes construction cost and environmental impact, yet provides a clean renewable energy source.

Gorlov, Alexander M. (Brookline, MA)

1991-01-01T23:59:59.000Z

131

BIASES IN PARAMETERIZED AUTOCONVERSION AND ACCRETION RATES DUE TO SUBGRID VARIATIONS AND CORRELATIONS OF CLOUD WATER, DROPLET  

E-Print Network [OSTI]

AND CORRELATIONS OF CLOUD WATER, DROPLET NUMBER, AND DRIZZLE WATER J. Wang, G. Senum, Y. Liu, P. Daum, L. Kleinman for the United States Department of Energy under Contract No. DE-AC02-98CH10886 ABSTRACT Small scale processes of cloud water to drizzle water; its rate is often parameterized as a function of local cloud water content

132

Moisture effects in low-slope roofs: Drying rates after water addition with various vapor retarders  

SciTech Connect (OSTI)

Tests have been conducted in the Large Scale Climate Simulator (LSCS) of the US. Building Envelope Research Center at the Oak Ridge National Laboratory (ORNL) to investigate downward drying rates of various unvented, low-slope roof systems. A secondary objective was to study heat flow patterns so as to understand how to control latent heat effects on impermeable heat flux transducers. Nine test sections were tested simultaneously. The sections had a p deck above fibrous-glass insulation and were examples of cold-deck systems. These five sections had various vapor retarder systems on a gypsum board ceiling below the insulation. The other four sections had a lightweight insulating concrete deck below expanded polystyrene insulation and the same vapor retarder systems, and were examples of warm-deck systems. The cold-deck systems had materials that were relatively permeable to water vapor, while the materials in the warm-deck systems were less permeable. All test sections were topped by an impermeable roofing membrane. The test sections were instrumented with thermocouples between all layers and with small heat flux transducers at the bottom and top of the fibrous-glass insulation and in the middle of the expanded polystyrene insulation. Two different kinds of moisture probes were used to qualitatively monitor the movement of the moisture. The heat flux measurements showed that heat conduction dominates the system using impermeable insulation materials, with only a slight increase due to increased thermal conductivity of wet expanded polystyrene. There was significant transfer of latent heat in the test sections with permeable insulation, causing the peak heat fluxes to increase by as much as a factor of two. With temperatures imposed that are typical of summer days, latent heat transfer associated with condensation and evaporation of moisture in the test sections was measured to be as important as the heat transfer by conduction.

Pedersen, C.R. [Technical Univ. of Denmark, Lyngby (Denmark); Petrie, T.W. [Marquette Univ., Milwaukee, WI (United States). Dept. of Mechanical Engineering; Courville, G.E.; Desjarlais, A.O.; Childs, P.W.; Wilkes, K.E. [Oak Ridge National Lab., TN (United States)

1992-10-01T23:59:59.000Z

133

Direct measurement of activation time and nucleation rate in capillary-condensed water nanomeniscus  

SciTech Connect (OSTI)

We demonstrate real-time observation of nucleation of the single water nanomeniscus formed via capillary condensation. We directly measure (i) activation time by time-resolved atomic force microscopy and (ii) nucleation rate by statistical analysis of its exponential distribution, which is the experimental evidence that the activation process is stochastic and follows the Poisson statistics. It implies that formation of the water nanomeniscus is triggered by nucleation, which requires activation for producing a nucleus. We also find the dependence of the nucleation rate on the tip-sample distance and temperature.

Sung, Baekman; Kim, Jongwoo; Stambaugh, Corey; Chang, Sung-Jin; Jhe, Wonho, E-mail: whjhe@snu.ac.kr [Center for Nano-Liquid, Department of Physics and Astronomy, Seoul National University, Gwanak-gu, Seoul 151-747 (Korea, Republic of)] [Center for Nano-Liquid, Department of Physics and Astronomy, Seoul National University, Gwanak-gu, Seoul 151-747 (Korea, Republic of)

2013-11-18T23:59:59.000Z

134

The effect of water application rate on the formation of a soil crust  

E-Print Network [OSTI]

THE EFFECT OF WATER APPLICATION RATE ON THE FOR11ATION OF A SOIL CRUST A Thesis by FAUSTO DANIEL BOGRAN CARCA1'10 Subni tted to the Graduate College of Texas A&M University in partial fulfillnent of the requlrenents for the degree of MASTER... OF SCIENCE May 1985 Major Subject: Agricultural Engineering THE EFFECT OF WATER APPLICATION RATE ON THE FORMATION OF A SOIl. CRUST A Thesi s by FAUSTO DANIEL BOGRAN CARCAMO Approved as to style and content by: ars a . McFar an (Chairman...

Bogran Carcamo, Fausto Daniel

1985-01-01T23:59:59.000Z

135

Revisions to the SRCC Rating Process for Solar Water Heaters: Preprint  

SciTech Connect (OSTI)

In the United States, annual performance ratings for solar water heaters are computed with component-based simulation models driven by typical meteorological year weather and specified water draw. Changes in the process are being implemented to enhance credibility through increased transparency and accuracy. Changes to the process include using a graphical rather than text-based model-building tool, performing analytical tests on all components and systems, checking energy balances on every component, loop, and system at every time step, comparing the results to detect outliers and potential errors, and documenting the modeling process in detail. Examples of changes in ratings are shown, along with analytical and comparative testing results.

Burch, J.; Huggins, J.; Long, S.; Thornton, J.

2012-06-01T23:59:59.000Z

136

Design and Development of a Test Facility to Study Two-Phase Steam/Water Flow in Porous Media  

SciTech Connect (OSTI)

The concept of relative permeability is the key concept in extending Darcy's law for single phase flow through porous media to the two-phase flow regime. Relative permeability functions are needed for simulation studies of two-phase geothermal reservoirs. These are poorly known inspite of considerable theoretical and experimental investigations during the last decade. Since no conclusive results exist, many investigators use ad hoc parametrization, or adopt results obtined from flow of oil and gas (Corey, 1954). It has been shown by Reda and Eaton (1980) that this can lead to serious deficiencies. Sensitivity of the relative permeability curves for prediction of mass flow rate and flowing enthalpy into geothermal wells has been studied by many investigators (e.g. Eaton and Reda (1980), Bodvarsson et al (1980), Sun and Ershagi (1979) etc.). It can be concluded from these studies that the beehavior of a two-phase steam/water reservoir depends greatly on the relative permeability curves used. Hence, there exists a need for obtaining reliable relative permeability functions.

Verma, Ashok K.; Pruess, Karsten; Bodvarsson, G.S.; Tsang, C.F.; Witherspoon, Paul A.

1983-12-15T23:59:59.000Z

137

GLOBAL OPTIMIZATION OF MULTIPHASE FLOW NETWORKS IN OIL AND GAS PRODUCTION SYSTEMS  

E-Print Network [OSTI]

1 GLOBAL OPTIMIZATION OF MULTIPHASE FLOW NETWORKS IN OIL AND GAS PRODUCTION SYSTEMS MSc. Hans in an oil production system is developed. Each well may be manipulated by injecting lift gas and adjusting in the maximum oil flow rate, water flow rate, liquid flow rate, and gas flow rate. The wells may also

Johansen, Tor Arne

138

ENVIRONMENTAL FLOWS IN A HUMAN-DOMINATED SYSTEM: INTEGRATED WATER MANAGEMENT STRATEGIES FOR THE RIO GRANDE/BRAVO BASIN  

E-Print Network [OSTI]

Wiley & Sons, Ltd. key words: integrated water management; environmental flows; reservoir re Reach of the RGB. This study addresses the need for integrated water management in Big Bend by devel­2009), water allocation, and reservoir operations, and key human water management objectives (water supply

Pasternack, Gregory B.

139

Numerical simulation of water flow around a rigid fishing net  

E-Print Network [OSTI]

This paper is devoted to the simulation of the flow around and inside a rigid axisymmetric net. We describe first how experimental data have been obtained. We show in detail the modelization. The model is based on a Reynolds Averaged Navier-Stokes turbulence model penalized by a term based on the Brinkman law. At the out-boundary of the computational box, we have used a "ghost" boundary condition. We show that the corresponding variational problem has a solution. Then the numerical scheme is given and the paper finishes with numerical simulations compared with the experimental data.

Roger Lewandowski; Géraldine Pichot

2006-12-20T23:59:59.000Z

140

Method and apparatus for simultaneous determination of fluid mass flow rate, mean velocity and density  

DOE Patents [OSTI]

This invention relates to a new method and new apparatus for determining fluid mass flowrate and density. In one aspect of the invention, the fluid is passed through a straight cantilevered tube in which transient oscillation has been induced, thus generating Coriolis damping forces on the tube. The decay rate and frequency of the resulting damped oscillation are measured, and the fluid mass flowrate and density are determined therefrom. In another aspect of the invention, the fluid is passed through the cantilevered tube while an electrically powered device imparts steady-state harmonic excitation to the tube. This generates Coriolis tube-damping forces which are dependent on the mass flowrate of the fluid. Means are provided to respond to incipient flow-induced changes in the amplitude of vibration by changing the power input to the excitation device as required to sustain the original amplitude of vibration. The fluid mass flowrate and density are determined from the required change in power input. The invention provides stable, rapid, and accurate measurements. It does not require bending of the fluid flow.

Hamel, William R. (Farragut, TN)

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water flow rate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Assessment of reaction-rate predictions of a collision-energy approach for chemical reactions in atmospheric flows.  

SciTech Connect (OSTI)

A recently proposed approach for the Direct Simulation Monte Carlo (DSMC) method to calculate chemical-reaction rates is assessed for high-temperature atmospheric species. The new DSMC model reproduces measured equilibrium reaction rates without using any macroscopic reaction-rate information. Since it uses only molecular properties, the new model is inherently able to predict reaction rates for arbitrary non-equilibrium conditions. DSMC non-equilibrium reaction rates are compared to Park's phenomenological nonequilibrium reaction-rate model, the predominant model for hypersonic-flow-field calculations. For near-equilibrium conditions, Park's model is in good agreement with the DSMC-calculated reaction rates. For far-from-equilibrium conditions, corresponding to a typical shock layer, significant differences can be found. The DSMC predictions are also found to be in very good agreement with measured and calculated non-equilibrium reaction rates, offering strong evidence that this is a viable and reliable technique to predict chemical reaction rates.

Gallis, Michail A.; Bond, Ryan Bomar; Torczynski, John Robert

2010-06-01T23:59:59.000Z

142

WaterSense: Water Flow Disaggregation Using Motion Sensors Vijay Srinivasan  

E-Print Network [OSTI]

meters will soon provide real-time access to instantaneous water usage in many homes, and disaggrega- tion is the problem of deciding how much of that usage is due to individual fixtures in the home. Household water conser- vation is important to ensure sustainability of fresh water reserves, to save energy

Whitehouse, Kamin

143

PROCESS WATER RECOVERY: DISSOLVED AIR FLOTATION COMPARED TO HIGH SHEAR RATE SEPARATION  

E-Print Network [OSTI]

PROCESS WATER RECOVERY: DISSOLVED AIR FLOTATION COMPARED TO HIGH SHEAR RATE SEPARATION John H to the feed without dissolved air or with the addition of dual polymer flocculating polymers. Although fiber intend to investigate the effect of pacifying stickies by precipitating calcium carbonate with carbon

Abubakr, Said

144

Status of the ground water flow model for the UMTRA Project, Shiprock, New Mexico, site  

SciTech Connect (OSTI)

A two-dimensional numerical model was constructed for the alluvial aquifer in the area of the Uranium Mill Tailings Remedial Action (UMTRA) Project Shiprock, New Mexico, site. This model was used to investigate the effects of various hydrologic parameters on the evolution of the ground water flow field. Results of the model are useful for defining uncertainties in the site conceptual model and suggesting data collection efforts to reduce these uncertainties. The computer code MODFLOW was used to simulate the two-dimensional flow of ground water in the alluvium. The escarpment was represented as a no-flow boundary. The San Juan River was represented with the MODFLOW river package. A uniform hydraulic conductivity distribution with the value estimated by the UMTRA Project Technical Assistance Contractor (TAC) and a uniform recharge distribution was used. Infiltration from the flowing artesian well was represented using the well package. The ground water flow model was calibrated to ground water levels observed in April 1993. Inspection of hydrographs shows that these levels are representative of typical conditions at the site.

Not Available

1995-01-01T23:59:59.000Z

145

Pressure drop, heat transfer, critical heat flux, and flow stability of two-phase flow boiling of water and ethylene glycol/water mixtures - final report for project "Efficent cooling in engines with nucleate boiling."  

SciTech Connect (OSTI)

Because of its order-of-magnitude higher heat transfer rates, there is interest in using controllable two-phase nucleate boiling instead of conventional single-phase forced convection in vehicular cooling systems to remove ever increasing heat loads and to eliminate potential hot spots in engines. However, the fundamental understanding of flow boiling mechanisms of a 50/50 ethylene glycol/water mixture under engineering application conditions is still limited. In addition, it is impractical to precisely maintain the volume concentration ratio of the ethylene glycol/water mixture coolant at 50/50. Therefore, any investigation into engine coolant characteristics should include a range of volume concentration ratios around the nominal 50/50 mark. In this study, the forced convective boiling heat transfer of distilled water and ethylene glycol/water mixtures with volume concentration ratios of 40/60, 50/50, and 60/40 in a 2.98-mm-inner-diameter circular tube has been investigated in both the horizontal flow and the vertical flow. The two-phase pressure drop, the forced convective boiling heat transfer coefficient, and the critical heat flux of the test fluids were determined experimentally over a range of the mass flux, the vapor mass quality, and the inlet subcooling through a new boiling data reduction procedure that allowed the analytical calculation of the fluid boiling temperatures along the experimental test section by applying the ideal mixture assumption and the equilibrium assumption along with Raoult's law. Based on the experimental data, predictive methods for the two-phase pressure drop, the forced convective boiling heat transfer coefficient, and the critical heat flux under engine application conditions were developed. The results summarized in this final project report provide the necessary information for designing and implementing nucleate-boiling vehicular cooling systems.

Yu, W.; France, D. M.; Routbort, J. L. (Energy Systems)

2011-01-19T23:59:59.000Z

146

Dynamic pressure response of water flow between closely spaced roughened flat plates  

E-Print Network [OSTI]

of MASTER OF SCIENCE May 1993 Major Subject: Mechanical Engineering DYNAMIC PRESSURE RESPONSE OF WATER FLOW BETWEEN CLOSELY SPACED ROUGHENED FLAT PLATES A Thesis by JOHN CHARLES HESS Approved as to style and content by: Robert E. DeOtte, Jr. (Co.... S. , Texas A&M University Co-Chairs of Advisory Committee: Dr. R. E. DeOtte, Jr, Dr. G, L, Morrison A flat plate tester was designed and built to determine friction factors and dynamic pressures for water flow over smooth, knurl, and cavity...

Hess, John Charles

2012-06-07T23:59:59.000Z

147

Air entrainment in transient flows in closed water pipes: a two-layer approach  

E-Print Network [OSTI]

In this paper, we first construct a model for transient free surface flows that takes into account the air entrainment by a sytem of 4 partial differential equations. We derive it by taking averaged values of gas and fluid velocities on the cross surface flow in the Euler equations (incompressible for the fluid and compressible for the gas). Then, we propose a mathematical kinetic interpretation of this system to finally construct a well-balanced kinetic scheme having the properties of conserving the still water steady state and possesing an energy. Finally, numerical tests on closed uniforms water pipes are performed and discussed.

Bourdarias, Christian; Gerbi, Stéphane

2009-01-01T23:59:59.000Z

148

8/10/12 Global Water Sustainability Flows Through Natural and Human Challenges --Environmental Protection 1/3eponline.com/articles/.../global-water-sustainability-flows-through-natural-and-human-challenges.aspx  

E-Print Network [OSTI]

Living Industry Regulation Remediation Research and Technology Sustainability Waste Water Products said. "When you generate energy, you need water when you produce food, you need water. However8/10/12 Global Water Sustainability Flows Through Natural and Human Challenges -- Environmental

149

Measurement of biodegradation rate constants of a water extract from petroleum-contaminated soil  

SciTech Connect (OSTI)

The study of biodegradation rate constants of petroleum products in water extract from contaminated soil presents an important component in the evaluation of bioremediation process. In this study, soil samples were gathered from an industrial site which was used for maintenance and storage of heavy equipment used in the oil and gas exploration and production industry. The petroleum contaminants were extracted from the soil using distilled water. This water extract was used as the substrate to acclimate a microbial community and also for the biological kinetic studies. Kinetic studies were carried out in batch reactors, and the biodegradation rates were monitored by a computer-controlled respirometer. The BOD data were analyzed by using the Monod equation. Experimental results give the average value of the maximum rate constant as 0.038 mg BOD/(mg VSS hr) and the average value of the substrate concentration of half rate as 746 mg BOD/l. A GC/MS analysis on the sample of the test solutions before and after 5 days of biological oxidation indicates that the hydrocarbons initially present in the solution were degraded.

Li, K.Y.; Kane, A.J.; Wang, J.J.; Cawley, W.A. (Lamar Univ., Beaumont, TX (United States). Chemical Engineering Dept.)

1993-01-01T23:59:59.000Z

150

Review of International Methods of Test to Rate the Efficiency of Water Heaters  

E-Print Network [OSTI]

water heaters, heat-pump water heaters, and instantaneous (Wasted water Solar Heat pump water heater Australia/New

Lutz, Jim

2012-01-01T23:59:59.000Z

151

PORE-WATER ISOTOPIC COMPOSITION AND UNSATURATED-ZONE FLOW, YUCCA MOUNTAIN, NEVADA  

SciTech Connect (OSTI)

Site characterization at Yucca Mountain, Nevada, the site of a potential high-level radioactive waste repository, has included studies of recharge, flow paths, percolation flux, perched water bodies, and chemical compositions of the water in the thick unsaturated zone (UZ). Samples of pore water from cores of two recently drilled boreholes, USW SD-6 near the ridge top of Yucca Mountain and USW WT-24 north of Yucca mountain, were analyzed for isotopic compositions as part of a study by the US Geological Survey (USGS), in cooperation with the US Department of Energy, under Interagency Agreement DE-AI08-97NV12033. The purpose of this report is to interpret {sup 14}C, {delta}{sup 13}C, {sup 3}H, {delta}D and {delta}{sup 18}O isotopic compositions of pore water from the core of boreholes USW SD-6 and USW WT-24 in relation to sources of recharge and flow paths in the UZ at Yucca Mountain. Borehole designation USW SD-6 and USW WT-24 subsequently will be referred to as SD-6 and WT-24. The sources of recharge and flow paths are important parameters that can be used in a UZ flow model, total system performance assessment (TSPA), and the license application (LA) for the potential repository at Yucca Mountain.

C. Yang

2000-10-23T23:59:59.000Z

152

Simulation of water flow and solute transport in free-drainage lysimeters and field soils with  

E-Print Network [OSTI]

Simulation of water flow and solute transport in free-drainage lysimeters and field soils for studying the fate and transport of chemicals in soil. Large-scale field lysimeters are used to assess pesticide behaviour and radionuclide transport, and are assumed to represent natural field conditions better

Flury, Markus

153

A thermal method for measuring the rate of water movement in plants  

E-Print Network [OSTI]

L?BP A 8 V a L ?BPA8B8 op A THERMAL METHOD FOR MEASURING THE RATE OF WATER MOVEMENT IN PLANTS A Dissertation By Morris Elkins Bloodworth Vao Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in Partial... Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY May, 1958 TLX Major Subject: Soil Physics p ^i???pP ??^i?? ??? ??p?????? ^i? ?p^? ?? WATER MOVEMENT IN PLANTS A Dissertation By Morris Elkins Bloodworth Approved as to style...

Bloodworth, Morris Elkins

1958-01-01T23:59:59.000Z

154

Two-phase flow visualization in a transparent, atmospheric pressure, boiling water loop  

SciTech Connect (OSTI)

The Simulant Boiling Flow Visualization (SBFV) loop, a transparent, atmospheric pressure test apparatus employing boiling water as a simulant for boiling liquid sodium, has been designed and operated at Oak Ridge National Laboratory. The objective of testing in this loop has been to study two-phase flow behavior that is phenomenologically similar to that observed in sodium boiling experiments, as part of the US Department of Energy Breeder Reactor Safety Program. A detailed description of the design of the SBFV loop is presented, as well as experimental results that show the similarity between low-power boiling behavior in water and liquid sodium. Future tests are planned in a seven-pin flow visualization bundle that will be installed in the SBFV loop. The design of this bundle is also discussed.

Levin, A.E.; Carbajo, J.J.; Montgomery, B.H.; Wantland, J.L.

1985-01-01T23:59:59.000Z

155

The effects of flow rate and pressure on breakthrough times and permeation rates through an impermeable membrane  

E-Print Network [OSTI]

. ) the desorption of molecules from the inside surface of the material. ( Measuring the permeation rate of polymers exhibiting the activated diffusion process can be calculated by Pick's First Law of diffusion, calculated by the equation: A -E/RT q x '(p -p) P... e 1 2 o where, q = permeation rate (cm /sec) 3 A = area of membrane (cm ) 2 x = membrane thickness (cm) pl= solvent partial pressure on the outer surface of the membrane (Pa) p2= solvent partial pressure on the inner surface of the membrane (Pa...

Gilmore, Peter Lee

2012-06-07T23:59:59.000Z

156

The impact of water flow configuration on crystallisation in LiBr/H2O absorption water heater  

SciTech Connect (OSTI)

Lithium Bromide (LiBr) strong solution entering the absorber tends to crystallise when the absorber temperature is increased for a fixed evaporating pressure. This is considered the key technical barrier for the development of a LiBr absorption heat pump water heater. There are several approaches to avoid the crystallisation problem, such as chemical crystallisation inhibitors, heat and mass transfer enhancement and thermodynamic cycle modification. This paper investigates and compares two flow configurations of LiBr absorption heat pump water heater to evaluate the allowable operating conditions for each. The simulation results indicated that introducing the process water through the absorber first results in lower absorber temperature and hence less tendency for crystallisation.

Wang, Kai [ORNL; Abdelaziz, Omar [ORNL; Vineyard, Edward Allan [ORNL

2011-03-01T23:59:59.000Z

157

Evaluation of Subsurface Flow and Free-water Surface Wetlands Treating NPR-3 Produced Water - Year No. 1  

SciTech Connect (OSTI)

This paper is a summary of some of the activities conducted during the first year of a three-year cooperative research and development agreement (CRADA) between the Department of Energy (DOE) Rocky Mountain Oilfield Testing Center (RMOTC) and Texaco relating to the treatment of produced water by constructed wetlands. The first year of the CRADA is for design, construction and acclimation of the wetland pilot units. The second and third years of the CRADA are for tracking performance of pilot wetlands as the plant and microbial communities mature. A treatment wetland is a proven technology for the secondary and tertiary treatment of produced water, storm water and other wastewaters. Treatment wetlands are typically classified as either free-water surface (FWS) or subsurface flow (SSF). Both FWS and SSF wetlands work well when properly designed and operated. This paper presents a collection of kinetic data gathered from pilot units fed a slipstream of Wyoming (NPR-3) produced water. The pilot units are set up outdoors to test climatic influences on treatment. Monitoring parameters include evapotranspiration, plant growth, temperature, and NPDES discharge limits. The pilot wetlands (FWS and SSF) consist of a series of 100-gal plastic tubs filled with local soils, gravel, sharp sand and native wetland plants (cattail (Typha spp.), bulrush (Scirpus spp.), dwarf spikerush (Eleocharis)). Feed pumps control hydraulic retention time (HRT) and simple water control structures control the depth of water. The treated water is returned to the existing produced water treatment system. All NPDES discharge limits are met. Observations are included on training RMOTC summer students to do environmental work.

Myers, J. E.; Jackson, L. M.

2001-10-13T23:59:59.000Z

158

A kinetic scheme for unsteady pressurised flows in closed water pipes  

E-Print Network [OSTI]

he aim of this paper is to present a kinetic numerical scheme for the computations of transient pressurised flows in closed water pipes. Firstly, we detail the mathematical model written as a conservative hyperbolic partial differentiel system of equations, and the we recall how to obtain the corresponding kinetic formulation. Then we build the kinetic scheme ensuring an upwinding of the source term due to the topography performed in a close manner described by Perthame et al. using an energetic balance at microscopic level for the Shallow Water equations. The validation is lastly performed in the case of a water hammer in a uniform pipe: we compare the numerical results provided by an industrial code used at EDF-CIH (France), which solves the Allievi equation (the commonly used equation for pressurised flows in pipes) by the method of characteristics, with those of the kinetic scheme. It appears that they are in a very good agreement.

Bourdarias, Christian; Gerbi, Stéphane

2008-01-01T23:59:59.000Z

159

Estimates of Tracer-Based Piston-Flow Ages of Groundwater From Selected Sites: National Water-Quality Assessment  

E-Print Network [OSTI]

Estimates of Tracer-Based Piston-Flow Ages of Groundwater From Selected Sites: National Water;Estimates of Tracer-Based Piston-Flow Ages of Groundwater from Selected Sites: National Water.N., Busenberg, Eurybiades, Widman, P.K., Casile, G.C., and Wayland, J.E., 2010, Estimates of tracer-based piston

160

The Effect of Flow Rate of Very Dilute Sulfuric Acid on Xylan, Lignin, and Total Mass Removal from Corn Stover  

E-Print Network [OSTI]

The Effect of Flow Rate of Very Dilute Sulfuric Acid on Xylan, Lignin, and Total Mass Removal from mass, xylan, and lignin and increases cellulose digestibility compared to batch operations at otherwise at a constant residence time also significantly accelerated xylan solubilization. Although lignin removal

California at Riverside, University of

Note: This page contains sample records for the topic "water flow rate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Dispersion equation for water waves with vorticity and Stokes waves on flows with counter-currents  

E-Print Network [OSTI]

The two-dimensional free-boundary problem of steady periodic waves with vorticity is considered for water of finite depth. We investigate how flows with small-amplitude Stokes waves on the free surface bifurcate from a horizontal parallel shear flow in which counter-currents may be present. Two bifurcation mechanisms are described: for waves with fixed Bernoulli's constant and fixed wavelength. In both cases the corresponding dispersion equations serve for defining wavelengths from which Stokes waves bifurcate. Sufficient conditions guaranteeing the existence of roots of these equations are obtained. Two particular vorticity distributions are considered in order to illustrate general results.

Vladimir Kozlov; Nikolay Kuznetsov

2014-06-05T23:59:59.000Z

162

16/05/12 3:58 PMFloating robots use GPS-enabled smartphones to track water flow Page 1 of 5http://www.spacedaily.com/reports/Floating_robots_use_GPS_enabled_smartphones_to_track_water_flow_999.html  

E-Print Network [OSTI]

can shed light on processes that are influenced by how water moves, such as the spread of pollutants, the migration of salmon or how salt and fresh water . Buy Advertising Editorial Enquiries GPS Fleet Tracking See/reports/Floating_robots_use_GPS_enabled_smartphones_to_track_water_flow_999.html spread of pollutants

163

Rate of deformation in the Pasco Basin during the Miocene as determined by distribution of Columbia River basalt flows  

SciTech Connect (OSTI)

Detailed mapping of over 8000 square kilometers and logs from 20 core holes were used to determine the distribution and thickness of basalt flows and interbeds in the Pasco Basin. The data indicate the high-MgO Grande Ronde Basalt and Wanapum Basalt thicken from the northeast to the southwest. Deformation began in late Frenchman Springs time in the Saddle Mountains along a northwest-southeast trend and in Roza time along an east-west trend. By late Wanapum time, basalt flows were more restricted on the east side. Saddle Mountains Basalt flows spread out in the basin from narrow channels to the east. The Umatilla Member entered from the southeast and is confined to the south-central basin, while the Wilbur Creek, Asotin, Esquatzel, Pomona, and Elephant Mountain Members entered from the east and northeast. The distribution of these members is controlled by flow volume, boundaries of other flows, and developing ridges. The Wilbur Creek, Asotin, and Esquatzel flows exited from the basin in a channel along the northern margin of the Umatilla flow, while the Pomona and Elephant Mountain flows exited between Umtanum Ridge and Wallula Gap. The thickness of sedimentary interbeds and basalt flows indicated subsidence and/or uplift began in post-Grande Ronde time (14.5 million years before present) and continued through Saddle Mountains time (10.5 million years before present). Maximum subsidence occurred 40 kilometers (24 miles) north of Richland, Washington with an approximate rate of 25 meters (81 feet) per million years during the eruption of the basalt. Maximum uplift along the developing ridges was 70 meters (230 feet) per million years.

Reidel, S.P.; Ledgerwood, R.K.; Myers, C.W.; Jones, M.G.; Landon, R.D.

1980-03-01T23:59:59.000Z

164

An Energy Signature Scheme for Steam Trap Assessment and Flow Rate Estimation Using Pipe-Induced Acoustic Measurements  

SciTech Connect (OSTI)

The US Congress has passed legislation dictating that all government agencies establish a plan and process for improving energy efficiencies at their sites. In response to this legislation, Oak Ridge National Laboratory (ORNL) has recently conducted a pilot study to explore the deployment of a wireless sensor system for a real-time measurement-based energy efficiency optimization framework within the steam distribution system within the ORNL campus. We make assessments on the real-time status of the distribution system by observing the state measurements of acoustic sensors mounted on the steam pipes/traps/valves. In this paper, we describe a spectral-based energy signature scheme that interprets acoustic vibration sensor data to estimate steam flow rates and assess steam traps health status. Experimental results show that the energy signature scheme has the potential to identify different steam trap health status and it has sufficient sensitivity to estimate steam flow rate. Moreover, results indicate a nearly quadratic relationship over the test region between the overall energy signature factor and flow rate in the pipe. The analysis based on estimated steam flow and steam trap status helps generate alerts that enable operators and maintenance personnel to take remedial action. The goal is to achieve significant energy-saving in steam lines by monitoring and acting on leaking steam pipes/traps/valves.

Olama, Mohammed M [ORNL; Allgood, Glenn O [ORNL; Kuruganti, Phani Teja [ORNL; Lake, Joe E [ORNL

2012-01-01T23:59:59.000Z

165

The Properties of Confined Water and Fluid Flow at the Nanoscale  

SciTech Connect (OSTI)

This project has been focused on the development of accurate computational tools to study fluids in confined, nanoscale geometries, and the application of these techniques to probe the structural and electronic properties of water confined between hydrophilic and hydrophobic substrates, including the presence of simple ions at the interfaces. In particular, we have used a series of ab-initio molecular dynamics simulations and quantum Monte Carlo calculations to build an understanding of how hydrogen bonding and solvation are modified at the nanoscale. The properties of confined water affect a wide range of scientific and technological problems - including protein folding, cell-membrane flow, materials properties in confined media and nanofluidic devices.

Schwegler, E; Reed, J; Lau, E; Prendergast, D; Galli, G; Grossman, J C; Cicero, G

2009-03-09T23:59:59.000Z

166

Development of analytical and numerical models predicting the deposition rate of electrically charged particles in turbulent channel flows  

E-Print Network [OSTI]

diameter for Re = 5, 000, 10, 000, and 20, 000. 15 Figure 3 Figure 4. Comparison of different roughness factors (e, = 0, 0. 1, 1. 0, and 10 mm) for dimensionless deposition velocity. Correlation of dimensionless deposition velocity and dimensionless... time for flow rate = 57 I/min, Re = 5, 000, and tube diameter = 15. 8 mm. 17 19 Figure 5. Correlation of dimensionless deposition velocity including electric migration velocity ( Vz = 0. 01, 0. 05, and 0. 1 mm/s) and dimensionless time for flow...

Ko, Hanseo

1994-01-01T23:59:59.000Z

167

Flow at Low Water Contents: A Simple Approach for Inverse Estimation of van Genuchten-Mualem Soil Hydraulic Parameters  

E-Print Network [OSTI]

. The amount and energy status of water in a soil can affect considerably the soil hydraulic properties. While1 Flow at Low Water Contents: A Simple Approach for Inverse Estimation of van Genuchten-Mualem Soil BP 7021, Burkina Faso Abstract The unsaturated soil hydraulic properties (the soil water

Paris-Sud XI, Université de

168

Investigation of Temperature-Driven Water Transport in Polymer Electrolyte Fuel Cell: Phase-Change-Induced Flow  

E-Print Network [OSTI]

Investigation of Temperature-Driven Water Transport in Polymer Electrolyte Fuel Cell: Phase cell membranes, a net flux of water was found to flow from the hot to the cold side of the full, 2008. Published January 8, 2009. Proper water management is critical to achieve high performance

Mench, Matthew M.

169

Modeling Oxygen and Water Flows in Peat Substrate with Root Uptakes R. Naasz, J.-C. Michel and S. Charpentier  

E-Print Network [OSTI]

191 Modeling Oxygen and Water Flows in Peat Substrate with Root Uptakes R. Naasz, J.-C. Michel to Horticulture Angers France Keywords: peat, simulation, substrate-plant system, water and oxygen availability, we first precisely characterized all transfer properties of a peat substrate (water retention

Paris-Sud XI, Université de

170

A mathematical model for unsteady mixed flows in closed water pipes  

E-Print Network [OSTI]

We present the derivation of a new unidirectionnal model for unsteady mixed flows in non uniform closed domains. We introduce a local reference frame to take into account the local perturbation caused by the changes of section and slope. Then an asymptotic analysis is performed to obtain a model for the free surface flow and another for the pressurised flow. By coupling these models through the transition points by the use of a common set of variables and a suitable pressure law, we obtain a simple formulation called PFS-model close to the shallow water equations with source terms. It takes into account the changes of section and the slope variation in a continuous way through transition points.

Bourdarias, Christian; Gerbi, Stéphane

2008-01-01T23:59:59.000Z

171

WATER ICE IN HIGH MASS-LOSS RATE OH/IR STARS  

SciTech Connect (OSTI)

We investigate water-ice features in spectral energy distributions (SEDs) of high mass-loss rate OH/IR stars. We use a radiative transfer code which can consider multiple components of dust shells to make model calculations for various dust species including water ice in the OH/IR stars. We find that the model SEDs are sensitively dependent on the location of the water-ice dust shell. For two sample stars (OH 127.8+0.0 and OH 26.5+0.6), we compare the detailed model results with the infrared observational data including the spectral data from the Infrared Space Observatory (ISO). For the two sample stars, we reproduce the crystalline water-ice features (absorption at 3.1 {mu}m and 11.5 {mu}m; emission at 44 and 62 {mu}m) observed by ISO using a separate component of the water-ice dust shell that condensed at about 84-87 K (r {approx} 1500-1800 AU) as well as the silicate dust shell that condensed at about 1000 K (r {approx} 19-25 AU). For a sample of 1533 OH/IR stars, we present infrared two-color diagrams (2CDs) using the Infrared Astronomical Satellite and AKARI data compared with theoretical model results. We find that the theoretical models clearly show the effects of the crystalline water-ice features (absorption at 11.5 {mu}m and emission at 62 {mu}m) on the 2CDs.

Suh, Kyung-Won; Kwon, Young-Joo, E-mail: kwsuh@chungbuk.ac.kr [Department of Astronomy and Space Science, Chungbuk National University, Cheongju-City 361-763 (Korea, Republic of)] [Department of Astronomy and Space Science, Chungbuk National University, Cheongju-City 361-763 (Korea, Republic of)

2013-01-10T23:59:59.000Z

172

Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single Family Homes (Revised)  

SciTech Connect (OSTI)

This document focuses on managing the driving forces which move air and moisture across the building envelope. While other previously published Measure Guidelines focus on elimination of air pathways, the ultimate goal of this Measure Guideline is to manage drivers which cause air flow and water vapor transport across the building envelope (and also within the home), control air infiltration, keep relative humidity (RH) within acceptable limits, avoid combustion safety problems, improve occupant comfort, and reduce house energy use.

Cummings, J.; Withers, C.; Martin, E.; Moyer, N.

2012-10-01T23:59:59.000Z

173

Original article Flow and passage rate studies at the ileal level in the  

E-Print Network [OSTI]

based mainly on lucerne meal. Flow and transit measurements were carried out using two particulate markers : ytterbium (Yb) fixed on lucerne meal cell-walls by soaking, and chromium (Cr) fixed

Boyer, Edmond

174

Review of International Methods of Test to Rate the Efficiency of Water Heaters  

E-Print Network [OSTI]

energy multiplier Distribution losses Smart controls Wasted water Solar Heat pump water heater Australia/

Lutz, Jim

2012-01-01T23:59:59.000Z

175

Hydrogeologic evaluation and numerical simulation of the Death Valley regional ground-water flow system, Nevada and California  

SciTech Connect (OSTI)

Yucca Mountain is being studied as a potential site for a high-level radioactive waste repository. In cooperation with the U.S. Department of Energy, the U.S. Geological Survey is evaluating the geologic and hydrologic characteristics of the ground-water system. The study area covers approximately 100,000 square kilometers between lat 35{degrees}N., long 115{degrees}W and lat 38{degrees}N., long 118{degrees}W and encompasses the Death Valley regional ground-water flow system. Hydrology in the region is a result of both the and climatic conditions and the complex described as dominated by interbasinal flow and may be conceptualized as having two main components: a series of relatively shallow and localized flow paths that are superimposed on deeper regional flow paths. A significant component of the regional ground-water flow is through a thick Paleozoic carbonate rock sequence. Throughout the regional flow system, ground-water flow is probably controlled by extensive and prevalent structural features that result from regional faulting and fracturing. Hydrogeologic investigations over a large and hydrogeologically complex area impose severe demands on data management. This study utilized geographic information systems and geoscientific information systems to develop, store, manipulate, and analyze regional hydrogeologic data sets describing various components of the ground-water flow system.

D`Agnese, F.A.; Faunt, C.C.; Turner, A.K.; Hill, M.C.

1997-12-31T23:59:59.000Z

176

Vadose zone water fluxmeter  

DOE Patents [OSTI]

A Vadose Zone Water Fluxmeter (WFM) or Direct Measurement WFM provides direct measurement of unsaturated water flow in the vadose zone. The fluxmeter is a cylindrical device that fits in a borehole or can be installed near the surface, or in pits, or in pile structures. The fluxmeter is primarily a combination of tensiometers and a porous element or plate in a water cell that is used for water injection or extraction under field conditions. The same water pressure measured outside and inside of the soil sheltered by the lower cylinder of the fluxmeter indicates that the water flux through the lower cylinder is similar to the water flux in the surrounding soil. The fluxmeter provides direct measurement of the water flow rate in the unsaturated soils and then determines the water flux, i.e. the water flow rate per unit area.

Faybishenko, Boris A.

2005-10-25T23:59:59.000Z

177

Ambient aerosol sampling inlet for flow rates of 100 and 400 l/min  

E-Print Network [OSTI]

across the cross section of the wind tunnel. Downstream from that is a flow straightener that eliminates large-scale turbulence and flow swirl. A TSI VelociCalc thermal anemometer (TSI Inc., St. Paul, MN) is used to measure the wind speed in the wind... on the slide through use of a coefficient similar 7 to that of Olan-Figuroa et al. (1982), but with a value of 1.29, which is appropriate for the Nyebar K. An Aerodynamic Particle Sizer (APS, Model 3321, TSI Inc., St. Paul, MN) is used to monitor...

Baehl, Michael Matthew

2009-05-15T23:59:59.000Z

178

Prediction of net bedload transport rates obtained in oscillating water tunnels and applicability to real surf zone waves  

E-Print Network [OSTI]

Experimental studies of sediment transport rates due to near shore waves are often conducted in oscillating water tunnels (OWTs). In an OWT, the oscillatory motion produced by the piston propagates almost instantaneously ...

Gonzalez-Rodriguez, David

179

A shallow water model for the numerical simulation of overland flow on surfaces with ridges and furrows  

E-Print Network [OSTI]

induces problems at watershed scale for soil conservation (decrease of soil thickness by erosion, nutrient (drinking water) and sustainability of aquatic ecosystems (chemical pollution). These troubles can be prevented by watershed management. Improving watershed management in relationships with overland flow

180

A low diffusive Lagrange-remap scheme for the simulation of violent air-water free-surface flows.  

E-Print Network [OSTI]

. The evolution of the interfaces between phases and the consecutive complex dynamics need to be simulatedA low diffusive Lagrange-remap scheme for the simulation of violent air-water free-surface flows. Introduction Simulation of free surface flows knows an increasing interest as an essential predictive tool

Boyer, Edmond

Note: This page contains sample records for the topic "water flow rate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

UNSAT-H Version 2. 0: Unsaturated soil water and heat flow model  

SciTech Connect (OSTI)

This report documents UNSAT-H Version 2.0, a model for calculating water and heat flow in unsaturated media. The documentation includes the bases for the conceptual model and its numerical implementation, benchmark test cases, example simulations involving layered soils and plant transpiration, and the code listing. Waste management practices at the Hanford Site have included disposal of low-level wastes by near-surface burial. Predicting the future long-term performance of any such burial site in terms of migration of contaminants requires a model capable of simulating water flow in the unsaturated soils above the buried waste. The model currently used to meet this need is UNSAT-H. This model was developed at Pacific Northwest Laboratory to assess water dynamics of near-surface, waste-disposal sites at the Hanford Site. The code is primarily used to predict deep drainage as a function of such environmental conditions as climate, soil type, and vegetation. UNSAT-H is also used to simulate the effects of various practices to enhance isolation of wastes. 66 refs., 29 figs., 7 tabs.

Fayer, M.J.; Jones, T.L.

1990-04-01T23:59:59.000Z

182

Regional-scale flow of formation waters in the Williston basin  

SciTech Connect (OSTI)

The Williston basin is a structurally simple intracratonic sedimentary basin that straddles the United States-Canada border east of the Rocky Mountains and that contains an almost continuous stratigraphic record since the Middle Cambrian. Based on the wealth of data generated by the oil industry, the regional-scale characteristics of the flow of formation waters were analyzed for the Canadian side of the basin, and integrated with previous studies performed on the American side. Several aquifers and aquifer systems identified in the basin were separated by intervening aquitards and aquicludes. The Basal, Devonian, and Mannville (Dakota) aquifers are open systems, being exposed at the land surface in both recharge and discharge areas. Recharge takes place in the west-southwest at relatively high altitude in the Bighorn and Big Snowy mountains and at the Black Hills and Central Montana uplifts, whereas discharge takes place in the east and northeast at outcrop along the Canadian Precambrian shield in Manitoba and the Dakotas. The Mississippian and Pennsylvanian aquifer systems are semi-open, cropping out only in the west-southwest where they recharge, but discharging in the northeast into adjacent aquifers through confining aquitards. On regional and geological scales, the entire system seems to be at steady-state, although locally transient flow is present in places due to water use and hydrocarbon exploitation, and to some erosional rebound in the uppermost confining shales. On the western flank of the basin, the interplay between the northeastward structural downdip direction and the northeastward flow of formation waters creates conditions favorable for hydrodynamic oil entrapment.

Bachu, S. [Alberta Department of Energy, Edmonton (Canada); Hitchon, B. [Hitchion Geochemical Services Ltd., Alberta (Canada)

1996-02-01T23:59:59.000Z

183

Using multi-layer models to forecast gas flow rates in tight gas reservoirs  

E-Print Network [OSTI]

pressure at the inner boundary. He combined a back-pressure gas rate equation (Eq 2.9) with the materials balance equation Eq 2.10 onto a rate-time equation for gas wells as described in Eq 2.11, and then he generated the new set of type curves as shown.......................................................................................... 10 2.1 Introduction ...................................................................................................10 2.2 Decline Curve Analysis...

Jerez Vera, Sergio Armando

2007-04-25T23:59:59.000Z

184

Slow Strain Rate Testing of Alloy 22 in Simulated Concentrated Ground Waters  

SciTech Connect (OSTI)

The proposed engineering barriers for the high-level nuclear waste repository in Yucca Mountain include a double walled container and a detached drip shield. The candidate material for the external wall of the container is Alloy 22 (N06022). One of the anticipated degradation modes for the containers could be environmentally assisted cracking (EAC). The objective of the current research was to characterize the effect of applied potential and temperature on the susceptibility of Alloy 22 to EAC in simulated concentrated water (SCW) and other environments using the slow strain rate technique (SSRT). Results show that the temperature and applied potential have a strong influence on the susceptibility of Alloy 22 to suffer EAC in SCW solution. Limited results show that sodium fluoride solution is more detrimental than sodium chloride solution.

King, K J; Wong, L L; Estill, J C; Rebak, R B

2003-10-29T23:59:59.000Z

185

UMTRA ground water sampling techniques: Comparison of the traditional and low flow methods  

SciTech Connect (OSTI)

This report describes the potential changes in water quality data that may occur with the conversion from MBV (multiple bore volume) to LF (low flow) sampling and provides two examples of how such a change might impact Project decisions. The existing scientific literature on LF sampling is reviewed and the new LF data from three UMTRA Uranium Mill Tailings Remedial Action Project sites are evaluated seeking answers to the questions posed above. Several possible approaches, that the UMTRA Project may take to address issues unanswered by the literature are presented and compared, and a recommendation is offered for the future direction of the LF conversion effort.

NONE

1995-07-01T23:59:59.000Z

186

Effects of Hyporheic Exchange Flows on Egg Pocket Water Temperature in Snake River Fall Chinook Salmon Spawning Areas  

SciTech Connect (OSTI)

The development of the Snake River hydroelectric system has affected fall chinook salmon smolts by shifting their migration timing to a period when downstream reservoir conditions are unfavorable for survival. Subsequent to the Snake River chinook salmon fall-run Evolutionary Significant Unit being listed as Threatened under the Endangered Species Act, recovery planning has included changes in hydrosystem operations to improve water temperature and flow conditions during the juvenile chinook salmon summer migration period. In light of the limited water supplies from the Dworshak reservoir for summer flow augmentation, and the associated uncertainties regarding benefits to migrating fall chinook salmon smolts, additional approaches for improved smolt survival need to be evaluated. This report describes research conducted by PNNL that evaluated relationships among river discharge, hyporheic zone characteristics, and egg pocket water temperature in Snake River fall chinook salmon spawning areas. The potential for improved survival would be gained by increasing the rate at which early life history events proceed (i.e., incubation and emergence), thereby allowing smolts to migrate through downstream reservoirs during early- to mid-summer when river conditions are more favorable for survival. PNNL implemented this research project throughout 160 km of the Hells Canyon Reach (HCR) of the Snake River. The hydrologic regime during the 2002?2003 sampling period exhibited one of the lowest, most stable daily discharge patterns of any of the previous 12 water years. The vertical hydraulic gradients (VHG) between the river and the riverbed suggested the potential for predominantly small magnitude vertical exchange. The VHG also showed little relationship to changes in river discharge at most sites. Despite the relatively small vertical hydraulic gradients at most sites, the results from the numerical modeling of riverbed pore water velocity and hyporheic zone temperatures suggested that there was significant vertical hydrologic exchange during all time periods. The combined results of temperature monitoring and numerical modeling indicate that only two sites were significantly affected by short-term (hourly to daily) large magnitude changes in discharge. Although the two sites exhibited acute flux reversals between river water and hyporheic water resulting from short-term large magnitude changes in discharge, these flux reversals had minimal effect on emergence timing estimates. Indeed, the emergence timing estimates at all sites was largely unaffected by the changes in river stage resulting from hydropower operations at Hells Canyon Dam. Our results indicate that the range of emergence timing estimates due to differences among the eggs from different females can be as large as or larger than the emergence timing estimates due to site differences (i.e., bed temperatures within and among sites). We conclude that during the 2002-2003 fall chinook salmon incubation period, hydropower operations of Hells Canyon Dam had an insignificant effect on fry emergence timing at the study sites. It appears that short-term (i.e., hourly to daily) manipulations of discharge from the Hells Canyon Complex during the incubation period would not substantially alter egg pocket incubation temperatures, and thus would not affect fry emergence timing at the study sites. However, the use of hydropower operational manipulations at the Hells Canyon Complex to accelerate egg incubation and fry emergence should not be ruled out on the basis of only one water year's worth of study. Further investigation of the incubation environment of Snake River fall chinook salmon is warranted based on the complexity of hyporheic zone characteristics and the variability of surface/subsurface interactions among dry, normal, and wet water years.

Hanrahan, Timothy P.; Geist, David R.; Arntzen, Evan V.; Abernethy, Cary S.

2004-09-24T23:59:59.000Z

187

One-dimensional fluid diffusion induced by constant-rate flow injection: Theoretical analysis and application  

E-Print Network [OSTI]

is essential in the exploitation of natural fluid resources, such as water, steam, petroleum, and natural gas advantages of our method are the reliability of the testing method, its economy of time, and the flexibility wastes. [3] In general, the nature of fluids in reservoir rocks can be characterized in terms of quantity

188

Simulated effects of climate change on the Death Valley regional ground-water flow system, Nevada and California  

SciTech Connect (OSTI)

The US Geological Survey, in cooperation with the US Department of Energy, is evaluating the geologic and hydrologic characteristics of the Death Valley regional flow system as part of the Yucca Mountain Project. As part of the hydrologic investigation, regional, three-dimensional conceptual and numerical ground-water-flow models have been developed to assess the potential effects of past and future climates on the regional flow system. A simulation that is based on climatic conditions 21,000 years ago was evaluated by comparing the simulated results to observation of paleodischarge sites. Following acceptable simulation of a past climate, a possible future ground-water-flow system, with climatic conditions that represent a doubling of atmospheric carbon dioxide, was simulated. The steady-state simulations were based on the present-day, steady-state, regional ground-water-flow model. The finite-difference model consisted of 163 rows, 153 columns, and 3 layers and was simulated using MODFLOWP. Climate changes were implemented in the regional ground-water-flow model by changing the distribution of ground-water recharge. Global-scale, average-annual, simulated precipitation for both past- and future-climate conditions developed elsewhere were resampled to the model-grid resolution. A polynomial function that represents the Maxey-Eakin method for estimating recharge from precipitation was used to develop recharge distributions for simulation.

D`Agnese, F.A.; O`Brien, G.M.; Faunt, C.C.; San Juan, C.A.

1999-04-01T23:59:59.000Z

189

Review of International Methods of Test to Rate the Efficiency of Water Heaters  

E-Print Network [OSTI]

associated with the EU water heater test procedure loadEU test procedure for water heaters. Load No. Delivered Max.period to allow the water heater to adjust completely to

Lutz, Jim

2012-01-01T23:59:59.000Z

190

Review of International Methods of Test to Rate the Efficiency of Water Heaters  

E-Print Network [OSTI]

gas and electric storage water heaters, heat-pump watersmall gas-fired storage water heaters with a large burner.such as electric storage water heaters, the comparison of

Lutz, Jim

2012-01-01T23:59:59.000Z

191

Use of Melt Flow Rate Test in Reliability Study of Thermoplastic Encapsulation Materials in Photovoltaic Modules  

SciTech Connect (OSTI)

Use of thermoplastic materials as encapsulants in photovoltaic (PV) modules presents a potential concern in terms of high temperature creep, which should be evaluated before thermoplastics are qualified for use in the field. Historically, the issue of creep has been avoided by using thermosetting polymers as encapsulants, such as crosslinked ethylene-co-vinyl acetate (EVA). Because they lack crosslinked networks, however, thermoplastics may be subject to phase transitions and visco-elastic flow at the temperatures and mechanical stresses encountered by modules in the field, creating the potential for a number of reliability and safety issues. Thermoplastic materials investigated in this study include PV-grade uncured-EVA (without curing agents and therefore not crosslinked); polyvinyl butyral (PVB); thermoplastic polyurethane (TPU); and three polyolefins (PO), which have been proposed for use as PV encapsulation. Two approaches were used to evaluate the performance of these materials as encapsulants: module-level testing and a material-level testing.

Moseley, J.; Miller, D.; Shah, Q.-U.-A. S. J.; Sakurai, K.; Kempe, M.; Tamizhmani, G.; Kurtz, S.

2011-10-01T23:59:59.000Z

192

Rates of water exchange for two cobalt(II) heteropoly-oxotungstate compounds in aqueous solution  

SciTech Connect (OSTI)

Polyoxometalate ions are used as ligands in water-oxidation processes related to solar energy production. An important step in these reactions is the association and dissociation of water from the catalytic sites, the rates of which are unknown. Here we report the exchange rates of water ligated to Co{sup II} atoms in two polyoxotungstate sandwich molecules using the {sup 17}O-NMR-based Swift–Connick method. The compounds were the [Co{sub 4}(H{sub 2}O){sub 2}(B-{alpha}-PW{sub 9}O{sub 34}){sub 2}]{sup 10?} and the larger {alpha}??{alpha}-[Co{sub 4}(H{sub 2}O){sub 2}(P{sub 2}W{sub 15}O{sub 56}){sub 2}]{sup 16?} ions, each with two water molecules bound trans to one another in a Co{sup II} sandwich between the tungstate ligands. The clusters, in both solid and solution state, were characterized by a range of methods, including NMR, EPR, FT-IR, UV-Vis, and EXAFS spectroscopy, ESI-MS, single-crystal X-ray crystallography, and potentiometry. For [Co{sub 4}(H{sub 2}O){sub 2}(B-{alpha}-PW{sub 9}O{sub 34}){sub 2}]{sup 10?} at pH?5.4, we estimate: k{sup 298}=1.5(5)±0.3×10{sup 6}?s{sup ?1}, ?H{sup ?}=39.8±0.4?kJ?mol{sup ?1}, ?S{sup ?}=+7.1±1.2?J?mol{sup ?1}?K{sup ?1} and ?V{sup ?}=5.6 ±1.6?cm{sup 3}?mol{sup ?1}. For the Wells–Dawson sandwich cluster ({alpha}??{alpha}-[Co{sub 4}(H{sub 2}O){sub 2}(P{sub 2}W{sub 15}O{sub 56}){sub 2}]{sup 16?}) at pH?5.54, we find: k{sup 298}=1.6(2)±0.3×10{sup 6}?s{sup ?1}, ?H{sup ?}=27.6±0.4?kJ?mol{sup ?1} ?S{sup ?}=?33±1.3?J?mol{sup ?1}?K{sup ?1} and ?V{sup ?}=2.2±1.4?cm{sup 3}mol{sup ?1} at pH?5.2. The molecules are clearly stable and monospecific in slightly acidic solutions, but dissociate in strongly acidic solutions. This dissociation is detectable by EPR spectroscopy as S=3/2 Co{sup II} species (such as the [Co(H{sub 2}O){sub 6}]{sup 2+} monomer ion) and by the significant reduction of the Co–Co vector in the XAS spectra.

Ohlin, C. A.; Harley, S. J.; McAlpin, J. G.; Hocking, R. K.; Mercado, B. Q.; Johnson, Rene L.; Villa, Eric M.; Fidler, M. K.; Olmstead, M. M.; Spiccia, L.; Britt, R. D.; Casey, William H.

2011-01-01T23:59:59.000Z

193

The effects of channel diameter on flow pattern, void fraction and pressure drop of two-phase air-water flow in circular micro-channels  

SciTech Connect (OSTI)

Two-phase air-water flow characteristics are experimentally investigated in horizontal circular micro-channels. Test sections are made of fused silica. The experiments are conducted based on three different inner diameters of 0.53, 0.22 and 0.15 mm with the corresponding lengths of 320, 120 and 104 mm, respectively. The test runs are done at superficial velocities of gas and liquid ranging between 0.37-42.36 and 0.005-3.04 m/s, respectively. The flow visualisation is facilitated by systems mainly including stereozoom microscope and high-speed camera. The flow regime maps developed from the observed flow patterns are presented. The void fractions are determined based on image analysis. New correlation for two-phase frictional multiplier is also proposed for practical applications. (author)

Saisorn, Sira [Energy Division, The Joint Graduate School of Energy and Environment (JGSEE), King Mongkut's University of Technology Thonburi, Bangmod, Bangkok 10140 (Thailand); Wongwises, Somchai [Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab. (FUTURE), Department of Mechanical Engineering, King Mongkut's University of Technology Thonburi, Bangmod, Bangkok 10140 (Thailand)

2010-05-15T23:59:59.000Z

194

Time-dependent tritium inventories and flow rates in fuel cycle components of a tokamak fusion reactor  

SciTech Connect (OSTI)

The dynamic behavior of the fuel cycle in a fusion reactor is of crucial importance due to the need to keep track of the large amount of tritium being constantly produced, transported, and processed in the reactor system. Because tritium is a source of radioactivity, loss and exhaust to the environment must be kept to a minimum. With ITER advancing to its Engineering Design phase, there is a need to accurately predict the dynamic tritium inventories and flow rates throughout the fuel cycle and to study design variations to meet the demands of low tritium inventory. In this paper, time-dependent inventories and flow rates for several components of the fuel cycle are modeled and studied through the use of a new modular-type model for the dynamic simulation of the fuel cycle in a fusion reactor. The complex dynamic behavior in the modeled subsystems is analyzed using this new model. Previous dynamic models focusing on the fuel cycle dealt primarily with a residence time parameter ({tau}{sub res}) defining each subsystem of the model. In this modular model, this residence time approach is avoided in favor of a more accurate and flexible model that utilizes real design parameters and operating schedules of the various subsystems modeled.

Kuan, W.; Abdou, M.A. [Univ. of California, Los Angeles, CA (United States); Willms, R.S. [Los Alamos National Lab., NM (United States)

1994-12-31T23:59:59.000Z

195

DEVELOPMENT OF A LOW COST INFERENTIAL NATURAL GAS ENERGY FLOW RATE PROTOTYPE RETROFIT MODULE  

SciTech Connect (OSTI)

In 1998, Southwest Research Institute began a multi-year project to develop a working prototype instrument module for natural gas energy measurement. The module will be used to retrofit a natural gas custody transfer flow meter for energy measurement, at a cost an order of magnitude lower than a gas chromatograph. Development and evaluation of the prototype energy meter in 2002-2003 included: (1) refinement of the algorithm used to infer properties of the natural gas stream, such as heating value; (2) evaluation of potential sensing technologies for nitrogen content, improvements in carbon dioxide measurements, and improvements in ultrasonic measurement technology and signal processing for improved speed of sound measurements; (3) design, fabrication and testing of a new prototype energy meter module incorporating these algorithm and sensor refinements; and (4) laboratory and field performance tests of the original and modified energy meter modules. Field tests of the original energy meter module have provided results in close agreement with an onsite gas chromatograph. The original algorithm has also been tested at a field site as a stand-alone application using measurements from in situ instruments, and has demonstrated its usefulness as a diagnostic tool. The algorithm has been revised to use measurement technologies existing in the module to measure the gas stream at multiple states and infer nitrogen content. The instrumentation module has also been modified to incorporate recent improvements in CO{sub 2} and sound speed sensing technology. Laboratory testing of the upgraded module has identified additional testing needed to attain the target accuracy in sound speed measurements and heating value.

E. Kelner; D. George; T. Morrow; T. Owen; M. Nored; R. Burkey; A. Minachi

2005-05-01T23:59:59.000Z

196

The effects of cold water injection and two-phase flow on skin factor and permeability estimates from pressure falloff analysis  

E-Print Network [OSTI]

33 54 78 LIST OF TABLES Tabl e Data for Bottomhole Temperature Calculation Reservoir and Thermal Properties for Model Verification Page 34 35 Water and Oil Viscosities for Model Verification . . 36 10 12 13 14 15 Water and Oil... Relative Permeabilities for Model Verification Data for Single-Phase Flow Runs Low Oil Viscosity for Single-Phase Flow Runs High Oil Viscosity for Single-Phase Flow Runs Data for Two-Phase Flow Runs Sumaary of Numerical Simulation Runs Results...

Linge, Frode

1984-01-01T23:59:59.000Z

197

Review of International Methods of Test to Rate the Efficiency of Water Heaters  

E-Print Network [OSTI]

air source to be added Discharge Includes: Source energy multiplier Distribution losses Smart controls Wasted water Solar Heat pump

Lutz, Jim

2012-01-01T23:59:59.000Z

198

A study of the effect of surfactants on the flow of water and oil in small capillaries  

E-Print Network [OSTI]

f. f S ftAR + ldM pp(t E~& Pf IEX~g A STUDY OF THE EFFECT OF SURFACTANTS ON THE FLOW OF WATER AND OIL IN SMALL CAPILLARIES ay ) WILLIAM Rx~ LANCASTER Subxnitted to the Graduate School of the Agricultural and Mechanical College of Texas bx... partial fulfillment of the requirements for the degree of MASTER OF SCIENCE hhjxjgxxjg 1$5g jjjBbj t:pt*1 ~Ejjeerla A STUDY OF THE EFFECT OF SURFACTANTS ON THE FLOW OF WATER AND OIL IN SMALL CAPILLARIES A Thesis WILLIAM R. LANCASTER Approved...

Lancaster, William Richard

1958-01-01T23:59:59.000Z

199

Experimental investigation of a flow monitoring instrument in an upper plenum of an air-water reflood test facility. [PWR  

SciTech Connect (OSTI)

Instrumentation was developed for measuring fluid phenomena in the upper plenum of pressurized water reactor reflood facilities. In particular, the instrumentation measured two-phase flow velocity and void fraction. The principle of operation of the instrumentation scheme was based on the measurement of electrical impedance. The technique of analysis of random signals from two spatially separated impedance sensors was employed to measure two-phase flow velocity. A relative admittance technique was used to determine void fraction. The performance of the instrumentaton was studied in an air-water test facility.

Combs, S.K.; Hardy, J.E.

1980-01-01T23:59:59.000Z

200

The Impact of Thermal Conductivity and Diffusion Rates on Water Vapor Transport through Gas Diffusion Layers  

E-Print Network [OSTI]

Water management in a hydrogen polymer electrolyte membrane (PEM) fuel cell is critical for performance. The impact of thermal conductivity and water vapor diffusion coefficients in a gas diffusion layer (GDL) has been studied by a mathematical model. The fraction of product water that is removed in the vapour phase through the GDL as a function of GDL properties and operating conditions has been calculated and discussed. Furthermore, the current model enables identification of conditions when condensation occurs in each GDL component and calculation of temperature gradient across the interface between different layers, providing insight into the overall mechanism of water transport in a given cell design. Water transport mode and condensation conditions in the GDL components depend on the combination of water vapor diffusion coefficients and thermal conductivities of the GDL components. Different types of GDL and water removal scenarios have been identified and related to experimentally-determined GDL proper...

Burlatsky, S F; Gummallaa, M; Condita, D; Liua, F

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water flow rate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Please Post to USGS Web Site Per BWs RequestlFw: Flow Rate Group Provides Preliminary Best Estimate Of Oil Flowing from BP Oil Wen  

E-Print Network [OSTI]

Of Oil Flowing from BP Oil Wen Clarice E Ransom to: Barbara W Wainman, 8. Arlene Compher 05127 Provides Preliminary Best Estimate Of Oil Flowing from BP Oil Well "Tsai, Brian" Estimate Of Oil Flowing from BP Oil Well USGS Director Dr. Marcia McNutt today announced that the National

Fleskes, Joe

202

Bubble Size Control to Improve Oxygen-Based Bleaching: Characterization of Flow Regimes in Pulp-Water-Gas Three-Phase Flows  

SciTech Connect (OSTI)

Flow characteristics of fibrous paper pulp-water-air slurries were investigated in a vertical circular column 1.8 m long, with 5.08 cm diameter. Flow structures, gas holdup (void fraction), and the geometric and population characteristics of gas bubbles were experimentally investigated, using visual observation, Gamma-ray densitometry, and flash X-ray photography. Five distinct flow regimes could be visually identified: dispersed bubbly, layered bubbly, plug, churn-turbulent, and slug. Flow regime maps were constructed, and the regime transition lines were found to be sensitive to consistency. The feasibility of using artificial neural networks (ANNs) for the identification of the flow regimes, using the statistical characteristics of pressure fluctuations measured by a single pressure sensor, was demonstrated. Local pressure fluctuations at a station were recorded with a minimally-intrusive transducer. Three-layer, feed-forward ANNs were designed that could identify the four major flow patterns (bubbly, plug, churn, and slug) well. The feasibility of a transportable artificial neural network (ANN) - based technique for the classification of flow regimes was also examined. Local pressures were recorded at three different locations using three independent but similar transducers. An ANN was designed, trained and successfully tested for the classification of the flow regimes using one of the normalized pressure signals (from Sensor 1). The ANN trained and tested for Sensor 1 predicted the flow regimes reasonably well when applied directly to the other two sensors, indicating a good deal of transportability. An ANN-based method was also developed, whereby the power spectrum density characteristics of other sensors were adjusted before they were used as input to the ANN that was based on Sensor 1 alone. The method improved the predictions. The gas-liquid interfacial surface area concentration was also measured in the study. The gas absorption technique was applied, using CO2 as the transferred species and sodium hydroxide as the alkaline agent in water. Statistical analysis was performed to identify the parametric dependencies. The experimental data were empirically correlated.

S.M. Ghiaasiaan and Seppo Karrila

2006-03-20T23:59:59.000Z

203

Chiller Start/Stop Optimization for a Campus-wide Chilled Water System with a Thermal Storage Tank Under a Four-Period Electricity Rate Schedule  

E-Print Network [OSTI]

The existence of a 1.4-million-gallon chilled water thermal storage tank greatly increases the operational flexibility of a campuswide chilled water system under a four-part electricity rate structure. While significant operational savings can...

Zhou, J.; Wei, G.; Turner, W. D.; Deng, S.; Claridge, D.; Contreras, O.

2002-01-01T23:59:59.000Z

204

Review of International Methods of Test to Rate the Efficiency of Water Heaters  

E-Print Network [OSTI]

Water Heaters Jim Lutz, Lawrence Berkeley National Laboratory January 25, 2011 The American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE) Standards

Lutz, Jim

2012-01-01T23:59:59.000Z

205

Design and Fabrication of a Vertical Pump Multiphase Flow Loop  

E-Print Network [OSTI]

is supplied by separate air and water inlet flows that mix just before entering the pump. These flows can be controlled to give a desired gas volume fraction and overall flow rate. The pump outlet flows into a tank which separates the fluids allowing them...

Kirkland, Klayton 1965-

2012-08-24T23:59:59.000Z

206

A new technique to analyze simultaneous sandface flow rate and pressure measurements of gas wells with turbulence and damage  

SciTech Connect (OSTI)

Most of the problems associated with conventional gas well test are related to the nonlinearity of the equations describing real gas flow, the presence of the rate dependent (non-Darcy) skin, and the long shut-in time periods required to collect the data for the analysis in tight reservoirs in which the wellbore storage period can be excessively long. This paper presents a new pressure buildup technique that reduces the wellbore storage effects, eliminates the long shut-in periods experienced with conventional tests by using afterflow rate and pressure data, and most importantly provides a direct method to estimate non-Darcy skin. The proposed technique uses normalized pseudofunctions to avoid the nonlinearities of the governing equations and involves using two different plots. The formation permeability is obtained from the slope of the first plot. The mechanical and non-Darcy skin factors are obtained respectively from the slope and intercept of the second plot. A field example and two simulated cases are presented to illustrate the application of the new technique.

Nashawi, I.S. [Kuwait Univ. (Kuwait); Al-Mehaideb, R.A.

1995-10-01T23:59:59.000Z

207

Experimental study of turbulent supercritical open channel water flow as applied to the CLiFF concept  

E-Print Network [OSTI]

; Liquid wall; Low conductivity fluid; Turbulence; Surface waves; Heat transfer 1. Introduction In fusion not experience strong MHD forces and to a large extent remain turbulent, but their heat transfer capabilitiesExperimental study of turbulent supercritical open channel water flow as applied to the CLi

Abdou, Mohamed

208

Water management studies in PEM fuel cells, Part II: Ex situ investigation of flow maldistribution, pressure drop  

E-Print Network [OSTI]

by externally humidified air and hydrogen gas streams, must be present within the fuel cell to maintain 4 5 6 #12;a fuel cell blocks gas transport pathways in the catalyst layers, gas diffusion layersWater management studies in PEM fuel cells, Part II: Ex situ investigation of flow maldistribution

Kandlikar, Satish

209

Optimization of Chilled Water Flow and Its Distribution in Central Cooling System  

E-Print Network [OSTI]

inefficiency included improper distribution of chilled water in the main branches, and bypassing return water through non-operation chillers....

Maheshwari, G. P.; Hajiah, A. E.; ElSherbini, A. I.

2007-01-01T23:59:59.000Z

210

8/9/12 Global water sustainability flows through natural and human challenges 1/2www.sciencedaily.com/releases/2012/08/120809141621.htm  

E-Print Network [OSTI]

lack access to safe drinking water. Water can unleash fury. Floods in Beijing on July 21 overwhelmed8/9/12 Global water sustainability flows through natural and human challenges 1/2www.sciencedaily.com/releases/2012/08/120809141621.htm TweetTweet 14 1 1 Share This: See Also: Earth & Climate Water Drought Research

211

The Interest Rate Conundrum  

E-Print Network [OSTI]

Flows and US Interest Rates,” NBER Working Paper No 12560. [Working Paper # 2008 -03 The Interest Rate Conundrum Roger

Craine, Roger; Martin, Vance L.

2009-01-01T23:59:59.000Z

212

7-88 A geothermal power plant uses geothermal liquid water at 160C at a specified rate as the heat source. The actual and maximum possible thermal efficiencies and the rate of heat rejected from this power plant  

E-Print Network [OSTI]

and potential energy changes are zero. 3 Steam properties are used for geothermal water. Properties Using7-31 7-88 A geothermal power plant uses geothermal liquid water at 160ºC at a specified rate saturated liquid properties, the source and the sink state enthalpies of geothermal water are (Table A-4) k

Bahrami, Majid

213

EXPERIMENTAL STUDY OF TURBULENT SUPERCRITICAL OPEN CHANNEL WATER FLOW AS APPLIED TO THE CLiFF CONCEPT  

E-Print Network [OSTI]

is to investigate the hydrodynamic and heat transfer phenomena in the near-surface region of a turbulent open-turbulence interaction are the most important processes that determine the heat transfer rate in CLiFF flows. The current, low conductivity fluid, turbulence, surface waves, heat transfer ________________ Corresponding

California at Los Angeles, University of

214

Summary of ground water and surface water flow and contaminant transport computer codes used at the Idaho National Engineering Laboratory (INEL). Version 1.0  

SciTech Connect (OSTI)

This report presents information on computer codes for numerical and analytical models that have been used at the Idaho National Engineering Laboratory (INEL) to model ground water and surface water flow and contaminant transport. Organizations conducting modeling at the INEL include: EG&G Idaho, Inc., US Geological Survey, and Westinghouse Idaho Nuclear Company. Information concerning computer codes included in this report are: agency responsible for the modeling effort, name of the computer code, proprietor of the code (copyright holder or original author), validation and verification studies, applications of the model at INEL, the prime user of the model, computer code description, computing environment requirements, and documentation and references for the computer code.

Bandy, P.J.; Hall, L.F.

1993-03-01T23:59:59.000Z

215

Summary of ground water and surface water flow and contaminant transport computer codes used at the Idaho National Engineering Laboratory (INEL). [Contaminant transport computer codes  

SciTech Connect (OSTI)

This report presents information on computer codes for numerical and analytical models that have been used at the Idaho National Engineering Laboratory (INEL) to model ground water and surface water flow and contaminant transport. Organizations conducting modeling at the INEL include: EG G Idaho, Inc., US Geological Survey, and Westinghouse Idaho Nuclear Company. Information concerning computer codes included in this report are: agency responsible for the modeling effort, name of the computer code, proprietor of the code (copyright holder or original author), validation and verification studies, applications of the model at INEL, the prime user of the model, computer code description, computing environment requirements, and documentation and references for the computer code.

Bandy, P.J.; Hall, L.F.

1993-03-01T23:59:59.000Z

216

Transport and transfer rates in the waters of the continental shelf. Annual report  

SciTech Connect (OSTI)

The goal of govern project is to understand and quantify the processes that the transport and dispersal of energy-related pollutants introduced to the waters of the continental shelf and slope. The report is divided into sections dealing with processes associated with suspended solids; processes associated with sediments sinks for radionuclides and other pollutants; and spreading of water characteristics and species in solution. (ACR)

Biscaye, P.E.

1980-09-01T23:59:59.000Z

217

Chapter 6 x Viscous Flow in Ducts 509 Solution: For water at 20qC, take U 998 kg/m3 and P 0.001 kg/ms. For galvanized  

E-Print Network [OSTI]

) If the flow rate is 0.4 ft3/s, what is the loss coefficient of the filter? (b) If the disk valve is wide open butterfly valve loss Kvalve | 80. The energy equation is Q 2(9.81) s (0.3% more) (a)Ans. 3 m 0.00214 s 2 V m.3], solve V 5.4 , | Obviously opening the valve has a dominant effect for this system. 6.108 The water

Bahrami, Majid

218

Development of an equivalent homogenous fluid model for pseudo-two-phase (air plus water) flow through fractured rock  

SciTech Connect (OSTI)

Fracture flow of two-phase mixtures is particularly applicable to the coal mining and coal bed methane projects in Australia. A one-dimensional steady-state pseudo-two-phase flow model is proposed for fractured rock. The model considers free flow of a compressible mixture of air and water in an inclined planar fracture and is based upon the conservation of momentum and the 'cubic' law. The flow model is coupled to changes in the stress environment through the fracture normal stiffness, which is related to changes in fracture aperture. The model represents the individual air and water phases as a single equivalent homogenous fluid. Laboratory testing was performed using the two-phase high-pressure triaxial apparatus on 54 mm diameter (approximately 2: 1 height: diameter) borehole cores intersected by induced near-axial fractures. The samples were of Triassic arenaceous fine-medium grained sandstone (known as the Eckersley Formation) that is found locally in the Southern Coalfield of New South Wales. The sample fracture roughness was assessed using a technique based upon Fourier series analysis to objectively attribute a joint roughness coefficient. The proposed two-phase flow model was verified using the recorded laboratory data obtained over a range of triaxial confining pressures (i.e., fracture normal stresses).

Price, J.; Indraratna, B. [University of Wollongong, Wollongong, NSW (Australia). School of Civil Engineering

2005-07-01T23:59:59.000Z

219

The Stress Corrosion Crack Growth Rate of Alloy 600 Heat Affected Zones Exposed to High Purity Water  

SciTech Connect (OSTI)

Grain boundary chromium carbides improve the resistance of nickel based alloys to primary water stress corrosion cracking (PWSCC). However, in weld heat affected zones (HAZ's), thermal cycles from fusion welding can solutionize beneficial grain boundary carbides, produce locally high residual stresses and strains, and promote PWSCC. The present research investigates the crack growth rate of an A600 HAZ as a function of test temperature. The A600 HAZ was fabricated by building up a gas-tungsten-arc-weld deposit of EN82H filler metal onto a mill-annealed A600 plate. Fracture mechanics based, stress corrosion crack growth rate testing was performed in high purity water between 600 F and 680 F at an initial stress intensity factor of 40 ksi {radical}in and at a constant electrochemical potential. The HAZ samples exhibited significant SCC, entirely within the HAZ at all temperatures tested. While the HAZ samples showed the same temperature dependence for SCC as the base material (HAZ: 29.8 {+-} 11.2{sub 95%} kcal/mol vs A600 Base: 35.3 {+-} 2.58{sub 95%} kcal/mol), the crack growth rates were {approx} 30X faster than the A600 base material tested at the same conditions. The increased crack growth rates of the HAZ is attributed to fewer intergranular chromium rich carbides and to increased plastic strain in the HAZ as compared to the unaffected base material.

George A. Young; Nathan Lewis

2003-04-05T23:59:59.000Z

220

The rate of carbonic acid decomposition in sea water and its oceanographic significance  

E-Print Network [OSTI]

Compressed Air Purging . . . . . . . . , . . 58 15 L6 Carbon-14 Uptake by ~la ~nas sp. in a Closed System, under 4f Carbon Dioxide Gas Purging and under N Gas Purging using Low pH Sea Water . C b -V, Uptk by~Mt ~~lt ik Cl System and under N2 Gas... and under Nitrogen Gas Purging and 4$ Carbon Dioxide Purging, using low pH Sea Water . . . . . . . . . . . . . . . . . , 63 12 Carbon-14 Uptake by Nitzuhia closterium in a Closed System and under Nitrogen Gas Purging . 1v PREFATORY' NOTE The author...

Park, Kilho

1957-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water flow rate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

The influence of irrigation water salinity on optimal nitrogen, phosphorus, and potassium liquid fertilizer rates  

E-Print Network [OSTI]

to Dieffenbachia when the amount of fertilizers in the irrigation water increased above the optimum range. In a second experiment with Spa thi phyllum and cucumber, the combination of 5 levels of fertilizers (0, 125, 250, 375, 500 mg I N) and 5 salinity levels... (0, 500, 1000, 1500, 2000 mg I salts) were tested. Nutrient analysis were performed in leaves, petioles, and roots of Spathiphyilum. In Spathiphyllum, the maximum growth was observed at 250 mg I N and no salts. With high salinity in the water (2000...

Campos Nu?n?ez, Ricardo

1990-01-01T23:59:59.000Z

222

Ground-water flow and transport modeling of the NRC-licensed waste disposal facility, West Valley, New York  

SciTech Connect (OSTI)

This report describes a simulation study of groundwater flow and radionuclide transport from disposal at the NRC licensed waste disposal facility in West Valley, New York. A transient, precipitation driven, flow model of the near-surface fractured till layer and underlying unweathered till was developed and calibrated against observed inflow data into a recently constructed interceptor trench for the period March--May 1990. The results suggest that lateral flow through the upper, fractured till layer may be more significant than indicated by previous, steady state flow modeling studies. A conclusive assessment of the actual magnitude of lateral flow through the fractured till could however not be made. A primary factor contributing to this uncertainty is the unknown contribution of vertical infiltration through the interceptor trench cap to the total trench inflow. The second part of the investigation involved simulation of the migration of Sr-90, Cs-137 and Pu-239 from the one of the fuel hull disposal pits. A first-order radionuclide leach rate with rate coefficient of 10{sup {minus}6}/day was assumed to describe radionuclide release into the disposal pit. The simulations indicated that for wastes buried below the fractured till zone, no significant migration would occur. However, under the assumed conditions, significant lateral migration could occur for radionuclides present in the upper, fractured till zone. 23 refs., 68 figs., 12 tabs.

Kool, J.B.; Wu, Y.S. (HydroGeoLogic, Inc., Herndon, VA (United States))

1991-10-01T23:59:59.000Z

223

Effects of cattle manure on erosion rates and runoff water pollution by faecal coliforms  

E-Print Network [OSTI]

of organic matter and nutrients. Recycling these wastes via land application could lead to improvements and nutrients for agriculture. However, the benefits of waste recycling may be partially offset by the risk-site specific. However, the benefits of waste recycling may be partially offset by the risk of water pollution

Quinton, John

224

A pore-scale model of two-phase flow in water-wet rock  

E-Print Network [OSTI]

oil-water mixtures through unconsolidated sands, Trans. AIMEperme- ability of unconsolidated and consolidated reservoir

Silin, Dmitriy

2009-01-01T23:59:59.000Z

225

Effects of Regulated Water Flows on Regen-eration of Fremont Cottonwood  

E-Print Network [OSTI]

-long dam and reservoir system designed to provide water and hydroelectric power to the greater Phoenix

226

The minimum flow rate scaling of Taylor cone-jets issued from a nozzle William J. Scheideler and Chuan-Hua Chena)  

E-Print Network [OSTI]

of applications including electrostatic spraying, spinning, and printing. In the most common setup, a working be justified on dimensional grounds as long as the liquid viscosity (l) drops out of the picture. Note viscosity in the minimum flow rate scaling Eq. (1) lacks a rigorous justification, which poses a severe

Chen, Chuan-Hua

227

Effects of Hyporheic Exchange Flows on Egg Pocket Water Temperature in Snake River Fall Chinook Salmon Spawning Areas, 2002-2003 Final Report.  

SciTech Connect (OSTI)

The development of the Snake River hydroelectric system has affected fall Chinook salmon smolts by shifting their migration timing to a period (mid- to late-summer) when downstream reservoir conditions are unfavorable for survival. Subsequent to the Snake River Chinook salmon fall-run Evolutionary Significant Unit being listed as Threatened under the Endangered Species Act, recovery planning has included changes in hydrosystem operations (e.g., summer flow augmentation) to improve water temperature and flow conditions during the juvenile Chinook salmon summer migration period. In light of the limited water supplies from the Dworshak reservoir for summer flow augmentation, and the associated uncertainties regarding benefits to migrating fall Chinook salmon smolts, additional approaches for improved smolt survival need to be evaluated. This report describes research conducted by the Pacific Northwest National Laboratory (PNNL) that evaluated relationships among river discharge, hyporheic zone characteristics, and egg pocket water temperature in Snake River fall Chinook salmon spawning areas. This was a pilot-scale study to evaluate these relationships under existing operations of Hells Canyon Dam (i.e., without any prescribed manipulations of river discharge) during the 2002-2003 water year. The project was initiated in the context of examining the potential for improving juvenile Snake River fall Chinook salmon survival by modifying the discharge operations of Hells Canyon Dam. The potential for improved survival would be gained by increasing the rate at which early life history events proceed (i.e., incubation and emergence), thereby allowing smolts to migrate through downstream reservoirs during early- to mid-summer when river conditions are more favorable for survival. PNNL implemented this research project at index sites throughout 160 km of the Hells Canyon Reach (HCR) of the Snake River. The HCR extends from Hells Canyon Dam (river kilometer [rkm] 399) downstream to the upper end of Lower Granite Reservoir near rkm 240. We randomly selected 14 fall Chinook salmon spawning locations as study sites, which represents 25% of the most used spawning areas throughout the HCR. Interactions between river water and pore water within the riverbed (i.e., hyporheic zone) at each site were quantified through the use of self-contained temperature and water level data loggers suspended inside of piezometers. Surrounding the piezometer cluster at each site were 3 artificial egg pockets. In mid-November 2002, early-eyed stage fall Chinook salmon eggs were placed inside of perforated polyvinyl chloride (PVC) tubes, along with a temperature data logger, and buried within the egg pockets. Fall Chinook salmon eggs were also incubated in the laboratory for the purpose of developing growth curves that could be used as indicators of emergence timing. The effects of discharge on vertical hydrologic exchange between the river and riverbed were inferred from measured temperature gradients between the river and riverbed, and the application of a numerical model. The hydrologic regime during the 2002-2003 sampling period exhibited one of the lowest, most stable daily discharge patterns of any of the previous 12 water years. The vertical hydraulic gradients (VHG) between the river and the riverbed suggested the potential for predominantly small magnitude vertical exchange. The VHG also showed little relationship to changes in river discharge at most sites. Despite the relatively small vertical hydraulic gradients at most sites, results from the numerical modeling of riverbed pore water velocity and hyporheic zone temperatures suggested that there was significant vertical hydrologic exchange during all time periods. The combined results of temperature monitoring and numerical modeling indicate that only 2 of 14 sites were significantly affected by short-term (hourly to daily) large magnitude changes in discharge. Although the two sites exhibited acute flux reversals between river water and hyporheic water resulting from short-term large magnitude

Hanrahan, T.; Geist, D.; Arntzen, C. (Pacific Northwest National Laboratory)

2004-09-01T23:59:59.000Z

228

Flow enhancement in nanotubes of different materials and lengths  

SciTech Connect (OSTI)

The high water flow rates observed in carbon nanotubes (CNTs) have previously been attributed to the unfavorable energetic interaction between the liquid and the graphitic walls of the CNTs. This paper reports molecular dynamics simulations of water flow in carbon, boron nitride, and silicon carbide nanotubes that show the effect of the solid-liquid interactions on the fluid flow. Alongside an analytical model, these results show that the flow enhancement depends on the tube's geometric characteristics and the solid-liquid interactions.

Ritos, Konstantinos, E-mail: konstantinos.ritos@strath.ac.uk [James Weir Fluids Lab, Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow G1 1XJ (United Kingdom)] [James Weir Fluids Lab, Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow G1 1XJ (United Kingdom); Mattia, Davide [Department of Chemical Engineering, University of Bath, Bath BA2 7AY (United Kingdom)] [Department of Chemical Engineering, University of Bath, Bath BA2 7AY (United Kingdom); Calabrò, Francesco [DIEI, Università di Cassino e del Lazio Meridionale, 03043 Cassino (Italy)] [DIEI, Università di Cassino e del Lazio Meridionale, 03043 Cassino (Italy); Reese, Jason M. [School of Engineering, University of Edinburgh, Edinburgh EH9 3JL (United Kingdom)] [School of Engineering, University of Edinburgh, Edinburgh EH9 3JL (United Kingdom)

2014-01-07T23:59:59.000Z

229

Pattern of shallow ground water flow at Mount Princeton Hot Springs...  

Open Energy Info (EERE)

deposits (including glacial and fluvial deposits), we use DC electrical resistivity tomography and self-potential mapping to identify preferential fluid flow pathways. The...

230

A review and assessment of variable density ground water flow effects on plume formation at UMTRA project sites  

SciTech Connect (OSTI)

A standard assumption when evaluating the migration of plumes in ground water is that the impacted ground water has the same density as the native ground water. Thus density is assumed to be constant, and does not influence plume migration. This assumption is valid only for water with relatively low total dissolved solids (TDS) or a low difference in TDS between water introduced from milling processes and native ground water. Analyses in the literature suggest that relatively minor density differences can significantly affect plume migration. Density differences as small as 0.3 percent are known to cause noticeable effects on the plume migration path. The primary effect of density on plume migration is deeper migration than would be expected in the arid environments typically present at Uranium Mill Tailings Remedial Action (UMTRA) Project sites, where little or no natural recharge is available to drive the plume into the aquifer. It is also possible that at some UMTRA Project sites, a synergistic affect occurred during milling operations, where the mounding created by tailings drainage (which created a downward vertical gradient) and the density contrast between the process water and native ground water acted together, driving constituents deeper into the aquifer than either process would alone. Numerical experiments were performed with the U.S. Geological Survey saturated unsaturated transport (SUTRA) model. This is a finite-element model capable of simulating the effects of variable fluid density on ground water flow and solute transport. The simulated aquifer parameters generally are representative of the Shiprock, New Mexico, UMTRA Project site where some of the highest TDS water from processing has been observed.

NONE

1995-01-01T23:59:59.000Z

231

Basal melt rates beneath Whillans Ice Stream, West Antarctica  

E-Print Network [OSTI]

Basal water lubricates and enables the fast flow of the West Antarctic ice streams which exist under low gravitational driving stress. Identification of sources and rates of basal meltwater production can provide insight into the dynamics of ice...

Beem, Lucas H.; Jezek, Ken C.; Van Der Veen, C. J.

2010-08-05T23:59:59.000Z

232

Influence of Atmospheric Pressure and Water Table Fluctuations on Gas Phase Flow and Transport of Volatile Organic Compounds (VOCs) in Unsaturated Zones  

E-Print Network [OSTI]

in previous studies. This dissertation systematically investigates their influence on the gas phase flow and transport of VOCs in soil and ground water remediation processes using analytically and numerically mathematical modeling. New semi...

You, Kehua

2013-04-19T23:59:59.000Z

233

Simulated effects of changes in the infiltration rate and the hydraulic conductivity structure on the location and configuration of the water table at Yucca Mountain, Nevada  

E-Print Network [OSTI]

which define the head over individual elements in a piecewise fashion (Wang and Anderson, 1982) . THE COMPUTER PROGRAM Introduction to FREESURF I Mathematical modeling of the ground water flow system at Yucca Mountain was undertaken using the finite... conditions at Yucca Mountain. The effect of increased infiltration within the Yucca Mountain block was also examined. The region of flow defined for Yucca Mountain was numerically modeled using a finite element model known as FREESURF I. Neither...

Jasek, Noreen Ann

1991-01-01T23:59:59.000Z

234

Role of viscoelasticity and non-linear rheology in flows of complex fluids at high deformation rates  

E-Print Network [OSTI]

We combine pressure, velocimetry and birefringence measurements to study three phenomena for which the fluid rheology plays a dominant role: 1) shear banding in micellar fluids, 2) extension-dominated flows in microfluidic ...

Ober, Thomas J. (Thomas Joseph)

2013-01-01T23:59:59.000Z

235

Water Flow Through Geotextiles Used to Support the Root Zone of Turfgrass on Sports Fields  

E-Print Network [OSTI]

to address the concern that fine particles in the root zone may migrate under the influence of percolating water, clog geotextile pores, and restrict the amount of water drained from a sports field. In test columns, six root zone mixtures with different...

Rose-Harvey, Keisha M.

2010-01-14T23:59:59.000Z

236

Analysis of long-term flows resulting from large-scale sodium-water reactions in an LMFBR secondary system  

SciTech Connect (OSTI)

Leaks in LMFBR steam generators cannot entirely be prevented; thus the steam generators and the intermediate heat transport system (IHTS) of an LMFBR must be designed to withstand the effects of the leaks. A large-scale leak which might result from a sudden break of a steam generator tube, and the resulting sodium-water reaction (SWR) can generate large pressure pulses that propagate through the IHTS and exert large forces on the piping supports. This paper discusses computer programs for analyzing long-term flow and thermal effects in an LMFBR secondary system resulting from large-scale steam generator leaks, and the status of the development of the codes.

Shin, Y.W.; Chung, H.; Choi, U.S.; Wiedermann, A.H.; Ockert, C.E.

1984-07-01T23:59:59.000Z

237

Prediction of pure water stress corrosion cracking (PWSCC) in nickel base alloys using crack growth rate models  

SciTech Connect (OSTI)

The Ford/Andresen slip dissolution SCC model, originally developed for stainless steel components in BWR environments, has been applied to Alloy 600 and Alloy X-750 tested in deaerated pure water chemistry. A method is described whereby the crack growth rates measured in compact tension specimens can be used to estimate crack growth in a component. Good agreement was found between model prediction and measured SCC in X-750 threaded fasteners over a wide range of temperatures, stresses, and material condition. Most data support the basic assumption of this model that cracks initiate early in life. The evidence supporting a particular SCC mechanism is mixed. Electrochemical repassivation data and estimates of oxide fracture strain indicate that the slip dissolution model can account for the observed crack growth rates, provided primary rather than secondary creep rates are used. However, approximately 100 cross-sectional TEM foils of SCC cracks including crack tips reveal no evidence of enhanced plasticity or unique dislocation patterns at the crack tip or along the crack to support a classic slip dissolution mechanism. No voids, hydrides, or microcracks are found in the vicinity of the crack tips creating doubt about classic hydrogen related mechanisms. The bulk oxide films exhibit a surface oxide which is often different than the oxides found within a crack. Although bulk chromium concentration affects the rate of SCC, analytical data indicates the mechanism does not result from chromium depletion at the grain boundaries. The overall findings support a corrosion/dissolution mechanism but not one necessarily related to slip at the crack tip.

Thompson, C.D.; Krasodomski, H.T.; Lewis, N.; Makar, G.L.

1995-02-22T23:59:59.000Z

238

1 Flow in Porous Media Oil companies often pump water into the cavities of the earth where the oil is situated to drive  

E-Print Network [OSTI]

1 Flow in Porous Media Oil companies often pump water into the cavities of the earth where the oil is situated to drive out the oil. In a simplified situation, as given in figure 1 we have a rectangular block of porous material filled with oil. Water is pumped in from the left, creating a presure difference between

Gander, Martin J.

239

Modelling water flow and seasonal soil moisture dynamics in an alluvial groundwater-fed wetland Hydrology and Earth System Sciences, 7(1), 5766 (2003) EGU  

E-Print Network [OSTI]

Hydrology and Earth System Sciences, 7(1), 57­66 (2003) © EGU Modelling water flow and seasonal soil between groundwater, surface water and climatic conditions. Knowledge of the hydrology of these systems tool to capture their hydrological complexity. In this study, a 2D-model describing saturated

Paris-Sud XI, Université de

240

Shallow water flow is a serious drilling hazard encoun-tered across several areas of the Gulf of Mexico (GoM).  

E-Print Network [OSTI]

of Mexico (GoM). Numerous incidents have occurred in which intense shallow water flows have disrupted question: "How does fresh- water come to be near the seafloor in deepwater areas of the Gulf of Mexico extending from onshore to offshore. This option is not generally accepted by experienced Gulf of Mexico

Texas at Austin, University of

Note: This page contains sample records for the topic "water flow rate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Mixing Cell Model: A One-Dimensional Numerical Model for Assessment of Water Flow and Contaminant Transport in the Unsaturated Zone  

SciTech Connect (OSTI)

This report describes the Mixing Cell Model code, a one-dimensional model for water flow and solute transport in the unsaturated zone under steady-state or transient flow conditions. The model is based on the principles and assumptions underlying mixing cell model formulations. The unsaturated zone is discretized into a series of independent mixing cells. Each cell may have unique hydrologic, lithologic, and sorptive properties. Ordinary differential equations describe the material (water and solute) balance within each cell. Water flow equations are derived from the continuity equation assuming that unit-gradient conditions exist at all times in each cell. Pressure gradients are considered implicitly through model discretization. Unsaturated hydraulic conductivity and moisture contents are determined by the material-specific moisture characteristic curves. Solute transport processes include explicit treatment of advective processes, first-order chain decay, and linear sorption reactions. Dispersion is addressed through implicit and explicit dispersion. Implicit dispersion is an inherent feature of all mixing cell models and originates from the formulation of the problem in terms of mass balance around fully mixed volume elements. Expressions are provided that relate implicit dispersion to the physical dispersion of the system. Two FORTRAN codes were developed to solve the water flow and solute transport equations: (1) the Mixing-Cell Model for Flow (MCMF) solves transient water flow problems and (2) the Mixing Cell Model for Transport (MCMT) solves the solute transport problem. The transient water flow problem is typically solved first by estimating the water flux through each cell in the model domain as a function of time using the MCMF code. These data are stored in either ASCII or binary files that are later read by the solute transport code (MCMT). Code output includes solute pore water concentrations, water and solute inventories in each cell and at each specified output time, and water and solute fluxes through each cell and specified output time. Computer run times for coupled transient water flow and solute transport were typically several seconds on a 2 GHz Intel Pentium IV desktop computer. The model was benchmarked against analytical solutions and finite-element approximations to the partial differential equations (PDE) describing unsaturated flow and transport. Differences between the maximum solute flux estimated by the mixing-cell model and the PDE models were typically less than two percent.

A. S. Rood

2010-10-01T23:59:59.000Z

242

Quantitative imaging of the air-water flow fields formed by unsteady breaking waves  

E-Print Network [OSTI]

An experimental method for simultaneously measuring the velocity fields on the air and water side of unsteady breaking waves is presented. The method is applied to breaking waves to investigate the physics of the air and ...

Belden, Jesse (Jesse Levi)

2009-01-01T23:59:59.000Z

243

A Simple and Quick Chilled Water Loop Balancing for Variable Flow System  

E-Print Network [OSTI]

For many modem buildings, the chilled water loops and risers are equipped with variable speed pumping systems. How to quickly balance the loop or riser to satisfy the cooling requirement and reduce energy consumption is a very interesting topic...

Zhu, Y.; Batten, T.; Turner, W. D.; Claridge, D. E.; Liu, M.

2000-01-01T23:59:59.000Z

244

Incorporating and Evaluating Environmental Instream Flows in a Priority Order Based Surface Water Allocation Model  

E-Print Network [OSTI]

multi-objective optimization model to characterize the tradeoffs between water supply shortages and fish 10 population capacity in a stream on the west-slope of the Sierra Nevada mountain range. Harman and Stewardson (2005) evaluated a range...

Pauls, Mark

2014-03-18T23:59:59.000Z

245

Water Research Institute Annual Technical Report  

E-Print Network [OSTI]

uniform coatings. Because the prepared solution of Aquacoat and DBS has a viscosity similar to water successfully with spray flow rates as high as 15 milliliters per minute. This results in faster coating. High

246

Spatial association between the locations of roots and water flow paths in highly structured soil  

E-Print Network [OSTI]

the smallest (> 1 mm diameter) roots were not randomly distributed. The results did show that the larger roots were not randomly distributed, and evidence pointed to a clustering of roots in and around the dye stained flow paths. However, the data fell short...

Gardiner, Nathan Thomas

2005-02-17T23:59:59.000Z

247

Water velocity and the nature of critical flow in large rapids on the Colorado River, Utah  

E-Print Network [OSTI]

Christopher S. Magirl,1 Jeffrey W. Gartner,2 Graeme M. Smart,3 and Robert H. Webb2 Received 13 January 2009-surface velocity and depth soundings alone. Citation: Magirl, C. S., J. W. Gartner, G. M. Smart, and R. H. Webb quantitative data on rapids. [3] Tinkler [1997] used an electromagnetic current meter to measure flow in a fast

248

AN EXPERIMENTAL INVESTIGATION ON FLOW BOILING OF ETHYLENE-GLYCOL/WATER MIXTURE  

E-Print Network [OSTI]

are used in cooling the engines in automotive applications. To avoid the two-phase flow in the engine coefficient values over a small circular aluminum heater surface, 9.5-mm in diameter, placed at the bottom-glycol mixtures is in automotive engine cooling. Although this mixture has been used for over several decades

Kandlikar, Satish

249

A pore-scale model of two-phase flow in water-wet rock  

SciTech Connect (OSTI)

A finite-difference discretization of Stokes equations is used to simulate flow in the pore space of natural rocks. Numerical solutions are obtained using the method of artificial compressibility. In conjunction with Maximal Inscribed Spheres method, these computations produce relative permeability curves. The results of computations are in agreement with laboratory measurements.

Silin, Dmitriy; Patzek, Tad

2009-02-01T23:59:59.000Z

250

Control of Initiation, Rate, and Routing of Spontaneous Capillary-Driven Flow of Liquid Droplets through Microfluidic Channels on  

E-Print Network [OSTI]

angle hysteresis, the presence or absence of a lubricating oil layer, and adsorption of surface between the plates of the SlipChip ("dead-end flow"). Rupture of the lubricating oil layer (reminiscent containing an aqueous droplet into contact with a slightly deeper channel filled with immiscible oil

Ismagilov, Rustem F.

251

GEOCHEMISTRY, GEOPHYSICS, GEOSYSTEMS, VOL. ???, XXXX, DOI:10.1029/, Flow Rate Perturbations in a Black Smoker Hydrothermal1  

E-Print Network [OSTI]

of aque-21 ous fluids within mid-ocean ridge hydrothermal systems and mechanical processes22 between mid-35 ocean ridge hydrothermal fluid flow and mechanical processes, there have been no36 direct in a Black Smoker Hydrothermal1 Vent In Response to a Mid-Ocean Ridge Earthquake Swarm2 Timothy J. Crone

Wilcock, William

252

Calcite dissolution and Ca/Na ion-exchange reactions in columns with different flow rates through high ESR soil  

E-Print Network [OSTI]

min?¹ under conditions of saturated flow. Column eluate was monitored for pH, carbonate alkalinity, and Na, Ca and Cl concentrations to evaluate the elution of SAR 10 solution, dissolution of CaCO? and exchange of Na by Ca on the cation...

Navarre, Audrey

1999-01-01T23:59:59.000Z

253

Water and gas coning: two and three phase system correlations for the critical oil production rate and optimum location of the completion interval  

E-Print Network [OSTI]

of the perforations which optimizes the critical oil production rate (xopt). Correlation for Two Phase Problem For. the two phase problem, the dimensionless critical oil production rate is correlated as a funct. ion of the dimensionless effective drainage radius...WATER AND GAS COMING: TWO AND THREE PHASE SYSTEM CORRELATIONS FOR THE CRITICAL OIL PRODUCTION RATE AND OPTIMUM LOCATION OF THE COMPLETION INTERVAL A Thesis by FRANCISCO MANUEL GONZALEZ, JR. Submitted to the Graduate College of Texas A...

Gonzalez, Francisco Manuel

1987-01-01T23:59:59.000Z

254

Influence of Specimen Size on the SCC Growth Rate of Ni-Alloys Exposed to High Temperature Water  

SciTech Connect (OSTI)

Tests were conducted on a single heat of Alloy 600 using compact tension specimens ranging from 50.80 mm (2 inches) in gross thickness (2T) to 10.16 mm (0.4 inches, 0.4T) in gross thickness. Results indicated that at stress intensity factor (K) levels above 55 MPa{radical}m, the growth rate is affected by specimen size in deaerated primary water. The growth rate can be significantly faster in 0.4T and 0.6T (15.24 mm = 0.6 inches in gross thickness) specimens at these elevated K levels compared to 2T specimens. Stress corrosion crack (SCC) growth rates > 6 x 10{sup -7} mm/s were observed at 338 C and 40 cc/kg H{sub 2} in 0.6T and 0.4T specimens at these elevated K levels, although the fracture mode was not significantly affected by the specimen size. The SCC growth rate of 2T specimens under comparable test conditions was {approx}6 x 10{sup -8} mm/s. All of the specimens examined that were tested at K > 55 MPa{radical}m exhibited intergranular failure, although ductile dimples and cracked grains were observed in the 0.4T specimens loaded to the elevated K levels. The effect of specimen size on the crack growth behavior indicated by electric potential drop (EPD) monitoring at K > 55 MPa{radical}m was also reviewed. EPD indicated steady state crack growth during the tests conducted on 1T (25.4 mm = 1.0 inches in gross thickness) and 2T specimens. Steady state crack growth was not indicated by EPD for the 0.4T and 0.6T specimens loaded at K > 55 MPa{radical}m. EPD indicated large jumps in the crack length at discrete points. Initially, it was believed that these large, rapid increases in the crack length corresponded to ductile tearing of uncracked ligaments in the crack wake as the SCC crack advanced. However, examination of the fracture surfaces did not reveal any evidence of isolated regions of ductile tearing in the crack wake. The large increases in the EPD signal were due to strain bursts. These results highlight the need to base SCC growth rates on destructive examination of the specimen.

E Richey; D Morton; W Moshier

2005-10-19T23:59:59.000Z

255

Spatially resolved measurements of kinematics and flow-induced birefringence in worm-like micellar solutions undergoing high rate deformations  

E-Print Network [OSTI]

Worm-like micellar solutions are model non-Newtonian systems on account of their well understood linear viscoelastic behavior. Their high deformation rate, non-linear rheological response, however, remains inadequately ...

Ober, Thomas J. (Thomas Joseph)

2010-01-01T23:59:59.000Z

256

The effect of cross flow in a stratified reservoir during a water flood  

E-Print Network [OSTI]

OF SCIENCE August 1970 Major Subject: PETROLEUM ENGINEERING THE EFFECT OF CROSS FLOW IN A STRATIFIED RESERVOIR DURING A WATERFLOOD A Thesis by GORDON EDMUND SOMMERS Approved as to style and content by: (C a'rman of Committee) (Hea of Depart nt...) (Member ) (Member) (Member) (Member) (Member) August 1970 111 ABSTRACT The Effect of Crossflow in a Stratified Reservoir During a Waterflood. (August 1970) Gordon Edmund Sommers, B. S. , Texas A@M University Directed by: Dr. Joseph S. Osoba...

Sommers, Gordon Edmund

1970-01-01T23:59:59.000Z

257

Overland flow modelling with the Shallow Water Equation using a well balanced numerical scheme  

E-Print Network [OSTI]

or kinematic waves equations, and using either finite volume or finite difference method. We compare these four show that, for relatively simple configurations, kinematic waves equations solved with finite volume; finite differ- ences scheme; kinematic wave equations; shallow water equations; comparison of numerical

Paris-Sud XI, Université de

258

Numerical simulation of air/water multiphase flows for ceramic sanitary ware design by multiple GPUs  

E-Print Network [OSTI]

and kitchen fittings. Facing the increasing demands for saving energy and water, TOTO has always targeted schemes and port the code to the GPU platforms to accelerate the large scale computations for real** Tokyo Institute of Technology, Department of energy sciences Numerical simulation of air

Furui, Sadaoki

259

WATER-QUALITY CONDITIONS DURING LOW FLOW IN THE LOWER YOUGHIOGHENY RIVER BASIN, PENNSYLVANIA, OCTOBER 5-7, 1998  

SciTech Connect (OSTI)

In October 1998, a chemical synoptic survey was conducted by the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, National Energy Technology Laboratory, in the Lower Youghiogheny River Basin in Pennsylvania to give a snap-shot of present (1998) water quality during low-flow conditions. Water samples from 38 sites--12 mainstem sites, 22 tributaries, and 4 mine discharges that discharge directly to the Youghiogheny River--were used to identify sources of contaminants from mining operations. Specific conductance, water temperature, pH, and dissolved oxygen were measured in the field at each site and concentrations of major ions and trace elements were measured in the laboratory. Unaccounted for gains and losses in streamflow were measured during the study. Unaccounted for losses in streamflow might be attributed to water loss through streambed fractures. Extensive mine tunnels are present in the basin and loss of water to these tunnels seems likely. Unaccounted for gains in streamflow may be from unmeasured tributaries or surface seeps, but most of the gains are suspected to come from artesian flow through fractures in the streambed from underground mine pools. Influent flows of rust-colored water were noted in some river sections. The pH values for all the samples collected during this survey were above 5.8, and most (33 of 38 samples) were above 7.0. Samples from the four mine-discharge sites also had pH values between 6.3 and 6.7. The lowest pH (5.8) was in a tributary, Galley Run. All 38 sampling sites had net alkalinity. The alkalinity load in the Youghiogheny River increased between Connellsville and McKeesport from 35 to 79 tons per day. Above Smithton, the measured alkalinity load in the Lower Youghiogheny River agreed well with the estimated alkalinity load. Below Smithton, measured alkalinity loads in the Lower Youghiogheny River are greater than calculated loads, resulting in unaccounted for gains in alkalinity. These gains are believed to be from seeps in the streambed. Approximately one-third of the load of total alkalinity in the Youghiogheny River at McKeesport is attributed to Sewickley Creek, which contributes 14 tons per day. Sulfate concentrations in the Youghiogheny River steadily increase from 33 milligrams per liter at Connellsville to 77 milligrams per liter near McKeesport. The measured concentrations of sulfate exceeded Pennsylvania water-quality standards at four tributary sites (Galley Run, Hickman Run, Sewickley Creek, and Gillespie Run) and all four mine-discharge sites but not at any main-stem sites. A large increase in sulfate load between West Newton and Sutersville can be attributed almost entirely to the contribution from Sewickley Creek (49 tons per day). Approximately 25 percent of the load measured between Connellsville and McKeesport is unaccounted for. These gains are believed to be from seeps in the streambed from underground mine pools. Similar patterns also were observed for loads of sodium, calcium, and magnesium. Unmeasured inputs from mine rainage are believed to be the source of these loads. Elevated concentrations (above background levels) of chemicals associated with drainage from coal-mining operations were measured in samples from tributaries, especially from Galley Run, Gillespie Run, and Sewickley Creek, and from the mine-discharge sites. The synoptic survey conducted for this study was successful in identifying generalized reaches of the Youghiogheny River where unaccounted for loads of constituents associated with mining activities are entering the river. However, the survey was not able to pinpoint the location of these loads. Remote-sensing techniques, such as thermal infrared imaging by the National Energy Technology Laboratory, could be useful for determining the precise locations of these inputs.

James I. Sams, III, Karl T. Schroeder; Terry E. Ackman; J. Kent Crawford; Kim L. Otto

2001-01-01T23:59:59.000Z

260

Some Specific CASL Requirements for Advanced Multiphase Flow Simulation of Light Water Reactors  

SciTech Connect (OSTI)

Because of the diversity of physical phenomena occuring in boiling, flashing, and bubble collapse, and of the length and time scales of LWR systems, it is imperative that the models have the following features: • Both vapor and liquid phases (and noncondensible phases, if present) must be treated as compressible. • Models must be mathematically and numerically well-posed. • The models methodology must be multi-scale. A fundamental derivation of the multiphase governing equation system, that should be used as a basis for advanced multiphase modeling in LWR coolant systems, is given in the Appendix using the ensemble averaging method. The remainder of this work focuses specifically on the compressible, well-posed, and multi-scale requirements of advanced simulation methods for these LWR coolant systems, because without these are the most fundamental aspects, without which widespread advancement cannot be claimed. Because of the expense of developing multiple special-purpose codes and the inherent inability to couple information from the multiple, separate length- and time-scales, efforts within CASL should be focused toward development of a multi-scale approaches to solve those multiphase flow problems relevant to LWR design and safety analysis. Efforts should be aimed at developing well-designed unified physical/mathematical and high-resolution numerical models for compressible, all-speed multiphase flows spanning: (1) Well-posed general mixture level (true multiphase) models for fast transient situations and safety analysis, (2) DNS (Direct Numerical Simulation)-like models to resolve interface level phenmena like flashing and boiling flows, and critical heat flux determination (necessarily including conjugate heat transfer), and (3) Multi-scale methods to resolve both (1) and (2) automatically, depending upon specified mesh resolution, and to couple different flow models (single-phase, multiphase with several velocities and pressures, multiphase with single velocity and pressure, etc.) A unified, multi-scale approach is advocated to extend the necessary foundations and build the capability to simultaneously solve the fluid dynamic interface problems (interface resolution) as well as multiphase mixtures (homogenization).

R. A. Berry

2010-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "water flow rate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

129 Iodine: A New Hydrologic Tracer for Aquifer Recharge Conditions Influenced by River Flow Rate and Evapotranspiration  

E-Print Network [OSTI]

analogy to chloride ? Long term database Chloride: Analogy for Iodide y = 5.27x -0.32 R 2 = 0.53 R = 0.73 0 1 2 3 4 5 6 0 20 40 60 80 100 120 SARPD Monthly Flow m 3 s -1 S ARP D [ C l - ] m e q / L Monthly values INSET: Annual median values.... GW y = 0.46x + 1.27 R 2 = 0.96 -2 -1 0 1 2 -3 -2 -1 0 log [Cl - GW ] or log [Cl - SARPD ] meq/L lo g [ C l - PP T ] m e q/ L ...

Schwehr, K. A.; Santschi, P. H.; Moran, J. E.

2003-01-01T23:59:59.000Z

262

A study of the air flow rates and their effects on bin drying sorghum grain with unheated air in South Texas  

E-Print Network [OSTI]

with the foot storage spoon use not availablo to hold their grain for s mors favorable market. Furthermore, only a limited amount of a~nial storage vss available at that time, These oonditions disolosed the need for infox- mstion consuming pxoesdurss.../ustment of the air flow to the desired rates was controlled bp two sliding gates in the latexal ss shown in Figure 5. Bzxcyle ports were installed in each bin at two levels ? one foot. from the bottom snd halfway between the bottom and the toy, This per- mitted...

Aldred, William H

1956-01-01T23:59:59.000Z

263

GEOPHYSICAL RESEARCH LETTERS, VOL. ???, XXXX, DOI:10.1029/, Global energy conversion rate from geostrophic flows into  

E-Print Network [OSTI]

, and to bottom velocity obtained from a global ocean model. The total energy flux into internal lee wavesGEOPHYSICAL RESEARCH LETTERS, VOL. ???, XXXX, DOI:10.1029/, Global energy conversion rate from distribution of the energy flux is largest in the Southern Ocean which accounts for half of the total energy

Ferrari, Raffaele

264

AIR-FLOW STRUCTURE IN THE VERY CLOSE VICINITY OF WIND GENERATED WATER-WAVES  

E-Print Network [OSTI]

to : , with the air-density, u and w the horizontal and vertical components of the wind speed, u* the friction and the viscous drag at the sea sur- face, we build two new microphysical devices: 1) the wind-speed vertical of the vertical profile of the normalized phase-averaged wind-speed in the air-viscous layer (1mm above water

Paris-Sud XI, Université de

265

Studies into the Initial Conditions, Flow Rate, and Containment System of Oil Field Leaks in Deep Water  

E-Print Network [OSTI]

to contain an oil leak in the field. The dome was found to have satisfactory entrapment in the designed position....

Holder, Rachel

2013-07-22T23:59:59.000Z

266

The Effect of Flow Rate of Compressed Hot Water on Xylan, Lignin, and Total Mass Removal from Corn Stover  

E-Print Network [OSTI]

fraction of cellulosics, to glucose followed by fermentation to ethanol is very attractive for producing organisms can readily ferment to ethanol.10,11 Glucose yields from enzymatic digestion of the cellulose in biological conversion of cellulosics to ethanol and other products; therefore, advanced pretreatment

California at Riverside, University of

267

Validation Analysis for the Calculation of a Turbulent Free Jet in Water Using CFDS-FLOW 3-D and FLUENT  

SciTech Connect (OSTI)

The application of computational fluid dynamics methods to the analysis of mixing in the high level waste tanks at the Savannah River Site requires a demonstration that the computer codes can properly represent the behavior of fluids in the tanks. The motive force for mixing the tanks is a set of jet pumps taking suction from the tank fluid and discharging turbulent jets near the bottom of the tank. The work described here focuses on the free turbulent jet in water as the simplest case of jet behavior for which data could be found in the open literature. Calculations performed with both CFDS-FLOW3D and FLUENT were compared with data as well as classical jet theory. Results showed both codes agreed reasonably well with each other and with the data, but that results were sensitive to the computational mesh and, to a lesser degree, the selection of turbulence models.

Dimenna, R.A.; Lee, S.Y.

1995-05-01T23:59:59.000Z

268

REVIEW SHEET 3 (1) A tank contains 100 gallon of salt water which ...  

E-Print Network [OSTI]

solution of 2lbs of salt per gallon enters the tank at a rate of 3 gallons per minute while a flow of fresh water runs into the tank at a rate of 5 gallons per minute.

2014-04-30T23:59:59.000Z

269

Comprehensive model to determine the effects of temperature and species fluctuations on reaction rates in turbulent reaction flows  

SciTech Connect (OSTI)

The use of silane (SiH4) as an effective ignitor and flame stabilizing pilot fuel is well documented. A reliable chemical kinetic mechanism for prediction of its behavior at the conditions encountered in the combustor of a SCRAMJET engine was calculated. The effects of hydrogen addition on hydrocarbon ignition and flame stabilization as a means for reduction of lengthy ignition delays and reaction times were studied. The ranges of applicability of chemical kinetic models of hydrogen-air combustors were also investigated. The CHARNAL computer code was applied to the turbulent reaction rate modeling.

Magnotti, F.; Diskin, G.; Matulaitis, J.; Chinitz, W.

1984-01-01T23:59:59.000Z

270

Video-rate optical dosimetry and dynamic visualization of IMRT and VMAT treatment plans in water using Cherenkov radiation  

SciTech Connect (OSTI)

Purpose: A novel technique for optical dosimetry of dynamic intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) plans was investigated for the first time by capturing images of the induced Cherenkov radiation in water. Methods: A high-sensitivity, intensified CCD camera (ICCD) was configured to acquire a two-dimensional (2D) projection image of the Cherenkov radiation induced by IMRT and VMAT plans, based on the Task Group 119 (TG-119) C-Shape geometry. Plans were generated using the Varian Eclipse treatment planning system (TPS) and delivered using 6 MV x-rays from a Varian TrueBeam Linear Accelerator (Linac) incident on a water tank doped with the fluorophore quinine sulfate. The ICCD acquisition was gated to the Linac target trigger pulse to reduce background light artifacts, read out for a single radiation pulse, and binned to a resolution of 512 × 512 pixels. The resulting videos were analyzed temporally for various regions of interest (ROI) covering the planning target volume (PTV) and organ at risk (OAR), and summed to obtain an overall light intensity distribution, which was compared to the expected dose distribution from the TPS using a gamma-index analysis. Results: The chosen camera settings resulted in 23.5 frames per second dosimetry videos. Temporal intensity plots of the PTV and OAR ROIs confirmed the preferential delivery of dose to the PTV versus the OAR, and the gamma analysis yielded 95.9% and 96.2% agreement between the experimentally captured Cherenkov light distribution and expected TPS dose distribution based upon a 3%/3 mm dose difference and distance-to-agreement criterion for the IMRT and VMAT plans, respectively. Conclusions: The results from this initial study demonstrate the first documented use of Cherenkov radiation for video-rate optical dosimetry of dynamic IMRT and VMAT treatment plans. The proposed modality has several potential advantages over alternative methods including the real-time nature of the acquisition, and upon future refinement may prove to be a robust and novel dosimetry method with both research and clinical applications.

Glaser, Adam K., E-mail: Adam.K.Glaser@dartmouth.edu, E-mail: Brian.W.Pogue@dartmouth.edu; Andreozzi, Jacqueline M.; Davis, Scott C. [Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 (United States)] [Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 (United States); Zhang, Rongxiao [Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States)] [Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States); Pogue, Brian W., E-mail: Adam.K.Glaser@dartmouth.edu, E-mail: Brian.W.Pogue@dartmouth.edu [Department of Physics and Astronomy and Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 (United States); Fox, Colleen J.; Gladstone, David J. [Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03766 (United States)] [Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03766 (United States)

2014-06-15T23:59:59.000Z

271

A three-dimensional numerical model of predevelopment conditions in the Death Valley regional ground-water flow system, Nevada and California  

SciTech Connect (OSTI)

In the early 1990's, two numerical models of the Death Valley regional ground-water flow system were developed by the U.S. Department of Energy. In general, the two models were based on the same basic hydrogeologic data set. In 1998, the U.S. Department of Energy requested that the U.S. Geological Survey develop and maintain a ground-water flow model of the Death Valley region in support of U.S. Department of Energy programs at the Nevada Test Site. The purpose of developing this ''second-generation'' regional model was to enhance the knowledge and understanding of the ground-water flow system as new information and tools are developed. The U.S. Geological Survey also was encouraged by the U.S. Department of Energy to cooperate to the fullest extent with other Federal, State, and local entities in the region to take advantage of the benefits of their knowledge and expertise. The short-term objective of the Death Valley regional ground-water flow system project was to develop a steady-stat e representation of the predevelopment conditions of the ground-water flow system utilizing the two geologic interpretations used to develop the previous numerical models. The long-term objective of this project was to construct and calibrate a transient model that simulates the ground-water conditions of the study area over the historical record that utilizes a newly interpreted hydrogeologic conceptual model. This report describes the result of the predevelopment steady-state model construction and calibration.

D'Agnese, F.A.; O'Brien, G.M.; Faunt, C.C.; Belcher, W.R.; San Juan, Carma

2002-11-22T23:59:59.000Z

272

Reproductive success and mortality rates of Ceriodaphnia dubia maintained in water from Upper Three Runs, Pen Branch, and Fourmile Branch  

SciTech Connect (OSTI)

It is anticipated that the new SRS NPDES permit will require toxicity testing of at numerous outfalls and receiving streams, using the standard test species, Ceriodaphnia dubia. Because SRS surface waters differ markedly from the standard culture water that is used for Ceriodaphnia, studies were undertaken to determine if unimpacted SRS surface waters will support this species. Three SRS surface waters were evaluated; Upper Three Runs at Road 8-1, Pen Branch at Road B, and Fourmile Branch at Road F. Toxicity tests were performed monthly on each water source for eleven months. All three water sources exhibited varying degrees of toxicity to Ceriodaphnia, with Pen Branch being the least toxic and Fourmile Branch being the most toxic. These results indicate that if in-stream toxicity testing is required, it may not be possible to separate the naturally occurring toxic effects of the receiving water from possible toxic effects of SRS effluents.

Specht, W.L.

1994-12-01T23:59:59.000Z

273

Habitat restoration and sediment transport in rivers Streams and rivers or any bodies of flowing water are dynamic by nature. Through erosion and  

E-Print Network [OSTI]

Habitat restoration and sediment transport in rivers Streams and rivers or any bodies of flowing water are dynamic by nature. Through erosion and deposition, streams and rivers transport and transform important. Current Projects: Fish habitat restoration in rivers: In the past rivers' dynamic nature has been

Barthelat, Francois

274

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Coupled flow of water and gas during hydraulic fracture in shale (EARTH-15-CM1)  

E-Print Network [OSTI]

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Coupled flow of water and gas during hydraulic fracture in shale (EARTH-15-CM1) Host institution: University of Oxford Cartwright Project description: Recovery of natural gas from mudstone (shale) formations has triggered

Henderson, Gideon

275

The Development of a Coordinated Database for Water Resources and Flow Model in the Paso Del Norte Watershed  

E-Print Network [OSTI]

AND ASSOCIATED MODELS DEVELOPED FOR THE PASO DEL NORTE WATERSHED MODFLOW – MODULAR Three-Dimensional Finite-Difference Groundwater FLOW Model MODFLOW is a modular, three-dimensional, finite-difference, groundwater flow model that numerically solves... the three-dimensional groundwater flow equation for a porous medium by using a finite-difference method (Harbaugh et al. 2000; McDonald and Harbaugh 1988). MODFLOW simulates steady and transient (nonsteady) flow in an irregularly shaped flow system...

Sheng, Zhuping; Tillery, Sue; King, Phillip J.; Creel, Bobby; Brown, Christopher; Michelsen, Ari; Srinivasan, Raghavan; Granados, Alfredo

276

Improving parameter estimation and water table depth simulation in a land surface model using GRACE water storage and estimated base flow data  

E-Print Network [OSTI]

2007), Estimating ground water storage changes in thestorage (i.e. , all of the snow, ice, surface water, soil moisture, and ground-

Lo, Min-Hui; Famiglietti, James S; Yeh, P. J.-F.; Syed, T. H

2010-01-01T23:59:59.000Z

277

Measurement of steam quality in two-phase critical flow  

E-Print Network [OSTI]

through a venturi for subczitical flow of steam-water 45 13 Steam quality as a function of vapor-phase Reynolds number for subczitical flow of steam-water 46 14 Steam quality as a function of Collins and Gacesa parameter for subcritical flow of steam... high degree of accuracy. He suggested that the following correlation may be used to calculate two-phase flow rates through orifices to within an error of 1. 5 percent 339 K 3 9 9' J 9 v v a v w f + [ 1. 26 (1-f ) K Y /K ] ~p p where V and L...

Sinclair, John William

2012-06-07T23:59:59.000Z

278

Improving parameter estimation and water table depth simulation in a land surface model using GRACE water storage and estimated base flow data  

E-Print Network [OSTI]

40, doi:10.1175/2008JHM993.1. Szilagyi, J. (2004), Heuristicsimulations of base flow [Szilagyi, 2004]. Although the

Lo, Min-Hui; Famiglietti, James S; Yeh, P. J.-F.; Syed, T. H

2010-01-01T23:59:59.000Z

279

Grains, Water Introduction  

E-Print Network [OSTI]

Grains, Water & Wet Sand Onno Bokhove Introduction Dry Granular Chute Flows: Cantilever Water Waves: Bores Near the Shore Surf Induced Sand Dynamics Discussion Dry Granular Flows, Water Waves & Surf, Water & Wet Sand Onno Bokhove Introduction Dry Granular Chute Flows: Cantilever Water Waves: Bores Near

Wirosoetisno, Djoko

280

Systematic Method for Evaluating Extraction and Injection Flow Rates for 100-KR-4 and 100-HR-3 Groundwater Operable Unit Pump-and-Treat Interim Actions for Hydraulic Containment  

SciTech Connect (OSTI)

This document describes a systematic method to develop flow rate recommendations for Pump-and-Treat (P&T) extraction and injection wells in 100-KR-4 and 100-HR-3 Groundwater Operable Units (OU) of the Hanford Site. Flow rate recommendations are developed as part of ongoing performance monitoring and remedy optimization of the P&T interim actions to develop hydraulic contairnnent of the dissolved chromium plume in groundwater and protect the Columbia River from further discharges of groundwater from inland. This document details the methodology and data required to infer the influence of individual wells near the shoreline on hydraulic containment and river protection and develop flow rate recommendations to improve system performance and mitigate potential shortcomings of the system configuration in place.

Spiliotopoulos, Alexandros A.

2013-03-20T23:59:59.000Z

Note: This page contains sample records for the topic "water flow rate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

The effects of production rates and some reservoir parameters on recovery in a strong water drive gas reservoir  

E-Print Network [OSTI]

Page 11 12 17 23 LIST OF FIGURES Figure 1 Reservoir Configuration and the Cell Break-up . . . 2 Relative Permeability Data 3 Capillary Pressure Data 4 Compressibility (Z) Factor Vs Pressure . . 5a P/Z Vs Cumulative Gas Produced for Cases 1, 2... Cumulative Gas Produced for Cases 16, 17, 18 g P/Z Vs Cumulative Gas Produced for Cases 19, 20, 21 6a Gas Production Rate Vs Time for Cases I, 2, 3 b Gas Production Rate Vs Time for Cases 4, 5, 6 c Gas Production Rate Vs Time for Cases 7, 8, 9 . . . . d...

Soemarso, Christophorus

1978-01-01T23:59:59.000Z

282

The effect of water content, cooling rate, and growth temperature on the freezing temperature of 4 Tillandsia species  

E-Print Network [OSTI]

the exotherm initiation temperatures (EIT) of leaf sections. The effect of 2 growth temperatures (5 and 25oC) on the absolute water content and EIT of T. recurvata and T. usneoides was also determined. All p * * pt T. mb'1 ', f o t ld temperatures at 80... used to detect ice formation in plant tissues by exotherm detection. An electronic device is used to measure the heat released (exotherm) when water freezes. From this information, the freezing and supercooling temperatures of plant tissues can...

Hagar, Christopher Flint

1990-01-01T23:59:59.000Z

283

Interlaboratory study of the reproducibility of the single-pass flow-through test method : measuring the dissolution rate of LRM glass at 70 {sup {degree}}C and pH 10.  

SciTech Connect (OSTI)

An international interlaboratory study (ILS) was conducted to evaluate the precision with which single-pass flow-through (SPFT) tests can be conducted by following a method to be standardized by the American Society for Testing and Materials - International. Tests for the ILS were conducted with the low-activity reference material (LRM) glass developed previously for use as a glass test standard. Tests were conducted at 70 {+-} 2 C using a LiCl/LiOH solution as the leachant to impose an initial pH of about 10 (at 70 C). Participants were provided with LRM glass that had been crushed and sieved to isolate the -100 +200 mesh size fraction, and then washed to remove fines. Participants were asked to conduct a series of tests using different solution flow rate-to-sample mass ratios to generate a range of steady-state Si concentrations. The glass dissolution rate under each test condition was calculated using the steady-state Si concentration and solution flow rate that were measured in the test. The glass surface area was estimated from the mass of glass used in the test and the Si content of LRM glass was known. A linear relationship between the rate and the steady-state Si concentration (at Si concentrations less than 10 mg/L) was used to estimate the forward dissolution rate, which is the rate in the absence of dissolved Si. Participants were asked to sample the effluent solution at least five times after reaction times of between 3 and 14 days to measure the Si concentration and flow rate, and to verify that steady-state was achieved. Results were provided by seven participants and the data sets provided by five participants were sufficient to determine the forward rates independently.

Ebert, W. L.; Chemical Engineering

2006-02-28T23:59:59.000Z

284

Multiphase flow calculation software  

DOE Patents [OSTI]

Multiphase flow calculation software and computer-readable media carrying computer executable instructions for calculating liquid and gas phase mass flow rates of high void fraction multiphase flows. The multiphase flow calculation software employs various given, or experimentally determined, parameters in conjunction with a plurality of pressure differentials of a multiphase flow, preferably supplied by a differential pressure flowmeter or the like, to determine liquid and gas phase mass flow rates of the high void fraction multiphase flows. Embodiments of the multiphase flow calculation software are suitable for use in a variety of applications, including real-time management and control of an object system.

Fincke, James R. (Idaho Falls, ID)

2003-04-15T23:59:59.000Z

285

A Differential Pressure Instrument with Wireless Telemetry for In-Situ Measurement of Fluid Flow across Sediment-Water Boundaries  

E-Print Network [OSTI]

An instrument has been built to carry out continuous in-situ measurement of small differences in water pressure, conductivity and temperature, in natural surface water and groundwater systems. A low-cost data telemetry ...

Gardner, Alan T.

286

Transverse slope of bed and turbid-clear water interface of channelized turbidity currents flowing around bends  

E-Print Network [OSTI]

1 Transverse slope of bed and turbid-clear water interface of channelized turbidity currents is assumed to be Froude-subcritical, and in the case of a turbidity current a relatively sharp interface between turbid water and clear water above is assumed. The analysis focuses on the processes that maintain

Parker, Gary

287

A Field-Scale Assessment of Soil-Specific Seeding Rates to Optimize Yield Factors and Water Use in Cotton  

E-Print Network [OSTI]

al., 2006; Ge et al., 2008). Other precision agriculture technologies in cotton, such as variable rate seeding, fertilizer, pest management, and irrigation may have a positive impact on cotton production under a site-specific management plan... the potential to reduce inputs, but equipment costs make these technologies undesirable to producers that have working systems in place (Bronson et al., 2006; Seo et al., 2008). Implementation of these precision agriculture technologies in cotton, especially...

Stanislav, Scott Michael

2011-10-21T23:59:59.000Z

288

Impact of an apparent radiation embrittlement rate on the life expectancy of PWR (pressurized-water-reactor) vessel supports  

SciTech Connect (OSTI)

Recent data from the HFIR vessel surveillance program indicate a substantial radiation embrittlement rate effect at low irradiation temperatures (/approximately/120/degree/F) for A212-B, A350-LF3, A105-II and corresponding welds. PWR vessel supports are fabricated of similar materials and are subjected to the same low temperatures and fast neutron fluxes (10/sup 8/ /minus/ 10/sup 9/ n/cm/sup 2//center dot/s, E > 1.0 MeV) as those in the HFIR vessel. Thus, the embrittlement rate of these structures may be greater than previously anticipated. A study sponsored by the NRC is under way at ORNL to determine the impact of the rate effect on PWR vessel support life expectancy. The scope includes the interpretation and application of the HFIR data, a survey of all LWR vessel support designs, and a structural and fracture-mechanics analysis of the supports for two specific PWR plants of particular interest with regard to a potential for support failure as a result of propagation of flaws. Calculations performed for one of the plants indicate best-estimate critical flaw size corresponding to 32 EFPY, of /approximately/0.4 in. It appears that low-cycle fatigue is not a viable mechanism for creation of flaws of this size. Thus, presumably such flaws would have to exist at the time of fabrication. 19 refs., 8 figs., 3 tabs.

Cheverton, R.D.; Pennell, W.E.; Robinson, G.C.; Nanstad, R.K.

1989-01-01T23:59:59.000Z

289

Imbibition flooding with CO?-enriched water  

E-Print Network [OSTI]

Imbibition of water into the pore space of the matrix is the dominant oil production factor in fractured reservoirs. Conventional water and gas injection methods fail to improve oil recovery in these reservoirs because of fluid channeling through... the fracture system. The largest fractured reservoirs in Texas are tight, dual porosity limestone reservoirs such as the Austin Chalk. Imbibition flooding is limited in tight fractured reservoirs because of low countercurrent water-oil imbibition flow rates...

Grape, Steven George

1990-01-01T23:59:59.000Z

290

1. Mean Trick in the Shower It is known that in conditions of collective water supply the temperature of the water flowing on the man in  

E-Print Network [OSTI]

outside affect the situation. 4. , , , . 4. Incandescent Data Transfer Achieve a maximum data transfer rate using an incandescent bulb as a transmitter to modulate the optical signal

Kaplan, Alexander

291

The influence of free gas saturation on water flood performance - variations caused by changes in flooding rate  

E-Print Network [OSTI]

, 1971) Anil Kumar Dandona, B. S. , Indian School of Mines Directed by: Dr. R. A. Morse It has been recognised that the presence of a free gas satura- tion prior to water flooding can have an important influence on oil recovery. The published results... studies such as the disappearance of part or all of the free gas by solution in the oil bank. Also, it has been realised that gravity forces make it impossible to initiate and maintain a uniforxn gas saturation fram top to bottom of the production...

Dandona, Anil Kumar

1971-01-01T23:59:59.000Z

292

Low volume flow meter  

DOE Patents [OSTI]

The low flow monitor provides a means for determining if a fluid flow meets a minimum threshold level of flow. The low flow monitor operates with a minimum of intrusion by the flow detection device into the flow. The electrical portion of the monitor is externally located with respect to the fluid stream which allows for repairs to the monitor without disrupting the flow. The electronics provide for the adjustment of the threshold level to meet the required conditions. The apparatus can be modified to provide an upper limit to the flow monitor by providing for a parallel electronic circuit which provides for a bracketing of the desired flow rate.

Meixler, Lewis D. (East Windsor, NJ)

1993-01-01T23:59:59.000Z

293

244 / JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT / JULY/AUGUST 2001 IDENTIFYING CAUSE OF DECLINING FLOWS IN THE  

E-Print Network [OSTI]

OF DECLINING FLOWS IN THE REPUBLICAN RIVER By Jozsef Szilagyi1 ABSTRACT: The Republican River, shared by three, including the main-stem Republican River itself (Szilagyi 1999). Fig. 2 shows the observed decline in runoff

Szilagyi, Jozsef

294

Portable wastewater flow meter  

DOE Patents [OSTI]

A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under fill pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

Hunter, Robert M. (320 S. Wilson Ave., Bozeman, MT 59715)

1999-02-02T23:59:59.000Z

295

Portable wastewater flow meter  

DOE Patents [OSTI]

A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under full pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

Hunter, Robert M. (320 S. Wilson Ave., Bozeman, MT 59715)

1990-01-01T23:59:59.000Z

296

Sustainable systems rating program: Marketing Green'' Building in Austin, Texas  

SciTech Connect (OSTI)

Four major resource issues for home construction were identified: water, energy, materials, and waste. A systems flow model was then developed that tracked the resource issues through interactive matrices in the areas of sourcing, processing, using, and disposing or recycling. This model served as the basis for a rating system used in an educational and marketing tool called the Eco-Home Guide.

Not Available

1991-12-01T23:59:59.000Z

297

Sustainable systems rating program: Marketing ``Green`` Building in Austin, Texas  

SciTech Connect (OSTI)

Four major resource issues for home construction were identified: water, energy, materials, and waste. A systems flow model was then developed that tracked the resource issues through interactive matrices in the areas of sourcing, processing, using, and disposing or recycling. This model served as the basis for a rating system used in an educational and marketing tool called the Eco-Home Guide.

Not Available

1991-12-01T23:59:59.000Z

298

Ice shelf-ocean interactions in a general circulation model : melt-rate modulation due to mean flow and tidal currents  

E-Print Network [OSTI]

Interactions between the ocean circulation in sub-ice shelf cavities and the overlying ice shelf have received considerable attention in the context of observed changes in flow speeds of marine ice sheets around Antarctica. ...

Dansereau, Véronique

2012-01-01T23:59:59.000Z

299

Subcooled flow boiling heat transfer and critical heat flux in water-based nanofluids at low pressure  

E-Print Network [OSTI]

A nanofluid is a colloidal suspension of nano-scale particles in water, or other base fluids. Previous pool boiling studies have shown that nanofluids can improve the critical heat flux (CHF) by as much as 200%. In this ...

Kim, Sung Joong, Ph. D. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

300

Analytical solutions for benchmarking cold regions subsurface water flow and energy transport models: One-dimensional soil thaw  

E-Print Network [OSTI]

Kenzie b , Kerry T.B. MacQuarrie a , Clifford I. Voss c a Department of Civil Engineering, University to impede the migration of contaminated water [30], to simulate the influence of design alternatives

McKenzie, Jeffrey M.

Note: This page contains sample records for the topic "water flow rate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Development test report for the high pressure water jet system nozzles  

SciTech Connect (OSTI)

The high pressure water jet nozzle tests were conducted to identify optimum water pressure, water flow rate, nozzle orifice size and fixture configuration needed to effectively decontaminate empty fuel storage canisters in KE-Basin. This report gives the tests results and recommendations from the these tests.

Takasumi, D.S.

1995-09-28T23:59:59.000Z

302

Phase Transition and Interpore Correlations of Water in Nanopore Membranes Georg Menzl,1  

E-Print Network [OSTI]

to electric fields, high flow rates, and rapid proton transport [1­4]. In biological systems, pro- tein pores spanning the cell membrane are filled with single-file water and regulate proton, ion, and water trans the behavior of nano- pore water. In this Letter, we use computer simulations to investigate such cooperative

Dellago, Christoph

303

Unsaturated flow and transport through a fault embedded in fractured welded tuff  

E-Print Network [OSTI]

-matrix interactions, the nonlinearity of unsat- urated flow, and the heterogenities in the hydrological properties of lithium bromide)) was released along the fault over a period of 9 days, 7 months after the start of water- rated fractured rock (i.e., matrix and fracture flow, and fracture-matrix interactions) is of interest

Hu, Qinhong "Max"

304

Household Water Quality Home Water Quality Problems  

E-Print Network [OSTI]

in water heater. Scale buildup in pipes and re duced water flow. Hard water due to calcium and magnesiumHousehold Water Quality Home Water Quality Problems­ Causes and Treatments Blake Ross, Extension Many areas have water containing impurities from natural or artificial sources. These impurities may

Liskiewicz, Maciej

305

Hydrothermal synthesis of yttria stabilized ZrO{sub 2} nanoparticles in subcritical and supercritical water using a flow reaction system  

SciTech Connect (OSTI)

Yttria stabilized zirconia nanoparticles have been prepared by hydrothermal flow reaction system under subcritical and supercritical conditions. ZrO(NO{sub 3}){sub 2}/Y(NO{sub 3}){sub 3} mixed solutions were used as starting materials. Reaction temperature was 300-400 deg. C. Reaction time was adjusted to 0.17-0.35 s. Based on the residual Zr and Y concentrations, the complete conversion of zirconium was achieved irrespective of pH and hydrothermal temperature, whereas the conversion of yttrium increased with an increase in pH and hydrothermal temperature. Stoichiometric solid solution was achieved at pH>8. XRD results revealed that tetragonal zirconia can be formed regardless of yttrium content, where the tetragonality was confirmed by Raman spectroscopy. The average particle size estimated from BET surface area was around 4-6 nm. Dynamic light scattering particle size increased with the solution pH owing to the aggregation of primary particles. TG-DTA analyses revealed that weight losses for adsorbed water and hydroxyl groups decreased with hydrothermal temperature. - Graphical abstract: Nanoparticles of YSZ can be synthesized in subcritical and supercritical water using a hydrothermal flow reaction system. Given is the TEM image of YSZ nanoparticles.

Hayashi, Hiromichi, E-mail: h-hayashi@aist.go.j [Research Center for Compact Chemical Process, National Institute of Advanced Industrial Science and Technology (AIST), Nigatake 4-2-1, Miyagino-ku, Sendai 983-8551 (Japan); Ueda, Akiko; Suino, Atsuko; Hiro, Kyoko; Hakuta, Yukiya [Research Center for Compact Chemical Process, National Institute of Advanced Industrial Science and Technology (AIST), Nigatake 4-2-1, Miyagino-ku, Sendai 983-8551 (Japan)

2009-11-15T23:59:59.000Z

306

INEEL Source Water Assessment  

SciTech Connect (OSTI)

The Idaho National Engineering and Environmental Laboratory (INEEL) covers approximately 890 mi2 and includes 12 public water systems that must be evaluated for Source water protection purposes under the Safe Drinking Water Act. Because of its size and location, six watersheds and five aquifers could potentially affect the INEEL’s drinking water sources. Based on a preliminary evaluation of the available information, it was determined that the Big Lost River, Birch Creek, and Little Lost River Watersheds and the eastern Snake River Plain Aquifer needed to be assessed. These watersheds were delineated using the United States Geologic Survey’s Hydrological Unit scheme. Well capture zones were originally estimated using the RESSQC module of the Environmental Protection Agency’s Well Head Protection Area model, and the initial modeling assumptions and results were checked by running several scenarios using Modflow modeling. After a technical review, the resulting capture zones were expanded to account for the uncertainties associated with changing groundwater flow directions, a thick vadose zone, and other data uncertainties. Finally, all well capture zones at a given facility were merged to a single wellhead protection area at each facility. A contaminant source inventory was conducted, and the results were integrated with the well capture zones, watershed and aquifer information, and facility information using geographic information system technology to complete the INEEL’s Source Water Assessment. Of the INEEL’s 12 public water systems, three systems rated as low susceptibility (EBR-I, Main Gate, and Gun Range), and the remainder rated as moderate susceptibility. No INEEL public water system rated as high susceptibility. We are using this information to develop a source water management plan from which we will subsequently implement an INEEL-wide source water management program. The results are a very robust set of wellhead protection areas that will protect the INEEL’s public water systems yet not too conservative to inhibit the INEEL from carrying out its missions.

Sehlke, Gerald

2003-03-01T23:59:59.000Z

307

Installation of River and Drain Instrumentation Stations to Monitor Flow and Water Quality and Internet Data Sharing  

E-Print Network [OSTI]

del Norte Watershed Council With funding support in part by the U.S Department of Interior, Bureau of Reclamation El Paso Water Utilities, U.S. Army Corps of Engineers through Texas AgriLife Research and the U.S. Department of Interior, Geological.../Texas AgriLife research, United States Bureau of Reclamation, United States Geological Survey, United States Army Corps of Engineers, and the United States Section of the International Boundary and Water Commission (IBWC). The Project is also based...

Sheng, Z.; Brown, C.; Creel, B.; Srinivasan, R.; Michelsen, A.; Fahy, M. P.

308

Development of a chemical kinetic measurement apparatus and the determination of the reaction rate constants for lithium-lead/water interaction  

SciTech Connect (OSTI)

An experimental set-up for accurate measurement of hydrogen generation rate in Lithium-Lead (Li[sub 17]Pb[sub 83]) Steam or water interactions has been designed. The most important features of the design include a pneumatic actuated quick opening and closing high temperature all stainless steel valve used to control the reaction time and the placement of most measuring devices below a water line to minimize leakage of the hydrogen collected. A PC based data acquisition and control system provides remote process sequencing, acquisition and control of all major components of the set-up. Initial tests indicate that the first design objective of maintaining leakproof gas collection chamber has been achieved. Initial pressure tests indicated that the pressure drop over a time span of 30 minutes was within the tolerance of the pressure transducer used to measure the pressure (within 0.690 kPa) at a nominal system pressure of 685 kPa. The experimental system hardware, data acquisition and control programs and data analysis program have been completed, tested and are currently functional.

Biney, P.O.

1993-04-01T23:59:59.000Z

309

Nambe Pueblo Water Budget and Forecasting model.  

SciTech Connect (OSTI)

This report documents The Nambe Pueblo Water Budget and Water Forecasting model. The model has been constructed using Powersim Studio (PS), a software package designed to investigate complex systems where flows and accumulations are central to the system. Here PS has been used as a platform for modeling various aspects of Nambe Pueblo's current and future water use. The model contains three major components, the Water Forecast Component, Irrigation Scheduling Component, and the Reservoir Model Component. In each of the components, the user can change variables to investigate the impacts of water management scenarios on future water use. The Water Forecast Component includes forecasting for industrial, commercial, and livestock use. Domestic demand is also forecasted based on user specified current population, population growth rates, and per capita water consumption. Irrigation efficiencies are quantified in the Irrigated Agriculture component using critical information concerning diversion rates, acreages, ditch dimensions and seepage rates. Results from this section are used in the Water Demand Forecast, Irrigation Scheduling, and the Reservoir Model components. The Reservoir Component contains two sections, (1) Storage and Inflow Accumulations by Categories and (2) Release, Diversion and Shortages. Results from both sections are derived from the calibrated Nambe Reservoir model where historic, pre-dam or above dam USGS stream flow data is fed into the model and releases are calculated.

Brainard, James Robert

2009-10-01T23:59:59.000Z

310

The Development of a Coordinated Database for Water Resources and Flow Model in the Paso Del Norte Watershed (Phase III) Part II Availability of Flow and Water Quality Data for the Rio Grande Project Area  

E-Print Network [OSTI]

Cruces, NM 88003 (575) 646-4337 i i Acknowledgement This document and the underlying pr oject activities detailed in this report reflect the joint efforts of many people working with the Paso del Norte Watershed Council (PdNWC). The authors... wish to acknowledge and extend our grat itude to the U.S. Army Corps of Engineers for the generous financial support extende d to the PdNWC for development of the Coordinated Water Resources Database and Model Developm ent Project (called Project...

Tillery, Sue; Sheng, Zhuping; King, J. Phillip; Creel, Bobby; Brown, Christopher; Michelsen, Ari; Srinivasan, Raghavan; Granados, Alfredo

2009-01-01T23:59:59.000Z

311

Determination of the effect of gas viscosity upon gas flow in permeable media containing water and gas  

E-Print Network [OSTI]

?ateredeaturated Natural Gas Visoositiss at Varieua PPISSQreao ~ ~ ~ o e ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 32 VI Ns~tura+ed gitrogen Viscosities 0't Varieue h%00uraee ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ eel 33 VII Das Wbili... pressure to 1500 ysi per yccryoses of flew work~ tho viscosities af aitrogen aud tho natural gas wbou saturated with water vapor were also detercdcmd Sco basis yerpese of this pre)set was te dsteruine ths offset of the vtsoosQy of a gas nyon the web...

Stegemeier, Richard Joseph

1952-01-01T23:59:59.000Z

312

Water injected fuel cell system compressor  

DOE Patents [OSTI]

A fuel cell system including a dry compressor for pressurizing air supplied to the cathode side of the fuel cell. An injector sprays a controlled amount of water on to the compressor's rotor(s) to improve the energy efficiency of the compressor. The amount of water sprayed out the rotor(s) is controlled relative to the mass flow rate of air inputted to the compressor.

Siepierski, James S. (Williamsville, NY); Moore, Barbara S. (Victor, NY); Hoch, Martin Monroe (Webster, NY)

2001-01-01T23:59:59.000Z

313

Probability distributions of hydraulic conductivity for the hydrogeologic units of the Death Valley regional ground-water flow system, Nevada and California  

SciTech Connect (OSTI)

The use of geologic information such as lithology and rock properties is important to constrain conceptual and numerical hydrogeologic models. This geologic information is difficult to apply explicitly to numerical modeling and analyses because it tends to be qualitative rather than quantitative. This study uses a compilation of hydraulic-conductivity measurements to derive estimates of the probability distributions for several hydrogeologic units within the Death Valley regional ground-water flow system, a geologically and hydrologicaly complex region underlain by basin-fill sediments, volcanic, intrusive, sedimentary, and metamorphic rocks. Probability distributions of hydraulic conductivity for general rock types have been studied previously; however, this study provides more detailed definition of hydrogeologic units based on lithostratigraphy, lithology, alteration, and fracturing and compares the probability distributions to the aquifer test data. Results suggest that these probability distributions can be used for studies involving, for example, numerical flow modeling, recharge, evapotranspiration, and rainfall runoff. These probability distributions can be used for such studies involving the hydrogeologic units in the region, as well as for similar rock types elsewhere. Within the study area, fracturing appears to have the greatest influence on the hydraulic conductivity of carbonate bedrock hydrogeologic units. Similar to earlier studies, we find that alteration and welding in the Tertiary volcanic rocks greatly influence conductivity. As alteration increases, hydraulic conductivity tends to decrease. Increasing degrees of welding appears to increase hydraulic conductivity because welding increases the brittleness of the volcanic rocks, thus increasing the amount of fracturing.

Belcher, W.R.; Sweetkind, D.S.; Elliott, P.E.

2002-11-19T23:59:59.000Z

314

Ground water provides drinking water, irrigation for  

E-Print Network [OSTI]

Ground water provides drinking water, irrigation for crops and water for indus- tries. It is also connected to surface waters, and maintains the flow of rivers and streams and the level of wetlands- tion of those along Lake Michigan, most communi- ties, farms and industries still rely on ground water

Saldin, Dilano

315

Elbow mass flow meter  

DOE Patents [OSTI]

Elbow mass flow meter. The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity.

McFarland, Andrew R. (College Station, TX); Rodgers, John C. (Santa Fe, NM); Ortiz, Carlos A. (Bryan, TX); Nelson, David C. (Santa Fe, NM)

1994-01-01T23:59:59.000Z

316

Siting algae cultivation facilities for biofuel production in the United States: trade-offs between growth rate, site constructability, water availability, and infrastructure  

SciTech Connect (OSTI)

Locating sites for new algae cultivation facilities is a complex task. The climate must support high growth rates, and cultivation ponds require appropriate land and water resources as well as key utility and transportation infrastructure. We employ our spatiotemporal Biomass Assessment Tool (BAT) to select promising locations based on the open-pond cultivation of Arthrospira sp. and a strain of the order Desmidiales. 64,000 potential sites across the southern United States were evaluated. We progressively apply a range of screening criteria and track their impact on the number of selected sites, geographic location, and biomass productivity. Both strains demonstrate maximum productivity along the Gulf of Mexico coast, with the highest values on the Florida peninsula. In contrast, sites meeting all selection criteria for Arthrospira were located along the southern coast of Texas and for Desmidiales were located in Louisiana and southern Arkansas. Site selection was driven mainly by the lack of oil pipeline access in Florida and elevated groundwater salinity in southern Texas. The requirement for low salinity freshwater (<400 mg L-1) constrained Desmidiales locations; siting flexibility is greater for salt-tolerant species such as Arthrospira. Combined siting factors can result in significant departures from regions of maximum productivity but are within the expected range of site-specific process improvements.

Venteris, Erik R.; McBride, Robert; Coleman, Andre M.; Skaggs, Richard; Wigmosta, Mark S.

2014-02-21T23:59:59.000Z

317

An ECT/ERT dual-modality sensor for oil-water two-phase flow measurement  

SciTech Connect (OSTI)

This paper presents a new sensor for ECT/ERT dual-modality system which can simultaneously obtain the permittivity and conductivity of the materials in the pipeline. Quasi-static electromagnetic fields are produced by the inner electrodes array sensor of electrical capacitance tomography (ECT) system. The results of simulation show that the data of permittivity and conductivity can be simultaneously obtained from the same measurement electrode and the fusion of two kinds of data may improve the quality of the reconstructed images. For uniform oil-water mixtures, the performance of designed dual-modality sensor for measuring the various oil fractions has been tested on representative data and the results of experiments show that the designed sensor broadens the measurement range compared to single modality.

Wang, Pitao [School of Electronic Engineering and Automation, Tianjin University, 300072 and School of Electronic Engineering, University of Jinan (China); Wang, Huaxiang; Sun, Benyuan; Cui, Ziqiang [School of Electronic Engineering and Automation, Tianjin University, 300072 (China); Huang, Wenrui [HuaDian Heavy Industries Co. Ltd, Beijing, 100077 (China)

2014-04-11T23:59:59.000Z

318

Infrared photodissociation of a water molecule from a flexible molecule-H{sub 2}O complex: Rates and conformational product yields following XH stretch excitation  

SciTech Connect (OSTI)

Infrared-ultraviolet hole-burning and hole-filling spectroscopies have been used to study IR-induced dissociation of the tryptamine{center_dot}H{sub 2}O and tryptamine{center_dot}D{sub 2}O complexes. Upon complexation of a single water molecule, the seven conformational isomers of tryptamine collapse to a single structure that retains the same ethylamine side chain conformation present in the most highly populated conformer of tryptamine monomer. Infrared excitation of the tryptamine{center_dot}H{sub 2}O complex was carried out using a series of infrared absorptions spanning the range of 2470-3715 cm{sup -1}. The authors have determined the conformational product yield over this range and the dissociation rate near threshold, where it is slow enough to be measured by our methods. The observed threshold for dissociation occurred at 2872 cm{sup -1} in tryptamine{center_dot}H{sub 2}O and at 2869 cm{sup -1} in tryptamine{center_dot}D{sub 2}O, with no dissociation occurring on the time scale of the experiment ({approx}2 {mu}s) at 2745 cm{sup -1}. The dissociation time constants varied from {approx}200 ns for the 2869 cm{sup -1} band of tryptamine{center_dot}D{sub 2}O to {approx}25 ns for the 2872 cm{sup -1} band of tryptamine{center_dot}H{sub 2}O. This large isotope dependence is associated with a zero-point energy effect that increases the binding energy of the deuterated complex by {approx}190 cm{sup -1}, thereby reducing the excess energy available at the same excitation energy. At all higher energies, the dissociation lifetime was shorter than the pulse duration of our lasers (8 ns). At all wavelengths, the observed products in the presence of collisions are dominated by conformers A and B of tryptamine monomer, with small contributions from the other minor conformers. In addition, right at threshold (2869 cm{sup -1}), tryptamine{center_dot}D{sub 2}O dissociates exclusively to conformer A in the absence of collisions with helium, while both A and B conformational products are observed in the presence of collisions with helium. Using resolution-of-identity approximation to second-order Moeller-Plesset binding energies extrapolated to the complete basis set limit and harmonic vibrational frequencies and transition states calculated at the density functional limit B3LYP/6-31+G{sup *} level of theory, Rice-Ramsperger-Kassel-Marcus (RRKM) predictions for the dissociation, isomerization, and water shuttling rates as a function of energy are made. At threshold, the experimental dissociation rate is almost 10{sup 3} faster than RRKM predictions. Reasons for this apparent non-RRKM behavior will be discussed.

Clarkson, Jasper R.; Herbert, John M.; Zwier, Timothy S. [Department of Chemistry, Purdue University, West Lafayette, Indiana 47907 (United States); Department of Chemistry, The Ohio State University, Columbus, Ohio 43210 (United States); Department of Chemistry, Purdue University, West Lafayette, Indiana 47907 (United States)

2007-04-07T23:59:59.000Z

319

Recovery of Water from Boiler Flue Gas  

SciTech Connect (OSTI)

This project dealt with use of condensing heat exchangers to recover water vapor from flue gas at coal-fired power plants. Pilot-scale heat transfer tests were performed to determine the relationship between flue gas moisture concentration, heat exchanger design and operating conditions, and water vapor condensation rate. The tests also determined the extent to which the condensation processes for water and acid vapors in flue gas can be made to occur separately in different heat transfer sections. The results showed flue gas water vapor condensed in the low temperature region of the heat exchanger system, with water capture efficiencies depending strongly on flue gas moisture content, cooling water inlet temperature, heat exchanger design and flue gas and cooling water flow rates. Sulfuric acid vapor condensed in both the high temperature and low temperature regions of the heat transfer apparatus, while hydrochloric and nitric acid vapors condensed with the water vapor in the low temperature region. Measurements made of flue gas mercury concentrations upstream and downstream of the heat exchangers showed a significant reduction in flue gas mercury concentration within the heat exchangers. A theoretical heat and mass transfer model was developed for predicting rates of heat transfer and water vapor condensation and comparisons were made with pilot scale measurements. Analyses were also carried out to estimate how much flue gas moisture it would be practical to recover from boiler flue gas and the magnitude of the heat rate improvements which could be made by recovering sensible and latent heat from flue gas.

Edward Levy; Harun Bilirgen; Kwangkook Jeong; Michael Kessen; Christopher Samuelson; Christopher Whitcombe

2008-09-30T23:59:59.000Z

320

A study on the flow of molten iron in the hearth of blast furnace  

SciTech Connect (OSTI)

The flow of molten iron in the hearth of blast furnace was investigated by using a water model test and a numerical simulation. The water model apparatus was set up in order to evaluate the effects of coke size, coke bed structure, drain rate, and coke free space on the fluidity of molten iron through measurement of residence time and visualization of flow pattern. In addition, the flow was calculated by solving momentum equation in porous media using finite element method. The residence time increased with the coke size decrease, but decreased with the drain rate increase. If small coke was placed in the center of deadman, peripheral flow was enhanced. The flow path was changed due to the coke free space.

Suh, Y.K.; Lee, Y.J.; Baik, C.Y. [Pohang Iron and Steel Co., Ltd. (Korea, Republic of). Technical Research Labs.

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "water flow rate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Computeer-based decision support tools for evaluation of actions affecting flow and water quality in the San Joaquin Basin  

SciTech Connect (OSTI)

This document is a preliminary effort to draw together some of the important simulation models that are available to Reclamation or that have been developed by Reclamation since 1987. This document has also attempted to lay out a framework by which these models might be used both for the purposes for which they were originally intended and to support the analysis of other issues that relate to the hydrology and to salt and water quality management within the San Joaquin Valley. To be successful as components of a larger Decision Support System the models should to be linked together using custom designed interfaces that permit data sharing between models and that are easy to use. Several initiatives are currently underway within Reclamation to develop GIS - based and graphics - based decision support systems to improve the general level of understanding of the models currently in use, to standardize the methodology used in making planning and operations studies and to permit improved data analysis, interpretation and display. The decision support systems should allow greater participation in the planning process, allow the analysis of innovative actions that are currently difficult to study with present models and should lead to better integrated and more comprehensive plans and policy decisions in future years.

Quinn, N.W.T.

1993-01-01T23:59:59.000Z

322

Rating curves and estimation of average water depth at the upper Negro River based on satellite altimeter data and modeled discharges  

E-Print Network [OSTI]

to recording the periodic measurements of water level variations in the continental environment even in these remote places. The ability of radar altimeters to monitor continental water surfaces and measure station can be defined as any crossing of water body surface (i.e., large rivers) by radar altimeter

Paris-Sud XI, Université de

323

Tankless water heaters fill the bill at fast-food restaurants  

SciTech Connect (OSTI)

This article explains why Kentucky Fried Chicken has installed a PH-24 water heater. The tankless water heater meets the restaurant's criteria for space spacing, flow rates, certification and availability, and money saving efficiency. This article describes the system and its advantages.

Not Available

1988-02-01T23:59:59.000Z

324

Corrections for Water Resources Engineering  

E-Print Network [OSTI]

Corrections for Water Resources Engineering (Fourth printing) By Larry W. Mays Corrections as of 4 subcritical flow ..." Chapter

Mays, Larry W.

325

Estimating the Annual Water and Energy Savings in Texas A & M University Cafeterias using Low Flow Pre-Rinse Spray Valves  

E-Print Network [OSTI]

equal to 100,000 British thermal units (BTU).1 Therm is equal to 29.3 kWh Temperature rise through Heater The difference in the water temperature supplied to the water heater, and the water exiting the water heater. This is typically 70*F, which... assumes a water line temperature of 75*F and a water heater setting of 145*F Water Heater Efficiency The percentage of energy delivered to the water divided by the amount of energy consumed by the water heater viii TABLE OF CONTENTS...

Rebello, Harsh Varun

2011-08-08T23:59:59.000Z

326

A Method to Determine the Optimal Tank Size for a Chilled Water Storage System Under a Time-of-Use Electricity Rate Structure  

E-Print Network [OSTI]

In the downtown area of Austin, it is planned to build a new naturally stratified chilled water storage tank and share it among four separated chilled water plants. An underground piping system is to be established to connect these four plants...

Zhang, Z.; Turner, W. D.; Chen, Q.; Xu, C.; Deng, S.

2010-01-01T23:59:59.000Z

327

Productivity & Energy Flow  

E-Print Network [OSTI]

1 Productivity & Energy Flow Ecosystem approach, focuses: on flow of energy, water, and nutrients (capture) of energy by autotrophs Gross (total) Net (total ­ costs) Secondary productivity- capture of energy by herbivores http://sciencebitz.com/?page_id=204 What Controls the Primary Productivity

Mitchell, Randall J.

328

Water and Energy Interactions  

E-Print Network [OSTI]

solar thermal production facilities are those with power towers,tower where water or molten salt is flowing to absorb the solar

McMahon, James E.

2013-01-01T23:59:59.000Z

329

Two-dimensional flows of foam: drag exerted on circular obstacles and dissipation  

E-Print Network [OSTI]

A Stokes experiment for foams is proposed. It consists in a two-dimensional flow of a foam, confined between a water subphase and a top plate, around a fixed circular obstacle. We present systematic measurements of the drag exerted by the flowing foam on the obstacle, \\emph{versus} various separately controlled parameters: flow rate, bubble volume, solution viscosity, obstacle size and boundary conditions. We separate the drag into two contributions, an elastic one (yield drag) at vanishing flow rate, and a fluid one (viscous coefficient) increasing with flow rate. We quantify the influence of each control parameter on the drag. The results exhibit in particular a power-law dependence of the drag as a function of the solution viscosity and the flow rate with two different exponents. Moreover, we show that the drag decreases with bubble size, increases with obstacle size, and that the effect of boundary conditions is small. Measurements of the streamwise pressure gradient, associated to the dissipation along the flow of foam, are also presented: they show no dependence on the presence of an obstacle, and pressure gradient depends on flow rate, bubble volume and solution viscosity with three independent power laws.

Benjamin Dollet; Florence Elias; Catherine Quilliet; Arnaud Huillier; Miguel Aubouy; Francois Graner

2004-11-22T23:59:59.000Z

330

gtp_flow_power_estimator.xlsx  

Broader source: Energy.gov [DOE]

This simple spreadsheet model estimates either the flow rate required to produce a specified level of power output, or the power output that can be produced from a specified flow rate.

331

Rate Schedules  

Broader source: Energy.gov [DOE]

One of the major responsibilities of Southeastern is to design, formulate, and justify rate schedules. Repayment studies prepared by the agency determine revenue requirements and appropriate rate...

332

Elbow mass flow meter  

DOE Patents [OSTI]

The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity. 3 figs.

McFarland, A.R.; Rodgers, J.C.; Ortiz, C.A.; Nelson, D.C.

1994-08-16T23:59:59.000Z

333

Flow Components in a NaK Test Loop Designed to Simulate Conditions in a Nuclear Surface Power Reactor  

SciTech Connect (OSTI)

A test loop using NaK as the working fluid is presently in use to study material compatibility effects on various components that comprise a possible nuclear reactor design for use on the lunar surface. A DC electromagnetic (EM) pump has been designed and implemented as a means of actively controlling the NaK flow rate through the system and an EM flow sensor is employed to monitor the developed flow rate. These components allow for the matching of the flow rate conditions in test loops with those that would be found in a full-scale surface-power reactor. The design and operating characteristics of the EM pump and flow sensor are presented. In the EM pump, current is applied to a set of electrodes to produce a Lorentz body force in the fluid. A measurement of the induced voltage (back-EMF) in the flow sensor provides the means of monitoring flow rate. Both components are compact, employing high magnetic field strength neodymium magnets thermally coupled to a water-cooled housing. A vacuum gap limits the heat transferred from the high temperature NaK tube to the magnets and a magnetically-permeable material completes the magnetic circuit. The pump is designed to produce a pressure rise of 34.5 kPa, and the flow sensor's predicted output is roughly 20 mV at the loop's nominal flow rate of 0.114 m{sup 3}/hr.

Polzin, Kurt A.; Godfroy, Thomas J. [NASA Marshall Space Flight Center Propulsion Research and Technology Applications Branch/ER24, MSFC, AL 35812 (United States)

2008-01-21T23:59:59.000Z

334

Isotopic exchange measurements of the rates of adsorption/desorption and interconversion of CO and CO/sub 2/ over chromia-promoted magnetite: implications for water-gas shift  

SciTech Connect (OSTI)

Isotopic exchange measurements were used to investigate the adsorption/desorption and interconversion of CO and CO/sub 2/ on chromia-promoted magnetite at 565 and 627 K. The interconversion between CO and CO/sub 2/ was shown to take place through surface adsorbed species. Furthermore, the rate of interconversion was limited by the rates of adsorption/desorption, indicating either that adsorbed CO and CO/sub 2/ are in equilibrium on the surface or that the adsorption of CO and CO/sub 2/ leads to the same surface species, e.g., a surface carbonate species. A kinetic model for the water-gas shift over magnetite is proposed, and the results of the isotopic exchange measurements and volumetric adsorption data are used to estimate the rate and equilibrium constants for this model.

Tinkle, M.; Dumesic, J.A.

1987-01-01T23:59:59.000Z

335

Measurement of flow maldistribution in parallel channels and its application to ex-situ and in-situ experiments in PEMFC water management studies  

E-Print Network [OSTI]

to sig- nificant reduction in effectiveness for high NTU heat exchangers [1], about 7% for condensers in the effective operation of a proton exchange membrane fuel cell (PEMFC). Presently there are a few theoretically effects, two-phase separation and resultant flow non-uniformity. (b) Uneven flow resistances

Kandlikar, Satish

336

PERFORMANCE OF LIQUI-CEL EXTRA-FLOW MEMBRANE CONTRACTOR IN A PURE WATER AND IN A 0.2% SODIUM CHLORIDE SOLUTION (SNO-STR-2001-11).  

SciTech Connect (OSTI)

After completion of SNO's first phase measurement of the neutrino charge current, two tons of salt were added into the SNO heavy water to increase the sensitivity of the neutral current measurement (Phase II). Liqui-Cel Extra-Flow Membrane Contactors (simply called Liqui-Cel) are used in the SNO heavy-water circulating system to remove the dissolved gases, such as oxygen, nitrogen, radon, and water vapor from the liquid water. One possible scenario with phase II operation is that the salt may leak through the Liqui-Cel Membrane and come in contact with the vacuum pumps and other metal components of the Heavy-Water Vapor Recovery System. In this scenario, corrosion will damage these components, especially the vacuum pump (Pfeiffer UniDry Pump with cast iron interior), and increase the operational difficulties. A series of tests for the behavior of the Liqui-Cel System in pure water and in salt systems was conducted at the Brookhaven National Laboratory in order to measure the transfer of (a) water vapor and (b) salt, if there is any, through the membrane. Initially a 10-inch by 28-inch Liqui-Cel unit, identical to those used in the SNO heavy-water circulating system, was obtained from SNO site. However, extensive analysis showed that the membrane in this unit was defective: a replacement membrane would cost several thousand dollars. Instead, a smaller, 2.5-inch x 8-inch Liqui-Cel, obtained from Dr. Richard Helmers of the University of British Columbia, was used in this experiment. A comparison of the present experiment with the SNO heavy-water system is done with theoretical calculations. The results are discussed in the following sections.

YEH,M.; BOGER,J.; HAHN,R.L.

2001-11-05T23:59:59.000Z

337

Water-heating dehumidifier  

DOE Patents [OSTI]

A water-heating dehumidifier includes a refrigerant loop including a compressor, at least one condenser, an expansion device and an evaporator including an evaporator fan. The condenser includes a water inlet and a water outlet for flowing water therethrough or proximate thereto, or is affixed to the tank or immersed into the tank to effect water heating without flowing water. The immersed condenser design includes a self-insulated capillary tube expansion device for simplicity and high efficiency. In a water heating mode air is drawn by the evaporator fan across the evaporator to produce cooled and dehumidified air and heat taken from the air is absorbed by the refrigerant at the evaporator and is pumped to the condenser, where water is heated. When the tank of water heater is full of hot water or a humidistat set point is reached, the water-heating dehumidifier can switch to run as a dehumidifier.

Tomlinson, John J. (Knoxville, TN)

2006-04-18T23:59:59.000Z

338

T2Well/ECO2N Version 1.0: Multiphase and Non-Isothermal Model for Coupled Wellbore-Reservoir Flow of Carbon Dioxide and Variable Salinity Water  

SciTech Connect (OSTI)

At its most basic level, the injection of CO{sub 2} into geologic CO{sub 2} storage sites involves a system comprising the wellbore and the target reservoir. The wellbore is the only conduit available to emplace CO{sub 2} into reservoirs for long-term storage. At the same time, wellbores in general have been identified as the most likely conduit for CO{sub 2} and brine leakage from geologic carbon sequestration (GCS) sites, especially those in sedimentary basins with historical hydrocarbon production. We have developed a coupled wellbore and reservoir model for simulating the dynamics of CO{sub 2} injection and leakage through wellbores. The model describes the following processes: (1) upward or downward wellbore flow of CO{sub 2} and variable salinity water with transition from supercritical to gaseous CO{sub 2} including Joule-Thomson cooling, (2) exsolution of CO{sub 2} from the aqueous phase as pressure drops, and (3) cross flow into or interaction with layers of surrounding rock (reservoirs). We use the Drift-Flux Model and related conservation equations for describing transient two-phase non-isothermal wellbore flow of CO{sub 2}-water mixtures under different flow regimes and interacting with surrounding rock. The mass and thermal energy balance equations are solved numerically by a finite difference scheme with wellbore heat transmission to the surrounding rock handled either semi-analytically or numerically. The momentum balance equation for the flow in the wellbore is solved numerically with a semi-explicit scheme. This manual provides instructions for compilation and use of the new model, and presents some example problems to demonstrate its use.

Pan, L.; Oldenburg, C.M.; Wu, Y.-S.; Pruess, K.

2011-02-14T23:59:59.000Z

339

Trip Report-Produced-Water Field Testing  

SciTech Connect (OSTI)

Los Alamos National Laboratory (LANL) conducted field testing of a produced-water pretreatment apparatus with assistance from faculty at the Texas A&M University (TAMU) protein separation sciences laboratory located on the TAMU main campus. The following report details all of the logistics surrounding the testing. The purpose of the test was to use a new, commercially-available filter media housing containing modified zeolite (surfactant-modified zeolite or SMZ) porous medium for use in pretreatment of oil and gas produced water (PW) and frac-flowback waters. The SMZ was tested previously in October, 2010 in a lab-constructed configuration ('old multicolumn system'), and performed well for removal of benzene, toluene, ethylbenzene, and xylenes (BTEX) from PW. However, a less-expensive, modular configuration is needed for field use. A modular system will allow the field operator to add or subtract SMZ filters as needed to accommodate site specific conditions, and to swap out used filters easily in a multi-unit system. This test demonstrated the use of a commercial filter housing with a simple flow modification and packed with SMZ for removing BTEX from a PW source in College Station, Texas. The system will be tested in June 2012 at a field site in Pennsylvania for treating frac-flowback waters. The goals of this test are: (1) to determine sorption efficiency of BTEX in the new configuration; and (2) to observe the range of flow rates, backpressures, and total volume treated at a given flow rate.

Sullivan, Enid J. [Los Alamos National Laboratory

2012-05-25T23:59:59.000Z

340

Energy Rating  

E-Print Network [OSTI]

Consistent, accurate, and uniform ratings based on a single statewide rating scale Reasonable estimates of potential utility bill savings and reliable recommendations on cost-effective measures to improve energy efficiency Training and certification procedures for home raters and quality assurance procedures to promote accurate ratings and to protect consumers Labeling procedures that will meet the needs of home buyers, homeowners, renters, the real estate industry, and mortgage lenders with an interest in home energy ratings

Cabec Conference; Rashid Mir P. E

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water flow rate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Abrupt Decline in the Open-Circuit Voltage of Direct Methanol Fuel Cells at Critical Oxygen Feed Rate  

E-Print Network [OSTI]

Abrupt Decline in the Open-Circuit Voltage of Direct Methanol Fuel Cells at Critical Oxygen Feed and Technology, Clear Water Bay, Kowloon, Hong Kong, China The open-circuit voltage OCV of a direct methanol fuel cell DMFC was measured by varying the cathode oxygen flow rate OFR while keeping the methanol

Zhao, Tianshou

342

Cotton flow  

E-Print Network [OSTI]

Using the conformally invariant Cotton tensor, we define a geometric flow, the "Cotton flow", which is exclusive to three dimensions. This flow tends to evolve the initial metrics into conformally flat ones, and is somewhat orthogonal to the Yamabe flow, the latter being a flow within a conformal class. We define an entropy functional, and study the flow of nine homogeneous spaces both numerically and analytically. In particular, we show that the arbitrarily deformed homogeneous 3-sphere flows into the round 3-sphere. Two of the nine homogeneous geometries, which are degenerated by the Ricci flow, are left intact by the Cotton flow.

Ali Ulas Ozgur Kisisel; Ozgur Sarioglu; Bayram Tekin

2008-06-17T23:59:59.000Z

343

September 10, 2007 Annotated Bibliography of Urban Wet Weather Flow Literature from 1996  

E-Print Network [OSTI]

Agency Wet-Weather Flow Program Urban Watershed Management Branch Water Supply & Water Resources Division........................................................................................................................................................................ 21 Heavy metals

Pitt, Robert E.

344

Water supply analysis for restoring the Colorado River Delta, Mexico  

E-Print Network [OSTI]

to Pay for Additional Transboundary Water Flows from the US.2001). "Improving California Water Management: Optimizingloss functions to value urban water scarcity in California."

Medellin-Azuara, Josue; Lund, Jay R.; Howitt, Richard E.

2007-01-01T23:59:59.000Z

345

UNDERSTANDING THE EFFECT OF DYNAMIC FEED CONDITIONS ON WATER RECOVERY FROM IC ENGINE EXHAUST BY CAPILLARY CONDENSATION WITH INORGANIC MEMBRANES  

SciTech Connect (OSTI)

An inorganic membrane water recovery concept is evaluated as a method to recovering water from the exhaust of an internal combustion engine. Integrating the system on-board a vehicle would create a self-sustaining water supply that would make engine water injection technologies consumer transparent . In laboratory experiments, water recovery from humidified air was measured to evaluate how different operating parameters affect the membrane system s efficiency. The observed impact of transmembrane pressure and gas flow rate suggest that gas residence time is more important than water flux through the membrane. Heat transfer modeling suggests that increasing membrane length can be used to improve efficiency and allow greater flow per membrane, an important parameter for practical applications where space is limited. The membrane water recovery concept was also experimentally validated by extracting water from diesel exhaust coming from a stationary generator. The insight afforded by these studies provides a basis for developing improved membrane designs that balance both efficiency and cost.

DeBusk, Melanie Moses [ORNL] [ORNL; Bischoff, Brian L [ORNL] [ORNL; Hunter, James A [ORNL] [ORNL; Klett, James William [ORNL] [ORNL; Nafziger, Eric J [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL

2014-01-01T23:59:59.000Z

346

Quantitative supersonic flow visualization by hydraulic analogy  

E-Print Network [OSTI]

The hydraulic analogy, which forms the basis for the phics. current investigation, can be used to study supersonic gas flows with great ease by means of a water table. As a result of the analogy, water heights in free surface water flow correspond...

Rani, Sarma Laxminarasimha

1998-01-01T23:59:59.000Z

347

U-Sr isotopic speedometer: Fluid flow and chemical weatheringrates inaquifers  

SciTech Connect (OSTI)

Both chemical weathering rates and fluid flow are difficultto measure in natural systems. However, these parameters are critical forunderstanding the hydrochemical evolution of aquifers, predicting thefate and transport of contaminants, and for water resources/water qualityconsiderations. 87Sr/86Sr and (234U/238U) activity ratios are sensitiveindicators of water-rock interaction, and thus provide a means ofquantifying both flow and reactivity. The 87Sr/86Sr values in groundwaters are controlled by the ratio of the dissolution rate to the flowrate. Similarly, the (234U/238U) ratio of natural ground waters is abalance between the flow rate and the dissolution of solids, andalpha-recoil loss of 234U from the solids. By coupling these two isotopesystems it is possible to constrain both the long-term (ca. 100's to1000's of years) flow rate and bulk dissolution rate along the flow path.Previous estimates of the ratio of the dissolution rate to theinfiltration flux from Sr isotopes (87Sr/86Sr) are combined with a modelfor (234U/238U) to constrain the infiltration flux and dissolution ratefor a 70-m deep vadose zone core from Hanford, Washington. The coupledmodel for both (234U/238U) ratios and the 87Sr/86Sr data suggests aninfiltration flux of 5+-2 mm/yr, and bulk silicate dissolution ratesbetween 10-15.7 and 10-16.5 mol/m2/s. The process of alpha-recoilenrichment, while primarily responsible for the observed variation in(234U/238U) of natural systems, is difficult to quantify. However, therate of this process in natural systems affects the interpretation ofmost U-series data. Models for quantifying the alpha-recoil loss fractionbased on geometric predictions, surface area constraints, and chemicalmethods are also presented. The agreement between the chemical andtheoretical methods, such as direct measurement of (234U/238U) of thesmall grain size fraction and geometric calculations for that sizefraction, is quite good.

Maher, Kate; DePaolo, Donald J.; Christensen, John N.

2005-12-27T23:59:59.000Z

348

The effects of two levels of water vapor pressure on localized sweat rate in high fit males running at 50% VO? Max  

E-Print Network [OSTI]

, workload and VO& Max by correlative methods. Procedures Twelve male volunteers were selected as subjects from a Physical Education class at Texas A&M University. The criterion for selection -1 . -1 as a subject was a VO Max greater than 57 ml kg min.... Schvartz et al. (70) found subjects with high VO Max values (mean of 60. 1 ml kg min ) to respond better to heat than those with 1 medium and low Y02 Max values (means of 47. 7 and 35. 6 ml ~ kg ' n", . n respectively) with lower heart rates...

Sockler, James Michael

2012-06-07T23:59:59.000Z

349

Investigation of Water Droplet Interaction with the Sidewalls of the Gas Channel in a PEM Fuel Cell in the Presence of Gas Flow  

E-Print Network [OSTI]

forms of hydrogen powered technologies exist and have been well-researched, fuel cells is considered efficiently in the fuel cells (4). Inefficient water removal results in flooding of the catalyst layerInvestigation of Water Droplet Interaction with the Sidewalls of the Gas Channel in a PEM Fuel Cell

Kandlikar, Satish

350

The Streaming Potential Generated by Flow of Wet Steam in Capillary Tubes  

SciTech Connect (OSTI)

For a constant pressure differential, the flow of wet steam generated electric potentials which increased with time and did not reach equilibrium values. These potentials were found to increase to values greater than 100 volts. The reason for this kind of potential build-up behavior was the presence of tiny flowing water slugs which were interspersed with electrically nonconductive steam vapor slugs. The measured electric potential for wet steam increased with pressure differential, but the relationship was not linear. The increase in potential with pressure drop was attributed both to an increase in fluid flow rate and changes in the wet steam quality.

Marsden, S.S. Jr.; Tyran, Craig K.

1986-01-21T23:59:59.000Z

351

DESIGNER WATER Dr. Torleiv Bilstad  

E-Print Network [OSTI]

DESIGNER WATER Dr. Torleiv Bilstad Professor of Environmental Engineering, University of Stavanger #12;Pictures #12;OIL ­ GAS - WATER - SOLIDS MANAGEMENT #12;Job done All produced water discharge Reservoir wettability determines the flow of oil and water in the reservoir #12;DESIGNER WATER Designer

352

Electromagnetically Induced Flows Michiel de Reus  

E-Print Network [OSTI]

Electromagnetically Induced Flows in Water Michiel de Reus 8 maart 2013 () Electromagnetically Conclusion and future research () Electromagnetically Induced Flows 2 / 56 #12;1 Introduction 2 Maxwell Navier Stokes equations 5 Simulations 6 Conclusion and future research () Electromagnetically Induced

Vuik, Kees

353

Corrections for Water Resources Engineering  

E-Print Network [OSTI]

Corrections for Water Resources Engineering (Second printing) By Larry W. Mays Corrections as of 4, a supercritical flow ..." should read "Because yn subcritical flow ..." #12;Chapter 6 Page 141

Mays, Larry W.

354

Efficient Use of Water in the Garden and Landscape.  

E-Print Network [OSTI]

situations: ? Growth stops ? Minerals are not absorbed ? Leaves turn yellow and remain small ? Roots begin to die A guide for young tree irrigation follows. Table 2. Average weekly water requirements in gallons per tree. April May June July August I... of clean water which flows at a rate of at least 2 to 5 gallons per minute with at least 30 to 40 pounds pressure is needed. Clean water is essential for successful drip irrigation because sand, silt, organic material and other foreign material can...

Parson, Jerry; Cotner, Sam; Roberts, Ronald

1985-01-01T23:59:59.000Z

355

WATER RESOURCES RESEARCH, VOL. 23, NO.9, PAGES 1751-1756, SEPTEMBER 1987 Use of Current Meters for Continuous Measurement of Flows in Large Rivers  

E-Print Network [OSTI]

accuracy during ice-free periods, but may contain large errors during winter months with extensive ice cover. The St. Clair River is particularly prone to large ice jams because of practically unlimited ice flow supply provided by Lake Huron and an extensive river delta that retards the passage of these ice

356

Morphology of rain water channelization in systematically varied model sandy soils  

E-Print Network [OSTI]

We visualize the formation of fingered flow in dry model sandy soils under different raining conditions using a quasi-2d experimental set-up, and systematically determine the impact of soil grain diameter and surface wetting property on water channelization phenomenon. The model sandy soils we use are random closely-packed glass beads with varied diameters and surface treatments. For hydrophilic sandy soils, our experiments show that rain water infiltrates into a shallow top layer of soil and creates a horizontal water wetting front that grows downward homogeneously until instabilities occur to form fingered flows. For hydrophobic sandy soils, in contrast, we observe that rain water ponds on the top of soil surface until the hydraulic pressure is strong enough to overcome the capillary repellency of soil and create narrow water channels that penetrate the soil packing. Varying the raindrop impinging speed has little influence on water channel formation. However, varying the rain rate causes significant changes in water infiltration depth, water channel width, and water channel separation. At a fixed raining condition, we combine the effects of grain diameter and surface hydrophobicity into a single parameter and determine its influence on water infiltration depth, water channel width, and water channel separation. We also demonstrate the efficiency of several soil water improvement methods that relate to rain water channelization phenomenon, including pre-wetting sandy soils at different level before rainfall, modifying soil surface flatness, and applying superabsorbent hydrogel particles as soil modifiers.

Y. Wei; C. M. Cejas; R. Barrois; R. Dreyfus; D. J. Durian

2014-03-13T23:59:59.000Z

357

WaterSense Program: Methodology for National Water Savings Analysis Model Indoor Residential Water Use  

SciTech Connect (OSTI)

The U.S. Environmental Protection Agency (EPA) influences the market for plumbing fixtures and fittings by encouraging consumers to purchase products that carry the WaterSense label, which certifies those products as performing at low flow rates compared to unlabeled fixtures and fittings. As consumers decide to purchase water-efficient products, water consumption will decline nationwide. Decreased water consumption should prolong the operating life of water and wastewater treatment facilities.This report describes the method used to calculate national water savings attributable to EPA?s WaterSense program. A Microsoft Excel spreadsheet model, the National Water Savings (NWS) analysis model, accompanies this methodology report. Version 1.0 of the NWS model evaluates indoor residential water consumption. Two additional documents, a Users? Guide to the spreadsheet model and an Impacts Report, accompany the NWS model and this methodology document. Altogether, these four documents represent Phase One of this project. The Users? Guide leads policy makers through the spreadsheet options available for projecting the water savings that result from various policy scenarios. The Impacts Report shows national water savings that will result from differing degrees of market saturation of high-efficiency water-using products.This detailed methodology report describes the NWS analysis model, which examines the effects of WaterSense by tracking the shipments of products that WaterSense has designated as water-efficient. The model estimates market penetration of products that carry the WaterSense label. Market penetration is calculated for both existing and new construction. The NWS model estimates savings based on an accounting analysis of water-using products and of building stock. Estimates of future national water savings will help policy makers further direct the focus of WaterSense and calculate stakeholder impacts from the program.Calculating the total gallons of water the WaterSense program saves nationwide involves integrating two components, or modules, of the NWS model. Module 1 calculates the baseline national water consumption of typical fixtures, fittings, and appliances prior to the program (as described in Section 2.0 of this report). Module 2 develops trends in efficiency for water-using products both in the business-as-usual case and as a result of the program (Section 3.0). The NWS model combines the two modules to calculate total gallons saved by the WaterSense program (Section 4.0). Figure 1 illustrates the modules and the process involved in modeling for the NWS model analysis.The output of the NWS model provides the base case for each end use, as well as a prediction of total residential indoor water consumption during the next two decades. Based on the calculations described in Section 4.0, we can project a timeline of water savings attributable to the WaterSense program. The savings increase each year as the program results in the installation of greater numbers of efficient products, which come to compose more and more of the product stock in households throughout the United States.

Whitehead, Camilla Dunham; McNeil, Michael; Dunham_Whitehead, Camilla; Letschert, Virginie; della_Cava, Mirka

2008-02-28T23:59:59.000Z

358

Flow Duration Curve Load Duration Curve  

E-Print Network [OSTI]

Flow Duration Curve Load Duration Curve 1. Develop Flow Duration Curve 2. Estimate load given flow and concentration data--select appropriate conversion factors 3. Develop Load Duration Curve 4. Plot observed data with Load Duration Curve What are they? How do you make one? Describes the percent of time a flow rate

359

Radial flow pulse jet mixer  

DOE Patents [OSTI]

The disclosure provides a pulse jet mixing vessel for mixing a plurality of solid particles. The pulse jet mixing vessel is comprised of a sludge basin, a flow surface surrounding the sludge basin, and a downcoming flow annulus between the flow surface and an inner shroud. The pulse jet mixing vessel is additionally comprised of an upper vessel pressurization volume in fluid communication with the downcoming flow annulus, and an inner shroud surge volume separated from the downcoming flow annulus by the inner shroud. When the solid particles are resting on the sludge basin and a fluid such as water is atop the particles and extending into the downcoming flow annulus and the inner shroud surge volume, mixing occurs by pressurization of the upper vessel pressurization volume, generating an inward radial flow over the flow surface and an upwash jet at the center of the sludge basin.

VanOsdol, John G.

2013-06-25T23:59:59.000Z

360

Tool for Generating Realistic Residential Hot Water Event Schedules: Preprint  

SciTech Connect (OSTI)

The installed energy savings for advanced residential hot water systems can depend greatly on detailed occupant use patterns. Quantifying these patterns is essential for analyzing measures such as tankless water heaters, solar hot water systems with demand-side heat exchangers, distribution system improvements, and recirculation loops. This paper describes the development of an advanced spreadsheet tool that can generate a series of year-long hot water event schedules consistent with realistic probability distributions of start time, duration and flow rate variability, clustering, fixture assignment, vacation periods, and seasonality. This paper also presents the application of the hot water event schedules in the context of an integral-collector-storage solar water heating system in a moderate climate.

Hendron, B.; Burch, J.; Barker, G.

2010-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "water flow rate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

A study to determine the most effective actuation valve and water distribution head combination for emergency showers  

E-Print Network [OSTI]

for corrosion and wear. Pressure test to determine strength. (5) Remove shower head and dismantle. Clean scale and rust, from the head inlet and from the slots or orifices in the baffle plate. (6) Reassemble. (7) Open OSBY valve and replace seal..., and orifice sprinkler water distribution heads to determine which valve/head combination produced the greatest flow rate at varying static water pressures. Flow rates were measured at static pressures of 20, 30. 40, 50, and 60 pounds per square inch gauge...

Presswood, James Columbus

1977-01-01T23:59:59.000Z

362

Development and verification of a numerical simulator to calculate the bottom hole flowing pressures in multiphase systems  

E-Print Network [OSTI]

the Middle East, but there were some wells located in offshore Louisiana. There was a wide range Of variation in the variables for each well, some of these were: flow rates, gas/oil ratios, total depths, tubing sizes, fluid Compositions, and water cuts...

Rasool, Syed Ahmed

1994-01-01T23:59:59.000Z

363

Longitudinal dispersion in vegetated flow  

E-Print Network [OSTI]

Vegetation is ubiquitous in rivers, estuaries and wetlands, strongly influencing both water conveyance and mass transport. The plant canopy affects both mean and turbulent flow structure, and thus both advection and ...

Murphy, Enda

2006-01-01T23:59:59.000Z

364

Minimum Stream Flow Standards (Connecticut)  

Broader source: Energy.gov [DOE]

These regulations apply to all dams and structures which impound or divert waters on rivers or their tributaries, with some exceptions. The regulations set standards for minimum flow (listed in the...

365

Selecting a new water heater  

SciTech Connect (OSTI)

This fact sheet describes the types of water heaters available (storage water heaters, demand water heaters, heat pump water heaters, tankless coil and indirect water heaters, and solar water heaters). The criteria for selection are discussed. These are capacity, efficiency rating, and cost. A resource list is provided for further information.

NONE

1995-03-01T23:59:59.000Z

366

Insertable fluid flow passage bridgepiece and method  

DOE Patents [OSTI]

A fluid flow passage bridgepiece for insertion into an open-face fluid flow channel of a fluid flow plate is provided. The bridgepiece provides a sealed passage from a columnar fluid flow manifold to the flow channel, thereby preventing undesirable leakage into and out of the columnar fluid flow manifold. When deployed in the various fluid flow plates that are used in a Proton Exchange Membrane (PEM) fuel cell, bridgepieces of this invention prevent mixing of reactant gases, leakage of coolant or humidification water, and occlusion of the fluid flow channel by gasket material. The invention also provides a fluid flow plate assembly including an insertable bridgepiece, a fluid flow plate adapted for use with an insertable bridgepiece, and a method of manufacturing a fluid flow plate with an insertable fluid flow passage bridgepiece.

Jones, Daniel O. (Glenville, NV)

2000-01-01T23:59:59.000Z

367

Rotordynamics/discharge water-hammer coupling via seals in pump rotordynamics  

E-Print Network [OSTI]

A new closed-loop frequency-domain model is developed to incorporate the water hammer effect with pump rotordynamics, in order to investigate the sub-synchronous instability problem observed in a field pump. Seal flow-rate perturbations due...

Zhang, Kaikai

2004-09-30T23:59:59.000Z

368

Eos, Vol. 91, No. 29, 20 July 2010 Water and wet sediments under ice sheets  

E-Print Network [OSTI]

Eos, Vol. 91, No. 29, 20 July 2010 Water and wet sediments under ice sheets can play an important role in regulating the rate of ice stream flow in Antarctica, particularly over short time scales. Indeed, the discharge of subglacial lakes has been linked to an increase in ice velocity of Byrd Glacier

Priscu, John C.

369

Two-dimensional flow of foam around an obstacle: force measurements  

E-Print Network [OSTI]

A Stokes experiment for foams is proposed. It consists in a two-dimensional flow of a foam, confined between a water subphase and a top plate, around a fixed circular obstacle. We present systematic measurements of the drag exerted by the flowing foam on the obstacle, \\emph{versus} various separately controlled parameters: flow rate, bubble volume, bulk viscosity, obstacle size, shape and boundary conditions. We separate the drag into two contributions, an elastic one (yield drag) at vanishing flow rate, and a fluid one (viscous coefficient) increasing with flow rate. We quantify the influence of each control parameter on the drag. The results exhibit in particular a power-law dependence of the drag as a function of the bulk viscosity and the flow rate with two different exponents. Moreover, we show that the drag decreases with bubble size, and increases proportionally to the obstacle size. We quantify the effect of shape through a dimensioned drag coefficient, and we show that the effect of boundary conditions is small.

Benjamin Dollet; Florence Elias; Catherine Quilliet; Christophe Raufaste; Miguel Aubouy; Francois Graner

2004-10-13T23:59:59.000Z

370

Microelectromechanical flow control apparatus  

DOE Patents [OSTI]

A microelectromechanical (MEM) flow control apparatus is disclosed which includes a fluid channel formed on a substrate from a first layer of a nonconducting material (e.g. silicon nitride). A first electrode is provided on the first layer of the nonconducting material outside the flow channel; and a second electrode is located on a second layer of the nonconducting material above the first layer. A voltage applied between the first and second electrodes deforms the fluid channel to increase its cross-sectional size and thereby increase a flow of a fluid through the channel. In certain embodiments of the present invention, the fluid flow can be decreased or stopped by applying a voltage between the first electrode and the substrate. A peristaltic pumping of the fluid through the channel is also possible when the voltage is applied in turn between a plurality of first electrodes and the substrate. A MEM flow control assembly can also be formed by providing one or more MEM flow control devices on a common substrate together with a submicron filter. The MEM flow control assembly can optionally include a plurality of pressure sensors for monitoring fluid pressure and determining flow rates through the assembly.

Okandan, Murat (NE Albuquerque, NM)

2009-06-02T23:59:59.000Z

371

forreading. Integrated Water Management for Environmental  

E-Print Network [OSTI]

: Environmental flows; Reservoir reoperation; Integrated water management; Adaptive management; Rio GrandeO nly forreading. D o notD ow nload. Integrated Water Management for Environmental Flows in the Rio the environment. This paper presents an integrated water management approach to meet current and future water

Pasternack, Gregory B.

372

Cooling Water System Optimization  

E-Print Network [OSTI]

During summer months, many manufacturing plants have to cut back in rates because the cooling water system is not providing sufficient cooling to support higher production rates. There are many low/no-cost techniques available to improve tower...

Aegerter, R.

2005-01-01T23:59:59.000Z

373

Laser Sheet Light Flow Visualization For Evaluating Room Air Flows From  

E-Print Network [OSTI]

LBNL-56483 Laser Sheet Light Flow Visualization For Evaluating Room Air Flows From Registers Iain S using a Planar Laser-Induced Fluorescence (PLIF) measurement technique. Water marked with fluorescent

374

Fresh Water Increased temperature means higher proportion of water  

E-Print Network [OSTI]

Fresh Water Increased temperature means higher proportion of water falling on surface higher evaporation higher rainfall greater intensity of floods and droughts. Water use has grown four on How much storage compared to average flow Demand as percentage of supply How much ground water is used

Houston, Paul L.

375

Self-regulating flow control device  

DOE Patents [OSTI]

A variable, self-regulating valve having a hydraulic loss coefficient proportional to a positive exponential power of the flow rate. The device includes two objects in a flow channel and structure which assures that the distance between the two objects is an increasing function of the flow rate. The range of spacing between the objects is such that the hydraulic resistance of the valve is an increasing function of the distance between the two objects so that the desired hydraulic loss coefficient as a function of flow rate is obtained without variation in the flow area.

Humphreys, Duane A. (Pittsburgh, PA)

1984-01-01T23:59:59.000Z

376

Development of a chemical kinetic measurement apparatus and the determination of the reaction rate constants for lithium-lead/water interaction. Technical status progress report, October 1, 1991--March 15, 1993  

SciTech Connect (OSTI)

An experimental set-up for accurate measurement of hydrogen generation rate in Lithium-Lead (Li{sub 17}Pb{sub 83}) Steam or water interactions has been designed. The most important features of the design include a pneumatic actuated quick opening and closing high temperature all stainless steel valve used to control the reaction time and the placement of most measuring devices below a water line to minimize leakage of the hydrogen collected. A PC based data acquisition and control system provides remote process sequencing, acquisition and control of all major components of the set-up. Initial tests indicate that the first design objective of maintaining leakproof gas collection chamber has been achieved. Initial pressure tests indicated that the pressure drop over a time span of 30 minutes was within the tolerance of the pressure transducer used to measure the pressure (within 0.690 kPa) at a nominal system pressure of 685 kPa. The experimental system hardware, data acquisition and control programs and data analysis program have been completed, tested and are currently functional.

Biney, P.O.

1993-04-01T23:59:59.000Z

377

Hydrogeological restrictions to saline ground-water discharge in the Red River of the North drainage basin, North Dakota  

SciTech Connect (OSTI)

Discharge of saline water from bedrock aquifers along the eastern margin of the Williston basin is restricted by surficial glacial till and lacustrine deposits in the Red River of the North drainage basin. Water from these aquifers reaches the surface by (1) diffusion; (2) slow, upward seepage along zones of relatively larger hydraulic conductivity in the till and lacustrine deposits; or (3) flow from artesian wells. Ground-water quality varies near the surface because of mixing of water being discharged from bedrock aquifers with shallower ground water in the surficial deposits. Ground-water quality, hydraulic-gradient, and hydraulic-conductivity data obtained from pumped-well and slug tests indicate that flow in the surficial deposits is eastward, but at slow rates because of small hydraulic conductivities. Base-flow and specific-conductance measurements of water in tributaries to the Red River of the North indicate that focused points of ground-water discharge result in substantial increases in salinity in surface water in the northern part of the basin in North Dakota. Core analyses and drillers' logs were used to generalize hydrogeologic characteristics of the deposits in the basin, and a two-dimensional ground-water-flow model was used to simulate the basin's geohydrologic processes. Model results indicate that the ground-water flow paths in the bedrock aquifers and surficial deposits converge, and that water from the bedrock aquifers contributes to the overall increase in ground-water discharge toward the east. Model results are supported by water-quality data collected along an east-west hydrogeologic section.

Strobel, M.L. (Geological Survey, Grand Forks, ND (United States) Univ. of North Dakota, Grand Forks, ND (United States))

1992-01-01T23:59:59.000Z

378

Flow cytometry apparatus  

DOE Patents [OSTI]

An obstruction across the flow chamber creates a one dimensional convergence of a sheath fluid. A passageway in the construction directs flat cells near to the area of one dimensional convergence in the sheath fluid to provide proper orientation of flat cells at fast rates.

Pinkel, Daniel (Walnut Creek, CA)

1991-01-01T23:59:59.000Z

379

Electrokinetic Hydrogen Generation from Liquid WaterMicrojets  

SciTech Connect (OSTI)

We describe a method for generating molecular hydrogen directly from the charge separation effected via rapid flow of liquid water through a metal orifice, wherein the input energy is the hydrostatic pressure times the volume flow rate. Both electrokinetic currents and hydrogen production rates are shown to follow simple equations derived from the overlap of the fluid velocity gradient and the anisotropic charge distribution resulting from selective adsorption of hydroxide ions to the nozzle surface. Pressure-driven fluid flow shears away the charge balancing hydronium ions from the diffuse double layer and carries them out of the aperture. Downstream neutralization of the excess protons at a grounded target electrode produces gaseous hydrogen molecules. The hydrogen production efficiency is currently very low (ca. 10-6) for a single cylindrical jet, but can be improved with design changes.

Duffin, Andrew M.; Saykally, Richard J.

2007-05-31T23:59:59.000Z

380

Water Rights Analysis Package (WRAP) Modeling System Programming Manual  

E-Print Network [OSTI]

WRAP interface program was developed as a Fortran QuickWin application. SIM simulates the river/reservoir water allocation/management/use system for input sequences of monthly naturalized flows and net evaporation rates. (Chapter 2) SIMD (D for daily... management, and other utility functions. Many different Fortran compiler/IDE packages are sold by various companies. The WRAP programs are in standard Fortran that can be compiled with the various compilers. The compiler, linker, and development...

Wurbs, R.; Hoffpauir, R.

2012-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "water flow rate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Two-phase flow characteristics in multiple orifice valves  

SciTech Connect (OSTI)

This work presents an experimental investigation on the characteristics of two-phase flow through multiple orifice valve (MOV), including frictional pressure drop and void fraction. Experiments were carried out using an MOV with three different sets of discs with throat thickness-diameter ratios (s/d) of 1.41, 1.66 and 2.21. Tests were run with air and water flow rates ranging between 1.0 and 3.0 m{sup 3}/h, respectively. The two-phase flow patterns established for the experiment were bubbly and slug. Two-phase frictional multipliers, frictional pressure drop and void fraction were analyzed. The determined two-phase multipliers were compared against existing correlations for gas-liquid flows. None of the correlations tested proved capable of predicting the experimental results. The large discrepancy between predicted and measured values points at the role played by valve throat geometry and thickness-diameter ratio in the hydrodynamics of two-phase flow through MOVs. A modification to the constants in the two-phase multiplier equation used for pipe flow fitted the experimental data. A comparison between computed frictional pressure drop, calculated with the modified two-phase multiplier equation and measured pressure drop yielded better agreement, with less than 20% error. (author)

Alimonti, Claudio [Sapienza University of Rome, Department ICMA, Via Eudossiana 18, 00184 Roma (Italy); Falcone, Gioia; Bello, Oladele [The Harold Vance Department of Petroleum Engineering, Texas A and M University, 3116 TAMU, Richardson Building, College Station, TX 77843 (United States)

2010-11-15T23:59:59.000Z

382

Amphiphilic mediated sample preparation for micro-flow cytometry  

DOE Patents [OSTI]

A flow cytometer includes a flow cell for detecting the sample, an oil phase in the flow cell, a water phase in the flow cell, an oil-water interface between the oil phase and the water phase, a detector for detecting the sample at the oil-water interface, and a hydrophobic unit operatively connected to the sample. The hydrophobic unit is attached to the sample. The sample and the hydrophobic unit are placed in an oil and water combination. The sample is detected at the interface between the oil phase and the water phase.

Clague, David S. (Livermore, CA); Wheeler, Elizabeth K. (Livermore, CA); Lee, Abraham P. (Irvine, CA)

2006-07-25T23:59:59.000Z

383

Amphiphilic mediated sample preparation for micro-flow cytometry  

DOE Patents [OSTI]

A flow cytometer includes a flow cell for detecting the sample, an oil phase in the flow cell, a water phase in the flow cell, an oil-water interface between the oil phase and the water phase, a detector for detecting the sample at the oil-water interface, and a hydrophobic unit operatively connected to the sample. The hydrophobic unit is attached to the sample. The sample and the hydrophobic unit are placed in an oil and water combination. The sample is detected at the interface between the oil phase and the water phase.

Clague, David S. (Livermore, CA); Wheeler, Elizabeth K. (Livermore, CA); Lee, Abraham P. (Irvine, CA)

2009-03-17T23:59:59.000Z

384

Corrections for Water Resources Engineering  

E-Print Network [OSTI]

Corrections for Water Resources Engineering (First printing) By Larry W. Mays Corrections as of 4.8.2 should read, "Water flows in a rectangular channel ..." Chapter 3 Page 46 Delete second equal sign 5.3.1, steep S1 the type of flow is "subcritical" not "supercritical" Page 110 Figure 5

Mays, Larry W.

385

Rate of Water Evaporation in Texas.  

E-Print Network [OSTI]

, Winterhaven, Dimmit Count No. 8, Lubbock, Lubbock County: E. Mortensen, B. 5.. Superintende D. L. Jones. Superintendent **L. R. Hawthorn, M. S., Horticultu Frank Gaines. Irrig. and Forest Nure. Members of Teaching Staff Carrying Cooperative Projects...

Karper, R. E. (Robert Earl)

1933-01-01T23:59:59.000Z

386

Concentrator E-F11 water test  

SciTech Connect (OSTI)

This document is the Process Test Report for performing operation testing with water of the modified E-F11 concentrator in PUREX on water. The test was performed to determine the effects of the following concentrator modifications; routing concentrator off-gasses via the PUREX air tunnel to the main stack, blanking of condenser cooling water, blanking of process condensate route to a crib, restricting flow to steam tube bundles, and routing of steam condensate to TK-F12. The test was successful. Concentrator boil-off rates of 6--7 gpm were achieved while the overheads exited the PUREX plant in vapor form. With minor recommended modifications, this process is recommended for use in processing PUREX deactivation flush solutions and other miscellaneous wastes accumulated during the completion of the deactivation project.

Ethington, P.R.

1994-02-25T23:59:59.000Z

387

Water-lithium bromide double-effect absorption cooling analysis. Final report  

SciTech Connect (OSTI)

This investigation involved the development of a numerical model for the transient simulation of the double-effect, water-lithium bromide absorption cooling machine, and the use of the model to determine the effect of the various design and input variables on the absorption unit performance. The performance parameters considered were coefficient of performance and cooling capacity. The sensitivity analysis was performed by selecting a nominal condition and determining performance sensitivity for each variable with others held constant. The variables considered in the study include source hot water, cooling water, and chilled water temperatures; source hot water, cooling water, and chilled water flow rates; solution circulation rate; heat exchanger areas; pressure drop between evaporator and absorber; solution pump characteristics; and refrigerant flow control methods. The performance sensitivity study indicated in particular that the distribution of heat exchanger area among the various (seven) heat exchange components is a very important design consideration. Moreover, it indicated that the method of flow control of the first effect refrigerant vapor through the second effect is a critical design feature when absorption units operate over a significant range of cooling capacity. The model was used to predict the performance of the Trane absorption unit with fairly good accuracy. The dynamic model should be valuable as a design tool for developing new absorption machines or modifying current machines to make them optimal based on current and future energy costs.

Vliet, G.C.; Lawson, M.B.; Lithgow, R.A.

1980-12-01T23:59:59.000Z

388

A Holistic Framework for Environmental Flows Determination in Hydropower Contexts  

SciTech Connect (OSTI)

Among the ecological science community, the consensus view is that the natural flow regime sustains the ecological integrity of river systems. This prevailing viewpoint by many environmental stakeholders has progressively led to increased pressure on hydropower dam owners to change plant operations to affect downstream river flows with the intention of providing better conditions for aquatic biological communities. Identifying the neccessary magnitude, frequency, duration, timing, or rate of change of stream flows to meet ecological needs in a hydropower context is challenging because the ecological responses to changes in flows may not be fully known, there are usually a multitude of competing users of flow, and implementing environmental flows usually comes at a price to energy production. Realistically, hydropower managers must develop a reduced set of goals that provide the most benefit to the identified ecological needs. As a part of the Department of Energy (DOE) Water Power Program, the Instream Flow Project (IFP) was carried out by Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), and Argon National Laboratory (ANL) as an attempt to develop tools aimed at defining environmental flow needs for hydropower operations. The application of these tools ranges from national to site-specific scales; thus, the utility of each tool will depend on various phases of the environmental flow process. Given the complexity and sheer volume of applications used to determine environmentally acceptable flows for hydropower, a framework is needed to organize efforts into a staged process dependent upon spatial, temporal, and functional attributes. By far, the predominant domain for determining environmental flows related to hydropower is within the Federal Energy Regulatory Commission (FERC) relicensing process. This process can take multiple years and can be very expensive depending on the scale of each hydropower project. The utility of such a framework is that it can expedite the environmental flow process by 1) organizing data and applications to identify predictable relationships between flows and ecology, and 2) suggesting when and where tools should be used in the environmental flow process. In addition to regulatory procedures, a framework should also provide the coordination for a comprehensive research agenda to guide the science of environmental flows. This research program has further reaching benefits than just environmental flow determination by providing modeling applications, data, and geospatial layers to inform potential hydropower development. We address several objectives within this document that highlight the limitations of existing environmental flow paradigms and their applications to hydropower while presenting a new framework catered towards hydropower needs. Herein, we address the following objectives: 1) Provide a brief overview of the Natural Flow Regime paradigm and existing environmental flow frameworks that have been used to determine ecologically sensitive stream flows for hydropower operations. 2) Describe a new conceptual framework to aid in determining flows needed to meet ecological objectives with regard to hydropower operations. The framework is centralized around determining predictable relationships between flow and ecological responses. 3) Provide evidence of how efforts from ORNL, PNNL, and ANL have filled some of the gaps in this broader framework, and suggest how the framework can be used to set the stage for a research agenda for environmental flow.

McManamay, Ryan A [ORNL; Bevelhimer, Mark S [ORNL

2013-05-01T23:59:59.000Z

389

Classification of Two-Phase Flow Patterns by Ultrasonic Sensing  

E-Print Network [OSTI]

in addition to several other factors such as the bulk flow rate, fluid properties, and flow boundary conditions [1]. Characterization of flow patterns and identification of the associ- ated flow regimes instrumentation, both for void fraction identification and flow pattern classification. High-speed photog- raphy

Ray, Asok

390

Rate schedule  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, andEpidermal Growth Factor. |INCIDENCET3PACI-T3Rate

391

The transition from the annular to the slug flow regime in two-phase flow  

E-Print Network [OSTI]

Experiments were conducted to determine the transition from annular to semiannular flow regimes for two-phase, gas-liquid upflow in vertical tubes. The influencesof liquid flow rate, tube diameter, liquid viscosity, surface ...

Haberstroh, Robert D.

1964-01-01T23:59:59.000Z

392

Dynamic behavior of chemical exchange column in a water detritiation system for a fusion reactor  

SciTech Connect (OSTI)

The dynamic behavior of a CECE column used for a demonstration reactor (DEMO) plant has been studied. In the case where the column was filled with natural water, the time required to achieve steady state was almost the same as that for the column operated under the total reflux mode. The manipulated variables were flow rate of the bottom stream for the control of the bottom tritium concentration, and flow rate of the hydrogen stream for the control of the top tritium concentration. For both the variables, the response curve was expressed by the first-order lag system, and a PID controller could be applied. (authors)

Yamanishi, T.; Iwai, Y. [Tritium Engineering Group, JAEA, Tokai, Ibaraki, 319-1195 (Japan)

2008-07-15T23:59:59.000Z

393

TYPICAL HOT WATER DRAW PATTERNS BASED ON FIELD DATA  

SciTech Connect (OSTI)

There is significant variation in hot water use and draw patterns among households. This report describes typical hot water use patterns in single-family residences in North America. We found that daily hot water use is highly variable both among residences and within the same residence. We compared the results of our analysis of the field data to the conditions and draw patterns established in the current U.S. Department of Energy (DOE) test procedure for residential water heaters. The results show a higher number of smaller draws at lower flow rates than used in the test procedure. The data from which the draw patterns were developed were obtained from 12 separate field studies. This report describes the ways in which we managed, cleaned, and analyzed the data and the results of our data analysis. After preparing the data, we used the complete data set to analyze inlet and outlet water temperatures. Then we divided the data into three clusters reflecting house configurations that demonstrated small, medium, or large median daily hot water use. We developed the three clusters partly to reflect efforts of the ASHRAE standard project committee (SPC) 118.2 to revise the test procedure for residential water heaters to incorporate a range of draw patterns. ASHRAE SPC 118.2 has identified the need to separately evaluate at least three, and perhaps as many as five, different water heater capacities. We analyzed the daily hot water use data within each cluster in terms of volume and number of hot water draws. The daily draw patterns in each cluster were characterized using distributions for volume of draws, duration of draws, time since previous draw, and flow rates.

Lutz, Jim; Melody, Moya

2012-11-08T23:59:59.000Z

394

Flow chamber  

DOE Patents [OSTI]

A flow chamber having a vacuum chamber and a specimen chamber. The specimen chamber may have an opening through which a fluid may be introduced and an opening through which the fluid may exit. The vacuum chamber may have an opening through which contents of the vacuum chamber may be evacuated. A portion of the flow chamber may be flexible, and a vacuum may be used to hold the components of the flow chamber together.

Morozov, Victor (Manassas, VA)

2011-01-18T23:59:59.000Z

395

Numerical modeling of deep groundwater flow and heat transport in the Williston Basin  

SciTech Connect (OSTI)

A numerical modeling approach has been used to evaluate quantitatively the effects of fluid flow on contemporary heat flow in an intracratonic basin. The authors have selected the Williston basin for this hydrodynamic study because of the opportunity it presents to assess the relation of deep groundwater flow to basin geothermics and the associated features of diagenesis and petroleum accumulation. The finite element method is used to solve the coupled equations of fluid flow and heat transport in two-dimensional sections of the basin. Both the fluid- and heat-flow regime are assumed to be at steady state, and the fluid flow is driven primarily by the water-table relief which is taken to be a subdued replica of land-surface topography. Buoyancy forces may also affect flow through fluid density gradients created by temperature and salinity effects. Three southwest-northwest oriented sections across the basin were modeled using available and estimated parameter data. The predicted flow patterns are most strongly affected by the topography, but the Devonian salt unit and Cretaceous shale unit exert some control. Cross-formational flow is especially important near the downdip, solution edge of the salt beds. Flow rates rarely exceed 0.5 m/year in the deep-central part of the basin, yet there does exist a marked effect on heat flow, albeit subdued by the blanket effect of the low-permeability Cretaceous shales. The regional effect of the topography-driven flow system is reflected in present-day salinity patterns and heat-flow data.

Garven, G.; Vigrass, L.

1985-01-01T23:59:59.000Z

396

Geological flows  

E-Print Network [OSTI]

In this paper geology and planetology are considered using new conceptual basis of high-speed flow dynamics. Recent photo technics allow to see all details of a flow, 'cause the flow is static during very short time interval. On the other hand, maps and images of many planets are accessible. Identity of geological flows and high-speed gas dynamics is demonstrated. There is another time scale, and no more. All results, as far as the concept, are new and belong to the author. No formulae, pictures only.

Yu. N. Bratkov

2008-11-19T23:59:59.000Z

397

[Ni(PPh2NC6H4X2)2]2+ Complexes as Electrocatalysts for H2 Production: Effect of Substituents, Acids, and Water on Catalytic Rates  

SciTech Connect (OSTI)

A series of mononuclear nickel(II) bis(diphosphine) complexes [Ni(PPh2NPhX2)2](BF4)2 (PPh2NPhX2 = 1,5-di(para¬-X-phenyl)-3,7-diphenyl-1,5-diaza-3,7-diphosphacyclooctane; X = OMe, Me, CH2P(O)(OEt)2, Br, and CF3) have been synthesized and characterized. X-ray diffraction studies reveal that [Ni(PPh2NPhMe2)2](BF4)2 and [Ni(PPh2NPhOMe2)2](BF4)2 are tetracoordinate with distorted square planar geometries. The Ni(II/I) and Ni(I/0) redox couples of each complex are electrochemically reversible in acetonitrile (0.2 M tetraethylammonium tetrafluoroborate) with potentials that are increasingly cathodic as the electron-donating character of X is increased. All of these complexes are efficient electrocatalysts for hydrogen production, with rates generally increasing as the electron-donating character of X is decreased. Catalytic studies using 2,6-dichloroanilinium triflate (2,6-Cl2AnH+OTf , pKaMeCN = 5.0) 4-cyanoanilinium tetrafluoroborate (4-CNAnH+OTf , pKaMeCN = 7.0) and protonated dimethylformamide ([(DMF)H]+OTf , pKaMeCN = 6.1) reveal that turnover frequencies do not correlate with substrate acid pKa values, but are highly dependent on the acid structure, with this effect being related to substrate size. Addition of water is shown to dramatically increase catalytic rates for all catalysts. With [Ni(PPh2NPhCH2P(O)(OEt)22)2](BF4)2 using [(DMF)H]+OTf as acid and with added water, a turnover frequency of 1850 s-1 was obtained. This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

Kilgore, Uriah J.; Roberts, John A.; Pool, Douglas H.; Appel, Aaron M.; Stewart, Michael P.; Rakowski DuBois, Mary; Dougherty, William G.; Kassel, W. S.; Bullock, R. Morris; DuBois, Daniel L.

2011-04-20T23:59:59.000Z

398

MSET modeling of Crystal River-3 venturi flow meters.  

SciTech Connect (OSTI)

The analysis of archived Crystal River-3 feedwater flow data reveals a slow and steady degradation of the flow meter measurements during the 1992/1993 operating cycle. MSET can reliably estimate the true flow rate and quantify the degree of departure between the indicated signal and the true flow rate with high accuracy. The MSET computed flow rate could, in principle, be used to provide an improved estimate of the reactor power and hence avoid the revenue loss associated with derating the reactor based on a faulty feedwater flow rate indication.

Bockhorst, F. K.; Gross, K. C.; Herzog, J. P.; Wegerich, S. W.

1998-01-05T23:59:59.000Z

399

Analytical solution for two-phase flow in a wellbore using the drift-flux model  

SciTech Connect (OSTI)

This paper presents analytical solutions for steady-state, compressible two-phase flow through a wellbore under isothermal conditions using the drift flux conceptual model. Although only applicable to highly idealized systems, the analytical solutions are useful for verifying numerical simulation capabilities that can handle much more complicated systems, and can be used in their own right for gaining insight about two-phase flow processes in wells. The analytical solutions are obtained by solving the mixture momentum equation of steady-state, two-phase flow with an assumption that the two phases are immiscible. These analytical solutions describe the steady-state behavior of two-phase flow in the wellbore, including profiles of phase saturation, phase velocities, and pressure gradients, as affected by the total mass flow rate, phase mass fraction, and drift velocity (i.e., the slip between two phases). Close matching between the analytical solutions and numerical solutions for a hypothetical CO{sub 2} leakage problem as well as to field data from a CO{sub 2} production well indicates that the analytical solution is capable of capturing the major features of steady-state two-phase flow through an open wellbore, and that the related assumptions and simplifications are justified for many actual systems. In addition, we demonstrate the utility of the analytical solution to evaluate how the bottomhole pressure in a well in which CO{sub 2} is leaking upward responds to the mass flow rate of CO{sub 2}-water mixture.

Pan, L.; Webb, S.W.; Oldenburg, C.M.

2011-11-01T23:59:59.000Z

400

Numerical simulation of ground-water flow in the Culebra dolomite at the Waste Isolation Pilot Plant (WIPP) site: Second interim report  

SciTech Connect (OSTI)

This hydrogeologic modeling study has been performed as part of the regional hydrologic characterization of the Waste Isolation Pilot Plant (WIPP) Site in southeastern New Mexico. The study resulted in an estimation of the transmissivity distrubution, hydraulic potentials, flow field, and fluid densities in the Culebra Dolomite Member of the Permian Rustler Formation at the WIPP site. The three-dimensional finite-difference code SWIFT-II was employed for the numerical modeling, using variable-fluid-density and a single-porosity formulation. The modeled area includes and extends beyond the WIPP controlled zone (Zone 3). The work performed consisted of modeling the hydrogeology of the Culebra using two approaches: (1) steady-state modeling to develop the best estimate of the undisturbed head distribution, i.e., of the situation before sinking if the WIPP shafts, which began in 1981; and (2) superimposed transient modeling of local hydrologic responses to excavation of the three WIPP shafts at the center of the WIPP site, as well as to various well tests. Boundary conditions (prescribed constant fluid pressures and densities) were estimated using hydraulic-head and fluid-density data obtained from about 40 wells at and near the WIPP site. The transient modeling used the calculated steady-state freshwater heads as initial conditions. 107 refs., 112 figs., 22 tabs.

LaVenue, A.M.; Haug, A.; Kelley, V.A.

1988-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "water flow rate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Wynkoop Building Performance Measurement: Water  

SciTech Connect (OSTI)

This report is a summary of the water analysis performance for the Denver, Colorado Wynkoop Building. The Wynkoop Building (Figure 1) was built in 2006 as the Environmental Protection Agency (EPA) Region 8 Headquarters intended to house over 900 occupants in the 301,292 gross square feet (248,849 rentable square feet). The building was built on a brownfield in the Lower Downtown Historic District as part of an urban redevelopment effort. The building was designed and constructed through a public-private partnership with the sustainable design elements developed jointly by General Services Administration (GSA) and EPA. That partnership is still active with all parties still engaged to optimize building operations and use the building as a Learning Laboratory. The building design achieved U.S. Green Building Council Leadership in Energy and Environmental Design for New Construction (LEED-NC) Gold Certification in 2008 (Figure 2) and a 2008 EPA Energy Star Rating of 96 with design highlights that include: (1) Water use was designed to use 40% less than a typical design baseline. The design included low flow fixtures, waterless urinals and dual flush toilets; (2) Native and adaptive vegetation were selected to minimize the need for irrigation water for landscaping; and (3) Energy use intensity was modeled at 66.1 kBtus/gross square foot, which is 39% better than ASHRAE 90.1 1999. The Wynkoop Building water use (10 gallons/square foot) was measured at lower than industry average (15 gallons/square foot) and GSA goals (13 gallons/square foot), however, it was higher than building management expected it would be. The type of occupants and number of occupants can have a significant impact on fixture water use. The occupancy per floor varied significantly over the study time period, which added uncertainty to the data analysis. Investigation of the fixture use on the 2nd, 5th, and 7th floors identified potential for water use reduction if the flush direction of the dual-flush toilet handles was reversed. The building management retrofitted the building's toilets with handles that operated on reduced flush when pushed down (0.8 gallons) and full flush when pulled up (1.1 gallons). The water pressure on the 5th floor (< 30 psi) is less than half the pressure on the 7th floor (>80 psi). The measured water savings post-retrofit was lower on the 5th floor than the 7th floor. The differences in water pressure may have had an impact on the quantity of water used per floor. The second floor water use was examined prior to and following the toilet fixture retrofit. This floor is where conference rooms for non-building occupants are available for use, thus occupancy is highly variable. The 3-day average volume per flush event was higher post-retrofit (0.79 gallons per event), in contrast to pre-retrofit (0.57 gallons per event). There were 40% more flush events post retrofit, which impacted the findings. Water use in the third floor fitness center was also measured for a limited number of days. Because of water line accessibility, only water use on the men's side of the fitness center was measured and from that the total fitness center water use was estimated. Using the limited data collected, the fitness center shower water use is approximately 2% of the whole building water use. Overall water use in the Wynkoop Building is below the industry baseline and GSA expectations. The dual flush fixture replacement appears to have resulted in additional water savings that are expected to show a savings in the total annual water use.

Fowler, Kimberly M.; Kora, Angela R.

2012-08-26T23:59:59.000Z

402

Visualization of Fuel Cell Water Transport and Performance Characterization under Freezing Conditions  

SciTech Connect (OSTI)

In this program, Rochester Institute of Technology (RIT), General Motors (GM) and Michigan Technological University (MTU) have focused on fundamental studies that address water transport, accumulation and mitigation processes in the gas diffusion layer and flow field channels of the bipolar plate. These studies have been conducted with a particular emphasis on understanding the key transport phenomena which control fuel cell operation under freezing conditions. Technical accomplishments are listed below: • Demonstrated that shutdown air purge is controlled predominantly by the water carrying capacity of the purge stream and the most practical means of reducing the purge time and energy is to reduce the volume of liquid water present in the fuel cell at shutdown. The GDL thermal conductivity has been identified as an important parameter to dictate water accumulation within a GDL. • Found that under the normal shutdown conditions most of the GDL-level water accumulation occurs on the anode side and that the mass transport resistance of the membrane electrode assembly (MEA) thus plays a critically important role in understanding and optimizing purge. • Identified two-phase flow patterns (slug, film and mist flow) in flow field channel, established the features of each pattern, and created a flow pattern map to characterize the two-phase flow in GDL/channel combination. • Implemented changes to the baseline channel surface energy and GDL materials and evaluated their performance with the ex situ multi-channel experiments. It was found that the hydrophilic channel (contact angle ? ? 10?) facilitates the removal of liquid water by capillary effects and by reducing water accumulation at the channel exit. It was also found that GDL without MPL promotes film flow and shifts the slug-to-film flow transition to lower air flow rates, compared with the case of GDL with MPL. • Identified a new mechanism of water transport through GDLs based on Haines jump mechanism. The breakdown and redevelopment of the water paths in GDLs lead to an intermittent water drainage behavior, which is characterized by dynamic capillary pressure and changing of breakthrough location. MPL was found to not only limit the number of water entry locations into the GDL (thus drastically reducing water saturation), but also stabilizes the water paths (or morphology). • Simultaneously visualized the water transport on cathode and anode channels of an operating fuel cell. It was found that under relatively dry hydrogen/air conditions at lower temperatures, the cathode channels display a similar flow pattern map to the ex-situ experiments under similar conditions. Liquid water on the anode side is more likely formed via condensation of water vapor which is transported through the anode GDL. • Investigated the water percolation through the GDL with pseudo-Hele-Shaw experiments and simulated the capillary-driven two-phase flow inside gas diffusion media, with the pore size distributions being modeled by using Weibull distribution functions. The effect of the inclusion of the microporous layer in the fuel cell assembly was explored numerically. • Developed and validated a simple, reliable computational tool for predicting liquid water transport in GDLs. • Developed a new method of determining the pore size distribution in GDL using scanning electron microscope (SEM) image processing, which allows for separate characterization of GDL wetting properties and pore size distribution. • Determined the effect of surface wettability and channel cross section and bend dihedral on liquid holdup in fuel cell flow channels. A major thrust of this research program has been the development of an optimal combination of materials, design features and cell operating conditions that achieve a water management strategy which facilitates fuel cell operation under freezing conditions. Based on our various findings, we have made the final recommendation relative to GDL materials, bipolar design and surface properties, and the combination of materials, design featur

Kandlikar, S.G.; Lu, Z.; Rao, N.; Sergi, J.; Rath, C.; Dade, C.; Trabold, T.; Owejan, J.; Gagliardo, J.; Allen, J.; Yassar, R.S.; Medici, E.; Herescu, A.

2010-05-30T23:59:59.000Z

403

E-Print Network 3.0 - annual drought flow Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Morgan C. Levy Summary: , river flow timing, water volumes and quality - and all were affected by the drought. Unlike... 's environmental flows went unmet during the drought...

404

Water Resources Water Quality and Water Treatment  

E-Print Network [OSTI]

Water Resources TD 603 Lecture 1: Water Quality and Water Treatment CTARA Indian Institute of Technology, Bombay 2nd November, 2011 #12;OVERVIEW Water Quality WATER TREATMENT PLANTS WATER TREATMENT PLANTS WATER TREATMENT PLANTS WATER TRE OVERVIEW OF THE LECTURE 1. Water Distribution Schemes Hand Pump

Sohoni, Milind

405

Receiving Water Uses, Impairments, and Sources of Stormwater Pollutants  

E-Print Network [OSTI]

............................................................22 Stormwater Conveyance (Flood Prevention) .........................................................................26 Recreation (Non-Water Contact) Uses ........................................................................................................................................43 INTRODUCTION Wet-weather flow impacts on receiving waters have been historically misunderstood

Pitt, Robert E.

406

Study of the combined effect of temperature, pH and water activity on the radial growth rate of the white-rot basidiomycete Physisporinus vitreus by using a hyphal growth model  

E-Print Network [OSTI]

The present work investigates environmental effects on the growth of fungal colonies of P. vitreus by using a lattice-free discrete modelling approach called FGM (Fuhr et al. (2010), arXiv:1101.1747), in which hyphae and nutrients are considered as discrete structures. A discrete modelling approach allows studying the underlying mechanistic rule concerning the basic architecture and dynamic of fungal networks on the scale of a single colony. By comparing simulations of the FGM with laboratory experiments of growing fungal colonies on malt extract agar we show that combined effect of temperature, pH and water activity on the radial growth rate of a fungal colony on a macroscopic scale may be explained by a power law for the growth costs of hyphal expansion on a microscopic scale. The information about the response of the fungal mycelium on a microscopic scale to environmental conditions is essential to simulate its behavior in complex structure substrates such as wood, where the impact of the fungus to the woo...

Fuhr, M J; Schubert, M; Schwarze, F W M R; Herrmann, H J

2011-01-01T23:59:59.000Z

407

Case Study/ Ground Water Sustainability: Methodology and  

E-Print Network [OSTI]

, or the lack thereof, of ground water flow systems driven by similar hydrogeologic and economic conditionsCase Study/ Ground Water Sustainability: Methodology and Application to the North China Plain of a ground water flow system in the North China Plain (NCP) subject to severe overexploitation and rapid

Zheng, Chunmiao

408

Active combustion flow modulation valve  

DOE Patents [OSTI]

A flow modulation valve has a slidably translating hollow armature with at least one energizable coil wound around and fixably attached to the hollow armature. The energizable coil or coils are influenced by at least one permanent magnet surrounding the hollow armature and supported by an outer casing. Lorentz forces on the energizable coils which are translated to the hollow armature, increase or decrease the flow area to provide flow throttling action. The extent of hollow armature translation depends on the value of current supplied and the direction of translation depends on the direction of current flow. The compact nature of the flow modulation valve combined with the high forces afforded by the actuator design provide a flow modulation valve which is highly responsive to high-rate input control signals.

Hensel, John Peter; Black, Nathaniel; Thorton, Jimmy Dean; Vipperman, Jeffrey Stuart; Lambeth, David N; Clark, William W

2013-09-24T23:59:59.000Z

409

TYPICAL HOT WATER DRAW PATTERNS BASED ON FIELD DATA  

E-Print Network [OSTI]

for Rating Residential Water Heaters. Atlanta, GA: ASHRAE,for Residential Water Heaters, Direct Heating Equipment, andthe Energy Consumption of Water Heaters. Title 10 Code of

Lutz, Jim

2014-01-01T23:59:59.000Z

410

Heat Pump Water Heaters and American Homes: A Good Fit?  

E-Print Network [OSTI]

an electric resistance storage water heater (ESWH) with tankof total electric storage water heater shipments in the nextelectric resistance storage water heaters. The rated storage

Franco, Victor

2011-01-01T23:59:59.000Z

411

Cerro Grande Fire Impact to Water Quality and Stream Flow near Los Alamos National Laboratory: Results of Four Years of Monitoring  

SciTech Connect (OSTI)

In May 2000, the Cerro Grande fire burned about 7400 acres of mixed conifer forest on the Los Alamos National Laboratory (LANL), and much of the 10,000 acres of mountainside draining onto LANL was severely burned. The resulting burned landscapes raised concerns of increased storm runoff and transport of contaminants by runoff in the canyons traversing LANL. The first storms after the fire produced runoff peaks that were more than 200 times greater than prefire levels. Total runoff volume for the year 2000 increased 50% over prefire years, despite a decline in total precipitation of 13% below normal and a general decrease in the number of monsoonal thunderstorms. The majority of runoff in 2000 occurred in the canyons at LANL south of Pueblo Canyon (70%), where the highest runoff volume occurred in Water Canyon and the peak discharge occurred in Pajarito Canyon. This report describes the observed effects of the Cerro Grande fire and related environmental impacts to watersheds at and near Los Alamos National Laboratory (LANL) for the first four runoff seasons after the fire, from 2000 through 2003. Spatial and temporal trends in radiological and chemical constituents that were identified as being associated with the Cerro Grande fire and those that were identified as being associated with historic LANL discharges are evaluated with regard to impacts to the Rio Grande and area reservoirs downstream of LANL. The results of environmental sampling performed by LANL, the New Mexico Environment Department (NMED), and U.S. Geological Survey (USGS) after the Cerro Grande fire are included in the evaluation. Effects are described for storm runoff, baseflow, stream sediments, and area regional reservoir sediment.

B.M. Gallaher; R.J. Koch

2004-09-15T23:59:59.000Z

412

Workshop on hypersonic flow  

SciTech Connect (OSTI)

An overview is given of research activity on the application of computational fluid dynamics (CDF) for hypersonic propulsion systems. After the initial consideration of the highly integrated nature of air-breathing hypersonic engines and airframe, attention is directed toward computations carried out for the components of the engine. A generic inlet configuration is considered in order to demonstrate the highly three dimensional viscous flow behavior occurring within rectangular inlets. Reacting flow computations for simple jet injection as well as for more complex combustion chambers are then discussed in order to show the capability of viscous finite rate chemical reaction computer simulations. Finally, the nozzle flow fields are demonstrated, showing the existence of complex shear layers and shock structure in the exhaust plume. The general issues associated with code validation as well as the specific issue associated with the use of CFD for design are discussed. A prognosis for the success of CFD in the design of future propulsion systems is offered.

Povinelli, L.A.

1990-01-01T23:59:59.000Z

413

UZ Flow Models and Submodels  

SciTech Connect (OSTI)

The purpose of this report is to document the unsaturated zone (UZ) flow models and submodels, as well as the flow fields that have been generated using the UZ flow model(s) of Yucca Mountain, Nevada. In this report, the term ''UZ model'' refers to the UZ flow model and the several submodels, which include tracer transport, temperature or ambient geothermal, pneumatic or gas flow, and geochemistry (chloride, calcite, and strontium) submodels. The term UZ flow model refers to the three-dimensional models used for calibration and simulation of UZ flow fields. This work was planned in the ''Technical Work Plan (TWP) for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Section 1.2.7). The table of included Features, Events, and Processes (FEPs), Table 6.2-11, is different from the list of included FEPs assigned to this report in the ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Table 2.1.5-1), as discussed in Section 6.2.6. The UZ model has revised, updated, and enhanced the previous UZ model (BSC 2001 [DIRS 158726]) by incorporating the repository design with new grids, recalibration of property sets, and more comprehensive validation effort. The flow fields describe fracture-fracture, matrix-matrix, and fracture-matrix liquid flow rates, and their spatial distributions as well as moisture conditions in the UZ system. These three-dimensional UZ flow fields are used directly by Total System Performance Assessment (TSPA). The model and submodels evaluate important hydrogeologic processes in the UZ as well as geochemistry and geothermal conditions. These provide the necessary framework to test hypotheses of flow and transport at different scales, and predict flow and transport behavior under a variety of climatic conditions. In addition, the limitations of the UZ model are discussed in Section 8.11.

Y. Wu

2004-11-01T23:59:59.000Z

414

The Idaho National Engineering and Environmental Laboratory Source Water Assessment  

SciTech Connect (OSTI)

The Idaho National Engineering and Environmental Laboratory (INEEL) covers approximately 890 square miles and includes 12 public water systems that must be evaluated for Source water protection purposes under the Safe Drinking Water Act. Because of its size and location, six watersheds and five aquifers could potentially affect the INEEL's drinking water sources. Based on a preliminary evaluation of the available information, it was determined that the Big Lost River, Birch Creek, and Little Lost River Watersheds and the eastern Snake River Plain Aquifer needed to be assessed. These watersheds were delineated using the United States Geologic Survey's Hydrological Unit scheme. Well capture zones were originally estimated using the RESSQC module of the Environmental Protection Agency's Well Head Protection Area model, and the initial modeling assumptions and results were checked by running several scenarios using Modflow modeling. After a technical review, the resulting capture zones were expanded to account for the uncertainties associated with changing groundwater flow directions, a this vadose zone, and other data uncertainties. Finally, all well capture zones at a given facility were merged to a single wellhead protection area at each facility. A contaminant source inventory was conducted, and the results were integrated with the well capture zones, watershed and aquifer information, and facility information using geographic information system technology to complete the INEEL's Source Water Assessment. Of the INEEL's 12 public water systems, three systems rated as low susceptibility (EBR-1, Main Gate, and Gun Range), and the remainder rated as moderate susceptibility. No INEEL public water system rated as high susceptibility. We are using this information to develop a source water management plan from which we will subsequently implement an INEEL-wide source water management program. The results are a very robust set of wellhead protection areas that will protect the INEEL's public water systems yet not too conservative to inhibit the INEEL from carrying out its missions.

Sehlke, G.

2003-03-17T23:59:59.000Z

415

7-29 A coal-burning power plant produces 300 MW of power. The amount of coal consumed during a one-day period and the rate of air flowing through the furnace are to be determined.  

E-Print Network [OSTI]

7-11 7-29 A coal-burning power plant produces 300 MW of power. The amount of coal consumed during The heating value of the coal is given to be 28,000 kJ/kg. Analysis (a) The rate and the amount of heat inputs'tQQ The amount and rate of coal consumed during this period are kg/s48.33 s360024 kg10893.2 MJ/kg28 MJ101.8 6

Bahrami, Majid

416

Liquid metal Flow Meter - Final Report  

SciTech Connect (OSTI)

Measuring the flow of liquid metal presents serious challenges. Current commercially-available flow meters use ultrasonic, electromagnetic, and other technologies to measure flow, but are inadequate for liquid metal flow measurement because of the high temperatures required by most liquid metals. As a result of the reactivity and high temperatures of most liquid metals, corrosion and leakage become very serious safety concerns. The purpose of this project is to develop a flow meter for Lockheed Martin that measures the flow rate of molten metal in a conduit.

Andersen C, Hoogendoom S, Hudson B, Prince J, Teichert K, Wood J, Chase K

2007-01-30T23:59:59.000Z

417

Origins of Pulsing Regime in Cocurrent Packed-Bed Flows  

E-Print Network [OSTI]

, 6, and 8 mm using an air-water flow. By measuring the flow distance until pulses are observedOrigins of Pulsing Regime in Cocurrent Packed-Bed Flows B.A. Wilhite+ , B. Blackwell+ , J. Kacmar of the formation for cocurrent downflow pulse flow was studied experimentally in a packed-bed of inert spheres of 3

McCready, Mark J.

418

Deep subsurface drip irrigation using coal-bed sodic water: Part I. Water and solute movement  

SciTech Connect (OSTI)

Water co-produced with coal-bed methane (CBM) in the semi-arid Powder River Basin of Wyoming and Montana commonly has relatively low salinity and high sodium adsorption ratios that can degrade soil permeability where used for irrigation. Nevertheless, a desire to derive beneficial use from the water and a need to dispose of large volumes of it have motivated the design of a deep subsurface drip irrigation (SDI) system capable of utilizing that water. Drip tubing is buried 92 cm deep and irrigates at a relatively constant rate year-round, while evapotranspiration by the alfalfa and grass crops grown is seasonal. We use field data from two sites and computer simulations of unsaturated flow to understand water and solute movements in the SDI fields. Combined irrigation and precipitation exceed potential evapotranspiration by 300–480 mm annually. Initially, excess water contributes to increased storage in the unsaturated zone, and then drainage causes cyclical rises in the water table beneath the fields. Native chloride and nitrate below 200 cm depth are leached by the drainage. Some CBM water moves upward from the drip tubing, drawn by drier conditions above. Chloride from CBM water accumulates there as root uptake removes the water. Year over year accumulations indicated by computer simulations illustrate that infiltration of precipitation water from the surface only partially leaches such accumulations away. Field data show that 7% and 27% of added chloride has accumulated above the drip tubing in an alfalfa and grass field, respectively, following 6 years of irrigation. Maximum chloride concentrations in the alfalfa field are around 45 cm depth but reach the surface in parts of the grass field, illustrating differences driven by crop physiology. Deep SDI offers a means of utilizing marginal quality irrigation waters and managing the accumulation of their associated solutes in the crop rooting zone.

Bern, Carleton R.; Breit, George N.; Healy, Richard W.; Zupancic, John W.; Hammack, Richard

2013-02-01T23:59:59.000Z

419

Cooling Flows or Heating Flows?  

E-Print Network [OSTI]

It is now clear that AGN heat cooling flows, largely by driving winds. The winds may contain a relativistic component that generates powerful synchrotron radiation, but it is not clear that all winds do so. The spatial and temporal stability of the AGN/cooling flow interaction are discussed. Collimation of the winds probably provides spatial stability. Temporal stability may be possible only for black holes with masses above a critical value. Both the failure of cooling flows to have adiabatic cores and the existence of X-ray cavities confirm the importance of collimated outflows. I quantify the scale of the convective flow that the AGN Hydra would need to drive if it balanced radiative inward flow by outward flow parallel to the jets. At least in Virgo any such flow must be confined to r<~20 kpc. Hydrodynamical simulations suggest that AGN outbursts cannot last longer than ~25 Myr. Data for four clusters with well studied X-ray cavities suggests that heating associated with cavity formation approximately balances radiative cooling. The role of cosmic infall and the mechanism of filament formation are briefly touched on.

James Binney

2003-10-08T23:59:59.000Z

420

Transport Modeling of Membrane Extraction of Chlorinated Hydrocarbon from Water for Ion Mobility Spectrometry  

SciTech Connect (OSTI)

Membrane-extraction Ion Mobility Spectrometry (ME-IMS) is a feasible technique for the continuous monitoring of chlorinated hydrocarbons in water. This work studies theoretically the time-dependent characteristics of sampling and detection of trichloroethylene (TCE). The sampling is configured so that aqueous contaminants permeate through a hollow polydimethylsiloxane (PDMS) membrane and are carried away by a transport gas flowing through the membrane tube into IMS analyzer. The theoretical study is based on a two-dimensional transient fluid flow and mass transport model. The model describes the TCE mixing in the water, permeation through the membrane layer, and convective diffusion in the air flow inside membrane tube. The effect of various transport gas flow rates on temporal profiles of IMS signal intensity is investigated. The results show that fast time response and high transport yield can be achieved for ME-IMS by controlling the flow rate in the extraction membrane tube. These modeled time-response profiles are important for determining duty cycles of field-deployable sensors for monitoring chlorinated hydrocarbons in water.

Zhang, Wei [ORNL; Du, Yongzhai [ORNL; Feng, Zhili [ORNL; Xu, Jun [ORNL

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water flow rate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Laser sheet light flow visualization for evaluating room air flowsfrom Registers  

SciTech Connect (OSTI)

Forced air heating and cooling systems and whole house ventilation systems deliver air to individual rooms in a house via supply registers located on walls ceilings or floors; and occasionally less straightforward locations like toe-kicks below cabinets. Ideally, the air velocity out of the registers combined with the turbulence of the flow, vectoring of air by register vanes and geometry of register placement combine to mix the supply air within the room. A particular issue that has been raised recently is the performance of multiple capacity and air flow HVAC systems. These systems vary the air flow rate through the distribution system depending on the system load, or if operating in a ventilation rather than a space conditioning mode. These systems have been developed to maximize equipment efficiency, however, the high efficiency ratings do not include any room mixing effects. At lower air flow rates, there is the possibility that room air will be poorly mixed, leading to thermal stratification and reduced comfort for occupants. This can lead to increased energy use as the occupants adjust the thermostat settings to compensate and parts of the conditioned space have higher envelope temperature differences than for the well mixed case. In addition, lack of comfort can be a barrier to market acceptance of these higher efficiency systems To investigate the effect on room mixing of reduced air flow rates requires the measurement of mixing of supply air with room air throughout the space to be conditioned. This is a particularly difficult exercise if we want to determine the transient performance of the space conditioning system. Full scale experiments can be done in special test chambers, but the spatial resolution required to fully examine the mixing problem is usually limited by the sheer number of thermal sensors required. Current full-scale laboratory testing is therefore severely limited in its resolution. As an alternative, we used a water-filled scale model of a room in which whole-field supply air mixing maps of two vertical planes were measured using a Planar Laser-Induced Fluorescence (PLIF) measurement technique. Water marked with fluorescent dye was used to simulate the supply airflow; and the resulting concentrations within the water filled model show how the supply air mixes with the room air and are an analog for temperature (for thermal loads) or fresh air (for ventilation). In addition to performing experiments over a range of flow rates, we also changed register locations and examined the effects for both heating and cooling operation by changing the water density (simulating air density changes due to temperature changes) using dissolved salt.

Walker, Iain S.; Claret, Valerie; Smith, Brian

2006-04-01T23:59:59.000Z

422

PACKAGE (Plasma Analysis, Chemical Kinetics and Generator Efficiency): a computer program for the calculation of partial chemical equilibrium/partial chemical rate controlled composition of multiphased mixtures under one dimensional steady flow  

SciTech Connect (OSTI)

The NASA CEC Code was the starting point for PACKAGE, whose function is to evaluate the composition of a multiphase combustion product mixture under the following chemical conditions: (1) total equilibrium with pure condensed species; (2) total equilibrium with ideal liquid solution; (3) partial equilibrium/partial finite rate chemistry; and (4) fully finite rate chemistry. The last three conditions were developed to treat the evolution of complex mixtures such as coal combustion products. The thermodynamic variable pairs considered are either pressure (P) and enthalpy, P and entropy, at P and temperature. Minimization of Gibbs free energy is used. This report gives detailed discussions of formulation and input/output information used in the code. Sample problems are given. The code development, description, and current programming constraints are discussed. (DLC)

Yousefian, V.; Weinberg, M.H.; Haimes, R.

1980-02-01T23:59:59.000Z

423

Research Article Milli-free flow electrophoresis: I. Fast  

E-Print Network [OSTI]

, but has not yet been implemented due to an incompatibility of scale. Continuous purification, in FFE a term of milli-free flow electrophoresis (mFFE) to describe mid-scale FFE with flow rates intermediate reactors with product flow rates of $5 to 2000 mL/min, too small for macro-FFE but too large for m

Krylov, Sergey

424

Constraints on flow regimes in wide-aperture fractures  

SciTech Connect (OSTI)

In recent years, significant advances have been made in our understanding of the complex flow processes in individual fractures, aided by flow visualization experiments and conceptual modeling efforts. These advances have led to the recognition of several flow regimes in individual fractures subjected to different initial and boundary conditions. Of these, the most important regimes are film flow, rivulet flow, and sliding of droplets. The existence of such significantly dissimilar flow regimes has been a major hindrance in the development of self-consistent conceptual models of flow for single fractures that encompass all the flow regimes. The objective of this study is to delineate the existence of the different flow regimes in individual fractures. For steady-state flow conditions, we developed physical constraints on the different flow regimes that satisfy minimum energy configurations, which enabled us to segregate the wide range of fracture transmissivity (volumetric flow rate per fracture width) into several flow regimes. These are, in increasing order of flow rate, flow of adsorbed films, flow of sliding drops, rivulet flow, stable film flow, and unstable (turbulent) film flow. The scope of this study is limited to wide-aperture fractures with the flow on the opposing sides of fracture being independent.

Ghezzehei, Teamrat A.

2004-02-28T23:59:59.000Z

425

Fuel cell water transport  

DOE Patents [OSTI]

The moisture content and temperature of hydrogen and oxygen gases is regulated throughout traverse of the gases in a fuel cell incorporating a solid polymer membrane. At least one of the gases traverses a first flow field adjacent the solid polymer membrane, where chemical reactions occur to generate an electrical current. A second flow field is located sequential with the first flow field and incorporates a membrane for effective water transport. A control fluid is then circulated adjacent the second membrane on the face opposite the fuel cell gas wherein moisture is either transported from the control fluid to humidify a fuel gas, e.g., hydrogen, or to the control fluid to prevent excess water buildup in the oxidizer gas, e.g., oxygen. Evaporation of water into the control gas and the control gas temperature act to control the fuel cell gas temperatures throughout the traverse of the fuel cell by the gases.

Vanderborgh, Nicholas E. (Los Alamos, NM); Hedstrom, James C. (Los Alamos, NM)

1990-01-01T23:59:59.000Z

426

Characterization of dynamic change of Fan-delta reservoir properties in water-drive development  

SciTech Connect (OSTI)

Fan-delta reservoir in Huzhuangji oil field of east China, is a typical highly heterogeneous reservoir. The oil field has been developed by water-drive for 10 years, but the oil recovery is less than 12%, and water cut is over 90%, resulting from high heterogeneity and serious dynamic change of reservoir properties. This paper aims at the study of dynamic change of reservoir properties in water-drive development. Through quantitative imaging analysis and mercury injection analysis of cores from inspection wells, the dynamic change of reservoir pore structure in water-drive development was studied. The results show that the {open_quotes}large pore channels{close_quotes} develop in distributary channel sandstone and become larger in water-drive development, resulting in more serious pore heterogeneity. Through reservoir sensitivity experiments, the rock-fluid reaction in water-drive development is studied. The results show the permeability of some distal bar sandstone and deserted channel sandstone becomes lower due to swelling of I/S clay minerals in pore throats. OD the other hand, the permeability of distributary channel and mouth bar sandstone become larger because the authigenic Koalinites in pore throats are flushed away with the increase of flow rate of injection water. Well-logging analysis of flooded reservoirs are used to study the dynamic change of reservoir properties in various flow units. The distribution of remaining oil is closely related to the types and distribution of flow units.

Wu Shenghe; Xiong Qihua; Liu Yuhong [Univ. of Petroleum Changping, Beijing (China)

1997-08-01T23:59:59.000Z

427

Interfacial characteristic measurements in horizontal bubbly two- phase flow  

SciTech Connect (OSTI)

Advances in the study of two-phase flow increasingly require detailed internal structure information upon which theoretical models can be formulated. The void fraction and interfacial area are two fundamental parameters characterizing the internal structure of two-phase flow. However, little information is currently available on these parameters, and its mostly limited to vertical flow configurations. Particularly, there is virtually no data base for the local interfacial area concentration in spite of its necessary in multi-dimensional two-fluid model analysis. In view of the above, the internal phase distribution of cocurrent, air-water bubbly flow in a 50.3 mm diameter transparent pipeline has been experimentally investigated by using a double-sensor resistivity probe. Liquid and gas volumetric superficial velocities ranged from 3.74 to 5.60 m/s and 0.25 to 1.59 m/s, respectively, and average void fractions ranged from 2.12 to 22.5%. The local local values of void fractions, interfacial area concentration, mean bubble diameter, bubble interface velocity, bubble chord-length and bubble frequency distributions were measured. The experimental results indicate that the void fraction, interfacial area concentration and bubble frequency have local maxima near the upper pipe well, and the profiles tend to flatten with increasing void fraction. The observed peak void fraction can reach 0.65, the peak interfacial area can to up to 1000 m{sup 2}/m{sup 3}, and the bubble frequency can reach a value of 2200/s. These ranges of values have never been reported for vertical bubbly flow. It is found that either decreasing the liquid flow rate or increasing the gas flow would increase the local void fraction, the interfacial area concentration and the bubble frequency.

Wang, Z.; Kocamustafaogullari, G.

1990-10-01T23:59:59.000Z

428

Interfacial characteristic measurements in horizontal bubbly two-phase flow  

SciTech Connect (OSTI)

Advances in the study of two-phase flow increasingly require detailed internal structure information upon which theoretical models can be formulated. The void fraction and interfacial area are two fundamental parameters characterizing the internal structure of two-phase flow. However, little information is currently available on these parameters, and it is mostly limited to vertical flow configurations. In view of the above, the internal phase distribution of cocurrent, air-water bubbly flow in a 50.3 mm diameter transparent pipeline has been experimentally investigated by using a double-sensor resistivity probe. Liquid and gas volumetric superficial velocities ranged from 3.74 to 5.60 m/s and 0.25 to 1.59 m/s, respectively, and average void fractions ranged from 2.12 to 22.5%. The local values of void fractions, interfacial area concentration, mean bubble diameter, bubble interface velocity, bubble chord-length and bubble frequency distributions were measured. The experimental results indicate that the void faction, interfacial area concentration and bubble frequency have local maxima near the upper pipe wall, and the profiles tend to flatten with increasing void fraction. The observed peak void fraction can reach 0.65, the peak interfacial area can go up to 900 {approx} 1000 m{sup 2}/m{sup 3}, and the bubble frequency can reach a value of 2200/s. These ranges of values have never been reported for vertical bubbly flow. It is found that either decreasing the liquid flow rate or increasing the gas flow would increase the local void fraction, the interfacial area concentration and the bubble frequency. 85 refs., 124 figs., 2 tabs.

Wang, Z.; Huang, W.D.; Srinivasmurthy, S.; Kocamustafaogullari, G.

1990-10-01T23:59:59.000Z

429

Air/water subchannel measurements of the equilibrium quality and mass-flux distribution in a rod bundle. [BWR  

SciTech Connect (OSTI)

Subchannel measurements were performed in order to determine the equilibrium quality and mass flux distribution in a four rod bundle, using air/water flow. An isokinetic technique was used to sample the flow in the center, side and corner subchannels of this test section. Flow rates of the air and water in each sampled subchannel were measured. Experiments were performed for two test-section-average mass fluxes (0.333x10/sup 6/ and 0.666x10/sup 6/ lb/sub m//h-ft/sup 2/), and the test-section-average quality was varied from 0% to 0.54% for each mass flux. Single-phase liquid, bubbly, slug and churn-turbulent two-phase flow regimes were achieved. The observed data trends agreed with previous diabatic measurements in which the center subchannel had the highest quality and mass flux, while the corner subchannel had the lowest.

Sterner, R.W.; Lahey, R.T. Jr.

1983-07-01T23:59:59.000Z

430

Some hydrodynamic characteristics of bubbly mixtures flowing vertically upward in tubes  

E-Print Network [OSTI]

An investigation of bubbly flow has been conducted in vertical plexiglass tubes using air and water at atmospheric pressure. The bubbly flow pattern is an entrance condition or a non-fully developed flow. A spontaneous ...

Rose, Sewell C.

1964-01-01T23:59:59.000Z

431

Innovative Fresh Water Production Process for Fossil Fuel Plants  

SciTech Connect (OSTI)

This project concerns a diffusion driven desalination (DDD) process where warm water is evaporated into a low humidity air stream, and the vapor is condensed out to produce distilled water. Although the process has a low fresh water to feed water conversion efficiency, it has been demonstrated that this process can potentially produce low cost distilled water when driven by low grade waste heat. This report describes the annual progress made in the development and analysis of a Diffusion Driven Desalination (DDD) system. A dynamic analysis of heat and mass transfer demonstrates that the DDD process can yield a fresh water production of 1.03 million gallon/day by utilizing waste heat from a 100 MW steam power plant based on a condensing steam pressure of only 3 Hg. The optimum operating condition for the DDD process with a high temperature of 50 C and sink temperature of 25 C has an air mass flux of 1.5 kg/m{sup 2}-s, air to feed water mass flow ratio of 1 in the diffusion tower, and a fresh water to air mass flow ratio of 2 in the condenser. Operating at these conditions yields a fresh water production efficiency (m{sub fW}/m{sub L}) of 0.031 and electric energy consumption rate of 0.0023 kW-hr/kg{sub fW}. Throughout the past year, the main focus of the desalination process has been on the direct contact condenser. Detailed heat and mass transfer analyses required to size and analyze these heat and mass transfer devices are described. The analyses agree quite well with the current data. Recently, it has been recognized that the fresh water production efficiency can be significantly enhanced with air heating. This type of configuration is well suited for power plants utilizing air-cooled condensers. The experimental DDD facility has been modified with an air heating section, and temperature and humidity data have been collected over a range of flow and thermal conditions. It has been experimentally observed that the fresh water production rate is enhanced when air is heated prior to entering the diffusion tower. Further analytical analysis is required to predict the thermal and mass transport with the air heating configuration.

James F. Klausner; Renwei Mei; Yi Li; Jessica Knight; Venugopal Jogi

2005-09-01T23:59:59.000Z

432

Control of water injection into a layered formation  

SciTech Connect (OSTI)

In previously published work, we have analyzed transient injection of water from a growing vertical hydrofracture into a low-permeability compressible rock of uniform properties, filled with a fluid of identical mobility. Here we extend the prior analysis1 to water injection into a layered rock initially filled with a fluid of different mobility. We then develop a new control model of water injection from a growing hydrofracture into a layered formation. Based on the new model, we design an optimal injection controller that manages the rate of water injection in accordance with the hydrofracture growth and the formation properties. As we have already demonstrated, maintaining the rate of water injection into low-permeability rock above a reasonable minimum inevitably leads to hydrofracture growth if flow in a uniform formation is transient. The same conclusion holds true for transient flow in layered formation. Analysis of field water injection rates and wellhead injection pressures leads us to conclude that direct links between injectors and producers can be established at early stages of waterflood, especially if injection policy is aggressive. On one hand, injection into a low-permeability rock is slow and there is a temptation to increase injection pressure. On the other hand, such an increase may lead to irrecoverable reservoir damage: fracturing of the formation and water channeling from the injectors to the producers. Such channeling may be caused by thin highly permeable reservoir layers, which may conduct a substantial part of injected water. Considering these field observations, we expand our earlier model. Specifically, we consider a vertical hydrofracture in contact with a multilayered reservoir where some layers have high permeability and they, therefore, quickly establish steady state flow from an injector to a neighboring producer. The main part of this paper is devoted to the development of an optimal injection controller for purely transient flow and for mixed transient/steady-state flow into a layered formation. The objective of the controller is to maintain the prescribed injection rate in the presence of hydrofracture growth. Such a controller will be essential in our proposed automated system of field-wide waterflood surveillance and control. We design optimal injection controllers using methods of optimal control theory. The history of injection pressure and cumulative injection, along with estimates of the hydrofracture size are the controller input data. By analyzing these inputs, the controller outputs an optimal injection pressure for each injector. When designing the controller, we keep in mind that it can be used either off-line as a smart advisor, or on-line in a fully automated regime. We demonstrate that the optimal injection pressure depends not only on the instantaneous measurements, but it is determined by the whole history of injection and growth of the hydrofracture. Because our controller is process-based, the dynamics of the actual injection rate and the pressure can be used to estimate an effective area of the hydrofracture. The latter can be passed to the controller as one of the input parameters. Finally, a comparison of the estimated fracture area with independent measurements leads to an estimate of the fraction of injected water that flows directly to the neighboring producers due to channeling or thief-layers.

Silin, Dmitriy B.; Patzek, Tad W.

2000-02-02T23:59:59.000Z

433

Interfacial flows in corrugated microchannels: flow regimes, transitions and hysteresis  

E-Print Network [OSTI]

, 1266-1276 (2011), doi:10.1016/j.ijmultiphaseflow.2011.08.003 #12;model, microfluidics, porous media 1 of displacing oil by water in enhanced oil recovery (Marle, 1981; Lenormand et al., 1988). More recently on hy- drodynamic principles and concrete flow mechanisms. In fact, conflicting assumptions have been

Feng, James J.

434

Sediment Transport in Shallow Subcritical Flow Disturbed by Simulated Rainfall  

E-Print Network [OSTI]

TR-14 1968 Sediment Transport in Shallow Subcritical Flow Disturbed by Simulated Rainfall J.L. Machemehl Texas Water Resources Institute Texas A&M University ...

Machemehl, J. L.

435

Impact of rapid granular flows through open channels  

E-Print Network [OSTI]

diagram: Solid: F=1 at nozzle (separation of supercritical and subcritical flow in contraction) Dashed, ...? Need your suggestions! Questions? #12;Movie: new experiments water through contraction; Akers & Bokhove

Al Hanbali, Ahmad

436

Using a multiphase flow code to model the coupled effects of repository consolidation and multiphase brine and gas flow at the Waste Isolation Pilot Plant  

SciTech Connect (OSTI)

Long-term repository assessment must consider the processes of (1) gas generation, (2) room closure and expansions due to salt creep, and (3) multiphase (brine and gas) fluid flow, as well as the complex coupling between these three processes. The mechanical creep closure code SANCHO was used to simulate the closure of a single, perfectly sealed disposal room filled with water and backfill. SANCHO uses constitutive models to describe salt creep, waste consolidation, and backfill consolidation, Five different gas-generation rate histories were simulated, differentiated by a rate multiplier, f, which ranged from 0.0 (no gas generation) to 1.0 (expected gas generation under brine-dominated conditions). The results of the SANCHO f-series simulations provide a relationship between gas generation, room closure, and room pressure for a perfectly sealed room. Several methods for coupling this relationship with multiphase fluid flow into and out of a room were examined. Two of the methods are described.

Freeze, G.A. [INTERA Inc., Albuquerque, NM (United States); Larson, K.W.; Davies, P.B.; Webb, S.W. [Sandia National Labs., Albuquerque, NM (United States)

1995-10-01T23:59:59.000Z

437

Report on Produced Water  

Office of Scientific and Technical Information (OSTI)

of the pond, as well as the quality of the produced water. In semiarid regions, hot, dry air moving from a land surface will result in high evaporation rates for smaller ponds. As...

438

A Conductivity Relationship for Steady-state Unsaturated Flow Processes under Optimal Flow Conditions  

SciTech Connect (OSTI)

Optimality principles have been used for investigating physical processes in different areas. This work attempts to apply an optimal principle (that water flow resistance is minimized on global scale) to steady-state unsaturated flow processes. Based on the calculus of variations, we show that under optimal conditions, hydraulic conductivity for steady-state unsaturated flow is proportional to a power function of the magnitude of water flux. This relationship is consistent with an intuitive expectation that for an optimal water flow system, locations where relatively large water fluxes occur should correspond to relatively small resistance (or large conductance). Similar results were also obtained for hydraulic structures in river basins and tree leaves, as reported in other studies. Consistence of this theoretical result with observed fingering-flow behavior in unsaturated soils and an existing model is also demonstrated.

Liu, H. H.

2010-09-15T23:59:59.000Z

439

Electrochemistry of Water-Cooled Nuclear Reactors  

SciTech Connect (OSTI)

This project developed a comprehensive mathematical and simulation model for calculating thermal hydraulic, electrochemical, and corrosion parameters, viz. temperature, fluid flow velocity, pH, corrosion potential, hydrogen injection, oxygen contamination, stress corrosion cracking, crack growth rate, and other important quantities in the coolant circuits of water-cooled nuclear power plants, including both Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs). The model is being used to assess the three major operational problems in Pressurized Water Reactors (PWR), which include mass transport, activity transport, and the axial offset anomaly, and provide a powerful tool for predicting the accumulation of SCC damage in BWR primary coolant circuits as a function of operating history. Another achievement of the project is the development of a simulation tool to serve both as a training tool for plant operators and as an engineering test-bed to evaluate new equipment and operating strategies (normal operation, cold shut down and others). The development and implementation of the model allows us to estimate the activity transport or "radiation fields" around the primary loop and the vessel, as a function of the operating parameters and the water chemistry.

Macdonald, Dgiby; Urquidi-Macdonald, Mirna; Pitt, Jonathan

2006-08-08T23:59:59.000Z

440

Flow cytometer  

DOE Patents [OSTI]

A Faraday cage is described which encloses the flow chamber of a cytometer. Ground planes associated with each field deflection plate inhibit electric fields from varying the charge on designated events/droplets and further concentrates. They also increase forces applied to a passing charged event for accurate focus while concomitantly inhibiting a potential shock hazard. 4 figs.

Van den Engh, G.

1995-11-07T23:59:59.000Z

Note: This page contains sample records for the topic "water flow rate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Corrections for Water Resources Engineering  

E-Print Network [OSTI]

Corrections for Water Resources Engineering (Third printing) By Larry W. Mays Corrections as of 4, a subcritical flow ..." Chapter 6 Page 141 Section 6.1, sixth line, "slit" should be "silt" #12;Page 148 Fourth

Mays, Larry W.

442

State of Washington Water Research Center Annual Technical Report  

E-Print Network [OSTI]

: Fifth Research Category: Ground-water Flow and Transport Focus Category: Non Point Pollution, Water Quality, Hydrogeochemistry Descriptors: Non-point pollutants, lindane, triallate, pesticides, water agricultural mass discharges using enviro

443

Hot Water Heating System Operation and Energy Conservation  

E-Print Network [OSTI]

Based on an example of the reconstruction of a hot water heating system, this paper provides an analysis and comparison of the operations of hot water heating systems, including supply water temperature adjustment, flow adjustment during each...

Shao, Z.; Chen, H.; Wei, P.

2006-01-01T23:59:59.000Z

444

Improved Flow-Field Structures for Direct Methanol Fuel Cells  

SciTech Connect (OSTI)

The direct methanol fuel cell (DMFC) is ideal if high energy-density liquid fuels are required. Liquid fuels have advantages over compressed hydrogen including higher energy density and ease of handling. Although state-of-the-art DMFCs exhibit manageable degradation rates, excessive fuel crossover diminishes system energy and power density. Although use of dilute methanol mitigates crossover, the concomitant lowering of the gross fuel energy density (GFED) demands a complex balance-of-plant (BOP) that includes higher flow rates, external exhaust recirculation, etc. An alternative approach is redesign of the fuel delivery system to accommodate concentrated methanol. NuVant Systems Inc. (NuVant) will maximize the GFED by design and assembly of a DMFC that uses near neat methanol. The approach is to tune the diffusion of highly concentrated methanol (to the anode catalytic layer) to the back-diffusion of water formed at the cathode (i.e. in situ generation of dilute methanol at the anode layer). Crossover will be minimized without compromising the GFED by innovative integration of the anode flow-field and the diffusion layer. The integrated flow-field-diffusion-layers (IFDLs) will widen the current and potential DMFC operating ranges and enable the use of cathodes optimized for hydrogen-air fuel cells.

Gurau, Bogdan

2013-05-31T23:59:59.000Z

445

Optimal arrangement of structural and functional parts in a flat plate integrated collector storage solar water heater (ICSSWH)  

SciTech Connect (OSTI)

Parameters that affect the efficiency of a flat plate integrated collector storage solar water heater (ICSSWH) are examined experimentally and numerically. This specific ICSSWH contains water that is not refreshed. The service water is heated indirectly through an immersed heat exchanger (HE) in contact with the front and back major surfaces. A forced convection mechanism consisting of a pump that brings the storage water into motion by recirculation is used for heat transfer intensification. The two major (front and back) flat plate surfaces need to be well interconnected so that they are not deformed by the weight of the contained water and the exerted high-pressure. Two main factors that influence the performance are optimized: the position and size of the recirculation ports and the arrangement and size of the interconnecting fins. Both factors are explored to maximize the velocity flow field of the recirculated storage water. Consequently, the heat transfer rate between the two water circuits is maintained at high levels. Various 3D computational fluid dynamics (CFD) models are developed using the FLUENT package. An experimental model, made by Plexiglas, is used for the visualization of the flow field. Flow velocities are measured using a laser doppler velocimetry (LDV) system. The optimal arrangement increases the mean storage water velocity by 65% and raises the outlet temperatures up to 8 C. (author)

Gertzos, K.P.; Caouris, Y.G. [Department of Mechanical Engineering and Aeronautics, University of Patras, 265 00 Patras (Greece)

2008-04-15T23:59:59.000Z

446

Floating Robots Track Water Flow With Smartphones  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

floating together and covering the whole area of study." According to Wu, each floating sensor will be taking measurements of the tidal stage, velocity, and temperature and...

447

The flow of water through small orifices  

E-Print Network [OSTI]

, tend to in- dicate that any of these orif'ices (1/d ranging from 1. 61 to 6. 5) could have been individually calibrated and used with a high degree of accuracy for metering purposes in a range below the transition region. It has previously been... postu- lated that orii'ices of these proportions could not, even with individual calibration, be used with confidence oi' accuracy. The tests on orifices having various degrees of rough- ness at the entrance, tend to indicate tha. slight differences...

Lock, Jack Allen

2012-06-07T23:59:59.000Z

448

Floating Robots Track Water Flow With Smartphones  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor's note: Since the Flickr platformFloating Robots Track

449

Sensitivity of Fischer-Tropsch Synthesis and Water-Gas Shift Catalysts to Poisons from High-Temperature High-Pressure Entrained-Flow (EF) Oxygen-Blown Gasifier Gasification of Coal/Biomass Mixtures  

SciTech Connect (OSTI)

There has been a recent shift in interest in converting not only natural gas and coal derived syngas to Fischer-Tropsch synthesis products, but also converting biomass-derived syngas, as well as syngas derived from coal and biomass mixtures. As such, conventional catalysts based on iron and cobalt may not be suitable without proper development. This is because, while ash, sulfur compounds, traces of metals, halide compounds, and nitrogen-containing chemicals will likely be lower in concentration in syngas derived from mixtures of coal and biomass (i.e., using entrained-flow oxygen-blown gasifier gasification gasification) than solely from coal, other compounds may actually be increased. Of particular concern are compounds containing alkali chemicals like the chlorides of sodium and potassium. In the first year, University of Kentucky Center for Applied Energy Research (UK-CAER) researchers completed a number of tasks aimed at evaluating the sensitivity of cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts and a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to alkali halides. This included the preparation of large batches of 0.5%Pt-25%Co/Al{sub 2}O{sub 3} and 100Fe: 5.1Si: 3.0K: 2.0Cu (high alpha) catalysts that were split up among the four different entities participating in the overall project; the testing of the catalysts under clean FT and WGS conditions; the testing of the Fe-Cr WGS catalyst under conditions of co-feeding NaCl and KCl; and the construction and start-up of the continuously stirred tank reactors (CSTRs) for poisoning investigations. In the second and third years, researchers from the University of Kentucky Center for Applied Energy Research (UK-CAER) continued the project by evaluating the sensitivity of a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to a number of different compounds, including KHCO{sub 3}, NaHCO{sub 3}, HCl, HBr, HF, H{sub 2}S, NH{sub 3}, and a combination of H{sub 2}S and NH{sub 3}. Cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts were also subjected to a number of the same compounds in order to evaluate their sensitivities at different concentration levels of added contaminant.

Burton Davis; Gary Jacobs; Wenping Ma; Dennis Sparks; Khalid Azzam; Janet Chakkamadathil Mohandas; Wilson Shafer; Venkat Ramana Rao Pendyala

2011-09-30T23:59:59.000Z

450

Measuring rates of outdoor airflow into HVAC systems  

SciTech Connect (OSTI)

During the last few years, new technologies have been introduced for measuring the flow rates of outside air into HVAC systems. This document describes one particular technology for measuring these airflows, a system and a related protocol developed to evaluate this and similar measurement technologies under conditions without wind, and the results of our evaluations. We conclude that the measurement technology evaluated can provide a reasonably accurate measurement of OA flow rate over a broad range of flow, without significantly increasing airflow resistance.

Fisk, William J.; Faulkner, David; Sullivan, Douglas P.; Delp, Woody

2002-10-01T23:59:59.000Z

451

Water mist injection in oil shale retorting  

DOE Patents [OSTI]

Water mist is utilized to control the maximum temperature in an oil shale retort during processing. A mist of water droplets is generated and entrained in the combustion supporting gas flowing into the retort in order to distribute the liquid water droplets throughout the retort. The water droplets are vaporized in the retort in order to provide an efficient coolant for temperature control.

Galloway, T.R.; Lyczkowski, R.W.; Burnham, A.K.

1980-07-30T23:59:59.000Z

452

Chemical preconcentrator with integral thermal flow sensor  

DOE Patents [OSTI]

A chemical preconcentrator with integral thermal flow sensor can be used to accurately measure fluid flow rate in a microanalytical system. The thermal flow sensor can be operated in either constant temperature or constant power mode and variants thereof. The chemical preconcentrator with integral thermal flow sensor can be fabricated with the same MEMS technology as the rest of the microanlaytical system. Because of its low heat capacity, low-loss, and small size, the chemical preconcentrator with integral thermal flow sensor is fast and efficient enough to be used in battery-powered, portable microanalytical systems.

Manginell, Ronald P. (Albuquerque, NM); Frye-Mason, Gregory C. (Cedar Crest, NM)

2003-01-01T23:59:59.000Z

453

Impact of Climate Change on Irrigation Water Availability, Crop Water Requirements and Soil Salinity in the SJV, CA  

E-Print Network [OSTI]

to the Environmental and Water Resources Institute of thesimulation of ground-water flow in the central part of theU.S. Geological Survey water-supply paper ; 2396.

Hopmans, Jan W; Maurer, Edwin P

2008-01-01T23:59:59.000Z

454

Sensitivity of Fischer-Tropsch Synthesis and Water-Gas Shift Catalysts to Poisons from High-Temperature High-Pressure Entrained-Flow (EF) Oxygen-Blown Gasifier Gasification of Coal/Biomass Mixtures  

SciTech Connect (OSTI)

The successful adaptation of conventional cobalt and iron-based Fischer-Tropsch synthesis catalysts for use in converting biomass-derived syngas hinges in part on understanding their susceptibility to byproducts produced during the biomass gasification process. With the possibility that oil production will peak in the near future, and due to concerns in maintaining energy security, the conversion of biomass-derived syngas and syngas derived from coal/biomass blends to Fischer-Tropsch synthesis products to liquid fuels may provide a sustainable path forward, especially considering if carbon sequestration can be successfully demonstrated. However, one current drawback is that it is unknown whether conventional catalysts based on iron and cobalt will be suitable without proper development because, while ash, sulfur compounds, traces of metals, halide compounds, and nitrogen-containing chemicals will likely be lower in concentration in syngas derived from mixtures of coal and biomass (i.e., using an entrained-flow oxygen-blown gasifier) than solely from coal, other byproducts may be present in higher concentrations. The current project examines the impact of a number of potential byproducts of concern from the gasification of biomass process, including compounds containing alkali chemicals like the chlorides of sodium and potassium. In the second year, researchers from the University of Kentucky Center for Applied Energy Research (UK-CAER) continued the project by evaluating the sensitivity of a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to a number of different compounds, including KHCO{sub 3}, NaHCO{sub 3}, HCl, HBr, HF, H{sub 2}S, NH{sub 3}, and a combination of H{sub 2}S and NH{sub 3}. Cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts were also subjected to a number of the same compounds in order to evaluate their sensitivities.

Burtron Davis; Gary Jacobs; Wenping Ma; Khalid Azzam; Dennis Sparks; Wilson Shafer

2010-09-30T23:59:59.000Z

455

Water Rights Analysis Package (WRAP) Modeling System Users Manual  

E-Print Network [OSTI]

may vary with reservoir storage content and/or stream flow. Chapters 3 and 4 of the Reference Manual describe the component features of the SIM simulation model, which are organized in two categories. • River basin hydrology includes... naturalized stream flows, reservoir net evaporation- precipitation, and channel losses (Chapter 3 of the Reference Manual). • Water rights include all aspects of water management including water supply diversions, return flows, environmental instream flow...

Wurbs, Ralph A.

456

k - Version of Finite Element Method for Polymer flows using Giesekus Constitutive Model  

E-Print Network [OSTI]

and hence high Deborah number flows are invariably associated with higher flow rates and thus higher velocities. In many standard model problems such as couette flow, lid driven cavity, expansion, contraction etc, severe deborah number (De) limitations...

Deshpande, Kedar M.

2008-01-31T23:59:59.000Z

457

The role of reaction affinity and secondary minerals in regulating chemical weathering rates at the Santa Cruz Soil Chronosequence, California  

SciTech Connect (OSTI)

In order to explore the reasons for the apparent discrepancy between laboratory and field weathering rates and to determine the extent to which weathering rates are controlled by the approach to thermodynamic equilibrium, secondary mineral precipitation and flow rates, a multicomponent reactive transport model (CrunchFlow) was used to interpret soil profile development and mineral precipitation and dissolution rates at the 226 ka marine terrace chronosequence near Santa Cruz, CA. Aqueous compositions, fluid chemistry, transport, and mineral abundances are well characterized (White et al., 2008, GCA) and were used to constrain the reaction rates for the weathering and precipitating minerals in the reactive transport modeling. When primary mineral weathering rates are calculated with either of two experimentally determined rate constants, the nonlinear, parallel rate law formulation of Hellmann and Tisser and [2006] or the aluminum inhibition model proposed by Oelkers et al. [1994], modeling results are consistent with field-scale observations when independently constrained clay precipitation rates are accounted for. Experimental and field rates, therefore, can be reconciled at the Santa Cruz site. Observed maximum clay abundances in the argillic horizons occur at the depth and time where the reaction fronts of the primary minerals overlap. The modeling indicates that the argillic horizon at Santa Cruz can be explained almost entirely by weathering of primary minerals and in situ clay precipitation accompanied by undersaturation of kaolinite at the top of the profile. The rate constant for kaolinite precipitation was also determined based on model simulations of mineral abundances and dissolved Al, SiO{sub 2}(aq) and pH in pore waters. Changes in the rate of kaolinite precipitation or the flow rate do not affect the gradient of the primary mineral weathering profiles, but instead control the rate of propagation of the primary mineral weathering fronts and thus total mass removed from the weathering profile. Our analysis suggests that secondary clay precipitation is as important as aqueous transport in governing the amount of dissolution that occurs within a profile because clay minerals exert a strong control over the reaction affinity of the dissolving primary minerals. The modeling also indicates that the weathering advance rate and the total mass of mineral dissolved is controlled by the thermodynamic saturation of the primary dissolving phases plagioclase and K-feldspar, as is evident from the difference in propagation rates of the reaction fronts for the two minerals despite their very similar kinetic rate laws.

Maher, K.; Steefel, C. I.; White, A.F.; Stonestrom, D.A.

2009-02-25T23:59:59.000Z

458

Pressure-flow reducer for aerosol focusing devices  

DOE Patents [OSTI]

A pressure-flow reducer, and an aerosol focusing system incorporating such a pressure-flow reducer, for performing high-flow, atmosphere-pressure sampling while delivering a tightly focused particle beam in vacuum via an aerodynamic focusing lens stack. The pressure-flow reducer has an inlet nozzle for adjusting the sampling flow rate, a pressure-flow reduction region with a skimmer and pumping ports for reducing the pressure and flow to enable interfacing with low pressure, low flow aerosol focusing devices, and a relaxation chamber for slowing or stopping aerosol particles. In this manner, the pressure-flow reducer decouples pressure from flow, and enables aerosol sampling at atmospheric pressure and at rates greater than 1 liter per minute.

Gard, Eric (San Francisco, CA); Riot, Vincent (Oakland, CA); Coffee, Keith (Diablo Grande, CA); Woods, Bruce (Livermore, CA); Tobias, Herbert (Kensington, CA); Birch, Jim (Albany, CA); Weisgraber, Todd (Brentwood, CA)

2008-04-22T23:59:59.000Z

459

Flow conditions of fresh mortar and concrete in different pipes  

SciTech Connect (OSTI)

The variation in fresh concrete flow rate over the pipe cross section was investigated on differently coloured and highly flowable concrete mixes flowing through pipes of different materials (rubber, steel, acryl). First, uncoloured (gray) concrete was poured through the pipe and the pipe blocked. Similar but coloured (black) concrete was then poured into the pipe filled with gray concrete, flowing after the gray concrete for a while before being blocked and hardened. The advance of the colouring along the pipe wall (showing boundary flow rate) was observed on the moulded concrete surface appearing after removing the pipe from the hardened concrete. The shapes of the interfaces between uncoloured and coloured concrete (showing variation of flow rate over the pipe cross section) were observed on sawn surfaces of concrete half cylinders cut along the length axes of the concrete-filled pipe. Flow profiles over the pipe cross section were clearly seen with maximum flow rates near the centre of the pipe and low flow rate at the pipe wall (typically rubber pipe with reference concrete without silica fume and/or stabilizers). More plug-shaped profiles, with long slip layers and less variation of flow rate over the cross section, were also seen (typically in smooth acrylic pipes). Flow rate, amount of concrete sticking to the wall after flow and SEM-images of pipe surface roughness were observed, illustrating the problem of testing full scale pumping.

Jacobsen, Stefan, E-mail: stefan.jacobsen@ntnu.n [Norwegian University of Science and Technology, Dept of Structural Engineering, Trondheim (Norway); Haugan, Lars; Hammer, Tor Arne [SINTEF Byggforsk AS Building and Infrastructure, Trondheim (Norway); Kalogiannidis, Evangelos [Norwegian University of Science and Technology, Dept of Structural Engineering, Trondheim (Norway)

2009-11-15T23:59:59.000Z

460

Flow Beneath a Ship at Small Underkeel Clearance Tim Gourlay  

E-Print Network [OSTI]

the leading order squat and wave resistance of a ship traveling in calm water, in the case where the water in this case) kinematic viscosity of the fluid (we will consider salt water at 20 deg C, for which 1.04 Ã? 10 THEORETICAL RESEARCH has been done into the flow around a ship operating in shallow water, using Prandtl

Note: This page contains sample records for the topic "water flow rate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

SFTEL: Flow Cell | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Flow Cell EMSL's Subsurface Flow and Transport Experimental Laboratory offers several meter-scale flow cells and columns for research in saturated and unsaturated porous media....

462

How to Make Appliance Standards Work: Improving Energy and Water Efficiency Test Procedures  

E-Print Network [OSTI]

Volume III, Storage Water Heaters With Input Ratings AboveVolume III, Storage Water Heaters With Input Ratings AboveVolume III, Storage Water Heaters With Input Ratings Above

Lutz, Jim

2012-01-01T23:59:59.000Z

463

Chlorite Dissolution Rates  

SciTech Connect (OSTI)

Spreadsheets provides measured chlorite rate data from 100 to 300C at elevated CO2. Spreadsheet includes derived rate equation.

Carroll, Susan

2013-07-01T23:59:59.000Z

464

Chlorite Dissolution Rates  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Spreadsheets provides measured chlorite rate data from 100 to 300C at elevated CO2. Spreadsheet includes derived rate equation.

Carroll, Susan

465

Dissolution and compaction of albite sand in distilled water and pH-buffered carboxylic acid solutions: experiments at 100 degrees and 160 degrees C  

E-Print Network [OSTI]

. The confining fluid was either distilled water or a mixture of 3 parts Kerosene and 1 part SAE-30 non-detergent motor oil; confining pressure was controlled by an air- operated Sprague? pump. Inside the pressure vessel, the reaction cell (10 cm x 4. 4 cm O. D... sand. Fluid flows in and out of the reaction cell through Hastelloy C-276? lines. Slow flow rates (0. 08 ml/hr) and pore fluid pressures were controlled by an Isco? micro-processor syringe pump and a manually operated HiP? synnge pump. Rapid flow...

Carpenter, Thomas Doyle

1995-01-01T23:59:59.000Z

466

Advanced Membrane Filtration Technology for Cost Effective Recovery of Fresh Water from Oil & Gas Produced Brine  

SciTech Connect (OSTI)

Produced water is a major waste generated at the oil and natural gas wells in the state of Texas. This water could be a possible source of new fresh water to meet the growing demands of the state after treatment and purification. Treatment of brine generated in oil fields or produced water with an ultrafiltration membranes were the subject of this thesis. The characterization of ultrafiltration membranes for oil and suspended solids removal of produced water, coupled with the reverse osmosis (RO) desalination of brine were studied on lab size membrane testing equipment and a field size testing unit to test whether a viable membrane system could be used to treat produced water. Oil and suspended solids were evaluated using turbidity and oil in water measurements taken periodically. The research considered the effect of pressure and flow rate on membrane performance of produced water treatment of three commercially available membranes for oily water. The study also analyzed the flux through the membrane and any effect it had on membrane performance. The research showed that an ultrafiltration membrane provided turbidity removal of over 99% and oil removal of 78% for the produced water samples. The results indicated that the ultrafiltration membranes would be asset as one of the first steps in purifying the water. Further results on selected RO membranes showed that salt rejection of greater than 97% could be achieved with satisfactory flux and at reasonable operating cost.

David B. Burnett

2004-09-29T23:59:59.000Z

467

Oil Flow Rale Problem Behler, David D 0 McNutt, Marcia K 05/23/201001 :04 PM  

E-Print Network [OSTI]

Oil Flow Rale Problem t Behler, David D 0 McNutt, Marcia K 05/23/201001 :04 PM Marcia - just some thoughts on the oil flow rate problem. Over the past few weeks, it's become apparent that the oil flow rate it's best to frame a range of estimated oil flow rates and refine the range over time as the tools

Fleskes, Joe

468

Efficiency Ratings for the Daiken AC (Americas), Inc.  

E-Print Network [OSTI]

Efficiency Ratings for the Daiken AC (Americas), Inc. Altherma Air-to-Water Source Heat Pump System is used to provide water heating, the EF for that separate water heater shall be used for performance Description Model No. Capacity (tons) Space Heating Space Cooling SEER Water Heating Efficiency

469

Water Quality  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water Quality Water Quality We protect water quality through stormwater control measures and an extensive network of monitoring wells and stations encompassing groundwater, surface...

470

Capacitance-based prover for gas flow meters  

E-Print Network [OSTI]

) Sunday . . . Stability Measurement: /tC vs. Time (21 Feb 95). . . . Capacitance vs. Time for Mass Flow Rate of 124. 7 g/s. . . . 41 41 42 23 Capacitance vs. Time for Mass Flow Rate of 124. 7 g/s (06 Apr 95). . . . . . . . . . . 43 24 25 Pressure... vs. Time for Mass Flow Rate of 124. 7 g/s (06 Apr 95). . . . Capacitance vs. Time for Mass Flow Rate of 209. 1 g/s. . . . 43 44 FIGURE 26 Capacitance vs. Time for Loading Phase 27 Pressure vs. Time for Loading Phase. 28 T; vs. Time...

Pipkins, Sean Patrick

1995-01-01T23:59:59.000Z

471

CFD Validation of Gas Injection into Stagnant Water  

SciTech Connect (OSTI)

Investigations in the area of two-phase flow at the Oak Ridge National Laboratory's (ORNL) Spallation Neutron Source (SNS) facility are progressing. It is expected that the target vessel lifetime could be extended by introducing gas into the liquid mercury target. As part of an effort to validate the two-phase computational fluid dynamics (CFD) model, simulations and experiments of gas injection in stagnant water have been completed. The volume of fluid (VOF) method as implemented in ANSYS-CFX was used to simulate the unsteady two-phase flow of gas injection into stagnant water. Flow visualization data were obtained with a high-speed camera for the comparison of predicted and measured bubble sizes and shapes at various stages of the bubble growth, detachment, and gravitational rise. The CFD model is validated with these experimental measurements at different gas flow rates. The acoustic waves emitted at the time of detachment and during subsequent oscillations of the bubble were recorded with a microphone. The acoustic signature aspect of this validation is particularly interesting since it has applicability to the injection of gas into liquid mercury, which is opaque.

Abdou, Ashraf A [ORNL

2007-01-01T23:59:59.000Z

472

Scaling bounds on dissipation in turbulent flows  

E-Print Network [OSTI]

We present a new rigorous method for estimating statistical quantities in fluid dynamics such as the (average) energy dissipation rate directly from the equations of motion. The method is tested on shear flow, channel flow, Rayleigh--B\\'enard convection and porous medium convection.

Seis, Christian

2015-01-01T23:59:59.000Z

473

Mach flow angularity probes for scramjet engine flow path diagnostics  

SciTech Connect (OSTI)

Mach-flow angularity (MFA) probes were developed for use in scramjet flow path probe rakes. Prototype probes were fabricated to demonstrate the assembly processes (numerical control machining, furnace brazing, and electron beam welding). Tests of prototype probes confirmed the thermal durability margins and life cycle. Selected probes were calibrated in air at Mach numbers from 1.75 to 6.0. Acceptance criteria for the production probes stressed thermal durability and pressure (and, consequently, Mach number) measurement quality. This new water-cooled MFA probe has 0.397-cm shaft diameter and is capable of withstanding heat fluxes of 2.724 kW/sq cm.

Jalbert, P.A.; Hiers, R.S. Jr. [Sverdrup Technology, Inc., Arnold AFS, TN (United States)

1993-12-31T23:59:59.000Z

474

A coupled neutronics/thermalhydraulics tool for calculating fluctuations in Pressurized Water Reactors  

E-Print Network [OSTI]

Water Reactors or Heavy Water Reactors (LarssoA coupled neutronics/thermal­hydraulics tool for calculating fluctuations in Pressurized Water in neutron flux, fuel temperature, moderator den- sity and flow velocity in Pressurized Water Reactors

Demazière, Christophe

475