Powered by Deep Web Technologies
Note: This page contains sample records for the topic "water efficiency basics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Water Efficiency Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Basics Basics Water Efficiency Basics October 7, 2013 - 2:38pm Addthis Training Available Graphic of the eTraining logo Managing Water Assessment in Federal Facilities: Learn how to manage the Water Assessment process in Federal facilities by taking this FEMP eTraining course. Although two-thirds of the Earth's surface is water, less than one-half of one percent of that water is currently available for our use. As the U.S. population increases, so does our water use, making water resources increasingly scarce. Many regions feel the strain. The Federal Government uses an estimated 148 to 165 billion gallons of potable water annually. This is equal to the annual water use of a state the size of New Jersey or almost 8 million people1. This is, in part, because water requires significant energy input for treatment, pumping,

2

Federal Energy Management Program: Water Efficiency Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics Basics Graphic of the eTraining logo Training Available Managing Water Assessment in Federal Facilities: Learn how to manage the Water Assessment process in Federal facilities by taking this FEMP eTraining course. Although two-thirds of the Earth's surface is water, less than one-half of one percent of that water is currently available for our use. As the U.S. population increases, so does our water use, making water resources increasingly scarce. Many regions feel the strain. The Federal Government uses an estimated 148 to 165 billion gallons of potable water annually. This is equal to the annual water use of a state the size of New Jersey or almost 8 million people1. This is, in part, because water requires significant energy input for treatment, pumping, heating, and process uses. Water is integral to the cooling of power plants that provide energy to Federal facilities.

3

Energy Basics: Water Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Storage Water Heaters Tankless Demand Water Heaters Heat Pump Water Heaters Solar Water Heaters Tankless Coil & Indirect Water Heaters Water Heating A variety of...

4

Energy Basics: Water Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

about: Conventional Storage Water Heaters Demand (Tankless or Instantaneous) Water Heaters Heat Pump Water Heaters Solar Water Heaters Tankless Coil and Indirect Water Heaters...

5

Water Heating Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heaters Solar Water Heaters Tankless Coil and Indirect Water Heaters Addthis Related Articles Tankless Demand Water Heater Basics Solar Water Heater Basics Heat Pump Water Heater...

6

Federal Energy Management Program: Water Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Efficiency Water Efficiency to someone by E-mail Share Federal Energy Management Program: Water Efficiency on Facebook Tweet about Federal Energy Management Program: Water Efficiency on Twitter Bookmark Federal Energy Management Program: Water Efficiency on Google Bookmark Federal Energy Management Program: Water Efficiency on Delicious Rank Federal Energy Management Program: Water Efficiency on Digg Find More places to share Federal Energy Management Program: Water Efficiency on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance Greenhouse Gases Water Efficiency Basics Federal Requirements Best Management Practices Analysis and Evaluation Case Studies Resources Contacts Data Center Energy Efficiency Industrial Facilities Sustainable Federal Fleets

7

Solar Water Heater Basics | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Water Heater Basics Solar Water Heater Basics August 19, 2013 - 3:01pm Addthis Illustration of an active, closed loop solar water heater. A large, flat panel called a flat...

8

Industrial Energy Efficiency Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Energy Efficiency Basics Industrial Energy Efficiency Basics Industrial Energy Efficiency Basics The industrial sector is vital to the U.S. economy, but at the same time consumes the most energy in the country to manufacture products we use every day. Among the most energy-intensive industries are aluminum, chemicals, forest product, glass, metal casting, mining, petroleum refining, and steel. The energy supply chain begins with electricity, steam, natural gas, coal, and other fuels supplied to a manufacturing plant from off-site power plants, gas companies, and fuel distributors. Energy then flows to either a central energy generation utility system or is distributed immediately for direct use. Energy is then processed using a variety of highly energy-intensive systems, including steam, process heating, and

9

Energy Basics: Microhydropower Water Conveyance and Filters  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Large-Scale Hydropower Microhydropower Water Conveyance &...

10

Efficient Water Use & Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Sustainability Goals Water Use Goal 4: Efficient Water Use & Management Aware of the arid climate of northern New Mexico, water reduction and conservation remains a primary...

11

Solar Water Heater Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Water Heater Basics Solar Water Heater Basics Solar Water Heater Basics August 19, 2013 - 3:01pm Addthis Illustration of an active, closed loop solar water heater. A large, flat panel called a flat plate collector is connected to a tank called a solar storage/backup water heater by two pipes. One of these pipes runs through a cylindrical pump into the bottom of the tank, where it becomes a coil called a double-wall heat exchanger. This coil runs up through the tank and out again to the flat plate collector. Antifreeze fluid runs only through this collector loop. Two pipes run out the top of the water heater tank; one is a cold water supply into the tank, and the other sends hot water to the house. Solar water heaters use the sun's heat to provide hot water for a home or

12

Energy Basics: Solar Water Heaters  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

solar storage in one tank. Types of Solar Collectors Solar collectors gather the sun's energy, transform its radiation into heat, and then transfer that heat to water or solar...

13

Energy Basics: Photovoltaic Cell Quantum Efficiency  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

14

Energy Basics: Photovoltaic Cell Conversion Efficiency  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

15

Conventional Storage Water Heater Basics | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Conventional Storage Water Heater Basics Conventional Storage Water Heater Basics July 30, 2013 - 3:39pm Addthis Illustration showing the components of a storage water heater. On...

16

Water Efficiency Program Prioritization  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficiency Program Efficiency Program Prioritization Federal Energy Management Program Office of Energy Efficiency and Renewable Energy January 2009 Will Lintner (william.lintner@ee.doe.gov) Federal Energy Management The Goal - EO 13423 Beginning in 2008, Federal agencies must reduce water consumption intensity through life- effective measures, relative to the baseline of the agency's water consumption in fiscal year 2007 by 2 percent annually through the end of FY 2015 or 16 percent by the end of FY 2015. 2 Water Use Intensit ty (gal/sqft) Federal Sector Glide-Path to Meeting WUI Reduction Goal 55 50 45 40 35 30 25 20 FY 07 FY 08 FY 09 FY 10 FY 11 FY 12 FY 13 FY 14 FY 15 Total Federal sector FY07 WUI Glide-Path for meeting WUI reduction goal (16%) 3 Next Steps * Compile Water Data FY 2008. The baseline for water

17

Federal Energy Management Program: Water Efficiency Case Studies  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Efficiency Water Efficiency Case Studies to someone by E-mail Share Federal Energy Management Program: Water Efficiency Case Studies on Facebook Tweet about Federal Energy Management Program: Water Efficiency Case Studies on Twitter Bookmark Federal Energy Management Program: Water Efficiency Case Studies on Google Bookmark Federal Energy Management Program: Water Efficiency Case Studies on Delicious Rank Federal Energy Management Program: Water Efficiency Case Studies on Digg Find More places to share Federal Energy Management Program: Water Efficiency Case Studies on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance Greenhouse Gases Water Efficiency Basics Federal Requirements Best Management Practices Analysis and Evaluation Case Studies Resources

18

Energy Basics: Photovoltaic Cell Conversion Efficiency  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

efficiency of a photovoltaic (PV) cell, or solar cell, is the percentage of the solar energy shining on a PV device that is converted into electrical energy, or electricity....

19

Energy Basics: Photovoltaic Cell Quantum Efficiency  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

by a photovoltaic (PV) cell to the number of photons-or packets of light-of a given energy shining on the solar cell. Quantum efficiency therefore relates to the response of a...

20

Federal Energy Management Program: Resources on Water Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources on Water Resources on Water Efficiency to someone by E-mail Share Federal Energy Management Program: Resources on Water Efficiency on Facebook Tweet about Federal Energy Management Program: Resources on Water Efficiency on Twitter Bookmark Federal Energy Management Program: Resources on Water Efficiency on Google Bookmark Federal Energy Management Program: Resources on Water Efficiency on Delicious Rank Federal Energy Management Program: Resources on Water Efficiency on Digg Find More places to share Federal Energy Management Program: Resources on Water Efficiency on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance Greenhouse Gases Water Efficiency Basics Federal Requirements Best Management Practices Analysis and Evaluation Case Studies Resources

Note: This page contains sample records for the topic "water efficiency basics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Photovoltaic Cell Conversion Efficiency Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conversion Efficiency Basics Conversion Efficiency Basics Photovoltaic Cell Conversion Efficiency Basics August 20, 2013 - 2:58pm Addthis The conversion efficiency of a photovoltaic (PV) cell, or solar cell, is the percentage of the solar energy shining on a PV device that is converted into electrical energy, or electricity. Improving this conversion efficiency is a key goal of research and helps make PV technologies cost-competitive with more traditional sources of energy. Factors Affecting Conversion Efficiency Much of the energy from sunlight reaching a PV cell is lost before it can be converted into electricity. But certain characteristics of solar cell materials also limit a cell's efficiency to convert the sunlight it receives. Wavelength of Light Light is composed of photons-or packets of energy-that range in

22

Photovoltaic Cell Quantum Efficiency Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cell Quantum Efficiency Basics Cell Quantum Efficiency Basics Photovoltaic Cell Quantum Efficiency Basics August 20, 2013 - 3:05pm Addthis Quantum efficiency (QE) is the ratio of the number of charge carriers collected by a photovoltaic (PV) cell to the number of photons-or packets of light-of a given energy shining on the solar cell. Quantum efficiency therefore relates to the response of a solar cell to the various wavelengths in the spectrum of light shining on the cell. The QE is given as a function of either wavelength or energy. If all the photons of a certain wavelength are absorbed and the resulting minority carriers (for example, electrons in a p-type material) are collected, then the QE at that particular wavelength has a value of one. The QE for photons with energy below the bandgap is zero.

23

Federal Energy Management Program: Water Efficiency Myths and  

NLE Websites -- All DOE Office Websites (Extended Search)

Myths and Misconceptions to someone by E-mail Myths and Misconceptions to someone by E-mail Share Federal Energy Management Program: Water Efficiency Myths and Misconceptions on Facebook Tweet about Federal Energy Management Program: Water Efficiency Myths and Misconceptions on Twitter Bookmark Federal Energy Management Program: Water Efficiency Myths and Misconceptions on Google Bookmark Federal Energy Management Program: Water Efficiency Myths and Misconceptions on Delicious Rank Federal Energy Management Program: Water Efficiency Myths and Misconceptions on Digg Find More places to share Federal Energy Management Program: Water Efficiency Myths and Misconceptions on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance Greenhouse Gases Water Efficiency Basics Federal Requirements

24

Marietta Power & Water - Residential Energy Efficiency Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marietta Power & Water - Residential Energy Efficiency Rebate Program Marietta Power & Water - Residential Energy Efficiency Rebate Program Eligibility Residential Savings For...

25

Tankless Coil and Indirect Water Heater Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coil and Indirect Water Heater Basics Coil and Indirect Water Heater Basics Tankless Coil and Indirect Water Heater Basics August 19, 2013 - 3:03pm Addthis Illustration of a tankless coil water heater. The heater is box-shaped, and has two pipes sticking out one end: one a cold water inlet, and one a hot water outlet. These pipes lead into the heater to a cylindrical coil called a heat exchanger. Long tubes surrounding the heat exchanger are labeled the heated water jacket. At the bottom of the box is a row of small flames, called the boiler heat source. Tankless coil and indirect water heaters use a home or building's space heating system to heat water as part of an integrated or combination water and space heating system. How Tankless Coil and Indirect Water Heaters Work A tankless coil water heater uses a heating coil or heat exchanger

26

Tankless Demand Water Heater Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demand Water Heater Basics Demand Water Heater Basics Tankless Demand Water Heater Basics August 19, 2013 - 2:57pm Addthis Illustration of an electric demand water heater. At the top of the image, the heating unit is shown. Cold water flows in one end of a pipe, flows through and around several curved pipes over the heating elements, and out the other end as hot water. Beneath the heating unit, a typical sink setup is shown. The sink has two pipes coming out the bottom, one for the hot water line and one for the cold water line. Both pipes lead to the heating unit, which is installed in close proximity to the area of hot water use, and is connected to a power source (110 or 220 volts). Demand (tankless or instantaneous) water heaters have heating devices that are activated by the flow of water, so they provide hot water only as

27

Tankless Demand Water Heater Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tankless Demand Water Heater Basics Tankless Demand Water Heater Basics Tankless Demand Water Heater Basics August 19, 2013 - 2:57pm Addthis Illustration of an electric demand water heater. At the top of the image, the heating unit is shown. Cold water flows in one end of a pipe, flows through and around several curved pipes over the heating elements, and out the other end as hot water. Beneath the heating unit, a typical sink setup is shown. The sink has two pipes coming out the bottom, one for the hot water line and one for the cold water line. Both pipes lead to the heating unit, which is installed in close proximity to the area of hot water use, and is connected to a power source (110 or 220 volts). Demand (tankless or instantaneous) water heaters have heating devices that are activated by the flow of water, so they provide hot water only as

28

Water Heating Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- 11:15am Addthis A variety of systems are available for water heating in homes and buildings. Learn about: Conventional Storage Water Heaters Demand (Tankless or Instantaneous)...

29

Energy Basics: Microhydropower Water Conveyance and Filters  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

These components include the headrace, forebay, and water conveyance (or channel, pipeline, or penstock). The headrace is a waterway that runs parallel to the water source. A...

30

Energy-efficient water heating  

SciTech Connect

This fact sheet describes how to reduce the amount of hot water used in faucets and showers, automatic dishwashers, and washing machines; how to increase water-heating system efficiency by lowering the water heater thermostat, installing a timer and heat traps, and insulating hot water pipes and the storage tank; and how to use off-peak power to heat water. A resource list for further information is included.

NONE

1995-01-01T23:59:59.000Z

31

Federal Energy Management Program: Water Efficiency Goal Guidance  

NLE Websites -- All DOE Office Websites (Extended Search)

Goal Guidance to someone by E-mail Goal Guidance to someone by E-mail Share Federal Energy Management Program: Water Efficiency Goal Guidance on Facebook Tweet about Federal Energy Management Program: Water Efficiency Goal Guidance on Twitter Bookmark Federal Energy Management Program: Water Efficiency Goal Guidance on Google Bookmark Federal Energy Management Program: Water Efficiency Goal Guidance on Delicious Rank Federal Energy Management Program: Water Efficiency Goal Guidance on Digg Find More places to share Federal Energy Management Program: Water Efficiency Goal Guidance on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance Greenhouse Gases Water Efficiency Basics Federal Requirements Water Efficiency Goal Guidance Baseline & Annual Water Use Guidance Best Management Practices

32

Energy Basics: Tankless Demand Water Heaters  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

only as needed and without the use of a storage tank. They don't produce the standby energy losses associated with storage water heaters. How Demand Water Heaters Work Demand...

33

Energy Basics: Conventional Storage Water Heaters  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

heater can range from 20 to hundreds of gallons. Conventional storage water heater fuel sources include natural gas, propane, fuel oil, and electricity. Natural gas and...

34

Efficient Water Use & Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Use Water Use Goal 4: Efficient Water Use & Management Aware of the arid climate of northern New Mexico, water reduction and conservation remains a primary concern at LANL. Energy Conservation» Efficient Water Use & Management» High Performance Sustainable Buildings» Greening Transportation» Green Purchasing & Green Technology» Pollution Prevention» Science Serving Sustainability» ENVIRONMENTAL SUSTAINABILITY GOALS at LANL Sanitary Effluent Reclamation Facility: Using reverse osmosis to superpurify water reduces bacterial growth and mineral build up, allowing the system to circulate water up to four times in the High-Performance Computing Center. LANSCE cooling towers circulate water for evaporative cooling. LANL is testing methods for decreased water and chemical use at this location. Gabriel C. Herrera of LANL checks gauges on piping inside the Sanitary Effluent Reclamation Facility (SERF). Sanitary Effluent Reclamation Facility: In an effort to reduce water consumption, the SERF was constructed to treat and process sanitary effluent water used for cooling the supercomputing facilities. Sandia Canyon: Water from the SERF is used to keep the wetlands healthy to transform hexavalent into trivalent chromium.

35

Basic studies of 3-5 high efficiency cell components  

DOE Green Energy (OSTI)

This project's objective is to improve our understanding of the generation, recombination, and transport of carriers within III-V homo- and heterostructures. The research itself consists of fabricating and characterizing solar cell building blocks'' such as junctions and heterojunctions as well as basic measurements of material parameters. A significant effort is also being directed at characterizing loss mechanisms in high-quality, III-V solar cells fabricated in industrial research laboratories throughout the United States. The project's goal is to use our understanding of the device physics of high-efficiency cell components to maximize cell efficiency. A related goal is the demonstration of new cell structures fabricated by molecular beam epitaxy (MBE). The development of measurement techniques and characterization methodologies is also a project objective. This report describes our progress during the fifth and final year of the project. During the past five years, we've teamed a great deal about heavy doping effects in p[sup +] and n[sup +] GaAs and have explored their implications for solar cells. We have developed an understanding of the dominant recombination losses in present-day, high-efficiency cells. We've learned to appreciated the importance of recombination at the perimeter of the cell and have developed techniques for chemically passivating such edges. Finally, we've demonstrated that films grown by molecular beam epitaxy are suitable for high-efficiency cell research.

Lundstrom, M.S.; Melloch, M.R.; Pierret, R.F.; Carpenter, M.S.; Chuang, H.L.; Dodd, P.E.; Keshavarzi, A.; Klausmeier-Brown, M.E.; Lush, G.B.; Stellwag, T.B. (Purdue Univ., Lafayette, IN (United States))

1993-01-01T23:59:59.000Z

36

Cedarburg Light & Water Utility - Commercial Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Rebate Program Cedarburg Light & Water Utility - Commercial Energy Efficiency Rebate Program Eligibility Agricultural Commercial Fed. Government Industrial Local...

37

Cedarburg Light & Water Utility - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cedarburg Light & Water Utility - Residential Energy Efficiency Rebate Program Cedarburg Light & Water Utility - Residential Energy Efficiency Rebate Program Eligibility Low-Income...

38

Federal Energy Management Program: Water Efficiency Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts to someone by E-mail Share Federal Energy Management Program: Water Efficiency Contacts on Facebook Tweet about Federal Energy Management Program: Water Efficiency...

39

Resources on Water Efficiency | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Efficiency » Resources on Water Efficiency Water Efficiency » Resources on Water Efficiency Resources on Water Efficiency October 8, 2013 - 10:03am Addthis Many helpful resources about water efficiency are available. Also see Contacts. Federal Resources Reverse Osmosis Optimization Technology Evaluation: -This FEMP technology evaluation assesses techniques for optimizing reverse osmosis systems to increase system performance and water efficiency. Side Stream Filtration for Cooling Towers (Full Report): Comprehensive document assessing side stream filtration options for cooling towers, with an objective to assess key attributes that optimize energy and water savings along with providing information on specific technology and implementation options. Technical Evaluation of Side Stream Filtration for Cooling Towers (Fact

40

Water Efficiency Goal Guidance | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Efficiency Goal Guidance Water Efficiency Goal Guidance Water Efficiency Goal Guidance Water Efficiency Definitions A clear understanding of water efficiency definitions is very helpful in complying with the water-reduction goals of E.O. 13514. See section 3.0 of Federal Agency Implementation of Water Efficiency and Management Provisions of Executive Order 13514 for key definitions. The Council on Environmental Quality (CEQ) issued water efficiency goal guidance in Federal Agency Implementation of Water Efficiency and Management Provisions of Executive Order 13514. This comprehensive document establishes guidelines for Federal agencies in meeting the water-related requirements of Executive Order (E.O.) 13514 and includes information about baseline development, reporting requirements, and strategies for

Note: This page contains sample records for the topic "water efficiency basics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Heat Pump Water Heater Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Heater Basics Water Heater Basics Heat Pump Water Heater Basics August 19, 2013 - 2:59pm Addthis Illustration of a heat pump water heater, which looks like a tall cylinder with a small chamber on top and a larger one on the bottom. In the top chamber are a fan, a cylindrical compressor, and an evaporator that runs along the inside of the chamber. Jutting out from the exterior of the bottom chamber is a temperature and pressure relief valve. This valve has a tube called a hot water outlet attached to the top. Below the valve is the upper thermostat, a small square outside the cylinder that is attached to a curved tube inside the heater. Resistance elements run from the upper thermostat to the similarly shaped lower thermostat. Below the lower thermostat is a drain valve with a cold water inlet attached to the top. Inside the cylinder is an anode, a series of thin tubes running through the bottom chamber to a coiled tube called a condenser. Insulation runs along the inside of the cylinder.

42

Conventional Storage Water Heater Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conventional Storage Water Heater Basics Conventional Storage Water Heater Basics Conventional Storage Water Heater Basics July 30, 2013 - 3:39pm Addthis Illustration showing the components of a storage water heater. On top of the tank are two thin pipes; one pipe is the hot water outlet, and the other is the cold water inlet. A large pipe in the middle is called a vent pipe. A pressure/temperature relief valve is also on top of the tank and is connected to an open pipe that runs down the side of the tank. Another valve near the bottom of the outside of the tank is the thermostat and gas valve. A cutout shows the parts inside the tank, which include a large tube called a flue tube/heat exchanger. Inside this tube is a jagged insert called a flue baffle. Beside the flue tube/heat exchanger is a thin tube called the anode rod. At the bottom of the tank is a gas burner, and beneath the burner are combustion air openings.

43

Federal Energy Management Program: Water Efficiency Evaluation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Service Contracts to someone by E-mail Share Federal Energy Management Program: Water Efficiency Evaluation Service Contracts on Facebook Tweet about Federal Energy...

44

Microelectronics Plant Water Efficiency Improvements at Sandia...  

NLE Websites -- All DOE Office Websites (Extended Search)

Sandia National Laboratories has developed extensive water efficiency improvements at its Microsystems and Engineering Sciences Applications (MESA) complex in Albuquerque, New...

45

Federal Energy Management Program: Water Efficiency Analysis...  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis and Evaluation to someone by E-mail Share Federal Energy Management Program: Water Efficiency Analysis and Evaluation on Facebook Tweet about Federal Energy Management...

46

Water Conservation and Water Use Efficiency (Wisconsin) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conservation and Water Use Efficiency (Wisconsin) Conservation and Water Use Efficiency (Wisconsin) Water Conservation and Water Use Efficiency (Wisconsin) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Buying & Making Electricity Water Program Info Start Date 01/2011 State Wisconsin Program Type Siting and Permitting Provider Wisconsin Department of Natural Resources Wisconsin has several statutes that promote water conservation and

47

Basic Research Needs for Clean and Efficient Combustion of 21st Century Transportation Fuels  

DOE Green Energy (OSTI)

To identify basic research needs and opportunities underlying utilization of evolving transportation fuels, with a focus on new or emerging science challenges that have the potential for significant long-term impact on fuel efficiency and emissions.

McIlroy, A.; McRae, G.; Sick, V.; Siebers, D. L.; Westbrook, C. K.; Smith, P. J.; Taatjes, C.; Trouve, A.; Wagner, A. F.; Rohlfing, E.; Manley, D.; Tully, F.; Hilderbrandt, R.; Green, W.; Marceau, D.; O'Neal, J.; Lyday, M.; Cebulski, F.; Garcia, T. R.; Strong, D.

2006-11-01T23:59:59.000Z

48

Studies of basic mechanisms influencing solar-cell efficiency for terrestrial applications  

DOE Green Energy (OSTI)

The research activities include determination of the basic mechanisms that control and limit solar-cell efficiency, engineering design of solar cells, and the improvement of cell design to increase the power conversion efficiency and to define the maximum efficiency expected from a given material technology. Experimental methods for determining the basic mechanisms in the highly-doped emitter region and for determining diffusion length and lifetime in the base region of p-n junction solar cells are discussed. The evolution of three different silicon solar cell structures proposed to yield efficiencies greater than 20% for illumination levels in the 25 to 100 sun range is discussed.

None

1978-01-01T23:59:59.000Z

49

Water Efficiency Case Studies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Case Studies Case Studies Water Efficiency Case Studies October 8, 2013 - 9:59am Addthis These case studies feature examples of water-efficiency projects implemented by Federal agencies. They are organized by corresponding best management practice (BMP). U.S. Department of Energy Y-12 National Security Complex: BMP 1 - Water Management Planning: A water assessment at the Y-12 National Security Complex in Oak Ridge, Tennessee, provided a comprehensive understanding of current water-consuming equipment and applications while identifying key areas for efficiency improvement. U.S. Army Fort Huachuca: BMP 2 - Information and Education programs: The U.S. Army Fort Huachuca contracted the University of Arizona Cooperative Extension to provide comprehensive water and energy conservation awareness

50

Water Efficiency Technology Fact Sheet  

E-Print Network (OSTI)

toilets have been an established technology for more than 30 years, and perhaps longer in site-built forms. As they require little to no water, composting toilet systems can provide a solution to sanitation and environmental problems in unsewered, rural, and suburban areas and in both developed and underdeveloped countries. A composting (or biological) toilet system contains and processes excrement, toilet paper, carbon additive, and sometimes, food waste. Unlike a septic system, a composting toilet system relies on unsaturated conditions where aerobic bacteria break down waste. This process is similar to a yard waste composter. If sized and maintained properly, a composting toilet breaks down waste 10 to 30 % of

United States; Composting Toilets

1999-01-01T23:59:59.000Z

51

Program on Technology Innovation: Technology Research Opportunities for Efficient Water Treatment and Use  

Science Conference Proceedings (OSTI)

This report provides background information on the use of freshwater in the United States and the basic technologies employed to treat and utilize water. The connections between water use and energy consumption are also highlighted. Opportunities are discussed for improving water use efficiency through on-site water reuse, water reclamation, and water use reductions. Lastly, recommendations are provided for future action to advance specific technologies and market opportunities.

2008-03-31T23:59:59.000Z

52

Water treatment program raises boiler operating efficiency  

Science Conference Proceedings (OSTI)

This report details the boiler water treatment program which played a vital role in changing an aging steam plant into a profitable plant in just three years. Boiler efficiency increased from approximately 70 percent initially to 86 percent today. The first step in this water treatment program involves use of a sodium zeolite water softener that works to remove scale-forming ions from municipal water used in the system. A resin cleaner is also added to prolong the life of resins in the softener. The water is then passed through a new blow-down heat exchanger, which allows preheating from the continuous blow-down from the boiler system. The water gets pumped into a deaerator tank where sulfite treatment is added. The water then passes from feedpumps into the boiler system.

Not Available

1984-03-01T23:59:59.000Z

53

Chapter 23 - Environment, Energy and Water Efficiency, Renewable...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 - Environment, Energy and Water Efficiency, Renewable Energy Technologies, Occupational Safety, and Drug-free Workplace. Chapter 23 - Environment, Energy and Water Efficiency,...

54

Federal Energy Management Program: Federal Water Efficiency Best...  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Water Efficiency Best Management Practices to someone by E-mail Share Federal Energy Management Program: Federal Water Efficiency Best Management Practices on Facebook...

55

City Water Light and Power - Commercial Energy Efficiency Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Light and Power - Commercial Energy Efficiency Rebate Programs City Water Light and Power - Commercial Energy Efficiency Rebate Programs Eligibility Commercial Nonprofit...

56

Federal Energy Management Program: Resources on Water Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Efficiency Many helpful resources about water efficiency are available. Federal Resources Reverse Osmosis Optimization Technology Evaluation: -This FEMP technology evaluation...

57

Solution of basic operational problems of water-development works at the Votkinsk hydroproject  

Science Conference Proceedings (OSTI)

Basic operational problems of water-development works at the Votkinsk HPP are examined. Measures for restoration of normal safety conditions for the water-development works at the HPP, which had been taken during service, are presented.

Deev, A. P.; Borisevich, L. A.; Fisenko, V. F. [Votkinsk Branch of the JSC 'RusGidro,' Chaikovskii (Russian Federation)

2012-11-15T23:59:59.000Z

58

Grundfos HVAC OEM Efficient water hydraulics  

E-Print Network (OSTI)

Grundfos HVAC OEM Efficient water hydraulics for Heat Pumps Anders Mønsted GRUNDFOS Holding A/S Group Technical Key Account Manager HVAC OEM Project Management http://net.grundfos.com/doc/webnet/hv acoem/index.htmlOEM online #12;Introduction Grundfos Company Grundfos HVAC OEM Current Circulator Range

Oak Ridge National Laboratory

59

Water Efficient and Low Pollution Textile Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternative and Emerging Technologies for an Energy Efficient Alternative and Emerging Technologies for an Energy Efficient Water Efficient and Low Pollution Textile Industry year month institution Lawrence Berkeley National Laboratory address Berkeley abstract p Emerging energy efficiency greenhouse gas GHG and pollution mitigation technologies will be crucial for the textile industry as it responds to population and economic growth that is expected to spur a rapid increase in textile consumption over the coming decades and a corresponding increase in the industry textquoteright s absolute energy use and GHG and other pollutant emissions This report gives an overview of textile industry processes and compiles available information on the energy savings environmental and other benefits costs commercialization status and references for emerging technologies to reduce the industry

60

Energy Basics: Tankless Coil and Indirect Water Heaters  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

to heat a fluid that's circulated through a heat exchanger in the storage tank. The energy stored by the water tank allows the furnace to turn off and on less often, which saves...

Note: This page contains sample records for the topic "water efficiency basics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

FCT Fuel Cells: Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics to someone by E-mail Basics to someone by E-mail Share FCT Fuel Cells: Basics on Facebook Tweet about FCT Fuel Cells: Basics on Twitter Bookmark FCT Fuel Cells: Basics on Google Bookmark FCT Fuel Cells: Basics on Delicious Rank FCT Fuel Cells: Basics on Digg Find More places to share FCT Fuel Cells: Basics on AddThis.com... Home Basics Current Technology DOE R&D Activities Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Basics Photo of a fuel cell stack A fuel cell uses the chemical energy of hydrogen to cleanly and efficiently produce electricity with water and heat as byproducts. (How much water?) Fuel cells are unique in terms of the variety of their potential applications; they can provide energy for systems as large as a utility

62

Federal Energy Management Program: Federal Water Efficiency Best Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Efficiency Best Management Practices Water Efficiency Best Management Practices Water Sense at Work Logo for the EPA WaterSense The U.S. Environmental Protection Agency developed WaterSense at Work, a compilation of water-efficiency best management practices (BMPs), to help commercial and institutional facilities understand and manage water use, help facilities establish effective water-management programs, and identify projects and practices that reduce facility water use. FEMP originally developed Federal Water Efficiency Best Management Practices (BMPs) in response to Executive Order (E.O.) 13123 requirements, which required Federal agencies to reduce water use through cost-effective water efficiency improvements. E.O. 13423 supersedes E.O. 13123. To account for the superseded requirement changes, water use patterns, and advancing technologies, the Environmental Protection Agency's WaterSense Office updated the original BMPs.

63

Columbia Water & Light- HVAC and Lighting Efficiency Rebates  

Energy.gov (U.S. Department of Energy (DOE))

Columbia Water & Light (CWL) offers rebates to its commercial and industrial customers for the purchase of high efficiency HVAC installations and efficient lighting. Incentives for certain...

64

Loveland Water & Power - Commercial and Industrial Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here Home Savings Loveland Water & Power - Commercial and Industrial Energy Efficiency Rebate Program Loveland Water & Power - Commercial and Industrial Energy...

65

Federal Water Efficiency Best Management Practices | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Efficiency Best Water Efficiency Best Management Practices Federal Water Efficiency Best Management Practices October 7, 2013 - 2:54pm Addthis The Federal Energy Management Program originally developed Federal Water Efficiency Best Management Practices (BMPs) in response to Executive Order (E.O.) 13123 requirements, which required Federal agencies to reduce water use through cost-effective water efficiency improvements. E.O. 13423 supersedes E.O. 13123. To account for the superseded requirement changes, water use patterns, and advancing technologies, the Environmental Protection Agency's WaterSense Office updated the original BMPs. E.O. 13514 expands the water efficiency requirements of E.O. 13423 and the Energy Independence and Security Act of 2007. E.O. 13514 does not supersede

66

Water Efficiency Myths and Misconceptions | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency Myths and Misconceptions Efficiency Myths and Misconceptions Water Efficiency Myths and Misconceptions October 7, 2013 - 2:39pm Addthis Many Federal energy managers feel that water efficiency is not appropriate for their facility. The following is a list of the most common myths and misconceptions Federal agencies have concerning water efficiency and legislative mandates. Pie chart showing water use distribution in a typical office building. Domestic water use distribution accounts for 41%. Cooling and heating water use distribution accounts for 27%. Landscaping water use distribution accounts for 20%, Once-through cooling application water use distribution accounts for 2$. Kitchen water use distribution accounts for 1%. Miscellaneous water use distribution accounts for 9%.

67

DOE Offices of Basic Energy Sciences and Energy Efficiency and Renewable Energy Collaborate to Develop Nanostructured Electrolytes for Lithium Batteries  

E-Print Network (OSTI)

DOE Offices of Basic Energy Sciences and Energy Efficiency and Renewable Energy Collaborate the DOE Office of Energy Efficiency and Renewable Energy through LBNL's Batteries for Advanced of the Materials Sciences and Environmental Energy Technologies Divisions has led to the development of a new

Knowles, David William

68

Northwest Energy Efficiency Alliance - Smart Water Heat Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northwest Energy Efficiency Alliance - Smart Water Heat Rebate Northwest Energy Efficiency Alliance - Smart Water Heat Rebate Program (Washington) Northwest Energy Efficiency Alliance - Smart Water Heat Rebate Program (Washington) < Back Eligibility Residential Savings Category Appliances & Electronics Water Heating Program Info Start Date 05/01/2012 State District of Columbia Program Type Non-Profit Rebate Program Provider Northwest Energy Efficiency Project The Northwest Energy Efficiency Alliance (NEEA) is offering a rebate program for homeowners who purchase and install an eligible heat pump water heater. A rebate of $750 is offered for qualifying heat pump water heater units. New units must replace an existing electric water heater and must be installed by a Smart Water Heat oriented contractor. New construction is

69

Efficiency of Steam and Hot Water Heat Distribution Systems  

E-Print Network (OSTI)

Efficiency of Steam and Hot Water Heat Distribution Systems Gary Phetteplace September 1995- tion medium (steam or hot water) and temperature for heat distribution systems. The report discusses the efficiency of both steam and hot water heat distribution systems in more detail. The results of several field

70

Active Solar Heating Basics | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL Active Solar Heating Linear Concentrator System Basics for Concentrating Solar Power Rooftop solar water heaters need regular maintenance to operate at peak efficiency. |...

71

Federal Requirements for Water Efficiency | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Requirements for Water Requirements for Water Efficiency Federal Requirements for Water Efficiency October 7, 2013 - 2:40pm Addthis The following Federal laws and regulations require Federal agencies to reduce water use and improve water efficiency. Also see Water Efficiency Goal Guidance and Guidance for Developing Baseline and Annual Water Use. Executive Order 13423 Executive Order (E.O.) 13423 requires Federal agencies to reduce water consumption intensity (gallons per square foot) 2% annually through the end of fiscal year (FY) 2015 or 16% by the end of FY 2015 from a 2007 baseline. This requirement is to be achieved incrementally by fiscal year beginning in 2008. Fiscal Year Percentage Reduction 2008 2 2009 4 2010 6 2011 8 2012 10 2013 12 2014 14 2015 16 E.O. 13423 Mandated Facility Water Intensity Reductions by Fiscal Year

72

Water efficiency in buildings: assessment of its impact on energy efficiency and reducing GHG emissions  

Science Conference Proceedings (OSTI)

Nowadays humanity uses about 50% of existing drinking-water, but in the next 15 years this percentage will reach 75%. Consequently, hydric stress risk will rise significantly across the entire planet. Accordingly, several countries will have to apply ... Keywords: GHG emissions, efficient water devices, energy efficiency, hydric efficiency

A. Silva-Afonso; F. Rodrigues; C. Pimentel-Rodrigues

2011-02-01T23:59:59.000Z

73

Best Management Practice: Water-Efficient Landscaping | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Landscaping Landscaping Best Management Practice: Water-Efficient Landscaping October 7, 2013 - 3:09pm Addthis Traditional landscapes require supplemental water to thrive in most locations. Kentucky bluegrass, for example, is native to regions that receive in excess of 40 inches per year of precipitation, but it is commonly planted in areas across the country that receive much less precipitation. Overview Two facets exist for outdoor water use efficiency: Designing a landscape that requires minimal supplemental water. Designing, installing, and maintaining an irrigation system that applies the appropriate amount of supplemental water in an efficient manner (see BMP #5). This BMP addresses only water efficient landscaping. BMP #5 provides specific information on water efficient irrigation. Irrigation is

74

Annual Performance Report -2011 Water Use Efficiency  

E-Print Network (OSTI)

,802,005Total Water Produced and Purchased (TP) ­ Annual Volume Distribution System Leakage Summary: Note the reporting period listed above, WSU total water produced was 465.8 million gallons which is 106.5 million, service meters recorded 123.3 MilGal of water usage, which accounts for 26.5% of water produced

Collins, Gary S.

75

Marietta Power and Water - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marietta Power and Water - Residential Energy Efficiency Rebate Marietta Power and Water - Residential Energy Efficiency Rebate Program Marietta Power and Water - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Maximum Rebate $500 Program Info State Georgia Program Type Utility Rebate Program Rebate Amount Heat Pump: $150 Water Heater: $250 Heat Pump and Water Heater: $500 Provider Marietta Power and Water Marietta Power and Water provides rebates for electric water heaters ($250) and electric and dual-fuel heat pumps ($150). If both a water heater and heat pump are installed simultaneously, a rebate of $500 is available. Electric and dual-fuel heat pumps may be installed in newly constructed

76

Cedarburg Light & Water Utility- Commercial Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Cedarburg Light and Water Utility provides incentives for commercial, industrial and agricultural customers to increase the energy efficiency of eligible facilities. Upon request, Cedarburg Light...

77

Northwest Energy Efficiency Alliance - Smart Water Heat Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Northwest Energy Efficiency Alliance (NEEA) is offering a rebate program for homeowners who purchase and install an eligible heat pump water heater. A rebate of 750 is...

78

Cedarburg Light and Water Utility - Commercial Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cedarburg Light and Water Utility - Commercial Energy Efficiency Cedarburg Light and Water Utility - Commercial Energy Efficiency Rebate Program Cedarburg Light and Water Utility - Commercial Energy Efficiency Rebate Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Local Government Nonprofit Schools State Government Savings Category Other Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Manufacturing Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Unspecified ($250,000 per bid cycle) Program Info State Wisconsin Program Type Utility Rebate Program Rebate Amount Varies by measure Provider Cedarburg Light and Water Utility Cedarburg Light and Water Utility provides incentives for commercial,

79

UC SANTA CRUZ WATER EFFICIENCY SURVEY  

E-Print Network (OSTI)

.......................................... 35 5.3 Water Conservation Project Costs................................................................................................... 4 1.1 Project Summary................................................................................................................. 7 2.1 Project Objectives

California at Santa Cruz, University of

80

Energy Basics  

Energy.gov (U.S. Department of Energy (DOE))

The EERE Energy Basics website contains basics about renewable energy and energy efficiency technologies. Learn how they work, what they're used for, and how they can improve our lives, homes,...

Note: This page contains sample records for the topic "water efficiency basics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Water Efficiency Evaluation Service Contracts | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Efficiency Evaluation Service Contracts Water Efficiency Evaluation Service Contracts Water Efficiency Evaluation Service Contracts October 8, 2013 - 9:57am Addthis To help meet Energy Independence and Security Act of 2007 requirements for comprehensive water evaluations of at least 25% of covered facilities each year, Federal agencies may choose to hire a water management firm. A report was developed that includes the essential elements of a well-formed statement of work (SOW) for comprehensive water assessments to assist agencies in developing contracts with water contractors, which includes: Project scope Contractor qualifications Assessment phases Deliverables and schedule Additional considerations. For more information on this topic and specific information on SOW model language, download the Template for a Comprehensive Water Assessment

82

Best Management Practice: Water-Efficient Irrigation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Irrigation Irrigation Best Management Practice: Water-Efficient Irrigation October 7, 2013 - 3:10pm Addthis Water efficiency must be considered from the initial irrigation system design phase through installation to ensure optimal performance. Consistent management and maintenance is also essential. Failure to do so can result in losing more than 50% of irrigation water due to evaporation, wind, poor management, and/or improper system design, installation, or maintenance. With the irrigation system hardware operating efficiently, it is important to consider the irrigation schedule, which dictates the amount and timing of the water applied. Water changes with the seasons as should your irrigation schedule. Many landscapes are watered at the same level all year, adding unnecessary water for months at a time. Over-watering can

83

Columbia Water and Light - HVAC and Lighting Efficiency Rebates |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Columbia Water and Light - HVAC and Lighting Efficiency Rebates Columbia Water and Light - HVAC and Lighting Efficiency Rebates Columbia Water and Light - HVAC and Lighting Efficiency Rebates < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Lighting: 50% of invoiced cost up to $22,500 Program Info State Missouri Program Type Utility Rebate Program Rebate Amount HVAC Replacements: $570 - $3,770 Lighting: $300/kW reduction or half of project cost Provider Columbia Water and Light Columbia Water and Light (CWL) offers rebates to its commercial and industrial customers for the purchase of high efficiency HVAC installations and efficient lighting. Incentives for certain measures are based upon the

84

Cost of Increased Energy Efficiency for Residential Water Heaters  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost of Increased Energy Efficiency for Residential Water Heaters Cost of Increased Energy Efficiency for Residential Water Heaters Speaker(s): Alex Lekov Date: March 22, 2001 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Julie Osborn This presentation describes the analysis of the costs of increased energy efficiency for residential water heaters. Here, we focus on the cost and efficiency data for electric and gas-fired water heaters. This data formed the basis of the Technical Support Document for the Department of Energy's (DOE) Final Rule on Water Heaters. The engineering analysis uses computer simulation models to investigate the efficiency improvements due to design options and combinations thereof. The analysis covers four polyurethane foam insulation types based on non-ozone-depleting substances as blowing

85

City Water Light and Power - Residential Energy Efficiency Rebate Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City Water Light and Power - Residential Energy Efficiency Rebate City Water Light and Power - Residential Energy Efficiency Rebate Programs City Water Light and Power - Residential Energy Efficiency Rebate Programs < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Maximum Rebate Refrigerator Recycling: 2 units Insulation: $1,000 Program Info State Illinois Program Type Utility Rebate Program Rebate Amount Clothes Washer: $150 Central Air Conditioner: $9 per kBTUh Air-Source Heat Pumps: $300/ton Geothermal Heat Pump: $500 Refrigerator Recycling: $50 per appliance Insulation: 30% Provider Energy Services Office City Water Light and Power (CWLP) offers rebates to Springfield residential

86

Tri-County Electric Cooperative - Energy Efficient Water Heater Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tri-County Electric Cooperative - Energy Efficient Water Heater Tri-County Electric Cooperative - Energy Efficient Water Heater Rebate Program Tri-County Electric Cooperative - Energy Efficient Water Heater Rebate Program < Back Eligibility Commercial Residential Savings Category Appliances & Electronics Water Heating Program Info State Texas Program Type Utility Rebate Program Rebate Amount $75 Provider Tri-County Electric Cooperative Tri-County Electric Cooperative offers a $75 rebate on the purchase of energy-efficient electric water heaters. The rebate is valid for new or replacement units which have an Energy Factor Rating of 0.90 or higher. The minimum tank size is 40 gallons, with a minimum 4,500 watt heating element. For validation purposes, a copy of the sales or installation receipt must accompany the [http://www.tcectexas.com/Forms/water%20heater%20rebate%20form.pdf

87

Cedarburg Light & Water Utility - Residential Energy Efficiency...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

88

Cedarburg Light & Water Utility - Commercial Energy Efficiency...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

89

Burbank Water & Power - Residential Energy Efficiency Rebate...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

90

Assessing solar energy and water use efficiencies in winter wheat  

SciTech Connect

The water use and solar energy conversion efficiencies of two cultivars of winter wheat (Triticum aestivum L., vars, Centurk and Newton) planted at three densities, were examined during a growing season. Water use, based on soil moisture depletion, was the lowest under the light, and the highest under the heavy planting densities of both cultivars. Water use efficiency of medium and heavy planting densities were greater than the light planting densities in both cultivars. The canopy radiation extinction coefficients of both cultivars increased with increases in planting density. Efficiency of operation interception of photosynthetically active radiation by both cultivars improved from the time of jointing until anthesis, and then decreased during senescence. The efficiency of the conversion of intercepted radiation to dry matter (biochemical efficiency) decreased throughout the growing season both cultivars. The interception, biochemical, and photosynthetic efficiencies improved as planting density increased.

Asrar, G.; Hipps, L.E.; Kanemasu, E.T.

1982-09-01T23:59:59.000Z

91

Best Practice for Energy Efficient Cleanrooms: Cooling tower and condenser water optimization  

E-Print Network (OSTI)

Efficient Cleanrooms: Cooling Tower and Condenser WaterEfficient Cleanrooms: Cooling tower and condenser water2 Cooling tower and condenser water

Xu, Tengfang

2005-01-01T23:59:59.000Z

92

Memphis Light, Gas and Water (Electric) - Commercial Efficiency Advice and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Memphis Light, Gas and Water (Electric) - Commercial Efficiency Memphis Light, Gas and Water (Electric) - Commercial Efficiency Advice and Incentives Program Memphis Light, Gas and Water (Electric) - Commercial Efficiency Advice and Incentives Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Manufacturing Other Appliances & Electronics Heat Pumps Commercial Lighting Lighting Commercial Weatherization Maximum Rebate 70% of project cost Program Info State Tennessee Program Type Utility Rebate Program Rebate Amount Commercial Dishwashers: $400 - $1500 Commercial Refrigerator: $60 - $100 Ice Machines: $100 - $400 Insulated Holding Cabinets: $250 - $600 Electric Steam Cookers: $400 Electric Convection Ovens: $200 Electric Griddles: $200 Electric Combination Ovens: $2,000

93

Northwest Energy Efficiency Alliance - Smart Water Heat Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oregon) Oregon) Northwest Energy Efficiency Alliance - Smart Water Heat Rebate Program (Oregon) < Back Eligibility Residential Savings Category Appliances & Electronics Water Heating Program Info Start Date 5/1/2012 State Oregon Program Type Non-Profit Rebate Program Provider Northwest Energy Efficiency Project The Northwest Energy Efficiency Alliance (NEEA) is offering a rebate program for homeowners who purchase and install an eligible heat pump water heater. A rebate of $750 is offered for qualifying heat pump water heater units. New units must replace an existing electric water heater and must be installed by a Smart Water Heat oriented contractor. New construction is also eligible for the rebate. All program requirements for equipment and installation must be met in order to receive rebates. Incentives are

94

Northwest Energy Efficiency Alliance - Smart Water Heat Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Montana) Montana) Northwest Energy Efficiency Alliance - Smart Water Heat Rebate Program (Montana) < Back Eligibility Residential Savings Category Appliances & Electronics Water Heating Program Info Start Date 5/1/2012 State Montana Program Type Non-Profit Rebate Program Provider Northwest Energy Efficiency Project The Northwest Energy Efficiency Alliance (NEEA) is offering a rebate program for homeowners who purchase and install an eligible heat pump water heater. A rebate of $750 is offered for qualifying heat pump water heater units. New units must replace an existing electric water heater and must be installed by a Smart Water Heat oriented contractor. New construction is also eligible for the rebate. All program requirements for equipment and installation must be met in order to receive rebates. Incentives are

95

Gibson Electric Membership Corporation - Residential Energy Efficient Water  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gibson Electric Membership Corporation - Residential Energy Gibson Electric Membership Corporation - Residential Energy Efficient Water Heater Loan Program Gibson Electric Membership Corporation - Residential Energy Efficient Water Heater Loan Program < Back Eligibility Residential Savings Category Appliances & Electronics Water Heating Maximum Rebate No financing cap for water heater. Program Info State Tennessee Program Type Utility Loan Program Rebate Amount Electric-to-Electric Water Heater Installation: up to $100 Gas-to-Electric Energy Heater Installation: up to $175 Provider Gibson Electric Membership Corporation Gibson Electric Membership Corporation provides loans to its residential customers to finance new, energy efficient water heaters. The loans are interest-free and can be paid off in as many as 3 years. To participate,

96

Burbank Water and Power- Business Bucks Energy Efficiency Grant Program  

Energy.gov (U.S. Department of Energy (DOE))

Burbank Water and Power (BWP) offers the Business Bucks Grant Program to its small and mid-sized business customers for installation of energy efficient equipment. Businesses with monthly...

97

McMinnville Water & Light- Commercial Energy Efficiency Rebate Programs  

Energy.gov (U.S. Department of Energy (DOE))

McMinnville Water and Light Company offers a variety of rebates for commercial and industrial customers to make energy efficient improvements to eligible facilities. MW&L offers rebates in...

98

Northwest Energy Efficiency Alliance - Smart Water Heat Rebate...  

Open Energy Info (EERE)

The Northwest Energy Efficiency Alliance (NEEA) is offering a rebate program for homeowners who purchase and install an eligible heat pump water heater. A rebate of 1,000 is...

99

An Overview of the New Residential Water Heater Efficiency Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

An Overview of the New Residential Water Heater Efficiency Standards Speaker(s): Alex Lekov Date: April 26, 2010 - 12:00pm Location: 90-3122 DOE issued new standards for...

100

Pasadena Water and Power - Commercial Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pasadena Water and Power - Commercial Energy Efficiency Rebate Pasadena Water and Power - Commercial Energy Efficiency Rebate Program Pasadena Water and Power - Commercial Energy Efficiency Rebate Program < Back Eligibility Agricultural Commercial Industrial Institutional Nonprofit Schools Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate Energy Efficiency Partnering Program: The total standard rebate received may not exceed 50% of the project's cost. Program Info State California Program Type Utility Rebate Program Rebate Amount Energy Efficiency Partnership Retrofit Savings: $0.055 - $0.44 per kWh that the new project saves compared to the energy use allowed under Title

Note: This page contains sample records for the topic "water efficiency basics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

An Overview of the New Residential Water Heater Efficiency Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

An Overview of the New Residential Water Heater Efficiency Standards An Overview of the New Residential Water Heater Efficiency Standards Speaker(s): Alex Lekov Date: April 26, 2010 - 12:00pm Location: 90-3122 DOE issued new standards for residential water heaters last month that will save an estimated 2.6 quads of energy over 30 years. For most product sizes sold, the new standards can be met with modest changes, such as adding more insulation to today's conventional tank-style water heaters. For the most common size electric water heater (50 gallons), the standards will save 4 percent, while for the most common size gas water heater (40 gallons), the new standards will save 3 percent. However, for the biggest products (those with over 55 gallons in storage capacity, which is about 9% and 4% of the electric and gas storage water heater markets, respectively), the new

102

Determining Benefits and Costs of Improved Water Heater Efficiencies  

NLE Websites -- All DOE Office Websites (Extended Search)

Determining Benefits and Costs of Improved Water Heater Efficiencies Determining Benefits and Costs of Improved Water Heater Efficiencies Title Determining Benefits and Costs of Improved Water Heater Efficiencies Publication Type Report LBNL Report Number LBNL-45618 Year of Publication 2000 Authors Lekov, Alexander B., James D. Lutz, Xiaomin Liu, Camilla Dunham Whitehead, and James E. McMahon Document Number LBNL-45618 Date Published May 4 Abstract Economic impacts on individual consumers from possible revisions to U.S. residential water heater energy-efficiency standards are examined using a life-cycle cost (LCC) analysis. LCC is the consumer's cost of purchasing and installing a water heater and operating it over its lifetime. This approach makes it possible to evaluate the economic impacts on individual consumers from the revised standards. The methodology allows an examination of groups of the population which benefit or lose from suggested efficiency standards. The results show that the economic benefits to consumers are significant. At the efficiency level examined in this paper, 35% of households with electric water heaters experience LCC savings, with an average savings of $106, while 4% show LCC losses, with an average loss of $40 compared to a pre-standard LCC average of $2,565. The remainder of the population (61%) are largely unaffected.

103

Northwest Energy Efficiency Alliance - Smart Water Heat Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho) Idaho) Northwest Energy Efficiency Alliance - Smart Water Heat Rebate Program (Idaho) < Back Eligibility Residential Savings Category Appliances & Electronics Water Heating Program Info Start Date 05/01/2012 State Idaho Program Type Non-Profit Rebate Program The Northwest Energy Efficiency Alliance (NEEA) is offering a rebate program for homeowners who purchase and install an eligible heat pump water heater. A rebate of $750 is offered for qualifying heat pump water heater units. New units must replace an existing electric water heater and must be installed by a Smart Water Heat oriented contractor. New construction is also eligible for the rebate. All program requirements for equipment and installation must be met in order to receive rebates. Incentives are

104

North Branch Municipal Water and Light - Residential Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

North Branch Municipal Water and Light - Residential Energy North Branch Municipal Water and Light - Residential Energy Efficiency Rebate Program North Branch Municipal Water and Light - Residential Energy Efficiency Rebate Program < Back Eligibility Commercial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Lighting: See program website Room A/C: $25, plus $25 for recycling an old, working unit Central A/C: $100 - $200, plus additional rebate for efficiency ratings above 14.5 SEER Air Source Heat Pump:$100 - $200, plus additional rebate for efficiency ratings above 14.5 SEER Geothermal Heat Pump:$200/ton, plus $25/ton for every 1 EER above minimum

105

Increasing Federal Office Building Water Efficiency, Federal Energy Management Program (FEMP) (Fact Sheet)  

Science Conference Proceedings (OSTI)

Quick guide to increasing Federal office building water efficiency, water management planning, performing a water audit, calculating a water balance, and best management practices.

Not Available

2010-04-01T23:59:59.000Z

106

City Water Light and Power - Commercial Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Light and Power - Commercial Energy Efficiency Rebate Water Light and Power - Commercial Energy Efficiency Rebate Programs City Water Light and Power - Commercial Energy Efficiency Rebate Programs < Back Eligibility Commercial Nonprofit Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Insulation: $3,000 Retro-Commissioning: $50,000 Lighting: $15,000 Program Info State Illinois Program Type Utility Rebate Program Rebate Amount Air-Source Heat Pumps: $300/ton Geothermal Heat Pump: $500/ton Insulation: 30% Retro-Commissioning Study: $0.30 per sq. ft. of conditioned space Retro-Commissioning EMC: varies Lighting: $3 - $35/unit Lighting (Custom): $0.28/Watt reduced Water Loop Heat Pump: Contact CWLP

107

Energy-Efficient Water Heating Program for the Residential Sector.  

Science Conference Proceedings (OSTI)

During the power surplus period of the late 1980's, Bonneville sponsored market research which provided an understanding of the market environment in the water heating end-use. The major areas of investigation included market trends, consumer purchasing practices, unit price, and availability of energy-efficient models. In 1988, Bonneville conducted a series of meetings with utilities operating water heater programs. Discussions focused on utility program concerns and the appropriate role for Bonneville as the region seeks efficiency in residential water heating. The design of the Program is based to a large degree on the experiences gained by regional utilities operating water heater incentive programs. In addition, an analysis of incentive programs operated outside the region has been helpful in the development of a regional program. Bonneville is a member of the Appliance Efficiency Group (AEG), formerly the Northwest Appliance Efficiency Group, and participates in discussions on water heating issues as they relate to the Pacific Northwest. The work done with the Appliance Efficiency Group has provided additional input in the development of the Program. This Program has been developed using a Public Involvement Process. A draft program strategy was made available to the public for comment during April 1990. The comments received were considered in the development of this document.

United States. Bonneville Power Administration.

1990-09-01T23:59:59.000Z

108

Glendale Water and Power - Energy Efficiency Appliance Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Appliance Rebate Energy Efficiency Appliance Rebate Program Glendale Water and Power - Energy Efficiency Appliance Rebate Program < Back Eligibility Low-Income Residential Residential Savings Category Heating & Cooling Cooling Commercial Heating & Cooling Appliances & Electronics Program Info State California Program Type Utility Rebate Program Rebate Amount First rebate amount purchased outside Glendale, second purchased inside Glendale. Clothes Washer: $60 - $80 Refrigerator: $60 - $80 Dishwasher: $30 - $40 Room Air Conditioners: $50 - $60 Central Air Conditioners: $100 - $125/ton Ceiling Fan: $15 - $20 Solar Attic Fan $100 - $125 Pool Pump: $100 - $125 Provider GWP Rebate Program Glendale Water and Power (GPW) offers the Smart Home Energy and Water Saving Rebate Program that includes several incentives for residential

109

Boiler System Efficiency Improves with Effective Water Treatment  

E-Print Network (OSTI)

Water treatment is an important aspect of boiler operation which can affect efficiency or result in damage if neglected. Without effective water treatment, scale can form on boiler tubes, reducing heat transfer, and causing a loss of boiler efficiency and availability. Proper control of boiler blowdown is also important to assure clean boiler surfaces without wasting water, heat, and chemicals. Recovering hot condensate for reuse as boiler feedwater is another means of improving system efficiency. Condensate which is contaminated with corrosion products or process chemicals, however, is ill fit for reuse; and steam which leaks from piping, valves, traps and connections cannot be recovered. Effective chemical treatment, in conjunction with mechanical system improvements, can assure that condensate can be safely returned and valuable energy recovered.

Bloom, D.

1999-05-01T23:59:59.000Z

110

Sailing into the Mainstream of Energy and Water Efficiency, Affordably |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sailing into the Mainstream of Energy and Water Efficiency, Sailing into the Mainstream of Energy and Water Efficiency, Affordably Sailing into the Mainstream of Energy and Water Efficiency, Affordably October 13, 2010 - 11:50am Addthis John Lippert I took off work on Friday, September 10, to have a 3-day weekend with my wife visiting a research center in Virginia Beach. After consulting Virginia's green lodging Web site, my wife and I jotted down nearly a dozen participating hotels, motels, and bed and breakfasts not far from the research center. We checked rates and availability and were surprised to find many of the hotels with no vacancies. Little did we know that Virginia Beach was observing September 11th with a parade, and a lot of people were in town. Fortunately, the one place both my wife and I liked had

111

FORSCOM installation characterization and ranking for water efficiency improvement  

SciTech Connect

On March 11, 1994, President Clinton signed Executive Order 12902-Energy Efficiency and Water Conservation at Federal Facilities. Section 302 of the Executive Order calls for energy and water prioritization surveys of federal facilities to be conducted. The surveys will be used to establish priorities for conducting comprehensive facility audits. In response to the requirements of the Executive Order, the U.S. Army Forces Command (FORSCOM) has tasked Pacific Northwest Laboratory (PNL) to initiate a broad study of the water savings potential at each of its major installations. This report provides an assessment of the water, sewer, energy (for hot water production and pumping), and associated cost savings potential at ten of the major FORSCOM installations. This assessment is meant to be a {open_quotes}first pass{close_quotes} estimate of the water savings potential, to assist FORSCOM in prioritizing installations for detailed water audits and potential water efficient retrofits. In addition, the end uses (toilets, sinks, showerheads, irrigation, etc.) with the greatest water savings potential are identified at each installation. This report is organized in the following manner. Following this Introduction, Section 2 provides important background information pertaining to the water analysis. Section 3 describes the methodology employed in the analysis, and Section 4 summarizes the study results. Section 5 prioritizes the installations based on both water/sewer savings and cost associated with water, sewer, and energy savings. Section 6 provides recommendations on where to start detailed water audits, as well as other recommendations. References are listed in Section 7. The appendices provide specific information on the analysis results and methodology, along with a discussion of special issues.

Fitzpatrick, Q.K.; McMordie, K.L.; Di Massa, F.V. [and others

1995-05-01T23:59:59.000Z

112

Best Practices for Energy Efficient Cleanrooms: Cooling Tower and Condenser Water Optimization  

E-Print Network (OSTI)

LBNL-58634 Best Practices for Energy Efficient Cleanrooms: Cooling Tower and Condenser Water Efficient Cleanrooms: Cooling tower and condenser water optimization Tengfang Xu Contents HVAC WATER SYSTEMS.............................................................................................. 2 Cooling tower and condenser water optimization

113

Loveland Water and Power - Commercial and Industrial Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial and Industrial Energy Commercial and Industrial Energy Efficiency Rebate Program Loveland Water and Power - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Manufacturing Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Windows, Doors, & Skylights Maximum Rebate $50,000 per year Program Info State Colorado Program Type Utility Rebate Program Rebate Amount Lighting: See Program Website Cooling Efficiency Room AC: $50 - $110/ton, plus $3.50 - $5.00 for each 0.1 above minimum SEER, IEER, or EER Economizer: $250 Motion Sensor Controls: $75 Building Envelope Window Replacement: $1.50/sq. ft.

114

Burbank Water and Power - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Residential Energy Efficiency Rebate Program Burbank Water and Power - Residential Energy Efficiency Rebate Program < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Cooling Commercial Heating & Cooling Appliances & Electronics Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Program Info State California Program Type Utility Rebate Program Rebate Amount Products purchased from a Burbank retailer are typically awarded higher rebates than those purchased outside Burbank. Inside Burbank: Ceiling Fans: $25 (maximum three) Clothes Washer: $50 Dishwasher: $35 Refrigerator/Freezer: $75 Room A/C: $35 Low E Windows/Doors: $2.00/sq ft

115

Energy Basics  

Energy.gov (U.S. Department of Energy (DOE))

The basics about renewable energy and energy efficiency technologies: learn how they work, what they're used for, and how they can improve our lives, homes, businesses, vehicles, and industries.

116

Highly efficient 6-stroke engine cycle with water injection  

Science Conference Proceedings (OSTI)

A six-stroke engine cycle having improved efficiency. Heat is recovered from the engine combustion gases by using a 6-stroke engine cycle in which combustion gases are partially vented proximate the bottom-dead-center position of the fourth stroke cycle, and water is injected proximate the top-dead-center position of the fourth stroke cycle.

Szybist, James P; Conklin, James C

2012-10-23T23:59:59.000Z

117

Basic studies of 3-5 high efficiency cell components. Annual subcontract report, 15 August 1989--14 August 1990  

DOE Green Energy (OSTI)

This project`s objective is to improve our understanding of the generation, recombination, and transport of carriers within III-V homo- and heterostructures. The research itself consists of fabricating and characterizing solar cell ``building blocks`` such as junctions and heterojunctions as well as basic measurements of material parameters. A significant effort is also being directed at characterizing loss mechanisms in high-quality, III-V solar cells fabricated in industrial research laboratories throughout the United States. The project`s goal is to use our understanding of the device physics of high-efficiency cell components to maximize cell efficiency. A related goal is the demonstration of new cell structures fabricated by molecular beam epitaxy (MBE). The development of measurement techniques and characterization methodologies is also a project objective. This report describes our progress during the fifth and final year of the project. During the past five years, we`ve teamed a great deal about heavy doping effects in p{sup +} and n{sup +} GaAs and have explored their implications for solar cells. We have developed an understanding of the dominant recombination losses in present-day, high-efficiency cells. We`ve learned to appreciated the importance of recombination at the perimeter of the cell and have developed techniques for chemically passivating such edges. Finally, we`ve demonstrated that films grown by molecular beam epitaxy are suitable for high-efficiency cell research.

Lundstrom, M.S.; Melloch, M.R.; Pierret, R.F.; Carpenter, M.S.; Chuang, H.L.; Dodd, P.E.; Keshavarzi, A.; Klausmeier-Brown, M.E.; Lush, G.B.; Stellwag, T.B. [Purdue Univ., Lafayette, IN (United States)

1993-01-01T23:59:59.000Z

118

Water-Cooled Electric Chillers, Purchasing Specifications for Energy-Efficient Products (Fact Sheet)  

Science Conference Proceedings (OSTI)

Energy efficiency purchasing specifications for federal procurements of water-cooled electric chillers.

Not Available

2010-12-01T23:59:59.000Z

119

Estimating the Cost and Energy Efficiency of a Solar Water Heater...  

NLE Websites -- All DOE Office Websites (Extended Search)

Estimating the Cost and Energy Efficiency of a Solar Water Heater Estimating the Cost and Energy Efficiency of a Solar Water Heater May 30, 2012 - 3:09pm Addthis Solar water...

120

Pasadena Water and Power - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Residential Energy Efficiency Rebate Program Pasadena Water and Power - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Cooling Commercial Heating & Cooling Appliances & Electronics Home Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Heat Pumps Commercial Lighting Lighting Maximum Rebate Ceiling Fan: Limit two Room A/C: Limit two Attic/Roof Fan: Limit two Shade Screens: Installation must be made to windows on south, west or east walls; screens must reflect 70% of the sun's heat and glare Skylights/Light Tubes: Limit one Program Info State California Program Type Utility Rebate Program Rebate Amount Incentive amounts increase with purchase from Pasadena retailers and with

Note: This page contains sample records for the topic "water efficiency basics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Federal energy efficiency and water conservation funding study  

SciTech Connect

This report contains the results of a study required by section 162 of the Energy Policy Act of 1992 (EPAct). It outlines options for financing energy and water conservation measures at Federal facilities as required by Part 3 of Title V of the National Energy Policy and Conservation Act (NECPA) (42 U.S.C. 8251 et seq.) as amended by EPAct. It addresses: (1) the estimated Federal financial investment necessary to install energy and water conservation measures to meet NECPA and Executive Order requirements; (2) the use of revolving funds and other funding mechanisms which offer stable, long-term financing of energy and water conservation measures; and (3) the means for capitalizing such funds. On March 8, 1994, President Clinton signed Executive Order 12902. This Executive Order is an aggressive mandate to improve energy efficiency and water conservation in Federal buildings nationwide. This Executive Order is designed to meet and exceed requirements for Federal energy and water efficiency that were contained in section 152 of EPAct. Section 152 mandated that Federal agencies use all cost effective measures with less than a ten year payback to reduce energy consumption in their facilities by 20% by the year 2000 compared to 1985 levels. In addition, Executive Order 12902 established a requirement to use cost effective measures to reduce energy use by fiscal year 2005 by 30% compared to 1985 energy use. This report provides estimates for the energy and water conservation investments needed to achieve the NECPA and Executive Order goals as well as estimates for the contribution from various funding sources and a review of the mechanisms for funding these investments.

1998-01-01T23:59:59.000Z

122

Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Water  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Water Heaters Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Water Heaters June 14, 2012 - 7:38pm Addthis A water heater's energy efficiency is determined by the energy factor (EF), which is based on the amount of hot water produced per unit of fuel consumed over a typical day. The higher the energy factor, the more efficient the water heater. A water heater's energy efficiency is determined by the energy factor (EF), which is based on the amount of hot water produced per unit of fuel consumed over a typical day. The higher the energy factor, the more efficient the water heater. What does this mean for me? Estimate the annual operating costs and compare several water heaters to determine whether it is worth investing in a more efficient

123

Physiological applications for determining water use efficiency among cotton genotypes  

E-Print Network (OSTI)

Drought stress can substantially alter plant metabolism by decreasing plant growth and photosynthesis. The lack of rapid and reliable screening criteria and measurement techniques for determining water use efficiency (WUE) of crop plants has greatly restricted progress in this critical area of crop improvement. In grain sorghum (Sorghum bicolor L.), WUE was associated with the transpiration ratio [CO2 assimilation (A) / transpiration rate (E), A:E] from leaf gas exchange measurements. Research is needed to identify drought effects on plant productivity and to exploit the use of this knowledge in breeding and agronomic efforts. Therefore, the objectives of this study were to determine if differences in A:E and other physiological parameters existed between two selected cotton (Gossypium hirsutum L.) genotypes and to evaluate the response of cotton genotypes experiencing water stress at two different growth stages on biomass production and yield. Two experiments were conducted using two cotton genotypes differing in drought tolerance. Each experiment was repeated three times in a randomized complete block design with six replications. In Experiment I, the water stress treatment was induced by withholding water when the plants reached the 4-node growth stage. The water stress treatment in Experiment II was imposed at early bloom. Gas exchange and chlorophyll fluorescence measurements were collected during dry-down and recovery periods to determine water stress effects on plant physiology. Biomass was partitioned following the recovery period, to examine phenotypic responses of plants exposed to water stress. The results of these experiments indicate that A:E is significantly increased as leaf water potential (?L) decreases with no differences in A:E between the two genotypes. Gas exchange measurements showed significant decreases with declining ?L and significant increases upon re-watering; yet, no differences were observed between the two genotypes. Chlorophyll fluorescence was not different between genotypes in either light- or dark-adapted leaves. In Experiment I TAM 89E-51 had a significantly greater seedcotton yield; however, in Experiment II TAMCOT 22 had the greater yield. These experiments suggest that the effects of water stress on cotton are a function of the intensity of the stress and the growth stage in which the stress is experienced.

Bynum, Joshua Brian

2008-05-01T23:59:59.000Z

124

Microelectronics Plant Water Efficiency Improvements at Sandia National Laboratories  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sandia National Laboratories has developed extensive Sandia National Laboratories has developed extensive water efficiency improvements at its Microsystems and Engineering Sciences Applications (MESA) complex in Albuquerque, New Mexico. Since 1949, Sandia has developed science-based technologies that support national security: nuclear weapons, energy and infrastruc- ture assurance, nonproliferation, defense systems and assessments, and homeland security. The laboratory sits on 8,699 acres of land and employs more than 10,000 employees and contractors. Altogether, it owns 871 buildings encompassing more than 5.8 million square feet. The MESA complex houses research in microelectronics, including designing and prototyping microsystem-based components. The complex consumes about 28% of the total water used at Sandia. The processes used to create

125

Research on the basic understanding of high efficiency in silicon solar cells. Annual report, 1 December 1982-30 November 1983  

DOE Green Energy (OSTI)

This report presents results of research designed to develop a basic understanding of high-efficiency silicon solar cells and achieve cell efficiencies greater than 17% by employing innovative concepts of material preparation, cell design, and fabrication technology. The research program consisted of a theoretical effort to develop models for very high-efficiency cell designs, experimental verification of the designs, and improved understanding of efficiency-limiting mechanisms such as heavy doping effects and bulk and surface recombination. Research was performed on high-lifetime float-zone silicon, the baseline materials, low-resistivity gallium-doped czochralski silicon, and boron-doped float-zone silicon.

Rohatgi, A.; Rai-Choudhury, P.

1984-09-01T23:59:59.000Z

126

Estimating the Cost and Energy Efficiency of a Solar Water Heater |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Estimating the Cost and Energy Efficiency of a Solar Water Heater Estimating the Cost and Energy Efficiency of a Solar Water Heater Estimating the Cost and Energy Efficiency of a Solar Water Heater May 30, 2012 - 3:09pm Addthis Solar water heaters are more efficient the gas or electric heaters. | Chart credit ENERGY STAR Solar water heaters are more efficient the gas or electric heaters. | Chart credit ENERGY STAR What does this mean for me? Solar water heaters cost more to purchase and install but may save you money in the long run. Estimate the annual operating costs and compare several solar water heaters to determine whether it is worth investing in a more efficient system. Solar water heating systems usually cost more to purchase and install than conventional water heating systems. However, a solar water heater can

127

Estimating the Cost and Energy Efficiency of a Solar Water Heater |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Estimating the Cost and Energy Efficiency of a Solar Water Heater Estimating the Cost and Energy Efficiency of a Solar Water Heater Estimating the Cost and Energy Efficiency of a Solar Water Heater May 30, 2012 - 3:09pm Addthis Solar water heaters are more efficient the gas or electric heaters. | Chart credit ENERGY STAR Solar water heaters are more efficient the gas or electric heaters. | Chart credit ENERGY STAR What does this mean for me? Solar water heaters cost more to purchase and install but may save you money in the long run. Estimate the annual operating costs and compare several solar water heaters to determine whether it is worth investing in a more efficient system. Solar water heating systems usually cost more to purchase and install than conventional water heating systems. However, a solar water heater can

128

Energy Basics: Microhydropower  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Large-Scale Hydropower Microhydropower Water Conveyance &...

129

Evaluation of Energy Efficiency, Water Requirements and Availability, and CO  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

05/14/2012 1 05/14/2012 1 Evaluation of Energy Efficiency, Water Requirements and Availability, and CO 2 Emissions Associated With the Production of Oil & Gas From Oil Shale in the Piceance Basin of Western Colorado, Based on Shell's In-Situ Conversion Process (ICP) F. Dexter Sutterfield, Ph.D., INTEK Inc. Peter M. Crawford and Jeffrey Stone, INTEK Inc. James C. Killen, United States Department of Energy I. Summary A detailed description of background information, the purpose of this paper, methodologies and major assumptions, and results are provided below, beginning with Section II. A summary of this information follows: The United States has been endowed with vast oil shale resources in the Green River Formation in Colorado, Utah and Wyoming, about three-fourths of which are located on public lands. Green River

130

Increasing Federal Office Building Water Efficiency, Federal Energy Management Program (FEMP) (Fact Sheet)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

requires a two percent annual reduction in water use (compared to requires a two percent annual reduction in water use (compared to a FY 2007 baseline), significantly reducing total Federal water consumption by FY 2020. View Federal water requirements at www.femp.energy.gov/program/waterefficiency_ requirements.html. Increasing Federal Office Building Water Efficiency With less than one percent of Earth's water available for human use, the Federal Government is leading by example with water efficiency and conservation efforts. Federal laws and regulations require agencies to implement water efficiency efforts and reduce water consumption, making water an integral part of every comprehensive resource management program. Water Management Planning A comprehensive water management plan includes clear information on how a Federal facility uses water from

131

Increasing Federal Office Building Water Efficiency, Federal Energy Management Program (FEMP) (Fact Sheet)  

NLE Websites -- All DOE Office Websites (Extended Search)

Order 13514 requires a two percent annual reduction in water use (compared to Order 13514 requires a two percent annual reduction in water use (compared to a FY 2007 baseline), significantly reducing total Federal water consumption by FY 2020. View Federal water requirements at www.femp.energy.gov/program/waterefficiency_ requirements.html. Increasing Federal Office Building Water Efficiency With less than one percent of Earth's water available for human use, the Federal Government is leading by example with water efficiency and conservation efforts. Federal laws and regulations require agencies to implement water efficiency efforts and reduce water consumption, making water an integral part of every comprehensive resource management program. Water Management Planning A comprehensive water management plan includes clear information on

132

Basic Research  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 II Basic Research The Basic Energy Sciences (BES) office within the DOE Office of Science supports the DOE Hydrogen Program by providing basic, fundamental research in those technically challenging areas facing the Program, complementing the applied research and demonstration projects conducted by the Offices of Energy Efficiency and Renewable Energy; Fossil Energy; and Nuclear Engineering, Science and Technology. In May 2005 Secretary of Energy Samuel W. Bodman announced the selection of over $64 million in BES research and development projects aimed at making hydrogen fuel cell vehicles and refueling stations available, practical and affordable for American consumers by 2020. A total of 70 hydrogen research projects were selected to focus on fundamental science and enable

133

Best Practices for Energy Efficient Cleanrooms: Control of Chilled Water System  

E-Print Network (OSTI)

for cleanrooms and their adjacent spaces. Chillers 39% Cooling Towers 7% Pumps 17% MUAH + RCU Fans 9% Hot Water;chilled water pumps, secondary loop chilled water pumps, condenser water pumps, and cooling towers for water-cooled chillers. While nominal energy efficiency ratings of individual component influence

134

Cedarburg Light and Water Utility - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

300 Water Heaters: 25 - 100 Tankless Water Heaters: 100 Heat Pump Water Heater: 300 Air SealingAttic Insulation: Up to 300 Energy Star Home Performance: 33.3% of cost up to...

135

North Branch Municipal Water & Light - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

unit Central AC: 100 - 200, plus additional rebate for efficiency ratings above 14.5 SEER Air Source Heat Pump:100 - 200, plus additional rebate for efficiency ratings above...

136

Basic studies of III-V high-efficiency cell components: Annual subcontract report, 15 August 1985-14 August 1986  

DOE Green Energy (OSTI)

This report documents research on the fabrication and photovoltaic characterization of the basic building blocks of III-V cells: the pn junction, the pn heterojunction, the isotype (p-p and n-n) heterojunction, and graded-gap semiconductors. The goal of the project is to maximize cell performance by characterizing the electrical properties of high-efficiency cell components. Other goals are to demonstrate new cell structures fabricated by molecular beam epitaxy (MBE), develop measurement techniques, and characterize methodologies. This work should help identify paths toward higher efficiency III-V cells.

Lundstrom, M S; Melloch, M R; Kyono, C S; McMahon, C P; Noren, R E; Rancour, D P

1987-03-01T23:59:59.000Z

137

Draft Guidance for the Implementation and Follow-up of Identified Energy and Water Efficiency Measures  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for the Implementation for the Implementation and Follow-up of Identified Energy and Water Efficiency Measures in Covered Facilities (per 42 U.S.C. 8253(f), Use of Energy and Water Efficiency Measures in Federal Buildings) September 2012 U.S. Department of ENERGY United States Department of Energy Washington, DC 20585 i Guidance for the Implementation and Follow-up of Identified Energy and Water Efficiency Measures in Covered Facilities (per 42 U.S.C. 8253(f), Use of Energy and Water Efficiency Measures in Federal Buildings) September 2012 I. PURPOSE ............................................................................................................................................ 1 II. BACKGROUND ................................................................................................................................. 1

138

Draft Guidance for the Implementation and Follow-up of Identified Energy and Water Efficiency Measures  

NLE Websites -- All DOE Office Websites (Extended Search)

for the Implementation for the Implementation and Follow-up of Identified Energy and Water Efficiency Measures in Covered Facilities (per 42 U.S.C. 8253(f), Use of Energy and Water Efficiency Measures in Federal Buildings) September 2012 U.S. Department of ENERGY United States Department of Energy Washington, DC 20585 i Guidance for the Implementation and Follow-up of Identified Energy and Water Efficiency Measures in Covered Facilities (per 42 U.S.C. 8253(f), Use of Energy and Water Efficiency Measures in Federal Buildings) September 2012 I. PURPOSE ............................................................................................................................................ 1 II. BACKGROUND ................................................................................................................................. 1

139

Efficient Hydraulic State Estimation Technique Using Reduced Models of Urban Water Networks  

E-Print Network (OSTI)

This paper describes and demonstrates an efficient method for online hydraulic state estimation in urban water networks. The proposed method employs an online predictor-corrector (PC) procedure for forecasting future water ...

Preis, Ami

140

What Have You Done to Ensure Your Water Pipes are Efficient and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

help you save money and energy on water heating. What have you done to ensure your water pipes are efficient and safe? Each Thursday, you have the chance to share your thoughts on...

Note: This page contains sample records for the topic "water efficiency basics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Cooling Towers: Understanding Key Components of Cooling Towers and How to Improve Water Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Paul Johnston-Knight Introduction Federal laws and regulations require Federal agencies to reduce water use and improve water efficiency. Namely, Executive Order 13514 Federal Leadership in Environmental, Energy, and Economic Performance, requires an annual two percent reduction of water use intensity (water use per square foot of building space) for agency potable water consumption as well as a two percent reduction of water use for industrial, landscaping, and agricultural applica- tions. Cooling towers can be a significant

142

Energy Basics: Contacts  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Skip to Content U.S. Department of Energy Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Energy Basics Search Search Help Energy...

143

McMinnville Water and Light - Commercial Energy Efficiency Rebate Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

McMinnville Water and Light - Commercial Energy Efficiency Rebate McMinnville Water and Light - Commercial Energy Efficiency Rebate Programs McMinnville Water and Light - Commercial Energy Efficiency Rebate Programs < Back Eligibility Commercial Industrial Savings Category Appliances & Electronics Commercial Lighting Lighting Manufacturing Program Info State Oregon Program Type Utility Rebate Program Rebate Amount McMinnville Water and Light Company Provider McMinnville Water and Light McMinnville Water and Light Company offers a variety of rebates for commercial and industrial customers to make energy efficient improvements to eligible facilities. MW&L offers rebates in three categories: Lighting retrofits, motor replacements, and process efficiency. Past lighting projects have included fluorescent lighting retrofits, mercury vapor

144

Federal Energy Management Program: Water Efficiency Case Studies  

NLE Websites -- All DOE Office Websites (Extended Search)

(BMP). U.S. Department of Energy Y-12 National Security Complex: BMP 1 - Water Management Planning: A water assessment at the Y-12 National Security Complex in Oak Ridge,...

145

Burbank Water & Power - Business Bucks Energy Efficiency Grant...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

& Cooling Cooling Other Design & Remodeling Windows, Doors, & Skylights Ventilation Appliances & Electronics Commercial Lighting Lighting Manufacturing Insulation Water...

146

Faster, More Efficient Redox Cycle to Split Water or ...  

heating or cooling is required between the respective ... using concentrated solar energy to provide thermal ... More Efficient Redox Cycle to Split W ...

147

Memphis Light, Gas and Water (Electric) - Commercial Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

rebates on a range of energy efficient equipment and measures for commercial and smaller industrial customers. Eligible customers include commercial customers on General Power...

148

Highly efficient 6-stroke engine cycle with water injection  

combustion piston engine. The increased efficiency is a result of recovering heat primarily from the engine exhaust gases, and also from the engine coolant.

149

Tri-County Electric Cooperative - Energy Efficient Water Heater...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heating Program Information Texas Program Type Utility Rebate Program Rebate Amount 75 Tri-County Electric Cooperative offers a 75 rebate on the purchase of energy-efficient...

150

New Braunfels Utilities- Energy Efficiency and Water Conservation Rebate Programs  

Energy.gov (U.S. Department of Energy (DOE))

New Braunfels Utilities offer a variety of programs encouraging its customers to make their homes more energy efficiency. Rebates are available for washing machines, air conditioners, heat pumps,...

151

Energy Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Energy Basics Services » Energy Basics Energy Basics The basics about renewable energy and energy efficiency technologies: learn how they work, what they're used for, and how they can improve our lives, homes, businesses, and industries. The basics about renewable energy and energy efficiency technologies: learn how they work, what they're used for, and how they can improve our lives, homes, businesses, and industries. RENEWABLE ENERGY TECHNOLOGIES Biomass Technology Basics Geothermal Technology Basics Hydrogen and Fuel Cell Technology Basics Hydropower Technology Basics Ocean Energy Technology Basics Solar Energy Technology Basics Wind Energy Technology Basics More HOME & BUILDING TECHNOLOGIES Lighting and Daylighting Basics Passive Solar Building Design Basics Space Heating and Cooling Basics

152

Water Efficiency Guide for Laboratories; Laboratories for the...  

NLE Websites -- All DOE Office Websites (Extended Search)

diversion amount, and design retention. The smoother, cleaner, and more impervious the roof surface, the more high-quality water can be collected. Pitched metal roofs lose...

153

Muscatine Power and Water - Residential Energy Efficiency Rebates...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

clothes washers, dryers, ranges, room air and central air conditioners, ground source heat pumps, and water heaters are eligible for this program. The rebate amount...

154

Energy Efficient Condensing Side-arm Gas Water Heater - Energy ...  

Hydrogen and Fuel Cell; Hydropower, Wave and ... thereby eliminating standby energy losses that occur when heat is transferred from the hot water to ...

155

Cost of Increased Energy Efficiency for Residential Water Heaters  

NLE Websites -- All DOE Office Websites (Extended Search)

distributor, and installer costs are used to calculate the costs of different water heater designs. Consumer operating expenses are calculated based on the modeled energy...

156

Glendale Water and Power - Small Business Energy Efficiency Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Information California Program Type Utility Rebate Program Rebate Amount Installation of Energy-Saving Upgrades: Free Glendale Water and Power offers incentives to small business...

157

A BASIC program for calculating subsurface water temperatures using chemical geothermometersimplication to geothermal reservoir estimation  

Science Conference Proceedings (OSTI)

Keywords: BASIC, Na-K-Ca geothermometer, Na/K ratio, geothermometer, silica geothermometer, subsurface temperature

Ali El-Naqa; Nasser Abu Zeid

1993-11-01T23:59:59.000Z

158

What Have You Done to Ensure Your Water Pipes are Efficient and Safe? |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Have You Done to Ensure Your Water Pipes are Efficient and Have You Done to Ensure Your Water Pipes are Efficient and Safe? What Have You Done to Ensure Your Water Pipes are Efficient and Safe? March 17, 2011 - 7:30am Addthis This week, Elizabeth told you about her unfortunate experience with burst pipes this winter. These accidents always seem to happen at the most inconvenient times and can be a real mess to fix and clean up. But there are a few things you can do to prevent them-namely, check your pipes and be sure they are insulated, especially if they are located in cold areas of your home. In addition, insulating your hot water pipes can help you save money and energy on water heating. What have you done to ensure your water pipes are efficient and safe? Each Thursday, you have the chance to share your thoughts on a question

159

Comment submitted by the Alliance for Water Efficiency (AWE) regarding the Energy Star Verification Testing Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Date: May 9, 2011 To: ESTARVerificationTesting@ee.doe.gov From: Mary Ann Dickinson, President and CEO Re: Comments on DOE Verification Testing in Support of Energy Star (www1.eere.energy.gov/buildings/appliance_standards/pdfs/estar_verification_process.pdf) The Alliance for Water Efficiency is pleased to provide DOE with comments on the above document. We are a North American non-profit organization, composed of diverse stakeholders with significant experience in water efficiency programs and conservation policies. Our mission is to promote the efficient and sustainable use of water, to promote cost-effective water efficiency measures that will reduce wasteful consumption, reduce the need for additional drinking water and waste water capacity, and provide multiple

160

What Have You Done to Ensure Your Water Pipes are Efficient and Safe? |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

What Have You Done to Ensure Your Water Pipes are Efficient and What Have You Done to Ensure Your Water Pipes are Efficient and Safe? What Have You Done to Ensure Your Water Pipes are Efficient and Safe? March 17, 2011 - 7:30am Addthis This week, Elizabeth told you about her unfortunate experience with burst pipes this winter. These accidents always seem to happen at the most inconvenient times and can be a real mess to fix and clean up. But there are a few things you can do to prevent them-namely, check your pipes and be sure they are insulated, especially if they are located in cold areas of your home. In addition, insulating your hot water pipes can help you save money and energy on water heating. What have you done to ensure your water pipes are efficient and safe? Each Thursday, you have the chance to share your thoughts on a question

Note: This page contains sample records for the topic "water efficiency basics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Glendale Water and Power - Large Business Energy Efficiency Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

its medium and large business customers with electric bills of more than 3000 per month (electric usage of 250,000 kWh annually 36,000 per year) to encourage energy efficiency...

162

Loveland Water and Power - Commercial and Industrial Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

a majority of the cost of the upgrades but the customer will be invoiced 0.04 per square foot. Contact Loveland Water and Power, or visit the Platte River Power Authority...

163

Brunswick EMC - Residential Energy Efficiency and Solar Water...  

Open Energy Info (EERE)

insulation, and solar water heaters. The loans of up to 6,000 are available to homeowners served by BEMC for at least one year and who have a good credit history. Incentive...

164

City Water Light and Power - Residential Energy Efficiency Rebate...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

165

Columbia Water & Light - HVAC and Lighting Efficiency Rebates...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

166

City Water Light and Power - Commercial Energy Efficiency Rebate...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

167

Burbank Water & Power - Business Bucks Energy Efficiency Grant...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

168

Energy Efficiency Design Options for Residential Water Heaters: Economic Impacts on Consumers  

SciTech Connect

The U.S. Department of Energy (DOE) recently completed a rulemaking process in which it amended the existing energy efficiency standards for residential water heaters. A key factor in DOE?s consideration of new standards is the economic impacts on consumers. Determining such impacts requires a comparison of the additional first cost of energy efficiency design options with the savings in operating costs. This paper describes the method used to conduct the life-cycle cost (LCC) and payback period analysis for gas and electric storage water heaters. It presents the estimated change in LCC associated with more energy-efficient equipment, including heat pump electric water heaters and condensing gas water heaters, for a representative sample of U.S. homes. The study included a detailed accounting of installation costs for the considered design options, with a focus on approaches for accommodating the larger dimensions of more efficient water heaters. For heat pump water heaters, the study also considered airflow requirements, venting issues, and the impact of these products on the indoor environment. The results indicate that efficiency improvement relative to the baseline design reduces the LCC in the majority of homes for both gas and electric storage water heaters, and heat pump electric water heaters and condensing gas water heaters provide a lower LCC for homes with large rated volume water heaters.

Lekov, Alex; Franco, Victor; Meyers, Steve; Thompson, Lisa; Letschert, Virginie

2010-11-24T23:59:59.000Z

169

Improving the Water Efficiency of Cooling Production System  

E-Print Network (OSTI)

For most of the time, cooling towers (CTs) of cooling systems operate under partial load conditions and by regulating the air circulation with a variable frequency drive (VFD), significant reduction in the fan power can be achieved. In Kuwait and other counties of Arabian Peninsula, reduced airflow can lead to reduction in water consumption as well, since during the summer season, the dry bulb temperature of the ambient air is higher than the incoming hot water temperature, and the air undergoes sensible cooling. This paper presents the findings of a study conducted in the Avenues mall, Kuwait. Initially, the CTs operated only at high speed, and on a typical summer day nearly one fourth of the make-up water was used for self cooling of air. The study based on measured data revealed that the use of VFD can reduce the water wastage for self-cooling of air by as much as 75% and overall water consumption by 18.6% while keeping the cooling system performance at design level.

Maheshwari, G.; Al-Hadban, Y.; Al-Taqi, H. H.; Alasseri, R.

2010-01-01T23:59:59.000Z

170

McMinnville Water and Light - Residential Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

McMinnville Water and Light - Residential Energy Efficiency Rebate McMinnville Water and Light - Residential Energy Efficiency Rebate Program McMinnville Water and Light - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Appliances & Electronics Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Water Heating Program Info State Oregon Program Type Utility Rebate Program Rebate Amount Energy Star Homes: up to $1,180 Energy Star Manufactured Homes: $850 Clothes Washer: $20 - $70 Refrigerator: $15 Freezer: $15 Refrigerator/Freezer Decommissioning: $100 Electric Water Heater: $25 - $50, varies by warranty Heat Pump PTCS Tune-up: contact utility Weatherization Measures: contact utility Provider McMinnville Water and Light

171

National and Regional Water and Wastewater Rates For Use inCost-Benefit Models and Evaluations of Water Efficiency Programs  

Science Conference Proceedings (OSTI)

Calculating the benefits and costs of water conservation orefficiency programs requires knowing the marginal cost of the water andwastewater saved by those programs. Developing an accurate picture of thepotential cost savings from water conservation requires knowing the costof the last few units of water consumed or wastewater released, becausethose are the units that would be saved by increased water efficiency.This report describes the data we obtained on water and wastewater ratesand costs, data gaps we identified, and other issues related to using thedata to estimate the cost savings that might accrue from waterconservation programs. We identified three water and wastewater ratesources. Of these, we recommend using Raftelis Financial Corporation(RFC) because it: a) has the most comprehensive national coverage; and b)provides greatest detail on rates to calculate marginal rates. The figurebelow shows the regional variation in water rates for a range ofconsumption blocks. Figure 1A Marginal Rates of Water Blocks by Regionfrom RFC 2004Water and wastewater rates are rising faster than the rateof inflation. For example, from 1996 to 2004 the average water rateincreased 39.5 percent, average wastewater rate increased 37.8 percent,the CPI (All Urban) increased 20.1 percent, and the CPI (Water andSewerage Maintenance) increased 31.1 percent. On average, annualincreases were 4.3 percent for water and 4.1 percent for wastewater,compared to 2.3 percent for the All Urban CPI and 3.7 percent for the CPIfor water and sewerage maintenance. If trends in rates for water andwastewater rates continue, water-efficient products will become morevaluable and more cost-effective.

Fisher, Diane C.; Whitehead, Camilla Dunham; Melody, Moya

2006-09-01T23:59:59.000Z

172

Efficient Solar Concentrators: Affordable Energy from Water and Sunlight  

Science Conference Proceedings (OSTI)

Broad Funding Opportunity Announcement Project: Teledyne is developing a liquid prism panel that tracks the position of the sun to help efficiently concentrate its light onto a solar cell to produce power. Typically, solar tracking devices have bulky and expensive mechanical moving parts that require a lot of power and are often unreliable. Teledynes liquid prism panel has no bulky and heavy supporting partsinstead it relies on electrowetting. Electrowetting is a process where an electric field is applied to the liquid to control the angle at which it meets the sunlight above and to control the angle of the sunlight to the focusing lensthe more direct the angle to the focusing lens, the more efficiently the light can be concentrated to solar panels and converted into electricity. This allows the prism to be tuned like a radio to track the sun across the sky and steer sunlight into the solar cell without any moving mechanical parts. This process uses very little power and requires no expensive supporting hardware or moving parts, enabling efficient and quiet rooftop operation for integration into buildings.

None

2010-01-01T23:59:59.000Z

173

Reduce Overhead, Implement Energy Efficiency in Water/Wastewater  

E-Print Network (OSTI)

Through the Focus on Energy program in the State of Wisconsin we have been able to identify savings for industries in their water/wastewater treatment or distribution systems. Modifications required to realize savings resulted in reduced energy consumption and reduced cost to industry. Reduced cost is a pleasant benefit when the cost of utility bills comes off the bottom line and if the industry is working on a 5 percent margin the actual value of the savings could be considered to be 20 times its actual savings. Modifications can be made in wastewater treatment applications by adjusting dissolved oxygen (DO) levels in treatment process, modifying aeration system blowers, changing diffusers, and considering a DO automatic control system. In water systems, changes in pump operations by not throttling valves for control, adding variable speed drives to constant speed operations, and reducing pressure on systems where it will not adversely impact the process.

Cantwell, J. C.

2007-01-01T23:59:59.000Z

174

Highly efficient photochemical HCOOH production from CO{sub 2} and water using an inorganic system  

SciTech Connect

We have constructed a system that uses solar energy to react CO{sub 2} with water to generate formic acid (HCOOH) at an energy conversion efficiency of 0.15%. It consists of an AlGaN/GaN anode photoelectrode and indium (In) cathode that are electrically connected outside of the reactor cell. High energy conversion efficiency is realized due to a high quantum efficiency of 28% at 300 nm, attributable to efficient electron-hole separation in the semiconductor's heterostructure. The efficiency is close to that of natural photosynthesis in plants, and what is more, the reaction product (HCOOH) can be used as a renewable energy source.

Yotsuhashi, Satoshi; Hashiba, Hiroshi; Deguchi, Masahiro; Zenitani, Yuji; Hinogami, Reiko; Yamada, Yuka [Advanced Technology Research Laboratory, Panasonic Corporation, Soraku-gun, Kyoto 619-0237 (Japan); Deura, Momoko; Ohkawa, Kazuhiro [Department of Applied Physics, Tokyo University of Science, Shinjuku, Tokyo 162-8601 (Japan)

2012-12-15T23:59:59.000Z

175

Biology basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Biology basics Name: lamb Status: NA Age: NA Location: NA Country: NA Date: Around 1993 Question: What basic knowledge concerning biology do you think a colleg- bound HS...

176

Draft Guidance for the Implementation and Follow-up of Identified Energy and Water Efficiency Measures  

NLE Websites -- All DOE Office Websites (Extended Search)

Guidance 9Dec2010 Guidance 9Dec2010 i DRAFT Guidance for the Implementation and Follow-up of Identified Energy and Water Efficiency Measures in Covered Facilities (per 42 U.S.C. 8253 Subsection (f), Use of Energy and Water Efficiency Measures in Federal Buildings) December 9, 2010 I. PURPOSE ............................................................................................................................................ 1 II. BACKGROUND ................................................................................................................................. 1 A. Authority ................................................................................................................................. 1 B. Related DOE Guidance and Activity ...................................................................................... 1

177

TY RPRT T1 Alternative and Emerging Technologies for an Energy Efficient Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternative and Emerging Technologies for an Energy Efficient Water Alternative and Emerging Technologies for an Energy Efficient Water Efficient and Low Pollution Textile Industry A1 Ali Hasanbeigi KW energy efficient KW Low Emissions amp Efficient Industry KW textile industry AB p Emerging energy efficiency greenhouse gas GHG and pollution mitigation technologies will be crucial for the textile industry as it responds to population and economic growth that is expected to spur a rapid increase in textile consumption over the coming decades and a corresponding increase in the industry s absolute energy use and GHG and other pollutant emissions This report gives an overview of textile industry processes and compiles available information on the energy savings environmental and other benefits costs commercialization status and references for

178

Evaporative Cooling Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Evaporative Cooling Basics Evaporative Cooling Basics Evaporative Cooling Basics August 16, 2013 - 1:53pm Addthis Evaporative cooling uses evaporated water to naturally and energy-efficiently cool. An illustration of an evaporative cooler. In this example of an evaporative cooler, a small motor (top) drives a large fan (center) which blows air out the bottom and into your home. The fan sucks air in through the louvers around the box, which are covered with water-saturated absorbent material. How Evaporative Coolers Work There are two types of evaporative coolers: direct and indirect. Direct evaporative coolers, also called swamp coolers, work by cooling outdoor air by passing it over water-saturated pads, causing the water to evaporate into it. The 15°-40°F-cooler air is then directed into the home

179

Evaporative Cooling Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Evaporative Cooling Basics Evaporative Cooling Basics Evaporative Cooling Basics August 16, 2013 - 1:53pm Addthis Evaporative cooling uses evaporated water to naturally and energy-efficiently cool. An illustration of an evaporative cooler. In this example of an evaporative cooler, a small motor (top) drives a large fan (center) which blows air out the bottom and into your home. The fan sucks air in through the louvers around the box, which are covered with water-saturated absorbent material. How Evaporative Coolers Work There are two types of evaporative coolers: direct and indirect. Direct evaporative coolers, also called swamp coolers, work by cooling outdoor air by passing it over water-saturated pads, causing the water to evaporate into it. The 15°-40°F-cooler air is then directed into the home

180

High Efficiency R-744 Commercial Heat Pump Water Heaters  

SciTech Connect

The project investigated the development and improvement process of a R744 (CO2) commercial heat pump water heater (HPWH) package of approximately 35 kW. The improvement process covered all main components of the system. More specific the heat exchangers (Internal heat exchanger, Evaporator, Gas cooler) as well as the expansion device and the compressor were investigated. In addition, a comparison to a commercially available baseline R134a unit of the same capacity and footprint was made in order to compare performance as well as package size reduction potential.

Elbel, Dr. Stefan W.; Petersen, Michael

2013-04-25T23:59:59.000Z

Note: This page contains sample records for the topic "water efficiency basics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Water-Use Efficiency of the Terrestrial Biosphere: A Model Analysis Focusing on Interactions between the Global Carbon and Water Cycles  

Science Conference Proceedings (OSTI)

Carbon and water cycles are intimately coupled in terrestrial ecosystems, and water-use efficiency (WUE; carbon gain at the expense of unit water loss) is one of the key parameters of ecohydrology and ecosystem management. In this study, the ...

Akihiko Ito; Motoko Inatomi

2012-04-01T23:59:59.000Z

182

Efficient Irrigation for Water Conservation in the Rio Grande Basin: 2010/2011 Progress and Accomplishments  

E-Print Network (OSTI)

Since 2001, the Efficient Irrigation for Water Conservation in the Rio Grande Basin Federal Initiative-known as the Rio Grande Basin Initiative (RGBI)-has saved more than 5 million acre-feet of water. Researchers, Extension specialists, and county Extension agents from Texas AgriLife Research, the Texas AgriLife Extension Service, and the New Mexico State University Agricultural Experiment Station and Cooperative Extension Service work with local irrigation districts, agricultural producers, homeowners, and regional agencies to meet present and future water demand through water conservation and efficient irrigation measures. This project is funded through the U.S. Department of Agriculture National Institute of Food and Agriculture and is administered by the Texas Water Resources Institute and the New Mexico State University Water Task Force.

Kalisek, D.; Harris, B. L.; Runyan, C.; DeMouche, L.

2011-06-01T23:59:59.000Z

183

Efficient Irrigation for Water conservation in the Rio Grande Basin: 2010-2011 Progress and Accomplishments  

E-Print Network (OSTI)

Since 2001, the Efficient Irrigation for Water Conservation in the Rio Grande Basin Federal Initiative known as the Rio Grande Basin Initiative (RGBI)has saved more than 5 million acre-feet of water. Researchers, Extension specialists, and county Extension agents from Texas AgriLife Research, the Texas AgriLife Extension Service, and the New Mexico State University Agricultural Experiment Station and Cooperative Extension Service work with local irrigation districts, agricultural producers, homeowners, and regional agencies to meet present and future water demand through water conservation and efficient irrigation measures. This project is funded through the U.S. Department of Agriculture National Institute of Food and Agriculture and is administered by the Texas Water Resources Institute and the New Mexico State University Water Task Force.

Kalisek, D.; Harris, B.L.; Runyan, C.; DeMouche, L.

2011-06-21T23:59:59.000Z

184

Water/Wastewater Engineering Report (High Efficiency Pump/Motor Replacement - M2 Model)  

E-Print Network (OSTI)

Pumping water or wastewater is the largest use of electricity for a municipal water supply or wastewater treatment plant. Increasing the overall efficiency of the pumping system can achieve significant energy savings. Overall pump system efficiency depends on the efficiency of the motor, the pump, and the design of the piping layout. The model developed in this document focuses on improvements mostly to the pumping system rather than a municipal piping system. Furthermore, this model primarily addresses electric motor-driven pumps, and does not include the pumps driven with gasoline or diesel engines.

Liu, Z.; Brumbelow, K.; Haberl, J. S.

2006-10-30T23:59:59.000Z

185

Review of International Methods of Test to Rate the Efficiency of Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Review of International Methods of Test to Rate the Efficiency of Water Review of International Methods of Test to Rate the Efficiency of Water Heaters Title Review of International Methods of Test to Rate the Efficiency of Water Heaters Publication Type Report LBNL Report Number LBNL-5187E Year of Publication 2011 Authors Lutz, James D. Subsidiary Authors Energy Analysis Department Document Number LBNL-5187E Pagination 21 Date Published January Publisher Lawrence Berkeley National Laboratory City Berkeley ISBN Number LBNL-5187E Abstract The American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE) Standards Project Committee (SPC) 118.2, Method of Testing for Rating Residential Water Heaters, is seeking to improve the test procedure used for measuring the energy efficiency of residential gas and electric water heaters. ASHRAE is seeking to develop an improved test procedure in part to support the U.S. Department of Energy's (DOE's) desire to update and amend the water heater test procedure underlying the minimum energy efficiency standards for water heaters. DOE's test procedures are often based on or reference ASHRAE standards.DOE's most recent minimum energy performance standards (MEPS) for residential water heaters were promulgated in 2010.[1] The associated test procedures are stipulated in the Code of Federal Regulations (CFR).[2] Although DOE currently is conducting a rulemaking to review and possibly amend the test procedures for residential water heaters, that rulemaking pertains to accounting for energy consumed during standby and off modes. In its notice of proposed rulemaking published in the Federal Register on August 30, 2010, DOE tentatively concluded that the test procedure for water heaters already fully accounts for and incorporates the energy consumed during standby and off modes [3].

186

Energy Basics: Industrial Energy Efficiency  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

fuels supplied to a manufacturing plant from off-site power plants, gas companies, and fuel distributors. Energy then flows to either a central energy generation utility system or...

187

Evaluation of Irrigation Efficiency Strategies for Far West Texas: Feasibility, Water Savings And Cost Considerations  

E-Print Network (OSTI)

ABSTRACT Texas recently completed its second round of nationally recognized water planning. The Water Plan for the state addresses how each of 16 regions will supply projected water demands for the next 50 years. Water availability in these plans is based on supply conditions experienced during the drought of record, that is, the severe drought conditions in the 1950's. In arid Far West Texas, Region E in the State Plan, agriculture is projected to have the largest unmet demand for water during drought. This situation is similar to many other irrigated agricultural production regions in the U.S. and world that rely upon limited and variable water supplies. In the Far West Texas (Region E) 50-year Water Plan, the primary strategy proposed to mitigate the impact of insufficient water supplies for agriculture is implementation of water conservation best management practices. However, the conservation practices identified were generic and gave a wide range of potential water savings compiled from many other sources and for other locations and conditions. The feasibility and amount of water saved by any given conservation practice varies substantially across regions, specific location, type and quality of water supplies, delivery systems and operational considerations, crops produced, irrigation technologies in use, and location specific costs and returns of implementation. The applicability to and actual water savings of the proposed practices in Far West Texas were generally unknown. This report evaluates the applicability, water savings potential, implementation feasibility and cost effectiveness of seventeen irrigated agriculture water conservation practices in Far West Texas during both drought and full water supply conditions. Agricultural, hydrologic, engineering, economic, and institutional conditions are identified and examined for the three largest irrigated agricultural areas which account for over 90% of total irrigated agricultural acreage in Far West Texas. Factors considered in evaluating conservation strategies included water sources, use, water quality, cropping patterns, current irrigation practices, delivery systems, technological alternatives, market conditions and operational constraints. The overall conclusion is that very limited opportunities exist for significant additional water conservation in Far West Texas irrigated agriculture. The primary reasons can be summarized by: the most effective conservation practices have already been implemented and associated water savings realized throughout the region; reduced water quality and the physical nature of gravity flow delivery limit or prohibit implementation of higher efficiency pressurized irrigation systems; increased water use efficiency upstream has the net effect of reducing water supplies and production of downstream irrigators; and, water conservation implementation costs for a number of practices exceed the agricultural value and benefits of any water saved. Those practices that suggest economic efficient additional water conservation included lining or pipelining district canals and the very small potential for additional irrigation scheduling and tail water recovery systems. In nearly all cases, these practices have been adopted to a large extent if applicable, further emphasizing the very limited opportunities for additional conservation. If all of these strategies were implemented, the water conserved would satisfy less than 25% of the projected unmet agricultural water demand in 2060 during drought-of-record conditions Overall, there are no silver bullets for agricultural water conservation in Far West Texas short of taking irrigated land out of production when water supplies are limited.

Michelsen, Ari; Chavez, Marissa; Lacewell, Ron; Gilley, James; Sheng, Zhuping

2009-06-01T23:59:59.000Z

188

Stay Above Water with an Efficient Swimming Pool | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Above Water with an Efficient Swimming Pool Above Water with an Efficient Swimming Pool Stay Above Water with an Efficient Swimming Pool August 10, 2009 - 10:38am Addthis Allison Casey Senior Communicator, NREL All eyes were on the pool recently for swimming's 2009 World Championships in Rome. As a former competitive swimmer (though I was a dog-paddler compared to the likes of Michael Phelps and Ariana Kukors), these events hold a special place in my heart, and I managed to catch a few exciting moments in the competition. I'm no longer involved in the world of swimming, but I can only imagine that interest in the sport has skyrocketed since last year's thrilling Olympics in Beijing. Maybe you or your children were inspired to get serious about swimming; maybe you've even decided to install a pool at your

189

Federal Energy and Water Management Award Winner 22nd Operations Group Fuel Efficiency Office  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency Efficiency Office U.S. Air Force McConnell Air Force Base, Kansas During FY 2012, the 22nd Operations Group Fuel Efficiency Office (FEO) designed and implemented multiple measures, including a focus on institutional culture change, to reduce inefficiency in fuel management of the KC-135 aircraft and save the Air Force $4.3 million during a 42 percent rise in local sorties (the deployment of aircraft for missions of national defense or aircrew proficiency). These efforts included reducing KC-135 landing fuel by 5000 lb per sortie to save 1.94 million gallons per year; changing the KC-135 standard landing configuration to save 50 lb of fuel per approach; and implementing a new training configuration to reduce aircraft basic weight by 1,600 lb. The FEO also incorporated Mission Index Flying

190

Energy Basics: Hydrogen Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Hydrogen Fuel Hydrogen is a clean fuel that, when consumed, produces only water. Hydrogen can be produced from a variety of domestic sources, such as coal,...

191

NREL: Learning - Hydrogen Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Basics Hydrogen is a clean-burning fuel, and when combined with oxygen in a fuel cell, it produces heat and electricity with only water vapor as a by-product. But hydrogen...

192

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

E-Print Network (OSTI)

EPRI. 1997. Quality Energy Efficiency Retrofits for WaterIndustry. Office of Energy Efficiency and Renewable Energy,Finding Money for Your Energy Efficiency Projects. (A Primer

Brown, Moya Melody, Camilla Dunham Whitehead, Rich

2011-01-01T23:59:59.000Z

193

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

E-Print Network (OSTI)

31, 2010. ) U.S. DOE Energy Efficiency & Renewable Energy (3, 2010. ) Northwest Energy Efficiency Alliance, ElectricEPRI. 1997. Quality Energy Efficiency Retrofits for Water

Brown, Moya Melody, Camilla Dunham Whitehead, Rich

2011-01-01T23:59:59.000Z

194

Federal Energy Management Program: Federal Requirements for Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Federal Requirements for Water Efficiency to someone by E-mail Share Federal Energy Management Program: Federal Requirements for Water Efficiency on Facebook Tweet about Federal Energy Management Program: Federal Requirements for Water Efficiency on Twitter Bookmark Federal Energy Management Program: Federal Requirements for Water Efficiency on Google Bookmark Federal Energy Management Program: Federal Requirements for Water Efficiency on Delicious Rank Federal Energy Management Program: Federal Requirements for Water Efficiency on Digg Find More places to share Federal Energy Management Program: Federal Requirements for Water Efficiency on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance Greenhouse Gases Water Efficiency Basics

195

Energy Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

INDUSTRIAL TECHNOLOGIES Industrial Energy Efficiency Basics More Additional Links Glossary of Energy-Related Terms Here you'll find a glossary of energy-related terms. Related...

196

An Accurate and Efficient Finite-Element Global Model of the Shallow-Water Equations  

Science Conference Proceedings (OSTI)

In Ct and Staniforth the efficiency of a semi-implicit spectral model of the shallow-water primitive equations was significantly improved by replacing the usual three-time-level Eulerian treatment of advection by a two-time-level semi-...

Jean Ct; Andrew Staniforth

1990-12-01T23:59:59.000Z

197

An Efficient Method for Computing the Absorption of Solar Radiation by Water Vapor  

Science Conference Proceedings (OSTI)

An efficient method has been developed to compute the absorption of solar radiation by water vapor. The method is based on the molecular line parameters compiled by McClatchey et al. (1973) and makes use of the far-wing scaling approximation and ...

Ming-Dah Chou; Albert Arking

1981-04-01T23:59:59.000Z

198

Energy Basics: Evaporative Cooling  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

absorbent material. Evaporative cooling uses evaporated water to naturally and energy-efficiently cool. How Evaporative Coolers Work There are two types of evaporative...

199

Lesson 1 Energy Basics ENERGY BASICS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Table of Contents Table of Contents Lesson 1 - Energy Basics Lesson 2 - Electricity Basics Lesson 3 - Atoms and Isotopes Lesson 4 - Ionizing Radiation Lesson 5 - Fission, Chain Reactions Lesson 6 - Atom to Electricity Lesson 7 - Waste from Nuclear Power Plants Lesson 8 - Concerns Lesson 9 - Energy and You 1 Lesson 1 Energy Basics ENERGY BASICS What is energy? Energy is the ability to do work. But what does that really mean? You might think of work as cleaning your room, cutting the grass, or studying for a test. And all these require energy. To a scientist, "work" means something more exact. Work is causing a change. It can be a change in position, like standing up or moving clothes from the floor to the laundry basket. It can be a change in temperature, like heating water for a cup

200

Pacific Northwest National Laboratory Grounds Maintenance: Best Management Practice Case Studies #4 and #5 - Water Efficient Landscape and Irrigation (Brochure)  

SciTech Connect

FEMP Water Efficiency Best Management Practices #4 and #5 Case Study: Overview of the Pacific Northwest National Laboratory grounds maintenance program and results.

Not Available

2009-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "water efficiency basics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Hydropower Resource Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

potential from the EERE Wind and Water Power Technologies Office. Addthis Related Articles Hydropower Technology Basics Glossary of Energy-Related Terms Microhydropower Basics...

202

Improving Energy Efficiency and Enabling Water Recycle in Biorefineries Using Bioelectrochemical Cells.  

SciTech Connect

Improving biofuel yield and water reuse are two important issues in further development of biorefineries. The total energy content of liquid fuels (including ethanol and hydrocarbon) produced from cellulosic biomass via biochemical or hybrid bio-thermochemical routes can vary from 49% to 70% of the biomass entering the biorefinery, on an energy basis. Use of boiler for combustion of residual organics and lignin results in significant energy and water losses. An alternate process to improve energy recovery from the residual organic streams is via use of bioelectrochemical systems such as microbial fuel cells (MFCs) microbial electrolysis cells (MECs). The potential advantages of this alternative scheme in a biorefinery include minimization of heat loss and generation of a higher value product, hydrogen. The need for 5-15 gallons of water per gallon of ethanol can be reduced significantly via recycle of water after MEC treatment. Removal of inhibitory byproducts such as furans, phenolics and acetate in MFC/MECs to generate energy, thus, has dual advantages including improvements in energy efficiency and ability to recycle water. Conversion of the sugar- and lignin- degradation products to hydrogen is synergistic with biorefinery hydrogen requirements for upgrading F-T liquids and other byproducts to high-octane fuels and/or high value products. Some of these products include sorbitol, succinic acid, furan and levulinate derivatives, glycols, polyols, 1,4-butenadiol, phenolics polymers, etc. Potential process alternatives utilizing MECs in biorefineries capable of improving energy efficiency by up to 30% are discussed.

Borole, Abhijeet P [ORNL

2010-01-01T23:59:59.000Z

203

Kitchen Appliance Upgrades Improve Water Efficiency at DOD Exchange Facilities: Best Management Practice Case Study #11: Commercial Kitchen Equipment (Brochure)  

SciTech Connect

The Exchange, formerly the Army and Air Force Exchange Service (AAFES), is a joint military activity and the U.S. Department of Defense?s (DOD) oldest and largest retailer. The Exchange is taking a leadership role in water efficiency improvements in their commercial kitchens by integrating water efficiency concepts into the organization?s overall sustainability plan and objectives.

Not Available

2011-09-01T23:59:59.000Z

204

"Nanoengineered Surfaces for Efficiency Enhancements in Energy and Water",  

NLE Websites -- All DOE Office Websites (Extended Search)

October 24, 2012, 4:15pm October 24, 2012, 4:15pm Colloquia MBG Auditorium "Nanoengineered Surfaces for Efficiency Enhancements in Energy and Water", Professor Kripa Varansi, Massachusetts Institute of Technology Thermal-fluid-surface interactions are ubiquitous in multiple industries including Energy, Water, Agriculture, Transportation, Electronics Cooling, Buildings, etc. Over the years, these systems have been designed for increasingly higher efficiency using incremental engineering approaches that utilize system-level design trade-offs. These system-level approaches are, however, bound by the fundamental constraint of the nature of the thermal-fluid-surface interactions, where the largest inefficiencies occur. In this talk, we show how surface/interface morphology and chemistry can be

205

Addressing the efficiency of the energy transfer to the water flow by underwater electrical wire explosion  

SciTech Connect

Experimental and hydrodynamic simulation results of submicrosecond time scale underwater electrical explosions of planar Cu and Al wire arrays are presented. A pulsed low-inductance generator having a current amplitude of up to 380 kA was used. The maximum current rise rate and maximum power achieved during wire array explosions were dI/dt<=830 A/ns and approx10 GW, respectively. Interaction of the water flow generated during wire array explosion with the target was used to estimate the efficiency of the transfer of the energy initially stored in the generator energy to the water flow. It was shown that efficiency is in the range of 18%-24%. In addition, it was revealed that electrical explosion of the Al wire array allows almost double the energy to be transferred to the water flow due to efficient combustion of the Al wires. The latter allows one to expect a significant increase in the pressure at the front of converging strong shock waves in the case of cylindrical Al wire array underwater explosion.

Efimov, S.; Gurovich, V. Tz.; Bazalitski, G.; Fedotov, A.; Krasik, Ya. E. [Physics Department, Technion, Haifa 32000 (Israel)

2009-10-01T23:59:59.000Z

206

Cost-efficient monitoring of water quality in district heating systems This article examines the monitoring strategy for water quality in a large Danish district  

E-Print Network (OSTI)

Cost-efficient monitoring of water quality in district heating systems This article examines the monitoring strategy for water quality in a large Danish district heating system ­ and makes a proposal for a technical and economic improvement. Monitoring of water quality in district heating systems is necessary

207

Best Practice for Energy Efficient Cleanrooms: Cooling tower and condenser water optimization  

E-Print Network (OSTI)

condenser water optimization Tengfang Xu Contents HVAC WATERHVAC Water Systems Cooling tower and condenser water optimization

Xu, Tengfang

2005-01-01T23:59:59.000Z

208

XHTML Basic  

E-Print Network (OSTI)

The XHTML Basic document type includes the minimal set of modules required to be an XHTML host language document type, and in addition it includes images, forms, basic tables, and object support. It is designed for Web clients that do not support the full set of XHTML features; for example, Web clients such as mobile phones, PDAs, pagers, and settop boxes. The document type is rich enough for content authoring. XHTML Basic is designed as a common base that may be extended. For example, an event module that is more generic than the traditional HTML 4 event system could be added or it could be extended by additional modules from XHTML Modularization such as the Scripting Module. The goal of XHTML Basic is to serve as a common language supported by various kinds of user agents. The document type definition is implemented using XHTML modules as defined in "Modularization of XHTML" [XHTMLMOD [p.9] ]. 19 Dec 2000 08:40 1 XHTML Basic Status of this Document This section describes the status of this document at the time of its publication. Other documents may supersede this document. The latest status of this document series is maintained at the W3C. This document has been reviewed by W3C Members and other interested parties and has been endorsed by the Director as a W3C Recommendation. It is a stable document and may be used as reference material or cited as a normative reference from another document. W3C's role in making the Recommendation is to draw attention to the specification and to promote its widespread deployment. This enhances the functionality and interoperability of the Web. This document has been produced by the W3C HTML Working Group (members only) as part of the W3C HTML Activity. It integrates feedback from the WAP Forum and members of the W3C Mobile Acce...

Mark Baker; Masayasu Ishikawa; Shinichi Matsui; Peter Stark; Sun Microsystems; Masayasu Ishikawa Wc; Shinichi Matsui Panasonic; Peter Stark Ericsson; Ted Wugofski; Openwave Systems

2000-01-01T23:59:59.000Z

209

Fuel Cell Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Cell Vehicle Basics Fuel Cell Vehicle Basics Fuel Cell Vehicle Basics August 20, 2013 - 9:11am Addthis Photo of a blue car with 'The Road to Hydrogen' written on it, filling up at a hydrogen fueling station. Fuel cell vehicles, powered by hydrogen, have the potential to revolutionize our transportation system. They are more efficient than conventional internal combustion engine vehicles and produce no harmful tailpipe exhaust-their only emission is water. Fuel cell vehicles and the hydrogen infrastructure to fuel them are in an early stage of development. The U.S. Department of Energy is leading government and industry efforts to make hydrogen-powered vehicles an affordable, environmentally friendly, and safe transportation option. Visit the Alternative Fuels and Advanced Vehicles Data Center to learn more

210

Transportation Fuel Basics - Hydrogen | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Fuel Basics - Hydrogen Transportation Fuel Basics - Hydrogen Transportation Fuel Basics - Hydrogen August 19, 2013 - 5:45pm Addthis Hydrogen (H2) is a potentially emissions-free alternative fuel that can be produced from domestic resources. Although not widely used today as a transportation fuel, government and industry research and development are working toward the goal of clean, economical, and safe hydrogen production and hydrogen-powered fuel cell vehicles. Hydrogen is the simplest and most abundant element in the universe. However, it is rarely found alone in nature. Hydrogen is locked up in enormous quantities in water (H2O), hydrocarbons (such as methane, CH4), and other organic matter. Efficiently producing hydrogen from these compounds is one of the challenges of using hydrogen as a fuel. Currently,

211

Transportation Fuel Basics - Hydrogen | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Fuel Basics - Hydrogen Transportation Fuel Basics - Hydrogen Transportation Fuel Basics - Hydrogen August 19, 2013 - 5:45pm Addthis Hydrogen (H2) is a potentially emissions-free alternative fuel that can be produced from domestic resources. Although not widely used today as a transportation fuel, government and industry research and development are working toward the goal of clean, economical, and safe hydrogen production and hydrogen-powered fuel cell vehicles. Hydrogen is the simplest and most abundant element in the universe. However, it is rarely found alone in nature. Hydrogen is locked up in enormous quantities in water (H2O), hydrocarbons (such as methane, CH4), and other organic matter. Efficiently producing hydrogen from these compounds is one of the challenges of using hydrogen as a fuel. Currently,

212

Fuel Cell Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Basics Vehicle Basics Fuel Cell Vehicle Basics August 20, 2013 - 9:11am Addthis Photo of a blue car with 'The Road to Hydrogen' written on it, filling up at a hydrogen fueling station. Fuel cell vehicles, powered by hydrogen, have the potential to revolutionize our transportation system. They are more efficient than conventional internal combustion engine vehicles and produce no harmful tailpipe exhaust-their only emission is water. Fuel cell vehicles and the hydrogen infrastructure to fuel them are in an early stage of development. The U.S. Department of Energy is leading government and industry efforts to make hydrogen-powered vehicles an affordable, environmentally friendly, and safe transportation option. Visit the Alternative Fuels and Advanced Vehicles Data Center to learn more

213

Energy Basics: Microhydropower Turbines, Pumps, and Waterwheels  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Large-Scale Hydropower Microhydropower Water Conveyance &...

214

Analysis of space heating and domestic hot water systems for energy-efficient residential buildings  

DOE Green Energy (OSTI)

An analysis of the best ways of meeting the space heating and domestic hot water (DHW) needs of new energy-efficient houses with very low requirements for space heat is provided. The DHW load is about equal to the space heating load in such houses in northern climates. The equipment options which should be considered are discussed, including new equipment recently introduced in the market. It is concluded that the first consideration in selecting systems for energy-efficient houses should be identification of the air moving needs of the house for heat distribution, heat storage, ventilation, and ventilative cooling. This is followed, in order, by selection of the most appropriate distribution system, the heating appliances and controls, and the preferred energy source, gas, oil, or electricity.

Dennehy, G

1983-04-01T23:59:59.000Z

215

National and Regional Water and Wastewater Rates For Use in Cost-Benefit Models and Evaluations of Water Efficiency Programs  

E-Print Network (OSTI)

the savings realized by water conservation or efficiencythe benefits and costs of water conservation or efficiencycost savings from water conservation requires knowing the

Fisher, Diane C.; Whitehead, Camilla Dunham; Melody, Moya

2008-01-01T23:59:59.000Z

216

Development of High Efficiency Carbon Dioxide Commercial Heat Pump Water Heater  

Science Conference Proceedings (OSTI)

Although heat pump water heaters are today widely accepted in both Japan and Europe, where energy costs are high and government incentives for their use exist, acceptance of such products in the US has been limited. While this trend is slowly changing with the introduction of heat pump water heaters into the residential market, but acceptance remains low in the commercial sector. The objective of the presented work is the development of a high efficiency R744 heat pump water heater for commercial applications with effective utilization of the cooling capability for air conditioning and/or refrigeration. The ultimate goal is to achieve total system COP of up to 8. This unit will be targeted at commercial use where some cooling load is typically needed year round, such as restaurants, hotels, nursing homes, and hospitals. This paper presents the performance results from the development of four R744 commercial heat pump water heater packages of approximately 35 kW and comparison to a commercially available baseline R134a unit of the same capacity and footprint. In addition, the influences of an internal heat exchanger and an enhanced evaporator on the system performance are described and recommendations are made for further improvements of the R744 system.

Michael PETERSEN; Chad D. BOWERS; Stefan ELBEL; Pega HRNJAK

2012-07-01T23:59:59.000Z

217

Efficient recovery of nano-sized iron oxide particles from synthetic acid-mine drainage (AMD) water using fuel cell  

E-Print Network (OSTI)

Efficient recovery of nano-sized iron oxide particles from synthetic acid-mine drainage (AMD) water electricity. Here we show that this approach can also be used as a technique to generate spherical nano

218

Energy Efficiency Design Options for Residential Water Heaters: Economic Impacts on Consumers  

E-Print Network (OSTI)

Document (TSD): Energy Efficiency Standards for Consumerthe Assistant Secretary for Energy Efficiency and RenewableSummer Study on Energy Efficiency in Buildings. Asilomar,

Lekov, Alex

2011-01-01T23:59:59.000Z

219

Energy Efficiency Design Options for Residential Water Heaters: Economic Impacts on Consumers  

E-Print Network (OSTI)

additional first cost of energy efficiency design optionsadditional first cost of energy efficiency design optionsfor which higher energy efficiency is cost-effective, DOE

Lekov, Alex

2011-01-01T23:59:59.000Z

220

Basic Bacteria  

NLE Websites -- All DOE Office Websites (Extended Search)

Basic Bacteria Basic Bacteria Name: Valerie Location: N/A Country: N/A Date: N/A Question: I'm doing a science project on bacteria. WHat I'm doing is washing forks with different dishwashing liquids, then wiping any remaining bacteria on to Agar petri dishes. Then incubating it and seeing which soap removed the most. My question is what kind of bacteria would be growing? and also do I just count the colonies to compare? and how long and at what temperature should I incubate this bacteria? Thank you very much for your time. I'll be looking forward to your response. Replies: The temperature is easy: 37 degrees C is optimal for many bacteria. The medium will determine which bacteria grow best. So if you don't see growth on one medium, but you see growth on another, it tells you that there is a difference in nutrients present in those media that is required for that bacteria. Look at your plates after 24 hr, then put them back in the incubator (keep them sterile) and look at them after 48 hrs--do you see the difference? any slow-growing bacteria visible or did the fast-growing take over the complete plate?

Note: This page contains sample records for the topic "water efficiency basics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Efficient model-based leak detection in boiler steam-water systems Xi Sun, Tongwen Chen *, Horacio J. Marquez  

E-Print Network (OSTI)

Efficient model-based leak detection in boiler steam-water systems Xi Sun, Tongwen Chen *, Horacio detection in boiler steam-water systems. The algorithm has been tested using real industrial data from Syncrude Canada, and has proven to be effective in detection of boiler tube or steam leaks; proper

Marquez, Horacio J.

222

Water Use Efficiency in Plant Growth and Ambient Carbon Dioxide Level  

E-Print Network (OSTI)

This report examines the validity and explores the practical implications of the proposition that CO2 enrichment of the leaf environment enhances plant growth and, simultaneously decreases plant water use. A theoretical analysis of the water and carbon dioxide balance of plant leaves was made in the form of a computer program based upon known physiological facts. It predicts significant increases in water use efficiency by plants as CO is enriched, the size of the increase depending upon the external conditions. Experimental tests were conducted in an environmental simulator with stands of soybean, pepper and southern pea plants. The predictions of the model were substantially verified, with CO2 concentrations ranging from normal to six-fold normal. Although CO2 is obviously an ideal antitranspirant, the efficacy of its release in open stands is doubtful in view of plausible economic factors. Butt in enclosures this would be a different matter, and for such situations the present report gives a scientific basis for engineering and system analysis.

van Bavel, C. H. M.

1972-06-01T23:59:59.000Z

223

Sunspace basics  

DOE Green Energy (OSTI)

Anyone who lives in a home with a sunspace will tell you that the sunspace is the most enjoyable room in the house. Many times the homeowner`s only regret is that the sunspace is not larger. Although aesthetics often drive the decision to add a sunspace or include one in a new home design, sunspaces can also provide supplemental space heating and a healthy environment for plants and people. In fact, a well-designed sunspace can provide up to 60% of a home`s winter heating requirements. This publication addresses basic elements of sunspace design; design considerations for supplemental space heating, growing plants, and use as a living space; design guidelines including siting, heat distribution, and glazing angles; and major sunspace components including glazing options, thermal mass, insulation, and climate controls. A list of sources for more information is also provided.

Not Available

1994-11-01T23:59:59.000Z

224

A NOVEL CONCEPT FOR REDUCING WATER USAGE AND INCREASING EFFICIENCY IN POWER GENERATION  

DOE Green Energy (OSTI)

The objective of the project is to apply a unique ice thermal storage (ITS) technology to cooling the intake air to gas turbines used for power generation. In Phase I, the work includes theoretical analysis, computer simulation, engineering design and cost evaluation of this novel ITS technology. The study includes two typical gas turbines (an industrial and an aeroderivative type gas turbine) operated at two different geographic locations: Phoenix, AZ and Houston, TX. Simulation runs are performed to generate data for both power output (KW) and heat rate (Btu/KWh) as well as water recovery (acre ft/yr) in terms of intake air temperature and humidity based on weather data and turbine performance curves. Preliminary engineering design of a typical equipment arrangement for turbine inlet air-cooling operation using the ITS system is presented. A cost analysis has been performed to demonstrate the market viability of the ITS technology. When the ITS technology is applied to gas turbines, a net power gain up to 40% and a heat rate reduction as much as 7% can be achieved. In addition, a significant amount of water can be recovered (up to 200 acre-ft of water per year for a 50 MW turbine). The total cost saving is estimated to be $500,000/yr for a 50 MW gas turbine generator. These results have clearly demonstrated that the use of ITS technology to cool the intake-air to gas turbines is an efficient and cost effective means to improve the overall performance of its power generation capacity with an important added benefit of water recovery in power plant operation. Thus, further development of ITS technology for commercial applications in power generation, particularly in coal-based IGCC power plants is warranted.

Shiao-Hung Chiang; Guy Weismantel

2004-03-01T23:59:59.000Z

225

National and Regional Water and Wastewater Rates For Use in Cost-Benefit Models and Evaluations of Water Efficiency Programs  

E-Print Network (OSTI)

excel/aeotab_19.xls Fisher, D.C. , and J.D. Lutz. Water andWaste Water Tariffs for New Residential Construction inNational Association of Clean Water Agencies. 2005 Financial

Fisher, Diane C.; Whitehead, Camilla Dunham; Melody, Moya

2008-01-01T23:59:59.000Z

226

The effect of efficiency standards on water use and water heating energy use in the US: A detailed end-use treatment  

SciTech Connect

Water heating is an important end-use, accounting for roughly 16% of total primary energy consumption in the US residential sector. Recently enacted efficiency standards on water heaters and hot water-using equipment (e.g., dishwashers, clothes washers, showerheads, and faucets) will substantially affect the energy use of water heaters in the future. Assessment of current and future utility programs and government policies requires that regulators, resource planners, and forecasters understand the effects of these regulations. In order to quantify these impacts, this paper presents a detailed end-use breakdown of household hot and cold water use developed for the US Department of Energy. This breakdown is based on both previous studies and new data and analysis. It is implemented in a spreadsheet forecasting framework, which allows significant flexibility in specifying end-use demands and linkages between water heaters and hot water-using appliances. We disaggregate total hot and cold water use (gallons per day) into their component parts: showers, baths, faucets (flow dominated and volume dominated), toilets, landscaping/other, dishwashers, and clotheswashers. We then use the end-use breakdown and data on equipment characteristics to assess the impacts of current efficiency standards on hot water use and water heater energy consumption.

Koomey, J.G.; Dunham, C.; Lutz, J.D.

1994-05-01T23:59:59.000Z

227

National and Regional Water and Wastewater Rates For Use in Cost-Benefit Models and Evaluations of Water Efficiency Programs  

E-Print Network (OSTI)

2006 California Water Rate Survey. 2006. Black & VeatchRegional Water and Wastewater Rates For Use in Cost-Benefit5 Calculated Marginal Rates for

Fisher, Diane C.; Whitehead, Camilla Dunham; Melody, Moya

2008-01-01T23:59:59.000Z

228

Best Practice for Energy Efficient Cleanrooms: Control of Chilled Water System  

E-Print Network (OSTI)

loop chilled water pumps, condenser water pumps, and coolingsuch as 55F, and lower condenser water temperatures such assizing ? Cooling tower and condenser optimization ? Variable

Xu, Tengfang

2005-01-01T23:59:59.000Z

229

Best Practice for Energy Efficient Cleanrooms: Cooling tower and condenser water optimization  

E-Print Network (OSTI)

Cleanrooms: Cooling Tower and Condenser Water OptimizationCleanrooms: Cooling tower and condenser water optimization2 Cooling tower and condenser water

Xu, Tengfang

2005-01-01T23:59:59.000Z

230

Energy Basics: Solar Liquid Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Solar Liquid Heating Solar liquid heating systems use a collector with a heat transfer or "working" fluid such as water, antifreeze (usually non-toxic propylene...

231

Fact Sheet on Water Use in the United States The United States continues to improve water-use efficiency.  

E-Print Network (OSTI)

time, the economic productivity of water ­ measured as dollars of GDP produced with every hundred the dollars of gross domestic product (GDP) produced with every 100 gallons of water used. The U.S. now produces far more wealth, with far less water, than at any time in the past. Not all the news about water

232

Microelectronics Plant Water Efficiency Improvements at Sandia National Laboratories: Best Management Practice, Case Study #13 - Other Water Use (Brochure)  

Science Conference Proceedings (OSTI)

Overview of alternative financing mechanisms avaiable to Federal agencies to fund renewable energy and energy efficiency projects.

Not Available

2009-08-01T23:59:59.000Z

233

Daylighting Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Daylighting Basics Daylighting Basics Daylighting Basics August 16, 2013 - 11:24am Addthis Energy 101: Daylighting Basics This video explains how homeowners and businesses can use highly efficient, strategically placed windows to save money. Text Version Daylighting is the use of windows and skylights to bring sunlight into buildings. Daylighting in businesses and commercial buildings can result in substantial savings on electric bills, and not only provides a higher quality of light but also improves productivity and health. Daylighting in schools has even improved student grades and attendance. Today's highly energy-efficient windows, as well as advances in lighting design, allow efficient use of windows to reduce the need for artificial lighting during daylight hours without causing heating or cooling problems.

234

Basic Research Needs for Solar Energy Utilization  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Cover: the Cover: One route to harvesting the energy of the sun involves learning to mimic natural photosynthesis. Here, sunlight falls on a porphyrin, one member of a family of molecules that includes the chlorophylls, which play a central role in capturing light and using its energy for photosynthesis in green plants. Efficient light-harvesting of the solar spectrum by porphyrins and related molecules can be used to power synthetic molecular assemblies and solid- state devices - applying the principles of photosynthesis to the produc- tion of hydrogen, methane, ethanol, and methanol from sunlight, water, and atmospheric carbon dioxide. BASIC RESEARCH NEEDS FOR SOLAR ENERGY UTILIZATION Report on the Basic Energy Sciences Workshop on Solar Energy Utilization

235

Water Heating: Energy-efficient strategies for supplying hot water in the home (BTS Technology Fact Sheet)  

SciTech Connect

Fact sheet for homeowners and contractors on how to supply hot water in the home while saving energy.

NAHB Research Center; Southface Energy Institute; U.S. Department of Energy' s Oak Ridge Laboratory; U.S. Department of Energy' s National Renewable Energy Laboratory

2001-08-15T23:59:59.000Z

236

Water and energy conservation through efficient irrigation management. Project completion report, January 1, 1975-December 1976  

SciTech Connect

An evaluation was made of corn (Zea mays L.) and grain sorghum (Sorghum bicolor (L) Moench) yield and water use efficiency as influenced by irrigation timing. The study was located at Tribune (mean annual rainfall of 17.0 inches) and Manhattan, (mean annual rainfall of 33.5 inches) Kansas. Treatments consisted of no in-season irrigation, a single in-season irrigation at one of three different growth stages, and irrigating at each of the three selected growth stages. Selected growth stages in corn were pre-tassel, silk emergence, and blister; in grain sorghum they were boot, half-bloom, and soft-dough. Each irrigation was 4 inches at Manhattan and 6 inches at Tribune. All Tribune plots received a pre-plant irrigation in April of each year. Water was applied to basin plots using gated pipe. With no in-season irrigation, the 3-year mean grain sorghum yields were greater than corn yields at both Manhattan and Tribune. The largest 3-year mean yield for corn receiving a single in-season irrigation was obtained with the irrigation during silk emergence at both Manhattan and Tribune. Grain sorghum yields from the single in-season irrigation treatments were similar and presented no single time that tended to be superior during the three study years. Corn responded well to the three in-season irrigations. The grain sorghum yield increase for plots receiving three in-season irrigations as opposed to those receiving only one in-season irrigation is insufficient to justify the two additional irrigations.

Stone, L.R.

1977-08-01T23:59:59.000Z

237

Review of International Methods of Test to Rate the Efficiency of Water Heaters  

E-Print Network (OSTI)

test procedures for solar water heaters characterizes systemWasted water Solar Heat pump water heater Australia/Newwater_heaters/Annex_IV_8July08 International Organization for Standardization, "Draft International Standard ISO/DIS 9459-4 Solar

Lutz, Jim

2012-01-01T23:59:59.000Z

238

Best Practice for Energy Efficient Cleanrooms: Control of Chilled Water System  

E-Print Network (OSTI)

MUAH + RCU Fans Pumps Cooling Towers Figure 1. Benchmarkedcondenser water pumps, and cooling towers for water-cooledRight sizing ? Cooling tower and condenser optimization ?

Xu, Tengfang

2005-01-01T23:59:59.000Z

239

Energy Efficiency Design Options for Residential Water Heaters: Economic Impacts on Consumers  

E-Print Network (OSTI)

G. Rosenquist. 1998. WHAM: A Simplified Energy ConsumptionWater Heater Analysis Model (WHAM) calculation method, whichcharacteristics of water heaters, WHAM uses parameters from

Lekov, Alex

2011-01-01T23:59:59.000Z

240

Home and Building Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home and Building Technology Basics Home and Building Technology Basics Homes and other buildings use energy every day for space heating and cooling, for lighting and hot water,...

Note: This page contains sample records for the topic "water efficiency basics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

FCT Hydrogen Storage: Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics to someone by E-mail Share FCT Hydrogen Storage: Basics on Facebook Tweet about FCT Hydrogen Storage: Basics on Twitter Bookmark FCT Hydrogen Storage: Basics on Google...

242

Commercial Gas Water Heaters, Purchasing Specifications for Energy-Efficient Products (Fact Sheet)  

Science Conference Proceedings (OSTI)

Performance and purchasing specifications for commercial gas water heaters under the FEMP-designated product program.

Not Available

2010-09-01T23:59:59.000Z

243

Efficient booster pump placement in water networks using graph theoretic principles  

Science Conference Proceedings (OSTI)

Municipal water delivery networks face increasing demands due to population growth. We focus on enhancing a water utility's infrastructure to meet its growing demands in a cost effective manner. Specifically, we consider the problem of placing pressure ...

I. Narayanan; V. Sarangan; A. Vasan; A. Srinivasan; A. Sivasubramaniam; B. S. Murt; S. Narasimhan

2012-06-01T23:59:59.000Z

244

Design of fuel efficient brick kiln for ceramic water filter firing in Ghana  

E-Print Network (OSTI)

Ceramic water filters are currently produced in Ghana in order to provide a household solution to contaminated water. These filters, locally branded with the name Kosim filter by originating from Potters for Peace-Nicaragua, ...

Adjorlolo, Eric (Eric James Kofi)

2007-01-01T23:59:59.000Z

245

Whole-Home Gas Tankless Water Heaters, Purchasing Specifications for Energy-Efficient Products (Fact Sheet)  

SciTech Connect

Performance and purchasing specifications for whole-home gas water heaters under the FEMP-designated product program.

2010-06-01T23:59:59.000Z

246

NREL Demonstrates Efficient Solar Water Splitting by Metal Oxide Photoabsorber (Fact Sheet)  

SciTech Connect

New development demonstrates that inexpensive and robust metal oxide photoabsorbers hold great promise as photoanodes for water oxidation.

Not Available

2014-01-01T23:59:59.000Z

247

How to Make Appliance Standards Work: Improving Energy and Water Efficiency Test Procedures  

E-Print Network (OSTI)

test procedures for appliances. Energy and BuildingsEnergy Efficiency In Domestic Appliances And Lighting 4thLBNL # How to Make Appliance Standards Work: Improving

Lutz, Jim

2012-01-01T23:59:59.000Z

248

NREL: Learning - Concentrating Solar Power Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Concentrating Solar Power Basics Many power plants today use fossil fuels as a heat source to boil water. The steam from the boiling water spins a large turbine, which drives a...

249

Initial Screening of Thermochemical Water-Splitting Cycles for High Efficiency Generation of Hydrogen Fuels Using Nuclear Power  

DOE Green Energy (OSTI)

OAK B188 Initial Screening of Thermochemical Water-Splitting Cycles for High Efficiency Generation of Hydrogen Fuels Using Nuclear Power There is currently no large scale, cost-effective, environmentally attractive hydrogen production process, nor is such a process available for commercialization. Hydrogen is a promising energy carrier, which potentially could replace the fossil fuels used in the transportation sector of our economy. Fossil fuels are polluting and carbon dioxide emissions from their combustion are thought to be responsible for global warming. The purpose of this work is to determine the potential for efficient, cost-effective, large-scale production of hydrogen utilizing high temperature heat from an advanced nuclear power station. Almost 800 literature references were located which pertain to thermochemical production of hydrogen from water and over 100 thermochemical watersplitting cycles were examined. Using defined criteria and quantifiable metrics, 25 cycles have been selected for more detailed study.

Brown, L.C.; Funk, J.F.; Showalter, S.K.

1999-12-15T23:59:59.000Z

250

Performance Evaluation of Hot Water Efficiency Plumbing System Using Thermal Valve  

E-Print Network (OSTI)

In Korea two popular water distribution systemsthe branch type and the separate type systemshave serious drawbacks. The branch type suffers from temperature instability while the separate type suffers from excessive piping. Neither of them re-circulates water. The system proposed in this paper utilizes a water-conserving piping system with a thermostat valve. This paper compares the proposed system with that of the separate type. Our findings show that the proposed system wastes less water. After re-circulating for 78-87 seconds, water is available at set point temperature (40C). Also, when multiple water taps are in use, the average temperature deviation is less than 0.6C. Moreover, the proposed system has 50% less flow rate than the separate type system.

Cha, K. S.; Park, M. S.; Seo, H. Y.

2010-08-01T23:59:59.000Z

251

Program on Technology Innovation: Electric Efficiency Through Water Supply Technologies-- A Roadmap  

Science Conference Proceedings (OSTI)

Electricity consumption associated with sourcing, treating, and transporting water is expected to increase significantly in the future as a result of a growing population and an increasing need for alternative water supplies. Furthermore, there is a concern that climate change may necessitate an increase in irrigation in some areas of the United States. Consequently, there is a critical need for technologies that can reduce the electricity consumption associated with water supply. This report identifies ...

2009-06-18T23:59:59.000Z

252

Economic efficiency of using solar water lift stations under the conditions of Uzbekistan  

SciTech Connect

It is shown that under certain conditions the best effect of using solar water lift stations is achieved by using installations with a dynamic converter.

Zakhidov, R.A.; Bogdasarov, V.M.

1981-01-01T23:59:59.000Z

253

2011-2012 Efficient Irrigation for Water Conservation in the Rio Grande Basin Progress and Accomplishments  

E-Print Network (OSTI)

During the past year, the RGBI Economics Team completed various technical reports and professional journals and presented findings on RGBI water-resource issues to local, statewide, and national audiences. Key topics included: 1) business economics of desalination water-treatment facilities; 2) mitigation cost investigations of increased off-site sediment runoff and nutrients associated with biofuels production; 3) economic and water conservation effects of drip irrigation compared to traditional strategies such as furrow or flood; 4) health-related economic analysis of water quality and household treatment/delivery systems; 5) impacts of analytical techniques involving discounting for time; and 6) regional market economics affected by changing water supply and demand from dynamic climate conditions and increasing population.

Kalisek, D.

2012-05-01T23:59:59.000Z

254

Geothermal: Basic Search  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Basic Search Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

255

The energy-efficiency benefits of pumps-scheduling optimization for potable water supplies  

Science Conference Proceedings (OSTI)

Water utilities across the developed world have been installing and operating telemetry and SCADA (supervisory control and data acquisition) facilities for at least three decades. They have amassed substantial quantities of historical operational data ...

S. M. Bunn; L. Reynolds

2009-05-01T23:59:59.000Z

256

Review of International Methods of Test to Rate the Efficiency of Water Heaters  

E-Print Network (OSTI)

is ?open. ? An open air intake water heater is assigned theof air intake, physical size and load profile of the waterwater heater does not consume a fossil fuel, the air-intake

Lutz, Jim

2012-01-01T23:59:59.000Z

257

The selective use of thorium and heterogeneity in uranium-efficient pressurized water reactors  

E-Print Network (OSTI)

Systematic procedures have been developed and applied to assess the uranium utilization potential of a broad range of options involving the selective use of thorium in Pressurized Water Reactors (PWRs) operating on the ...

Kamal, Altamash

1982-01-01T23:59:59.000Z

258

FCT Hydrogen Production: Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics to someone by E-mail Basics to someone by E-mail Share FCT Hydrogen Production: Basics on Facebook Tweet about FCT Hydrogen Production: Basics on Twitter Bookmark FCT Hydrogen Production: Basics on Google Bookmark FCT Hydrogen Production: Basics on Delicious Rank FCT Hydrogen Production: Basics on Digg Find More places to share FCT Hydrogen Production: Basics on AddThis.com... Home Basics Central Versus Distributed Production Current Technology R&D Activities Quick Links Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Basics Photo of hydrogen production in photobioreactor Hydrogen, chemical symbol "H", is the simplest element on earth. An atom of hydrogen has only one proton and one electron. Hydrogen gas is a diatomic

259

2013 Federal Energy and Water Management Award Winner 22nd Operations Group Fuel Efficiency Office  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

E ciency O ce E ciency O ce U.S. Air Force McConnell Air Force Base, Kansas During FY 2012, the 22nd Operations Group Fuel E ciency O ce (FEO) designed and implemented multiple measures, including a focus on institutional culture change, to reduce ine ciency in fuel management of the KC-135 aircraft and save the Air Force $4.3 million during a 42 percent rise in local sorties (the deployment of aircraft for missions of national defense or aircrew proficiency). These e orts included reducing KC-135 landing fuel by 5000 lb per sortie to save 1.94 million gallons per year; changing the KC-135 standard landing configuration to save 50 lb of fuel per approach; and implementing a new training configuration to reduce aircraft basic weight by 1,600 lb. The FEO also incorporated Mission Index Flying

260

Microhydropower Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Basics Basics Microhydropower Basics August 15, 2013 - 3:09pm Addthis Microhydropower systems are small hydroelectric power systems of less than 100 kilowatts (kW) used to produce mechanical energy or electricity for farms, ranches, homes, and villages. How a Microhydropower System Works All hydropower systems use the energy of flowing water to produce electricity or mechanical energy. Although there are several ways to harness moving water to produce energy, "run-of-the-river systems," which do not require large storage reservoirs, are most often used for microhydropower systems. Illustration of an example microhydropower system. A river flows down from some hills. The river first flows through an intake, which is indicated as two white walls on each side of the river. The intake diverts water to a canal. From the canal, the water travels to a forebay, which looks like a white, rectangular, aboveground pool. A pipeline, called a penstock, extends from the forebay to a building, called the powerhouse. You can see inside the powerhouse, which contains a turbine and other electric generation equipment. The water flows in and out of the powerhouse, returning to the river. Power lines also extend from the powerhouse, along and through two electrical towers, to a house that sits near the river's edge.

Note: This page contains sample records for the topic "water efficiency basics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Water-Cooled Ice Machines, Purchasing Specifications for Energy-Efficient Products (Fact Sheet), Federal Energy Management Program (FEMP)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

continued > continued > FEDERAL ENERGY MANAGEMENT PROGRAM PURCHASING SPECIFICATIONS FOR ENERGY-EFFICIENT PRODUCTS The U.S. Department of Energy's (DOE) Federal Energy Management Program (FEMP) facilitates the Federal Government's implementation of sound, cost-effective energy management and investment practices to enhance the nation's energy security and environmental stewardship. Water-Cooled Ice Machines Legal Authorities Federal agencies are required by the National Energy Conservation Policy Act (P.L. 95-619), Execu- tive Order 13423, Executive Order 13514, and Federal Acquisition Regulations (FAR) Subpart 23.2 and 53.223 to specify and buy ENERGY STAR ® qualified products or, in categories not included in

262

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

SciTech Connect

As American drinking water agencies face higher production costs, demand, and energy prices, they seek opportunities to reduce costs without negatively affecting the quality of the water they deliver. This guide describes resources for cost-effectively improving the energy efficiency of U.S. public drinking water facilities. The guide (1) describes areas of opportunity for improving energy efficiency in drinking water facilities; (2) provides detailed descriptions of resources to consult for each area of opportunity; (3) offers supplementary suggestions and information for the area; and (4) presents illustrative case studies, including analysis of cost-effectiveness.

Brown, Moya Melody, Camilla Dunham Whitehead, Rich; Dunham Whitehead, Camilla; Brown, Rich

2010-09-30T23:59:59.000Z

263

High Efficiency Generation of Hydrogen Fuels Using Solar Thermochemical Splitting of Water  

SciTech Connect

The objective of this work is to identify economically feasible concepts for the production of hydrogen from water using solar energy. The ultimate project objective was to select one or more competitive concepts for pilot-scale demonstration using concentrated solar energy. Results of pilot scale plant performance would be used as foundation for seeking public and private resources for full-scale plant development and testing. Economical success in this venture would afford the public with a renewable and limitless source of energy carrier for use in electric power load-leveling and as a carbon-free transportation fuel. The Solar Hydrogen Generation Research (SHGR) project embraces technologies relevant to hydrogen research under the Office of Hydrogen Fuel Cells and Infrastructure Technology (HFCIT) as well as concentrated solar power under the Office of Solar Energy Technologies (SET). Although the photoelectrochemical work is aligned with HFCIT, some of the technologies in this effort are also consistent with the skills and technologies found in concentrated solar power and photovoltaic technology under the Office of Solar Energy Technologies (SET). Hydrogen production by thermo-chemical water-splitting is a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or a combination of heat and electrolysis instead of pure electrolysis and meets the goals for hydrogen production using only water and renewable solar energy as feed-stocks. Photoelectrochemical hydrogen production also meets these goals by implementing photo-electrolysis at the surface of a semiconductor in contact with an electrolyte with bias provided by a photovoltaic source. Here, water splitting is a photo-electrolytic process in which hydrogen is produced using only solar photons and water as feed-stocks. The thermochemical hydrogen task engendered formal collaborations among two universities, three national laboratories and two private sector entities. The photoelectrochemical hydrogen task included formal collaborations with three universities and one national laboratory. The formal participants in these two tasks are listed above. Informal collaborations in both projects included one additional university (the University of Nevada, Reno) and two additional national laboratories (Lawrence Livermore National Laboratory and Lawrence Berkeley National Laboratory).

Heske, Clemens; Moujaes, Samir; Weimer, Alan; Wong, Bunsen; Siegal, Nathan; McFarland, Eric; Miller, Eric; Lewis, Michele; Bingham, Carl; Roth, Kurth; Sabacky, Bruce; Steinfeld, Aldo

2011-09-29T23:59:59.000Z

264

Performance of Heat Pump Water Heaters: Initial Findings of Draw Profile Effect on HPWH Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Performance of Heat Pump Water Heaters Performance of Heat Pump Water Heaters © 2011 Steven Winter Associates, Inc. All rights reserved. © 2011 Steven Winter Associates, Inc. All rights reserved. Evaluation Overview  2000-2002 Evaluated 20 installations with CL&P  Product had problems; not ready for prime time (average COPs of 1.67 was not the problem)  New batch of heaters available, including:  GE's GeoSpring Hybrid (50 gal)  A.O.Smith's Voltex Hybrid (60 & 80 gal)  Stiebel-Eltron's Accelera 300 (80 gal)  Evaluating 14 installations for National Grid, NSTAR, & Cape Light Compact. © 2011 Steven Winter Associates, Inc. All rights reserved. © 2011 Steven Winter Associates, Inc. All rights reserved.

265

NREL: Learning - Energy Storage Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Basics Energy Storage Basics The demand for electricity is seldom constant over time. Excess generating capacity available during periods of low demand can be used to energize an energy storage device. The stored energy can then be used to provide electricity during periods of high demand, helping to reduce power system loads during these times. Energy storage can improve the efficiency and reliability of the electric utility system by reducing the requirements for spinning reserves to meet peak power demands, making better use of efficient baseload generation, and allowing greater use of renewable energy technologies. A "spinning reserve" is a generator that is spinning and synchronized with the grid, ready for immediate power generation - like a car engine running with the gearbox

266

Energy Basics: Photovoltaic Cells  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

267

Energy Basics: Geothermal Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Direct Use Electricity Production Geothermal Resources Hydrogen Hydropower Ocean...

268

Energy Basics: Photovoltaics  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

269

Energy Basics: Hydropower Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Large-Scale Hydropower Microhydropower Hydropower Resources...

270

Energy Basics: Photovoltaic Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

271

Energy Basics: Hydropower Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Large-Scale Hydropower Microhydropower Hydropower Resources...

272

Energy Basics: Geothermal Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Direct Use Electricity Production Geothermal Resources Hydrogen Hydropower Ocean...

273

Minimizing sulfur contamination and rinse water volume required following a sulfuric acid/hydrogen peroxide clean by performing a chemically basic rinse  

Science Conference Proceedings (OSTI)

Sulfuric acid hydrogen peroxide mixtures (SPM) are commonly used in the semiconductor industry to remove organic contaminants from wafer surfaces. This viscous solution is very difficult to rinse off wafer surfaces. Various rinsing conditions were tested and the resulting residual contamination on the wafer surface was measured. The addition of small amounts of a chemical base such as ammonium hydroxide to the rinse water has been found to be effective in reducing the surface concentration of sulfur and also mitigates the particle growth that occurs on SPM cleaned wafers. The volume of room temperature water required to rinse these wafers is also significantly reduced.

Clews, P.J.; Nelson, G.C.; Resnick, P.J.; Matlock, C.A.; Adkins, C.L.J.

1997-08-01T23:59:59.000Z

274

An aspartate and a water molecule mediate efficient acid-base catalysis in a tailored antibody pocket  

DOE Green Energy (OSTI)

Design of catalysts featuring multiple functional groups is a desirable, yet formidable goal. Antibody 13G5, which accelerates the cleavage of unactivated benzisoxazoles, is one of few artificial enzymes that harness an acid and a base to achieve efficient proton transfer. X-ray structures of the Fab-hapten complexes of wild-type 13G5 and active-site variants now afford detailed insights into its mechanism. The parent antibody preorganizes Asp{sup H35} and Glu{sup L34} to abstract a proton from substrate and to orient a water molecule for leaving group stabilization, respectively. Remodeling the environment of the hydrogen bond donor with a compensatory network of ordered waters, as seen in the Glu{sup L34} to alanine mutant, leads to an impressive 10{sup 9}-fold rate acceleration over the nonenzymatic reaction with acetate, illustrating the utility of buried water molecules in bifunctional catalysis. Generalization of these design principles may aid in creation of catalysts for other important chemical transformations.

Debler, Erik W.; Mller, Roger; Hilvert, Donald; Wilson, Ian A.; (Scripps); (ETH Zurich)

2009-12-01T23:59:59.000Z

275

Federal Energy Management Program: Water Rate Escalations  

NLE Websites -- All DOE Office Websites (Extended Search)

Rate Rate Escalations to someone by E-mail Share Federal Energy Management Program: Water Rate Escalations on Facebook Tweet about Federal Energy Management Program: Water Rate Escalations on Twitter Bookmark Federal Energy Management Program: Water Rate Escalations on Google Bookmark Federal Energy Management Program: Water Rate Escalations on Delicious Rank Federal Energy Management Program: Water Rate Escalations on Digg Find More places to share Federal Energy Management Program: Water Rate Escalations on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance Greenhouse Gases Water Efficiency Basics Federal Requirements Best Management Practices Analysis and Evaluation Water Rate Escalations Evaluation Service Contracts Case Studies Resources

276

High Efficiency Hydrogen Production from Nuclear Energy: Laboratory Demonstration of S-I Water-Splitting  

DOE Green Energy (OSTI)

The objective of the French CEA, US-DOE INERI project is to perform a lab scale demonstration of the sulfur iodine (S-I) water splitting cycle, and assess the potential of this cycle for application to nuclear hydrogen production. The project will design, construct and test the three major component reaction sections that make up the S-I cycle. The CEA will design and test the prime (Bunsen) reaction section. General Atomics will develop and test the HI decomposition section, and SNL will develop and test the H2SO4 decomposition section. Activities for this period included initial program coordination and information exchange, the development of models and analyses that will support the design of the component sections, and preliminary designs for the component reaction sections. The sections are being designed to facilitate integration into a closed loop demonstration in a later stage of the program.

Buckingham, R.; Russ, B.; Brown, L.; Besenbruch, G.E.; Gelbard, F.; Pickard F.S.; Leybros, J.; Le Duigou, A.; Borgard, J.M.

2004-11-30T23:59:59.000Z

277

Land Use and Water Efficiency in Current and Potential Future U.S. Corn and Brazilian Sugarcane Ethanol Systems (Poster), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Use and Water Efficiency in Current and Potential Future U.S. Corn and Use and Water Efficiency in Current and Potential Future U.S. Corn and Brazilian Sugarcane Ethanol Systems Ethan Warner 1 , Yimin Zhang 1 , Helena Chum 2 , Robin Newmark 1 Biofuels represent an opportunity for improved sustainability of transportation fuels, promotion of rural development, and reduction of GHG emissions. But the potential for unintended consequences, such as competition for land and water, necessitates biofuel expansion that considers the complexities of resource requirements within specific contexts (e.g., technology, feedstock, supply chain, local resource availability). Through technological learning, sugarcane and corn ethanol industries have achieved steady improvements in

278

High Efficiency Integrated Space Conditioning, Water Heating and Air Distribution System for HUD-Code Manufactured Housing  

SciTech Connect

Recognizing the need for new space conditioning and water heating systems for manufactured housing, DeLima Associates assembled a team to develop a space conditioning system that would enhance comfort conditions while also reducing energy usage at the systems level. The product, Comboflair® was defined as a result of a needs analysis of project sponsors and industry stakeholders. An integrated system would be developed that would combine a packaged airconditioning system with a small-duct, high-velocity air distribution system. In its basic configuration, the source for space heating would be a gas water heater. The complete system would be installed at the manufactured home factory and would require no site installation work at the homesite as is now required with conventional split-system air conditioners. Several prototypes were fabricated and tested before a field test unit was completed in October 2005. The Comboflair® system, complete with ductwork, was installed in a 1,984 square feet, double-wide manufactured home built by Palm Harbor Homes in Austin, TX. After the home was transported and installed at a Palm Harbor dealer lot in Austin, TX, a data acquisition system was installed for remote data collection. Over 60 parameters were continuously monitored and measurements were transmitted to a remote site every 15 minutes for performance analysis. The Comboflair® system was field tested from February 2006 until April 2007. The cooling system performed in accordance with the design specifications. The heating system initially could not provide the needed capacity at peak heating conditions until the water heater was replaced with a higher capacity standard water heater. All system comfort goals were then met. As a result of field testing, we have identified improvements to be made to specific components for incorporation into production models. The Comboflair® system will be manufactured by Unico, Inc. at their new production facility in St. Louis, MO. The product will be initially launched in the hot-humid climates of the southern U.S.

Henry DeLima; Joe Akin; Joseph Pietsch

2008-09-14T23:59:59.000Z

279

Pre-Screen Loss and Fish Facility Efficiency for Delta Smelt at the South Delta's State Water Project, California  

E-Print Network (OSTI)

except toward the end of the water intake period when waterentrained into water diversion intakes or impinged on intakeintake technical analysis. Prepared for California Department of Water

2012-01-01T23:59:59.000Z

280

Energy Basics: Biodiesel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Biodiesel Biodiesel is a domestically produced, renewable fuel that can be manufactured from vegetable oils, animal fats, or recycled restaurant greases. What...

Note: This page contains sample records for the topic "water efficiency basics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Energy Basics: Wind Turbines  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Wind Turbines Wind Resources Wind Turbines...

282

Energy Basics: Tidal Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Ocean Thermal Energy Conversion Tidal Energy Wave Energy...

283

Energy Basics: Geothermal Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Geothermal Resources Although geothermal heat pumps can be used almost anywhere, most direct-use and electrical production facilities in the United States are...

284

Energy Basics: Fuel Cells  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydrogen Fuel Fuel Cells Hydropower Ocean Solar Wind Fuel Cells Photo of...

285

Energy Basics: Ocean Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Ocean Thermal Energy Conversion Tidal Energy Wave Energy...

286

Energy Basics: Geothermal Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Geothermal Technologies Photo of steam pouring out of a geothermal plant. Geothermal technologies use the clean, sustainable heat from the Earth. Geothermal...

287

Energy Basics: Hydrogen Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydrogen Fuel Fuel Cells Hydropower Ocean Solar Wind Hydrogen Fuel Hydrogen...

288

Energy Basics: Wave Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Ocean Thermal Energy Conversion Tidal Energy Wave Energy...

289

Energy Basics: Air Conditioning  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the same operating principles and basic components as refrigerators. Refrigerators use energy (usually electricity) to transfer heat from the cool interior of the refrigerator to...

290

Basic Energy Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy's Office of Basic Energy Sciences (BES), Office of Advanced Scientific Computing Research (ASCR), and the National Energy Research Scientific Computing Center...

291

Absorption Heat Pump Basics | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

absorbed into the water. Other innovations include high-efficiency vapor separation, variable ammonia flow rates, and low-emissions, variable-capacity combustion of the natural...

292

Importance of denitrification to the efficiency of waste-water treatment in forested wetlands. Project completion report  

SciTech Connect

Wastewater, even after secondary treatment, typically contains high concentrations of nutrients that can cause eutrophication of receiving waters and deterioration of water quality. Therefore, there has been much interest in the use of natural wetlands as a simple and energy-efficient means of removing nutrients from wastewater and improving water quality. The utilization of a wetland for tertiary treatment of wastewater is based on the ability of the wetland to act as a nutrient sink. One of the most important processes in wetland ecosystems that influences their capacity as a nitrogen sink is the gaseous exchange of nitrogen with the atmosphere known as denitrification. Since denitrification represents a loss of nitrogen to the atmosphere, the mechanism tends to be most favorable for the removal of nitrogen. The objectives of the research project were to (1) determine the temporal and spatial ambient rates of denitrification and compare these rates to those of sediments amended with increased concentrations of nitrate comparable to concentrations of total nitrogen in the sewage effluent to be discharged; and (2) determine the proportion of total denitrification that can be attributed to direct utilization of nitrate loaded into the wetland, as compared to nitrate produced via nitrification within the wetland. Although nitrate is readily denitrified, short-term incubation rates are relatively low which is attributed to the presently low nitrate concentrations and subsequent reduced denitrifying microbial population in the wetland sediments. Nitrate concentrations varied seasonally associated with increased flooding during spring. Rates of nitrification coupled with denitrification were investigated with nitrogen-15 isotopes. Nitrification is limited in the wetland sedments; therefore, controls the rate of total nitrogen loss from the system.

Twilley, R.R.; Boustany, R.G.

1990-09-01T23:59:59.000Z

293

Dimension Characteristics and Precipitation Efficiency of Cumulonimbus Clouds in the Region Far South from the Mei-Yu Front over the Eastern Asian Continent  

Science Conference Proceedings (OSTI)

Dimension characteristics in precipitation properties of cumulonimbus clouds are basic parameters in understanding the vertical transport of water vapor in the atmosphere. In this study, the dimension characteristics and precipitation efficiency ...

Yukari Shusse; Kazuhisa Tsuboki

2006-07-01T23:59:59.000Z

294

Basic Engineering Research for D and D of R Reactor Storage Pond Sludge: Electrokinetics, Carbon Dioxide Extraction, and Supercritical Water Oxidation  

Science Conference Proceedings (OSTI)

Large quantities of mixed low level waste (MLLW) that fall under the Toxic Substances Control Act (TSCA) exist and will continue to be generated during D and D operations at DOE sites across the country. The standard process for destruction of MLLW is incineration, which has an uncertain future. The extraction and destruction of PCBs from MLLW was the subject of this research Supercritical Fluid Extraction (SFE) with carbon dioxide with 5% ethanol as cosolvent and Supercritical Waster Oxidation (SCWO) were the processes studied in depth. The solid matrix for experimental extraction studies was Toxi-dry, a commonly used absorbent made from plant material. PCB surrogates were 1.2,4-trichlorobenzene (TCB) and 2-chlorobiphenyl (2CBP). Extraction pressures of 2,000 and 4,000 psi and temperatures of 40 and 80 C were studied. Higher extraction efficiencies were observed with cosolvent and at high temperature, but pressure little effect. SCWO treatment of the treatment of the PCB surrogates resulted in their destruction below detection limits.

Michael A. Matthews; David A. Bruce,; Thomas A. Davis; Mark C. Thies; John W. Weidner; Ralph E. White

2002-04-01T23:59:59.000Z

295

Energy Basics: Daylighting  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Daylighting in schools has even improved student grades and attendance. Today's highly energy-efficient windows, as well as advances in lighting design, allow efficient use of...

296

Basic principle of superconductivity  

E-Print Network (OSTI)

The basic principle of superconductivity is suggested in this paper. There have been two vital wrong suggestions on the basic principle, one is the relation between superconductivity and the Bose-Einstein condensation (BEC), and another is the relation between superconductivity and pseudogap.

Tian De Cao

2007-08-23T23:59:59.000Z

297

Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Laws Envirosearch Institutional Controls NEPA Activities RCRA RQ*Calculator Water HSS Logo Water Laws Overview of water-related legislation affecting DOE sites Clean...

298

NASA's Marshall Space Flight Center Saves Water With High-Efficiency Toilet and Urinal Program: Best Management Practice Case Study #6 - Toilets and Urinals (Fact Sheet)  

Science Conference Proceedings (OSTI)

The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) has a longstanding, successful sustainability program that focuses on energy and water efficiency as well as environmental protection. Because MSFC was built in the 1960s, most of the buildings house outdated, inefficient restroom fixtures. The facility engineering team at MSFC developed an innovative efficiency model for replacing these older toilets and urinals.

Not Available

2011-02-01T23:59:59.000Z

299

Basic photovoltaic principles and methods  

DOE Green Energy (OSTI)

This book presents a nonmathematical explanation of the theory and design of photovoltaic (PV) solar cells and systems. The basic elements of PV are introduced: the photovoltaic effect, physical aspects of solar cell efficiency, the typical single-crystal silicon solar cell, advances in single-crystal silicon solar cells. This is followed by the designs of systems constructed from individual cells, including possible constructions for putting cells together and the equipment needed for a practical producer of electrical energy. The future of PV is then discussed. (LEW)

Hersch, P.; Zweibel, K.

1982-02-01T23:59:59.000Z

300

Kitchen Appliance Upgrades Improve Water Efficiency at DOD Exchange Facilities: Best Management Practice Case Study #11: Commercial Kitchen Equipment (Brochure), Federal Energy Management Program (FEMP)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

kitchens are often forgotten when people kitchens are often forgotten when people begin to think about performing water audits. Kitchens can be out of sight, out of mind; a commercial kitchen, however, can consume large amounts of water and energy if inefficient appliances are installed. The Exchange, formerly the Army and Air Force Exchange Service (AAFES), is taking a leadership role in water efficiency improvements in their commercial kitchens by integrating water efficiency concepts into the organization's overall sustainability plan and objectives. The Exchange is a joint military activity, the U.S. Department of Defense's (DOD) oldest and largest retailer. The Exchange provides merchandise and services to military personnel, operating more than 3,100 facilities FEDERAL ENERGY MANAGEMENT PROGRAM

Note: This page contains sample records for the topic "water efficiency basics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Kitchen Appliance Upgrades Improve Water Efficiency at DOD Exchange Facilities: Best Management Practice Case Study #11: Commercial Kitchen Equipment (Brochure), Federal Energy Management Program (FEMP)  

NLE Websites -- All DOE Office Websites (Extended Search)

kitchens are often forgotten when people kitchens are often forgotten when people begin to think about performing water audits. Kitchens can be out of sight, out of mind; a commercial kitchen, however, can consume large amounts of water and energy if inefficient appliances are installed. The Exchange, formerly the Army and Air Force Exchange Service (AAFES), is taking a leadership role in water efficiency improvements in their commercial kitchens by integrating water efficiency concepts into the organization's overall sustainability plan and objectives. The Exchange is a joint military activity, the U.S. Department of Defense's (DOD) oldest and largest retailer. The Exchange provides merchandise and services to military personnel, operating more than 3,100 facilities FEDERAL ENERGY MANAGEMENT PROGRAM

302

Furnace and Boiler Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Furnace and Boiler Basics Furnace and Boiler Basics Furnace and Boiler Basics August 16, 2013 - 2:50pm Addthis Furnaces heat air and distribute the heated air through a building using ducts; boilers heat water, providing either hot water or steam for heating. Furnaces Furnaces are the most common heating systems used in homes in the United States. They can be all electric, gas-fired (including propane or natural gas), or oil-fired. Boilers Boilers consist of a vessel or tank where heat produced from the combustion of such fuels as natural gas, fuel oil, or coal is used to generate hot water or steam. Many buildings have their own boilers, while other buildings have steam or hot water piped in from a central plant. Commercial boilers are manufactured for high- or low-pressure applications.

303

Space Heating and Cooling Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Systems Supporting Equipment for Heating and Cooling Systems Addthis Related Articles Glossary of Energy-Related Terms Water Heating Basics Heating and Cooling System Support...

304

Energy efficient data centers  

E-Print Network (OSTI)

efficient operation of cooling towers. Various resources arereset control schedule. Cooling tower sequence (i.e. , oneton, closed circuit water-cooling towers and condenser water

Tschudi, William; Xu, Tengfang; Sartor, Dale; Koomey, Jon; Nordman, Bruce; Sezgen, Osman

2004-01-01T23:59:59.000Z

305

Water and Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Water in swimming pool Water and Energy The water and energy technology research focuses on improving the efficiency of energy and water use in water delivery, supply and...

306

Energy Basics: Absorption Cooling  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

cooling. Other potential heat sources include propane, solar-heated water, or geothermal-heated water. Although mainly used in industrial or commercial settings, absorption...

307

Part II: Potential Usefullness of Antitranspirants for Increasing Water Use Efficiency in Plants: Applied Investigations with Antitranspirants  

E-Print Network (OSTI)

of fruit (Figure 34). Water intake was not curtailed bya 50% retardation in water intake to the fruit, the actualsystems the greatest water intake was by fruit not treated

Davenport, David C; Martin, Paul E; Hagan, Robert M; Fisher, Mary Ann

1971-01-01T23:59:59.000Z

308

Energy Basics: Biofuels  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The biomass-derived ethyl or methyl esters can be blended with conventional diesel fuel or used as a neat fuel (100% biodiesel). Learn more about biodiesel basics. Biofuel...

309

Energy Basics: Fuel Cells  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Fuel Cells Photo of two hydrogen fuel cells. Fuel cells are an emerging technology that can provide heat and electricity for buildings and electrical power for...

310

Evolution strategies: basic introduction  

Science Conference Proceedings (OSTI)

This tutorial gives a basic introduction to evolution strategies, a class of evolutionary algorithms. Key features such as mutation, recombination and selection operators are explained, and specifically the concept of self-adaptation of strategy parameters ... Keywords: evolution strategies

Thomas Bck

2013-07-01T23:59:59.000Z

311

Absorption Cooling Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cooling Basics Cooling Basics Absorption Cooling Basics August 16, 2013 - 2:26pm Addthis Absorption coolers use heat rather than electricity as their energy source. Because natural gas is the most common heat source for absorption cooling, it is also referred to as gas-fired cooling. Other potential heat sources include propane, solar-heated water, or geothermal-heated water. Although mainly used in industrial or commercial settings, absorption coolers are commercially available for large residential homes. How Absorption Cooling Works An absorption cooling cycle relies on three basic principles: When a liquid is heated it boils (vaporizes) and when a gas is cooled it condenses Lowering the pressure above a liquid reduces its boiling point Heat flows from warmer to cooler surfaces.

312

A computationally efficient open-source water resource system simulator - Application to London and the Thames Basin  

Science Conference Proceedings (OSTI)

Interactive River-Aquifer Simulation-2010 (IRAS-2010) is a generalized water resource system simulation model. IRAS-2010 is a new release of IRAS previously released by Cornell University in 1995. Given hydrological inflows, evaporation rates, water ... Keywords: Conjunctive use water resource systems, Decision support systems (DSS), Open-source, Simulation models, Water management models

Evgenii S. Matrosov; Julien J. Harou; Daniel P. Loucks

2011-12-01T23:59:59.000Z

313

Prospects for and problems of using light-water supercritical-pressure coolant in nuclear reactors in order to increase the efficiency of the nuclear fuel cycle  

Science Conference Proceedings (OSTI)

Trends in the development of the power sector of the Russian and world power industries both at present time and in the near future are analyzed. Trends in the rise of prices for reserves of fossil and nuclear fuels used for electricity production are compared. An analysis of the competitiveness of electricity production at nuclear power plants as compared to the competitiveness of electricity produced at coal-fired and natural-gas-fired thermal power plants is performed. The efficiency of the open nuclear fuel cycle and various versions of the closed nuclear fuel cycle is discussed. The requirements on light-water reactors under the scenario of dynamic development of the nuclear power industry in Russia are determined. Results of analyzing the efficiency of fuel utilization for various versions of vessel-type light-water reactors with supercritical coolant are given. Advantages and problems of reactors with supercritical-pressure water are listed.

Alekseev, P. N.; Semchenkov, Yu. M.; Sedov, A. A., E-mail: sedov@dhtp.kial.ru; Subbotin, S. A.; Chibinyaev, A. V. [Russian Research Centre Kurchatov Institute (Russian Federation)

2011-12-15T23:59:59.000Z

314

Absorption Heat Pump Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Absorption Heat Pump Basics Absorption Heat Pump Basics Absorption Heat Pump Basics August 19, 2013 - 11:11am Addthis Absorption heat pumps are essentially air-source heat pumps driven not by electricity, but by a heat source such as natural gas, propane, solar-heated water, or geothermal-heated water. Because natural gas is the most common heat source for absorption heat pumps, they are also referred to as gas-fired heat pumps. There are also absorption coolers available that work on the same principal, but are not reversible and cannot serve as a heat source. These are also called gas-fired coolers. How Absorption Heat Pumps Work Residential absorption heat pumps use an ammonia-water absorption cycle to provide heating and cooling. As in a standard heat pump, the refrigerant (in this case, ammonia) is condensed in one coil to release its heat; its

315

Storage Water Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Water Heaters Storage Water Heaters Storage Water Heaters June 15, 2012 - 6:00pm Addthis Consider energy efficiency when selecting a conventional storage water heater to avoid paying more over its lifetime. | Photo courtesy of ©iStockphoto/JulNichols. Consider energy efficiency when selecting a conventional storage water heater to avoid paying more over its lifetime. | Photo courtesy of ©iStockphoto/JulNichols. Conventional storage water heaters remain the most popular type of water heating system for the home. Here you'll find basic information about how storage water heaters work; what criteria to use when selecting the right model; and some installation, maintenance, and safety tips. How They Work A single-family storage water heater offers a ready reservoir -- from 20 to

316

Energy Basics: Heat Pump Water Heaters  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for optimum operation in either summer or winter. Homeowners primarily install geothermal heat pumps-which draw heat from the ground during the winter and from the indoor air...

317

Energy Basics: Ventilation Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

building through the roof, walls, and windows. Heat-reflecting roofs, insulation, and energy efficient windows will help to reduce that heat conduction. Radiation is heat...

318

An Innovative System for the Efficient and Effective Treatment of Non-Traditional Waters for Reuse in Thermoelectric Power Generation  

Science Conference Proceedings (OSTI)

This study assessed opportunities for improving water quality associated with coal-fired power generation including the use of non-traditional waters for cooling, innovative technology for recovering and reusing water within power plants, novel approaches for the removal of trace inorganic compounds from ash pond effluents, and novel approaches for removing biocides from cooling tower blowdown. This research evaluated specifically designed pilot-scale constructed wetland systems for treatment of targeted constituents in non-traditional waters for reuse in thermoelectric power generation and other purposes. The overall objective of this project was to decrease targeted constituents in non-traditional waters to achieve reuse criteria or discharge limitations established by the National Pollutant Discharge Elimination System (NPDES) and Clean Water Act (CWA). The six original project objectives were completed, and results are presented in this final technical report. These objectives included identification of targeted constituents for treatment in four non-traditional water sources, determination of reuse or discharge criteria for treatment, design of constructed wetland treatment systems for these non-traditional waters, and measurement of treatment of targeted constituents in non-traditional waters, as well as determination of the suitability of the treated non-traditional waters for reuse or discharge to receiving aquatic systems. The four non-traditional waters used to accomplish these objectives were ash basin water, cooling water, flue gas desulfurization (FGD) water, and produced water. The contaminants of concern identified in ash basin waters were arsenic, chromium, copper, mercury, selenium, and zinc. Contaminants of concern in cooling waters included free oxidants (chlorine, bromine, and peroxides), copper, lead, zinc, pH, and total dissolved solids. FGD waters contained contaminants of concern including arsenic, boron, chlorides, selenium, mercury, chemical oxygen demand (COD), and zinc. Similar to FGD waters, produced waters contained contaminants of concern that are predominantly inorganic (arsenic, cadmium, chlorides, chromium, copper, lead, mercury, nickel, sulfide, zinc, total dissolved solids), but also contained some organics (benzene, PAHs, toluene, total organic carbon, total suspended solids, and oil and grease). Constituents of concern that may cause chemical scaling, biofouling and corrosion, such as pH, hardness and ionic strength, and nutrients (P, K, and N) may also be found in all four non-traditional waters. NPDES permits were obtained for these non-traditional waters and these permit limits are summarized in tabular format within this report. These limits were used to establish treatment goals for this research along with toxicity values for Ceriodaphnia dubia, water quality criteria established by the US EPA, irrigation standards established by the United States Department of Agriculture (USDA), and reuse standards focused on minimization of damage to the power plant by treated waters. Constructed wetland treatment systems were designed for each non-traditional water source based on published literature reviews regarding remediation of the constituents of concern, biogeochemistry of the specific contaminants, and previous research. During this study, 4 non-traditional waters, which included ash basin water, cooling water, FGD water and produced water (PW) were obtained or simulated to measure constructed wetland treatment system performance. Based on data collected from FGD experiments, pilot-scale constructed wetland treatment systems can decrease aqueous concentrations of elements of concern (As, B, Hg, N, and Se). Percent removal was specific for each element, including ranges of 40.1% to 77.7% for As, 77.6% to 97.8% for Hg, 43.9% to 88.8% for N, and no measureable removal to 84.6% for Se. Other constituents of interest in final outflow samples should have aqueous characteristics sufficient for discharge, with the exception of chlorides (<2000 mg/L). Based on total dissolved solids, co-

John Rodgers; James Castle

2008-08-31T23:59:59.000Z

319

Clothes washer standards in China -- The problem of water and energy trade-offs in establishing efficiency standards  

E-Print Network (OSTI)

China clothes washer standard, April 9, 2003 Jiang Lin.2003c. Appliance Standards and National Labeling Program. Efficiency Potential of Standards and Labeling in China .

Biermayer, Peter J.; Lin, Jiang

2004-01-01T23:59:59.000Z

320

Infrared Basics | Open Energy Information  

Open Energy Info (EERE)

2013 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Infrared Basics Citation Protherm. Infrared Basics Internet. 2013. cited...

Note: This page contains sample records for the topic "water efficiency basics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Energy Basics | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

can improve our lives, homes, businesses, and industries. RENEWABLE ENERGY TECHNOLOGIES Biomass Technology Basics Geothermal Technology Basics Hydrogen and Fuel Cell Technology...

322

Prospects for hydrogen production by water electrolysis to be competitive with conventional methods. [Areas of research to reduce capital costs and approach 100 percent energy efficiencies  

SciTech Connect

With the impending unavailability of oil and natural gas, hydrogen will be produced on a large scale in the United States (1) from coal, or (2) by water electrolysis using electricity derived from nuclear or solar energy. In many parts of the world which lack fossil fuels, the latter will be the only possible method. The cost of purification of hydrogen produced from fossil fuels will increase its cost to about the same level as that of electrolytic hydrogen. When hydrogen is required in relatively small quantities too, the electrolytic method is advantageous. To minimize the cost of hydrogen produced by water electrolysis, it is necessary to reduce capital costs and approach 100 percent energy efficiencies. Areas of research, which will be necessary to achieve these goals are: (1) maximization of surface areas of electrodes; (2) use of thin electrolyte layers; (3) increase of operating temperature in alkaline water electrolysis cells to about 120-150/sup 0/C; (4) selection and evaluation of separator materials; (5) electrocatalysis of the hydrogen and oxygen electrode reaction; (6) mixed oxides as oxygen electrodes; and (7) photoelectrochemical effects. The progress made to date and proposed studies on these topics are briefly dealt with in this paper. The General Electric Solid Polymer Water Electrolyzer and Teledyne Alkaline Water Electrolysis Cells, both operating at about 120-150/sup 0/C, look mostpromising in achieving the goals of low capital cost and high energy efficiency. (auth)

Srinivasan, S.; Salzano, F.J.

1976-01-01T23:59:59.000Z

323

Cooling System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cooling System Basics Cooling System Basics Cooling System Basics August 16, 2013 - 1:08pm Addthis Cooling technologies used in homes and buildings include ventilation, evaporative cooling, air conditioning, absorption cooling, and radiant cooling. Learn more about how these technologies work. Ventilation Ventilation allows air to move into and out of homes and buildings either by natural or mechanical means. Evaporative Cooling In dry climates, evaporative cooling or "swamp cooling" provides an experience like air conditioning, but with much lower energy use. An evaporative cooler uses the outside air's heat to evaporate water inside the cooler. The heat is drawn out of the air and the cooled air is blown into the space by the cooler's fan. Air Conditioning Air conditioners, which employ the same operating principles and basic

324

Cooling System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cooling System Basics Cooling System Basics Cooling System Basics August 16, 2013 - 1:08pm Addthis Cooling technologies used in homes and buildings include ventilation, evaporative cooling, air conditioning, absorption cooling, and radiant cooling. Learn more about how these technologies work. Ventilation Ventilation allows air to move into and out of homes and buildings either by natural or mechanical means. Evaporative Cooling In dry climates, evaporative cooling or "swamp cooling" provides an experience like air conditioning, but with much lower energy use. An evaporative cooler uses the outside air's heat to evaporate water inside the cooler. The heat is drawn out of the air and the cooled air is blown into the space by the cooler's fan. Air Conditioning Air conditioners, which employ the same operating principles and basic

325

Active Solar Heating Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Active Solar Heating Basics Active Solar Heating Basics Active Solar Heating Basics August 16, 2013 - 3:23pm Addthis There are two basic types of active solar heating systems based on the type of fluid-either liquid or air-that is heated in the solar energy collectors. The collector is the device in which a fluid is heated by the sun. Liquid-based systems heat water or an antifreeze solution in a "hydronic" collector, whereas air-based systems heat air in an "air collector." Both of these systems collect and absorb solar radiation, then transfer the solar heat directly to the interior space or to a storage system, from which the heat is distributed. If the system cannot provide adequate space heating, an auxiliary or back-up system provides the additional heat. Liquid systems are more often used when storage is included, and are well

326

Energy Basics: Cooling Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

or "swamp cooling" provides an experience like air conditioning, but with much lower energy use. An evaporative cooler uses the outside air's heat to evaporate water inside the...

327

Energy Basics: Fluorescent Lighting  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Cooling Water Heating Fluorescent Lighting Fluorescent lamps use 25%-35% of the energy used by incandescent lamps to provide the same amount of illumination (efficacy of...

328

Wind Energy Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Energy Technology Basics Wind Energy Technology Basics Wind Energy Technology Basics August 15, 2013 - 4:10pm Addthis Photo of a hilly field, with six visible wind turbines spinning in the wind. Wind energy technologies use the energy in wind for practical purposes such as generating electricity, charging batteries, pumping water, and grinding grain. Most wind energy technologies can be used as stand-alone applications, connected to a utility power grid, or even combined with a photovoltaic system. For utility-scale sources of wind energy, a large number of turbines are usually built close together to form a wind farm that provides grid power. Several electricity providers use wind farms to supply power to their customers. Stand-alone turbines are typically used for water pumping or

329

Heating System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heating System Basics Heating System Basics Heating System Basics August 16, 2013 - 2:32pm Addthis A variety of heating technologies are available today. You can learn more about what heating systems and heat pumps are commonly used today and how they work below. To learn how to use these technologies in your own home, see the Home Heating Systems section on Energy Saver. Furnaces and Boilers Furnaces heat air and distribute the heated air through a building using ducts. Boilers heat water, providing either hot water or steam for heating. Wood and Pellet Heating Provides a way to heat a building using biomass or waste sources. Electric Resistance Heating Can be supplied by centralized electric furnaces or by heaters in each room. Active Solar Heating Uses the sun to heat either air or liquid and can serve as a supplemental

330

Geothermal Electricity Production Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electricity Production Basics Electricity Production Basics Geothermal Electricity Production Basics August 14, 2013 - 1:49pm Addthis A photo of steam emanating from geothermal power plants at The Geysers in California. Geothermal energy originates from deep within the Earth and produces minimal emissions. Photo credit: Pacific Gas & Electric Heat from the earth-geothermal energy-heats water that has seeped into underground reservoirs. These reservoirs can be tapped for a variety of uses, depending on the temperature of the water. The energy from high-temperature reservoirs (225°-600°F) can be used to produce electricity. In the United States, geothermal energy has been used to generate electricity on a large scale since 1960. Through research and development, geothermal power is becoming more cost-effective and competitive with

331

Heating System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heating System Basics Heating System Basics Heating System Basics August 16, 2013 - 2:32pm Addthis A variety of heating technologies are available today. You can learn more about what heating systems and heat pumps are commonly used today and how they work below. To learn how to use these technologies in your own home, see the Home Heating Systems section on Energy Saver. Furnaces and Boilers Furnaces heat air and distribute the heated air through a building using ducts. Boilers heat water, providing either hot water or steam for heating. Wood and Pellet Heating Provides a way to heat a building using biomass or waste sources. Electric Resistance Heating Can be supplied by centralized electric furnaces or by heaters in each room. Active Solar Heating Uses the sun to heat either air or liquid and can serve as a supplemental

332

NREL: Learning - Biofuels Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Biofuels Basics Biofuels Basics Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player This video provides an overview of NREL research on converting biomass to liquid fuels. Text Version Unlike other renewable energy sources, biomass can be converted directly into liquid fuels, called "biofuels," to help meet transportation fuel needs. The two most common types of biofuels in use today are ethanol and biodiesel. Ethanol is an alcohol, the same as in beer and wine (although ethanol used as a fuel is modified to make it undrinkable). It is most commonly made by fermenting any biomass high in carbohydrates through a process similar to beer brewing. Today, ethanol is made from starches and sugars, but NREL scientists are developing technology to allow it to be made from cellulose

333

Water Efficiency Improvements at Various Environmental Protection Agency Sites: Best Management Practice Case Study #12 - Laboratory/Medical Equipment (Brochure)  

Science Conference Proceedings (OSTI)

The U.S. Environmental Protection Agency (EPA) built a successful water conservation program and reduced potable water use through a series of initiatives at EPA laboratories. The projects highlighted in this case study demonstrate EPA's ability to reduce water use in laboratory and medical equipment by implementing vacuum pump and steam sterilizer replacements and retrofits. Due to the success of the initial vacuum pump and steam sterilizer projects described here, EPA is implementing similar projects at several laboratories throughout the nation.

Blakley, H.

2011-03-01T23:59:59.000Z

334

Energy Basics: Biopower  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

electricity. Co-Firing Co-firing involves replacing a portion of the petroleum-based fuel in high-efficiency coal-fired boilers with biomass. Co-firing has been successfully...

335

USING LIGA BASED MICROFABRICATION TO IMPROVE OVERALL HEAT TRANSFER EFFICIENCY OF PRESSURIZED WATER REACTOR: I. Effects of Different Micro Pattern on Overall Heat Transfer.  

SciTech Connect

The Pressurized Water Reactors (PWRs in Figure 1) were originally developed for naval propulsion purposes, and then adapted to land-based applications. It has three parts: the reactor coolant system, the steam generator and the condenser. The Steam generator (a yellow area in Figure 1) is a shell and tube heat exchanger with high-pressure primary water passing through the tube side and lower pressure secondary feed water as well as steam passing through the shell side. Therefore, a key issue in increasing the efficiency of heat exchanger is to improve the design of steam generator, which is directly translated into economic benefits. The past research works show that the presence of a pin-fin array in a channel enhances the heat transfer significantly. Hence, using microfabrication techniques, such as LIGA, micro-molding or electroplating, some special microstructures can be fabricated around the tubes in the heat exchanger to increase the heat-exchanging efficiency and reduce the overall size of the heat-exchanger for the given heat transfer rates. In this paper, micro-pin fins of different densities made of SU-8 photoresist are fabricated and studied to evaluate overall heat transfer efficiency. The results show that there is an optimized micro pin-fin configuration that has the best overall heat transfer effects.

Zhang, M.; Ibekwe, S.; Li, G.; Pang, S.S.; and Lian, K.

2006-07-01T23:59:59.000Z

336

An energy equivalency analysis of trade-offs between thermal efficiency and standby loss requirements for commercial gas service water heaters  

SciTech Connect

The American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE) Standing Standard Project Committee 90.1 has approved an addendum (90.lb) to ASHRAE/IES Standard 90.1-1989. The addendum specifies an increase in the minimum thermal efficiency requirement (from 77% to 78%), accompanied by an easing of the standby loss requirements, for commercial gas-fired service water heaters. The Pacific Northwest Laboratory performed an energy equivalency analysis to assess the impact of trade-offs between the improved thermal efficiency and the less stringent standby loss requirements. The analysis objective was to estimate whether the energy savings during firing would offset the increased energy losses during standby periods. The primary focus of this report is to summarize the major results of the analysis and provide a recommendation for minimum energy-efficiency commercial gas-fired service water heaters. Limitations to the availability of detailed performance and energy-use data for these commercial water heaters are also pointed out.

Somasundaram, S.; Jarnagin, R.E.; Keller, J.M.; Schliesing, J.S.

1992-06-01T23:59:59.000Z

337

Water Mass Distribution and Ventilation Time Scales in a Cost-Efficient, Three-Dimensional Ocean Model  

Science Conference Proceedings (OSTI)

A cost-efficient, seasonally forced three-dimensional frictional geostrophic balance ocean model (Bern3D) has been developed that features isopycnal diffusion and GentMcWilliams transport parameterization, 32 depth layers, and an implicit ...

S. A. Mller; F. Joos; N. R. Edwards; T. F. Stocker

2006-11-01T23:59:59.000Z

338

Sustainable Building Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sustainable Sustainable Building Basics Sustainable Building Basics October 4, 2013 - 4:21pm Addthis Image of the side of a sustainable building Sustainable building design results in energy savings and environment stewardship. Sustainable building design and operation strategies demonstrate a commitment to energy efficiency and environmental stewardship. These approaches result in an optimal balance of energy, cost, environmental, and societal benefits, while still meeting the mission of a Federal agency and the function of the facility or infrastructure. For buildings and facilities, responsible resource management and the assessment of operational impacts encompass the principles of sustainability. Sustainable development aims to meet the needs of the present without compromising future needs.

339

Federal Energy Management Program: Sustainable Building Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics Basics Image of the side of a sustainable building Sustainable building design results in energy savings and environment stewardship. Sustainable building design and operation strategies demonstrate a commitment to energy efficiency, and environmental stewardship. These approaches result in an optimal balance of energy, cost, environmental, and societal benefits, while still meeting the mission of a Federal agency and the function of the facility or infrastructure. For buildings and facilities, responsible resource management and the assessment of operational impacts encompass the principles of sustainability. Sustainable development aims to meet the needs of the present without compromising future needs. Learn more about the: Benefits of sustainable building design

340

MidAmerican Energy (Gas) - Residential Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas) - Residential Energy Efficiency Rebate Gas) - Residential Energy Efficiency Rebate Programs MidAmerican Energy (Gas) - Residential Energy Efficiency Rebate Programs < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Commercial Weatherization Manufacturing Appliances & Electronics Water Heating Program Info Expiration Date 12/31/2013 State Nebraska Program Type Utility Rebate Program Rebate Amount Energy Audit: Free Furnaces: $250-$400 Boilers: $150 or $400 Water Heaters: $50 or $100 Provider Remittance MidAmerican Energy offers basic energy efficiency incentives for residential customers in Nebraska to improve the comfort and savings in participating homes. These incentives include gas heating equipment such as boilers, furnaces, and water heaters. Free energy audits are also available

Note: This page contains sample records for the topic "water efficiency basics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Best Practices for Energy Efficient Cleanrooms Efficient HVAC Systems: Variable-Speed-Drive Chillers  

E-Print Network (OSTI)

resource/24/ ASHRAE handbook HVAC systems and equipments.Efficient Cleanrooms Efficient HVAC Systems: Variable-Speed-Efficient Cleanrooms Efficient HVAC Water Systems: Variable-

Xu, Tengfang

2005-01-01T23:59:59.000Z

342

A Synergistic Combination of Advanced Separation and Chemical Scale Inhibitor Technologies for Efficient Use of Imparied Water As Cooling Water in Coal-based Power Plants  

Science Conference Proceedings (OSTI)

Nalco Company is partnering with Argonne National Laboratory (ANL) in this project to jointly develop advanced scale control technologies that will provide cost-effective solutions for coal-based power plants to operate recirculating cooling water systems at high cycles using impaired waters. The overall approach is to use combinations of novel membrane separations and scale inhibitor technologies that will work synergistically, with membrane separations reducing the scaling potential of the cooling water and scale inhibitors extending the safe operating range of the cooling water system. The project started on March 31, 2006 and ended in August 30, 2010. The project was a multiyear, multi-phase project with laboratory research and development as well as a small pilot-scale field demonstration. In Phase 1 (Technical Targets and Proof of Concept), the objectives were to establish quantitative technical targets and develop calcite and silica scale inhibitor chemistries for high stress conditions. Additional Phase I work included bench-scale testing to determine the feasibility of two membrane separation technologies (electrodialysis ED and electrode-ionization EDI) for scale minimization. In Phase 2 (Technology Development and Integration), the objectives were to develop additional novel scale inhibitor chemistries, develop selected separation processes, and optimize the integration of the technology components at the laboratory scale. Phase 3 (Technology Validation) validated the integrated system's performance with a pilot-scale demonstration. During Phase 1, Initial evaluations of impaired water characteristics focused on produced waters and reclaimed municipal wastewater effluents. Literature and new data were collected and evaluated. Characteristics of produced waters vary significantly from one site to another, whereas reclaimed municipal wastewater effluents have relatively more uniform characteristics. Assessment to date confirmed that calcite and silica/silicate are two common potential cycle-limiting minerals for using impaired waters. For produced waters, barium sulfate and calcium sulfate are two additional potential cycle-limiting minerals. For reclaimed municipal wastewater effluents, calcium phosphate scaling can be an issue, especially in the co-presence of high silica. Computational assessment, using a vast amount of Nalco's field data from coal fired power plants, showed that the limited use and reuse of impaired waters is due to the formation of deposit caused by the presence of iron, high hardness, high silica and high alkalinity in the water. Appropriate and cost-effective inhibitors were identified and developed - LL99B0 for calcite and gypsum inhibition and TX-15060 for silica inhibition. Nalco's existing dispersants HSP-1 and HSP-2 has excellent efficacy for dispersing Fe and Mn. ED and EDI were bench-scale tested by the CRADA partner Argonne National Laboratory for hardness, alkalinity and silica removal from synthetic make-up water and then cycled cooling water. Both systems showed low power consumption and 98-99% salt removal, however, the EDI system required 25-30% less power for silica removal. For Phase 2, the EDI system's performance was optimized and the length of time between clean-in-place (CIP) increased by varying the wafer composition and membrane configuration. The enhanced EDI system could remove 88% of the hardness and 99% of the alkalinity with a processing flux of 19.2 gal/hr/m{sup 2} and a power consumption of 0.54 kWh/100 gal water. Bench tests to screen alternative silica/silicate scale inhibitor chemistries have begun. The silica/silicate control approaches using chemical inhibitors include inhibition of silicic acid polymerization and dispersion of silica/silicate crystals. Tests were conducted with an initial silica concentration of 290-300 mg/L as SiO{sub 2} at pH 7 and room temperature. A proprietary new chemistry was found to be promising, compared with a current commercial product commonly used for silica/silicate control. Additional pilot cooling tower testing confirmed

Jasbir Gill

2010-08-30T23:59:59.000Z

343

A Synergistic Combination of Advanced Separation and Chemical Scale Inhibitor Technologies for Efficient Use of Imparied Water As Cooling Water in Coal-based Power Plants  

SciTech Connect

Nalco Company is partnering with Argonne National Laboratory (ANL) in this project to jointly develop advanced scale control technologies that will provide cost-effective solutions for coal-based power plants to operate recirculating cooling water systems at high cycles using impaired waters. The overall approach is to use combinations of novel membrane separations and scale inhibitor technologies that will work synergistically, with membrane separations reducing the scaling potential of the cooling water and scale inhibitors extending the safe operating range of the cooling water system. The project started on March 31, 2006 and ended in August 30, 2010. The project was a multiyear, multi-phase project with laboratory research and development as well as a small pilot-scale field demonstration. In Phase 1 (Technical Targets and Proof of Concept), the objectives were to establish quantitative technical targets and develop calcite and silica scale inhibitor chemistries for high stress conditions. Additional Phase I work included bench-scale testing to determine the feasibility of two membrane separation technologies (electrodialysis ED and electrode-ionization EDI) for scale minimization. In Phase 2 (Technology Development and Integration), the objectives were to develop additional novel scale inhibitor chemistries, develop selected separation processes, and optimize the integration of the technology components at the laboratory scale. Phase 3 (Technology Validation) validated the integrated system's performance with a pilot-scale demonstration. During Phase 1, Initial evaluations of impaired water characteristics focused on produced waters and reclaimed municipal wastewater effluents. Literature and new data were collected and evaluated. Characteristics of produced waters vary significantly from one site to another, whereas reclaimed municipal wastewater effluents have relatively more uniform characteristics. Assessment to date confirmed that calcite and silica/silicate are two common potential cycle-limiting minerals for using impaired waters. For produced waters, barium sulfate and calcium sulfate are two additional potential cycle-limiting minerals. For reclaimed municipal wastewater effluents, calcium phosphate scaling can be an issue, especially in the co-presence of high silica. Computational assessment, using a vast amount of Nalco's field data from coal fired power plants, showed that the limited use and reuse of impaired waters is due to the formation of deposit caused by the presence of iron, high hardness, high silica and high alkalinity in the water. Appropriate and cost-effective inhibitors were identified and developed - LL99B0 for calcite and gypsum inhibition and TX-15060 for silica inhibition. Nalco's existing dispersants HSP-1 and HSP-2 has excellent efficacy for dispersing Fe and Mn. ED and EDI were bench-scale tested by the CRADA partner Argonne National Laboratory for hardness, alkalinity and silica removal from synthetic make-up water and then cycled cooling water. Both systems showed low power consumption and 98-99% salt removal, however, the EDI system required 25-30% less power for silica removal. For Phase 2, the EDI system's performance was optimized and the length of time between clean-in-place (CIP) increased by varying the wafer composition and membrane configuration. The enhanced EDI system could remove 88% of the hardness and 99% of the alkalinity with a processing flux of 19.2 gal/hr/m{sup 2} and a power consumption of 0.54 kWh/100 gal water. Bench tests to screen alternative silica/silicate scale inhibitor chemistries have begun. The silica/silicate control approaches using chemical inhibitors include inhibition of silicic acid polymerization and dispersion of silica/silicate crystals. Tests were conducted with an initial silica concentration of 290-300 mg/L as SiO{sub 2} at pH 7 and room temperature. A proprietary new chemistry was found to be promising, compared with a current commercial product commonly used for silica/silicate control. Additional pilot cooling tower testing confirmed

Jasbir Gill

2010-08-30T23:59:59.000Z

344

Energy Basics: Photovoltaic Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

an entire PV system. This system is usually everything needed to meet a particular energy demand, such as powering a water pump, the appliances and lights in a home, or-if the...

345

AEP Appalachian Power - Residential Energy Efficiency Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

showerheads, LED nightlights, two water heater temperature adjustments, water heater pipe insulation, refrigerator thermometer, refrigerator coil cleaning brush, and basic air...

346

Land Use and Water Efficiency in Current and Potential Future U.S. Corn and Brazilian Sugarcane Ethanol Systems (Poster)  

DOE Green Energy (OSTI)

The potential for unintended consequences of biofuels--competition for land and water--necessitates that sustainable biofuel expansion considers the complexities of resource requirements within specific context (e.g., technology, feedstock, supply chain, local resource availability).

Warner, E.; Zhang, Y.; Chum, H.; Newmark, R.

2012-11-01T23:59:59.000Z

347

LED Lighting Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LED Lighting Basics LED Lighting Basics LED Lighting Basics August 16, 2013 - 10:07am Addthis Light-emitting diodes (LEDs) are light sources that differ from more traditional sources of light in that they are semiconductor devices that produce light when an electrical current is applied. Applying electrical current causes electrons to flow from the positive side of a diode to the negative side. Then, at the positive/negative junction of the diode, the electrons slow down to orbit at a lower energy level. The electrons emit the excess energy as photons of light. LEDs are often used as small indicator lights on various electronic devices. Because of their long life, durability, and efficiency, LEDs are becoming more common in residential, commercial, and outdoor area lighting

348

Fluorescent Lighting Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fluorescent Lighting Basics Fluorescent Lighting Basics Fluorescent Lighting Basics October 17, 2013 - 5:39pm Addthis Light from a fluorescent lamp is first created by an electric current conducted through an inert gas producing ultraviolet light that is invisible to the human eye. The ultraviolet light in turn interacts with special blends of phosphors coating the interior surface of the fluorescent lamp tube that efficiently converts the invisible light into useful white light. Fluorescent lamps require a special power supply called a ballast that is needed to regulate lamp operating current and provide a compatible start-up voltage. Electronic ballasts perform the same function as a magnetic ballast but outperform the outdated magnetic products by operating at a very high frequency that eliminates flicker and noise while

349

Photovoltaic Silicon Cell Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Silicon Cell Basics Silicon Cell Basics Photovoltaic Silicon Cell Basics August 20, 2013 - 2:19pm Addthis Silicon-used to make some the earliest photovoltaic (PV) devices-is still the most popular material for solar cells. Silicon is also the second-most abundant element in the Earth's crust (after oxygen). However, to be useful as a semiconductor material in solar cells, silicon must be refined to a purity of 99.9999%. In single-crystal silicon, the molecular structure-which is the arrangement of atoms in the material-is uniform because the entire structure is grown from the same crystal. This uniformity is ideal for transferring electrons efficiently through the material. To make an effective PV cell, however, silicon has to be "doped" with other elements to make n-type and p-type layers.

350

Photovoltaic Cell Material Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Material Basics Material Basics Photovoltaic Cell Material Basics August 19, 2013 - 4:43pm Addthis Although crystalline silicon cells are the most common type, photovoltaic (PV), or solar cells, can be made of many semiconductor materials. Each material has unique strengths and characteristics that influence its suitability for specific applications. For example, PV cell materials may differ based on their crystallinity, bandgap, absorbtion, and manufacturing complexity. Learn more about each of these characteristics below or learn about these solar cell materials: Silicon (Si)-including single-crystalline Si, multicrystalline Si, and amorphous Si Polycrystalline Thin Films-including copper indium diselenide (CIS), cadmium telluride (CdTe), and thin-film silicon Single-Crystalline Thin Films-including high-efficiency material

351

Rising Above the Water: New Orleans Implements Energy Efficiency and Sustainability Practices Following Hurricanes Katrina and Rita (Fact Sheet)  

SciTech Connect

This fact sheet describes the technical assistance that the U.S. Department of Energy, through its National Renewable Energy Laboratory, provided to New Orleans, Louisiana, which helped the city incorporate energy efficiency into its rebuilding efforts for K-12 schools and homes following Hurricanes Katrina and Rita. NREL also provided support and analysis on energy policy efforts.

2012-07-01T23:59:59.000Z

352

INTRODUCTION AND BASIC CONCEPTS  

E-Print Network (OSTI)

in the past decades. Yu et al. [1995] studied the fluid flow and heat transfer characteristics of nitrogen gas, S and Yakano, K., 2004, "The experimental research on microtube heat transfer and fluid flow of distilled water experimental and theoretical investigation of fluid flow and heat transfer in microtubes," ASME/JSME Thermal

Kostic, Milivoje M.

353

BASIC Solar | Open Energy Information  

Open Energy Info (EERE)

Name BASIC Solar Place Bulgaria Product Project development SPV focused on utility-scale PV projects. References BASIC Solar1 LinkedIn Connections CrunchBase Profile No...

354

Basic Energy Sciences at NREL  

DOE Green Energy (OSTI)

NREL's Center for Basic Sciences performs fundamental research for DOE's Office of Science. Our mission is to provide fundamental knowledge in the basic sciences and engineering that will underpin new and improved renewable energy technologies.

Moon, S.

2000-12-04T23:59:59.000Z

355

Energy Basics: Geothermal Electricity Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Direct Use Electricity Production Geothermal Resources Hydrogen Hydropower Ocean...

356

Energy Basics: Photovoltaic Cell Structures  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

357

Energy Basics: Photovoltaic Cell Performance  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

358

Energy Basics: Concentrator Photovoltaic Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

359

Energy Basics: Solar Energy Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Concentrating Solar Power Solar...

360

Energy Basics: Photovoltaic System Performance  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

Note: This page contains sample records for the topic "water efficiency basics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Energy Basics: Concentrating Solar Power  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Concentrating Solar Power Linear...

362

Energy Basics: Solar Energy Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Concentrating Solar Power Solar...

363

Energy Basics: Photovoltaic Cell Materials  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

364

Geothermal Resource Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Resource Basics Resource Basics Geothermal Resource Basics August 14, 2013 - 1:58pm Addthis Although geothermal heat pumps can be used almost anywhere, most direct-use and electrical production facilities in the United States are located in the west, where the geothermal resource base is concentrated. Current drilling technology limits the development of geothermal resources to relatively shallow water- or steam-filled reservoirs, most of which are found in the western part of the United States. But researchers are developing new technologies for capturing the heat in deeper, "dry" rocks, which would support drilling almost anywhere. Geothermal Resources Map This map shows the distribution of geothermal resources across the United States. If you have trouble accessing this information because of a

365

Hydrogen Fuel Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydrogen Fuel Basics Hydrogen Fuel Basics Hydrogen Fuel Basics August 14, 2013 - 2:06pm Addthis Hydrogen is a clean fuel that, when consumed, produces only water. Hydrogen can be produced from a variety of domestic sources, such as coal, natural gas, nuclear power, and renewable power. These qualities make it an attractive fuel option for transportation and electricity generation applications. Hydrogen is an energy carrier that can be used to store, move, and deliver energy produced from other sources. The energy in hydrogen fuel is derived from the fuels and processes used to produce the hydrogen. Today, hydrogen fuel can be produced through several methods. The most common methods are thermal, electrolytic, and photolytic processes. Thermal Processes Thermal processes for hydrogen production typically involve steam

366

Concentrating Solar Power Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Basics Basics Concentrating Solar Power Basics August 20, 2013 - 4:38pm Addthis Text Version This solar concentrator has a fixed-focus faceted dish with a concentration of about 250 suns. This system can be used for large fields connected to the utility grid, hydrogen generation, or water pumping. Credit: Science Applications International Corporation / PIX 13464 Concentrating solar power (CSP) technologies use mirrors to reflect and concentrate sunlight onto receivers that collect solar energy and convert it to heat. This thermal energy can then be used to produce electricity via a steam turbine or heat engine that drives a generator. Concentrating solar power offers a utility-scale, firm, dispatchable renewable energy option that can help meet our nation's demand for

367

Hydrogen Fuel Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydrogen Fuel Basics Hydrogen Fuel Basics Hydrogen Fuel Basics August 14, 2013 - 2:06pm Addthis Hydrogen is a clean fuel that, when consumed, produces only water. Hydrogen can be produced from a variety of domestic sources, such as coal, natural gas, nuclear power, and renewable power. These qualities make it an attractive fuel option for transportation and electricity generation applications. Hydrogen is an energy carrier that can be used to store, move, and deliver energy produced from other sources. The energy in hydrogen fuel is derived from the fuels and processes used to produce the hydrogen. Today, hydrogen fuel can be produced through several methods. The most common methods are thermal, electrolytic, and photolytic processes. Thermal Processes Thermal processes for hydrogen production typically involve steam

368

Hydropower Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydropower Technology Basics Hydropower Technology Basics Hydropower Technology Basics August 14, 2013 - 3:03pm Addthis Text Version Photo of the reservoir in front of a hydropower dam. Hydropower, or hydroelectric power, is the most common and least expensive source of renewable electricity in the United States today. According to the Energy Information Administration, more than 6% of the country's electricity was produced from hydropower resources in 2008, and about 70% of all renewable electricity generated in the United States came from hydropower resources. Hydropower technologies have a long history of use because of their many benefits, including high availability and lack of emissions. Hydropower technologies use flowing water to create energy that can be captured and turned into electricity. Both large and small-scale power

369

Vehicle Emission Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Emission Basics Vehicle Emission Basics Vehicle Emission Basics November 22, 2013 - 2:07pm Addthis Vehicle emissions are the gases emitted by the tailpipes of vehicles powered by internal combustion engines, which include gasoline, diesel, natural gas, and propane vehicles. Vehicle emissions are composed of varying amounts of: water vapor carbon dioxide (CO2) nitrogen oxygen pollutants such as: carbon monoxide (CO) nitrogen oxides (NOx) unburned hydrocarbons (UHCs) volatile organic compounds (VOCs) particulate matter (PM) A number of factors determine the composition of emissions, including the vehicle's fuel, the engine's technology, the vehicle's exhaust aftertreatment system, and how the vehicle operates. Emissions are also produced by fuel evaporation during fueling or even when vehicles are

370

Hydropower Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydropower Technology Basics Hydropower Technology Basics Hydropower Technology Basics August 14, 2013 - 3:03pm Addthis Text Version Photo of the reservoir in front of a hydropower dam. Hydropower, or hydroelectric power, is the most common and least expensive source of renewable electricity in the United States today. According to the Energy Information Administration, more than 6% of the country's electricity was produced from hydropower resources in 2008, and about 70% of all renewable electricity generated in the United States came from hydropower resources. Hydropower technologies have a long history of use because of their many benefits, including high availability and lack of emissions. Hydropower technologies use flowing water to create energy that can be captured and turned into electricity. Both large and small-scale power

371

Energy Efficiency Indicators Methodology Booklet  

E-Print Network (OSTI)

ground source) District heating Wood Biogas Charcoal Stove/wood and charcoal are widely used for cooking, water heating, andwood fuel to serve the basic need of cooking and water heating.

Sathaye, Jayant

2010-01-01T23:59:59.000Z

372

The LBNL Water Heater Retail Price Database  

SciTech Connect

Lawrence Berkeley National Laboratory developed the LBNL Water Heater Price Database to compile and organize information used in the revision of U.S. energy efficiency standards for water heaters. The Database contains all major components that contribute to the consumer cost of water heaters, including basic retail prices, sales taxes, installation costs, and any associated fees. In addition, the Database provides manufacturing data on the features and design characteristics of more than 1100 different water heater models. Data contained in the Database was collected over a two-year period from 1997 to 1999.

Lekov, Alex; Glover, Julie; Lutz, Jim

2000-10-01T23:59:59.000Z

373

Energy Efficient Commercial Technologies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Technologies April 11th, 2012 Presented by: Warren Willits Energy Solutions Center (202) 824-7150 www.ESCenter.org Federal Utility Partnership Working Group Spring 2012 Jekyll Island, GA Todays Energy Efficient Technologies  Water Heating  Heating  Air Conditioning  Humidity Control  CHP / Cogeneration Atmospheric Direct Vent High Efficiency .7 EF Atmospheric water heaters now available 97 % efficient tank water heaters now available Traditional Tank Style Water Heating  Tankless Water Heaters  EF = .82 Standard Unit  EF = .97 Condensing  Solar Water Heaters  With H.E. gas back up systems Newer Water Heaters Water Heater Life Cycle Cost Life Cycle Costs Electric Tank Water Heater Gas Water Heater

374

Rising Above the Water: New Orleans Implements Energy Efficiency and Sustainability Practices Following Hurricanes Katrina and Rita (Fact Sheet), Integrated Deployment: Disaster Recovery (ID)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rising Above the Water: Rising Above the Water: New Orleans Implements Energy Efficiency and Sustainability Practices Following Hurricanes Katrina and Rita On August 29, 2005, Hurricane Katrina, the single largest catastrophe in U.S. history, struck the Gulf Coast, flooding 80% of New Orleans, Louisiana, and causing $89.6 billion in damages. Three weeks later, the city was flooded again by Hurricane Rita. Beginning in 2007, the U.S. Department of Energy, through its National Renewable Energy Laboratory (NREL), provided technical assistance that helped the city incorporate energy effi- ciency into its rebuilding efforts for K-12 schools and homes, as well as technical support and analysis on energy policy efforts. K-12 Schools In August 2007, DOE/NREL and the Louisiana Department

375

Rising Above the Water: New Orleans Implements Energy Efficiency and Sustainability Practices Following Hurricanes Katrina and Rita (Fact Sheet), Integrated Deployment: Disaster Recovery (ID)  

NLE Websites -- All DOE Office Websites (Extended Search)

Rising Above the Water: Rising Above the Water: New Orleans Implements Energy Efficiency and Sustainability Practices Following Hurricanes Katrina and Rita On August 29, 2005, Hurricane Katrina, the single largest catastrophe in U.S. history, struck the Gulf Coast, flooding 80% of New Orleans, Louisiana, and causing $89.6 billion in damages. Three weeks later, the city was flooded again by Hurricane Rita. Beginning in 2007, the U.S. Department of Energy, through its National Renewable Energy Laboratory (NREL), provided technical assistance that helped the city incorporate energy effi- ciency into its rebuilding efforts for K-12 schools and homes, as well as technical support and analysis on energy policy efforts. K-12 Schools In August 2007, DOE/NREL and the Louisiana Department

376

Are there basic metaphors?  

E-Print Network (OSTI)

what underlying processes and mechanisms might be at play (Landau et al., 2010; Meier et al., in press). In particular, if metaphors are indeed the building blocks of cognitive representation, how many and which such metaphors are required... relating to the desirability to objects also change perceptual affordances. Balcetis and Dunning (2010) showed that desirable objects, such as a glass of water when one is thirsty, appear as closer than undesirable objects; such a perceptual bias would...

Schnall, Simone

2013-01-01T23:59:59.000Z

377

Energy Basics: Direct-Use of Geothermal Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Direct-Use of Geothermal Technologies Hot water near the surface of the Earth can be used for heat for a variety of commercial and industrial uses. Direct-use...

378

New Energy Basics Site: Check It Out! | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Energy Basics Site: Check It Out! New Energy Basics Site: Check It Out! New Energy Basics Site: Check It Out! August 23, 2010 - 7:30am Addthis Allison Casey Senior Communicator, NREL Interested in energy efficiency and renewable energy but a little confused by all the terms? Wondering how the technologies actually work? Maybe you're doing some research or working on a paper and just need a little background info. EERE's new Energy Basics site is the place for you. There you can learn things like how a wind turbine works and all about the different types of fuel cells. If you just need a quick definition of a term you've heard, check out the glossary. Energy Basics is not meant to replace Energy Savers or any of the program sites throughout the Office of Energy Efficiency and Renewable Energy.

379

Basic and Applied Research program. Progress report, 1 January 1979-30 September 1979  

DOE Green Energy (OSTI)

The Basic and Applied Research (B and AR) Program is designed to conduct advanced research not addressed by the existing US Department of Energy's (DOE) national solar technology programs. The B and AR Program comprises four independent tasks: photoconversion, materials research, energy resource assessment, and new concepts. The photoconversion task conducts research in photobiological, photochemical, and photoelectrochemical energy conversion to develop systems to produce fuels, chemicals, or electricity at high efficiencies. Results on photobiological hydrogen production using photosynthetic bacteria, water splitting by green algae, biological photoelectrochemical cells, basic studies of photosensitization using bacteriochlorophyll as a model, theoretical conversion efficiencies, redox catalysis, theory and models of photoelectrochemical cells, new electrode materials, and new electrolytes are presented. The materials research task includes research to understand and develop new materials to overcome the limitations of operating in a solar-stressed environment and to improve the efficiency, reliability, and cost of various solar energy conversion systems. Results on photodegradation studies of polymeric materials and glazing materials, corrosion monitoring in solar conversion systems, water vapor sorption by desiccants, black chrome degradation, Cu/sub 2/S charaterization, silver alloy coatings and mirror degradation, and black cobalt electrodeposition are presented. The energy resource assessment (ERA) work is reported elsewhere. The new concepts task explores new solar energy conversion schemes that are not part of existing research programs. Results are reported on thermoelectric energy conversion and desiccant cooling.

Nozik, A.J. (ed.)

1980-11-01T23:59:59.000Z

380

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

E-Print Network (OSTI)

2010. ) AWWA. 2006. Water Conservation ProgramsA PlanningWater Conservation..staff (Caffal, 1995). Water Conservation Beyond optimizing

Brown, Moya Melody, Camilla Dunham Whitehead, Rich

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water efficiency basics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Federal Energy Management Program: Energy Efficiency Evaluation and  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficiency Evaluation and Planning for Existing Buildings Efficiency Evaluation and Planning for Existing Buildings For meeting Federal sustainability requirements, agencies can use evaluation methods-such as benchmarking and energy audits-and planning to make their existing buildings energy efficient. To comply with energy reduction requirements agencies should follow a few basic steps: Benchmark buildings Conduct energy audits Create an action plan Monitor progress. This is a cyclical process that will need to be continually updated. For meeting water use reduction requirements in buildings, see Water Efficiency. Benchmark Buildings The first step in managing a building stock's sustainability is to benchmark buildings. Benchmarking allows buildings to be compared for energy consumption and performance to determine which building is consuming more energy than it should (i.e., where there are inefficiencies and opportunities for improvement).

382

Energy Efficiency Evaluation and Planning for Existing Buildings |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Energy Efficiency Evaluation and Planning for Existing Buildings Energy Efficiency Evaluation and Planning for Existing Buildings October 4, 2013 - 4:51pm Addthis For meeting Federal sustainability requirements, agencies can use evaluation methods-such as benchmarking and energy audits-and planning to make their existing buildings energy efficient. To comply with energy reduction requirements agencies should follow a few basic steps: Benchmark buildings Conduct energy audits Create an action plan Monitor progress. This is a cyclical process that will need to be continually updated. For meeting water use reduction requirements in buildings, see Water Efficiency. Benchmark Buildings The first step in managing a building stock's sustainability is to benchmark buildings. Benchmarking allows buildings to be compared for

383

Energy Efficiency Evaluation and Planning for Existing Buildings |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Areas » Sustainable Buildings & Campuses » Energy Program Areas » Sustainable Buildings & Campuses » Energy Efficiency Evaluation and Planning for Existing Buildings Energy Efficiency Evaluation and Planning for Existing Buildings October 4, 2013 - 4:51pm Addthis For meeting Federal sustainability requirements, agencies can use evaluation methods-such as benchmarking and energy audits-and planning to make their existing buildings energy efficient. To comply with energy reduction requirements agencies should follow a few basic steps: Benchmark buildings Conduct energy audits Create an action plan Monitor progress. This is a cyclical process that will need to be continually updated. For meeting water use reduction requirements in buildings, see Water Efficiency. Benchmark Buildings The first step in managing a building stock's sustainability is to

384

DOE-2 basics  

SciTech Connect

DOE-2 provides the building design and research communities with an up-to-date, unbiased, well-documented public-domain computer program for building energy analysis. DOE-2 predicts the hourly energy use and energy cost of a building given hourly weather information and a description of the building and its HVAC equipment and utility rate structure. DOE-2 is a portable FORTRAN program that can be used on a large variety of computers, including PC`s. Using DOE-2, designers can determine the choice of building parameters that improve energy efficiency while maintaining thermal comfort. The purpose of DOE-2 is to aid in the analysis of energy usage in buildings; it is not intended to be the sole source of information relied upon for the design of buildings. The judgment and experience of the architect/engineer still remain the most important elements of building design.

Not Available

1991-08-01T23:59:59.000Z

385

DOE-2 basics  

Science Conference Proceedings (OSTI)

DOE-2 provides the building design and research communities with an up-to-date, unbiased, well-documented public-domain computer program for building energy analysis. DOE-2 predicts the hourly energy use and energy cost of a building given hourly weather information and a description of the building and its HVAC equipment and utility rate structure. DOE-2 is a portable FORTRAN program that can be used on a large variety of computers, including PC's. Using DOE-2, designers can determine the choice of building parameters that improve energy efficiency while maintaining thermal comfort. The purpose of DOE-2 is to aid in the analysis of energy usage in buildings; it is not intended to be the sole source of information relied upon for the design of buildings. The judgment and experience of the architect/engineer still remain the most important elements of building design.

Not Available

1991-08-01T23:59:59.000Z

386

Texas Hot Water Report  

NLE Websites -- All DOE Office Websites (Extended Search)

coil hot water storage tank, a backup instantaneous electric water heater, a hydronic fan coil unit for space heating, and an efficient plumbing manifold for domestic hot water...

387

NREL: Energy Storage - Technology Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Basics Photo of an ultracapacitor. Electrochemical energy storage devices provide the power for many everyday devices-from cars, trains, and laptops to personal digital...

388

Energy Basics: Geothermal Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Geothermal Heat Pumps Geothermal heat pumps use the constant temperature of the earth as an exchange medium for heat. Although many parts of the country...

389

Energy Basics: Geothermal Electricity Production  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Geothermal Electricity Production A photo of steam emanating from geothermal power plants at The Geysers in California. Geothermal energy originates from deep...

390

Energy Basics: Wind Power Animation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Wind Turbines Wind Resources Wind Power...

391

Energy Basics: Renewable Energy Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Renewable Energy Technologies Renewable energy...

392

Energy Basics: Wind Energy Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Wind Turbines Wind Resources Wind Energy...

393

Energy Basics: Wind Energy Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Wind Turbines Wind Resources Wind Energy...

394

NREL: Learning - Geothermal Energy Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

About Renewable Energy Search More Search Options Site Map Printable Version Geothermal Energy Basics Photo of a hot spring. The Earth's heat-called geothermal...

395

Energy Basics: Ocean Energy Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Ocean Thermal Energy Conversion Tidal Energy Wave Energy...

396

BASIC PRINCIPLES OF SCINTILLATION COUNTING  

SciTech Connect

The basic principles of scintillation counting are reviewed. The design, performance, and operation of a placed on instruments ior medical uses. (C.H.)

Harris, C.C.; Hamblen, D.P.; Francis, J.E.

1959-12-10T23:59:59.000Z

397

Energy Efficiency Internship Summer 2011  

E-Print Network (OSTI)

Energy Efficiency Internship Summer 2011 About the Job Reports To: Energy Efficiency Manager Type: Unpaid Internship Dates: June 15, 2011 to August 15, 2011 BASIC FUNCTION Work with the energy efficiency manager to organize and document energy saving implementation systems. In addition, (s)he will interact

Colorado at Boulder, University of

398

Basic design strategies for energy efficient windows. Part II  

SciTech Connect

Windows provide light and view; alter heating, cooling, and ventilation requirements; and affect the psychology, esthetics, and safety of building occupants. Treatment of windows can reduce overall energy consumption in a building, thus decreasing cost. Glazing and interior accessories are specifically covered.

1979-05-01T23:59:59.000Z

399

Heating, Ventilation and Air Conditioning Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Presented By: WALTER E. JOHNSTON, PE Presented By: WALTER E. JOHNSTON, PE CEM, CEA, CLEP, CDSM, CPE efficiency as one of the design factors 3 Air Air is the major conductor of heat. Lack of heat = air conditioning OR 4 Btu - Amount of heat required to raise one pound of water 1 F = 0.252 KgCal 1 Pound of Water = About 1 Pint of Water ~ 1 Large Glass 1 Kitchen Match Basics of Air Conditioning = 1 Btu 5 = 6 Low Cost Cooling Unit 7 8 Typical Design Conditions 75 degrees F temperature 50% relative humidity 30 - 50 FPM air movement

400

ANALYSIS OF THE LEACHING EFFICIENCY OF INHIBITED WATER AND TANK SIMULANT IN REMOVING RESIDUES ON THERMOWELL PIPES  

SciTech Connect

A key component for the accelerated implementation and operation of the Salt Waste Processing Facility (SWPF) is the recovery of Tank 48H. Tank 48H is a type IIIA tank with a maximum capacity of 1.3 million gallons. Video inspection of the tank showed that a film of solid material adhered to the tank internal walls and structures between 69 inch and 150 inch levels. From the video inspection, the solid film thickness was estimated to be 1mm, which corresponds to {approx}33 kg of TPB salts (as 20 wt% insoluble solids) (1). This film material is expected to be easily removed by single-rinse, slurry pump operation during Tank 48H TPB disposition via aggregation processing. A similar success was achieved for Tank 49H TPB dispositioning, with slurry pumps operating almost continuously for approximately 6 months, after which time the tank was inspected and the film was found to be removed. The major components of the Tank 49H film were soluble solids - Na{sub 3}H(CO{sub 3}){sub 2} (Hydrated Sodium Carbonate, aka: Trona), Al(OH){sub 3} (Aluminum Hydroxide, aka: Gibbsite), NaTPB (Sodium Tetraphenylborate), NaNO{sub 3} (Sodium Nitrate) and NaNO{sub 2} (Sodium Nitrite) (2). Although the Tank 48H film is expected to be primarily soluble solids, it may not behave the same as the Tank 49H film. There is a risk that material on the internal surfaces of Tank 48H could not be easily removed. As a risk mitigation activity, the chemical composition and leachability of the Tank 48H film are being evaluated prior to initiating tank aggregation. This task investigated the dissolution characteristics of Tank 48H solid film deposits in inhibited water and DWPF recycle. To this end, SRNL received four separate 23-inch long thermowell-conductivity pipe samples which were removed from the tank 48H D2 risers in order to determine: (1) the thickness of the solid film deposit, (2) the chemical composition of the film deposits, and (3) the leaching behavior of the solid film deposit in inhibited water (IW) and in DWPF recycle simulant (3).

Fondeur, F.; White, T.; Oji, L.; Martino, C.; Wilmarth, B.

2011-10-20T23:59:59.000Z

Note: This page contains sample records for the topic "water efficiency basics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Sustainable Building Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Areas » Sustainable Buildings & Campuses » Sustainable Program Areas » Sustainable Buildings & Campuses » Sustainable Building Basics Sustainable Building Basics October 4, 2013 - 4:21pm Addthis Image of the side of a sustainable building Sustainable building design results in energy savings and environment stewardship. Sustainable building design and operation strategies demonstrate a commitment to energy efficiency and environmental stewardship. These approaches result in an optimal balance of energy, cost, environmental, and societal benefits, while still meeting the mission of a Federal agency and the function of the facility or infrastructure. For buildings and facilities, responsible resource management and the assessment of operational impacts encompass the principles of sustainability. Sustainable development aims to meet the needs of the

402

NREL: Learning - Advanced Vehicles and Fuels Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Vehicles and Fuels Basics Advanced Vehicles and Fuels Basics Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player This video provides an overview of the Center for Transportation Technologies and Systems and its research. Video produced for NREL by Fireside Production. Text Version We can improve the fuel economy of our cars, trucks, and buses by designing them to use the energy in fuels more efficiently. And we can help to reduce our nation's growing reliance on imported oil by running our vehicles on renewable and alternative fuels. Advanced vehicles and fuels can also put the brakes on air pollution and improve our environment. At least 250 million vehicles are in use in the United States today. They include all kinds of passenger cars, trucks, vans, buses, and large

403

NREL: Advanced Power Electronics - Technology Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Basics Technology Basics Graphic of a small hydrogen-fueled fuel cell vehicle. Check out the interactive graphic of the power electronic components of a hydrogen-fueled fuel cell vehicle. If you drive a car, use a computer, cook with a microwave oven, talk on any type of telephone, listen to a stereo, or use a cordless drill, you use power electronics. Thanks to power electronics, the electricity that runs the things we use every day is processed, filtered, and delivered with maximum efficiency and minimum size and weight. Inside a vehicle's electronic power steering system, power electronics control motors and help move the steering rack. This translates into improved steering response and lower energy consumption. In broad terms, power electronics control the flow of electric power via

404

Federal Energy Management Program: Greenhouse Gas Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics to someone by E-mail Share Federal Energy Management Program: Greenhouse Gas Basics on Facebook Tweet about Federal Energy Management Program: Greenhouse Gas Basics on...

405

Solid-State Lighting: OLED Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting: OLED Basics on Twitter Bookmark Solid-State Lighting: OLED Basics on Google Bookmark Solid-State Lighting: OLED Basics on Delicious Rank Solid-State Lighting:...

406

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

E-Print Network (OSTI)

DRINKING WATER SUPPLY INDUSTRY An ENERGY STAR Resource Guidedrinking water supply industry to reduce energy consumptionenergy is used in the public drinking water supply industry.

Brown, Moya Melody, Camilla Dunham Whitehead, Rich

2011-01-01T23:59:59.000Z

407

NREL: Learning - Geothermal Heat Pump Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Heat Pump Basics Heat Pump Basics Photo of the West Philadelphia Enterprise Center. The West Philadelphia Enterprise Center uses a geothermal heat pump system for more than 31,000 square feet of space. Geothermal heat pumps take advantage of the nearly constant temperature of the Earth to heat and cool buildings. The shallow ground, or the upper 10 feet of the Earth, maintains a temperature between 50° and 60°F (10°-16°C). This temperature is warmer than the air above it in the winter and cooler in the summer. Geothermal heat pump systems consist of three parts: the ground heat exchanger, the heat pump unit, and the air delivery system (ductwork). The heat exchanger is a system of pipes called a loop, which is buried in the shallow ground near the building. A fluid (usually water or a mixture of

408

Annual report, Basic Sciences Branch, FY 1991  

DOE Green Energy (OSTI)

This report summarizes the progress of the Basic Sciences Branch of the National Renewable Energy Laboratory (NREL) from October 1, 1990, through September 30, 1991. Seven technical sections of the report cover these main areas of NREL`s in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, Solid-State Spectroscopy, and Superconductivity. Each section explains the purpose and major accomplishments of the work in the context of the US Department of Energy`s National Photovoltaic Research Program plans.

Not Available

1993-04-01T23:59:59.000Z

409

Annual report, Basic Sciences Branch, FY 1991  

DOE Green Energy (OSTI)

This report summarizes the progress of the Basic Sciences Branch of the National Renewable Energy Laboratory (NREL) from October 1, 1990, through September 30, 1991. Seven technical sections of the report cover these main areas of NREL's in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, Solid-State Spectroscopy, and Superconductivity. Each section explains the purpose and major accomplishments of the work in the context of the US Department of Energy's National Photovoltaic Research Program plans.

Not Available

1993-04-01T23:59:59.000Z

410

Elevated CO2 increases tree-level intrinsic water use efficiency: insights from carbon and oxygen isotope analyses in tree rings across three forest FACE sites  

Science Conference Proceedings (OSTI)

Elevated CO2 increases intrinsic water use efficiency (WUEi) of forests, but the magnitude of this effect and its interaction with climate is still poorly understood. We combined tree ring analysis with isotope measurements at three Free Air CO2 Enrichment (FACE, POP-EUROFACE, in Italy; Duke FACE in North Carolina and ORNL in Tennessee, USA) sites, to cover the entire life of the trees. We used 13C to assess carbon isotope discrimination ( 13C ci/ca) and changes in WUEi, while direct CO2 effects on stomatal conductance were explored using 18O as a proxy. Across all the sites, elevated CO2 increased 13C-derived WUEi on average by 73% for Liquidambar styraciflua, 77% for Pinus taeda and 75% for Populus sp., but through different ecophysiological mechanisms. Our findings provide a robust means of predicting WUEi responses from a variety of tree species exposed to variable environmental conditions over time, and species-specific relationships that can help modeling elevated CO2 and climate impacts on forest productivity, carbon and water balances.

Battipaglia, Giovanna [Second University of Naples; Saurer, Matthias [Paul Scherrer Institut, Villigen, Switzerland; Cherubini, Paulo [WSL Swiss Federal Institute for Forest, Snow and Landscape Research; Califapietra, Carlo [University of Tuscia; McCarthy, Heather R [Duke University; Norby, Richard J [ORNL; Cotrufo, M. Francesca [Colorado State University, Fort Collins

2013-01-01T23:59:59.000Z

411

Basic EETD Web Page Design  

NLE Websites -- All DOE Office Websites (Extended Search)

Basic EETD Web Page Design Speaker(s): Eve Edelson Date: May 27, 2005 - 12:00pm Location: Bldg. 90 Seminar HostPoint of Contact: Allan Chen This talk will provide information...

412

Energy Basics: Flexible Fuel Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Flexible Fuel Vehicles Photo of a gray van with 'E85 Ethanol' written on the side. Flexible fuel vehicles (FFVs) are capable of operating on gasoline, E85 (85%...

413

Energy Basics: Fuel Cell Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Fuel Cell Vehicles Photo of a blue car with 'The Road to Hydrogen' written on it, filling up at a hydrogen fueling station. Fuel cell vehicles, powered by...

414

NREL: Learning - Solar Energy Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Basics Photo of a solar electric system in Colorado with snow-covered mountain peaks in the background. Solar panels installed on a home in Colorado. Solar is the Latin word...

415

Energy Basics: Solar Air Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Solar Air Heating Solar air heating systems use air as the working fluid for absorbing and transferring solar energy. Solar air collectors (devices to heat air...

416

Energy Basics: Wind Power Animation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Wind Power Animation This animation discusses the advantages of wind power, the workings of a wind turbine, and wind resources in the United States. It also...

417

Comparison of Test Procedures and Energy Efficiency Criteria in Selected International Standards and Labeling Programs for Clothes Washers, Water Dispensers, Vending Machines and CFLs  

E-Print Network (OSTI)

CFL technology has matured, CFL efficiency levels have beenthe CFL standards and labeling programs, energy efficiencyto bare bulb CFL. Comparison of Energy Efficiency Values In

Fridley, David

2010-01-01T23:59:59.000Z

418

Commit to Efficiency Resource Kit  

NLE Websites -- All DOE Office Websites (Extended Search)

Resource Resource Kit Step 1. Commit to efficiency. Open this resource kit, register your commitment at femp.energy.gov/commit, and review your Commit to Efficiency materials. Step 2. Push for efficiency. Buy and specify energy-efficient products for every purchase. Step 3. Spread the word! Tell your colleagues to commit to efficiency, and ask your suppliers for exclusively energy-efficient products. Commercial Space Heating and Cooling * Boilers p * Central Air Conditioners n * Chillers - Air-Cooled Electric p - Water-Cooled Electric p * Air Source Heat Pumps n Commercial Water Heating * Gas Water Heaters p Residential Space Heating and Cooling

419

Commit to Efficiency Resource Kit  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Resource Resource Kit Step 1. Commit to efficiency. Open this resource kit, register your commitment at femp.energy.gov/commit, and review your Commit to Efficiency materials. Step 2. Push for efficiency. Buy and specify energy-efficient products for every purchase. Step 3. Spread the word! Tell your colleagues to commit to efficiency, and ask your suppliers for exclusively energy-efficient products. Commercial Space Heating and Cooling * Boilers p * Central Air Conditioners n * Chillers - Air-Cooled Electric p - Water-Cooled Electric p * Air Source Heat Pumps n Commercial Water Heating * Gas Water Heaters p Residential Space Heating and Cooling

420

Efficiency United (Gas) - Residential Efficiency Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency United (Gas) - Residential Efficiency Program Efficiency United (Gas) - Residential Efficiency Program Efficiency United (Gas) - Residential Efficiency Program < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Appliances & Electronics Construction Design & Remodeling Other Ventilation Manufacturing Water Heating Windows, Doors, & Skylights Maximum Rebate Weatherization Measures: 50% of the cost Windows: $150 Water Heaters/Clothes Washers: 1 Pipe Wrap: Limit of 10 linear ft. Faucet Aerators: 2 High Efficiency Shower Head: 2 Program Info State Michigan Program Type Utility Rebate Program Rebate Amount Boiler: $200 Furnace: $100 - $200

Note: This page contains sample records for the topic "water efficiency basics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Microhydropower Conveyance and Filter Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conveyance and Filter Basics Conveyance and Filter Basics Microhydropower Conveyance and Filter Basics August 16, 2013 - 3:53pm Addthis Before water enters the turbine or waterwheel of a microhydropower system, it is funneled through a series of components that control its flow and filter out debris. These components include the headrace, forebay, and water conveyance (or channel, pipeline, or penstock). The headrace is a waterway that runs parallel to the water source. A headrace is sometimes necessary for hydropower systems when insufficient head, or vertical drop, is provided and is usually constructed of cement or masonry. The headrace leads to the forebay, which also is made of concrete or masonry. It functions as a settling pond for large debris that would otherwise flow into the system and damage the turbine.

422

Large-Scale Hydropower Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Large-Scale Hydropower Basics Large-Scale Hydropower Basics Large-Scale Hydropower Basics August 14, 2013 - 3:11pm Addthis Large-scale hydropower plants are generally developed to produce electricity for government or electric utility projects. These plants are more than 30 megawatts (MW) in size, and there is more than 80,000 MW of installed generation capacity in the United States today. Most large-scale hydropower projects use a dam and a reservoir to retain water from a river. When the stored water is released, it passes through and rotates turbines, which spin generators to produce electricity. Water stored in a reservoir can be accessed quickly for use during times when the demand for electricity is high. Dammed hydropower projects can also be built as power storage facilities.

423

Large-Scale Hydropower Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Large-Scale Hydropower Basics Large-Scale Hydropower Basics Large-Scale Hydropower Basics August 14, 2013 - 3:11pm Addthis Large-scale hydropower plants are generally developed to produce electricity for government or electric utility projects. These plants are more than 30 megawatts (MW) in size, and there is more than 80,000 MW of installed generation capacity in the United States today. Most large-scale hydropower projects use a dam and a reservoir to retain water from a river. When the stored water is released, it passes through and rotates turbines, which spin generators to produce electricity. Water stored in a reservoir can be accessed quickly for use during times when the demand for electricity is high. Dammed hydropower projects can also be built as power storage facilities.

424

Linear Concentrator System Basics for Concentrating Solar Power |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Linear Concentrator System Basics for Concentrating Solar Power Linear Concentrator System Basics for Concentrating Solar Power Linear Concentrator System Basics for Concentrating Solar Power August 20, 2013 - 4:45pm Addthis Photo of numerous parallel rows of parabolic trough collectors tracking the sun. Cooling towers and other generator equipment are in the midst of the troughs, and two water tanks are in the background. The Solar Electric Generating Station IV power plant in California consists of many parallel rows of parabolic trough collectors that track the sun. The cooling towers can be seen with the water plume rising into the air, and white water tanks are in the background. Credit: Sandia National Laboratory / PIX 14955 Linear concentrating solar power (CSP) collectors capture the sun's energy with large mirrors that reflect and focus the sunlight onto a linear

425

Water Heaters and Hot Water Distribution Systems  

E-Print Network (OSTI)

Water Distribution System Recommendations for the 2008 Title- 24 Residential Building Energy Efficiency Standards .. 4 Multi-FamilyWater Distribution System Recommendations for the 2008 Title- 24 Residential Building Energy Efficiency Standards 11 Multi-FamilyWater Distribution System Recommendations for the 2008 Title- 24 Residential Building Energy Efficiency Standards 48 Multi-Family

Lutz, Jim

2012-01-01T23:59:59.000Z

426

Biodiesel Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biodiesel Basics Biodiesel Basics Biodiesel Basics July 30, 2013 - 2:43pm Addthis Looking for Biodiesel stations? Checkout the Alternative Fuels Data Center station locator. Biodiesel station locator Biodiesel is a domestically produced, renewable fuel that can be manufactured from vegetable oils, animal fats, or recycled restaurant greases. What is Biodiesel? Biodiesel is a liquid fuel made up of fatty acid alkyl esters, fatty acid methyl esters, or long-chain mono alkyl esters. It is produced from renewable sources such as new and used vegetable oils and animal fats and is a cleaner-burning replacement for petroleum-based diesel fuel. It is nontoxic and biodegradable. Like petroleum diesel, biodiesel is used to fuel compression-ignition (diesel) engines. B20, which is 20% biodiesel and 80% petroleum diesel, is

427

Biopower Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biopower Basics Biopower Basics Biopower Basics August 14, 2013 - 12:35pm Addthis Biopower is the production of electricity or heat from biomass resources. With 10 gigawatts of installed capacity, biopower technologies are proven options in the United States today. Biopower technologies include direct combustion, co-firing, and anaerobic digestion. Direct Combustion Most electricity generated from biomass is produced by direct combustion using conventional boilers. These boilers primarily burn waste wood products from the agriculture and wood-processing industries. When burned, the wood produces steam, which spins a turbine. The spinning turbine then activates a generator that produces electricity. Co-Firing Co-firing involves replacing a portion of the petroleum-based fuel in

428

Lighting Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighting Basics Lighting Basics Lighting Basics August 15, 2013 - 5:12pm Addthis Text Version There are many different types of artificial lights, all of which have different applications and uses. Types of lighting include: Fluorescent Lighting High-intensity Discharge Lighting Incandescent Lighting LED Lighting Low-pressure Sodium Lighting. Which type is best depends on the application. See the chart below for a comparison of lighting types. Lighting Comparison Chart Lighting Type Efficacy (lumens/watt) Lifetime (hours) Color Rendition Index (CRI) Color Temperature (K) Indoors/Outdoors Fluorescent Straight Tube 30-110 7000-24,000 50-90 (fair to good) 2700-6500 (warm to cold) Indoors/outdoors Compact Fluorescent 50-70 10,000 65-88 (good) 2700-6500 (warm to cold) Indoors/outdoors

429

Biopower Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biopower Basics Biopower Basics Biopower Basics August 14, 2013 - 12:35pm Addthis Biopower is the production of electricity or heat from biomass resources. With 10 gigawatts of installed capacity, biopower technologies are proven options in the United States today. Biopower technologies include direct combustion, co-firing, and anaerobic digestion. Direct Combustion Most electricity generated from biomass is produced by direct combustion using conventional boilers. These boilers primarily burn waste wood products from the agriculture and wood-processing industries. When burned, the wood produces steam, which spins a turbine. The spinning turbine then activates a generator that produces electricity. Co-Firing Co-firing involves replacing a portion of the petroleum-based fuel in

430

Biofuel Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biofuel Basics Biofuel Basics Biofuel Basics July 30, 2013 - 11:38am Addthis Text Version Photo of a woman in goggles handling a machine filled with biofuels. Biofuels are liquid or gaseous fuels produced from biomass. Most biofuels are used for transportation, but some are used as fuels to produce electricity. The expanded use of biofuels offers an array of benefits for our energy security, economic growth, and environment. Current biofuels research focuses on new forms of biofuels such as ethanol and biodiesel, and on biofuels conversion processes. Ethanol Ethanol-an alcohol-is made primarily from the starch in corn grain. It is most commonly used as an additive to petroleum-based fuels to reduce toxic air emissions and increase octane. Today, roughly half of the gasoline sold in the United States includes 5%-10% ethanol.

431

Energy Basics: Absorption Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

but by a heat source such as natural gas, propane, solar-heated water, or geothermal-heated water. Because natural gas is the most common heat source for absorption heat...

432

Federal Energy Management Program: Federal Energy Efficiency...  

NLE Websites -- All DOE Office Websites (Extended Search)

efficient electric water heaters available, saving 50% to 60% over standard products. ENERGY STAR Qualified Products FEMP provides acquisition guidance and Federal efficiency...

433

Interactions between Energy Efficiency Programs funded under...  

NLE Websites -- All DOE Office Websites (Extended Search)

in energy efficiency, water efficiency, clean transportation, and renewable energy. EM&V contract and program administrative support (cross- cutting) 12 * Awarded two...

434

Efficiency Maine - Replacement Heating Equipment Program (Maine...  

Open Energy Info (EERE)

announced its closure November 2011. According to Efficiency Maine, almost 2,600 homeowners participated in the program trading in older, less-efficient space andor water...

435

Central Hudson Gas & Electric (Gas) - Residential Energy Efficiency...  

Open Energy Info (EERE)

depending on efficiency Natural Gas Water Boiler: 350 - 700, depending on efficiency Steam Boiler: 350 Boiler Reset Control: 70 Indirect Water Heater: 210 Programmable...

436

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

E-Print Network (OSTI)

and Policy Opportunities, 2 nd ed. American Council for an Energy-American Council for an Energy Efficient Economy (ACEEE). Energy-Efficient Motor Systems: A Handbook on Technology, Program, and Policy

Brown, Moya Melody, Camilla Dunham Whitehead, Rich

2011-01-01T23:59:59.000Z

437

DIY BASICS CHECKLIST DRIPS AND LEAKS  

E-Print Network (OSTI)

DIY BASICS CHECKLIST DRIPS AND LEAKS Watercancauseseriousdamage- oftenunseen. Drillbits. Tapemeasure. Spiritlevel. Start off small. Collect a basic tool kit. There's plenty of DIY info'tdrillintomortarbetweenbricks. #12;DIY BASICS CHECKLIST Location Twopeoplemakethisamuch easierjob. Cutasheetofpapertothesize

Peters, Richard

438

FCT Safety, Codes and Standards: Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

by E-mail Share FCT Safety, Codes and Standards: Basics on Facebook Tweet about FCT Safety, Codes and Standards: Basics on Twitter Bookmark FCT Safety, Codes and Standards: Basics...

439

Solid-State Lighting: SSL Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

SSL Basics Printable Version Share this resource Send a link to Solid-State Lighting: SSL Basics to someone by E-mail Share Solid-State Lighting: SSL Basics on Facebook Tweet about...

440

Solid-State Lighting: LED Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

SSL Basics Printable Version Share this resource Send a link to Solid-State Lighting: LED Basics to someone by E-mail Share Solid-State Lighting: LED Basics on Facebook Tweet...

Note: This page contains sample records for the topic "water efficiency basics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Technical support document: Energy efficiency standards for consumer products: Room air conditioners, water heaters, direct heating equipment, mobile home furnaces, kitchen ranges and ovens, pool heaters, fluorescent lamp ballasts and television sets. Volume 3, Water heaters, pool heaters, direct heating equipment, and mobile home furnaces  

SciTech Connect

This is Volume 3 in a series of documents on energy efficiency of consumer products. This volume discusses energy efficiency of water heaters. Water heaters are defined by NAECA as products that utilize oil, gas, or electricity to heat potable water for use outside the heater upon demand. These are major appliances, which use a large portion (18% on average) of total energy consumed per household (1). They differ from most other appliances in that they are usually installed in obscure locations as part of the plumbing and are ignored until they fail. Residential water heaters are capable of heating water up to 180{degrees}F, although the setpoints are usually set lower.

Not Available

1993-11-01T23:59:59.000Z

442

Geothermal Electricity Production Basics | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Electricity Production Basics Geothermal Electricity Production Basics August 14, 2013 - 1:49pm Addthis A photo of steam emanating from geothermal power plants at The Geysers in...

443

Federal Energy Management Program: Sustainable Building Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Sustainable Building Basics to someone by E-mail Share Federal Energy Management Program: Sustainable Building Basics on Facebook Tweet about Federal Energy Management Program:...

444

Renewable Energy Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Technology Basics Renewable Energy Technology Basics Renewable energy technologies produce sustainable, clean energy from sources such as the sun, the wind,...

445

REScheck Basics | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics This training covers the basics of using the REScheck(tm) software, and is geared toward the beginning user. Estimated Length: 1 hour, 8 minutes Presenters: Rosemarie...

446

Basic Research Needs: Catalysis for Energy  

DOE Green Energy (OSTI)

The report presents results of a workshop held August 6-8, 2007, by DOE SC Basic Energy Sciences to determine the basic research needs for catalysis research.

Bell, Alexis T.; Gates, Bruce C.; Ray, Douglas; Thompson, Michael R.

2008-03-11T23:59:59.000Z

447

Federal Energy Management Program: Institutional Change Basics...  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics for Sustainability to someone by E-mail Share Federal Energy Management Program: Institutional Change Basics for Sustainability on Facebook Tweet about Federal Energy...

448

Geothermal Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Or read more about EERE's geothermal technologies research. Addthis Related Articles Geothermal Direct-Use Basics Glossary of Energy-Related Terms Geothermal Resource Basics...

449

Energy Efficiency | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Analytical Tools: Find software and tools that help implement energy- and water-efficiency projects. October 8, 2013 EISA Compliance Tracking System Reports and Data The...

450

Citizens Gas - Residential Efficiency Rebates | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

& Cooling Heating Appliances & Electronics Water Heating Maximum Rebate Limit of 15 Energy Star rebates per builder per calendar year Thermal Efficiency Water Heater: 75...

451

Efficiency United (Gas) - Commercial Efficiency Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency United (Gas) - Commercial Efficiency Program Efficiency United (Gas) - Commercial Efficiency Program Efficiency United (Gas) - Commercial Efficiency Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Appliances & Electronics Other Construction Manufacturing Water Heating Maximum Rebate See Page Four of Utility Application: $100-$50,000/customer/year depending on utility and remaining funding Custom:40% of project cost Program Info State Michigan Program Type Utility Rebate Program Rebate Amount Trap Repair or Replacement: $50/unit Boilers: $1-$1.50/MBH Furnace Replacement: $1.50/MBH or $150/unit Boiler Modulation Burner Control Retrofit: $1000/unit Boiler Water Reset Control: $300/unit

452

Clean Cities: Clean Cities Coordinator Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Coordinator Basics to Coordinator Basics to someone by E-mail Share Clean Cities: Clean Cities Coordinator Basics on Facebook Tweet about Clean Cities: Clean Cities Coordinator Basics on Twitter Bookmark Clean Cities: Clean Cities Coordinator Basics on Google Bookmark Clean Cities: Clean Cities Coordinator Basics on Delicious Rank Clean Cities: Clean Cities Coordinator Basics on Digg Find More places to share Clean Cities: Clean Cities Coordinator Basics on AddThis.com... Coordinator Basics Clean Cities Program Structure Reference Materials Technical Support Fundraising Redesignation Outreach Education & Webinars Meetings Reporting Contacts Clean Cities Coordinator Basics Explore these resources for basic information to help you effectively support your Clean Cities coalition. Icon of an organization chart. Program Structure

453

Basic Research of Metallurgical Process  

Science Conference Proceedings (OSTI)

Mar 13, 2012... process can be acquired and used for estimate of production status. ... Within the efforts of replacing the full water quench in gasification...

454

Energy Basics: Absorption Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems Air-Source Heat Pumps Ductless Mini-Split Heat Pumps Absorption Heat Pumps Geothermal Heat Pumps Supporting Equipment for Heating & Cooling Systems Water Heating...

455

Energy Basics: Heat Pump Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems Air-Source Heat Pumps Ductless Mini-Split Heat Pumps Absorption Heat Pumps Geothermal Heat Pumps Supporting Equipment for Heating & Cooling Systems Water Heating Heat...

456

Energy Basics: Geothermal Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems Air-Source Heat Pumps Ductless Mini-Split Heat Pumps Absorption Heat Pumps Geothermal Heat Pumps Supporting Equipment for Heating & Cooling Systems Water Heating...

457

Energy Basics: Lighting and Daylighting  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Lighting Daylighting Passive Solar Design Space Heating & Cooling Water Heating Lighting and Daylighting Buildings can be lit in two ways: by using artificial lighting, or by...

458

Ocean Thermal Energy Conversion Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermal Energy Conversion Basics Thermal Energy Conversion Basics Ocean Thermal Energy Conversion Basics August 16, 2013 - 4:22pm Addthis A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in the Earth's oceans to generate electricity. OTEC works best when the temperature difference between the warmer, top layer of the ocean and the colder, deep ocean water is about 36°F (20°C). These conditions exist in tropical coastal areas, roughly between the Tropic of Capricorn and the Tropic of Cancer. To bring the cold water to the surface, ocean thermal energy conversion plants require an expensive, large-diameter intake pipe, which is submerged a mile or more into the ocean's depths. Some energy experts believe that if ocean thermal energy conversion can become cost-competitive with conventional power technologies, it could be

459

Microhydropower Turbine, Pump, and Waterwheel Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Microhydropower Turbine, Pump, and Waterwheel Basics Microhydropower Turbine, Pump, and Waterwheel Basics Microhydropower Turbine, Pump, and Waterwheel Basics August 16, 2013 - 3:58pm Addthis A microhydropower system needs a turbine, pump, or waterwheel to transform the energy of flowing water into rotational energy, which is then converted into electricity. Turbines Turbines are commonly used to power microhydropower systems. The moving water strikes the turbine blades, much like a waterwheel, to spin a shaft. But turbines are more compact in relation to their energy output than waterwheels. They also have fewer gears and require less material for construction. There are two general types of turbines: impulse and reaction. Impulse Turbines Impulse turbines, which have the least complex design, are most commonly

460

Ocean Thermal Energy Conversion Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermal Energy Conversion Basics Thermal Energy Conversion Basics Ocean Thermal Energy Conversion Basics August 16, 2013 - 4:22pm Addthis A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in the Earth's oceans to generate electricity. OTEC works best when the temperature difference between the warmer, top layer of the ocean and the colder, deep ocean water is about 36°F (20°C). These conditions exist in tropical coastal areas, roughly between the Tropic of Capricorn and the Tropic of Cancer. To bring the cold water to the surface, ocean thermal energy conversion plants require an expensive, large-diameter intake pipe, which is submerged a mile or more into the ocean's depths. Some energy experts believe that if ocean thermal energy conversion can become cost-competitive with conventional power technologies, it could be

Note: This page contains sample records for the topic "water efficiency basics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Microhydropower Turbine, Pump, and Waterwheel Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Microhydropower Turbine, Pump, and Waterwheel Basics Microhydropower Turbine, Pump, and Waterwheel Basics Microhydropower Turbine, Pump, and Waterwheel Basics August 16, 2013 - 3:58pm Addthis A microhydropower system needs a turbine, pump, or waterwheel to transform the energy of flowing water into rotational energy, which is then converted into electricity. Turbines Turbines are commonly used to power microhydropower systems. The moving water strikes the turbine blades, much like a waterwheel, to spin a shaft. But turbines are more compact in relation to their energy output than waterwheels. They also have fewer gears and require less material for construction. There are two general types of turbines: impulse and reaction. Impulse Turbines Impulse turbines, which have the least complex design, are most commonly

462

NREL: Learning - Distributed Energy Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Energy Basics Distributed Energy Basics Photo of transmission towers and lines extending for miles towards a pink sunset in the distance. Distributed energy technologies can relieve transmission bottlenecks by reducing the amount of electricity that must be sent long distances down high-voltage power lines. Distributed energy refers to a variety of small, modular power-generating technologies that can be combined with load management and energy storage systems to improve the quality and/or reliability of the electricity supply. They are "distributed" because they are placed at or near the point of energy consumption, unlike traditional "centralized" systems, where electricity is generated at a remotely located, large-scale power plant and then transmitted down power lines to the consumer.

463

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

E-Print Network (OSTI)

lists the treatment methods and the percentage of utilitieslists the characteristics of the water sources used by utilities

Brown, Moya Melody, Camilla Dunham Whitehead, Rich

2011-01-01T23:59:59.000Z

464

Energy Efficiency Challenges in Heating Supply System of Turkmenistan and Potential Solutions  

E-Print Network (OSTI)

The poor condition and inefficient operation of the existing heat and hot water supply system in Turkmenistan is causing serious economic, social and environmental problems. Yet, the situation may very well change to the worse as increase of energy consumption is projected for near future. The country's commitment to reduce greenhouse gases emissions faces the challenge of ensuring that both the short- and long-term environmental impacts can be minimized while service levels of heat and hot water supply to the population are simultaneously improved. Despite the energy, economic, and environmental benefits of energy efficiency in Turkmenistan, little has been done to eliminate energy waste. Due historic legacy, there is a limited institutional capacity to increase energy efficiency. Achieving energy and environmental goals will require a basic institutional transformation. Gaps in polices and legislation in the area of energy efficiency and the lack capacity and institutional expertise in managing local, regional and national energy efficiency programs have to be addressed.

Zomov, A.; Behnke, R.

2010-01-01T23:59:59.000Z

465

Flint Energies - Residential Energy Efficiency Loan Program ...  

Open Energy Info (EERE)

Heat pumps, Programmable Thermostats, Refrigerators, Roofs, Siding, Water Heaters, Windows Active Incentive Yes Implementing Sector Utility Energy Category Energy Efficiency...

466

Efficiency Measures  

NLE Websites -- All DOE Office Websites (Extended Search)

recommended steam system energy efficiency measures Based on analyses implementation of steam system energy efficiency measures is driven primarily by cost metrics payback period...

467

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

E-Print Network (OSTI)

accessed August 31, 2010. ) U.S. DOE Energy Efficiency &Renewable Energy (EERE), Office of Industrial Technologies.2010. ) Alliance to Save Energy, 2002, pp. 96-97. Available

Brown, Moya Melody, Camilla Dunham Whitehead, Rich

2011-01-01T23:59:59.000Z

468

Vehicle Technologies Office: Just the Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Just the Basics to Just the Basics to someone by E-mail Share Vehicle Technologies Office: Just the Basics on Facebook Tweet about Vehicle Technologies Office: Just the Basics on Twitter Bookmark Vehicle Technologies Office: Just the Basics on Google Bookmark Vehicle Technologies Office: Just the Basics on Delicious Rank Vehicle Technologies Office: Just the Basics on Digg Find More places to share Vehicle Technologies Office: Just the Basics on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Materials Technologies Just the Basics Technology Overviews Biodiesel Combustion Diesel Engine Hybrid and Plug-in Electric Vehicles Ethanol Fuel Cells Hydrogen Liquefied Petroleum Gas (Propane)

469

Alternative Fuels Data Center: Biodiesel Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Basics Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Basics on AddThis.com... More in this section... Biodiesel Basics Blends Production & Distribution Specifications Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Biodiesel Fuel Basics Related Information National Biofuels Action Plan Biodiesel is a domestically produced, renewable fuel that can be

470

Alternative Fuels Data Center: Propane Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Basics to Basics to someone by E-mail Share Alternative Fuels Data Center: Propane Basics on Facebook Tweet about Alternative Fuels Data Center: Propane Basics on Twitter Bookmark Alternative Fuels Data Center: Propane Basics on Google Bookmark Alternative Fuels Data Center: Propane Basics on Delicious Rank Alternative Fuels Data Center: Propane Basics on Digg Find More places to share Alternative Fuels Data Center: Propane Basics on AddThis.com... More in this section... Propane Basics Production & Distribution Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Propane Fuel Basics Propane dispenser Also known as liquefied petroleum gas (LPG) or autogas, propane is a clean-burning, high-energy alternative fuel that's been used for decades to

471

Alternative Fuels Data Center: Ethanol Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Basics to Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Basics on AddThis.com... More in this section... Ethanol Basics Blends Specifications Production & Distribution Feedstocks Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Ethanol Fuel Basics Related Information National Biofuels Action Plan Ethanol is a renewable fuel made from various plant materials collectively

472

Alternative Fuels Data Center: Hydrogen Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Basics to Basics to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Basics on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Basics on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Basics on Google Bookmark Alternative Fuels Data Center: Hydrogen Basics on Delicious Rank Alternative Fuels Data Center: Hydrogen Basics on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Basics on AddThis.com... More in this section... Hydrogen Basics Production & Distribution Research & Development Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Hydrogen Basics Hydrogen (H2) is a potentially emissions-free alternative fuel that can be produced from domestic resources. Although not widely used today as a

473

NETL: Produced Water Management Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

Produced Water Management Technology Descriptions Fact Sheet - Underground Injection for Disposal PWMIS Home Intro to Produced Water Technology Descriptions Basic Separation...

474

Geothermal Direct-Use Basics  

Energy.gov (U.S. Department of Energy (DOE))

Hot water near the surface of the Earth can be used for heat for a variety of commercial and industrial uses. Direct-use applications include heating buildings, growing plants in greenhouses,...

475

Energy Basics: Furnaces and Boilers  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

a vessel or tank where heat produced from the combustion of such fuels as natural gas, fuel oil, or coal is used to generate hot water or steam. Many buildings have their own...

476

Energy-Efficiency Labels and Standards: A Guidebook for Appliances, Equipment, and Lighting - 2nd Edition  

E-Print Network (OSTI)

CFL) manufacturing facilities or basic health and educational services. 2.2.2 Labels and Standards Enhance National Economic Efficiency

Wiel, Stephen; McMahon, James E.

2005-01-01T23:59:59.000Z

477

EIA - Natural Gas Analysis Basics  

Gasoline and Diesel Fuel Update (EIA)

for Natural Gas Basics for Natural Gas Basics Where Our Natural Gas Comes From Natural Gas Prices Natural Gas Statistics Natural Gas Kid's Page (Not Just for Kids) How natural gas was formed, how we get it, how it is stored and delivered, how it is measured, what it is used for, how it affects the environment and more. Natural Gas Residential Choice This site provides an overview of the status of natural gas industry restructuring in each state, focusing on the residential customer class. About U.S. Natural Gas Pipelines State Energy Profiles What role does liquefied natural gas (LNG) play as an energy source for the United States? This Energy In Brief discusses aspects of LNG industry in the United States. LNG is natural gas that has been cooled to about minus 260 degrees Fahrenheit for shipment and/or storage as a liquid. Growth in LNG imports to the United States has been uneven in recent years, with substantial changes in year-over-year imports as a result of suppliers’ decisions to either bring spare cargos to the United States or to divert cargos to countries where prices may be higher. Categories: Imports & Exports/Pipelines (Released, 12/11/2009)

478

Alternative Fuels Data Center: Electricity Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electricity Fuel Electricity Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Electricity Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Electricity Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Google Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Delicious Rank Alternative Fuels Data Center: Electricity Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Electricity Fuel Basics on AddThis.com... More in this section... Electricity Basics Production & Distribution Research & Development Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Electricity Fuel Basics Photo of a plug-in hybrid vehicle fueling. Electricity is considered an alternative fuel under the Energy Policy Act

479

Comparison of Test Procedures and Energy Efficiency Criteria in Selected International Standards and Labeling Programs for Clothes Washers, Water Dispensers, Vending Machines and CFLs  

E-Print Network (OSTI)

etc. ) during which energy consumption is measured, the typedoes not specify energy consumption measurements but rather,test in which water and energy consumption are measured. The

Fridley, David

2010-01-01T23:59:59.000Z

480

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

E-Print Network (OSTI)

rural businesses, for instance for energy audits. In FY2010,Business_Programs/ind ustriallighting_bestpracticessheet.pdf. Water & Wastewater Treatment Energy Use Self-Audit

Brown, Moya Melody, Camilla Dunham Whitehead, Rich

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water efficiency basics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Characterization and Alteration of Wettability States of Alaskan Reserviors to Improve Oil Recovery Efficiency (including the within-scope expansion based on Cyclic Water Injection - a pulsed waterflood for Enhanced Oil Recovery)  

SciTech Connect

Numerous early reports on experimental works relating to the role of wettability in various aspects of oil recovery have been published. Early examples of laboratory waterfloods show oil recovery increasing with increasing water-wetness. This result is consistent with the intuitive notion that strong wetting preference of the rock for water and associated strong capillary-imbibition forces gives the most efficient oil displacement. This report examines the effect of wettability on waterflooding and gasflooding processes respectively. Waterflood oil recoveries were examined for the dual cases of uniform and non-uniform wetting conditions. Based on the results of the literature review on effect of wettability and oil recovery, coreflooding experiments were designed to examine the effect of changing water chemistry (salinity) on residual oil saturation. Numerous corefloods were conducted on reservoir rock material from representative formations on the Alaska North Slope (ANS). The corefloods consisted of injecting water (reservoir water and ultra low-salinity ANS lake water) of different salinities in secondary as well as tertiary mode. Additionally, complete reservoir condition corefloods were also conducted using live oil. In all the tests, wettability indices, residual oil saturation, and oil recovery were measured. All results consistently lead to one conclusion; that is, a decrease in injection water salinity causes a reduction in residual oil saturation and a slight increase in water-wetness, both of which are comparable with literature observations. These observations have an intuitive appeal in that water easily imbibes into the core and displaces oil. Therefore, low-salinity waterfloods have the potential for improved oil recovery in the secondary recovery process, and ultra low-salinity ANS lake water is an attractive source of injection water or a source for diluting the high-salinity reservoir water. As part of the within-scope expansion of this project, cyclic water injection tests using high as well as low salinity were also conducted on several representative ANS core samples. These results indicate that less pore volume of water is required to recover the same amount of oil as compared with continuous water injection. Additionally, in cyclic water injection, oil is produced even during the idle time of water injection. It is understood that the injected brine front spreads/smears through the pores and displaces oil out uniformly rather than viscous fingering. The overall benefits of this project include increased oil production from existing Alaskan reservoirs. This conclusion is based on the performed experiments and results obtained on low-salinity water injection (including ANS lake water), vis-a-vis slightly altering the wetting conditions. Similarly, encouraging cyclic water-injection test results indicate that this method can help achieve residual oil saturation earlier than continuous water injection. If proved in field, this would be of great use, as more oil can be recovered through cyclic water injection for the same amount of water injected.

Abhijit Dandekar; Shirish Patil; Santanu Khataniar

2008-12-31T23:59:59.000Z

482

Solar Water Heating  

NLE Websites -- All DOE Office Websites (Extended Search)

publication provides basic informa- publication provides basic informa- tion on the components and types of solar water heaters currently available and the economic and environmental benefits of owning a system. Although the publica- tion does not provide information on building and installing your own system, it should help you discuss solar water heating systems intelligently with a solar equipment dealer. Solar water heaters, sometimes called

483

Saving Water Saves Energy  

E-Print Network (OSTI)

H. , Groves D. California Water 2030: An Efficient Future,Preemption of Californias Water Conservation Standards for2Epdf Biermayer P. Potential Water and Energy Savings from

McMahon, James E.; Whitehead, Camilla Dunham; Biermayer, Peter

2006-01-01T23:59:59.000Z

484

Heating and Cooling System Support Equipment Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heating and Cooling System Support Equipment Basics Heating and Cooling System Support Equipment Basics Heating and Cooling System Support Equipment Basics July 30, 2013 - 3:28pm Addthis Thermostats and ducts provide opportunities for saving energy. Dehumidifying heat pipes provide a way to help central air conditioners and heat pumps dehumidify air. Electric and gas meters allow users to track energy use. Thermostats Programmable thermostats can store and repeat multiple daily settings. Users can adjust the times heating or air-conditioning is activated according to a pre-set schedule. Visit the Energy Saver website for more information about thermostats and control systems in homes. Ducts Efficient and well-designed duct systems distribute air properly throughout a building, without leaking, to keep all rooms at a comfortable

485

Combined Heat and Power Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Combined Heat and Power Basics Combined Heat and Power Basics Combined Heat and Power Basics November 1, 2013 - 11:40am Addthis Combined heat and power (CHP), also known as cogeneration, is: A process flow diagram showing efficiency benefits of CHP CHP Process Flow Diagram The concurrent production of electricity or mechanical power and useful thermal energy (heating and/or cooling) from a single source of energy. A type of distributed generation, which, unlike central station generation, is located at or near the point of consumption. A suite of technologies that can use a variety of fuels to generate electricity or power at the point of use, allowing the heat that would normally be lost in the power generation process to be recovered to provide needed heating and/or cooling. CHP technology can be deployed quickly, cost-effectively, and with few

486

Wood and Pellet Heating Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wood and Pellet Heating Basics Wood and Pellet Heating Basics Wood and Pellet Heating Basics August 16, 2013 - 3:02pm Addthis Wood-burning and pellet fuel appliances use biomass or waste resources to heat homes or buildings. Types of Wood- and Pellet-Burning Appliances The following is a brief overview of the different types of wood and pellet fuel appliances available. High-Efficiency Fireplaces and Fireplace Inserts Designed more for show, traditional open masonry fireplaces should not be considered heating devices. Traditional fireplaces draw in as much as 300 cubic feet per minute of heated room air for combustion, then send it straight up the chimney. Fireplaces also produce significant air pollution. Although some fireplace designs seek to address these issues with dedicated air supplies, glass doors, and heat recovery systems, fireplaces are still

487

Low-Pressure Sodium Lighting Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-Pressure Sodium Lighting Basics Low-Pressure Sodium Lighting Basics Low-Pressure Sodium Lighting Basics August 16, 2013 - 10:17am Addthis Low-pressure sodium lighting provides more energy-efficient outdoor lighting than high-intensity discharge lighting, but it has very poor color rendition. Typical applications include highway and security lighting, where color is not important. Low-pressure sodium lamps work somewhat like fluorescent lamps. Like high-intensity discharge lighting, low-pressure sodium lamps require up to 10 minutes to start and have to cool before they can restart. Therefore, they are most suitable for applications in which they stay on for hours at a time. They are not suitable for use with motion detectors. The chart below compares low-pressure sodium lamps and high-intensity

488

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

E-Print Network (OSTI)

Efficiency & Renewable Energy (EERE), Office of IndustrialSeptember 4, 2010. ) U.S. DOE EERE. Industrial Technologies25, 2011. ) U.S. DOE EERE. 2002. United States Industrial

Brown, Moya Melody, Camilla Dunham Whitehead, Rich

2011-01-01T23:59:59.000Z

489

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

E-Print Network (OSTI)

Harding, P. Effective Energy Management Guide. 2000; revisedOID=2621. Effective Energy Management Guide. 2000, 2010. P.of 1.3 years. Sources: Energy Efficiency Guide for Colorado

Brown, Moya Melody, Camilla Dunham Whitehead, Rich

2011-01-01T23:59:59.000Z

490

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

E-Print Network (OSTI)

training and tools for efficiency programs and resource management;management program, but its duties also can include delivering training,management program for buildings. The document discusses management (goals, planning, energy accounting); teamwork (staffing, training,

Brown, Moya Melody, Camilla Dunham Whitehead, Rich

2011-01-01T23:59:59.000Z

491

Energy 101 Videos: Learn More About the Basics! | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy 101 Videos: Learn More About the Basics! Energy 101 Videos: Learn More About the Basics! Energy 101 Videos: Learn More About the Basics! August 30, 2010 - 4:42pm Addthis Elizabeth Spencer Communicator, National Renewable Energy Laboratory Okay, so we already pointed out the Energy Basics Web site last week. Because I'm going to talk about something on the site, I wanted to remind you all of what it is: a brand new Web site on EERE that talks about the basics of how energy efficiency and renewable energy technologies work. A little place to find out the "What is it, and how does it work?" nuggets of information, basically. But I wanted to point out something in particular: the Energy 101 series of videos! There are two so far, although more will be posted in the future. The two that are there now, Wind Turbines Basics and Concentrating Solar Power

492

Energy 101 Videos: Learn More About the Basics! | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Videos: Learn More About the Basics! Videos: Learn More About the Basics! Energy 101 Videos: Learn More About the Basics! August 30, 2010 - 4:42pm Addthis Elizabeth Spencer Communicator, National Renewable Energy Laboratory Okay, so we already pointed out the Energy Basics Web site last week. Because I'm going to talk about something on the site, I wanted to remind you all of what it is: a brand new Web site on EERE that talks about the basics of how energy efficiency and renewable energy technologies work. A little place to find out the "What is it, and how does it work?" nuggets of information, basically. But I wanted to point out something in particular: the Energy 101 series of videos! There are two so far, although more will be posted in the future. The two that are there now, Wind Turbines Basics and Concentrating Solar Power

493

Office of Energy Efficiency & Renewable Energy | Department of...  

NLE Websites -- All DOE Office Websites (Extended Search)

Search form Search Office of Energy Efficiency & Renewable Energy Services Energy Basics States and Local Communities Technical Assistance Energy Analysis Jobs, Education, and...

494

Just the Basics: Diesel Engine  

NLE Websites -- All DOE Office Websites (Extended Search)

Today's direct-injection diesel Today's direct-injection diesel engines are more rugged, powerful, durable, and reliable than gasoline engines, and use fuel much more efficiently, as well. Diesel Engines Yesterday, Today, and Tomorrow Diesels are workhorse engines. That's why you find them powering heavy- duty trucks, buses, tractors, and trains, not to mention large ships, bulldozers, cranes, and other construction equipment. In the past, diesels fit the stereotype of muscle-bound behe- moths. They were dirty and sluggish, smelly and loud. That image doesn't apply to today's diesel engines, however, and tomorrow's diesels will show even greater improvements. They will be even more fuel efficient, more flexible in the fuels they can use, and also much cleaner in emissions. How Diesel Engines Work

495

Alternative Fuels Data Center: Vehicle Conversion Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Conversion Vehicle Conversion Basics to someone by E-mail Share Alternative Fuels Data Center: Vehicle Conversion Basics on Facebook Tweet about Alternative Fuels Data Center: Vehicle Conversion Basics on Twitter Bookmark Alternative Fuels Data Center: Vehicle Conversion Basics on Google Bookmark Alternative Fuels Data Center: Vehicle Conversion Basics on Delicious Rank Alternative Fuels Data Center: Vehicle Conversion Basics on Digg Find More places to share Alternative Fuels Data Center: Vehicle Conversion Basics on AddThis.com... Vehicle Conversion Basics Photo of a Ford Transit Connect converted to run on compressed natural gas. A Ford Transit Connect converted to run on compressed natural gas. A converted vehicle or engine is one modified to use a different fuel or

496

Wind Energy Resource Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Resource Basics Wind Energy Resource Basics July 30, 2013 - 3:11pm Addthis Wind energy can be produced anywhere in the world where the wind blows with a strong and...

497

Photovoltaic Cell Basics | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Cell Basics Photovoltaic Cell Basics August 16, 2013 - 4:53pm Addthis Photovoltaic (PV) cells, or solar cells, take advantage of the photoelectric effect to produce electricity. PV...

498

Solar Energy Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Energy Technology Basics Solar Energy Technology Basics August 16, 2013 - 4:37pm Addthis Solar energy technologies produce electricity from the energy of the sun. Small solar...

499

Basic Research Needs for the Hydrogen Economy  

Fuel Cell Technologies Publication and Product Library (EERE)

The Basic Energy Sciences (BES) Workshop on Hydrogen Production, Storage and Use was held May 13-15, 2003 to assess the basic research needs to assure a secure energy future. This report is based on t

500

Commercial Building Energy Efficiency and Efficient Technologies Guidebook  

Science Conference Proceedings (OSTI)

Commercial buildings account for 18% of all energy use in the United States and about 27% of energy use in buildings. Improving overall energy efficiency in this sector remains challenging due to the diversity of building types and equipment, especially since business operators are focused on their core business operating issues and lack familiarity with means for improving energy efficiency. This guidebook provides basic information on how commercial buildings use energy today and suggests opportunities...

2008-04-30T23:59:59.000Z