National Library of Energy BETA

Sample records for water consumption intensity

  1. Energy Intensity Indicators: Transportation Energy Consumption...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Energy Consumption Energy Intensity Indicators: Transportation Energy Consumption This section contains an overview of the aggregate transportation sector, combining ...

  2. Energy Intensity Indicators: Commercial Source Energy Consumption...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Source Energy Consumption Energy Intensity Indicators: Commercial Source Energy Consumption Figure C1 below reports as index numbers over the period 1970 through 2011: ...

  3. Energy Intensity Indicators: Residential Source Energy Consumption...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Source Energy Consumption Energy Intensity Indicators: Residential Source Energy Consumption Figure R1 below reports as index numbers over the period 1970 through 2011: ...

  4. Table C10. Electricity Consumption and Expenditure Intensities...

    U.S. Energy Information Administration (EIA) Indexed Site

    Electricity Consumption and Expenditure Intensities, 1999" ,"Electricity Consumption",,,,,,"Electricity Expenditures" ,"per Building (thousand kWh)","per Square Foot (kWh)","per...

  5. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    5. Fuel Oil Consumption and Conditional Energy Intensity by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,"Total Floorspace of...

  6. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Fuel Oil Consumption and Conditional Energy Intensity by Census Region, 1999" ,"Total Fuel Oil Consumption (million gallons)",,,,"Total Floorspace of Buildings Using Fuel Oil...

  7. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption and Conditional Energy Intensity by Climate Zonea for Non-Mall Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,,,"Total Floorspace of...

  8. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Electricity Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,,,"Total Floorspace of...

  9. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Electricity Consumption and Conditional Energy Intensity by Building Size for All Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace of...

  10. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Electricity Consumption and Conditional Energy Intensity, 1999" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace of Buildings Using Electricity (million square...

  11. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 1" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace...

  12. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption and Conditional Energy Intensity by Building Size for Non-Mall Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace of...

  13. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption and Conditional Energy Intensity by Census Division for Non-Mall Buildings, 2003: Part 1" ,"Total Electricity Consumption (billion kWh)",,,"Total...

  14. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption and Conditional Energy Intensity by Census Division for Non-Mall Buildings, 2003: Part 2" ,"Total Electricity Consumption (billion kWh)",,,"Total...

  15. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    9A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace...

  16. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Electricity Consumption and Conditional Energy Intensity by Census Region, 1999" ,"Total Electricity Consumption (billion kWh)",,,,"Total Floorspace of Buildings Using Electricity...

  17. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption and Conditional Energy Intensity by Census Region for Non-Mall Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,,"Total Floorspace of...

  18. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Electricity Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,,"Total Floorspace of...

  19. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption and Conditional Energy Intensity by Year Constructed for Non-Mall Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace of...

  20. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Electricity Consumption and Conditional Energy Intensity by Year Constructed, 1999" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace of Buildings Using...

  1. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace...

  2. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Electricity Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace of...

  3. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption and Conditional Energy Intensity by Census Division for Non-Mall Buildings, 2003: Part 3" ,"Total Electricity Consumption (billion kWh)",,,"Total...

  4. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,"Total Floorspace of Buildings...

  5. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    . Consumption and Gross Energy Intensity by Building Size for Sum of Major Fuels for Non-Mall Buildings, 2003" ,"Sum of Major Fuel Consumption (trillion Btu)",,,"Total Floorspace...

  6. New Water Booster Pump System Reduces Energy Consumption by 80...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Booster Pump System Reduces Energy Consumption by 80 Percent and Increases Reliability New Water Booster Pump System Reduces Energy Consumption by 80 Percent and Increases ...

  7. Use of nanofiltration to reduce cooling tower water consumption...

    Office of Scientific and Technical Information (OSTI)

    Use of nanofiltration to reduce cooling tower water consumption. Citation Details In-Document Search Title: Use of nanofiltration to reduce cooling tower water consumption. ...

  8. Table 2a. Electricity Consumption and Electricity Intensities...

    U.S. Energy Information Administration (EIA) Indexed Site

    Administration Home Page Home > Commercial Buildings Home > Sq Ft Tables > Table 2a. Electricity Consumption per Sq Ft Table 2a. Electricity Consumption and Electricity...

  9. Estimating Methods for Determining End-Use Water Consumption

    Broader source: Energy.gov [DOE]

    The Federal Building Metering Guidance specifies buildings with water using processes and whole building water consumption that exceeds 1,000 gallons per day must have a water meter installed. Below are methods for estimating daily water use for typical end-uses that drive building-level, end-use water consumption.

  10. Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    2014-06-10

    This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

  11. Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

  12. ENERGY USE AND DOMESTIC HOT WATER CONSUMPTION Final Report

    Office of Scientific and Technical Information (OSTI)

    USE AND DOMESTIC HOT WATER CONSUMPTION Final Report Phase 1 Prepared for THE N E W YORK ... operating data on combined domestic hot water @HW) and heating systems to be used in ...

  13. New Water Booster Pump System Reduces Energy Consumption by 80...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BENEFITS A Motor Challeng NEW WATER BOOSTER PUMP SYSTEM REDUCES ENERGY CONSUMPTION BY 80 ... * * * APPLICATIONS The use of a single pump with a recirculation line to serve a wide ...

  14. Best Management Practice #13: Other Water-Intensive Processes | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 13: Other Water-Intensive Processes Best Management Practice #13: Other Water-Intensive Processes Many water-intensive processes beyond the Federal Energy Management Program's best management practices (BMPs) for water efficiency are in place at federal facilities, including laundry equipment, vehicle wash systems, evaporative coolers, and water softening systems. When assessing facility water use, it is important to identify and analyze all water-intensive processes for potential

  15. ,"Total Natural Gas Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Consumption (billion cubic feet)",,,,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  16. Addressing Water Consumption of Evaporative Coolers with Greywater

    SciTech Connect (OSTI)

    Sahai, Rashmi; Shah, Nihar; Phadke, Amol

    2012-07-01

    Evaporative coolers (ECs) provide significant gains in energy efficiency compared to vapor compression air conditioners, but simultaneously have significant onsite water demand. This can be a major barrier to deployment in areas of the world with hot and arid climates. To address this concern, this study determined where in the world evaporative cooling is suitable, the water consumption of ECs in these cities, and the potential that greywater can be used reduce the consumption of potable water in ECs. ECs covered 69percent of the cities where room air conditioners are may be deployed, based on comfort conditions alone. The average water consumption due to ECs was found to be 400 L/household/day in the United States and Australia, with the potential for greywater to provide 50percent this amount. In the rest of the world, the average water consumption was 250 L/household/day, with the potential for greywater to supply 80percent of this amount. Home size was the main factor that contributed to this difference. In the Mediterranean, the Middle East, Northern India, and the Midwestern and Southwestern United States alkalinity levels are high and water used for bleeding will likely contribute significantly to EC water consumption. Although technically feasible, upfront costs for household GW systems are currently high. In both developed and developing parts of the world, however, a direct EC and GW system is cost competitive with conventional vapor compression air conditioners. Moreover, in regions of the world that face problems of water scarcity the benefits can substantially outweigh the costs.

  17. Buildings Energy Data Book: 8.1 Buildings Sector Water Consumption

    Buildings Energy Data Book [EERE]

    1 Buildings Sector Water Consumption March 2012 8.1.2 Average Energy Intensity of Public Water Supplies by Location (kWh per Million Gallons) Location United States (2) 627 437 1,363 United States (3) 65 (6) 1,649 Northern California Indoor 111 1,272 1,911 Northern California Outdoor 111 1,272 0 Southern California Indoor (5) 111 1,272 1,911 Southern California Outdoor 111 1,272 0 Iowa (6) 380 1,570 Massachusetts (6) (6) 1,750 Wisconsin Class AB (4) - - Wisconsin Class C (4) - - Wisconsin Class

  18. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Using Natural Gas (million square feet)",,,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"North- east","Mid- west","South","West","North- east","Mid-...

  19. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Using Natural Gas (million square feet)",,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"West South Central","Moun- tain","Pacific","West South Central","Moun-...

  20. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    (million square feet)",,,"Energy Intensity for Sum of Major Fuels (thousand Btu square foot)" ,"West North Central","South Atlantic","East South Central","West North...

  1. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    (million square feet)",,,,"Energy Intensity for Sum of Major Fuels (thousand Btu square foot)" ,"North- east","Mid- west","South","West","North- east","Mid-...

  2. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Using Natural Gas (million square feet)",,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"New England","Middle Atlantic","East North Central","New England","Middle...

  3. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Using Natural Gas (million square feet)",,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"West North Central","South Atlantic","East South Central","West North...

  4. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    (million square feet)",,,"Energy Intensity for Sum of Major Fuels (thousand Btu square foot)" ,"West South Central","Moun- tain","Pacific","West South Central","Moun-...

  5. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    (million square feet)",,,,"Energy Intensity for Sum of Major Fuels (thousand Btusquare foot)" ,"North- east","Mid- west","South","West","North- east","Mid-...

  6. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Using Natural Gas (million square feet)",,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"1959 or Before","1960 to 1989","1990 to 2003","1959 or Before","1960 to...

  7. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Using Natural Gas (million square feet)",,,,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"Zone 1","Zone 2","Zone 3","Zone 4","Zone 5","Zone 1","Zone 2","Zone 3","Zone...

  8. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    (million square feet)",,,"Energy Intensity for Sum of Major Fuels (thousand Btusquare foot)" ,"1959 or Before","1960 to 1989","1990 to 2003","1959 or Before","1960 to...

  9. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    (million square feet)",,,"Energy Intensity for Sum of Major Fuels (thousand Btusquare foot)" ,"1,001 to 10,000 Square Feet","10,001 to 100,000 Square Feet","Over 100,000...

  10. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Using Natural Gas (million square feet)",,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"1,001 to 10,000 Square Feet","10,001 to 100,000 Square Feet","Over 100,000...

  11. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    (million square feet)",,,"Energy Intensity for Sum of Major Fuels (thousand Btu square foot)" ,"New England","Middle Atlantic","East North Central","New England","Middle...

  12. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    (million square feet)",,,"Energy Intensity for Sum of Major Fuels (thousand Btu square foot)" ,"1,001 to 10,000 Square Feet","10,001 to 100,000 Square Feet","Over 100,000...

  13. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    (million square feet)",,,,,"Energy Intensity for Sum of Major Fuels (thousand Btu square foot)" ,"Zone 1","Zone 2","Zone 3","Zone 4","Zone 5","Zone 1","Zone 2","Zone 3","Zone...

  14. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Using Natural Gas (million square feet)",,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"1959 or Before","1960 to 1989","1990 to 1999","1959 or Before","1960 to...

  15. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    (million square feet)",,,"Energy Intensity for Sum of Major Fuels (thousand Btusquare foot)" ,"1959 or Before","1960 to 1989","1990 to 1999","1959 or Before","1960 to...

  16. "PART 1: ENERGY/WATER CONSUMPTION AND COST DATA"

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by:" "Date:",,,,"Phone:" "PART 1: ENERGYWATER CONSUMPTION AND COST DATA" "1-1. NECPAE.O. ... "TOTAL","GEG",0,0,0 "1-4. RENEWABLE ENERGY GENERATED ON FEDERAL OR ...

  17. New Water Booster Pump System Reduces Energy Consumption by 80...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This case study outlines how General Motors (GM) developed a highly efficient pumping ... As a result, the company reduced pumping system energy consumption by 80 percent (225,100 ...

  18. A Review of Operational Water Consumption and Withdrawal Factors for Electricity Generating Technologies

    SciTech Connect (OSTI)

    Macknick, Jordan; Newmark, Robin; Heath, Garvin; Hallett, K. C.

    2011-03-01

    This report provides estimates of operational water withdrawal and water consumption factors for electricity generating technologies in the United States. Estimates of water factors were collected from published primary literature and were not modified except for unit conversions. The presented water factors may be useful in modeling and policy analyses where reliable power plant level data are not available.

  19. New Water Booster Pump System Reduces Energy Consumption by 80 Percent and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Increases Reliability | Department of Energy Water Booster Pump System Reduces Energy Consumption by 80 Percent and Increases Reliability New Water Booster Pump System Reduces Energy Consumption by 80 Percent and Increases Reliability This case study outlines how General Motors (GM) developed a highly efficient pumping system for their Pontiac Operations Complex in Pontiac, Michigan. In short, GM was able to replace five original 60- to 100-hp pumps with three 15-hp pumps whose speed could

  20. Development of a Life Cycle Inventory of Water Consumption Associated with the Production of Transportation Fuels

    SciTech Connect (OSTI)

    Lampert, David J.; Cai, Hao; Wang, Zhichao; Keisman, Jennifer; Wu, May; Han, Jeongwoo; Dunn, Jennifer; Sullivan, John L.; Elgowainy, Amgad; Wang, Michael; Keisman, Jennifer

    2015-10-01

    The production of all forms of energy consumes water. To meet increased energy demands, it is essential to quantify the amount of water consumed in the production of different forms of energy. By analyzing the water consumed in different technologies, it is possible to identify areas for improvement in water conservation and reduce water stress in energy-producing regions. The transportation sector is a major consumer of energy in the United States. Because of the relationships between water and energy, the sustainability of transportation is tied to management of water resources. Assessment of water consumption throughout the life cycle of a fuel is necessary to understand its water resource implications. To perform a comparative life cycle assessment of transportation fuels, it is necessary first to develop an inventory of the water consumed in each process in each production supply chain. The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model is an analytical tool that can used to estimate the full life-cycle environmental impacts of various transportation fuel pathways from wells to wheels. GREET is currently being expanded to include water consumption as a sustainability metric. The purpose of this report was to document data sources and methodologies to estimate water consumption factors (WCF) for the various transportation fuel pathways in GREET. WCFs reflect the quantity of freshwater directly consumed per unit production for various production processes in GREET. These factors do not include consumption of precipitation or low-quality water (e.g., seawater) and reflect only water that is consumed (i.e., not returned to the source from which it was withdrawn). The data in the report can be combined with GREET to compare the life cycle water consumption for different transportation fuels.

  1. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  2. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  3. ,"Total District Heat Consumption (trillion Btu)",,,,,"District...

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Consumption (trillion Btu)",,,,,"District Heat Energy Intensity (thousand Btusquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  4. ,"Total Natural Gas Consumption (trillion Btu)",,,,,"Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Consumption (trillion Btu)",,,,,"Natural Gas Energy Intensity (thousand Btusquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  5. Future U.S. water consumption : The role of energy production.

    SciTech Connect (OSTI)

    Elcock, D.; Environmental Science Division

    2010-06-01

    This study investigates how meeting domestic energy production targets for both fossil and renewable fuels may affect future water demand. It combines projections of energy production developed by the U.S. Department of Energy with estimates of water consumption on a per-unit basis (water-consumption coefficients) for coal, oil, gas, and biofuels production, to estimate and compare the domestic freshwater consumed. Although total domestic freshwater consumption is expected to increase by nearly 7% between 2005 and 2030, water consumed for energy production is expected to increase by nearly 70%, and water consumed for biofuels (biodiesel and ethanol) production is expected to increase by almost 250%. By 2030, water consumed in the production of biofuels is projected to account for nearly half of the total amount of water consumed in the production of all energy fuels. Most of this is for irrigation, and the West North Central Region is projected to consume most of this water in 2030. These findings identify an important potential future conflict between renewable energy production and water availability that warrants further investigation and action to ensure that future domestic energy demand can be met in an economically efficient and environmentally sustainable manner.

  6. Consumptive water use in the production of ethanonl and petroleum gasoline.

    SciTech Connect (OSTI)

    Wu, M.; Mintz, M.; Wang, M.; Arora, S.; Energy Systems

    2009-01-30

    The production of energy feedstocks and fuels requires substantial water input. Not only do biofuel feedstocks like corn, switchgrass, and agricultural residues need water for growth and conversion to ethanol, but petroleum feedstocks like crude oil and oil sands also require large volumes of water for drilling, extraction, and conversion into petroleum products. Moreover, in many cases, crude oil production is increasingly water dependent. Competing uses strain available water resources and raise the specter of resource depletion and environmental degradation. Water management has become a key feature of existing projects and a potential issue in new ones. This report examines the growing issue of water use in energy production by characterizing current consumptive water use in liquid fuel production. As used throughout this report, 'consumptive water use' is the sum total of water input less water output that is recycled and reused for the process. The estimate applies to surface and groundwater sources for irrigation but does not include precipitation. Water requirements are evaluated for five fuel pathways: bioethanol from corn, ethanol from cellulosic feedstocks, gasoline from Canadian oil sands, Saudi Arabian crude, and U.S. conventional crude from onshore wells. Regional variations and historic trends are noted, as are opportunities to reduce water use.

  7. Reducing water freshwater consumption at coal-fired power plants : approaches used outside the United States.

    SciTech Connect (OSTI)

    Elcock, D.

    2011-05-09

    Coal-fired power plants consume huge quantities of water, and in some water-stressed areas, power plants compete with other users for limited supplies. Extensive use of coal to generate electricity is projected to continue for many years. Faced with increasing power demands and questionable future supplies, industries and governments are seeking ways to reduce freshwater consumption at coal-fired power plants. As the United States investigates various freshwater savings approaches (e.g., the use of alternative water sources), other countries are also researching and implementing approaches to address similar - and in many cases, more challenging - water supply and demand issues. Information about these non-U.S. approaches can be used to help direct near- and mid-term water-consumption research and development (R&D) activities in the United States. This report summarizes the research, development, and deployment (RD&D) status of several approaches used for reducing freshwater consumption by coal-fired power plants in other countries, many of which could be applied, or applied more aggressively, at coal-fired power plants in the United States. Information contained in this report is derived from literature and Internet searches, in some cases supplemented by communication with the researchers, authors, or equipment providers. Because there are few technical, peer-reviewed articles on this topic, much of the information in this report comes from the trade press and other non-peer-reviewed references. Reducing freshwater consumption at coal-fired power plants can occur directly or indirectly. Direct approaches are aimed specifically at reducing water consumption, and they include dry cooling, dry bottom ash handling, low-water-consuming emissions-control technologies, water metering and monitoring, reclaiming water from in-plant operations (e.g., recovery of cooling tower water for boiler makeup water, reclaiming water from flue gas desulfurization [FGD] systems), and desalination. Some of the direct approaches, such as dry air cooling, desalination, and recovery of cooling tower water for boiler makeup water, are costly and are deployed primarily in countries with severe water shortages, such as China, Australia, and South Africa. Table 1 shows drivers and approaches for reducing freshwater consumption in several countries outside the United States. Indirect approaches reduce water consumption while meeting other objectives, such as improving plant efficiency. Plants with higher efficiencies use less energy to produce electricity, and because the greater the energy production, the greater the cooling water needs, increased efficiency will help reduce water consumption. Approaches for improving efficiency (and for indirectly reducing water consumption) include increasing the operating steam parameters (temperature and pressure); using more efficient coal-fired technologies such as cogeneration, IGCC, and direct firing of gas turbines with coal; replacing or retrofitting existing inefficient plants to make them more efficient; installing high-performance monitoring and process controls; and coal drying. The motivations for increasing power plant efficiency outside the United States (and indirectly reducing water consumption) include the following: (1) countries that agreed to reduce carbon emissions (by ratifying the Kyoto protocol) find that one of the most effective ways to do so is to improve plant efficiency; (2) countries that import fuel (e.g., Japan) need highly efficient plants to compensate for higher coal costs; (3) countries with particularly large and growing energy demands, such as China and India, need large, efficient plants; (4) countries with large supplies of low-rank coals, such as Germany, need efficient processes to use such low-energy coals. Some countries have policies that encourage or mandate reduced water consumption - either directly or indirectly. For example, the European Union encourages increased efficiency through its cogeneration directive, which requires member states to assess their national potential for cogeneration, analyze barriers to achieving the potential, and then establish support schemes to achieve the potential. China's Eleventh Five-Year Plan (2006-2010) has an energy strategy that specifies, among other things, that production should be optimized by promoting the development of large-scale, high-efficiency units, and that air-cooled technologies should be used in areas with water shortages. The United States lacks many of these drivers. There are no government requirements that mandate more efficient plants. The United States has ample supplies of relatively cheap coal, and U.S. water-short areas are not as extensive as in countries such as China, South Africa, and Australia. Often, other countries have deployed water-savings technologies to a greater degree than the United States.

  8. Developing a tool to estimate water withdrawal and consumption in electricity generation in the United States.

    SciTech Connect (OSTI)

    Wu, M.; Peng, J.

    2011-02-24

    Freshwater consumption for electricity generation is projected to increase dramatically in the next couple of decades in the United States. The increased demand is likely to further strain freshwater resources in regions where water has already become scarce. Meanwhile, the automotive industry has stepped up its research, development, and deployment efforts on electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs). Large-scale, escalated production of EVs and PHEVs nationwide would require increased electricity production, and so meeting the water demand becomes an even greater challenge. The goal of this study is to provide a baseline assessment of freshwater use in electricity generation in the United States and at the state level. Freshwater withdrawal and consumption requirements for power generated from fossil, nonfossil, and renewable sources via various technologies and by use of different cooling systems are examined. A data inventory has been developed that compiles data from government statistics, reports, and literature issued by major research institutes. A spreadsheet-based model has been developed to conduct the estimates by means of a transparent and interactive process. The model further allows us to project future water withdrawal and consumption in electricity production under the forecasted increases in demand. This tool is intended to provide decision makers with the means to make a quick comparison among various fuel, technology, and cooling system options. The model output can be used to address water resource sustainability when considering new projects or expansion of existing plants.

  9. ARM - Field Campaign - Water Cycle Pilot Study Intensive Observations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sets, see below. Abstract The U.S. DOE Water Cycle Pilot Study (WCPS) is a 3-year feasibility investigation focused on accurately evaluating the water cycle components and using...

  10. A High Spatiotemporal Assessment of Consumptive Water Use and Water Scarcity in the Conterminous United States

    SciTech Connect (OSTI)

    Moore, Brandon C.; Coleman, André M.; Wigmosta, Mark S.; Skaggs, Richard L.; Venteris, Erik R.

    2015-08-15

    Increasing demands for energy production and national objectives for securing energy independence from domestic sources of energy, both renewable and non-renewable, are heavily dependent on available water resources. This explicit interdependency between energy production and required water resources is commonly referred to as the “water-energy nexus” The competition for available water resources can, in part, be understood by evaluating the quantity, timing and spatial distribution of water availability and use. The location and timing at which water is available and consumed dominantly affects the extent to which not only energy and water influence one another, but also the greater cross-sector dependencies that for example, influence agriculture, industry, environment, economics, and social well-being. The understanding of water resources and its use, from a spatiotemporal perspective, is critical for shaping future water use policy and management, planning for change-based impacts at the local level, and resolving prevalent issues and priorities now and into the future. To this end, we present a systematic method for both spatial and temporal disaggregation of United States Geological Survey (USGS) annual, county-scale water use data to a consistent 1/8° spatial resolution at a monthly time-step. The utility of this approach and the resulting data are demonstrated by examining water scarcity at varying spatiotemporal resolutions in the context of food and energy security.

  11. A High Spatiotemporal Assessment of Consumptive Water Use and Water Scarcity in the Conterminous United States

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Moore, Brandon C.; Coleman, André M.; Wigmosta, Mark S.; Skaggs, Richard L.; Venteris, Erik R.

    2015-08-15

    Increasing demands for energy production and national objectives for securing energy independence from domestic sources of energy, both renewable and non-renewable, are heavily dependent on available water resources. This explicit interdependency between energy production and required water resources is commonly referred to as the “water-energy nexus” The competition for available water resources can, in part, be understood by evaluating the quantity, timing and spatial distribution of water availability and use. The location and timing at which water is available and consumed dominantly affects the extent to which not only energy and water influence one another, but also the greater cross-sectormore » dependencies that for example, influence agriculture, industry, environment, economics, and social well-being. The understanding of water resources and its use, from a spatiotemporal perspective, is critical for shaping future water use policy and management, planning for change-based impacts at the local level, and resolving prevalent issues and priorities now and into the future. To this end, we present a systematic method for both spatial and temporal disaggregation of United States Geological Survey (USGS) annual, county-scale water use data to a consistent 1/8° spatial resolution at a monthly time-step. The utility of this approach and the resulting data are demonstrated by examining water scarcity at varying spatiotemporal resolutions in the context of food and energy security.« less

  12. Buildings Energy Data Book: 8.2 Residential Sector Water Consumption

    Buildings Energy Data Book [EERE]

    2 1999 Single-Family Home Daily Water Consumption by End Use (Gallons per Capita) (1) Fixture/End Use Toilet 18.5 18.3% Clothes Washer 15 14.9% Shower 11.6 11.5% Faucet 10.9 10.8% Other Domestic 1.6 1.6% Bath 1.2 1.2% Dishwasher 1 1.0% Leaks 9.5 9.4% Outdoor Use (2) 31.7 31.4% Total (2) 101 100% Note(s): Source(s): Average gallons Total Use per capita per day Percent 1) Based analysis of 1,188 single-family homes at 12 study locations. 2) Total Water use derived from USGS. Outdoor use is the

  13. Building-Level Intensities

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption and Expenditure Intensities for Non-Mall Buildings, 2003" ,"Electricity Consumption",,,,,,"Electricity Expenditures" ,"per Building (thousand kWh)","per...

  14. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    2013-08-31

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges.

  15. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges.

  16. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    SciTech Connect (OSTI)

    Clark, Corrie E.; Harto, Christopher B.; Schroeder, Jenna N.; Martino, Louis E.; Horner, Robert M.

    2013-11-05

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges. This report is divided into nine chapters. Chapter 1 gives the background of the project and its purpose, which is to assess the water consumption of geothermal technologies and identify areas where water availability may present a challenge to utility-scale geothermal development. Water consumption refers to the water that is withdrawn from a resource such as a river, lake, or nongeothermal aquifer that is not returned to that resource. The geothermal electricity generation technologies evaluated in this study include conventional hydrothermal flash and binary systems, as well as EGSs that rely on engineering a productive reservoir where heat exists, but where water availability or permeability may be limited. Chapter 2 describes the approach and methods for this work and identifies the four power plant scenarios evaluated: a 20-MW EGS binary plant, a 50-MW EGS binary plant, a 10-MW hydrothermal binary plant, and a 50-MW hydrothermal flash plant. The methods focus on (1) the collection of data to improve estimation of EGS stimulation volumes, aboveground operational consumption for all geothermal technologies, and belowground operational consumption for EGS; and (2) the mapping of the geothermal and water resources of the western United States to assist in the identification of potential water challenges to geothermal growth. Chapters 3 and 4 present the water requirements for the power plant life cycle. Chapter 3 presents the results of the current data collection effort, and Chapter 4 presents the normalized volume of fresh water consumed at each life cycle stage per lifetime energy output for the power plant scenarios evaluated. Over the life cycle of a geothermal power plant, from construction through 30 years of operation, the majority of water is consumed by plant operations. For the EGS binary scenarios, where dry cooling was assumed, belowground operational water loss is the greatest contributor depending upon the physical and operational conditions of the reservoir. Total life cycle water consumption requirements for air-cooled EGS binary scenarios vary between 0.22 and 1.85 gal/kWh, depending upon the extent of belowground operational water consumption. The air-cooled hydrothermal binary and flash plants experience far less fresh water consumption over the life cycle, at 0.04 gal/kWh. Fresh water requirements associated with air- cooled binary operations are primarily from aboveground water needs, including dust control, maintenance, and domestic use. Although wet-cooled hydrothermal flash systems require water for cooling, these plants generally rely upon the geofluid, fluid from the geothermal reservoir, which typically has high salinity and total dissolved solids concentration and is much warmer than normal groundwater sources, for their cooling water needs; thus, while there is considerable geofluid loss at 2.7 gal/kWh, fresh water consumption during operations is similar to that of aircooled binary systems. Chapter 5 presents the assessment of water demand for future growth in deployment of utility-scale geothermal power generation. The approach combines the life cycle analysis of geothermal water consumption with a geothermal supply curve according to resource type, levelized cost of electricity (LCOE), and potential growth scenarios. A total of 17 growth scenarios were evaluated. In general, the scenarios that assumed lower costs for EGSs as a result of learning and technological improvements resulted in greater geothermal potential, but also significantly greater water demand due to the higher water consumption by EGSs. It was shown, however, that this effect could be largely mitigated if nonpotable water sources were used for belowground operational water demands. The geographical areas that showed the highest water demand for most growth scenarios were southern and northern California, as well as most of Nevada. In addition to water demand by geothermal power production, Chapter 5 includes data on water availability for geothermal development areas. A qualitative analysis is included that identifies some of the basins where the limited availability of water is most likely to affect the development of geothermal resources. The data indicate that water availability is fairly limited, especially under drought conditions, in most of the areas with significant near- and medium-term geothermal potential. Southern California was found to have the greatest potential for water-related challenges with its combination of high geothermal potential and limited water availability. The results of this work are summarized in Chapter 6. Overall, this work highlights the importance of utilizing dry cooling systems for binary and EGS systems and minimizing fresh water consumption throughout the life cycle of geothermal power development. The large resource base for EGSs represents a major opportunity for the geothermal industry; however, depending upon geology, these systems can require large quantities of makeup water due to belowground reservoir losses. Identifying potential sources of compatible degraded or low-quality water for use for makeup injection for EGS and flash systems represents an important opportunity to reduce the impacts of geothermal development on fresh water resources. The importance of identifying alternative water sources for geothermal systems is heightened by the fact that a large fraction of the geothermal resource is located in areas already experiencing water stress. Chapter 7 is a glossary of the technical terms used in the report, and Chapters 8 and 9 provide references and a bibliography, respectively.

  17. Buildings Energy Data Book: 8.2 Residential Sector Water Consumption

    Buildings Energy Data Book [EERE]

    1 Residential Water Use by Source (Million Gallons per Day) Year 1980 3,400 1985 3,320 1990 3,390 1995 3,390 2000 (3) (3) 3,590 2005 3,830 Note(s): Source(s): 29,430 25,600 1) Public supply water use: water withdrawn by public and private water suppliers that furnish water to at least 25 people or have a minimum of 15 connections. 2) Self-supply water use: Water withdrawn from a groundwater or surface-water source by a user rather than being obtained from a public supply. 3) USGS did not provide

  18. Buildings Energy Data Book: 8.3 Commercial Sector Water Consumption

    Buildings Energy Data Book [EERE]

    1 Commercial Water Use by Source (Million Gallons per Day) Year 1980 - - - 1985 5,710 1,230 1990 5,900 2,390 1995 6,690 2,890 2000 (3) 7,202 3,111 2005 (3) 7,102 3,068 Note(s): Source(s): 10,314 10,171 1) Public supply water use: water withdrawn by public and private water suppliers that furnish water to at least 25 people or have a minimum of 15 connections. 2) Self-supply water use: Water withdrawn from a groundwater or surface-water source by a user rather than being obtained from a public

  19. Review of Operational Water Consumption and Withdrawal Factors for Electricity Generating Technologies

    SciTech Connect (OSTI)

    Macknick, J.; Newmark, R.; Heath, G.; Hallett, K. C.

    2011-03-01

    Various studies have attempted to consolidate published estimates of water use impacts of electricity generating technologies, resulting in a wide range of technologies and values based on different primary sources of literature. The goal of this work is to consolidate the various primary literature estimates of water use during the generation of electricity by conventional and renewable electricity generating technologies in the United States to more completely convey the variability and uncertainty associated with water use in electricity generating technologies.

  20. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Consumption and Expenditure Intensities for Non-Mall Buildings, 2003" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot...

  1. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Fuel Oil Consumption and Expenditure Intensities, 1999" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot (gallons)","per Worker...

  2. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    4A. Fuel Oil Consumption and Expenditure Intensities for All Buildings, 2003 Fuel Oil Consumption Fuel Oil Expenditures per Building (gallons) per Square Foot (gallons) per...

  3. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    5A. Fuel Oil Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Fuel Oil Consumption (million gallons) Total Floorspace of Buildings Using...

  4. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    4A. Electricity Consumption and Expenditure Intensities for All Buildings, 2003 Electricity Consumption Electricity Expenditures per Building (thousand kWh) per Square Foot (kWh)...

  5. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    A. Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

  6. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    2A. Natural Gas Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of...

  7. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    5A. Natural Gas Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of...

  8. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    0A. Electricity Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  9. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    0A. Natural Gas Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of...

  10. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    8A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 Total Natural Gas Consumption (billion cubic feet) Total Floorspace...

  11. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    A. Consumption and Gross Energy Intensity by Climate Zonea for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet)...

  12. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    9A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 Total Natural Gas Consumption (billion cubic feet) Total Floorspace...

  13. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    9A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 Total Electricity Consumption (billion kWh) Total Floorspace of...

  14. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2A. Electricity Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  15. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    8A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 Total Electricity Consumption (billion kWh) Total Floorspace of...

  16. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    5A. Electricity Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  17. Buildings Energy Data Book: 8.2 Residential Sector Water Consumption

    Buildings Energy Data Book [EERE]

    5 2010 Community Water Systems by Size and Type System Size (1) Less than 500 4.9 501 - 3,300 20.1 3,301 - 10,000 28.6 10,001 - 100,000 108.5 More than 100,000 138.1 Total 300.2 Note(s): Source(s): 3,801 416 52,873 1) Population served by each system. 2) Community water systems provide water to the same population year-round. EPA, Fiscal Year 2010 Drinking Water and Ground Water Statistics, EPA 816-K-09-004, June 2011. Population Facilities Served (Millions) 29,711 14,031 4,914

  18. Trends in Commercial Buildings--Trends in Energy Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Part 1. Energy Consumption Data Tables Total Energy Intensity Intensity by Energy Source Background: Site and Primary Energy Trends in Energy Consumption and Energy Sources Part...

  19. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (Btu) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy Intensity (thousand Btu...

  20. Buildings Energy Data Book: 8.1 Buildings Sector Water Consumption

    Buildings Energy Data Book [EERE]

    1 Total Use of Water by Buildings (Million Gallons per Day) (1) Year 1985 1990 1995 2000 (2) 2005 (3) Note(s): Source(s): 1) Includes water from the public supply and self-supplied sources (e.g., wells) for residential and commercial sectors. 2) USGS did not estimate water use in the commercial and residential sectors for 2000. Estimates are based on available data and 1995 splits between domestic and commercial use. 3) USGS did not estimate commercial sector use for 2005. Estimated based on

  1. Buildings Energy Data Book: 8.2 Residential Sector Water Consumption

    Buildings Energy Data Book [EERE]

    6 Residential Water Billing Rate Structures for Community Water Systems Rate Structure Uniform Rates Declining Block Rate Increasing Block Rate Peak Period or Seasonal Rate Separate Flat Fee Annual Connection Fee Combined Flat Fee Other Rate Structures Note(s): Source(s): 3.0% 9.0% 1) Systems serving more than 10,000 users provide service to 82% of the population served by community water systems. Columns do not sum to 100% because some systems use more than one rate structure. 2) Uniform rates

  2. Buildings Energy Data Book: 8.3 Commercial Sector Water Consumption

    Buildings Energy Data Book [EERE]

    3 Normalized Annual End Uses of Water in Select Restaurants in Western United States (1) Fixture/End Use (2) Faucets Dishwashing Toilets/Urinals Ice Making Total Indoor Use (3) (4) (4) Building Size (SF) Seats: Meals: Benchmarking Values for Restaurants (6) N Gal./SF/year 90 Gal./meal 90 Gal./seat/day 90 Gal./employee/day 90 Note(s): Source(s): American Water Works Association Research Foundation, Commercial and Institutional End Uses of Water, 2000. 25th Percentile of Users 130 - 331 6 - 9 20 -

  3. Buildings Energy Data Book: 8.1 Buildings Sector Water Consumption

    Buildings Energy Data Book [EERE]

    3 Energy Use of Wastewater Treatment Plants by Capacity and Treatment Level (kWh per Million Gallons) 1 - 5 - 10 - 20 - 50 - 100 - Note(s): Source(s): 673 1,028 1,188 1,558 The level of treatment indicates the amount of processing involved before water is released from the treatment facility. Primary treatment removes solids and oils from wastewater. Secondary treatment uses biological processes to remove organic material from the water. Tertiary treatment includes additional processes to

  4. Buildings Energy Data Book: 8.2 Residential Sector Water Consumption

    Buildings Energy Data Book [EERE]

    3 2004 Water Use in Multi-Family Housing Units, In-Rent and Submetered Billing (Gallons per Unit per Day) In-Rent Indoor Water Use 143 121 15.3% Note(s): Source(s): Based on a regression analysis on a sample of 7,942 properties at 13 sample locations. Results are significant at the 95th percentile. Aquacraft, Inc./East Bay Municipal Utility District W, National Multiple Family Submetering and Allocation Billing Program Study, 2004. Estimated Savings Estimated Potential Range of Submetering from

  5. Buildings Energy Data Book: 8.3 Commercial Sector Water Consumption

    Buildings Energy Data Book [EERE]

    4 Normalized Annual End Uses of Water in Select Supermarkets in Western United States (1) Fixture/End Use Toilets/Urinals Other/Misc. Indoor (2) Cooling Total Building Size (SF) Benchmarking Values for Supermarkets (3) N Indoor Use with Cooling, gal./SF/year 38 Indoor Use with Cooling, gal./SF/daily transaction 38 Note(s): Source(s): 25th Percentile of Users 52 - 64 9 - 16 1) Water use data for the buildings was collected over a few days. Estimates of annual use were created by accounting for

  6. Buildings Energy Data Book: 8.3 Commercial Sector Water Consumption

    Buildings Energy Data Book [EERE]

    6 Normalized Annual End Uses of Water in Two California High Schools Fixture/End Use Toilet Urinal Faucet Shower Kitchen Misc. uses (2) Cooling Leaks Swimming Pool Total Use Benchmarking Values for Schools (3) N Indoor Use, Gal./sq. ft./year 142 Indoor Use, Gal./school day/student 141 Cooling Use, Gal./sq. ft./year 35 Note(s): Source(s): 8 - 20 1) Water use data for the buildings was collected over a few days. Estimates of annual use were created by accounting for seasonal use and other

  7. Guidance on Meeting Executive Order 13693 Water Provisions | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Water Efficiency » Guidance on Meeting Executive Order 13693 Water Provisions Guidance on Meeting Executive Order 13693 Water Provisions Executive Order (E.O.) 13693 became effective on October 1, 2015, and includes following five main water-related provisions. Potable Water Consumption Intensity Reduction: Reduce agency potable water consumption intensity measured in gallons per gross square foot by 36% by fiscal year (FY) 2025 through reductions of 2% annually through FY 2025

  8. US ESC TN Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption Survey www.eia.govconsumptionresidential Space heating Water heating Air conditioning Appliances, electronics, lighting Household Energy Use in ...

  9. US ENC WI Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption Survey www.eia.govconsumptionresidential Space heating Water heating Air conditioning Appliances, electronics, lighting Household Energy Use in ...

  10. US NE MA Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption Survey www.eia.govconsumptionresidential Space heating Water heating Air conditioning Appliances, electronics, lighting Household Energy Use in ...

  11. Buildings Energy Data Book: 8.3 Commercial Sector Water Consumption

    Buildings Energy Data Book [EERE]

    5 Normalized Annual End Uses of Water in Select Hotels in Western United States (Gallons per Room per Year) (1) Fixture/End Use Bathtub (2) Faucets Showers Toilets Leaks Laundry Ice making (3) Other/misc. indoor Total Indoor Use Number of Rooms Logged average daily use, kgal: Peak instantaneous demand, gpm: Benchmarking Values for Hotels N Indoor Use, gal./day/occupied room 98 Cooling Use, gal./year/occupied room 97 Note(s): Source(s): 25th Percentile of Users 60 - 115 7,400 - 41,600 Based on

  12. Buildings Energy Data Book: 8.1 Buildings Sector Water Consumption

    Buildings Energy Data Book [EERE]

    4 Municipal Wastewater Treatment Facilities by Treatment Level and Population Served (Millions) (1) Pop. Pop. Pop. Pop. Pop. 1996 17.2 81.9 82.9 7.7 - 2000 6.4 88.2 100.9 12.3 - 2004 3.3 96.5 108.5 14.6 - 2008 3.8 92.7 112.9 16.9 - Note(s): Source(s): EPA, Clean Watersheds Needs Survey 2008 Report to Congress, 2010; EPA, Clean Watersheds Needs Survey 2004 Report to Congress, 2008. 30 7302 5071 2251 115 1) The level of treatment indicates the amount of processing involved before water is released

  13. Buildings Energy Data Book: 8.3 Commercial Sector Water Consumption

    Buildings Energy Data Book [EERE]

    2 Average Water Use of Commercial and Institutional Establishments (Gallons per Establishment per Day) Average Variation % Total % of CI % Seasonal Daily Use In Use (1) CI Use Customers Use (2) Hotels and Motels 7,113 5.41 5.8% 1.9% 23.1% Laundries/Laundromats 3,290 8.85 4.0% 1.4% 13.4% Car Washes 3,031 3.12 0.8% 0.4% 14.2% Urban Irrigation 2,596 8.73 28.5% 30.2% 86.9% Schools and Colleges 2,117 12.13 8.8% 4.8% 58.0% Hospitals/Medical Offices 1,236 78.5 3.9% 4.2% 23.2% Office Buildings 1,204

  14. Buildings Energy Data Book: 8.2 Residential Sector Water Consumption

    Buildings Energy Data Book [EERE]

    4 Per Capita Use of Hot Water in Single Family Homes by End Use (Gallons per Capita per Day) (1) Fixture/End Use Toilet 0.0 0.0 0.0% 0.0% Clothes Washer 3.9 10.1 15.5% 27.8% Shower 6.3 16.4 25.1% 73.1% Faucet 8.6 22.4 34.2% 72.7% Other 0.0 0.0 0.0% 35.1% Bath 4.2 10.9 16.7% 78.2% Dishwasher 0.9 2.3 3.6% 100% Leaks 1.2 3.1 4.8% 26.8% Total 25.1 65.2 100% 39.6% Note(s): Source(s): 1) Based analysis of 10 single-family homes in Seattle, WA. Average number of residents per home: 2.6. Aquacraft, Inc.

  15. Survey Consumption

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    purchase diaries from a subset of respondents composing a Household Transportation Panel and is reported separately. Residential Energy Consumption Survey: Consumption and...

  16. Study of Pu consumption in Advanced Light Water Reactors. Evaluation of GE Advanced Boiling Water Reactor plants

    SciTech Connect (OSTI)

    Not Available

    1993-05-13

    Timely disposal of the weapons plutonium is of paramount importance to permanently safeguarding this material. GE`s 1300 MWe Advanced Boiling Water Reactor (ABWR) has been designed to utilize fill] core loading of mixed uranium-plutonium oxide fuel. Because of its large core size, a single ABWR reactor is capable of disposing 100 metric tons of plutonium within 15 years of project inception in the spiking mode. The same amount of material could be disposed of in 25 years after the start of the project as spent fuel, again using a single reactor, while operating at 75 percent capacity factor. In either case, the design permits reuse of the stored spent fuel assemblies for electrical energy generation for the remaining life of the plant for another 40 years. Up to 40 percent of the initial plutonium can also be completely destroyed using ABWRS, without reprocessing, either by utilizing six ABWRs over 25 years or by expanding the disposition time to 60 years, the design life of the plants and using two ABWRS. More complete destruction would require the development and testing of a plutonium-base fuel with a non-fertile matrix for an ABWR or use of an Advanced Liquid Metal Reactor (ALMR). The ABWR, in addition, is fully capable of meeting the tritium target production goals with already developed target technology.

  17. A validated model to predict microalgae growth in outdoor pond cultures subjected to fluctuating light intensities and water temperatures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Huesemann, Michael H.; Crowe, Braden J.; Waller, Peter; Chavis, Aaron R.; Hobbs, Samuel J.; Edmundson, Scott J.; Wigmosta, Mark S.

    2015-12-11

    Here, a microalgae biomass growth model was developed for screening novel strains for their potential to exhibit high biomass productivities under nutrient-replete conditions in outdoor ponds subjected to fluctuating light intensities and water temperatures. Growth is modeled by first estimating the light attenuation by biomass according to a scatter-corrected Beer-Lambert Law, and then calculating the specific growth rate in discretized culture volume slices that receive declining light intensities due to attenuation. The model requires the following experimentally determined strain-specific input parameters: specific growth rate as a function of light intensity and temperature, biomass loss rate in the dark as amore » function of temperature and average light intensity during the preceding light period, and the scatter-corrected biomass light absorption coefficient. The model was successful in predicting the growth performance and biomass productivity of three different microalgae species (Chlorella sorokiniana, Nannochloropsis salina, and Picochlorum sp.) in raceway pond cultures (batch and semi-continuous) subjected to diurnal sunlight intensity and water temperature variations. Model predictions were moderately sensitive to minor deviations in input parameters. To increase the predictive power of this and other microalgae biomass growth models, a better understanding of the effects of mixing-induced rapid light dark cycles on photo-inhibition and short-term biomass losses due to dark respiration in the aphotic zone of the pond is needed.« less

  18. A validated model to predict microalgae growth in outdoor pond cultures subjected to fluctuating light intensities and water temperatures

    SciTech Connect (OSTI)

    Huesemann, Michael H.; Crowe, Braden J.; Waller, Peter; Chavis, Aaron R.; Hobbs, Samuel J.; Edmundson, Scott J.; Wigmosta, Mark S.

    2015-12-11

    Here, a microalgae biomass growth model was developed for screening novel strains for their potential to exhibit high biomass productivities under nutrient-replete conditions in outdoor ponds subjected to fluctuating light intensities and water temperatures. Growth is modeled by first estimating the light attenuation by biomass according to a scatter-corrected Beer-Lambert Law, and then calculating the specific growth rate in discretized culture volume slices that receive declining light intensities due to attenuation. The model requires the following experimentally determined strain-specific input parameters: specific growth rate as a function of light intensity and temperature, biomass loss rate in the dark as a function of temperature and average light intensity during the preceding light period, and the scatter-corrected biomass light absorption coefficient. The model was successful in predicting the growth performance and biomass productivity of three different microalgae species (Chlorella sorokiniana, Nannochloropsis salina, and Picochlorum sp.) in raceway pond cultures (batch and semi-continuous) subjected to diurnal sunlight intensity and water temperature variations. Model predictions were moderately sensitive to minor deviations in input parameters. To increase the predictive power of this and other microalgae biomass growth models, a better understanding of the effects of mixing-induced rapid light dark cycles on photo-inhibition and short-term biomass losses due to dark respiration in the aphotic zone of the pond is needed.

  19. Consistency in the Sum Frequency Generation Intensity and Phase Vibrational Spectra of the Air/Neat Water Interface

    SciTech Connect (OSTI)

    Feng, Ranran; Guo, Yuan; Lu, Rong; Velarde Ruiz Esparza, Luis A.; Wang, Hongfei

    2011-06-16

    Tremendous progresses have been made in quantitative understanding and interpretation of the hydrogen bonding and ordering structure at the air/water interface since the first sum-frequency generation vibrational spectroscopy (SFG-VS) measurement on the neat air/water interface by Q. Du et al. in 1993 (PRL, 70, 2312-2316, 1993.). However, there are still disagreements and controversies on the consistency between the different experiment measurements and the theoretical computational results. One critical problem lies in the inconsistency between the SFG-VS intensity measurements and the recently developed SFG-VS phase spectra measurements of the neat air/water interface, which has inspired various theoretical efforts trying to understand them. In this report, the reliability of the SFG-VS intensity spectra of the neat air/water interface is to be quantitatively examined, and the sources of possible inaccuracies in the SFG-VS phase spectral measurement is to be discussed based on the non-resonant SHG phase measurement results. The conclusion is that the SFG-VS intensity spectra data from different laboratories are now quantitatively converging and in agreement with each other, and the possible inaccuracies and inconsistencies in the SFG-VS phase spectra measurements need to be carefully examined against the properly corrected phase standard.

  20. Influence of stress intensity and loading mode on intergranular stress corrosion cracking of Alloy 600 in primary waters of pressurized water reactors

    SciTech Connect (OSTI)

    Rebak, R.B.; Szklarska-Smialowska, Z. . Fontana Corrosion Center)

    1994-05-01

    The steam generator in a pressurized water reactor (PWR) of a nuclear power plant consists mainly of a shell made of carbon (C) steel and tubes made of alloy 600 (UNS N06600). However, alloy 600 suffers environmentally induced cracking with exposure to high-temperature primary water. The susceptibility of alloy 600 to integranular stress corrosion cracking (IGSCC) was investigated as a function of the level of applied stresses and mode of loading. Constant load tests were conducted with specimens prepared from thin wall tubes, and constant deformation tests were conducted using specimens prepared from plates. With tubes exposed to primary water at 330 C, the crack propagation rate (CPR) was found to increase from 1 [times] 10[sup [minus]11] m/s at a stress intensity (K[sub i]) of 10 MPa[radical]m to 1 [times] 10[sup [minus]9] at K[sub i] = 60 MPa[radical]m. CPR obtained using compact specimens prepared from plates were 1 order of magnitude lower than values measured in tubes at the same temperature and in the same solution at each stress intensity. The corollary was that values of crack propagation and threshold stress intensities obtained using compact specimens could not be extrapolated to the behavior of thin wall tubes.

  1. US WSC TX Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption Survey www.eia.govconsumptionresidential Space heating Water heating Air conditioning Appliances, electronics, lighting Household Energy Use in Texas A ...

  2. US WNC MO Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption Survey www.eia.govconsumptionresidential Space heating Water heating Air conditioning Appliances, electronics, lighting Household Energy Use in Missouri ...

  3. US ENC IL Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption Survey www.eia.govconsumptionresidential Space heating Water heating Air conditioning Appliances, electronics, lighting Household Energy Use in Illinois ...

  4. US ENC MI Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption Survey www.eia.govconsumptionresidential Space heating Water heating Air conditioning Appliances, electronics, lighting Household Energy Use in Michigan ...

  5. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    A. Consumption and Gross Energy Intensity by Census Region for Sum of Major Fuels for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings...

  6. US MidAtl PA Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption Survey www.eia.govconsumptionresidential Space heating Water heating Air conditioning Appliances, electronics, lighting Household Energy Use in ...

  7. Manufacturing Energy Consumption Survey (MECS) - Analysis & Projection...

    Gasoline and Diesel Fuel Update (EIA)

    Manufacturing Energy Consumption Data Show Large Reductions in Both Manufacturing Energy Use and the Energy Intensity of Manufacturing Activity between 2002 and 2010 MECS 2010 - ...

  8. Issues in International Energy Consumption Analysis: Electricity...

    U.S. Energy Information Administration (EIA) Indexed Site

    This is the U.S. Energy Information Administration's second study to help provide a better understanding of the factors impacting residential energy consumption and intensity in ...

  9. Energy Information Administration - Commercial Energy Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Consumption Natural Gas Expenditures per Building (thousand cubic feet) per Square Foot (cubic feet) Distribution of Building-Level Intensities (cubic feetsquare foot) 25th...

  10. Energy Intensity Indicators: Industrial Source Energy Consumption

    Broader source: Energy.gov [DOE]

    The industrial sector comprises manufacturing and other nonmanufacturing industries not included in transportation or services. Manufacturing includes 18 industry sectors, generally defined at the...

  11. Consumption & Efficiency - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption & Efficiency Glossary › FAQS › Overview Data Residential Energy Consumption Survey data Commercial Energy Consumption Survey data Manufacturing Energy Consumption Survey data Vehicle Energy Consumption Survey data Energy intensity Consumption summaries Average cost of fossil-fuels for electricity generation All consumption & efficiency data reports Analysis & Projections Major Topics Most popular All sectors Commercial buildings Efficiency Manufacturing Projections

  12. Energy End-Use Intensities in Commercial Buildings 1989 -- Executive...

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Energy End-Use Intensities > Executive Summary Executive Summary Energy End Uses Ranked by Energy Consumption, 1989 Energy End Uses Ranked by Energy Consumption, 1989 Source:...

  13. Water Conservation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Conservation Water Conservation Mission The team facilitates the reduction of water consumption intensity at LM sites, as deemed appropriate for LM operations and approved by LM, as defined in: Executive Order (EO) 13693, Planning for Federal Sustainability in the Next Decade, and DOE Order 436.1, Departmental Sustainability The team advocates natural resource sustainability by continually improving water use efficiencies. Scope LM and the contractor evaluate, make recommendations, and

  14. Study of Pu consumption in advanced light water reactors: Evaluation of GE advanced boiling water reactor plants - compilation of Phase 1B task reports

    SciTech Connect (OSTI)

    1993-09-15

    This report contains an extensive evaluation of GE advanced boiling water reactor plants prepared for United State Department of Energy. The general areas covered in this report are: core and system performance; fuel cycle; infrastructure and deployment; and safety and environmental approval.

  15. Manufacturing Consumption of Energy 1991--Combined Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    call 202-586-8800 for help. Return to Energy Information Administration Home Page. Home > Energy Users > Manufacturing > Consumption and Fuel Switching Manufacturing Consumption of...

  16. 1999 Commercial Buildings Energy Consumption Survey Detailed Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption and Expenditures Tables Table C1. Total Energy Consumption by Major Fuel ............................................... 124 Table C2. Total Energy Expenditures by Major Fuel................................................ 130 Table C3. Consumption for Sum of Major Fuels ...................................................... 135 Table C4. Expenditures for Sum of Major Fuels....................................................... 140 Table C5. Consumption and Gross Energy Intensity by

  17. US SoAtl FL Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption Survey www.eia.govconsumptionresidential Space heating Water heating Air conditioning Appliances, electronics, lighting Household Energy Use in Florida ...

  18. US Mnt(S) AZ Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption Survey www.eia.govconsumptionresidential Space heating Water heating Air conditioning Appliances, electronics, lighting Household Energy Use in Arizona ...

  19. US MidAtl NJ Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption Survey www.eia.govconsumptionresidential Space heating Water heating Air conditioning Appliances, electronics, lighting Household Energy Use in New ...

  20. US SoAtl GA Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption Survey www.eia.govconsumptionresidential Space heating Water heating Air conditioning Appliances, electronics, lighting Household Energy Use in Georgia ...

  1. US SoAtl VA Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption Survey www.eia.govconsumptionresidential Space heating Water heating Air conditioning Appliances, electronics, lighting Household Energy Use in Virginia ...

  2. Enhanced water window x-ray emission from in situ formed carbon clusters irradiated by intense ultra-short laser pulses

    SciTech Connect (OSTI)

    Chakravarty, U.; Rao, B. S.; Arora, V.; Upadhyay, A.; Singhal, H.; Naik, P. A.; Chakera, J. A.; Mukherjee, C.; Gupta, P. D.

    2013-07-29

    Enhanced water window x-ray emission (23–44 Å) from carbon clusters, formed in situ using a pre-pulse, irradiated by intense (I > 10{sup 17} W/cm{sup 2}) ultra-short laser pulse, is demonstrated. An order of magnitude x-ray enhancement over planar graphite target is observed in carbon clusters, formed by a sub-ns pre-pulse, interacting with intense main pulse after a delay. The effect of the delay and the duration of the main pulse is studied for optimizing the x-ray emission in the water window region. This x-ray source has added advantages of being an efficient, high repetition rate, and low debris x-ray source.

  3. Table 2b. Relative Standard Errors for Electricity Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    2b. Relative Standard Errors for Electricity Table 2b. Relative Standard Errors for Electricity Consumption and Electricity Intensities, per Square Foot, Specific to Occupied and...

  4. Manufacturing Consumption of Energy 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    (MECS) > MECS 1994 Combined Consumption and Fuel Switching Manufacturing Energy Consumption Survey 1994 (Combined Consumption and Fuel Switching) Manufacturing Energy Consumption...

  5. Energy end-use intensities in commercial buildings

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    This report examines energy intensities in commercial buildings for nine end uses: space heating, cooling, ventilation, lighting, water heating, cooking, refrigeration, office equipment, and other. The objective of this analysis was to increase understanding of how energy is used in commercial buildings and to identify targets for greater energy efficiency which could moderate future growth in demand. The source of data for the analysis is the 1989 Commercial Buildings Energy Consumption survey (CBECS), which collected detailed data on energy-related characteristics and energy consumption for a nationally representative sample of approximately 6,000 commercial buildings. The analysis used 1989 CBECS data because the 1992 CBECS data were not yet available at the time the study was initiated. The CBECS data were fed into the Facility Energy Decision Screening (FEDS) system, a building energy simulation program developed by the US Department of Energy`s Pacific Northwest Laboratory, to derive engineering estimates of end-use consumption for each building in the sample. The FEDS estimates were then statistically adjusted to match the total energy consumption for each building. This is the Energy Information Administration`s (EIA) first report on energy end-use consumption in commercial buildings. This report is part of an effort to address customer requests for more information on how energy is used in buildings, which was an overall theme of the 1992 user needs study. The end-use data presented in this report were not available for publication in Commercial Buildings Energy Consumption and Expenditures 1989 (DOE/EIA-0318(89), Washington, DC, April 1992). However, subsequent reports on end-use energy consumption will be part of the Commercial Buildings Energy Consumption and Expenditures series, beginning with a 1992 data report to be published in early 1995.

  6. US MidAtl NY Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    consumption in New York homes is much lower than the U.S. average, because many households use other fuels for major energy end uses like space heating, water heating, and cooking. ...

  7. Commercial Buildings Energy Consumption and Expenditures 1992...

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption and Expenditures Electricity Consumption Natural Gas Consumption Wood and Solar Energy Consumption Fuel Oil and District Heat Consumption Energy Consumption in...

  8. National Lighting Energy Consumption

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lighting Energy National Lighting Energy Consumption Consumption 390 Billion kWh used for lighting in all 390 Billion kWh used for lighting in all commercial buildings in commercial buildings in 2001 2001 LED (<.1% ) Incandescent 40% HID 22% Fluorescent 38% Lighting Energy Consumption by Lighting Energy Consumption by Breakdown of Lighting Energy Breakdown of Lighting Energy Major Sector and Light Source Type Major Sector and Light Source Type Source: Navigant Consulting, Inc., U.S. Lighting

  9. Residential Energy Consumption Survey:

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... ...*...,,.<,<,...,,.,,.,,. 97 Table 6. Residential Fuel Oil and Kerosene Consumption and Expenditures April 1979 Through March 1980 Northeast...

  10. Effects of pH and stress intensity on crack growth rate in Alloy 600 in lithiated + borated water at high temperatures

    SciTech Connect (OSTI)

    Rebak, R.B.; Szklarska-Smialowska, Z.; McIlree, A.R.

    1992-12-31

    Primary water stress corrosion cracking studies were performed on Alloy 600. Constant load tests were conducted at 330 and 350{degrees}C in solutions containing dissolved hydrogen, boric acid (0 < B < 1200 ppm) and lithium hydroxide (0 < Li < 10 ppm). In the PWR working conditions range, that is, 6.9 < pH < 7.4 (or 0.5 ppm < Li < 3.5), there is little effect of the solution pH on the intergranular crack growth rate (IGSCC). However, there is a strong influence of the stress intensity on the IGSCC. K{sub ISCC} {approx} 5-10 MPa{radical}m. Dissolution plays an important role in the IGSCC process.

  11. Energy End-Use Intensities in Commercial Buildings 1989

    U.S. Energy Information Administration (EIA) Indexed Site

    1989 Energy End-Use Intensities Overview Full Report Tables National estimates and analysis of energy consumption by fuel (electricity, natural gas, fuel oil, and district...

  12. All Consumption Tables.vp

    U.S. Energy Information Administration (EIA) Indexed Site

    4) June 2007 State Energy Consumption Estimates 1960 Through 2004 2004 Consumption Summary Tables Table S1. Energy Consumption Estimates by Source and End-Use Sector, 2004...

  13. Total Space Heating Water Heating Cook-

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing...

  14. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  15. CSV File Documentation: Consumption

    Gasoline and Diesel Fuel Update (EIA)

    Consumption Estimates The State Energy Data System (SEDS) comma-separated value (CSV) files ... SG still gas SN special naphthas SO solar thermal and photovoltaic energy TE total ...

  16. Office Buildings - Energy Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption Office buildings consumed more than 17 percent of the total energy used by the commercial buildings sector (Table 4). At least half of total energy, electricity,...

  17. Energy Information Agency's 2003 Commercial Building Energy Consumption Survey Tables

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy use intensities in commercial buildings vary widely and depend on activity and climate, as shown in this data table, which was derived from the Energy Information Agency's 2003 Commercial Building Energy Consumption Survey.

  18. Oil-Consumption-Weighted GDP: Description, Calculation, and Comparison

    U.S. Energy Information Administration (EIA) Indexed Site

    oil intensity-oil consumption as a share of GDP-varies for these groups based upon the GDP series used. May 2016 Vipin Arora, Tyler Hodge, and Tancred Lidderdale | U.S. Energy ...

  19. Delivered Energy Consumption Projections by Industry in the Annual Energy Outlook 2002

    Reports and Publications (EIA)

    2002-01-01

    This paper presents delivered energy consumption and intensity projections for the industries included in the industrial sector of the National Energy Modeling System.

  20. DOE/EIA-0321/HRIf Residential Energy Consumption Survey. Consumption

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    purchase diaries from a subset of respondents composing a Household Transportation Panel and is reported separately. Residential Energy Consumption Survey: Consumption and...

  1. dist_hot_water.pdf

    Gasoline and Diesel Fuel Update (EIA)

    District Hot Water Usage Form 1999 Commercial Buildings Energy Consumption Survey (CBECS) ... District Hot Water Usage Was district hot water delivered to the building during the ...

  2. Water or Mineral FINAL.pptx

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    understanding of the various definitions of geothermal resources and water resources. ... and Corrie E Clark. 2014. Geothermal Water Use: Life Cycle Water Consumption, Water ...

  3. Energy Consumption of Die Casting Operations

    SciTech Connect (OSTI)

    Jerald Brevick; clark Mount-Campbell; Carroll Mobley

    2004-03-15

    Molten metal processing is inherently energy intensive and roughly 25% of the cost of die-cast products can be traced to some form of energy consumption [1]. The obvious major energy requirements are for melting and holding molten alloy in preparation for casting. The proper selection and maintenance of melting and holding equipment are clearly important factors in minimizing energy consumption in die-casting operations [2]. In addition to energy consumption, furnace selection also influences metal loss due to oxidation, metal quality, and maintenance requirements. Other important factors influencing energy consumption in a die-casting facility include geographic location, alloy(s) cast, starting form of alloy (solid or liquid), overall process flow, casting yield, scrap rate, cycle times, number of shifts per day, days of operation per month, type and size of die-casting form of alloy (solid or liquid), overall process flow, casting yield, scrap rate, cycle times, number of shifts per day, days of operation per month, type and size of die-casting machine, related equipment (robots, trim presses), and downstream processing (machining, plating, assembly, etc.). Each of these factors also may influence the casting quality and productivity of a die-casting enterprise. In a die-casting enterprise, decisions regarding these issues are made frequently and are based on a large number of factors. Therefore, it is not surprising that energy consumption can vary significantly from one die-casting enterprise to the next, and within a single enterprise as function of time.

  4. EIA Energy Efficiency-Iron and Steel Energy Intensity, 1998-2002

    Gasoline and Diesel Fuel Update (EIA)

    Energy Intensity Table 5a. Consumption of Energy for All Purposes per Value of Production html table 5a. excel table 5a. pdf table 5. Table 5b. Consumption of Energy for All...

  5. Energy Intensity Trends in AEO2010 (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01

    Energy intensity (energy consumption per dollar of real GDP) indicates how much energy a country uses to produce its goods and services. From the early 1950s to the early 1970s, U.S. total primary energy consumption and real GDP increased at nearly the same annual rate. During that period, real oil prices remained virtually flat. In contrast, from the mid-1970s to 2008, the relationship between energy consumption and real GDP growth changed, with primary energy consumption growing at less than one-third the previous average rate and real GDP growth continuing to grow at its historical rate. The decoupling of real GDP growth from energy consumption growth led to a decline in energy intensity that averaged 2.8% per year from 1973 to 2008. In the Annual Energy Outlook 2010 Reference case, energy intensity continues to decline, at an average annual rate of 1.9% from 2008 to 2035.

  6. Full Consumption Report.indd

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    214(2013) July 2015 State Energy Consumption Estimates 1960 Through 2013 2013 Consumption Summary Tables S U M M A R I E S U.S. Energy Information Administration | State Energy ...

  7. Health Care Buildings: Consumption Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption Tables Sum of Major Fuel Consumption by Size and Type of Health Care Building Total (trillion Btu) per Building (million Btu) per Square Foot (thousand Btu) Dollars per...

  8. An integrated assessment of global and regional water demands for electricity generation to 2095

    SciTech Connect (OSTI)

    Davies, Evan; Kyle, G. Page; Edmonds, James A.

    2013-02-01

    Electric power plants currently account for approximately one-half of the global industrial water withdrawal. While continued expansion of the electric sector seems likely into the future, the consequent water demands are quite uncertain, and will depend on highly variable water intensities by electricity technologies, at present and in the future. Using GCAM, an integrated assessment model of energy, agriculture, and climate change, we first establish lower-bound, median, and upper-bound estimates for present-day electric sector water withdrawals and consumption by individual electric generation technologies in each of 14 geopolitical regions, and compare them with available estimates of regional industrial or electric sector water use. We then explore the evolution of global and regional electric sector water use over the next century, focusing on uncertainties related to withdrawal and consumption intensities for a variety of electric generation technologies, rates of change of power plant cooling system types, and rates of adoption of a suite of water-saving technologies. Results reveal that the water withdrawal intensity of electricity generation is likely to decrease in the near term with capital stock turnover, as wet towers replace once-through flow cooling systems and advanced electricity generation technologies replace conventional ones. An increase in consumptive use accompanies the decrease in water withdrawal rates; however, a suite of water conservation technologies currently under development could compensate for this increase in consumption. Finally, at a regional scale, water use characteristics vary significantly based on characteristics of the existing capital stock and the selection of electricity generation technologies into the future.

  9. Buildings Energy Data Book: 3.1 Commercial Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    0 2003 Commercial Primary Energy Consumption Intensities, by Principal Building Type Consumption Percent of Total | Consumption Percent of Total Building Type (thousand Btu/SF) Consumption | Building Type (thousand Btu/SF) Consumption Health Care 345.9 8% | Education 159.0 11% Inpatient 438.8 6% | Service 151.6 4% Outpatient 205.9 2% | Food Service 522.4 6% Food Sales 535.5 5% | Religious Worship 77.0 2% Lodging 193.1 7% | Public Order and Safety 221.1 2% Office 211.7 19% | Warehouse and Storage

  10. DOETEIAO32l/2 Residential Energy Consumption Survey; Consumption

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    purchase diaries from a subset of respondents comprising a Household Transportation Panel and is reported separately. * Wood used for heating. Although wood consumption data...

  11. Energy Intensity Indicators: Highlights

    Broader source: Energy.gov [DOE]

    This page highlights the major changes in the overall energy intensity for the U.S., as well as summarizing changes in energy intensity for major sectors.

  12. Optimization of hybrid-water/air-cooled condenser in an enhanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    production systems with minimal water consumption by deploying: 1) a hybrid-waterair cooled condenser with low water consumption and 2) an enhanced turbine with high efficiency. ...

  13. Using Electricity",,,"Electricity Consumption",,,"Electricity...

    U.S. Energy Information Administration (EIA) Indexed Site

    . Total Electricity Consumption and Expenditures, 2003" ,"All Buildings* Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number of Buildings...

  14. Manufacturing Consumption of Energy 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    Detailed Tables 28 Energy Information AdministrationManufacturing Consumption of Energy 1994 1. In previous MECS, the term "primary energy" was used to denote the "first use" of...

  15. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    or commercial trucks (See Table 1). Energy Information AdministrationHousehold Vehicles Energy Consumption 1991 5 The 1991 RTECS count includes vehicles that were owned or used...

  16. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    of vehicles in the residential sector. Data are from the 1991 Residential Transportation Energy Consumption Survey. The "Glossary" contains the definitions of terms used in the...

  17. Manufacturing Consumption of Energy 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas to Residual Fuel Oil, by Industry Group and Selected Industries, 1994 369 Energy Information AdministrationManufacturing Consumption of Energy 1994 SIC Residual...

  18. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    logo printer-friendly version logo for Portable Document Format file Household Vehicles Energy Consumption 1991 December 1993 Release Next Update: August 1997. Based on the 1991...

  19. Issues in International Energy Consumption Analysis: Canadian Energy Demand

    Reports and Publications (EIA)

    2015-01-01

    The residential sector is one of the main end-use sectors in Canada accounting for 16.7% of total end-use site energy consumption in 2009 (computed from NRCan 2012. pp, 4-5). In this year, the residential sector accounted for 54.5% of buildings total site energy consumption. Between 1990 and 2009, Canadian household energy consumption grew by less than 11%. Nonetheless, households contributed to 14.6% of total energy-related greenhouse gas emissions in Canada in 2009 (computed from NRCan 2012). This is the U.S. Energy Information Administrations second study to help provide a better understanding of the factors impacting residential energy consumption and intensity in North America (mainly the United States and Canada) by using similar methodology for analyses in both countries.

  20. Quality problems in waters used for drinking purposes in Italy

    SciTech Connect (OSTI)

    Funari, E.; Bastone, A.; Bottoni, P.; De Donno, D.; Donati, L. )

    1991-12-01

    With a grant from the Italian Ministry of the Environment, the National Institute of Health (Istituto Superiore di Sanita) promoted and coordinated some activities aimed at determining the extent and the intensity of contamination of waters used for human consumption by some chemical agents, and describing causes and modalities of contamination and human health implications. The chemical agents examined were herbicides, nitrates, trihalomethanes, asbestos, manganese and fluoride. In this paper a first nationwide picture of these problems is reported.

  1. Commercial Buildings Energy Consumption Survey (CBECS) - U.S. Energy

    Gasoline and Diesel Fuel Update (EIA)

    Information Administration (EIA) Estimation of Energy End-use Consumption CBECS 2012 - Release date: March 18, 2016 2012 CBECS The energy end-use consumption tables for the 2012 CBECS provide estimates of the amount of electricity, natural gas, fuel oil, and district heat used for ten end uses: space heating, cooling, ventilation, water heating, lighting, cooking, refrigeration, computing (including servers), office equipment, and other uses. Although details vary by energy source, there are

  2. US ENC IL Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    IL Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ENC IL Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US ENC IL Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US ENC IL Expenditures dollars ELECTRICITY ONLY average per household * Illinois households use 129 million Btu of energy per home, 44% more than the U.S. average. * High consumption, combined with low costs for heating fuels

  3. US ENC MI Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    MI Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ENC MI Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US ENC MI Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US ENC MI Expenditures dollars ELECTRICITY ONLY average per household * Michigan households use 123 million Btu of energy per home, 38% more than the U.S. average. * High consumption, combined with low costs for heating fuels

  4. US ESC TN Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    ESC TN Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ESC TN Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US ESC TN Site Consumption kilowatthours $0 $400 $800 $1,200 $1,600 US ESC TN Expenditures dollars ELECTRICITY ONLY average per household * Tennessee households consume an average of 79 million Btu per year, about 12% less than the U.S. average. * Average electricity consumption for Tennessee households is 33%

  5. US NE MA Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    NE MA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 $3,000 US NE MA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US NE MA Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US NE MA Expenditures dollars ELECTRICITY ONLY average per household * Massachusetts households use 109 million Btu of energy per home, 22% more than the U.S. average. * The higher than average site consumption

  6. US WSC TX Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    WSC TX Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US WSC TX Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US WSC TX Site Consumption kilowatthours $0 $500 $1,000 $1,500 $2,000 US WSC TX Expenditures dollars ELECTRICITY ONLY average per household * Texas households consume an average of 77 million Btu per year, about 14% less than the U.S. average. * Average electricity consumption per Texas home is 26% higher than

  7. Measuring Arithmetic Intensity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home » For Users » Application Performance » Measuring Arithmetic Intensity Measuring Arithmetic Intensity Arithmetic intensity is a measure of floating-point operations (FLOPs) performed by a given code (or code section) relative to the amount of memory accesses (Bytes) that are required to support those operations. It is most often defined as a FLOP per Byte ratio (F/B). This application note provides a methodology for determining arithmetic intensity using Intel's Software Development

  8. Energy End-Use Intensities in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    lighting intensities per lighted square foot-hour (Figure 23). * Food service and health care buildings had the highest water-heating intensities per square foot--more than...

  9. Manufacturing Consumption of Energy 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    2(94) Distribution Category UC-950 Manufacturing Consumption of Energy 1994 December 1997 Energy Information Administration Office of Energy Markets and End Use U.S. Department of...

  10. 2014 Manufacturing Energy Consumption Survey

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U S C E N S U S B U R E A U 2014 Manufacturing Energy Consumption Survey Sponsored by the Energy Information Administration U.S. Department of Energy Administered and Compiled by ...

  11. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    for 1994, will continue the 3-year cycle. The RTECS, a subsample of the Residential Energy Consumption Survey (RECS), is an integral part of a series of surveys designed by...

  12. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    16.8 17.4 18.6 18.9 1.7 2.2 0.6 1.5 Energy Information AdministrationHousehold Vehicles Energy Consumption 1991 15 Vehicle Miles Traveled per Vehicle (Thousand) . . . . . . . . ....

  13. Manufacturing consumption of energy 1991

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    This report provides estimates on energy consumption in the manufacturing sector of the US economy. These estimates are based on data from the 1991 Manufacturing Energy Consumption Survey (MECS). This survey--administered by the Energy End Use and Integrated Statistics Division, Office of Energy Markets and End Use, Energy Information Administration (EIA)--is the most comprehensive source of national-level data on energy-related information for the manufacturing industries.

  14. Buildings Energy Data Book: 3.1 Commercial Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    1 2003 Commercial Delivered Energy Consumption Intensities, by Ownership of Unit (1) Ownership Nongovernment Owned 85.1 72% Owner-Occupied 87.3 35% Nonowner-Occupied 88.4 36% Government Owned 105.3 28% 100% Note(s): Source(s): Consumption (thousand Btu/SF) 1) Mall buildings are no longer included in most CBECs tables; therefore, some data is not directly comparable to past CBECs. EIA, 2003 Commercial Buildings Energy Consumption and Expenditures: Consumption and Expenditures Tables, June 2006,

  15. Buildings Energy Data Book: 3.1 Commercial Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    8 Commercial Delivered Energy Consumption Intensities, by Vintage Consumption per Year Constructed Square Foot (thousand Btu/SF) Prior to 1960 84.4 23% 1960 to 1969 91.5 12% 1970 to 1979 97.0 18% 1980 to 1989 100.0 19% 1990 to 1999 90.3 19% 2000 to 2003 81.6 8% Average 91.0 Source(s): EIA, 2003 Commercial Buildings Energy Consumption and Expenditures: Consumption and Expenditures Tables, Oct. 2006, Table C1a

  16. Hydrogen and Water: An Engineering, Economic and Environmental Analysis

    SciTech Connect (OSTI)

    Simon, A J; Daily, W; White, R G

    2010-01-06

    The multi-year program plan for the Department of Energy's Hydrogen and Fuel Cells Technology Program (USDOE, 2007a) calls for the development of system models to determine economic, environmental and cross-cutting impacts of the transition to a hydrogen economy. One component of the hydrogen production and delivery chain is water; water's use and disposal can incur costs and environmental consequences for almost any industrial product. It has become increasingly clear that due to factors such as competing water demands and climate change, the potential for a water-constrained world is real. Thus, any future hydrogen economy will need to be constructed so that any associated water impacts are minimized. This, in turn, requires the analysis and comparison of specific hydrogen production schemes in terms of their water use. Broadly speaking, two types of water are used in hydrogen production: process water and cooling water. In the production plant, process water is used as a direct input for the conversion processes (e.g. steam for Steam Methane Reforming {l_brace}SMR{r_brace}, water for electrolysis). Cooling water, by distinction, is used indirectly to cool related fluids or equipment, and is an important factor in making plant processes efficient and reliable. Hydrogen production further relies on water used indirectly to generate other feedstocks required by a hydrogen plant. This second order indirect water is referred to here as 'embedded' water. For example, electricity production uses significant quantities of water; this 'thermoelectric cooling' contributes significantly to the total water footprint of the hydrogen production chain. A comprehensive systems analysis of the hydrogen economy includes the aggregate of the water intensities from every step in the production chain including direct, indirect, and embedded water. Process and cooling waters have distinct technical quality requirements. Process water, which is typically high purity (limited dissolved solids) is used inside boilers, reactors or electrolyzers because as it changes phase or is consumed, it leaves very little residue behind. Pre-treatment of 'raw' source water to remove impurities not only enables efficient hydrogen production, but also reduces maintenance costs associated with component degradation due to those impurities. Cooling water has lower overall quality specifications, though it is required in larger volumes. Cooling water has distinct quality requirements aimed at preserving the cooling equipment by reducing scaling and fouling from untreated water. At least as important as the quantity, quality and cost of water inputs to a process are the quantity, quality and cost of water discharge. In many parts of the world, contamination from wastewater streams is a far greater threat to water supply than scarcity or drought (Brooks, 2002). Wastewater can be produced during the pre-treatment processes for process and cooling water, and is also sometimes generated during the hydrogen production and cooling operations themselves. Wastewater is, by definition, lower quality than supply water. Municipal wastewater treatment facilities can handle some industrial wastewaters; others must be treated on-site or recycled. Any of these options can incur additional cost and/or complexity. DOE's 'H2A' studies have developed cost and energy intensity estimates for a variety of hydrogen production pathways. These assessments, however, have not focused on the details of water use, treatment and disposal. As a result, relatively coarse consumption numbers have been used to estimate water intensities. The water intensity for hydrogen production ranges between 1.5-40 gallons per kilogram of hydrogen, including the embedded water due to electricity consumption and considering the wide variety of hydrogen production, water treatment, and cooling options. Understanding the consequences of water management choices enables stakeholders to make informed decisions regarding water use. Water is a fundamentally regional commodity. Water resources vary in quality and qu

  17. Community Energy Consumption Analysis

    Energy Science and Technology Software Center (OSTI)

    1992-02-21

    The TDIST3 program performs an analysis of large integrated community total energy systems (TES) supplying thermal and electrical energy from one or more power stations. The program models the time-dependent energy demands of a group of representative building types, distributes the thermal demands within a thermal utility system (TUS), simulates the dynamic response of a group of power stations in meeting the TUS demands, and designs an optimal base-loaded (electrically) power plant and thermal energymore » storage reservoir combination. The capital cost of the TES is evaluated. The program was developed primarily to analyze thermal utility systems supplied with high temperature water (HTW) from more than one power plant. The TUS consists of a transmission loop and secondary loops with a heat exchanger linking each secondary loop to the transmission loop. The power stations electrical output supplies all community buildings and the HTW supplies the thermal demand of the buildings connected through the TUS, a piping network. Basic components of the TES model are one or more power stations connected to the transmission loop. These may be dual-purpose, producing electricity and HTW, or just heating plants producing HTW. A thermal storage reservoir is located at one power station. The secondary loops may have heating plants connected to them. The transmission loop delivers HTW to local districts; the secondary loops deliver the energy to the individual buildings in a district.« less

  18. Residential Energy Consumption Survey (RECS) - Analysis & Projections...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RECS data show decreased energy consumption per household RECS 2009 - Release date: June 6, 2012 Total United States energy consumption in homes has remained relatively stable for ...

  19. Commercial Buildings Energy Consumption Survey (CBECS) - Analysis...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    When will energy consumption estimates be available? Energy consumption and expenditures data will be available beginning in spring 2015. CBECS data collection is currently in its ...

  20. ,"Minnesota Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Minnesota Natural Gas Vehicle Fuel Consumption ... 7:09:42 AM" "Back to Contents","Data 1: Minnesota Natural Gas Vehicle Fuel Consumption ...

  1. ,"California Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","California Natural Gas Consumption by End ... AM" "Back to Contents","Data 1: California Natural Gas Consumption by End Use" ...

  2. ,"Virginia Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Virginia Natural Gas Vehicle Fuel Consumption ... 12:00:27 PM" "Back to Contents","Data 1: Virginia Natural Gas Vehicle Fuel Consumption ...

  3. ,"West Virginia Natural Gas Residential Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AM" "Back to Contents","Data 1: West Virginia Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010WV2" "Date","West Virginia Natural Gas Residential Consumption ...

  4. ,"Virginia Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Virginia Natural Gas Consumption by End ... 11:05:20 AM" "Back to Contents","Data 1: Virginia Natural Gas Consumption by End Use" ...

  5. ,"West Virginia Natural Gas Industrial Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AM" "Back to Contents","Data 1: West Virginia Natural Gas Industrial Consumption (MMcf)" "Sourcekey","N3035WV2" "Date","West Virginia Natural Gas Industrial Consumption ...

  6. ,"West Virginia Natural Gas Total Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","West Virginia Natural Gas Total Consumption ... AM" "Back to Contents","Data 1: West Virginia Natural Gas Total Consumption (MMcf)" ...

  7. ,"New Mexico Natural Gas Total Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","New Mexico Natural Gas Total Consumption ... AM" "Back to Contents","Data 1: New Mexico Natural Gas Total Consumption (MMcf)" ...

  8. ,"Oklahoma Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Oklahoma Natural Gas Consumption by End ... 11:05:14 AM" "Back to Contents","Data 1: Oklahoma Natural Gas Consumption by End Use" ...

  9. ,"Texas Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas Natural Gas Consumption by End ... 6:36:11 AM" "Back to Contents","Data 1: Texas Natural Gas Consumption by End Use" ...

  10. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    3A. Total Fuel Oil Consumption and Expenditures for All Buildings, 2003 All Buildings Using Fuel Oil Fuel Oil Consumption Fuel Oil Expenditures Number of Buildings (thousand)...

  11. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    3A. Total Electricity Consumption and Expenditures for All Buildings, 2003 All Buildings Using Electricity Electricity Consumption Electricity Expenditures Number of Buildings...

  12. Using Electricity",,,"Electricity Consumption",,,"Electricity...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Total Electricity Consumption and Expenditures for All Buildings, 2003" ,"All Buildings Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number of...

  13. Electricity",,,"Electricity Consumption",,,"Electricity Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    C9. Total Electricity Consumption and Expenditures, 1999" ,"All Buildings Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number of Buildings...

  14. Electricity",,,"Electricity Consumption",,,"Electricity Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    DIV. Total Electricity Consumption and Expenditures by Census Division, 1999" ,"All Buildings Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number...

  15. Energy Information Administration - Transportation Energy Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption Transportation Energy Consumption Surveys energy used by vehicles EIA conducts numerous energy-related surveys and other information programs. In general, the...

  16. Commercial Buildings Energy Consumption and Expenditures 1992...

    U.S. Energy Information Administration (EIA) Indexed Site

    1992 Consumption and Expenditures 1992 Consumption & Expenditures Overview Full Report Tables National estimates of electricity, natural gas, fuel oil, and district heat...

  17. Inconsistent Investment and Consumption Problems

    SciTech Connect (OSTI)

    Kronborg, Morten Tolver; Steffensen, Mogens

    2015-06-15

    In a traditional Black–Scholes market we develop a verification theorem for a general class of investment and consumption problems where the standard dynamic programming principle does not hold. The theorem is an extension of the standard Hamilton–Jacobi–Bellman equation in the form of a system of non-linear differential equations. We derive the optimal investment and consumption strategy for a mean-variance investor without pre-commitment endowed with labor income. In the case of constant risk aversion it turns out that the optimal amount of money to invest in stocks is independent of wealth. The optimal consumption strategy is given as a deterministic bang-bang strategy. In order to have a more realistic model we allow the risk aversion to be time and state dependent. Of special interest is the case were the risk aversion is inversely proportional to present wealth plus the financial value of future labor income net of consumption. Using the verification theorem we give a detailed analysis of this problem. It turns out that the optimal amount of money to invest in stocks is given by a linear function of wealth plus the financial value of future labor income net of consumption. The optimal consumption strategy is again given as a deterministic bang-bang strategy. We also calculate, for a general time and state dependent risk aversion function, the optimal investment and consumption strategy for a mean-standard deviation investor without pre-commitment. In that case, it turns out that it is optimal to take no risk at all.

  18. Using Solar Hot Water to Address Piping Heat Losses in Multifamily...

    Office of Scientific and Technical Information (OSTI)

    Subject: 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION residential; Residential Buildings; ARBI; Building America; TRNSYS; multifamily; domestic hot water; solar water ...

  19. ITP Energy Intensive Processes: Energy-Intensive Processes Portfolio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry ITP Energy Intensive Processes: Energy-Intensive Processes Portfolio: Addressing Key ...

  20. Minnesota Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Total Consumption (Million Cubic Feet) Minnesota Natural Gas Total Consumption (Million ... Referring Pages: Natural Gas Consumption Minnesota Natural Gas Consumption by End Use ...

  1. California Natural Gas Total Consumption (Million Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Total Consumption (Million Cubic Feet) California Natural Gas Total Consumption (Million ... Referring Pages: Natural Gas Consumption California Natural Gas Consumption by End Use ...

  2. California Natural Gas Plant Fuel Consumption (Million Cubic...

    Gasoline and Diesel Fuel Update (EIA)

    Fuel Consumption (Million Cubic Feet) California Natural Gas Plant Fuel Consumption ... Referring Pages: Natural Gas Plant Fuel Consumption California Natural Gas Consumption by ...

  3. Buildings Energy Data Book: 4.4 Legislation Affecting Energy Consumption of Federal Buildings and Facilities

    Buildings Energy Data Book [EERE]

    3 Energy Independence and Security Act of 2007, Provisions Affecting Energy Consumption in Federal Buildings Source(s): Standard Relating to Solar Hot Water - Requires new Federal buildings, or Federal buildings undergoing major renovations, to meet at least 30 percent of hot water demand through the use of solar hot water heaters, if cost-effective. [Section 523] Federally-Procured Appliances with Standby Power - Requires all Federal agencies to procure appliances with standby power consumption

  4. Water demands for electricity generation in the U.S.: Modeling different scenarios for the water–energy nexus

    SciTech Connect (OSTI)

    Liu, Lu; Hejazi, Mohamad I.; Patel, Pralit L.; Kyle, G. Page; Davies, Evan; Zhou, Yuyu; Clarke, Leon E.; Edmonds, James A.

    2015-05-01

    Water withdrawal for electricity generation in the United States accounts for approximately half the total freshwater withdrawal. With steadily growing electricity demands, a changing climate, and limited water supplies in many water-scarce states, meeting future energy and water demands poses a significant socio-economic challenge. Employing an integrated modeling approach that can capture the energy-water interactions at regional and national scales is essential to improve our understanding of the key drivers that govern those interactions and the role of national policies. In this study, the Global Change Assessment Model (GCAM), a technologically-detailed integrated model of the economy, energy, agriculture and land use, water, and climate systems, was extended to model the electricity and water systems at the state level in the U.S. (GCAM-USA). GCAM-USA was employed to estimate future state-level electricity generation and consumption, and their associated water withdrawals and consumption under a set of six scenarios with extensive details on the generation fuel portfolio, cooling technology mix, and their associated water use intensities. Six scenarios of future water demands of the U.S. electric-sector were explored to investigate the implications of socioeconomics development and growing electricity demands, climate mitigation policy, the transition of cooling systems, electricity trade, and water saving technologies. Our findings include: 1) decreasing water withdrawals and substantially increasing water consumption from both climate mitigation and the conversion from open-loop to closed-loop cooling systems; 2) open trading of electricity benefiting energy scarce yet demand intensive states; 3) within state variability under different driving forces while across state homogeneity under certain driving force ; 4) a clear trade-off between water consumption and withdrawal for the electricity sector in the U.S. The paper discusses this withdrawal-consumption trade-off in the context of current national policies and regulations that favor decreasing withdrawals (increasing consumptive use), and the role of water saving technologies. The highly-resolved nature of this study both geographically and technologically provides a useful platform to address scientific and policy relevant and emerging issues at the heart of the water-energy nexus in the U.S.

  5. US ENC WI Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    120 US ENC WI Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ENC WI Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US ENC WI Site Consumption kilowatthours $0 $300 $600 $900 $1,200 $1,500 US ENC WI Expenditures dollars ELECTRICITY ONLY average per household * Wisconsin households use 103 million Btu of energy per home, 15% more than the U.S. average. * Lower electricity and natural gas rates compared to

  6. US WNC MO Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    WNC MO Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US WNC MO Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 3,000 6,000 9,000 12,000 15,000 US WNC MO Site Consumption kilowatthours $0 $300 $600 $900 $1,200 $1,500 US WNC MO Expenditures dollars ELECTRICITY ONLY average per household * Missouri households consume an average of 100 million Btu per year, 12% more than the U.S. average. * Average household energy costs in Missouri are slightly less

  7. Light intensity compressor

    DOE Patents [OSTI]

    Rushford, Michael C.

    1990-01-01

    In a system for recording images having vastly differing light intensities over the face of the image, a light intensity compressor is provided that utilizes the properties of twisted nematic liquid crystals to compress the image intensity. A photoconductor or photodiode material that is responsive to the wavelength of radiation being recorded is placed adjacent a layer of twisted nematic liquid crystal material. An electric potential applied to a pair of electrodes that are disposed outside of the liquid crystal/photoconductor arrangement to provide an electric field in the vicinity of the liquid crystal material. The electrodes are substantially transparent to the form of radiation being recorded. A pair of crossed polarizers are provided on opposite sides of the liquid crystal. The front polarizer linearly polarizes the light, while the back polarizer cooperates with the front polarizer and the liquid crystal material to compress the intensity of a viewed scene. Light incident upon the intensity compressor activates the photoconductor in proportion to the intensity of the light, thereby varying the field applied to the liquid crystal. The increased field causes the liquid crystal to have less of a twisting effect on the incident linearly polarized light, which will cause an increased percentage of the light to be absorbed by the back polarizer. The intensity of an image may be compressed by forming an image on the light intensity compressor.

  8. Trends in energy use in commercial buildings -- Sixteen years of EIA's commercial buildings energy consumption survey

    SciTech Connect (OSTI)

    Davis, J.; Swenson, A.

    1998-07-01

    The Commercial Buildings Energy Consumption Survey (CBECS) collects basic statistical information on energy consumption and energy-related characteristics of commercial buildings in the US. The first CBECS was conducted in 1979 and the most recent was completed in 1995. Over that period, the number of commercial bindings and total amount of floorspace increased, total consumption remained flat, and total energy intensity declined. By 1995, there were 4.6 million commercial buildings and 58.8 billion square feet of floorspace. The buildings consumed a total of 5.3 quadrillion Btu (site energy), with a total intensity of 90.5 thousand Btu per square foot per year. Electricity consumption exceeded natural gas consumption (2.6 quadrillion and 1.9 quadrillion Btu, respectively). In 1995, the two major users of energy were space heating (1.7 quadrillion Btu) and lighting (1.2 quadrillion Btu). Over the period 1979 to 1995, natural gas intensity declined from 71.4 thousand to 51.0 thousand Btu per square foot per year. Electricity intensity did not show a similar decline (44.2 thousand Btu per square foot in 1979 and 45.7 thousand Btu per square foot in 1995). Two types of commercial buildings, office buildings and mercantile and service buildings, were the largest consumers of energy in 1995 (2.0 quadrillion Btu, 38% of total consumption). Three building types, health care, food service, and food sales, had significantly higher energy intensities. Buildings constructed since 1970 accounted for half of total consumption and a majority (59%) of total electricity consumption.

  9. Food production and consumption near the Savannah River Site

    SciTech Connect (OSTI)

    Hamby, D.M.

    1991-01-01

    Routine operations at the Savannah River Site (SRS) result in the release of radionuclides to the atmosphere and to the Savannah River. The resulting radiological doses to the off-site maximum individual and the 80-km population are estimated on a yearly basis. These estimates are generated using dose models prescribed in the NRC Reg. Guide 1.109 for the commercial nuclear power industry. A study of land and water usage characteristics in the region of the Savannah River Site has been conducted to determine site-specific values of the NRC dose model parameters. The study's scope included local characteristics of meat, milk, vegetable production; Savannah River recreational activities and fish harvests; meat, milk, vegetable, and seafood consumption rates; and Savannah River drinking-water populations. Average and maximum consumption rates of beef, milk, vegetables, and fish have been determined for individuals residing in the southern United States. The study suggest that many of the consumption rates provided by the NRC may not be appropriate for residents of the South. Average consumption rates are slightly higher than the defaults provided by the NRC. Maximum consumption rates, however, are typically lower than NRC values. Agricultural productivity in the SRS region was found to be quite different than NRC recommendations. Off-site doses have been predicted using both NRC and SRS parameter values to demonstrate the significance of site-specific data.

  10. Food production and consumption near the Savannah River Site

    SciTech Connect (OSTI)

    Hamby, D.M.

    1991-12-31

    Routine operations at the Savannah River Site (SRS) result in the release of radionuclides to the atmosphere and to the Savannah River. The resulting radiological doses to the off-site maximum individual and the 80-km population are estimated on a yearly basis. These estimates are generated using dose models prescribed in the NRC Reg. Guide 1.109 for the commercial nuclear power industry. A study of land and water usage characteristics in the region of the Savannah River Site has been conducted to determine site-specific values of the NRC dose model parameters. The study`s scope included local characteristics of meat, milk, vegetable production; Savannah River recreational activities and fish harvests; meat, milk, vegetable, and seafood consumption rates; and Savannah River drinking-water populations. Average and maximum consumption rates of beef, milk, vegetables, and fish have been determined for individuals residing in the southern United States. The study suggest that many of the consumption rates provided by the NRC may not be appropriate for residents of the South. Average consumption rates are slightly higher than the defaults provided by the NRC. Maximum consumption rates, however, are typically lower than NRC values. Agricultural productivity in the SRS region was found to be quite different than NRC recommendations. Off-site doses have been predicted using both NRC and SRS parameter values to demonstrate the significance of site-specific data.

  11. A structural analysis of natural gas consumption by income class from 1987 to 1993

    SciTech Connect (OSTI)

    Poyer, D.A.

    1996-12-01

    This study had two major objectives: (1) assess and compare changes in natural gas consumption between 1987 and 1993 by income group and (2) assess the potential influence of energy policy on observed changes in natural gas consumption over time and across income groups. This analysis used U.S. Department of Energy (DOE) data files and involved both the generation of simple descriptive statistics and the use of multivariate regression analysis. The consumption of natural gas by the groups was studied over a six-year period. The results showed that: (1) natural gas use was substantially higher for the highest income group than for the two lower income groups and (2) natural gas consumption declined for the lowest and middle income quintiles and increased for the highest income quintile between 1987 and 1990; between 1990 and 1993, consumption increased for the lowest and middle income quintile, but remained relatively constant for the highest income quintile. The relative importance of the structural and variable factors in explaining consumption changes between survey periods varies by income group. The analysis provides two major energy policy implications: (1) natural gas intensity has been the highest for the lowest income group, indicating that this group is more vulnerable to sudden changes in demand-indicator variables, in particular weather-related variables, than increase natural gas consumption, and (2) the fall in natural gas intensity between 1987 and 1993 may indicate that energy policy has had some impact on reducing natural gas consumption. 11 refs., 4 figs., 16 tabs.

  12. Resource intensities of the front end of the nuclear fuel cycle

    SciTech Connect (OSTI)

    Schneider, E.; Phathanapirom, U.; Eggert, R.; Collins, J.

    2013-07-01

    This paper presents resource intensities, including direct and embodied energy consumption, land and water use, associated with the processes comprising the front end of the nuclear fuel cycle. These processes include uranium extraction, conversion, enrichment, fuel fabrication and depleted uranium de-conversion. To the extent feasible, these impacts are calculated based on data reported by operating facilities, with preference given to more recent data based on current technologies and regulations. All impacts are normalized per GWh of electricity produced. Uranium extraction is seen to be the most resource intensive front end process. Combined, the energy consumed by all front end processes is equal to less than 1% of the electricity produced by the uranium in a nuclear reactor. Land transformation and water withdrawals are calculated at 8.07 m{sup 2} /GWh(e) and 1.37x10{sup 5} l/GWh(e), respectively. Both are dominated by the requirements of uranium extraction, which accounts for over 70% of land use and nearly 90% of water use.

  13. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    90,1024,3251,1511,"Q",106.6,97.3,100.6 "Office ...",305,325,329,175,3012,2989,3782,2425,101.2,108.8,87,72.1 "Public Assembly ...",93,103,109,64,1048,...

  14. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    9,60,56.7,43.1,31.4,22.1 "1990 to 1999 ...",69,87,51,93,34,1735,1988,1202,3012,1267,40,43.8,42.4,30.9,26.9 "2000 to 2003 ...",23,40,"Q",28,15,693,1086,7...

  15. Energy Intensity and Carbon Intensity by the Numbers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Intensity and Carbon Intensity by the Numbers Energy Intensity and Carbon Intensity by the Numbers

  16. Energy Intensity Indicators Data

    Broader source: Energy.gov [DOE]

    The files listed below contain energy intensity data and documentation that supports the information presented on this website. The files are in Microsoft® Excel® format (2007 and later versions).

  17. Manufacturing consumption of energy 1994

    SciTech Connect (OSTI)

    1997-12-01

    This report provides estimates on energy consumption in the manufacturing sector of the U.S. economy based on data from the Manufacturing Energy Consumption Survey. The sample used in this report represented about 250,000 of the largest manufacturing establishments which account for approximately 98 percent of U.S. economic output from manufacturing, and an expected similar proportion of manufacturing energy use. The amount of energy use was collected for all operations of each establishment surveyed. Highlights of the report include profiles for the four major energy-consuming industries (petroleum refining, chemical, paper, and primary metal industries), and an analysis of the effects of changes in the natural gas and electricity markets on the manufacturing sector. Seven appendices are included to provide detailed background information. 10 figs., 51 tabs.

  18. Buildings Energy Data Book: 3.1 Commercial Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    3 Commercial Delivered and Primary Energy Consumption Intensities, by Year Percent Delivered Energy Consumption Primary Energy Consumption Floorspace Post-2000 Total Consumption per Total Consumption per (million SF) Floorspace (1) (10^15 Btu) SF (thousand Btu/SF) (10^15 Btu) SF (thousand Btu/SF) 1980 50.9 N.A. 5.99 117.7 10.57 207.7 1990 64.3 N.A. 6.74 104.8 13.30 207.0 2000 (2) 68.5 N.A. 8.20 119.7 17.15 250.3 2010 81.1 26% 8.74 107.7 18.22 224.6 2015 84.1 34% 8.88 105.5 18.19 216.2 2020 89.1

  19. Residential Energy Consumption Survey (RECS) - Analysis & Projections...

    Gasoline and Diesel Fuel Update (EIA)

    How does EIA estimate energy consumption and end uses in U.S. homes? RECS 2009 - Release date: March 28, 2011 EIA administers the Residential Energy Consumption Survey (RECS) to a ...

  20. ,"New Mexico Natural Gas Industrial Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    6:58:31 AM" "Back to Contents","Data 1: New Mexico Natural Gas Industrial Consumption (MMcf)" "Sourcekey","N3035NM2" "Date","New Mexico Natural Gas Industrial Consumption (MMcf)" ...

  1. ,"New Mexico Natural Gas Residential Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    6:56:45 AM" "Back to Contents","Data 1: New Mexico Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010NM2" "Date","New Mexico Natural Gas Residential Consumption (MMcf)" ...

  2. The Reality and Future Scenarios of Commercial Building Energy Consumption in China

    SciTech Connect (OSTI)

    Zhou, Nan; Lin, Jiang

    2007-08-01

    While China's 11th Five Year Plan called for a reduction of energy intensity by 2010, whether and how the energy consumption trend can be changed in a short time has been hotly debated. This research intends to evaluate the impact of a variety of scenarios of GDP growth, energy elasticity and energy efficiency improvement on energy consumption in commercial buildings in China using a detailed China End-use Energy Model. China's official energy statistics have limited information on energy demand by end use. This is a particularly pertinent issue for building energy consumption. The authors have applied reasoned judgments, based on experience of working on Chinese efficiency standards and energy related programs, to present a realistic interpretation of the current energy data. The bottom-up approach allows detailed consideration of end use intensity, equipment efficiency, etc., thus facilitating assessment of potential impacts of specific policy and technology changes on building energy use. The results suggest that: (1) commercial energy consumption in China's current statistics is underestimated by about 44%, and the fuel mix is misleading; (2) energy efficiency improvements will not be sufficient to offset the strong increase in end-use penetration and intensity in commercial buildings; (3) energy intensity (particularly electricity) in commercial buildings will increase; (4) different GDP growth and elasticity scenarios could lead to a wide range of floor area growth trajectories , and therefore, significantly impact energy consumption in commercial buildings.

  3. State energy data report 1992: Consumption estimates

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    This is a report of energy consumption by state for the years 1960 to 1992. The report contains summaries of energy consumption for the US and by state, consumption by source, comparisons to other energy use reports, consumption by energy use sector, and describes the estimation methodologies used in the preparation of the report. Some years are not listed specifically although they are included in the summary of data.

  4. DOE ZERH Webinar: Efficient Hot Water Distribution I: What's...

    Office of Environmental Management (EM)

    both energy efficiency and performance. Hot water distribution is one of these critical systems - affecting energy use , water consumption, and resident convenience and comfort. ...

  5. Household energy consumption and expenditures, 1990

    SciTech Connect (OSTI)

    Not Available

    1993-03-02

    This report, Household Energy Consumption and Expenditures 1990, is based upon data from the 1990 Residential Energy Consumption Survey (RECS). Focusing on energy end-use consumption and expenditures of households, the 1990 RECS is the eighth in a series conducted since 1978 by the Energy Information Administration (EIA). Over 5,000 households were surveyed, providing information on their housing units, housing characteristics, energy consumption and expenditures, stock of energy-consuming appliances, and energy-related behavior. The information provided represents the characteristics and energy consumption of 94 million households nationwide.

  6. Electrical appliance energy consumption control methods and electrical energy consumption systems

    DOE Patents [OSTI]

    Donnelly, Matthew K.; Chassin, David P.; Dagle, Jeffery E.; Kintner-Meyer, Michael; Winiarski, David W.; Pratt, Robert G.; Boberly-Bartis, Anne Marie

    2006-03-07

    Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.

  7. Electrical appliance energy consumption control methods and electrical energy consumption systems

    DOE Patents [OSTI]

    Donnelly, Matthew K.; Chassin, David P.; Dagle, Jeffery E.; Kintner-Meyer, Michael; Winiarski, David W.; Pratt, Robert G.; Boberly-Bartis, Anne Marie

    2008-09-02

    Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.

  8. Alcohol injection cuts diesel consumption on turbocharged tractors

    SciTech Connect (OSTI)

    Edson, D.V.

    1980-07-21

    M and W Gear Co. of Gibson City, IL, are marketing a new alcohol- injection system that permits turbocharged diesel engines to burn alcohol and claims to cut diesel consumption by 30% and more. The alcohol fuel, a blend of alcohol and water, does not meet the diesel fuel until the alcohol has been atomized and sprayed through the intake manifold into the cylinders. It permits farmers to use home- still-produced ethanol without the added expense of refining to anhydrous composition.

  9. California Natural Gas Lease and Plant Fuel Consumption (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    California Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 ... Natural Gas Lease and Plant Fuel Consumption California Natural Gas Consumption by End Use ...

  10. Texas Natural Gas Industrial Consumption (Million Cubic Feet...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consumption (Million Cubic Feet) Texas Natural Gas Industrial Consumption (Million Cubic ... Natural Gas Delivered to Industrial Consumers Texas Natural Gas Consumption by End Use ...

  11. Federal Energy and Water Management Awards 2014

    Broader source: Energy.gov (indexed) [DOE]

    District Washington built the foundation for a comprehensive energy program that reduced energy intensity by nearly 19% and water intensity by 13% from the respective baselines...

  12. Energy Intensity Indicators: Efficiency vs. Intensity | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency vs. Intensity Energy Intensity Indicators: Efficiency vs. Intensity Efficiency improvements in processes and equipment and other explanatory factors can contribute to observed changes in energy intensity. Within the category "other explanatory factors" we can identify two separate effects: structural changes and behavioral factors, which are further discussed in item 2) below. (1) Declines in energy intensity are a proxy for efficiency improvements, provided a)

  13. NEUTRON FLUX INTENSITY DETECTION

    DOE Patents [OSTI]

    Russell, J.T.

    1964-04-21

    A method of measuring the instantaneous intensity of neutron flux in the core of a nuclear reactor is described. A target gas capable of being transmuted by neutron bombardment to a product having a resonance absorption line nt a particular microwave frequency is passed through the core of the reactor. Frequency-modulated microwave energy is passed through the target gas and the attenuation of the energy due to the formation of the transmuted product is measured. (AEC)

  14. Intense fusion neutron sources

    SciTech Connect (OSTI)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-04-15

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 10{sup 15}-10{sup 21} neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 10{sup 20} neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  15. Changes in energy intensity in the manufacturing sector 1985--1991

    SciTech Connect (OSTI)

    1995-09-15

    In this report, energy intensity is defined as the ratio of energy consumption per unit of output. Output is measured as the constant dollar of value of shipments and receipts, and two measures of energy consumption are presented in British thermal units (Btu): Offsite-Produced Energy and Total Inputs of Energy. A decrease in energy intensity from one period to another suggests an increase in energy efficiency, and vice versa. Energy efficiency can be defined and measured in various ways. Certain concepts of energy efficiency, especially those limited to equipment efficiencies, cannot be measured over time using changes in energy-intensity ratios. While improved energy efficiency will tend to reduce energy intensity, it is also true that a change in energy intensity can be due to factors unrelated to energy efficiency. For this report, energy intensity is used as a surrogate measure for energy efficiency, based on industry knowledge and current methodological analyses.

  16. Energy consumption in thermomechanical pulping

    SciTech Connect (OSTI)

    Marton, R.; Tsujimoto, N.; Eskelinen, E.

    1981-08-01

    Various components of refining energy were determined experimentally and compared with those calculated on the basis of the dimensions of morphological elements of wood. The experimentally determined fiberization energy of spruce was 6 to 60 times larger than the calculated value and that of birch 3 to 15 times larger. The energy consumed in reducing the Canadian standard freeness of isolated fibers from 500 to 150 ml was found to be approximately 1/3 of the total fiber development energy for both spruce and birch TMP. Chip size affected the refining energy consumption; the total energy dropped by approximately 30% when chip size was reduced from 16 mm to 3 mm in the case of spruce and approximately 40% for birch. 6 refs.

  17. 2009 Energy Consumption Per Person | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2009 Energy Consumption Per Person 2009 Energy Consumption Per Person 2009 Energy Consumption Per Person Per capita energy consumption across all sectors of the economy. Click on a state for more information.

  18. Household energy consumption and expenditures 1993

    SciTech Connect (OSTI)

    1995-10-05

    This presents information about household end-use consumption of energy and expenditures for that energy. These data were collected in the 1993 Residential Energy Consumption Survey; more than 7,000 households were surveyed for information on their housing units, energy consumption and expenditures, stock of energy-consuming appliances, and energy-related behavior. The information represents all households nationwide (97 million). Key findings: National residential energy consumption was 10.0 quadrillion Btu in 1993, a 9% increase over 1990. Weather has a significant effect on energy consumption. Consumption of electricity for appliances is increasing. Houses that use electricity for space heating have lower overall energy expenditures than households that heat with other fuels. RECS collected data for the 4 most populous states: CA, FL, NY, TX.

  19. Residential Energy Consumption Survey (RECS) - Data - U.S. Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    | Previous Housing characteristics Consumption & expenditures Microdata Methodology ... Special tabulations: wood characteristics and consumption Release date: February 21, 2014 ...

  20. Commercial Buildings Energy Consumption Survey (CBECS) - U.S...

    Gasoline and Diesel Fuel Update (EIA)

    Consumption & Efficiency Commercial Buildings Energy Consumption Survey (CBECS) Glossary FAQS Overview Data 2012 2003 1999 1995 1992 Previous Analysis & Projections ...

  1. Table 6a. Total Electricity Consumption per Effective Occupied...

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Total Electricity Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Electricity (thousand) Total Electricity Consumption...

  2. Household energy consumption and expenditures, 1987

    SciTech Connect (OSTI)

    Not Available

    1989-10-10

    Household Energy Consumption and Expenditures 1987, Part 1: National Data is the second publication in a series from the 1987 Residential Energy Consumption Survey (RECS). It is prepared by the Energy End Use Division (EEUD) of the Office of Energy Markets and End Use (EMEU), Energy Information Administration (EIA). The EIA collects and publishes comprehensive data on energy consumption in occupied housing units in the residential sector through the RECS. 15 figs., 50 tabs.

  3. Residential Energy Consumption Survey (RECS) - Analysis & Projections...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This rise has occurred while Federal energy efficiency standards were enacted on every major appliance, overall household energy consumption actually decreased from 10.58 quads to ...

  4. Residential Energy Consumption Survey (RECS) - Analysis & Projections...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    EIA has conducted the Residential Energy Consumption Survey (RECS) since 1978 to provide data on home energy characteristics, end uses of energy, and expenses for the four Census ...

  5. Residential Energy Consumption Survey (RECS) - Analysis & Projections...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    As a part of the Residential Energy Consumption Survey (RECS), trained interviewers measure the square footage of each housing unit. RECS square footage data allow comparison of ...

  6. Commercial Buildings Energy Consumption Survey (CBECS) - Analysis...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Release Date: July 12, 2012 | Revised Date: June 19, 2014 The Commercial Buildings Energy Consumption Survey (CBECS) project cycle spans at least four years, beginning with ...

  7. Commercial Buildings Energy Consumption Survey (CBECS) - Analysis...

    Gasoline and Diesel Fuel Update (EIA)

    Pick a date range: From: To: Go Commercial Buildings Available formats 2012 Commercial Buildings Energy Consumption Survey: Energy Usage Summary Released: March 18, 2016 EIA has ...

  8. Commercial Buildings Energy Consumption Survey (CBECS) - How...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Energy Usage Information Collected in the 2012 CBECS? CBECS 2012 - Release date: March 18, 2016 The Commercial Buildings Energy Consumption Survey (CBECS) project cycle spans at ...

  9. Manufacturing Energy Consumption Survey (MECS) - Analysis & Projection...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    That increase in supply has in turn lowered the price of natural gas to manufacturers Manufacturing Energy Consumption Data Show Large Reductions in Both Manufacturing Energy Use ...

  10. Residential Energy Consumption Survey (RECS) - Analysis & Projections...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    RECS 2009 - Release date: March 28, 2011 First results from EIA's 2009 Residential Energy Consumption Survey (RECS) The 2009 RECS collected home energy characteristics data from ...

  11. Commercial Buildings Energy Consumption Survey (CBECS) - Analysis...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data collection for the 2012 Commercial Buildings Energy Consumption Survey (CBECS) took place between April and November 2013, collecting data for reference year 2012. The goal of ...

  12. Commercial Buildings Energy Consumption and Expenditures 1992

    U.S. Energy Information Administration (EIA) Indexed Site

    Appendix I Related EIA Publications on Energy Consumption For information about how to obtain these publi- cations, see the inside cover of this report. Please note that the...

  13. Commercial Buildings Energy Consumption and Expenditures 1992

    U.S. Energy Information Administration (EIA) Indexed Site

    Appendix A How the Survey Was Conducted Introduction The Commercial Buildings Energy Consumption Survey (CBECS) is conducted by the Energy Information Administration (EIA) on a...

  14. Commercial Buildings Energy Consumption and Expenditures 1992

    U.S. Energy Information Administration (EIA) Indexed Site

    Distribution Category UC-950 Commercial Buildings Energy Consumption and Expenditures 1992 April 1995 Energy Information Adminstration Office of Energy Markets and End Use U.S....

  15. Commercial Buildings Energy Consumption and Expenditures 1992

    U.S. Energy Information Administration (EIA) Indexed Site

    in this report were based on monthly billing records submitted by the buildings' energy suppliers. The section, "Annual Consumption and Expenditures" provide a detailed...

  16. ,"Maine Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maine Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Annual",2014 ,"Release Date:","930...

  17. ,"North Dakota Natural Gas Industrial Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Industrial Consumption (MMcf)",1,"Monthly","102015" ,"Release Date:","12312015" ,"Next...

  18. ,"South Carolina Natural Gas Industrial Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","South Carolina Natural Gas Industrial Consumption (MMcf)",1,"Monthly","102015" ,"Release Date:","12312015" ,"Next...

  19. ,"South Dakota Natural Gas Industrial Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas Industrial Consumption (MMcf)",1,"Monthly","102015" ,"Release Date:","12312015" ,"Next...

  20. ,"New York Natural Gas Industrial Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Industrial Consumption (MMcf)",1,"Monthly","102015" ,"Release Date:","12312015" ,"Next...

  1. ,"New Jersey Natural Gas Industrial Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","New Jersey Natural Gas Industrial Consumption (MMcf)",1,"Monthly","102015" ,"Release Date:","12312015" ,"Next...

  2. ,"Rhode Island Natural Gas Industrial Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Rhode Island Natural Gas Industrial Consumption (MMcf)",1,"Monthly","102015" ,"Release Date:","12312015" ,"Next...

  3. ,"New Hampshire Natural Gas Industrial Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","New Hampshire Natural Gas Industrial Consumption (MMcf)",1,"Monthly","102015" ,"Release Date:","12312015" ,"Next...

  4. Chapter 4. Fuel Economy, Consumption and Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    national concerns about dependence on foreign oil and the deleterious effect on the environment of fossil fuel combustion, residential vehicle fleet fuel consumption was...

  5. ,"Natural Gas Consumption",,,"Natural Gas Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    Census Division, 1999" ,"Natural Gas Consumption",,,"Natural Gas Expenditures" ,"per Building (thousand cubic feet)","per Square Foot (cubic feet)","per Worker (thousand cubic...

  6. Commercial Buildings Energy Consumption and Expenditures 1995...

    U.S. Energy Information Administration (EIA) Indexed Site

    fuel oil, and district heat consumption and expenditures for commercial buildings by building characteristics. Previous Page Arrow Separater Bar File Last Modified: January 29,...

  7. CBECS 1992 - Consumption & Expenditures, Detailed Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    consumption by major fuel, 1992 Divider Line To View andor Print Reports (requires Adobe Acrobat Reader) - Download Adobe Acrobat Reader If you experience any difficulties,...

  8. ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; GREENHOUSES...

    Office of Scientific and Technical Information (OSTI)

    fuel-fired peak heating for geothermal greenhouses Rafferty, K. 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; GREENHOUSES; AUXILIARY HEATING; CAPITALIZED COST; OPERATING...

  9. ,"Washington Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Washington Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Annual",2014 ,"Release Date:","930...

  10. Displacing Natural Gas Consumption and Lowering Emissions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ADVANCED MANUFACTURING OFFICE Displacing Natural Gas Consumption and Lowering Emissions By ... and chemical sectors account for more than 40% of total industrial natural gas use. ...

  11. ,"Hawaii Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Hawaii Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Annual",2014 ,"Release Date:","930...

  12. ,"Texas Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Annual",2014 ,"Release Date:","930...

  13. ,"Texas Natural Gas Lease Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Lease Fuel Consumption (MMcf)",1,"Annual",2014 ,"Release Date:","930...

  14. ,"Texas Natural Gas Plant Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2014 ,"Release Date:","930...

  15. Energy Preview: Residential Transportation Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    t 7 Energy Preview: Residential Transportation Energy Consumption Survey, Preliminary Estimates, 1991 (See Page 1) This publication and other Energy Information Administration...

  16. Derived Annual Estimates of Manufacturing Energy Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    > Derived Annual Estimates - Executive Summary Derived Annual Estimates of Manufacturing Energy Consumption, 1974-1988 Figure showing Derived Estimates Executive Summary This...

  17. Household Vehicles Energy Consumption 1994 - Appendix C

    U.S. Energy Information Administration (EIA) Indexed Site

    discusses several issues relating to the quality of the Residential Transportation Energy Consumption Survey (RTECS) data and to the interpretation of conclusions based on...

  18. French intensive truck garden

    SciTech Connect (OSTI)

    Edwards, T D

    1983-01-01

    The French Intensive approach to truck gardening has the potential to provide substantially higher yields and lower per acre costs than do conventional farming techniques. It was the intent of this grant to show that there is the potential to accomplish the gains that the French Intensive method has to offer. It is obvious that locally grown food can greatly reduce transportation energy costs but when there is the consideration of higher efficiencies there will also be energy cost reductions due to lower fertilizer and pesticide useage. As with any farming technique, there is a substantial time interval for complete soil recovery after there have been made substantial soil modifications. There were major crop improvements even though there was such a short time since the soil had been greatly disturbed. It was also the intent of this grant to accomplish two other major objectives: first, the garden was managed under organic techniques which meant that there were no chemical fertilizers or synthetic pesticides to be used. Second, the garden was constructed so that a handicapped person in a wheelchair could manage and have a higher degree of self sufficiency with the garden. As an overall result, I would say that the garden has taken the first step of success and each year should become better.

  19. Minimize oil field power consumption

    SciTech Connect (OSTI)

    Harris, B.; Ennis, P.

    1999-08-01

    Though electric power is a major operating cost of oil production, few producers have systematically evaluated their power consumption for ways to be more efficient. There is significant money to be saved by doing so, and now is a good time to make an evaluation because new power options are at hand. They range from small turbo generators that can run on casing head gas and power one or two lift pumps, to rebuilt major turbines and ram-jet powered generators that can be set in a multi-well field and deliver power at bargain prices. Power industry deregulation is also underway. Opportunities for more advantageous power contracts from competitive sources are not far off. This two-part series covers power efficiency and power options. This article reviews steps you can take to evaluate the efficiency of your power use and go about improving it. Part 2 will discuss opportunities for use of distributed power and changes you can expect from decentralized power.

  20. INTERACTIVE: Energy Intensity and Carbon Intensity by the Numbers |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy INTERACTIVE: Energy Intensity and Carbon Intensity by the Numbers INTERACTIVE: Energy Intensity and Carbon Intensity by the Numbers February 19, 2016 - 11:53am Addthis Daniel Wood Daniel Wood Data Visualization and Cartographic Specialist, Office of Public Affairs Watch our CO2 drop dramatically compared to other countries in this interactive Curious about the total amount of carbon we emit into the atmosphere? Compare countries from around the globe using this tool. If

  1. ITP Energy Intensive Processes: Energy-Intensive Processes Portfolio:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addressing Key Energy Challenges Across U.S. Industry | Department of Energy Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry ITP Energy Intensive Processes: Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry PDF icon eip_report.pdf More Documents & Publications Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry Energy Technology Solutions Energy Technology

  2. Table C3DIV. Consumption and Gross Energy Intensity for Sum...

    U.S. Energy Information Administration (EIA) Indexed Site

    ","Q","Q","Q","Q","Q","Q" "Food Service ...","Q","Q","Q","Q","Q","Q","Q" "Health Care ...","Q","Q","Q","Q","Q","Q","Q" "Lodging ...","Q...

  3. Operational water consumption and withdrawal factors for electricity...

    Open Energy Info (EERE)

    (San Francisco, CA: Aspen Environmental Group) Aspen Environmental Group 2011b Topaz Solar Farm Conditional Use Permit: Final Environmental Impact Report (DRC2008-00009) (San...

  4. ENERGY USE AND DOMESTIC HOT WATER CONSUMPTION Final Report

    Office of Scientific and Technical Information (OSTI)

    Research Associates in the course of performing work ... First printing: November 1994 DISCLAIMER This report was ... ABSTRACT New York State Energy Research & Development ...

  5. Waste-to-Energy Biomass Digester with Decreased Water Consumption...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Disposal of solid animal waste and generation of biogas Suitable for large-scale animal ... Date Application 20120034681 Application 20120034681 DIGESTER FOR HIGH SOLIDS WASTE A ...

  6. Intensity Frontier Instrumentation

    SciTech Connect (OSTI)

    Kettell S.; Rameika, R.; Tshirhart, B.

    2013-09-24

    The fundamental origin of flavor in the Standard Model (SM) remains a mystery. Despite the roughly eighty years since Rabi asked Who ordered that? upon learning of the discovery of the muon, we have not understood the reason that there are three generations or, more recently, why the quark and neutrino mixing matrices and masses are so different. The solution to the flavor problem would give profound insights into physics beyond the Standard Model (BSM) and tell us about the couplings and the mass scale at which the next level of insight can be found. The SM fails to explain all observed phenomena: new interactions and yet unseen particles must exist. They may manifest themselves by causing SM reactions to differ from often very precise predictions. The Intensity Frontier (1) explores these fundamental questions by searching for new physics in extremely rare processes or those forbidden in the SM. This often requires massive and/or extremely finely tuned detectors.

  7. combines high intensity and short pulse duration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    combines high intensity and short pulse duration - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste

  8. Power consumption monitoring using additional monitoring device

    SciTech Connect (OSTI)

    Truşcă, M. R. C. Albert, Ş. Tudoran, C. Soran, M. L. Fărcaş, F.; Abrudean, M.

    2013-11-13

    Today, emphasis is placed on reducing power consumption. Computers are large consumers; therefore it is important to know the total consumption of computing systems. Since their optimal functioning requires quite strict environmental conditions, without much variation in temperature and humidity, reducing energy consumption cannot be made without monitoring environmental parameters. Thus, the present work uses a multifunctional electric meter UPT 210 for power consumption monitoring. Two applications were developed: software which carries meter readings provided by electronic and programming facilitates remote device and a device for temperature monitoring and control. Following temperature variations that occur both in the cooling system, as well as the ambient, can reduce energy consumption. For this purpose, some air conditioning units or some computers are stopped in different time slots. These intervals were set so that the economy is high, but the work's Datacenter is not disturbed.

  9. US MidAtl NJ Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    MidAtl NJ Site Consumption million Btu $0 $700 $1,400 $2,100 $2,800 $3,500 US MidAtl NJ Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US MidAtl NJ Site Consumption kilowatthours $0 $400 $800 $1,200 $1,600 US MidAtl NJ Expenditures dollars ELECTRICITY ONLY average per household * Average energy consumption (127 million Btu per year) in New Jersey homes and average household energy expenditures ($3,065 per year) are among the

  10. US Mnt(S) AZ Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Mnt(S) AZ Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US Mnt(S) AZ Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 3,000 6,000 9,000 12,000 15,000 US Mnt(S) AZ Site Consumption kilowatthours $0 $500 $1,000 $1,500 $2,000 US Mnt(S) AZ Expenditures dollars ELECTRICITY ONLY average per household * Arizona households use 66 million Btu of energy per home, 26% less than the U.S. average. * The combination of lower than average site consumption of all

  11. US SoAtl GA Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    GA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US SoAtl GA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US SoAtl GA Site Consumption kilowatthours $0 $300 $600 $900 $1,200 $1,500 $1,800 US SoAtl GA Expenditures dollars ELECTRICITY ONLY average per household * Site energy consumption (89.5 million Btu) and energy expenditures per household ($2,067) in Georgia are similar to the U.S. household averages. * Per

  12. US SoAtl VA Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    SoAtl VA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US SoAtl VA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US SoAtl VA Site Consumption kilowatthours $0 $300 $600 $900 $1,200 $1,500 $1,800 US SoAtl VA Expenditures dollars ELECTRICITY ONLY average per household * Virginia households consume an average of 86 million Btu per year, about 4% less than the U.S. average. * Average electricity consumption and costs are

  13. State Energy Data Report, 1991: Consumption estimates

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining SEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. SEDS exists for two principal reasons: (1) to provide State energy consumption estimates to the Government, policy makers, and the public; and (2) to provide the historical series necessary for EIA`s energy models.

  14. Residential Energy Consumption Survey: Quality Profile

    SciTech Connect (OSTI)

    1996-03-01

    The Residential Energy Consumption Survey (RECS) is a periodic national survey that provides timely information about energy consumption and expenditures of U.S. households and about energy-related characteristics of housing units. The survey was first conducted in 1978 as the National Interim Energy Consumption Survey (NIECS), and the 1979 survey was called the Household Screener Survey. From 1980 through 1982 RECS was conducted annually. The next RECS was fielded in 1984, and since then, the survey has been undertaken at 3-year intervals. The most recent RECS was conducted in 1993.

  15. State energy data report 1993: Consumption estimates

    SciTech Connect (OSTI)

    1995-07-01

    The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining SEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. SEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public; and (2) to provide the historical series necessary for EIA`s energy models.

  16. Residential Energy Consumption Survey (RECS) - Analysis & Projections...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Where does RECS square footage data come from? July 11, 2012 RECS data show decreased energy consumption per household June 6, 2012 The impact of increasing home size on energy ...

  17. Manufacturing Energy Consumption Survey (MECS) - Residential...

    Gasoline and Diesel Fuel Update (EIA)

    Early-release estimates from the 2010 MECS show that energy consumption in the manufacturing sector decreased between 2006 and 2010 MECS 2006-2010 - Release date: March 28, 2012 ...

  18. Residential Energy Consumption Survey (RECS) - Analysis & Projections...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Square footage typically stays fixed over the life of a home and it is a characteristic that is expensive, even impractical to alter to reduce energy consumption. According to ...

  19. Commercial Buildings Energy Consumption Survey (CBECS) - Data...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    What is an RSE? The estimates in the Commercial Buildings Energy Consumption Survey (CBECS) are based on data reported by representatives of a statistically-designed subset of the ...

  20. ,"Kansas Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Natural Gas ...

  1. ,"Arizona Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Arizona Natural Gas ...

  2. ,"Alabama Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas ...

  3. State energy data report 1996: Consumption estimates

    SciTech Connect (OSTI)

    1999-02-01

    The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sectors. The estimates are developed in the Combined State Energy Data System (CSEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining CSEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. CSEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public and (2) to provide the historical series necessary for EIA`s energy models. To the degree possible, energy consumption has been assigned to five sectors: residential, commercial, industrial, transportation, and electric utility sectors. Fuels covered are coal, natural gas, petroleum, nuclear electric power, hydroelectric power, biomass, and other, defined as electric power generated from geothermal, wind, photovoltaic, and solar thermal energy. 322 tabs.

  4. Residential Lighting End-Use Consumption

    Broader source: Energy.gov [DOE]

    The U.S. DOE Residential Lighting End-Use Consumption Study aims to improve the understanding of lighting energy usage in U.S. residential dwellings using a regional estimation framework. The framework allows for the estimation of lamp usage and energy consumption 1) nationally and by region of the United States, 2) by certain household characteristics, 3) by location within the home, 4) by certain lamp characteristics, and 5) by certain categorical cross-classifications.

  5. Estimates of US biomass energy consumption 1992

    SciTech Connect (OSTI)

    Not Available

    1994-05-06

    This report is the seventh in a series of publications developed by the Energy Information Administration (EIA) to quantify the biomass-derived primary energy used by the US economy. It presents estimates of 1991 and 1992 consumption. The objective of this report is to provide updated estimates of biomass energy consumption for use by Congress, Federal and State agencies, biomass producers and end-use sectors, and the public at large.

  6. State energy data report 1994: Consumption estimates

    SciTech Connect (OSTI)

    1996-10-01

    This document provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), operated by EIA. SEDS provides State energy consumption estimates to members of Congress, Federal and State agencies, and the general public, and provides the historical series needed for EIA`s energy models. Division is made for each energy type and end use sector. Nuclear electric power is included.

  7. Determinants of residential electricity consumption: Using smart meter data to examine the effect of climate, building characteristics, appliance stock, and occupants' behavior

    SciTech Connect (OSTI)

    Kavousian, A; Rajagopal, R; Fischer, M

    2013-06-15

    We propose a method to examine structural and behavioral determinants of residential electricity consumption, by developing separate models for daily maximum (peak) and minimum (idle) consumption. We apply our method on a data set of 1628 households' electricity consumption. The results show that weather, location and floor area are among the most important determinants of residential electricity consumption. In addition to these variables, number of refrigerators and entertainment devices (e.g., VCRs) are among the most important determinants of daily minimum consumption, while number of occupants and high-consumption appliances such as electric water heaters are the most significant determinants of daily maximum consumption. Installing double-pane windows and energy-efficient lights helped to reduce consumption, as did the energy-conscious use of electric heater. Acknowledging climate change as a motivation to save energy showed correlation with lower electricity consumption. Households with individuals over 55 or between 19 and 35 years old recorded lower electricity consumption, while pet owners showed higher consumption. Contrary to some previous studies, we observed no significant correlation between electricity consumption and income level, home ownership, or building age. Some otherwise energy-efficient features such as energy-efficient appliances, programmable thermostats, and insulation were correlated with slight increase in electricity consumption. (C) 2013 Elsevier Ltd. All rights reserved.

  8. Energy Savings from Industrial Water Reductions

    SciTech Connect (OSTI)

    Rao, Prakash; McKane, Aimee; de Fontaine, Andre

    2015-08-03

    Although it is widely recognized that reducing freshwater consumption is of critical importance, generating interest in industrial water reduction programs can be hindered for a variety of reasons. These include the low cost of water, greater focus on water use in other sectors such as the agriculture and residential sectors, high levels of unbilled and/or unregulated self-supplied water use in industry, and lack of water metering and tracking capabilities at industrial facilities. However, there are many additional components to the resource savings associated with reducing site water use beyond the water savings alone, such as reductions in energy consumption, greenhouse gas emissions, treatment chemicals, and impact on the local watershed. Understanding and quantifying these additional resource savings can expand the community of businesses, NGOs, government agencies, and researchers with a vested interest in water reduction. This paper will develop a methodology for evaluating the embedded energy consumption associated with water use at an industrial facility. The methodology developed will use available data and references to evaluate the energy consumption associated with water supply and wastewater treatment outside of a facility’s fence line for various water sources. It will also include a framework for evaluating the energy consumption associated with water use within a facility’s fence line. The methodology will develop a more complete picture of the total resource savings associated with water reduction efforts and allow industrial water reduction programs to assess the energy and CO2 savings associated with their efforts.

  9. Energy use and energy intensity of the U.S. chemical industry

    SciTech Connect (OSTI)

    Worrell, E.; Phylipsen, D.; Einstein, D.; Martin, N.

    2000-04-01

    The U.S. chemical industry is the largest in the world, and responsible for about 11% of the U.S. industrial production measured as value added. It consumes approximately 20% of total industrial energy consumption in the U.S. (1994), and contributes in similar proportions to U.S. greenhouse gas emissions. Surprisingly, there is not much information on energy use and energy intensity in the chemical industry available in the public domain. This report provides detailed information on energy use and energy intensity for the major groups of energy-intensive chemical products. Ethylene production is the major product in terms of production volume of the petrochemical industry. The petrochemical industry (SIC 2869) produces a wide variety of products. However, most energy is used for a small number of intermediate compounds, of which ethylene is the most important one. Based on a detailed assessment we estimate fuel use for ethylene manufacture at 520 PJ (LHV), excluding feedstock use. Energy intensity is estimated at 26 GJ/tonne ethylene (LHV), excluding feedstocks.The nitrogenous fertilizer production is a very energy intensive industry, producing a variety of fertilizers and other nitrogen-compounds. Ammonia is the most important intermediate chemical compound, used as basis for almost all products. Fuel use is estimated at 268 PJ (excluding feedstocks) while 368 PJ natural gas is used as feedstock. Electricity consumption is estimated at 14 PJ. We estimate the energy intensity of ammonia manufacture at 39.3 GJ/tonne (including feedstocks, HHV) and 140 kWh/tonne, resulting in a specific primary energy consumption of 40.9 GJ/tonne (HHV), equivalent to 37.1 GJ/tonne (LHV). Excluding natural gas use for feedstocks the primary energy consumption is estimated at 16.7 GJ/tonne (LHV). The third most important product from an energy perspective is the production of chlorine and caustic soda. Chlorine is produced through electrolysis of a salt-solution. Chlorine production is the main electricity consuming process in the chemical industry, next to oxygen and nitrogen production. We estimate final electricity use at 173 PJ (48 TWh) and fuel use of 38 PJ. Total primary energy consumption is estimated at 526 PJ (including credits for hydrogen export). The energy intensity is estimated at an electricity consumption of 4380 kWh/tonne chlorine and fuel consumption of 3.45 GJ/tonne chlorine, where all energy use is allocated to chlorine production. Assuming an average power generation efficiency of 33% the primary energy consumption is estimated at 47.8 GJ/tonne chlorine (allocating all energy use to chlorine).

  10. Saving Water Saves Energy

    SciTech Connect (OSTI)

    McMahon, James E.; Whitehead, Camilla Dunham; Biermayer, Peter

    2006-06-15

    Hot water use in households, for showers and baths as wellas for washing clothes and dishes, is a major driver of household energyconsumption. Other household uses of water (such as irrigatinglandscaping) require additional energy in other sectors to transport andtreat the water before use, and to treat wastewater. In California, 19percent of total electricity for all sectors combined and 32 percent ofnatural gas consumption is related to water. There is a criticalinterdependence between energy and water systems: thermal power plantsrequire cooling water, and water pumping and treatment require energy.Energy efficiency can be increased by a number of means, includingmore-efficient appliances (e.g., clothes washers or dishwashers that useless total water and less heated water), water-conserving plumbingfixtures and fittings (e.g., showerheads, faucets, toilets) and changesin consumer behavior (e.g., lower temperature set points for storagewater heaters, shorter showers). Water- and energy-conserving activitiescan help offset the stress imposed on limited water (and energy) suppliesfrom increasing population in some areas, particularly in drought years,or increased consumption (e.g., some new shower systems) as a result ofincreased wealth. This paper explores the connections between householdwater use and energy, and suggests options for increased efficiencies inboth individual technologies and systems. Studies indicate that urbanwater use can be reduced cost-effectively by up to 30 percent withcommercially available products. The energy savings associated with watersavings may represent a large additional and largely untappedcost-effective opportunity.

  11. Energy Intensity Baselining and Tracking Guidance | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Assistance Better Plants Energy Intensity Baselining and Tracking Guidance Energy Intensity Baselining and Tracking Guidance The Energy Intensity Baselining and ...

  12. Fact Sheet: Gas Prices and Oil Consumption Would Increase Without...

    Energy Savers [EERE]

    Gas Prices and Oil Consumption Would Increase Without Biofuels Fact Sheet: Gas Prices and Oil Consumption Would Increase Without Biofuels Secretary of Energy Samuel W. Bodman and ...

  13. SEP Request for Approval Form 7 - Other Situations for Consumption...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7 - Other Situations for Consumption Adjustment SEP Request for Approval Form 7 - Other Situations for Consumption Adjustment File SEP-Request-for-Approval-Form-7Other-Situations-...

  14. Lubricant Formulation and Consumption Effects on Diesel Exhaust...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lubricant Formulation and Consumption Effects on Diesel Exhaust Ash Emissions: Lubricant Formulation and Consumption Effects on Diesel Exhaust Ash Emissions: 2005 Diesel Engine ...

  15. Table 3a. Total Natural Gas Consumption per Effective Occupied...

    Gasoline and Diesel Fuel Update (EIA)

    3a. Natural Gas Consumption per Sq Ft Table 3a. Total Natural Gas Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Natural Gas...

  16. The Impact of Using Derived Fuel Consumption Maps to Predict...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Impact of Using Derived Fuel Consumption Maps to Predict Fuel Consumption Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference ...

  17. Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Total Fuel Oil Consumption and Expenditures, 1999" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings (thousand)","Floorspac...

  18. ,"West Virginia Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","West Virginia Natural Gas Vehicle Fuel Consumption ... PM" "Back to Contents","Data 1: West Virginia Natural Gas Vehicle Fuel Consumption ...

  19. ,"West Virginia Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","West Virginia Natural Gas Consumption by End ... AM" "Back to Contents","Data 1: West Virginia Natural Gas Consumption by End Use" ...

  20. ,"New Mexico Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","New Mexico Natural Gas Consumption by End ... AM" "Back to Contents","Data 1: New Mexico Natural Gas Consumption by End Use" ...

  1. Appliance Standby Power and Energy Consumption in South African...

    Open Energy Info (EERE)

    Standby Power and Energy Consumption in South African Households Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Appliance Standby Power and Energy Consumption in South...

  2. Trends in Renewable Energy Consumption and Electricity - Energy...

    Gasoline and Diesel Fuel Update (EIA)

    Trends in Renewable Energy Consumption and Electricity With data for 2010 | Release Date: December 11, ... renewable energy consumption, and solar and geothermal combined ...

  3. Visualization of United States Energy Consumption | Open Energy...

    Open Energy Info (EERE)

    Energy Consumption Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Visualization of United States Energy Consumption AgencyCompany Organization: Energy Information...

  4. Drive Cycle Analysis, Measurement of Emissions and Fuel Consumption...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Drive Cycle Analysis, Measurement of Emissions and Fuel Consumption of a PHEV School Bus ... Analysis, Measurement of Emissions and Fuel Consumption of a PHEV School Bus Robb ...

  5. Fact #749: October 15, 2012 Petroleum and Natural Gas Consumption...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9: October 15, 2012 Petroleum and Natural Gas Consumption for Transportation by State, 2010 Fact 749: October 15, 2012 Petroleum and Natural Gas Consumption for Transportation by ...

  6. Fact #839: September 22, 2014 World Petroleum Consumption Continues...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    22, 2014 World Petroleum Consumption Continues to Rise despite Declines from the United States and Europe Fact 839: September 22, 2014 World Petroleum Consumption Continues to ...

  7. Table 5a. Total District Heat Consumption per Effective Occupied...

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Total District Heat Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using District Heat (thousand) Total District Heat Consumption...

  8. Fact #840: September 29, 2014 World Renewable Electricity Consumption...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    40: September 29, 2014 World Renewable Electricity Consumption is Growing Fact 840: September 29, 2014 World Renewable Electricity Consumption is Growing Electricity generated ...

  9. 2002 Manufacturing Energy Consumption Survey - User Needs Survey

    U.S. Energy Information Administration (EIA) Indexed Site

    2002 Manufacturing Energy Consumption Survey: User-Needs Survey View current results. We need your help in designing the next Energy Consumption Survey (MECS) As our valued...

  10. Smart Meters Help Balance Energy Consumption at Solar Decathlon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart Meters Help Balance Energy Consumption at Solar Decathlon Smart Meters Help Balance Energy Consumption at Solar Decathlon September 28, 2011 - 10:57am Addthis The Team...

  11. Power to the Plug: An Introduction to Energy, Electricity, Consumption...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency Power to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency Below is...

  12. 1991 Manufacturing Consumption of Energy 1991 Executive Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    Summary The Manufacturing Consumption of Energy 1991 report presents statistics about the energy consumption of the manufacturing sector, based on the 1991 Manufacturing Energy...

  13. Buildings Energy Data Book: 4.1 Federal Buildings Energy Consumption

    Buildings Energy Data Book [EERE]

    3 Federal Building Delivered Energy Consumption Intensities, by Year (1) Year Year FY 1985 123.0 FY 1997 111.9 FY 1986 131.3 FY 1998 107.7 FY 1987 136.9 FY 1999 106.7 FY 1988 136.3 FY 2000 104.8 FY 1989 132.6 FY 2001 105.9 FY 1990 128.6 FY 2002 104.6 FY 1991 122.9 FY 2003 105.2 FY 1992 125.5 FY 2004 104.9 FY 1993 122.3 FY 2005 98.2 FY 1994 120.2 FY 2006 (2) 113.9 FY 1995 117.3 FY 2007 (3) 112.9 FY 1996 115.0 FY 2015 (4) 89.5 Note(s): Source(s): Consumption per Gross Consumption per Gross Square

  14. Annual Energy Consumption Analysis Report for Richland Middle School

    SciTech Connect (OSTI)

    Liu, Bing

    2003-12-18

    Richland Middle School is a single story, 90,000 square feet new school located in Richland, WA. The design team proposed four HVAC system options to serve the building. The proposed HVAC systems are listed as following: (1) 4-pipe fan coil units served by electrical chiller and gas-fired boilers, (2) Ground-source closed water loop heat pumps with water loop heat pumps with boiler and cooling tower, and (3) VAV system served by electrical chiller and gas-fired boiler. This analysis estimates the annual energy consumptions and costs of each system option, in order to provide the design team with a reasonable basis for determining which system is most life-cycle cost effective. eQuest (version 3.37), a computer-based energy simulation program that uses the DOE-2 simulation engine, was used to estimate the annual energy costs.

  15. Accelerators for Intensity Frontier Research

    SciTech Connect (OSTI)

    Derwent, Paul; /Fermilab

    2012-05-11

    In 2008, the Particle Physics Project Prioritization Panel identified three frontiers for research in high energy physics, the Energy Frontier, the Intensity Frontier, and the Cosmic Frontier. In this paper, I will describe how Fermilab is configuring and upgrading the accelerator complex, prior to the development of Project X, in support of the Intensity Frontier.

  16. Household energy consumption and expenditures 1987

    SciTech Connect (OSTI)

    Not Available

    1990-01-22

    This report is the third in the series of reports presenting data from the 1987 Residential Energy Consumption Survey (RECS). The 1987 RECS, seventh in a series of national surveys of households and their energy suppliers, provides baseline information on household energy use in the United States. Data from the seven RECS and its companion survey, the Residential Transportation Energy Consumption Survey (RTECS), are made available to the public in published reports such as this one, and on public use data files. This report presents data for the four Census regions and nine Census divisions on the consumption of and expenditures for electricity, natural gas, fuel oil and kerosene (as a single category), and liquefied petroleum gas (LPG). Data are also presented on consumption of wood at the Census region level. The emphasis in this report is on graphic depiction of the data. Data from previous RECS surveys are provided in the graphics, which indicate the regional trends in consumption, expenditures, and uses of energy. These graphs present data for the United States and each Census division. 12 figs., 71 tabs.

  17. US MidAtl NY Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    MidAtl NY Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 $3,000 US MidAtl NY Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US MidAtl NY Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US MidAtl NY Expenditures dollars ELECTRICITY ONLY average per household * New York households consume an average of 103 million Btu per year, 15% more than the U.S. average. * Electricity consumption in

  18. Commercial Buildings Energy Consumption and Expenditures 1992...

    U.S. Energy Information Administration (EIA) Indexed Site

    with the national average of 81 thousand Btu per square foot), while buildings using solar energy or passive solar features used the major energy sources more intensively...

  19. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu square foot) New England Middle Atlantic East North Central New England Middle Atlantic East North...

  20. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Using Electricity (million square feet) Electricity Energy Intensity (kWhsquare foot) New England Middle Atlantic East North Central New England Middle Atlantic East North...

  1. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    Natural Gas (million square feet) Natural Gas Energy Intensity (cubic feetsquare foot) New England Middle Atlantic East North Central New England Middle Atlantic East North...

  2. Industrial Sector Energy Demand: Revisions for Non-Energy-Intensive Manufacturing (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    For the industrial sector, the Energy Information Administration's (EIA) analysis and projection efforts generally have focused on the energy-intensive industriesfood, bulk chemicals, refining, glass, cement, steel, and aluminumwhere energy cost averages 4.8% of annual operating cost. Detailed process flows and energy intensity indicators have been developed for narrowly defined industry groups in the energy-intensive manufacturing sector. The non-energy-intensive manufacturing industries, where energy cost averages 1.9% of annual operating cost, previously have received somewhat less attention, however. In Annual Energy Outlook 2006 (AEO), energy demand projections were provided for two broadly aggregated industry groups in the non-energy-intensive manufacturing sector: metal-based durables and other non-energy-intensive. In the AEO2006 projections, the two groups accounted for more than 50% of the projected increase in industrial natural gas consumption from 2004 to 2030.

  3. Water Heater Controller - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Data Collection in the 2007 CBECS CBECS 2007 - Release date: August 28, 2012 Did you know? Select water data results are described in the accompanying report, Energy Characteristics and Energy Consumed in Large Hospital Buildings in the United States in 2007 and tabulated in 2007 CBECS Large Hospital Building List of Tables. The 2007 round of the Commercial Buildings Energy Consumption Survey (CBECS) was the first time in the 30 year CBECS history that questions about water consumption

  4. US MidAtl PA Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    MidAtl PA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 $3,000 US MidAtl PA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US MidAtl PA Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US MidAtl PA Expenditures dollars ELECTRICITY ONLY average per household * Pennsylvania households consume an average of 96 million Btu per year, 8% more than the U.S. average. Pennsylvania residents also

  5. US Mnt(N) CO Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Mnt(N) CO Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US Mnt(N) CO Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US Mnt(N) CO Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US Mnt(N) CO Expenditures dollars ELECTRICITY ONLY average per household * Colorado households consume an average of 103 million Btu per year, 15% more than the U.S. average. * Average household energy costs in

  6. US SoAtl FL Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    FL Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US SoAtl FL Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US SoAtl FL Site Consumption kilowatthours $0 $500 $1,000 $1,500 $2,000 US SoAtl FL Expenditures dollars ELECTRICITY ONLY average per household * Electricity accounts for 90% of the energy consumed by Florida households, and annual electricity expenditures are 40% more than the U.S. average. Florida is second only

  7. Commercial Buildings Energy Consumption Survey - Office Buildings

    Reports and Publications (EIA)

    2010-01-01

    Provides an in-depth look at this building type as reported in the 2003 Commercial Buildings Energy Consumption Survey. Office buildings are the most common type of commercial building and they consumed more than 17% of all energy in the commercial buildings sector in 2003. This special report provides characteristics and energy consumption data by type of office building (e.g. administrative office, government office, medical office) and information on some of the types of equipment found in office buildings: heating and cooling equipment, computers, servers, printers, and photocopiers.

  8. US Mnt(N) CO Site Consumption

    Gasoline and Diesel Fuel Update (EIA)

    Mnt(N) CO Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US Mnt(N) CO Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US Mnt(N) CO Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US Mnt(N) CO Expenditures dollars ELECTRICITY ONLY average per household * Colorado households consume an average of 103 million Btu per year, 15% more than the U.S. average. * Average household energy costs in

  9. State energy data report 1995 - consumption estimates

    SciTech Connect (OSTI)

    1997-12-01

    The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sectors. The estimates are developed in the State Energy Data System (SEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining SEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public, and (2) to provide the historical series necessary for EIA`s energy models.

  10. Water-Using Equipment: Domestic

    SciTech Connect (OSTI)

    Solana, Amy E.; Mcmordie, Katherine

    2006-01-24

    Water management is an important aspect of energy engineering. This article addresses water-using equipment primarily used for household purposes, including faucets, showers, toilets, urinals, dishwashers, and clothes washers, and focuses on how the equipment can be optimized to save both water and energy. Technology retrofits and operation and maintenance changes are the primary methods discussed for water and energy conservation. Auditing to determine current consumption rates is also described for each technology.

  11. Neutral particle beam intensity controller

    DOE Patents [OSTI]

    Dagenhart, W.K.

    1984-05-29

    The neutral beam intensity controller is based on selected magnetic defocusing of the ion beam prior to neutralization. The defocused portion of the beam is dumped onto a beam dump disposed perpendicular to the beam axis. Selective defocusing is accomplished by means of a magnetic field generator disposed about the neutralizer so that the field is transverse to the beam axis. The magnetic field intensity is varied to provide the selected partial beam defocusing of the ions prior to neutralization. The desired focused neutral beam portion passes along the beam path through a defining aperture in the beam dump, thereby controlling the desired fraction of neutral particles transmitted to a utilization device without altering the kinetic energy level of the desired neutral particle fraction. By proper selection of the magnetic field intensity, virtually zero through 100% intensity control of the neutral beam is achieved.

  12. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, Louis H.

    1994-01-01

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  13. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, Louis H.

    1995-01-01

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  14. Data-Intensive Benchmarking Suite

    Energy Science and Technology Software Center (OSTI)

    2008-11-26

    The Data-Intensive Benchmark Suite is a set of programs written for the study of data-or storage-intensive science and engineering problems, The benchmark sets cover: general graph searching (basic and Hadoop Map/Reduce breadth-first search), genome sequence searching, HTTP request classification (basic and Hadoop Map/Reduce), low-level data communication, and storage device micro-beachmarking

  15. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, L.H.

    1995-10-17

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  16. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, L.H.

    1994-08-16

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  17. Water Data Report: An Annotated Bibliography

    SciTech Connect (OSTI)

    Dunham Whitehead, Camilla; Melody, Moya

    2007-05-01

    This report and its accompanying Microsoft Excel workbooksummarize water data we found to support efforts of the EnvironmentalProtection Agency s WaterSense program. WaterSense aims to extend theoperating life of water and wastewater treatment facilities and prolongthe availability of water resourcesby reducing residential andcommercial water consumption through the voluntary replacement ofinefficient water-using products with more efficient ones. WaterSense hasan immediate need for water consumption data categorized by sector and,for the residential sector, per capita data available by region. Thisinformation will assist policy makers, water and wastewater utilityplanners, and others in defining and refining program possibilities.Future data needs concern water supply, wastewater flow volumes, waterquality, and watersheds. This report focuses primarily on the immediateneed for data regarding water consumption and product end-use. We found avariety of data on water consumption at the national, state, andmunicipal levels. We also found several databases related towater-consuming products. Most of the data are available in electronicform on the Web pages of the data-collecting organizations. In addition,we found national, state, and local data on water supply, wastewater,water quality, and watersheds.

  18. Impacts of Climate Change on Energy Consumption and Peak Demand in Buildings: A Detailed Regional Approach

    SciTech Connect (OSTI)

    Dirks, James A.; Gorrissen, Willy J.; Hathaway, John E.; Skorski, Daniel C.; Scott, Michael J.; Pulsipher, Trenton C.; Huang, Maoyi; Liu, Ying; Rice, Jennie S.

    2015-01-01

    This paper presents the results of numerous commercial and residential building simulations, with the purpose of examining the impact of climate change on peak and annual building energy consumption over the portion of the Eastern Interconnection (EIC) located in the United States. The climate change scenario considered (IPCC A2 scenario as downscaled from the CASCaDE data set) has changes in mean climate characteristics as well as changes in the frequency and duration of intense weather events. This investigation examines building energy demand for three annual periods representative of climate trends in the CASCaDE data set at the beginning, middle, and end of the century--2004, 2052, and 2089. Simulations were performed using the Building ENergy Demand (BEND) model which is a detailed simulation platform built around EnergyPlus. BEND was developed in collaboration with the Platform for Regional Integrated Modeling and Analysis (PRIMA), a modeling framework designed to simulate the complex interactions among climate, energy, water, and land at decision-relevant spatial scales. Over 26,000 building configurations of different types, sizes, vintages, and, characteristics which represent the population of buildings within the EIC, are modeled across the 3 EIC time zones using the future climate from 100 locations within the target region, resulting in nearly 180,000 spatially relevant simulated demand profiles for each of the 3 years. In this study, the building stock characteristics are held constant based on the 2005 building stock in order to isolate and present results that highlight the impact of the climate signal on commercial and residential energy demand. Results of this analysis compare well with other analyses at their finest level of specificity. This approach, however, provides a heretofore unprecedented level of specificity across multiple spectrums including spatial, temporal, and building characteristics. This capability enables the ability to perform detailed hourly impact studies of building adaptation and mitigation strategies on energy use and electricity peak demand within the context of the entire grid and economy.

  19. Organotin intake through fish consumption in Finland

    SciTech Connect (OSTI)

    Airaksinen, Riikka; Rantakokko, Panu; Turunen, Anu W.; Vartiainen, Terttu; Vuorinen, Pekka J.; Lappalainen, Antti; Vihervuori, Aune; Mannio, Jaakko; Hallikainen, Anja

    2010-08-15

    Background: Organotin compounds (OTCs) are a large class of synthetic chemicals with widely varying properties. Due to their potential adverse health effects, their use has been restricted in many countries. Humans are exposed to OTCs mostly through fish consumption. Objectives: The aim of this study was to describe OTC exposure through fish consumption and to assess the associated potential health risks in a Finnish population. Methods: An extensive sampling of Finnish domestic fish was carried out in the Baltic Sea and freshwater areas in 2005-2007. In addition, samples of imported seafood were collected in 2008. The chemical analysis was performed in an accredited testing laboratory during 2005-2008. Average daily intake of the sum of dibutyltin (DBT), tributyltin (TBT), triphenyltin (TPhT) and dioctyltin (DOT) ({Sigma}OTCs) for the Finnish population was calculated on the basis of the measured concentrations and fish consumption rates. Results: The average daily intake of {Sigma}OTCs through fish consumption was 3.2 ng/kg bw day{sup -1}, which is 1.3% from the Tolerable Daily Intake (TDI) of 250 ng/kg bw day{sup -1} set by the European Food Safety Authority. In total, domestic wild fish accounted for 61% of the {Sigma}OTC intake, while the intake through domestic farmed fish was 4.0% and the intake through imported fish was 35%. The most important species were domestic perch and imported salmon and rainbow trout. Conclusions: The Finnish consumers are not likely to exceed the threshold level for adverse health effects due to OTC intake through fish consumption.

  20. NREL: Energy Analysis: Energy-Water Nexus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy-Water Nexus A cartoon showing the nexus of water and energy using red and blue arrows to indicate the flow water and energy through generation, fuel production, and consumption. Source: U.S. Department of Energy, 2006 Enlarge image Water is required to produce energy. Energy is required to pump, treat, and transport water. The energy-water nexus examines the interactions between these two inextricably linked sectors. NREL helps policymakers, researchers, and investors understand and

  1. Residential energy consumption survey: consumption and expenditures, April 1982-March 1983. Part 1, national data

    SciTech Connect (OSTI)

    Thompson, W.

    1984-11-01

    This report presents data on the US consumption and expenditures for residential use of natural gas, electricity, fuel oil or kerosene, and liquefied petroleum gas (LPG) from April 1982 through March 1983. Data on the consumption of wood for this period are also presented. The consumption and expenditures data are based on actual household bills, obtained, with the permission of the household. from the companies supplying energy to the household. Data on wood consumption are based on respondent recall of the amount of wood burned during the winter and are subject to memory errors and other reporting errors described in the report. These data come from the 1982 Residential Energy Consumption Survey (RECS), the fifth in a series of comparable surveys beginning in 1978. The 1982 survey is the first survey to include, as part of its sample, a portion of the same households interviewed in the 1980 survey. A separate report is planned to report these longitudinal data. This summary gives the highlights of a comparison of the findings for the 5 years of RECS data. The data cover all types of housing units in the 50 states and the District of Columbia including single-family units, apartments, and mobile homes. For households with indirect energy costs, such as costs that are included in the rent or paid by third parties, the sonsumption and expenditures data are estimated and included in the figures reported here. The average household consumption of natural gas, electricity, fuel oil or kerosene, and LPG dropped in 1982 from the previous year, hitting a 5-year low since the first Residential Energy Consumption Survey (RECS) was conducted in 1978. The average consumption was 103 (+-3) million Btu per household in 1982, down from 114 (+-) million Btu in 1981. The weather was the main contributing factor. 8 figures, 46 tables.

  2. Energy consumption series: Lighting in commercial buildings

    SciTech Connect (OSTI)

    Not Available

    1992-03-11

    Lighting represents a substantial fraction of commercial electricity consumption. A wide range of initiatives in the Department of Energy`s (DOE) National Energy Strategy have focused on commercial lighting as a potential source of energy conservation. This report provides a statistical profile of commercial lighting, to examine the potential for lighting energy conservation in commercial buildings. The principal conclusion from this analysis is that energy use for lighting could be reduced by as much as a factor of four using currently available technology. The analysis is based primarily on the Energy Information Administration`s (EIA) 1986 Commercial Buildings Energy Consumption Survey (CBECS). The more recent 1989 survey had less detail on lighting, for budget reasons. While changes have occurred in the commercial building stock since 1986, the relationships identified by this analysis are expected to remain generally valid. In addition, the analytic approach developed here can be applied to the data that will be collected in the 1992 CBECS.

  3. Household Energy Consumption Segmentation Using Hourly Data

    SciTech Connect (OSTI)

    Kwac, J; Flora, J; Rajagopal, R

    2014-01-01

    The increasing US deployment of residential advanced metering infrastructure (AMI) has made hourly energy consumption data widely available. Using CA smart meter data, we investigate a household electricity segmentation methodology that uses an encoding system with a pre-processed load shape dictionary. Structured approaches using features derived from the encoded data drive five sample program and policy relevant energy lifestyle segmentation strategies. We also ensure that the methodologies developed scale to large data sets.

  4. Residential Energy Consumption Survey (RECS) - Energy Information

    U.S. Energy Information Administration (EIA) Indexed Site

    Administration U.S. Energy Information Administration - EIA - Independent Statistics and Analysis Sources & Uses Petroleum & Other Liquids Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions. Consumption &

  5. Microsoft Word - S05072_WaterQualityComplStrategy.doc

    Office of Legacy Management (LM)

    ... S05072 Page 9 MMTS Water Quality Compliance Strategy U.S. Department of Energy Doc. No. ... use of the alluvial aquifer for human consumption, irrigation, or livestock watering. ...

  6. Documentation of INL's In Situ Oil Shale Retorting Water Usage...

    Office of Scientific and Technical Information (OSTI)

    Consumption is account for through the drill process, dust control, returning the ground water to its initial level and make up water losses during the remedial flushing of the ...

  7. Energy Intensity Indicators: Overview of Concepts

    Broader source: Energy.gov [DOE]

    The Energy Intensity Indicators website reports changes in energy intensity in the United States since 1970. The website discusses, and presents data for, energy intensity trends by major end-use...

  8. Neutral particle beam intensity controller

    DOE Patents [OSTI]

    Dagenhart, William K. (Oak Ridge, TN)

    1986-01-01

    A neutral beam intensity controller is provided for a neutral beam generator in which a neutral beam is established by accelerating ions from an ion source into a gas neutralizer. An amplitude modulated, rotating magnetic field is applied to the accelerated ion beam in the gas neutralizer to defocus the resultant neutral beam in a controlled manner to achieve intensity control of the neutral beam along the beam axis at constant beam energy. The rotating magnetic field alters the orbits of ions in the gas neutralizer before they are neutralized, thereby controlling the fraction of neutral particles transmitted out of the neutralizer along the central beam axis to a fusion device or the like. The altered path or defocused neutral particles are sprayed onto an actively cooled beam dump disposed perpendicular to the neutral beam axis and having a central open for passage of the focused beam at the central axis of the beamline. Virtually zero therough 100% intensity control is achieved by varying the magnetic field strength without altering the ion source beam intensity or its species yield.

  9. Buildings Energy Data Book: 3.1 Commercial Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    3 2003 Commercial Buildings Delivered Energy End-Use Intensities, by Building Activity (Thousand Btu per SF) (1) Space Heating Cooling Ventilation Water Heating Lighting Cooking Refrigeration Office Equipment Computers Other Total Space Heating Cooling Ventilation Water Heating Lighting Cooking Refrigeration Office Equipment Computers Other Total Space Heating Cooling Ventilation Water Heating Lighting Cooking Refrigeration Office Equipment Computers Other Total Note(s): Source(s): 43.5 45.2

  10. Energy Intensity Indicators: Coverage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coverage Energy Intensity Indicators: Coverage This system of energy intensity indicators for total energy covers the economy as a whole and each of the major end-use ...

  11. Energy Intensity Indicators: Indicators Data | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Data Energy Intensity Indicators: Indicators Data The files listed below contain energy intensity data and documentation that supports the information presented on this website. ...

  12. New Online Tool Expands Analysis of Biofuels’ Water Impact

    Broader source: Energy.gov [DOE]

    Last week, Argonne National Laboratory released a new version of the Water Assessment for Transportation Energy Resources (WATER) online tool. As with the previous two versions, WATER 3.0 quantifies the water footprint of various biofuel pathways, providing details of the water consumption required for the production of biofuels.

  13. Connecticut Natural Gas Total Consumption (Million Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Total Consumption (Million Cubic Feet) Connecticut Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  14. Maine Natural Gas Total Consumption (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Total Consumption (Million Cubic Feet) Maine Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's...

  15. Maine Natural Gas Vehicle Fuel Consumption (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (Million Cubic Feet) Maine Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  16. Novel Ultra-Low-Energy Consumption Ultrasonic Clothes Dryer ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Novel Ultra-Low-Energy Consumption Ultrasonic Clothes Dryer Novel Ultra-Low-Energy Consumption Ultrasonic Clothes Dryer Watch the ultrasonic technology dry a piece of fabric in 14 ...

  17. Trends in U.S. Residential Natural Gas Consumption

    Reports and Publications (EIA)

    2010-01-01

    This report presents an analysis of residential natural gas consumption trends in the United States through 2009 and analyzes consumption trends for the United States as a whole (1990 through 2009) and for each Census division (1998 through 2009).

  18. Impact of Extended Daylight Saving Time on National Energy Consumption...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report to Congress Impact of Extended Daylight Saving Time on National Energy Consumption, ... on the impacts of Extended Daylight Saving Time on the U.S. national energy consumption. ...

  19. Fact #704: December 5, 2011 Fuel Consumption Standards for New...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4: December 5, 2011 Fuel Consumption Standards for New Heavy Pickups and Vans Fact 704: December 5, 2011 Fuel Consumption Standards for New Heavy Pickups and Vans In September ...

  20. Arizona Natural Gas Lease and Plant Fuel Consumption (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Arizona Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  1. Arizona Natural Gas Lease Fuel Consumption (Million Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Fuel Consumption (Million Cubic Feet) Arizona Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  2. Arizona Natural Gas Total Consumption (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Total Consumption (Million Cubic Feet) Arizona Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  3. Residential Energy Consumption Survey (RECS) - Data - U.S. Energy...

    Gasoline and Diesel Fuel Update (EIA)

    Housing characteristics Consumption & expenditures Microdata Housing Characteristics Tables + EXPAND ALL Floorspace - Housing Characteristics PDF (all tables) Total Floorspace All, ...

  4. Federal Government's Energy Consumption Lowest in Almost 40 Years |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Government's Energy Consumption Lowest in Almost 40 Years Federal Government's Energy Consumption Lowest in Almost 40 Years February 11, 2015 - 3:49am Addthis Energy consumption by the federal government has been steadily declining for nearly four decades. Much of the decline in recent years can be attributed to a decrease in the use of jet fuel at agencies like the Air Force. | Air Force photo Energy consumption by the federal government has been steadily declining for

  5. Visualization of United States Renewable Consumption | Open Energy...

    Open Energy Info (EERE)

    Visualization of United States Renewable Consumption AgencyCompany Organization: Energy Information Administration Sector: Energy Resource Type: Softwaremodeling tools User...

  6. Appliance Energy Consumption in Australia | Open Energy Information

    Open Energy Info (EERE)

    ?viewPublicatio Equivalent URI: cleanenergysolutions.orgcontentappliance-energy-consumption-australi DeploymentPrograms: Industry Codes & Standards Regulations:...

  7. Canada's Fuel Consumption Guide Website | Open Energy Information

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontentcanadas-fuel-consumption-guide-websit Language: English Policies: Regulations Regulations: Fuel Efficiency Standards This website...

  8. Intensive Observation Period Projects Scheduled

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Intensive Observation Period Projects Scheduled Several IOP projects have been scheduled for the SGP CART site this spring. These projects either have already begun or will begin shortly. Radiosondes The RS-90 Transition IOP is currently under way. The RS-90 model radiosonde is gradually replacing the older RS-80 model. Radiosondes are instrument packages attached to and launched by weather balloons. The instruments measure atmospheric pressure, temperature, and relative humidity as the

  9. User-needs study for the 1992 Commercial Buildings Energy Consumption Survey. [Energy Consumption Series

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    The Commercial Buildings Energy Consumption Survey (CBECS) that is conducted by the Energy Information Administration (EIA) is the primary source of energy data for commercial buildings in the United States. The survey began in 1979 and has subsequently been conducted in 1983, 1986, and 1989. The next survey will cover energy consumption during the year 1992. The building characteristic data will be collected between August 1992 and early December 1992. Requests for energy consumption data are mailed to the energy suppliers in January 1993, with data due by March 1993. Before each survey is sent into the field, the data users' needs are thoroughly assessed. The purpose of this report is to document the findings of that user-needs assessment for the 1992 survey.

  10. Electrical energy consumption control apparatuses and electrical energy consumption control methods

    DOE Patents [OSTI]

    Hammerstrom, Donald J.

    2012-09-04

    Electrical energy consumption control apparatuses and electrical energy consumption control methods are described. According to one aspect, an electrical energy consumption control apparatus includes processing circuitry configured to receive a signal which is indicative of current of electrical energy which is consumed by a plurality of loads at a site, to compare the signal which is indicative of current of electrical energy which is consumed by the plurality of loads at the site with a desired substantially sinusoidal waveform of current of electrical energy which is received at the site from an electrical power system, and to use the comparison to control an amount of the electrical energy which is consumed by at least one of the loads of the site.

  11. Housing characteristics, 1987: Residential Energy Consumption Survey

    SciTech Connect (OSTI)

    Not Available

    1989-05-26

    This report is the first of a series of reports based on data from the 1987 RECS. The 1987 RECS is the seventh in the series of national surveys of households and their energy suppliers. These surveys provide baseline information on how households in the United States use energy. A cross section of housing types such as single-family detached homes, townhouses, large and small apartment buildings, condominiums, and mobile homes were included in the survey. Data from the RECS and a companion survey, the Residential Transportation Energy Consumption Survey (RTECS), are available to the public in published reports such as this one and on public use tapes. 10 figs., 69 tabs.

  12. LONG-TERM GLOBAL WATER USE PROJECTIONS USING SIX SOCIOECONOMIC SCENARIOS IN AN INTEGRATED ASSESSMENT MODELING FRAMEWORK

    SciTech Connect (OSTI)

    Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Chaturvedi, Vaibhav; Wise, Marshall A.; Patel, Pralit L.; Eom, Jiyong; Calvin, Katherine V.; Moss, Richard H.; Kim, Son H.

    2014-01-19

    In this paper, we assess future water demands for the agricultural (irrigation and livestock), energy (electricity generation, primary energy production and processing), industrial (manufacturing and mining), and municipal sectors, by incorporating water demands into a technologically-detailed global integrated assessment model of energy, agriculture, and climate change the Global Change Assessment Model (GCAM). Base-year water demandsboth gross withdrawals and net consumptive useare assigned to specific modeled activities in a way that maximizes consistency between bottom-up estimates of water demand intensities of specific technologies and practices, and top-down regional and sectoral estimates of water use. The energy, industrial, and municipal sectors are represented in fourteen geopolitical regions, with the agricultural sector further disaggregated into as many as eighteen agro-ecological zones (AEZs) within each region. We assess future water demands representing six socioeconomic scenarios, with no constraints imposed by future water supplies. The scenarios observe increases in global water withdrawals from 3,578 km3 year-1 in 2005 to 5,987 8,374 km3 year-1 in 2050, and to 4,719 12,290 km3 year-1 in 2095. Comparing the projected total regional water withdrawals to the historical supply of renewable freshwater, the Middle East exhibits the highest levels of water scarcity throughout the century, followed by India; water scarcity increases over time in both of these regions. In contrast, water scarcity improves in some regions with large base-year electric sector withdrawals, such as the USA and Canada, due to capital stock turnover and the almost complete phase-out of once-through flow cooling systems. The scenarios indicate that: 1) water is likely a limiting factor in climate change mitigation policies, 2) many regions can be expected to increase reliance on non-renewable groundwater, water reuse, and desalinated water, but they also highlight an important role for development and deployment of water conservation technologies and practices.

  13. Household energy consumption and expenditures, 1990. [Contains Glossary

    SciTech Connect (OSTI)

    Not Available

    1993-03-02

    This report, Household Energy Consumption and Expenditures 1990, is based upon data from the 1990 Residential Energy Consumption Survey (RECS). Focusing on energy end-use consumption and expenditures of households, the 1990 RECS is the eighth in a series conducted since 1978 by the Energy Information Administration (EIA). Over 5,000 households were surveyed, providing information on their housing units, housing characteristics, energy consumption and expenditures, stock of energy-consuming appliances, and energy-related behavior. The information provided represents the characteristics and energy consumption of 94 million households nationwide.

  14. Table E7.1. Consumption Ratios of Fuel, 1998

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Consumption Ratios of Fuel, 1998;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." ,,,"Consumption" " ",,"Consumption","per Dollar"," " " ","Consumption","per Dollar","of Value","RSE" "Economic","per Employee","of Value

  15. Nationwide water availability data for energy-water modeling.

    SciTech Connect (OSTI)

    Tidwell, Vincent Carroll; Zemlick, Katie M.; Klise, Geoffrey Taylor

    2013-11-01

    The purpose of this effort is to explore where the availability of water could be a limiting factor in the siting of new electric power generation. To support this analysis, water availability is mapped at the county level for the conterminous United States (3109 counties). Five water sources are individually considered, including unappropriated surface water, unappropriated groundwater, appropriated water (western U.S. only), municipal wastewater and brackish groundwater. Also mapped is projected growth in non-thermoelectric consumptive water demand to 2035. Finally, the water availability metrics are accompanied by estimated costs associated with utilizing that particular supply of water. Ultimately these data sets are being developed for use in the National Renewable Energy Laboratories' (NREL) Regional Energy Deployment System (ReEDS) model, designed to investigate the likely deployment of new energy installations in the U.S., subject to a number of constraints, particularly water.

  16. PIA - Form EIA-475 A/G Residential Energy Consumption Survey...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Form EIA-475 AG Residential Energy Consumption Survey PIA - Form EIA-475 AG Residential Energy Consumption Survey PIA - Form EIA-475 AG Residential Energy Consumption Survey PDF ...

  17. Buildings Energy Data Book: 8.5 Federal Government Water Usage

    Buildings Energy Data Book [EERE]

    5 Federal Government Water Usage March 2012 8.5.1 Federal Water Consumption Intensity and Costs (Millions of Gallons) Agency Total Source(s): 164,382.9 536,301.9 3,129,134.9 52.5 FEMP, Annual Report to Congress on Federal Government Energy Management and Conservation Programs FY 2007, Table 9, p. 26, Jan. 2010. HUD 21.8 139.1 1,432.0 15.2 RRB 5.5 19.5 346.9 15.9 SSA 125.0 617.1 9,262.0 13.5 Archives 107.9 552.9 4,062.0 26.6 State 169.0 762.2 4,476.7 37.8 EPA 168.1 1,196.0 3,723.3 45.2 Treasury

  18. Optimization of hybrid-water/air-cooled condenser in an enhanced turbine geothermal ORC system

    Broader source: Energy.gov [DOE]

    DOE Geothermal Program Peer Review 2010 - Presentation. Project objective: To improve the efficiency and output variability of geothermal-based ORC power production systems with minimal water consumption by deploying: 1) a hybrid-water/air cooled condenser with low water consumption and 2) an enhanced turbine with high efficiency.

  19. High Intensity Polarized Electron Gun

    SciTech Connect (OSTI)

    Redwine, Robert P.

    2012-07-31

    The goal of the project was to investigate the possibility of building a very high intensity polarized electron gun for the Electron-Ion Collider. This development is crucial for the eRHIC project. The gun implements a large area cathode, ring-shaped laser beam and active cathode cooling. A polarized electron gun chamber with a large area cathode and active cathode cooling has been built and tested. A preparation chamber for cathode activation has been built and initial tests have been performed. Major parts for a load-lock chamber, where cathodes are loaded into the vacuum system, have been manufactured.

  20. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    1 Delivered Energy Consumption Intensities of Public Multi-Family Buildings, by Fuel and Region (Thousand Btu/SF) Region Electricity Natural Gas Fuel Oil Total Northeast 27.7 45.9 39.9 71.5 Midwest 22.5 49.9 N.A. 70.3 South 53.5 27.9 N.A. 65.9 West 22.0 25.3 N.A. 46.2 National Average 33.0 43.4 68.3

  1. San Diego Solar Panels Generate Clean Electricity Along with Clean Water

    Broader source: Energy.gov [DOE]

    Thanks to San Diego's ambitious solar energy program, the Otay Water Treatment Plant may soon be able to do that with net zero electricity consumption.

  2. Final Technical Report: Intensive Quenching Technology for Heat Treating and Forging Industries

    SciTech Connect (OSTI)

    Aronov, Michael A.

    2005-12-21

    Intensive quenching (IQ) process is an alternative way of hardening (quenching) steel parts through the use of highly agitated water and then still air. It was developed by IQ Technologies, Inc. (IQT) of Akron, Ohio. While conventional quenching is usually performed in environmentally unfriendly oil or water/polymer solutions, the IQ process uses highly agitated environmentally friendly water or low concentration water/mineral salt solutions. The IQ method is characterized by extremely high cooling rates of steel parts. In contrast to conventional quenching, where parts cool down to the quenchant temperature and usually have tensile or neutral residual surface stresses at the end of quenching. The IQ process is interrupted when the part core is still hot and when there are maximum compressive stresses deep into the parts, thereby providing hard, ductile, better wear resistant parts. The project goal was to advance the patented IQ process from feasibility to commercialization in the heat-treating and forging industries to reduce significantly energy consumption and environmental impact, to increase productivity and to enhance economic competitiveness of these industries as well as Steel, Metal Casting and Mining industries. To introduce successfully the IQ technology in the U.S. metal working industry, the project team has completed the following work over the course of this project: A total of 33 manufacturers of steel products provided steel parts for IQ trails. IQT conducted IQ demonstrations for 34 different steel parts. Our customers tested intensively quenched parts in actual field conditions to evaluate the product service life and performance improvement. The data obtained from the field showed the following: Service life (number of holes punched) of cold-work punches (provided by EHT customer and made of S5 shock-resisting steel) was improved by two to eight times. Aluminum extrusion dies provided by GAM and made of hot work H-13 steel outperformed the standard dies by at least 50%. Dies provided by an AST customer, made of plain carbon 1045 steel and used for pellet manufacturing outperformed the standard dies by more than 100%. Concrete crusher liner wear plates provided by an EHT customer and made of 1045 steel, had the same surface hardness as the plates made of more expensive, pre-hardened high alloy HARDOX-500 material supplied by a Swedish company and used currently by the EHT customer. The 1045 material intensively quenched wear plates are currently in the field. Concrete block molding machine wear plates provided by an IQT customer and made of 8620 steel were processed at the AST production IQ system using a 40% reduced carburization cycle. An effective case depth in the intensively quenched wear plates was the same as in the standard, oil quenched parts. Base keys provided by an EHT customer and made of 8620 steel were processed using a 40% reduced carburization cycle. The intensively quenched parts showed the same performance as standard parts. IQT introduced the IQ process in heat treat practices of three commercial heat-treating shops: Akron Steel Treating Co., Summit Heat Treating Co. and Euclid Heat Treating Co. CWRU conducted a material characterization study for a variety of steels to develop a database to support changing/modification of recognized standards for quenching steel parts. IQT conducted a series of IQ workshops, published seven technical papers and participated in ASM Heat Treating Society conference and exposition and in Furnace North America Show. IQT designed and built a fully automated new IQ system installed at the Center for Intensive Quenching. This system includes the following major components: a stand-alone 1,900-gallon IQ water system, a 24'' x 24'' atmosphere pit furnace, and an automated load transfer mechanism. IQT established a ''Center for Intensive Quenching'' at the AST facilities. The 4,000 square feet Center includes the following equipment: High-velocity single part quenching IQ unit developed and built previously under EMTEC CT-65 project. The unit is equipped w

  3. Commercial Buildings Energy Consumption and Expenditures 1992

    U.S. Energy Information Administration (EIA) Indexed Site

    in CBECS. In addition, the same customer may be classified differently by each of its energy suppliers. Activities with Large Amounts of Hot Water: One of the energy-related space...

  4. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    with Water Heating ... 3,659 62,827 6,158 10,202 3,379 2,035 218 525 See "Guide to the Tables" or "Glossary" for further explanations of the terms used in this table....

  5. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Q 16.4 19.1 Buildings without Cooling ... Q 8 4 3,308 1,832 1,241 5.7 4.4 2.9 Water-Heating Energy Sources Electricity ... 51 216...

  6. Beam intensity upgrade at Fermilab

    SciTech Connect (OSTI)

    Marchionni, A.; /Fermilab

    2006-07-01

    The performance of the Fermilab proton accelerator complex is reviewed. The coming into operation of the NuMI neutrino line and the implementation of slip-stacking to increase the anti-proton production rate has pushed the total beam intensity in the Main Injector up to {approx} 3 x 10{sup 13} protons/pulse. A maximum beam power of 270 kW has been delivered on the NuMI target during the first year of operation. A plan is in place to increase it to 350 kW, in parallel with the operation of the Collider program. As more machines of the Fermilab complex become available with the termination of the Collider operation, a set of upgrades are being planned to reach first 700 kW and then 1.2 MW by reducing the Main Injector cycle time and by implementing proton stacking.

  7. Energy Intensity Indicators: Terminology and Definitions | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... amount of energy input. (See also Efficiency vs. Intensity.) Energy Intensity. The amount of energy used in producing a given level of output or activity (see also Efficiency vs. ...

  8. Fossil Fuel-Generated Energy Consumption Reduction for New Federal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings and Major Renovations of Federal Buildings | Department of Energy Buildings Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings Document details Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings in a Supplemental Notice of Proposed Rulemaking. File fossilfuel.docx More Documents & Publications Fossil Fuel-Generated Energy Consumption

  9. Major Corporate Fleets Align to Reduce Oil Consumption | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Corporate Fleets Align to Reduce Oil Consumption Major Corporate Fleets Align to Reduce Oil Consumption April 1, 2011 - 1:07pm Addthis President Obama announces the National Clean Fleets Partnership to help companies reduce fuel usage by incorporating electric vehicles, alternative fuels, and conservation techniques. Dennis A. Smith Director, National Clean Cities What does this project do? Cuts oil imports and consumption Helps businesses save money Increases the efficiency of

  10. Impact of Extended Daylight Saving Time on National Energy Consumption,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report to Congress | Department of Energy Report to Congress Impact of Extended Daylight Saving Time on National Energy Consumption, Report to Congress This report presents the detailed results, data, and analytical methods used in the DOE Report to Congress on the impacts of Extended Daylight Saving Time on the U.S. national energy consumption. PDF icon Report to Congress More Documents & Publications Impact of Extended Daylight Saving Time on National Energy Consumption, Technical

  11. Manufacturing Energy Consumption Survey (MECS) - Data - U.S. Energy

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration (EIA) 1 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive Data Methodology & Forms + EXPAND ALL Consumption of Energy for All Purposes (First Use) Total Primary Consumption of Energy for All Purposes by Census Region, Industry Group, and Selected Industries, 1991: Part 1 (Estimates in Btu or Physical Units) XLS Total Primary Consumption of Energy for All Purposes by Census Region, Industry Group, and Selected Industries, 1991: Part 2 (Estimates

  12. Manufacturing Energy Consumption Survey (MECS) - Data - U.S. Energy

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration (EIA) 4 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive Data Methodology & Forms + EXPAND ALL Consumption of Energy for All Purposes (First Use) Total First Use (formerly Primary Consumption) of Energy for All Purposes by Census Region, Census Division, Industry Group, and Selected Industries, 1994: Part 1 (Estimates in Btu or Physical Units) XLS Total First Use (formerly Primary Consumption) of Energy for All Purposes by Census Region,

  13. SEP Request for Approval Form 7 - Other Situations for Consumption

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Adjustment | Department of Energy 7 - Other Situations for Consumption Adjustment SEP Request for Approval Form 7 - Other Situations for Consumption Adjustment File SEP-Request-for-Approval-Form-7_Other-Situations-for-Consumption-Adjustment.docx More Documents & Publications SEP Request for Approval Form 6 - Non-Routine Adjustments SEP Request for Approval Form 5 - Model Does Not Satisfy 3.4.1-3.4.10 Requirements SEP Request for Approval Form 4 - Alternative Adjustment Model Application

  14. ARM - AIP1OGREN: AOS Intensive Properties

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govDataAIP1OGREN: AOS Intensive Properties AIP1OGREN: AOS Intensive Properties The aip1ogren value-added product produces aerosol intensive properties from Aerosol Observing Station data. Information Last Updated: October 2008 General Description The aip1ogren value-added product (VAP) computes several aerosol intensive properties. It requires as input calibrated, corrected, aerosol extensive properties (scattering and absorption coefficients, primarily) from the Aerosol Observing Station (AOS).

  15. Comparison of Real World Energy Consumption to Models and DOE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon Comparison of Real World Energy Consumption to Models and Department of Energy ... Vehicle Technologies Office Merit Review 2015: Analyzing Real-World Light Duty ...

  16. Fossil Fuel-Generated Energy Consumption Reduction for New Federal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings Document details Fossil Fuel-Generated Energy ...

  17. Residential Energy Consumption Survey (RECS) - Data - U.S. Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Housing characteristics Consumption & expenditures Microdata Methodology Housing Characteristics Tables + EXPAND ALL Tables HC1: Housing Unit Characteristics, Million U.S. ...

  18. Fossil Fuel-Generated Energy Consumption Reduction for New Federal...

    Broader source: Energy.gov (indexed) [DOE]

    the Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings in an OIRA Comparison Document. File ...

  19. Commercial Buildings Energy Consumption Survey (CBECS) - U.S...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    The Commercial Buildings Energy Consumption Survey (CBECS) is a national-level sample survey of commercial buildings and their energy suppliers conducted quadrennially (previously ...

  20. Commercial Buildings Energy Consumption Survey (CBECS) - U.S...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Building Type Definitions In the Commercial Buildings Energy Consumption Survey (CBECS), buildings are classified according to principal activity, which is the primary business, ...

  1. Commercial Buildings Energy Consumption Survey (CBECS) - U.S...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Relationship of CBECS Coverage to EIA Supply Surveys The primary purpose of the CBECS is to collect accurate statistics of energy consumption by individual buildings. EIA also ...

  2. Estimating Monthly 1989-2000 Data for Generation, Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly Energy Review, Section 7: Estimating Monthly 1989-2000 Data for Generation, Consumption, and Stocks For 1989-2000, monthly and annual data were collected for electric ...

  3. South Dakota Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    South Dakota Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Plant Fuel Consumption South Dakota Natural Gas Consumption by End Use Plant Fuel Consumption of Natural Gas

  4. Trends in Commercial Buildings--Energy Sources Consumption Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    ** estimates adjusted to match the 1995 CBECS definition of target population Energy Information Administration Commercial Buildings Energy Consumption Survey Table 2....

  5. ,"New Hampshire Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Hampshire ...

  6. ,"Rhode Island Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Rhode Island ...

  7. International Energy Outlook 2016-Industrial sector energy consumption...

    Gasoline and Diesel Fuel Update (EIA)

    Industrial sector energy consumption also includes basic chemical feedstocks. Natural gas ... For any given amount of chemical output, depending on the fundamental chemical process of ...

  8. The Impact of Oil Consumption Mechanisms on Diesel Exhaust Particle...

    Broader source: Energy.gov (indexed) [DOE]

    Mass Correlation of Engine Emissions with Spectral Instruments Lubricant Formulation and Consumption Effects on Diesel Exhaust Ash Emissions: Chemical and Physical Characteristics ...

  9. ,"New Mexico Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Annual",2014 ,"Release Date:","930...

  10. ,"New Mexico Natural Gas Plant Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2014 ,"Release Date:","930...

  11. ,"New Mexico Natural Gas Lease and Plant Fuel Consumption (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Lease and Plant Fuel Consumption (MMcf)",1,"Annual",1998 ,"Release...

  12. ,"New Mexico Natural Gas Lease Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Lease Fuel Consumption (MMcf)",1,"Annual",2014 ,"Release Date:","930...

  13. Power to the Plug: An Introduction to Energy, Electricity, Consumption...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grades: All Topics: Biomass, Wind Energy, Hydropower, Solar, Geothermal Owner: The NEED Project Power to the Plug: An Introduction to Energy, Electricity, Consumption, and...

  14. Table 6b. Relative Standard Errors for Total Electricity Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Relative Standard Errors for Total Electricity Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Electricity (thousand) Total...

  15. Residential Energy Consumption Survey (RECS) - Data - U.S. Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    HC7 Home Office Equipment, Million U.S. Households PDF PDF Household Energy Usage The 1997 Residential Energy Consumption Survey (RECS) collected household energy data for the ...

  16. Commercial Buildings Energy Consumption Survey 2003 - Detailed Tables

    Reports and Publications (EIA)

    2008-01-01

    The tables contain information about energy consumption and expenditures in U.S. commercial buildings and information about energy-related characteristics of these buildings.

  17. Impact of Extended Daylight Saving Time on National Energy Consumption...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Documentation Impact of Extended Daylight Saving Time on National Energy ... of Extended Daylight Saving Time on the national energy consumption in the United States. ...

  18. Fact #706: December 19, 2011 Vocational Vehicle Fuel Consumption Standards

    Broader source: Energy.gov [DOE]

    The National Highway Traffic Safety Administration recently published final fuel consumption standards for heavy vehicles called "vocational" vehicles. A vocational vehicle is generally a single...

  19. Manufacturing-Industrial Energy Consumption Survey(MECS) Historical...

    U.S. Energy Information Administration (EIA) Indexed Site

    reports, data tables and questionnaires Released: May 2008 The Manufacturing Energy Consumption Survey (MECS) is a periodic national sample survey devoted to measuring...

  20. Fact #705: December 12, 2011 Fuel Consumption Standards for Combinatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    mid, and high), gross vehicle weight rating (class 7 and 8), and types of tractor (day cab, sleeper cab). Combination Tractor Fuel Consumption Standards, Model Years (MY)...

  1. Reducing Light Duty Vehicle Fuel Consumption and Greenhouse Gas...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Greenhouse Gas Emissions: The Combined Potential of Hybrid Technology and Behavioral Adaptation Title Reducing Light Duty Vehicle Fuel Consumption and Greenhouse Gas...

  2. Fuel Consumption and Cost Benefits of DOE Vehicle Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cost Benefits of DOE Vehicle Technologies Program Fuel Consumption and Cost Benefits of DOE Vehicle Technologies Program 2012 DOE Hydrogen and Fuel Cells Program and Vehicle ...

  3. WaterSense Program: Methodology for National Water Savings Analysis Model Indoor Residential Water Use

    SciTech Connect (OSTI)

    Whitehead, Camilla Dunham; McNeil, Michael; Dunham_Whitehead, Camilla; Letschert, Virginie; della_Cava, Mirka

    2008-02-28

    The U.S. Environmental Protection Agency (EPA) influences the market for plumbing fixtures and fittings by encouraging consumers to purchase products that carry the WaterSense label, which certifies those products as performing at low flow rates compared to unlabeled fixtures and fittings. As consumers decide to purchase water-efficient products, water consumption will decline nationwide. Decreased water consumption should prolong the operating life of water and wastewater treatment facilities.This report describes the method used to calculate national water savings attributable to EPA?s WaterSense program. A Microsoft Excel spreadsheet model, the National Water Savings (NWS) analysis model, accompanies this methodology report. Version 1.0 of the NWS model evaluates indoor residential water consumption. Two additional documents, a Users? Guide to the spreadsheet model and an Impacts Report, accompany the NWS model and this methodology document. Altogether, these four documents represent Phase One of this project. The Users? Guide leads policy makers through the spreadsheet options available for projecting the water savings that result from various policy scenarios. The Impacts Report shows national water savings that will result from differing degrees of market saturation of high-efficiency water-using products.This detailed methodology report describes the NWS analysis model, which examines the effects of WaterSense by tracking the shipments of products that WaterSense has designated as water-efficient. The model estimates market penetration of products that carry the WaterSense label. Market penetration is calculated for both existing and new construction. The NWS model estimates savings based on an accounting analysis of water-using products and of building stock. Estimates of future national water savings will help policy makers further direct the focus of WaterSense and calculate stakeholder impacts from the program.Calculating the total gallons of water the WaterSense program saves nationwide involves integrating two components, or modules, of the NWS model. Module 1 calculates the baseline national water consumption of typical fixtures, fittings, and appliances prior to the program (as described in Section 2.0 of this report). Module 2 develops trends in efficiency for water-using products both in the business-as-usual case and as a result of the program (Section 3.0). The NWS model combines the two modules to calculate total gallons saved by the WaterSense program (Section 4.0). Figure 1 illustrates the modules and the process involved in modeling for the NWS model analysis.The output of the NWS model provides the base case for each end use, as well as a prediction of total residential indoor water consumption during the next two decades. Based on the calculations described in Section 4.0, we can project a timeline of water savings attributable to the WaterSense program. The savings increase each year as the program results in the installation of greater numbers of efficient products, which come to compose more and more of the product stock in households throughout the United States.

  4. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Amounts of Hot Water ... 567 19,482 2,465 3,522 1,167 931 95 273 Separate Computer Area ... 553 26,873 2,895 4,678 1,550 875 96 374 HVAC Conservation...

  5. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    of Hot Water ... 222 182 239 1,776 1,384 2,048 124.9 131.3 116.8 Separate Computer Area ... 290 196 262 3,132 1,607 3,462 92.5 121.9 75.6 HVAC...

  6. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    of Hot Water ... 193 518 115 1,678 4,178 949 115.2 124.1 121.6 Separate Computer Area ... 173 532 121 1,723 5,236 1,028 100.5 101.6 117.9 HVAC...

  7. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    Amounts of Hot Water ... 567 19,482 34.4 2,465 4,349 126.6 113.3 Separate Computer Area ... 553 26,873 48.6 2,895 5,236 107.7 76.5 HVAC Conservation...

  8. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Amounts of Hot Water ... 567 19,482 34.4 34,904 61.6 1.79 14.16 Separate Computer Area ... 553 26,873 48.6 44,552 80.6 1.66 15.39 HVAC Conservation...

  9. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    of Hot Water ... 139 367 490 995 2,927 3,546 139.5 125.4 138.1 Separate Computer Area ... 158 605 558 1,045 4,880 4,759 151.0 124.0 117.3 HVAC...

  10. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    Amounts of Hot Water ... 567 19,482 34,904 24,710 6,466 724 3,003 Separate Computer Area ... 553 26,873 44,552 33,308 6,230 732 4,282 HVAC Conservation...

  11. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    of Hot Water ... 533 1,271 661 4,912 9,140 5,430 108.6 139.1 121.8 Separate Computer Area ... 630 1,561 703 6,222 13,495 7,156 101.3 115.7 98.3 HVAC...

  12. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Hot Water ... 303 757 1,405 1,477 7,554 10,451 204.9 100.3 134.5 Separate Computer Area ... 87 959 1,849 969 10,433 15,471 89.8 92.0 119.5 HVAC...

  13. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    Amounts of Hot Water ... 567 19,482 34.4 3,522 1,167 342 24,710 Separate Computer Area ... 553 26,873 48.6 4,678 1,550 454 33,308 HVAC Conservation...

  14. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    with Water Heating ... 437 1,190 329 4,915 12,315 3,164 88.9 96.6 104.1 See "Guide to the Tables" or "Glossary" for further explanations of the terms used in this table....

  15. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    with Water Heating ... 640 436 584 7,380 3,935 7,292 86.8 110.9 80.1 See "Guide to the Tables" or "Glossary" for further explanations of the terms used in this table....

  16. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    96.7 Buildings with Water Heating ... 3,659 62,827 17.2 6,158 1,683 98.0 See "Guide to the Tables" or "Glossary" for further explanations of the terms used in this table....

  17. Sandia National Laboratories: 100 Resilient Cities: Sandia Challenge: Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Challenge Water Meeting basic needs Sandia pioneered water infrastructure risk analysis with expertise in geological & urban water systems. Sandia scientist treats brackish water for human consumption. Sandia specializes in helping cities determine which efforts will be effective in reducing their water risks and increasing their resilience. Areas that can provide enormous cost-saving benefits for cities include reducing the amount of water used in energy production and innovative

  18. Comparison of Real World Energy Consumption to Models and DOE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ......... vii Summary of Water Heater Testing and Results ......... 5 3 Water Heaters - Approach ......

  19. Water Usage for In-Situ Oil Shale Retorting - A Systems Dynamics...

    Office of Scientific and Technical Information (OSTI)

    Consumption is account for through the drill process, dust control, returning the ground water to its initial level and make up water losses during the remedial flushing of the ...

  20. Energy Intensity Indicators | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Data & Tools » Energy Intensity Indicators Energy Intensity Indicators Energy efficiency is a vital part of the nation's energy strategy and has been since the first oil crisis in 1973. As part of a national priority for improving energy efficiency, the Department of Energy's (DOE) Office of Energy Efficiency and Renewable Energy (EERE) has established a national system of indicators to track changes in the energy intensity of our economy and economic sectors over time. This system of

  1. Energy Intensity Baselining and Tracking Guidance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    those looking to validate their measure of energy intensity with statistical analysis. ... Normalize Data normalization is a statistical technique for removing biases associated ...

  2. Water vulnerabilities for existing coal-fired power plants.

    SciTech Connect (OSTI)

    Elcock, D.; Kuiper, J.; Environmental Science Division

    2010-08-19

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements the Existing Plants Research Program's overall research effort by evaluating water issues that could impact power plants. Water consumption by all users in the United States over the 2005-2030 time period is projected to increase by about 7% (from about 108 billion gallons per day [bgd] to about 115 bgd) (Elcock 2010). By contrast, water consumption by coal-fired power plants over this period is projected to increase by about 21% (from about 2.4 to about 2.9 bgd) (NETL 2009b). The high projected demand for water by power plants, which is expected to increase even further as carbon-capture equipment is installed, combined with decreasing freshwater supplies in many areas, suggests that certain coal-fired plants may be particularly vulnerable to potential water demand-supply conflicts. If not addressed, these conflicts could limit power generation and lead to power disruptions or increased consumer costs. The identification of existing coal-fired plants that are vulnerable to water demand and supply concerns, along with an analysis of information about their cooling systems and related characteristics, provides information to help focus future research and development (R&D) efforts to help ensure that coal-fired generation demands are met in a cost-effective manner that supports sustainable water use. This study identified coal-fired power plants that are considered vulnerable to water demand and supply issues by using a geographical information system (GIS) that facilitated the analysis of plant-specific data for more than 500 plants in the NETL's Coal Power Plant Database (CPPDB) (NETL 2007a) simultaneously with 18 indicators of water demand and supply. Two types of demand indicators were evaluated. The first type consisted of geographical areas where specific conditions can generate demand vulnerabilities. These conditions include high projected future water consumption by thermoelectric power plants, high projected future water consumption by all users, high rates of water withdrawal per square mile (mi{sup 2}), high projected population increases, and areas projected to be in a water crisis or conflict by 2025. The second type of demand indicator was plant specific. These indicators were developed for each plant and include annual water consumption and withdrawal rates and intensities, net annual power generation, and carbon dioxide (CO{sub 2}) emissions. The supply indictors, which are also area based, include areas with low precipitation, high temperatures, low streamflow, and drought. The indicator data, which were in various formats (e.g., maps, tables, raw numbers) were converted to a GIS format and stored, along with the individual plant data from the CPPDB, in a single GIS database. The GIS database allowed the indicator data and plant data to be analyzed and visualized in any combination. To determine the extent to which a plant would be considered 'vulnerable' to a given demand or supply concern (i.e., that the plant's operations could be affected by water shortages represented by a potential demand or supply indicator), criteria were developed to categorize vulnerability according to one of three types: major, moderate, or not vulnerable. Plants with at least two major demand indicator values and/or at least four moderate demand indicator values were considered vulnerable to demand concerns. By using this approach, 144 plants were identified as being subject to demand concerns only. Plants with at least one major supply indicator value and/or at least two moderate supply indicator values were considered vulnerable to supply concerns. By using this approach, 64 plants were identified as being subject to supply concerns only. In addition, 139 plants were identified as subject to both demand and supply concerns. Therefore, a total of 347 plants were considered subject to demand concerns, supply concerns, or both demand and supply concerns.

  3. Tennessee Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Tennessee Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 0 0 0 0 1990's 6 3 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 148 145 150 142 128 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Plant Fuel Consumption

  4. A Glance at China’s Household Consumption

    SciTech Connect (OSTI)

    Shui, Bin

    2009-10-22

    Known for its scale, China is the most populous country with the world’s third largest economy. In the context of rising living standards, a relatively lower share of household consumption in its GDP, a strong domestic market and globalization, China is witnessing an unavoidable increase in household consumption, related energy consumption and carbon emissions. Chinese policy decision makers and researchers are well aware of these challenges and keen to promote green lifestyles. China has developed a series of energy policies and programs, and launched a wide‐range social marketing activities to promote energy conservation.

  5. Maryland Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Maryland Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1 2 1 1 2 1 1 1990's 1 0 0 1 1 1 3 3 1 1 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Lease Fuel Consumption

  6. Missouri Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Missouri Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 0 0 1990's 0 0 1 0 0 0 1 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Lease Fuel Consumption

  7. Nevada Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Nevada Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 1990's 0 53 30 21 16 13 11 9 9 8 2000's 7 7 6 6 5 5 5 5 4 4 2010's 4 3 4 3 3 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Lease Fuel Consumption

  8. Table 2.11 Commercial Buildings Electricity Consumption by End Use, 2003 (Trillion Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Commercial Buildings Electricity Consumption by End Use, 2003 (Trillion Btu) End Use Space Heating Cooling Ventilation Water Heating Lighting Cooking Refrigeration Office Equipment Computers Other 1 Total All Buildings 167 481 436 88 1,340 24 381 69 156 418 3,559 Principal Building Activity Education 15 74 83 11 113 2 16 4 32 21 371 Food Sales 6 12 7 Q 46 2 119 2 2 10 208 Food Service 10 28 24 10 42 13 70 2 2 15 217 Health Care 6 34 42 2 105 1 8 4 10 36 248 Inpatient 3 25 38 2 76 1 4 2 7 21

  9. Process Intensification with Integrated Water-Gas-Shift Membrane Reactor |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Intensification with Integrated Water-Gas-Shift Membrane Reactor Process Intensification with Integrated Water-Gas-Shift Membrane Reactor PDF icon water-gas-shift.pdf More Documents & Publications ITP Energy Intensive Processes: Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry Gasification Systems 2013 Project Selections

  10. Energy consumption series: Development of the 1991 Manufacturing Energy Consumption Survey

    SciTech Connect (OSTI)

    Not Available

    1992-05-18

    The implementation and results of the proceedings concerning the Energy Information Administration assessment of the Manufacturing Energy Consumption Survey (MECS) are documented in this report. The text and Appendices C, D, and E summarize the background of the MECS data system, the events that led to the MECS redesign, the major issues address during the review process, and the eventual 1991 MECS design that resulted. For many readers, the most useful part of the report may be Appendices A and B, which contain overall summaries of the users' groups and the industrial roundtables. These appendices capture the rationale for additional data needs as provided by the users. Also, they are a rich source of information on how manufacturers deal with energy use day-to-day, how they have addressed the need for energy efficiency improvement in the past, and the opportunities and problems associated with future efforts to improve efficiency. (VC)

  11. Energy consumption series: Development of the 1991 Manufacturing Energy Consumption Survey

    SciTech Connect (OSTI)

    Not Available

    1992-05-18

    The implementation and results of the proceedings concerning the Energy Information Administration assessment of the Manufacturing Energy Consumption Survey (MECS) are documented in this report. The text and Appendices C, D, and E summarize the background of the MECS data system, the events that led to the MECS redesign, the major issues address during the review process, and the eventual 1991 MECS design that resulted. For many readers, the most useful part of the report may be Appendices A and B, which contain overall summaries of the users` groups and the industrial roundtables. These appendices capture the rationale for additional data needs as provided by the users. Also, they are a rich source of information on how manufacturers deal with energy use day-to-day, how they have addressed the need for energy efficiency improvement in the past, and the opportunities and problems associated with future efforts to improve efficiency. (VC)

  12. South Dakota Natural Gas Industrial Consumption (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    South Dakota Natural Gas Industrial Consumption (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 513 451 449 370 329 253 260 259 287 329 343 367 2002 ...

  13. Residential Energy Consumption Survey (RECS) - U.S. Energy Information...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Where does RECS square footage data come from? July 11, 2012 RECS data show decreased energy consumption per household June 6, 2012 The impact of increasing home size on energy ...

  14. Table 16. Total Energy Consumption, Projected vs. Actual Projected

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6. Total Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 ...

  15. Impact of Extended Daylight Saving Time on national energy consumption

    SciTech Connect (OSTI)

    Belzer, David B.; Hadley, Stanton W.; Chin, Shih -Miao

    2008-10-01

    This report presents the detailed results, data, and analytical methods used in the DOE Report to Congress on the impacts of Extended Daylight Saving Time on the U.S. national energy consumption.

  16. Impact of Extended Daylight Saving Time on national energy consumption

    SciTech Connect (OSTI)

    Belzer, David B.; Hadley, Stanton W.; Chin, Shih -Miao

    2008-10-01

    This report presents the detailed results, data, and analytical methods used in the DOE Report to Congress on the impacts of Extended Daylight Saving Time on the national energy consumption.

  17. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    in this table do not include enclosed malls and strip malls. In the 1999 CBECS, total fuel oil consumption in malls was not statistically significant. (*)Value rounds to zero...

  18. ,"U.S. Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas ...

  19. Smart Meters Help Balance Energy Consumption at Solar Decathlon

    Broader source: Energy.gov [DOE]

    Clouds, rain, thunderstorms… at Solar Decathlon Village? Oh my, you may say. But less-than-ideal weather conditions are no match for this year's teams, thanks to smart grid technology that is helping them monitor their energy consumption.

  20. Impact of Extended Daylight Saving Time on National Energy Consumption...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Consumption Report to Congress Energy Policy Act of 2005, Section 110 October 2008 ... Error Indianapolis Power & Light 2.4% 0.9% -3.8% 1.3% Louisville Gas & Elec 1.7% 1.0% ...