National Library of Energy BETA

Sample records for water components test

  1. Heavy Water Components Test Reactor Decommissioning - Major Component Removal

    SciTech Connect (OSTI)

    Austin, W.; Brinkley, D.

    2010-05-05

    The Heavy Water Components Test Reactor (HWCTR) facility (Figure 1) was built in 1961, operated from 1962 to 1964, and is located in the northwest quadrant of the Savannah River Site (SRS) approximately three miles from the site boundary. The HWCTR facility is on high, well-drained ground, about 30 meters above the water table. The HWCTR was a pressurized heavy water test reactor used to develop candidate fuel designs for heavy water power reactors. It was not a defense-related facility like the materials production reactors at SRS. The reactor was moderated with heavy water and was rated at 50 megawatts thermal power. In December of 1964, operations were terminated and the facility was placed in a standby condition as a result of the decision by the U.S. Atomic Energy Commission to redirect research and development work on heavy water power reactors to reactors cooled with organic materials. For about one year, site personnel maintained the facility in a standby status, and then retired the reactor in place. In 1965, fuel assemblies were removed, systems that contained heavy water were drained, fluid piping systems were drained, deenergized and disconnected and the spent fuel basin was drained and dried. The doors of the reactor facility were shut and it wasn't until 10 years later that decommissioning plans were considered and ultimately postponed due to budget constraints. In the early 1990s, DOE began planning to decommission HWCTR again. Yet, in the face of new budget constraints, DOE deferred dismantlement and placed HWCTR in an extended surveillance and maintenance mode. The doors of the reactor facility were welded shut to protect workers and discourage intruders. The $1.6 billion allocation from the American Recovery and Reinvestment Act to SRS for site clean up at SRS has opened the doors to the HWCTR again - this time for final decommissioning. During the lifetime of HWCTR, 36 different fuel assemblies were tested in the facility. Ten of these

  2. HEAVY WATER COMPONENTS TEST REACTOR DECOMMISSIONING

    SciTech Connect (OSTI)

    Austin, W.; Brinkley, D.

    2011-10-13

    The Heavy Water Components Test Reactor (HWCTR) Decommissioning Project was initiated in 2009 as a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) Removal Action with funding from the American Recovery and Reinvestment Act (ARRA). This paper summarizes the history prior to 2009, the major D&D activities, and final end state of the facility at completion of decommissioning in June 2011. The HWCTR facility was built in 1961, operated from 1962 to 1964, and is located in the northwest quadrant of the Savannah River Site (SRS) approximately three miles from the site boundary. The HWCTR was a pressurized heavy water test reactor used to develop candidate fuel designs for heavy water power reactors. In December of 1964, operations were terminated and the facility was placed in a standby condition as a result of the decision by the U.S. Atomic Energy Commission to redirect research and development work on heavy water power reactors to reactors cooled with organic materials. For about one year, site personnel maintained the facility in a standby status, and then retired the reactor in place. In the early 1990s, DOE began planning to decommission HWCTR. Yet, in the face of new budget constraints, DOE deferred dismantlement and placed HWCTR in an extended surveillance and maintenance mode. The doors of the reactor facility were welded shut to protect workers and discourage intruders. In 2009 the $1.6 billion allocation from the ARRA to SRS for site footprint reduction at SRS reopened the doors to HWCTR - this time for final decommissioning. Alternative studies concluded that the most environmentally safe, cost effective option for final decommissioning was to remove the reactor vessel, both steam generators, and all equipment above grade including the dome. The transfer coffin, originally above grade, was to be placed in the cavity vacated by the reactor vessel and the remaining below grade spaces would be grouted. Once all above equipment

  3. NREL: Water Power Research - Device and Component Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL houses the nation's premier laboratory facilities for testing offshore wind and water ... to obtain high-resolution measurements in the laboratory and open water test sites. ...

  4. CHARACTERIZATION OF RADIOACTIVITY IN THE REACTOR VESSEL OF THE HEAVY WATER COMPONENT TEST REACTOR

    SciTech Connect (OSTI)

    Vinson, Dennis

    2010-06-01

    The Heavy Water Component Test Reactor (HWCTR) facility is a pressurized heavy water reactor that was used to test candidate fuel designs for heavy water power reactors. The reactor operated at nominal power of 50 MW{sub th}. The reactor coolant loop operated at 1200 psig and 250 C. Two isolated test loop were designed into the reactor to provide special test conditions. Fig. 1 shows a cut-away view of the reactor. The two loops are contained in four inch diameter stainless steel piping. The HWCTR was operated for only a short duration, from March 1962 to December 1964 in order to test the viability of test fuel elements and other reactor components for use in a heavy water power reactor. The reactor achieved 13,882 MWd of total power while testing 36 different fuel assemblies. In the course of operation, HWCTR experienced the cladding failures of 10 separate test fuel assemblies. In each case, the cladding was breached with some release of fuel core material into the isolated test loop, causing fission product and actinide contamination in the main coolant loop and the liquid and boiling test loops. Despite the contribution of the contamination from the failed fuel, the primary source of radioactivity in the HWCTR vessel and internals is the activation products in the thermal shields, and to a lesser degree, activation products in the reactor vessel walls and liner. A detailed facility characterization report of the HWCTR facility was completed in 1996. Many of the inputs and assumptions in the 1996 characterization report were derived from the HWCTR decommissioning plan published in 1975. The current paper provides an updated assessment of the radioisotopic characteristics of the HWCTR vessel and internals to support decommissioning activities on the facility.

  5. Shock Desensitization Effect in the STANAG 4363 Confined Explosive Component Water Gap Test

    SciTech Connect (OSTI)

    Lefrancois, A S; Lee, R S; Tarver, C M

    2006-06-07

    The Explosive Component Water Gap Test (ECWGT) in the Stanag 4363 has been recently investigated to assess the shock sensitivity of lead and booster components having a diameter less than 5 mm. For that purpose, Pentaerythritol Tetranitrate (PETN) based pellets having a height and diameter of 3 mm have been confined by a steel annulus of wall thickness 1-3.5 mm and with the same height as the pellet. 1-mm wall thickness makes the component more sensitive (larger gap). As the wall thickness is increased to 2-mm, the gap increases a lesser amount, but when the wall thickness is increased to 3.5-mm a decrease in sensitivity is observed (smaller gap). This decrease of the water gap has been reproduced experimentally by many nations. Numerical simulations using Ignition and Growth model have been performed in this paper and have reproduced the experimental results for the steel confinement up to 2 mm thick and aluminum confinement. A stronger re-shock following the first input shock from the water is focusing on the axis due to the confinement. The double shock configuration is well-known to lead in some cases to shock desensitization.

  6. Protective structures on the surface of zirconium components of light water reactor cores: Formation, testing, and prototype equipment

    SciTech Connect (OSTI)

    Begrambekov, L. B.; Gordeev, A. A.; Evsin, A. E. Ivanova, S. V.; Kaplevsky, A. S.; Sadovskiy, Ya. A.

    2015-12-15

    The results of tests of plasma treatment of zirconium and deposition of protective yttrium coatings used as the methods of protection of zirconium components of light water reactor cores against hydrogenation are detailed. The amount of hydrogen in the treated sample exposed to superheated steam for 2500 h at temperature T = 400°C and pressure p = 1 atm was five times lower than the corresponding value for the untreated one. The amount of hydrogen in the sample coated with yttrium remained almost unchanged in 4000 h of exposure. A plasma method for rapid testing for hydrogen resistance is proposed. The hydrogenation rate provided by this method is 700 times higher than that in tests with superheated steam. The results of preliminary experiments confirm the possibility of constructing a unit for batch processing of the surfaces of fuel rod claddings.

  7. Analytical Study of High Concentration PCB Paint at the Heavy Water Components Test Reactor

    SciTech Connect (OSTI)

    Lowry, N.J.

    1998-10-21

    This report provides results of an analytical study of high concentration PCB paint in a shutdown nuclear test reactor located at the US Department of Energy's Savannah River Site (SRS). The study was designed to obtain data relevant for an evaluation of potential hazards associated with the use of and exposure to such paints.

  8. Testing, Manufacturing, and Component Development Projects

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report covers the Wind and Water Power Technologies Office's testing, manufacturing, and component development projects for utility-scale and distributed wind energy from fiscal years 2006 to 2014.

  9. Ability of the Confined Explosive Component Water Gap Test STANAG 4363 to Assess the Shock Sensitivity of MM-Scale Detonators

    SciTech Connect (OSTI)

    Lefrancois, A S; Roeske, F; Benterou, J; Tarver, C M; Lee, R S; Hannah, B

    2006-02-10

    The Explosive Component Water Gap Test (ECWGT) has been validated to assess the shock sensitivity of lead and booster components having a diameter larger than 5 mm. Several countries have investigated by experiments and numerical simulations the effect of confinement on the go/no go threshold for Pentaerythritol Tetranitrate (PETN) pellets having a height and diameter of 3 mm, confined by a steel annulus of wall thickness 1-3.5 mm. Confinement of the PETN by a steel annulus of the same height of the pellet with 1-mm wall thickness makes the component more sensitive (larger gap). As the wall thickness is increased to 2-mm, the gap increases a lesser amount, but when the wall thickness is increased to 3.5-mm a decrease in sensitivity is observed (smaller gap). This decrease of the water gap has been reproduced experimentally. Recent numerical simulations using Ignition and Growth model [1] for the PETN Pellet have reproduced the experimental results for the steel confinement up to 2 mm thick [2]. The presence of a stronger re-shock following the first input shock from the water and focusing on the axis have been identified in the pellet due to the steel confinement. The double shock configuration is well-known to lead in some cases to shock desensitization. This work presents the numerical simulations using Ignition and Growth model for LX16 (PETN based HE) and LX19 (CL20 based HE) Pellets [3] in order to assess the shock sensitivity of mm-scale detonators. The pellets are 0.6 mm in diameter and 3 mm length with different type of steel confinement 2.2 mm thick and 4.7 mm thick. The influence of an aluminum confinement is calculated for the standard LX 16 pellet 3 mm in diameter and 3 mm in height. The question of reducing the size of the donor charge is also investigated to small scale the test itself.

  10. Fueling Components Testing and Certification

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Standards and Codes * National Recognized Standards * Enforceable Docs by 2012 * Code Cycle 2012 Vehicles ∙ Commercialization 2015 ∙ 50,000 by 2017 ∙ Consumer price ∙ 80% in CA Infrastructure ∙ 200 Stations in CA ∙ Accurate and Safe Equipment ∙ Commercial Venture ∙ Station Certification Implementation ∙ Component Certification * Public Awareness * General Education ∙ Technician Training ∙ Safety, Reliability and Accurate Evolving Hydrogen Vehicle Industry 3 Time Line -

  11. Component evaluation testing and analysis algorithms.

    SciTech Connect (OSTI)

    Hart, Darren M.; Merchant, Bion John

    2011-10-01

    The Ground-Based Monitoring R&E Component Evaluation project performs testing on the hardware components that make up Seismic and Infrasound monitoring systems. The majority of the testing is focused on the Digital Waveform Recorder (DWR), Seismic Sensor, and Infrasound Sensor. In order to guarantee consistency, traceability, and visibility into the results of the testing process, it is necessary to document the test and analysis procedures that are in place. Other reports document the testing procedures that are in place (Kromer, 2007). This document serves to provide a comprehensive overview of the analysis and the algorithms that are applied to the Component Evaluation testing. A brief summary of each test is included to provide the context for the analysis that is to be performed.

  12. Abrasion Testing of Critical Components of Hydrokinetic Devices

    SciTech Connect (OSTI)

    Worthington, Monty; Ali, Muhammad; Ravens, Tom

    2013-12-06

    The objective of the Abrasion Testing of Critical Components of Hydrokinetic Devices (Project) was to test critical components of hydrokinetic devices in waters with high levels of suspended sediment – information that is widely applicable to the hydrokinetic industry. Tidal and river sites in Alaska typically have high suspended sediment concentrations. High suspended sediment also occurs in major rivers and estuaries throughout the world and throughout high latitude locations where glacial inputs introduce silt into water bodies. In assessing the vulnerability of technology components to sediment induced abrasion, one of the greatest concerns is the impact that the sediment may have on device components such as bearings and seals, failures of which could lead to both efficiency loss and catastrophic system failures.

  13. Fueling Components Testing and Certification | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fueling Components Testing and Certification Fueling Components Testing and Certification These slides were presented at the Onboard Storage Tank Workshop on April 29, 2010. componentstesting_certification_ostw.pdf (257.49 KB) More Documents & Publications CSA International Certification Discussion Hydrogen Technology Workshop Component and System Qualification Workshop Proceedings CODES & STANDARDS FOR THE HYDROGEN ECONOMY

  14. AVTA: Battery Testing - Electric Drive and Advanced Battery and Components

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testbed | Department of Energy Battery Testing - Electric Drive and Advanced Battery and Components Testbed AVTA: Battery Testing - Electric Drive and Advanced Battery and Components Testbed The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future

  15. Heavy-ion Accelerators for Testing Microelectronic Components...

    Office of Science (SC) Website

    Print Text Size: A A A FeedbackShare Page Applicationinstrumentation: Use of heavy-ion accelerators for testing microelectronic components for space radiation effects Developed ...

  16. Quality Assurance Program Application for the Component Test Capability

    SciTech Connect (OSTI)

    Stephanin L. Austad

    2009-06-01

    This paper documents the application of quality requirements to Component Test Capability (CTC) Project activities for each CTC alternative. Four alternatives are considered for quality program application: do nothing, vendor testing, existing testing facility modification, and Component Test Facility. It also describes the advantages and disadvantages of using the existing Next Generation Nuclear Plant Quality Program Plan with CTC modifications versus a stand-alone CTC Quality Program Plan.

  17. Testing, Manufacturing, and Component Development Projects for Utility-Scale and Distributed Wind Energy, Fiscal Years 2006-2014

    SciTech Connect (OSTI)

    None, None

    2014-04-01

    This report covers the Wind and Water Power Technologies Office's Testing, Manufacturing, and Component Development Projects for Utility-Scale and Distributed Wind Energy from 2006 to 2014.

  18. Evaluation of Integrated High Temperature Component Testing Needs

    SciTech Connect (OSTI)

    Rafael Soto; David Duncan; Vincent Tonc

    2009-05-01

    This paper describes the requirements for a large-scale component test capability to support the development of advanced nuclear reactor technology and their adaptation to commercial applications that advance U.S. energy economy, reliability, and security and reduce carbon emissions.

  19. Heavy-ion Accelerators for Testing Microelectronic Components at LBNL |

    Office of Science (SC) Website

    U.S. DOE Office of Science (SC) Heavy-ion Accelerators for Testing Microelectronic Components at LBNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy

  20. Field Testing of Nano-PCM Enhanced Building Envelope Components

    SciTech Connect (OSTI)

    Biswas, Kaushik; Childs, Phillip W; Atchley, Jerald Allen

    2013-08-01

    The U.S. Department of Energy s (DOE) Building Technologies Program s goal of developing high-performance, energy efficient buildings will require more cost-effective, durable, energy efficient building envelopes. Forty-eight percent of the residential end-use energy consumption is spent on space heating and air conditioning. Reducing envelope-generated heating and cooling loads through application of phase change material (PCM)-enhanced envelope components can facilitate maximizing the energy efficiency of buildings. Field-testing of prototype envelope components is an important step in estimating their energy benefits. An innovative phase change material (nano-PCM) was developed with PCM encapsulated with expanded graphite (interconnected) nanosheets, which is highly conducive for enhanced thermal storage and energy distribution, and is shape-stable for convenient incorporation into lightweight building components. During 2012, two test walls with cellulose cavity insulation and prototype PCM-enhanced interior wallboards were installed in a natural exposure test (NET) facility at Charleston, SC. The first test wall was divided into four sections, which were separated by wood studs and thin layers of foam insulation. Two sections contained nano-PCM-enhanced wallboards: one was a three-layer structure, in which nano-PCM was sandwiched between two gypsum boards, and the other one had PCM dispersed homogeneously throughout graphite nanosheets-enhanced gypsum board. The second test wall also contained two sections with interior PCM wallboards; one contained nano-PCM dispersed homogeneously in gypsum and the other was gypsum board containing a commercial microencapsulated PCM (MEPCM) for comparison. Each test wall contained a section covered with gypsum board on the interior side, which served as control or a baseline for evaluation of the PCM wallboards. The walls were instrumented with arrays of thermocouples and heat flux transducers. Further, numerical modeling of

  1. Heavy Water Test Reactor Dome Removal

    SciTech Connect (OSTI)

    2011-01-01

    A high speed look at the removal of the Heavy Water Test Reactor Dome Removal. A project sponsored by the Recovery Act on the Savannah River Site.

  2. Bench wear testing of engine power cylinder components

    SciTech Connect (OSTI)

    Patterson, D.J.; Hill, S.H.; Tung, S.C.

    1993-02-01

    A need exists for an accurate and repeatable friction and wear bench test for engine power cylinder components that more closely relates to engine test results. Current research and development includes investigation of new engine designs, materials, coatings and surface treatments for reduced weight, longer life, higher operating temperature, and reduced friction. Alternative fuels being examined include alcohols and gaseous fuels, as well as reformulated gasolines and distillate fuels. Concurrently, new lubricants are being formulated for the new engine and fuel combinations. Because of the enormous cost and time of developing commercial engine, fuel and lubricant combinations by means of engine testing alone, much interest is being focused on more representative and repeatable bench tests. This paper examines some known bench testers employing either rotary or reciprocating motion for evaluating the friction, wear, and durability of material couples. Information is presented on experience and practice with one rotary (Falex type) and two reciprocating testers (Cameron-Plint and a new design, the EMA-L59). Some correlation with engine data is given.

  3. CLSM bleed water reduction test results

    SciTech Connect (OSTI)

    Langton, C.A.; Rajendran, N.

    1997-04-21

    Previous testing by BSRI/SRTC/Raytheon indicated that the CLSM specified for the Tank 20 closure generates about 6 gallons (23 liters) of bleed water per cubic yard of material (0.76 m3).1 This amount to about 10 percent of the total mixing water. HLWE requested that the CLSM mix be optimized to reduce bleed water while maintaining flow. Elimination of bleed water from the CLSM mix specified for High-Level Waste Tank Closure will result in waste minimization, time savings and cost savings. Over thirty mixes were formulated and evaluated at the on-site Raytheon Test Laboratory. Improved low bleed water CLSM mixes were identified. Results are documented in this report.

  4. Trip Report-Produced-Water Field Testing

    SciTech Connect (OSTI)

    Sullivan, Enid J.

    2012-05-25

    Los Alamos National Laboratory (LANL) conducted field testing of a produced-water pretreatment apparatus with assistance from faculty at the Texas A&M University (TAMU) protein separation sciences laboratory located on the TAMU main campus. The following report details all of the logistics surrounding the testing. The purpose of the test was to use a new, commercially-available filter media housing containing modified zeolite (surfactant-modified zeolite or SMZ) porous medium for use in pretreatment of oil and gas produced water (PW) and frac-flowback waters. The SMZ was tested previously in October, 2010 in a lab-constructed configuration ('old multicolumn system'), and performed well for removal of benzene, toluene, ethylbenzene, and xylenes (BTEX) from PW. However, a less-expensive, modular configuration is needed for field use. A modular system will allow the field operator to add or subtract SMZ filters as needed to accommodate site specific conditions, and to swap out used filters easily in a multi-unit system. This test demonstrated the use of a commercial filter housing with a simple flow modification and packed with SMZ for removing BTEX from a PW source in College Station, Texas. The system will be tested in June 2012 at a field site in Pennsylvania for treating frac-flowback waters. The goals of this test are: (1) to determine sorption efficiency of BTEX in the new configuration; and (2) to observe the range of flow rates, backpressures, and total volume treated at a given flow rate.

  5. NREL: Water Power Research - Testing and Standards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Testing and Standards NREL's marine and hydrokinetics (MHK) testing activities provide industry partners with essential operational data on a wide variety of systems and components. This data helps researchers establish baseline cost and performance metrics and advance the technology readiness of those systems that demonstrate the greatest potential for successful commercial deployment. The development of standards leads to accelerated development, reduced risks, and increased access to capital.

  6. Battery systems performance studies - HIL components testing | Department

    Broader source: Energy.gov (indexed) [DOE]

    of Energy vss_16_shidore.pdf (1.92 MB) More Documents & Publications HEV, PHEV, BEV Test Standard Validation J1634 SAE BEV Test Procedures HEV, PHEV, EV Test Standard Development and Validation

  7. Seawater test results of open-cycle ocean thermal energy conversion (OC-OTEC) components

    SciTech Connect (OSTI)

    Zangrando, F.; Bharathan, D.; Link, H. ); Panchal, C.B. )

    1994-01-01

    Key components of open-cycle ocean thermal energy conversion systems--the flash evaporator, mist eliminator, passive predeaerator, two surface condenser stages, and two direct-contact condenser stages--have been tested using seawater. These components operate at lower steam pressures and higher inlet noncondensable gas concentrations than do conventional power plant heat exchangers. The rate of heat exchanged between the evaporator and the condenser is on the order of 1.25MW-thermal, requiring a warm seawater flow of about 0.1 m[sup 3]/s; the cold seawater flow is on the order of half the warm water flow. In addition to characterizing the performance of the various components, the system has produced potable water from condensation of the steam produced in the evaporator. The information obtained in these tests is being used to design a larger scale experiment in which net power production is expected to be demonstrate for the first time using OC-OTEC technology.

  8. NGNP Component Test Capability Design Code of Record

    SciTech Connect (OSTI)

    S.L. Austad; D.S. Ferguson; L.E. Guillen; C.W. McKnight; P.J. Petersen

    2009-09-01

    The Next Generation Nuclear Plant Project is conducting a trade study to select a preferred approach for establishing a capability whereby NGNP technology development testing—through large-scale, integrated tests—can be performed for critical HTGR structures, systems, and components (SSCs). The mission of this capability includes enabling the validation of interfaces, interactions, and performance for critical systems and components prior to installation in the NGNP prototype.

  9. Retrofitting Combined Space and Water Heating Systems. Laboratory Tests

    SciTech Connect (OSTI)

    Schoenbauer, B.; Bohac, D.; Huelman, P.; Olsen, R.; Hewett, M.

    2012-10-01

    Better insulated and tighter homes can often use a single heating plant for both space and domestic water heating. These systems, called dual integrated appliances (DIA) or combination systems, can operate at high efficiency and eliminate combustion safety issues associated by using a condensing, sealed combustion heating plant. Funds were received to install 400 DIAs in Minnesota low-income homes. The NorthernSTAR DIA laboratory was created to identify proper system components, designs, operating parameters, and installation procedures to assure high efficiency of field installed systems. Tests verified that heating loads up to 57,000 Btu/hr can be achieved with acceptable return water temperatures and supply air temperatures.

  10. Retrofitting Combined Space and Water Heating Systems: Laboratory Tests

    SciTech Connect (OSTI)

    Schoenbauer, B.; Bohac, D.; Huelman, P.; Olson, R.; Hewitt, M.

    2012-10-01

    Better insulated and tighter homes can often use a single heating plant for both space and domestic water heating. These systems, called dual integrated appliances (DIA) or combination systems, can operate at high efficiency and eliminate combustion safety issues associated by using a condensing, sealed combustion heating plant. Funds were received to install 400 DIAs in Minnesota low-income homes. The NorthernSTAR DIA laboratory was created to identify proper system components, designs, operating parameters, and installation procedures to assure high efficiency of field installed systems. Tests verified that heating loads up to 57,000 Btu/hr can be achieved with acceptable return water temperatures and supply air temperatures.

  11. Partial Defect Testing of Pressurized Water Reactor Spent Fuel...

    Office of Scientific and Technical Information (OSTI)

    Partial Defect Testing of Pressurized Water Reactor Spent Fuel Assemblies Citation Details In-Document Search Title: Partial Defect Testing of Pressurized Water Reactor Spent Fuel ...

  12. Supercritical Water Oxidation Data Acquisition Testing

    SciTech Connect (OSTI)

    K. M. Garcia

    1996-08-01

    Supercritical Water Oxidation (SCWO) is a high pressure oxidation process that blends air, water, and organic waste material in an oxidizer in which where the temperature and pressure in the oxidizer are maintained above the critical point of water. Supercritical water mixed with hydrocarbons, which would be insoluble at subcritical conditions, forms a homogeneous phase which possesses properties associated with both a gas and a liquid. Hydrocarbons in contact with oxygen and SCW are readily oxidized. These properties of SCW make it an attractive means for the destruction of waste streams containing organic materials. SCWO technology holds great promise for treating mixed wastes in an environmentally safe and efficient manner. In the spring of 1994 the U.S. Department of Energy (DOE) initiated a Supercritical Water Oxidation Data Acquisition Testing (SCWODAT) program. The SCWODAT program provided further information and operational data on the effectiveness of treating both simulated mixed waste and typical Navy hazardous waste using the SCWO technology. The program concentrated on the acquisition of data through pilot plant testing. The Phase I DOE testing used a simulated waste stream that contained a complex machine cutting oil and metals, that acted as surrogates for radionuclides. The Phase II Navy testing included pilot testing using hazardous waste materials to demonstrate the effectiveness of the SCWO technology. The SCWODAT program demonstrated that the SCWO process oxidized the simulated waste stream containing complex machine cutting oil, selected by DOE as representative of one of the most difficult of the organic waste streams for which SCWO had been applied. The simulated waste stream with surrogate metals in solution was oxidized, with a high destruction efficiency, on the order of 99.97%, in both the neutralized and unneutralized modes of operation.

  13. NREL: TroughNet - Parabolic Trough System and Component Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in an operating power plant environment. ... test stand using electric resistance heating to measure the thermal losses from parabolic ... of mirrors coming off the production line. ...

  14. Analysis of components from drip tests with ATM-10 glass

    SciTech Connect (OSTI)

    Fortner, J.A.; Bates, J.K.; Gerding, T.J.

    1996-09-01

    Waste package assemblies consisting of actinide-doped West Valley ATM-10 reference glass and sensitized 304L stainless steel have been reacted with simulated repository groundwater using the Unsaturated Test Method. Analyses of surface corrosion and reaction products resulting from tests that were terminated at scheduled intervals between 13 and 52 weeks are reported. Analyses reveal complex interactions between the groundwater, the sensitized stainless steel waste form holder, and the glass. Alteration phases form that consist mainly of smectite clay, brockite, and an amorphous thorium iron titanium silicate, the latter two incorporating thorium, uranium, and possibly transuranics. The results from the terminated tests, combined with data from tests that are still ongoing, will help determine the suitability of glass waste forms in the proposed high-level repository at the Yucca Mountain Site.

  15. A review of DOE HEPA filter component test activities

    SciTech Connect (OSTI)

    Slawski, J.W.; Bresson, J.F.; Scripsick, R.C.

    1997-08-01

    All HEPA filters purchased for installation in DOE nuclear facilities are required to be tested at a Filter Test Facility (FTF) prior to installation. The number of HEPA filters purchased by DOE has been reduced so much that the Hanford FTF was closed. From Fiscal Year (FY) 1992 to 1994, funding was not provided to the FTF Technical Support Group (TSG) at the Los Alamos National Laboratory. As a consequence, Round Robin Tests (RRTs), performed twice each year by the FTFs to assess constituency of test results among the FTFs, were not performed in FY 1992 and FY 1993. The Annual Reports of FTF test activities were not prepared for FY 1992 - 1995. Technical support provided to the FTFs was minimal. There is talk of closing a second FTF, and ongoing discussions as to whether DOE will continue to fund operation of the FTFs. In FY 1994, DOE Defense Programs commenced funding the TSG. RRT data for FY 1994 and 1995 have been entered into the database; the FY 1994 RRT report has been issued; and the FY 1995 RRT report is in progress. Data from semiannual reports have been retrieved and entered into the database. Standards related to HEPA filter test and procurement activities are now scheduled for issuance by FY 1996. Continuation of these activities depends on whether DOE will continue to support the HEPA filter test program. The history and activities of the FTFs and the TSG at Los Alamos have been reported at previous Air Cleaning Conferences. Data from the FY 1991 Annual Report of FTF activities was presented at the 1992 Air Cleaning Conference. Preparation of the Annual Reports was temporarily suspended in 1992. However, all of the FTF Semiannual report data have been retrieved and entered into the data base. This paper focuses primarily on the results of HEPA filter tests conducted by FTFs during FY 1992 - FY 1995, and the possible effects of the DOE program uncertainties on the quality of HEPA filters for installation at the DOE sites. 15 refs., 13 tabs.

  16. Component failures at pressurized water reactors. Final report

    SciTech Connect (OSTI)

    Reisinger, M.F.

    1980-10-01

    Objectives of this study were to identify those systems having major impact on safety and availability (i.e. to identify those systems and components whose failures have historically caused the greatest number of challenges to the reactor protective systems and which have resulted in greatest loss of electric generation time). These problems were identified for engineering solutions and recommendations made for areas and programs where research and development should be concentrated. The program was conducted in three major phases: Data Analysis, Engineering Evaluation, Cost Benefit Analysis.

  17. Engineering development of selective agglomeration: Task 6, Operation of the Component Development Test Facility

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    The objective of this report is to summarize the component development and laboratory binder test work at Wilsonville during Task 6. This Task included the construction and startup of the Component Development Test Facility (CDTF), coal procurement, evaluation of unit operation and dewatering performance, laboratory binder tests for diesel and heptane, production characterization, and vendor tests. Data evaluation, interpretation, and analysis are not included in this report, but will be discussed in the Task 7 report.

  18. Methodology to identify risk-significant components for inservice inspection and testing

    SciTech Connect (OSTI)

    Anderson, M.T.; Hartley, R.S.; Jones, J.L. Jr.; Kido, C.; Phillips, J.H.

    1992-08-01

    Periodic inspection and testing of vital system components should be performed to ensure the safe and reliable operation of Department of Energy (DOE) nuclear processing facilities. Probabilistic techniques may be used to help identify and rank components by their relative risk. A risk-based ranking would allow varied DOE sites to implement inspection and testing programs in an effective and cost-efficient manner. This report describes a methodology that can be used to rank components, while addressing multiple risk issues.

  19. FFTF thermal-hydraulic testing results affecting piping and vessel component design in LMFBR's

    SciTech Connect (OSTI)

    Stover, R.L.; Beaver, T.R.; Chang, S.C.

    1983-01-01

    The Fast Flux Test Facility completed four years of pre-operational testing in April 1982. This paper describes thermal-hydraulic testing results from this period which impact piping and vessel component design in LMFBRs. Data discussed are piping flow oscillations, piping thermal stratification and vessel upper plenum stratification. Results from testing verified that plant design limits were met.

  20. Water-based coatings pass recycling test

    SciTech Connect (OSTI)

    Holt, L.

    1990-11-01

    Water based coatings can greatly enhance the natural water resistance, grease resistance, MVTR, and many other properties of corrugated board.

  1. Results of scoping tests for open-cycle OTEC (ocean thermal energy conversion) components operating with seawater

    SciTech Connect (OSTI)

    Zangrando, F; Bharathan, D; Green, H J; Link, H F; Parsons, B K; Parsons, J M; Pesaran, A A; Panchal, C B

    1990-09-01

    This report presents comprehensive documentation of the experimental research conducted on open-cycle ocean thermal energy conversion (OC-OTEC) components operating with seawater as a working fluid. The results of this research are presented in the context of previous analysis and fresh-water testing; they provide a basis for understanding and predicting with confidence the performance of all components of an OC-OTEC system except the turbine. Seawater tests have confirmed the results that were obtained in fresh-water tests and predicted by the analytical models of the components. A sound technical basis has been established for the design of larger systems in which net power will be produced for the first time from OC-OTEC technology. Design and operation of a complete OC-OTEC system that produces power will provide sufficient confidence to warrant complete transfer of OC-OTEC technology to the private sector. Each components performance is described in a separate chapter written by the principal investigator responsible for technical aspects of the specific tests. Chapters have been indexed separately for inclusion on the data base.

  2. Primary water stress corrosion cracking inspection ranking scheme for Alloy 600 components

    SciTech Connect (OSTI)

    Hoang, P.H.; Gangadharan, A.; Ramalingam, S.C.

    1996-12-31

    Palisades Nuclear Plant has developed a comprehensive inspection program to support safe, reliable, and cost-effective operation of all Alloy 600 nozzles and safe ends in the primary coolant system (PCS). As a part of the Palisades Alloy 600 Project, an inspection prioritization scheme was developed to help the plant focus its resources on high risk components and plan appropriate inspection activities for the other components. The inspection prioritization scheme is based on the susceptibility of the components to Primary Water Stress Corrosion Cracking (PWSCC), component failure consequences, component leak detectability and component radiation exposure. The scheme provides a simple, systematic and technical base for selecting Alloy 600 components for inspection. The scheme, however, could be used to develop an inspection schedule or to select the highest priority components for mitigation or replacement.

  3. Design and operation of a rapid thermal transient component testing sodium loop

    SciTech Connect (OSTI)

    Crandall, D.L.

    1984-04-16

    A specific problem developed during the design of an on-line sampling system for the Sodium Loop Safety Facility fast breeder reactor experiments. Rapid fluctuations in the sodium temperature, caused by reactor operation and shutdown, exposed the system components to conditions that could result in fatigue failure. A component test loop was designed and built at the Idaho National Engineering Laboratory to allow experimental qualification of component integrity. This paper outlines test system requirements, describes the design and special features, presents test procedures ad relates significant operating experience.

  4. Warm Water Oxidation Verification - Scoping and Stirred Reactor Tests

    SciTech Connect (OSTI)

    Braley, Jenifer C.; Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2011-06-15

    Scoping tests to evaluate the effects of agitation and pH adjustment on simulant sludge agglomeration and uranium metal oxidation at {approx}95 C were performed under Test Instructions(a,b) and as per sections 5.1 and 5.2 of this Test Plan prepared by AREVA. (c) The thermal testing occurred during the week of October 4-9, 2010. The results are reported here. For this testing, two uranium-containing simulant sludge types were evaluated: (1) a full uranium-containing K West (KW) container sludge simulant consisting of nine predominant sludge components; (2) a 50:50 uranium-mole basis mixture of uraninite [U(IV)] and metaschoepite [U(VI)]. This scoping study was conducted in support of the Sludge Treatment Project (STP) Phase 2 technology evaluation for the treatment and packaging of K-Basin sludge. The STP is managed by CH2M Hill Plateau Remediation Company (CHPRC) for the U.S. Department of Energy. Warm water ({approx}95 C) oxidation of sludge, followed by immobilization, has been proposed by AREVA and is one of the alternative flowsheets being considered to convert uranium metal to UO{sub 2} and eliminate H{sub 2} generation during final sludge disposition. Preliminary assessments of warm water oxidation have been conducted, and several issues have been identified that can best be evaluated through laboratory testing. The scoping evaluation documented here was specifically focused on the issue of the potential formation of high strength sludge agglomerates at the proposed 95 C process operating temperature. Prior hydrothermal tests conducted at 185 C produced significant physiochemical changes to genuine sludge, including the formation of monolithic concretions/agglomerates that exhibited shear strengths in excess of 100 kPa (Delegard et al. 2007).

  5. Facility for high heat flux testing of irradiated fusion materials and components using infrared plasma arc lamps

    SciTech Connect (OSTI)

    Sabau, Adrian S; Ohriner, Evan Keith; Kiggans, Jim; Harper, David C; Snead, Lance Lewis; Schaich, Charles Ross

    2014-01-01

    A new high-heat flux testing facility using water-wall stabilized high-power high-pressure argon Plasma Arc Lamps (PALs) has been developed for fusion applications. It can handle irradiated plasma facing component materials and mock-up divertor components. Two PALs currently available at ORNL can provide maximum incident heat fluxes of 4.2 and 27 MW/m2 over a heated area of 9x12 and 1x10 cm2, respectively, which are fusion-prototypical steady state heat flux conditions. The facility will be described and the main differences between the photon-based high-heat flux testing facilities, such as PALs, and the e-beam and particle beam facilities more commonly used for fusion HHF testing are discussed. The components of the test chamber were designed to accommodate radiation safety and materials compatibility requirements posed by high-temperature exposure of low levels irradiated tungsten articles. Issues related to the operation and temperature measurements during testing are presented and discussed.

  6. The development and testing of ceramic components in piston engines. Final report

    SciTech Connect (OSTI)

    McEntire, B.J.; Willis, R.W.; Southam, R.E.

    1994-10-01

    Within the past 10--15 years, ceramic hardware has been fabricated and tested in a number of piston engine applications including valves, piston pins, roller followers, tappet shims, and other wear components. It has been shown that, with proper design and installation, ceramics improve performance, fuel economy, and wear and corrosion resistance. These results have been obtained using rig and road tests on both stock and race engines. Selected summaries of these tests are presented in this review paper.

  7. Generic component failure data base for light water and liquid sodium reactor PRAs (probabilistic risk assessments)

    SciTech Connect (OSTI)

    Eide, S.A.; Chmielewski, S.V.; Swantz, T.D.

    1990-02-01

    A comprehensive generic component failure data base has been developed for light water and liquid sodium reactor probabilistic risk assessments (PRAs). The Nuclear Computerized Library for Assessing Reactor Reliability (NUCLARR) and the Centralized Reliability Data Organization (CREDO) data bases were used to generate component failure rates. Using this approach, most of the failure rates are based on actual plant data rather than existing estimates. 21 refs., 9 tabs.

  8. Coal-fired MHD test progress at the component development and integration facility

    SciTech Connect (OSTI)

    Hart, A.T.; Lofftus, D.

    1994-12-31

    The Component and Development and Integration Facility (CDIF) is a Department of Energy test facility operated by MSE, Inc. MSE personnel were responsible for the integration of topping cycle components for the national coal-fired magnetohydrodynamics development program. Initial facility checkout and baseline data generation testing at the CDIF used a 50-megawatt (MW{sub t}), oil-fired combustor (with ash injection to simulate coal slag carryover) coupled to the 1A{sub 1} supersonic channel. In the fall of 1984, a 50-MW{sub t}, pressurized, slag rejecting coal-fired combustor replaced the oil-fired combustor in the test train. In the spring of 1989, a coal-fired precombustor was added to the workhorse test hardware. In the spring of 1992, workhorse hardware was replaced with the prototypic coal-fired test train. Testing during the last year emphasized prototypic hardware testing targeted at longer duration testing, some intermediate checkout testing, and more reliable operation. These phases of testing and the associated facility modifications are discussed. Progress of the proof-of-concept testing, through the time of testing shutdown, is addressed.

  9. Montana Disinfected Water and Hydrostatic Testing General Permit...

    Open Energy Info (EERE)

    Permit Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Montana Disinfected Water and Hydrostatic Testing General Permit Form Type Other Form Topic...

  10. An Analysis of Testing Requirements for Fluoride Salt Cooled High Temperature Reactor Components

    SciTech Connect (OSTI)

    Holcomb, David Eugene; Cetiner, Sacit M; Flanagan, George F; Peretz, Fred J; Yoder Jr, Graydon L

    2009-11-01

    This report provides guidance on the component testing necessary during the next phase of fluoride salt-cooled high temperature reactor (FHR) development. In particular, the report identifies and describes the reactor component performance and reliability requirements, provides an overview of what information is necessary to provide assurance that components will adequately achieve the requirements, and then provides guidance on how the required performance information can efficiently be obtained. The report includes a system description of a representative test scale FHR reactor. The reactor parameters presented in this report should only be considered as placeholder values until an FHR test scale reactor design is completed. The report focus is bounded at the interface between and the reactor primary coolant salt and the fuel and the gas supply and return to the Brayton cycle power conversion system. The analysis is limited to component level testing and does not address system level testing issues. Further, the report is oriented as a bottom-up testing requirements analysis as opposed to a having a top-down facility description focus.

  11. In-situ parameter estimation for solar domestic hot water heating systems components. Final report, June 1995--May 1996

    SciTech Connect (OSTI)

    Smith, T.R.

    1997-03-01

    Three different solar domestic hot water systems are being tested at the Colorado State University Solar Energy Applications Laboratory; an unpressurized drain-back system with a load side heat exchanger, an integral collector storage system, and an ultra low flow natural convection heat exchanger system. The systems are fully instrumented to yield data appropriate for in-depth analyses of performance. The level of detail allows the observation of the performance of the total system and the performance of the individual components. This report evaluates the systems based on in-situ experimental data and compares the performances with simulated performances. The verification of the simulations aids in the rating procedure. The whole system performance measurements are also used to analyze the performance of individual components of a solar hot water system and to develop improved component models. The data are analyzed extensively and the parameters needed to characterize the systems fully are developed. Also resulting from this indepth analysis are suggested design improvements wither to the systems or the system components.

  12. Concentrating Solar Power Central Receiver Panel Component Fabrication and Testing FINAL REPORT

    SciTech Connect (OSTI)

    McDowell, Michael W; Miner, Kris

    2013-03-30

    The objective of this project is to complete a design of an advanced concentrated solar panel and demonstrate the manufacturability of key components. Then confirm the operation of the key components under prototypic solar flux conditions. This work is an important step in reducing the levelized cost of energy (LCOE) from a central receiver solar power plant. The key technical risk to building larger power towers is building the larger receiver systems. Therefore, this proposed technology project includes the design of an advanced molten salt prototypic sub-scale receiver panel that can be utilized into a large receiver system. Then complete the fabrication and testing of key components of the receive design that will be used to validate the design. This project shall have a significant impact on solar thermal power plant design. Receiver panels of suitable size for utility scale plants are a key element to a solar power tower plant. Many subtle and complex manufacturing processes are involved in producing a reliable, robust receiver panel. Given the substantial size difference between receiver panels manufactured in the past and those needed for large plant designs, the manufacture and demonstration on prototype receiver panel components with representative features of a full-sized panel will be important to improving the build process for commercial success. Given the thermal flux limitations of the test facility, the panel components cannot be rendered full size. Significance changes occurred in the projects technical strategies from project initiation to the accomplishments described herein. The initial strategy was to define cost improvements for the receiver, design and build a scale prototype receiver and test, on sun, with a molten salt heat transport system. DOE had committed to constructing a molten salt heat transport loop to support receiver testing at the top of the NSTTF tower. Because of funding constraints this did not happen. A subsequent plan to

  13. Final report : testing and evaluation for solar hot water reliability.

    SciTech Connect (OSTI)

    Caudell, Thomas P.; He, Hongbo; Menicucci, David F.; Mammoli, Andrea A.; Burch, Jay

    2011-07-01

    Solar hot water (SHW) systems are being installed by the thousands. Tax credits and utility rebate programs are spurring this burgeoning market. However, the reliability of these systems is virtually unknown. Recent work by Sandia National Laboratories (SNL) has shown that few data exist to quantify the mean time to failure of these systems. However, there is keen interest in developing new techniques to measure SHW reliability, particularly among utilities that use ratepayer money to pay the rebates. This document reports on an effort to develop and test new, simplified techniques to directly measure the state of health of fielded SHW systems. One approach was developed by the National Renewable Energy Laboratory (NREL) and is based on the idea that the performance of the solar storage tank can reliably indicate the operational status of the SHW systems. Another approach, developed by the University of New Mexico (UNM), uses adaptive resonance theory, a type of neural network, to detect and predict failures. This method uses the same sensors that are normally used to control the SHW system. The NREL method uses two additional temperature sensors on the solar tank. The theories, development, application, and testing of both methods are described in the report. Testing was performed on the SHW Reliability Testbed at UNM, a highly instrumented SHW system developed jointly by SNL and UNM. The two methods were tested against a number of simulated failures. The results show that both methods show promise for inclusion in conventional SHW controllers, giving them advanced capability in detecting and predicting component failures.

  14. Coal-fired MHD test progress at the Component Development and Integration Facility

    SciTech Connect (OSTI)

    Hart, A.T.; Filius, K.D.; Micheletti, D.A.; Cashell, P.V.

    1993-12-31

    The Component Development and Integration Facility (CDIF) is a Department of Energy test facility operated by MSE, Inc. MSE personnel are responsible for integrated testing of topping cycle components for the national coal-fired magnetohydrodynamics (MHD) development program. Initial facility checkout and baseline data generation testing at the CDIF used a 50-MW{sub t}, oil-fired combustor (with ash injection to simulate coal slag carryover) coupled to the 1A{sub 1} supersonic workhorse channel. In the fall of 1984, a 50-MW{sub t}, pressurized, slag rejecting coal-fired workhorse combustor replaced the oil-fired combustor in the test train. In the spring of 1989, a coal-fired precombustor was added to the test hardware, and current controls were installed in the spring of 1990. In the fall of 1990, the slag rejector was installed. In the spring of 1992, a 50-MW{sub t} pressurized, slag rejecting coal-fired prototypical combustor replaced the workhorse combustor in the test train. A 1A{sub 4} supersonic prototypical channel replaced the 1A{sub 1} workhorse channel in the fall of 1993. This prototypical hardware is slated to be used for the proof-of-concept (POC) testing. Improved facility systems targeting longer duration testing and more reliable operation will be discussed, including the air emissions control and monitoring hardware, oxygen and nitrogen expansion, coal and seed system upgrades, A-Bay modifications, and new solid suspension injection equipment.

  15. Testing of optical components to assure performance in a high acerage power environment

    SciTech Connect (OSTI)

    Chow, R.; Taylor, J.R.; Eickelberg, W.K.; Primdahl, K.A.

    1997-06-24

    Evaluation and testing of the optical components used in the Atomic Vapor Laser Isotope Separation (AVLIS) plant is critical for qualification of suppliers, development of new optical multilayer designs and monufacturing processes, and assurance of performance in the production cycle. The range of specifications requires development of specialized test equipment and methods which are not routine or readily available in industry. Specifications are given on material characteristics such as index homogeneity, subsurface damage left after polishing, microscopic surface defects and contamination, coating absorption, and high average power laser damage. The approach to testing these performance characteristics and assuring the quality throughout the production cycle is described.

  16. Integrated exposure and dose modeling and analysis system. 1. Formulation and testing of microenvironmental and pharmacokinetic components

    SciTech Connect (OSTI)

    Georgopoulos, P.G.; Walia, A.; Roy, A.; Lioy, P.J.

    1997-01-01

    The conceptual and theoretical framework for a modular integrated Exposure and Dose Modeling and Analysis System (EDMAS) has been formulated, and its stepwise implementation and testing is currently in progress. This system aims to provide state-of-the art tools for performing integrated assessments of exposure and dose for individuals and populations. The integration of modeling components with each other as well as with available environmental, exposure, and toxicological databases in being accomplished with the use of computational tools that include interactive simulation environments, Geographical information Systems, and various data retrieval, management, statistical analysis, and visualization methods. This paper overviews the structure and modular nature of this integrated modeling system and focuses specifically on two of its components: (a) a hierarchy of physiologically based pharmacokinetic models (PBPKM), representing various levels of detail and sophistication, and (b) a family of microenvironmental models, that incorporate complex physical and chemical transformations. The deterministic implementation of these components is also presented here in two test applications: (i) a case study of benzene exposure indoors resulting from the volatilization of contaminated tap water and (ii) a case study of photochemical pollution infiltration indoors, in an office building environment. 77 refs., 6 figs., 2 tabs.

  17. Flow Components in a NaK Test Loop Designed to Simulate Conditions in a Nuclear Surface Power Reactor

    SciTech Connect (OSTI)

    Polzin, Kurt A.; Godfroy, Thomas J.

    2008-01-21

    A test loop using NaK as the working fluid is presently in use to study material compatibility effects on various components that comprise a possible nuclear reactor design for use on the lunar surface. A DC electromagnetic (EM) pump has been designed and implemented as a means of actively controlling the NaK flow rate through the system and an EM flow sensor is employed to monitor the developed flow rate. These components allow for the matching of the flow rate conditions in test loops with those that would be found in a full-scale surface-power reactor. The design and operating characteristics of the EM pump and flow sensor are presented. In the EM pump, current is applied to a set of electrodes to produce a Lorentz body force in the fluid. A measurement of the induced voltage (back-EMF) in the flow sensor provides the means of monitoring flow rate. Both components are compact, employing high magnetic field strength neodymium magnets thermally coupled to a water-cooled housing. A vacuum gap limits the heat transferred from the high temperature NaK tube to the magnets and a magnetically-permeable material completes the magnetic circuit. The pump is designed to produce a pressure rise of 34.5 kPa, and the flow sensor's predicted output is roughly 20 mV at the loop's nominal flow rate of 0.114 m{sup 3}/hr.

  18. The effects of aging in component cooling water systems and the implications for life extension

    SciTech Connect (OSTI)

    Lofaro, R.; Taylor, J. ); Aggarwal, S. )

    1991-01-01

    To help assess the effects of aging on safety and reliability, an aging and life extension analysis of component cooling water (CCW) systems in pressurized water reactors (PWRs) has been performed as part of the Nuclear Plant Aging Research (NPAR) program. The NPAR program is sponsored by the NRC Office of Research to provide a technical basis for understanding and managing the effects of aging degradation in nuclear plant applications. The objectives of the two phase CCW system analysis are to characterize the effects of aging, and identify effective methods of detecting and mitigating aging degradation. The effects of aging in CCW systems were characterized by collecting and analyzing failure data from various national databases. The dominant failure causes and mechanisms were identified along with the components most frequently failed. Time-dependent component failure rates were calculated and used to evaluate the effect of aging on system unavailability in later years. Inspection, surveillance, monitoring, and maintenance practices currently in use were compiled from plant and industry sources. These practices were correlated with various aging mechanisms and generic listings were developed for two of the most commonly failed CCW components. 2 refs., 6 figs., 4 tabs.

  19. Scaling Analysis Techniques to Establish Experimental Infrastructure for Component, Subsystem, and Integrated System Testing

    SciTech Connect (OSTI)

    Sabharwall, Piyush; O'Brien, James E.; McKellar, Michael G.; Housley, Gregory K.; Bragg-Sitton, Shannon M.

    2015-03-01

    Hybrid energy system research has the potential to expand the application for nuclear reactor technology beyond electricity. The purpose of this research is to reduce both technical and economic risks associated with energy systems of the future. Nuclear hybrid energy systems (NHES) mitigate the variability of renewable energy sources, provide opportunities to produce revenue from different product streams, and avoid capital inefficiencies by matching electrical output to demand by using excess generation capacity for other purposes when it is available. An essential step in the commercialization and deployment of this advanced technology is scaled testing to demonstrate integrated dynamic performance of advanced systems and components when risks cannot be mitigated adequately by analysis or simulation. Further testing in a prototypical environment is needed for validation and higher confidence. This research supports the development of advanced nuclear reactor technology and NHES, and their adaptation to commercial industrial applications that will potentially advance U.S. energy security, economy, and reliability and further reduce carbon emissions. Experimental infrastructure development for testing and feasibility studies of coupled systems can similarly support other projects having similar developmental needs and can generate data required for validation of models in thermal energy storage and transport, energy, and conversion process development. Experiments performed in the Systems Integration Laboratory will acquire performance data, identify scalability issues, and quantify technology gaps and needs for various hybrid or other energy systems. This report discusses detailed scaling (component and integrated system) and heat transfer figures of merit that will establish the experimental infrastructure for component, subsystem, and integrated system testing to advance the technology readiness of components and systems to the level required for commercial

  20. Developing standard performance testing procedures for material control and accounting components at a site

    SciTech Connect (OSTI)

    Scherer, Carolynn P; Bushlya, Anatoly V; Efimenko, Vladimir F; Ilyanstev, Anatoly; Regoushevsky, Victor I

    2010-01-01

    The condition of a nuclear material control and accountability system (MC&A) and its individual components, as with any system combining technical elements and documentation, may be characterized through an aggregate of values for the various parameters that determine the system's ability to perform. The MC&A system's status may be functioning effectively, marginally or not functioning based on a summary of the values of the individual parameters. This work included a review of the following subsystems, MC&A and Detecting Material Losses, and their respective elements for the material control and accountability system: (a) Elements of the MC&A Subsystem - Information subsystem (Accountancy/Inventory), Measurement subsystem, Nuclear Material Access subsystem, including tamper-indicating device (TID) program, and Automated Information-gathering subsystem; (b) Elements for Detecting Nuclear Material Loses Subsystem - Inventory Differences, Shipper/receiver Differences, Confirmatory Measurements and differences with accounting data, and TID or Seal Violations. In order to detect the absence or loss of nuclear material there must be appropriate interactions among the elements and their respective subsystems from the list above. Additionally this work includes a review of regulatory requirements for the MC&A system component characteristics and criteria that support the evaluation of the performance of the listed components. The listed components had performance testing algorithms and procedures developed that took into consideration the regulatory criteria. The developed MC&A performance-testing procedures were the basis for a Guide for MC&A Performance Testing at the material balance areas (MBAs) of State Scientific Center of the Russian Federation - Institute for Physics and Power Engineering (SSC RF-IPPE).

  1. Phosphorylated SAP155, the spliceosomal component, is localized to chromatin in postnatal mouse testes

    SciTech Connect (OSTI)

    Eto, Ko; Sonoda, Yoshiyuki; Jin, Yuji; Abe, Shin-ichi

    2010-03-19

    SAP155 is an essential component of the spliceosome and its phosphorylation is required for splicing catalysis, but little is known concerning its expression and regulation during spermatogenesis in postnatal mouse testes. We report that SAP155 is ubiquitously expressed in nuclei of germ and Sertoli cells within the seminiferous tubules of 6- and 35-day postpartum (dpp) testes. Analyses by fractionation of testes revealed that (1) phosphorylated SAP155 was found in the fraction containing nuclear structures at 6 dpp in amounts much larger than that at other ages; (2) non-phosphorylated SAP155 was detected in the fraction containing nucleoplasm; and (3) phosphorylated SAP155 was preferentially associated with chromatin. Our findings suggest that the active spliceosome, containing phosphorylated SAP155, performs pre-mRNA splicing on chromatin concomitant with transcription during testicular development.

  2. The large-area hybrid-optics CLAS12 RICH detector: Tests of innovative components

    SciTech Connect (OSTI)

    Contalbrigo, M.; Baltzell, N.; Benmokhtar, F.; Barion, L.; Cisbani, E.; El Alaoui, A.; Hafidi, K.; Hoek, M.; Kubarovsky, V.; Lagamba, L.; Lucherini, V.; Malaguti, R.; Mirazita, M.; Montgomery, R.; Movsisyan, A.; Musico, P.; Orecchini, D.; Orlandi, A.; Pappalardo, L.L.; Pereira, S.; Perrino, R.; Phillips, J.; Pisano, S.; Rossi, P.; Squerzanti, S.; Tomassini, S.; Turisini, M.; Viticchiè, A.

    2014-07-01

    A large area ring-imaging Cherenkov detector has been designed to provide clean hadron identification capability in the momentum range from 3 GeV/c to 8 GeV/c for the CLAS12 experiments at the upgraded 12 GeV continuous electron beam accelerator facility of Jefferson Lab to study the 3D nucleon structure in the yet poorly explored valence region by deep-inelastic scattering, and to perform precision measurements in hadronization and hadron spectroscopy. The adopted solution foresees a novel hybrid optics design based on an aerogel radiator, composite mirrors and densely packed and highly segmented photon detectors. Cherenkov light will either be imaged directly (forward tracks) or after two mirror reflections (large angle tracks). The preliminary results of individual detector component tests and of the prototype performance at test-beams are reported here.

  3. Three-dimensional NDE of VHTR core components via simulation-based testing. Final report

    SciTech Connect (OSTI)

    Guzina, Bojan; Kunerth, Dennis

    2014-09-30

    A next generation, simulation-driven-and-enabled testing platform is developed for the 3D detection and characterization of defects and damage in nuclear graphite and composite structures in Very High Temperature Reactors (VHTRs). The proposed work addresses the critical need for the development of high-fidelity Non-Destructive Examination (NDE) technologies for as-manufactured and replaceable in-service VHTR components. Centered around the novel use of elastic (sonic and ultrasonic) waves, this project deploys a robust, non-iterative inverse solution for the 3D defect reconstruction together with a non-contact, laser-based approach to the measurement of experimental waveforms in VHTR core components. In particular, this research (1) deploys three-dimensional Scanning Laser Doppler Vibrometry (3D SLDV) as a means to accurately and remotely measure 3D displacement waveforms over the accessible surface of a VHTR core component excited by mechanical vibratory source; (2) implements a powerful new inverse technique, based on the concept of Topological Sensitivity (TS), for non-iterative elastic waveform tomography of internal defects - that permits robust 3D detection, reconstruction and characterization of discrete damage (e.g. holes and fractures) in nuclear graphite from limited-aperture NDE measurements; (3) implements state-of-the art computational (finite element) model that caters for accurately simulating elastic wave propagation in 3D blocks of nuclear graphite; (4) integrates the SLDV testing methodology with the TS imaging algorithm into a non-contact, high-fidelity NDE platform for the 3D reconstruction and characterization of defects and damage in VHTR core components; and (5) applies the proposed methodology to VHTR core component samples (both two- and three-dimensional) with a priori induced, discrete damage in the form of holes and fractures. Overall, the newly established SLDV-TS testing platform represents a next-generation NDE tool that surpasses

  4. Swelling in light water reactor internal components: Insights from computational modeling

    SciTech Connect (OSTI)

    Stoller, Roger E.; Barashev, Alexander V.; Golubov, Stanislav I.

    2015-08-01

    A modern cluster dynamics model has been used to investigate the materials and irradiation parameters that control microstructural evolution under the relatively low-temperature exposure conditions that are representative of the operating environment for in-core light water reactor components. The focus is on components fabricated from austenitic stainless steel. The model accounts for the synergistic interaction between radiation-produced vacancies and the helium that is produced by nuclear transmutation reactions. Cavity nucleation rates are shown to be relatively high in this temperature regime (275 to 325°C), but are sensitive to assumptions about the fine scale microstructure produced under low-temperature irradiation. The cavity nucleation rates observed run counter to the expectation that void swelling would not occur under these conditions. This expectation was based on previous research on void swelling in austenitic steels in fast reactors. This misleading impression arose primarily from an absence of relevant data. The results of the computational modeling are generally consistent with recent data obtained by examining ex-service components. However, it has been shown that the sensitivity of the model s predictions of low-temperature swelling behavior to assumptions about the primary damage source term and specification of the mean-field sink strengths is somewhat greater that that observed at higher temperatures. Further assessment of the mathematical model is underway to meet the long-term objective of this research, which is to provide a predictive model of void swelling at relevant lifetime exposures to support extended reactor operations.

  5. Facility Configuration Study of the High Temperature Gas-Cooled Reactor Component Test Facility

    SciTech Connect (OSTI)

    S. L. Austad; L. E. Guillen; D. S. Ferguson; B. L. Blakely; D. M. Pace; D. Lopez; J. D. Zolynski; B. L. Cowley; V. J. Balls; E.A. Harvego, P.E.; C.W. McKnight, P.E.; R.S. Stewart; B.D. Christensen

    2008-04-01

    A test facility, referred to as the High Temperature Gas-Cooled Reactor Component Test Facility or CTF, will be sited at Idaho National Laboratory for the purposes of supporting development of high temperature gas thermal-hydraulic technologies (helium, helium-Nitrogen, CO2, etc.) as applied in heat transport and heat transfer applications in High Temperature Gas-Cooled Reactors. Such applications include, but are not limited to: primary coolant; secondary coolant; intermediate, secondary, and tertiary heat transfer; and demonstration of processes requiring high temperatures such as hydrogen production. The facility will initially support completion of the Next Generation Nuclear Plant. It will secondarily be open for use by the full range of suppliers, end-users, facilitators, government laboratories, and others in the domestic and international community supporting the development and application of High Temperature Gas-Cooled Reactor technology. This pre-conceptual facility configuration study, which forms the basis for a cost estimate to support CTF scoping and planning, accomplishes the following objectives: • Identifies pre-conceptual design requirements • Develops test loop equipment schematics and layout • Identifies space allocations for each of the facility functions, as required • Develops a pre-conceptual site layout including transportation, parking and support structures, and railway systems • Identifies pre-conceptual utility and support system needs • Establishes pre-conceptual electrical one-line drawings and schedule for development of power needs.

  6. DOE Publishes Notice of Proposed Rulemaking for Residential Water Heater and Certain Commercial Water Heater Test Procedures

    Broader source: Energy.gov [DOE]

    The Department of Energy has published a notice of proposed rulemaking regarding test procedures for residential water heaters and certain commercial water heaters.

  7. Construction and testing of ceramic fabric heat pipe with water working fluid

    SciTech Connect (OSTI)

    Antoniak, Z.I.; Webb, B.J.; Bates, J.M.; Cooper, M.F.

    1991-01-01

    A prototype ceramic fabric/titanium water heat pipe has been constructed and tested; it transported 25 to 80 W of power at 423 K. Component development and testing is continuing with the aim of providing an improved prototype, with a 38-{mu}m stainless steel linear covered by a biaxially-braided Nextel (trademark of the 3M Co., St. Paul Minnesota) sleeve that is approximately 300-{mu}m thick. This fabric has been tested to 800 K, and its emittance is about 0.5 at that temperature. Advanced versions of the water heat pipe will probably require a coating over the ceramic fabric in order to increase this emittance to the 0.8 to 0.9 range. 2 refs., 3 figs., 1 tab.

  8. Fundamental Understanding of Crack Growth in Structural Components of Generation IV Supercritical Light Water Reactors

    SciTech Connect (OSTI)

    Iouri I. Balachov; Takao Kobayashi; Francis Tanzella; Indira Jayaweera; Palitha Jayaweera; Petri Kinnunen; Martin Bojinov; Timo Saario

    2004-11-17

    This work contributes to the design of safe and economical Generation-IV Super-Critical Water Reactors (SCWRs) by providing a basis for selecting structural materials to ensure the functionality of in-vessel components during the entire service life. During the second year of the project, we completed electrochemical characterization of the oxide film properties and investigation of crack initiation and propagation for candidate structural materials steels under supercritical conditions. We ranked candidate alloys against their susceptibility to environmentally assisted degradation based on the in situ data measure with an SRI-designed controlled distance electrochemistry (CDE) arrangement. A correlation between measurable oxide film properties and susceptibility of austenitic steels to environmentally assisted degradation was observed experimentally. One of the major practical results of the present work is the experimentally proven ability of the economical CDE technique to supply in situ data for ranking candidate structural materials for Generation-IV SCRs. A potential use of the CDE arrangement developed ar SRI for building in situ sensors monitoring water chemistry in the heat transport circuit of Generation-IV SCWRs was evaluated and proved to be feasible.

  9. EA-1035: Relocation of the Weapons Component Testing Facility Los Alamos National Laboratory, Los Alamos, New Mexico

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to relocate the Weapons Component Testing Facility from Building 450 to Building 207, both within Technical Area 16, at the U.S....

  10. Bleed water testing program for controlled low strength material

    SciTech Connect (OSTI)

    Langton, C.A.

    1996-11-12

    Bleed water measurements for two Controlled Low Strength Material (CLSM) mixes were conducted to provide engineering data for the Tank 20F closure activities. CLSM Mix 1 contained 150 pounds of cement per cubic yard whereas CLSM Mix 2 contained 50 pounds per cub yard. SRS currently used CLSM Mix 2 for various applications. Bleed water percentages and generation rates were measured along with flow and compressive strength. This information will be used to select a mix design for the Tank 20F closure activities and to establish the engineering requirements, such as, lift height, time required between lifts and quantity of bleed water to be removed from the tank during the placement activities. Mix 1 is recommended for placement within Tank 20F because it has better flow characteristics, less segregation, lower percentage of bleed water and slightly higher strength. Optimization of Mix 1 was beyond the scope of this study. However, further testing of thickening additives, such as clays (bentonite), sodium silicate or fine silicas maybe useful for decreasing or eliminating bleed water.

  11. Prediction of critical heat flux in water-cooled plasma facing components using computational fluid dynamics.

    SciTech Connect (OSTI)

    Bullock, James H.; Youchison, Dennis Lee; Ulrickson, Michael Andrew

    2010-11-01

    Several commercial computational fluid dynamics (CFD) codes now have the capability to analyze Eulerian two-phase flow using the Rohsenow nucleate boiling model. Analysis of boiling due to one-sided heating in plasma facing components (pfcs) is now receiving attention during the design of water-cooled first wall panels for ITER that may encounter heat fluxes as high as 5 MW/m2. Empirical thermalhydraulic design correlations developed for long fission reactor channels are not reliable when applied to pfcs because fully developed flow conditions seldom exist. Star-CCM+ is one of the commercial CFD codes that can model two-phase flows. Like others, it implements the RPI model for nucleate boiling, but it also seamlessly transitions to a volume-of-fluid model for film boiling. By benchmarking the results of our 3d models against recent experiments on critical heat flux for both smooth rectangular channels and hypervapotrons, we determined the six unique input parameters that accurately characterize the boiling physics for ITER flow conditions under a wide range of absorbed heat flux. We can now exploit this capability to predict the onset of critical heat flux in these components. In addition, the results clearly illustrate the production and transport of vapor and its effect on heat transfer in pfcs from nucleate boiling through transition to film boiling. This article describes the boiling physics implemented in CCM+ and compares the computational results to the benchmark experiments carried out independently in the United States and Russia. Temperature distributions agreed to within 10 C for a wide range of heat fluxes from 3 MW/m2 to 10 MW/m2 and flow velocities from 1 m/s to 10 m/s in these devices. Although the analysis is incapable of capturing the stochastic nature of critical heat flux (i.e., time and location may depend on a local materials defect or turbulence phenomenon), it is highly reliable in determining the heat flux where boiling instabilities begin

  12. Dynamic effect of sodium-water reaction in fast flux test facility power addition sodium pipes

    SciTech Connect (OSTI)

    Huang, S.N.; Anderson, M.J.

    1990-03-01

    The Fast Flux Facility (FFTF) is a demonstration and test facility of the sodium-cooled fast breeder reactor. A power addition'' to the facility is being considered to convert some of the dumped, unused heat into electricity generation. Components and piping systems to be added are sodium-water steam generators, sodium loop extensions from existing dump heat exchangers to sodium-water steam generators, and conventional water/steam loops. The sodium loops can be subjected to the dynamic loadings of pressure pulses that are caused by postulated sodium leaks and subsequent sodium-water reaction in the steam generator. The existing FFTF secondary pipes and the new power addition sodium loops were evaluated for exposure to the dynamic effect of the sodium-water reaction. Elastic and simplified inelastic dynamic analyses were used in this feasibility study. The results indicate that both the maximum strain and strain range are within the allowable limits. Several cycles of the sodium-water reaction can be sustained by the sodium pipes that are supported by ordinary pipe supports and seismic restraints. Expensive axial pipe restraints to withstand the sodium-water reaction loads are not needed, because the pressure-pulse-induced alternating bending stresses act as secondary stresses and the pressure pulse dynamic effect is a deformation-controlled quantity and is self-limiting. 14 refs., 7 figs., 3 tabs.

  13. Testing of a portable ultrahigh pressure water decontamination system (UHPWDS)

    SciTech Connect (OSTI)

    Lovell, A.; Dahlby, J.

    1996-02-01

    This report describes the tests done with a portable ultrahigh pressure water decontamination system (UHPWDS) on highly radioactively contaminated surfaces. A small unit was purchased, modified, and used for in-situ decontamination to change the waste level of the contaminated box from transuranic (TRU) waste to low- level waste (LLW). Low-level waste is less costly by as much as a factor of five or more if compared with TRU waste when handling, storage, and disposal are considered. The portable unit we tested is commercially available and requires minimal utilities for operation. We describe the UHPWDS unit itself, a procedure for its use, the results of the testing we did, and conclusions including positive and negative aspects of the UHPWDS.

  14. A Review of Stress Corrosion Cracking/Fatigue Modeling for Light Water Reactor Cooling System Components

    Broader source: Energy.gov [DOE]

    In the United States currently there are approximately 104 operating light water reactors. Of these, 69 are pressurized water reactors (PWRs) and 35 are boiling water reactors (BWRs). In 2007, the...

  15. A Residual Mass Ballistic Testing Method to Compare Armor Materials or Components (Residual Mass Ballistic Testing Method)

    SciTech Connect (OSTI)

    Benjamin Langhorst; Thomas M Lillo; Henry S Chu

    2014-05-01

    A statistics based ballistic test method is presented for use when comparing multiple groups of test articles of unknown relative ballistic perforation resistance. The method is intended to be more efficient than many traditional methods for research and development testing. To establish the validity of the method, it is employed in this study to compare test groups of known relative ballistic performance. Multiple groups of test articles were perforated using consistent projectiles and impact conditions. Test groups were made of rolled homogeneous armor (RHA) plates and differed in thickness. After perforation, each residual projectile was captured behind the target and its mass was measured. The residual masses measured for each test group were analyzed to provide ballistic performance rankings with associated confidence levels. When compared to traditional V50 methods, the residual mass (RM) method was found to require fewer test events and be more tolerant of variations in impact conditions.

  16. Field Testing of Pre-Production Prototype Residential Heat Pump Water

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heaters | Department of Energy Field Testing of Pre-Production Prototype Residential Heat Pump Water Heaters Field Testing of Pre-Production Prototype Residential Heat Pump Water Heaters Provides and overview of field testing of 18 pre-production prototype residential heat pump water heaters heat_pump_water_heater_testing.pdf (565.45 KB) More Documents & Publications Building America Technology Solutions for New and Existing Homes: Performance of a Heat Pump Water Heater in the Hot-Humid

  17. Technical Letter Report, An Evaluation of Ultrasonic Phased Array Testing for Reactor Piping System Components Containing Dissimilar Metal Welds, JCN N6398, Task 2A

    SciTech Connect (OSTI)

    Diaz, Aaron A.; Cinson, Anthony D.; Crawford, Susan L.; Anderson, Michael T.

    2009-11-30

    Research is being conducted for the U.S. Nuclear Regulatory Commission at the Pacific Northwest National Laboratory to assess the effectiveness and reliability of advanced nondestructive examination (NDE) methods for the inspection of light-water reactor components. The scope of this research encom¬passes primary system pressure boundary materials including dissimilar metal welds (DMWs), cast austenitic stainless steels (CASS), piping with corrosion-resistant cladding, weld overlays, inlays and onlays, and far-side examinations of austenitic piping welds. A primary objective of this work is to evaluate various NDE methods to assess their ability to detect, localize, and size cracks in steel components that challenge standard and/or conventional inspection methodologies. This interim technical letter report provides a summary of a technical evaluation aimed at assessing the capabilities of phased-array (PA) ultrasonic testing (UT) methods as applied to the inspection of small-bore DMW components that exist in the reactor coolant systems (RCS) of pressurized water reactors (PWRs). Operating experience and events such as the circumferential cracking in the reactor vessel nozzle-to-RCS hot leg pipe at V.C. Summer nuclear power station, identified in 2000, show that in PWRs where primary coolant water (or steam) are present under normal operation, Alloy 82/182 materials are susceptible to pressurized water stress corrosion cracking. The extent and number of occurrences of DMW cracking in nuclear power plants (domestically and internationally) indicate the necessity for reliable and effective inspection techniques. The work described herein was performed to provide insights for evaluating the utility of advanced NDE approaches for the inspection of DMW components such as a pressurizer surge nozzle DMW, a shutdown cooling pipe DMW, and a ferritic (low-alloy carbon steel)-to-CASS pipe DMW configuration.

  18. System Engineering Program Applicability for the High Temperature Gas-Cooled Reactor (HTGR) Component Test Capability (CTC)

    SciTech Connect (OSTI)

    Jeffrey Bryan

    2009-06-01

    This white paper identifies where the technical management and systems engineering processes and activities to be used in establishing the High Temperature Gas-cooled Reactor (HTGR) Component Test Capability (CTC) should be addressed and presents specific considerations for these activities under each CTC alternative

  19. Reliability Testing Beyond Qualification as a Key Component in Photovoltaic's Progress Toward Grid Parity: Preprint

    SciTech Connect (OSTI)

    Wohlgemuth, J. H.; Kurtz, S.

    2011-02-01

    This paper discusses why it is necessary for new lower cost PV modules to be tested using a reliability test sequence that goes beyond the Qualification test sequence now utilized for modules. Today most PV modules are warranted for 25 years, but the Qualification Test Sequence does not test for 25-year life. There is no accepted test protocol to validate a 25-year lifetime. This paper recommends the use of long term accelerated testing to compare now designs directly with older designs that have achieved long lifetimes in outdoor exposure. If the new designs do as well or better than the older ones, then it is likely that they will survive an equivalent length of time in the field.

  20. Exparte Memo: 4-26-16 Meeting on Test Procedures for Water Heaters...

    Office of Environmental Management (EM)

    Exparte Memo: 4-26-16 Meeting on Test Procedures for Water Heaters, EERE-2015-BT-TP-0007-0002 Exparte Memo: 4-26-16 Meeting on Test Procedures for Water Heaters, ...

  1. Testing of Alternative Abrasives for Water-Jet Cutting at C Tank...

    Office of Scientific and Technical Information (OSTI)

    Testing of Alternative Abrasives for Water-Jet Cutting at C Tank Farm Citation Details In-Document Search Title: Testing of Alternative Abrasives for Water-Jet Cutting at C Tank ...

  2. Comment submitted by the Alliance for Water Efficiency (AWE) regarding the Energy Star Verification Testing Program

    Broader source: Energy.gov [DOE]

    This document is a comment submitted by the Alliance for Water Efficiency (AWE) regarding the Energy Star Verification Testing Program

  3. Development test report for the high pressure water jet system nozzles

    SciTech Connect (OSTI)

    Takasumi, D.S.

    1995-09-28

    The high pressure water jet nozzle tests were conducted to identify optimum water pressure, water flow rate, nozzle orifice size and fixture configuration needed to effectively decontaminate empty fuel storage canisters in KE-Basin. This report gives the tests results and recommendations from the these tests.

  4. US Synthetic Corp (TRL 4 Component)- The Development of Open, Water Lubricated Polycrystalline Diamond Thrust Bearings for use in Marine Hydrokinetic (MHK) Energy Machines

    Broader source: Energy.gov [DOE]

    US Synthetic Corp (TRL 4 Component) - The Development of Open, Water Lubricated Polycrystalline Diamond Thrust Bearings for use in Marine Hydrokinetic (MHK) Energy Machines

  5. Mechanical design of core components for a high performance light water reactor with a three pass core

    SciTech Connect (OSTI)

    Fischer, Kai; Schneider, Tobias; Redon, Thomas; Schulenberg, Thomas; Starflinger, Joerg

    2007-07-01

    Nuclear reactors using supercritical water as coolant can achieve more than 500 deg. C core outlet temperature, if the coolant is heated up in three steps with intermediate mixing to avoid hot streaks. This method reduces the peak cladding temperatures significantly compared with a single heat up. The paper presents an innovative mechanical design which has been developed recently for such a High Performance Light Water Reactor. The core is built with square assemblies of 40 fuel pins each, using wire wraps as grid spacers. Nine of these assemblies are combined to a cluster having a common head piece and a common foot piece. A downward flow of additional moderator water, separated from the coolant, is provided in gaps between the assemblies and in a water box inside each assembly. The cluster head and foot pieces and mixing chambers, which are key components for this design, are explained in detail. (authors)

  6. Multi-component testing using HZ-PAN and AgZ-PAN Sorbents for OSPREY Model validation

    SciTech Connect (OSTI)

    Garn, Troy G.; Greenhalgh, Mitchell; Lyon, Kevin L.; Law, Jack D.

    2015-04-01

    In efforts to further develop the capability of the Off-gas SeParation and RecoverY (OSPREY) model, multi-component tests were completed using both HZ-PAN and AgZ-PAN sorbents. The primary purpose of this effort was to obtain multi-component xenon and krypton capacities for comparison to future OSPREY predicted multi-component capacities using previously acquired Langmuir equilibrium parameters determined from single component isotherms. Experimental capacities were determined for each sorbent using two feed gas compositions of 1000 ppmv xenon and 150 ppmv krypton in either a helium or air balance. Test temperatures were consistently held at 220 K and the gas flowrate was 50 sccm. Capacities were calculated from breakthrough curves using TableCurve 2D software by Jandel Scientific. The HZ-PAN sorbent was tested in the custom designed cryostat while the AgZ-PAN was tested in a newly installed cooling apparatus. Previous modeling validation efforts indicated the OSPREY model can be used to effectively predict single component xenon and krypton capacities for both engineered form sorbents. Results indicated good agreement with the experimental and predicted capacity values for both krypton and xenon on the sorbents. Overall, the model predicted slightly elevated capacities for both gases which can be partially attributed to the estimation of the parameters and the uncertainty associated with the experimental measurements. Currently, OSPREY is configured such that one species adsorbs and one does not (i.e. krypton in helium). Modification of OSPREY code is currently being performed to incorporate multiple adsorbing species and non-ideal interactions of gas phase species with the sorbent and adsorbed phases. Once these modifications are complete, the sorbent capacities determined in the present work will be used to validate OSPREY multicomponent adsorption predictions.

  7. Mechanism of Irradiation Assisted Cracking of Core Components in Light Water Reactors

    SciTech Connect (OSTI)

    Gary S. Was; Michael Atzmon; Lumin Wang

    2003-04-28

    that the IASCC susceptibility, as measured by the crack length per unit strain, decreased with very short anneals and was almost completely removed by an anneal at 500C for 45 min. This annealing treatment removed about 15% of the dislocation microstructure and the irradiation hardening, but did not affect the grain boundary chromium depletion or nickel segregation, nor did it affect the grain boundary content of other minor impurities. These results indicate that RIS is not the sole controlling feature of IASCC in irradiated stainless steels in normal water chemistry. The isolation of the irradiated microstructure was approached using low temperature irradiation or combinations of low and high temperature irradiations to achieve a stable, irradiated microstructure without RIS. Experiments were successful in achieving a high degree of irradiation hardening without any evidence of RIS of either major or minor elements. The low temperature irradiations to doses up to 0.3 dpa at T<75C were also very successful in producing hardening to levels considerably above that for irradiations conducted under nominal conditions of 1 dpa at 360C. However, the microstructure consisted of an extremely fine dispersion of defect clusters of sizes that are not resolvable by either transmission electron microscopy (TEM) or small angle x-ray scattering (SAXS). The microstructure was not stable at the 288C IASCC test temperature and resulted in rapid reduction of hardening and presumably, annealing of the defect clusters at this temperature as well. Nevertheless, the annealing studies showed that treatments that resulted in significant decreases in the hardening produced small changes in the dislocation microstructure that were confined to the elimination of the finest of loops (~1 nm). These results substantiate the importance of the very fine defect microstructure in the IASCC process. The results of this program provide the first definitive evidence that RIS is not the sole

  8. OTEC (Ocean Thermal Energy Conversion) CWP (Cold Water Pipe) Laboratory Test Program. Materials Project Test Report

    SciTech Connect (OSTI)

    Not Available

    1981-04-01

    Fiberglass sandwich wall structures emerged as leading candidates for the OTEC cold water pipe because of their high strength to weight ratio, their flexibility in selecting directional properties, their resistance to electrochemical interaction, their ease of deployment and their relative low cost. A review of the literature established reasonable confidence that FRP laminates could meet the OTEC requirements; however, little information was available on the performance of core materials suitable for OTEC applications. Syntactic foam cores of various composition and density were developed and tested for mechanical properties and seawater absorption.

  9. Notice of Intent: Wave Energy Test Facility Inside U.S. Waters | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Wave Energy Test Facility Inside U.S. Waters Notice of Intent: Wave Energy Test Facility Inside U.S. Waters July 21, 2016 - 12:53pm Addthis Notice of Intent: Wave Energy Test Facility Inside U.S. Waters The Energy Department's Water Power Program intends to issue a Funding Opportunity Announcement (FOA) to construct a national wave energy test facility inside U.S. federal or state waters. To support the full-scale testing of MHK wave energy devices, up to $40 million in funding

  10. Liquid-Water Uptake and Removal in PEM Fuel-Cell Components

    SciTech Connect (OSTI)

    Das, Prodip K.; Gunterman, Haluna P.; Kwong, Anthony; Weber, Adam Z.

    2011-09-23

    Management of liquid water is critical for optimal fuel-cell operation, especially at low temperatures. It is therefore important to understand the wetting properties and water holdup of the various fuel-cell layers. While the gas-diffusion layer is relatively hydrophobic and exhibits a strong intermediate wettability, the catalyst layer is predominantly hydrophilic. In addition, the water content of the ionomer in the catalyst layer is lower than that of the bulk membrane, and is affected by platinum surfaces. Liquid-water removal occurs through droplets on the surface of the gas-diffusion layer. In order to predict droplet instability and detachment, a force balance is used. While the pressure or drag force on the droplet can be derived, the adhesion or surface-tension force requires measurement using a sliding-angle approach. It is shown that droplets produced by forcing water through the gas-diffusion layer rather than placing them on top of it show much stronger adhesion forces owing to the contact to the subsurface water.

  11. Slowly moving test charge in two-electron component non-Maxwellian plasma

    SciTech Connect (OSTI)

    Ali, S.; Eliasson, B.

    2015-08-15

    Potential distributions around a slowly moving test charge are calculated by taking into account the electron-acoustic waves in an unmagnetized plasma. Considering a neutralizing background of static positive ions, the supra-thermal hot and cold electrons are described by the Vlasov equations to account for the Kappa (power-law in velocity space) and Maxwell equilibrium distributions. Fourier analysis further leads to the derivation of electrostatic potential showing the impact of supra-thermal hot electrons. The test charge moves slowly in comparison with the hot and cold electron thermal speeds and is therefore shielded by the electrons. This gives rise to a short-range Debye-Hückel potential decaying exponentially with distance and to a far field potential decaying as inverse third power of the distance from the test charge. The results are relevant for both laboratory and space plasmas, where supra-thermal hot electrons with power-law distributions have been observed.

  12. Pilot scale test of a produced water-treatment system for initial removal of organic compounds

    SciTech Connect (OSTI)

    Sullivan, Enid J; Kwon, Soondong; Katz, Lynn; Kinney, Kerry

    2008-01-01

    A pilot-scale test to remove polar and non-polar organics from produced water was performed at a disposal facility in Farmington NM. We used surfactant-modified zeolite (SMZ) adsorbent beds and a membrane bioreactor (MBR) in combination to reduce the organic carbon content of produced water prior to reverse osmosis (RO). Reduction of total influent organic carbon (TOC) to 5 mg/L or less is desirable for efficient RO system operation. Most water disposed at the facility is from coal-bed gas production, with oil production waters intermixed. Up to 20 gal/d of produced water was cycled through two SMZ adsorbent units to remove volatile organic compounds (BTEX, acetone) and semivolatile organic compounds (e.g., napthalene). Output water from the SMZ units was sent to the MBR for removal of the organic acid component of TOC. Removal of inorganic (Mn and Fe oxide) particulates by the SMZ system was observed. The SMZ columns removed up to 40% of the influent TOC (600 mg/L). BTEX concentrations were reduced from the initial input of 70 mg/L to 5 mg/L by the SMZ and to an average of 2 mg/L after the MBR. Removal rates of acetate (input 120-170 mg/L) and TOC (input up to 45 mg/L) were up to 100% and 92%, respectively. The water pH rose from 8.5 to 8.8 following organic acid removal in the MBR; this relatively high pH was likely responsible for observed scaling of the MBR internal membrane. Additional laboratory studies showed the scaling can be reduced by metered addition of acid to reduce the pH. Significantly, organic removal in the MBR was accomplished with a very low biomass concentration of 1 g/L throughout the field trial. An earlier engineering evaluation shows produced water treatment by the SMZ/MBR/RO system would cost from $0.13 to $0.20 per bbl at up to 40 gpm. Current estimated disposal costs for produced water are $1.75 to $4.91 per bbl when transportation costs are included, with even higher rates in some regions. Our results suggest that treatment by an SMZ

  13. Materials & Components Compatibility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Components Compatibility - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  14. Development of a propulsion system and component test facility for advanced radioisotope powered Mars Hopper platforms

    SciTech Connect (OSTI)

    Robert C. O'Brien; Nathan D. Jerred; Steven D. Howe

    2011-02-01

    Verification and validation of design and modeling activities for radioisotope powered Mars Hopper platforms undertaken at the Center for Space Nuclear Research is essential for proof of concept. Previous research at the center has driven the selection of advanced material combinations; some of which require specialized handling capabilities. The development of a closed and contained test facility to forward this research is discussed within this paper.

  15. Side-by-Side Testing of Water Heating Systems: Results from the 2009-2010 Evaluation

    Broader source: Energy.gov [DOE]

    The performance of seven differing types of residential water heating systems was compared in a side-by-side test configuration over a full year period. The Hot Water System Laboratory (HWS Lab) test facility at the Florida Solar Energy Center (FSEC) in Cocoa, FL was used for the tests.

  16. Crack growth rates and metallographic examinations of Alloy 600 and Alloy 82/182 from field components and laboratory materials tested in PWR environments.

    SciTech Connect (OSTI)

    Alexandreanu, B.; Chopra, O. K.; Shack, W. J.

    2008-05-05

    In light water reactors, components made of nickel-base alloys are susceptible to environmentally assisted cracking. This report summarizes the crack growth rate results and related metallography for field and laboratory-procured Alloy 600 and its weld alloys tested in pressurized water reactor (PWR) environments. The report also presents crack growth rate (CGR) results for a shielded-metal-arc weld of Alloy 182 in a simulated PWR environment as a function of temperature between 290 C and 350 C. These data were used to determine the activation energy for crack growth in Alloy 182 welds. The tests were performed by measuring the changes in the stress corrosion CGR as the temperatures were varied during the test. The difference in electrochemical potential between the specimen and the Ni/NiO line was maintained constant at each temperature by adjusting the hydrogen overpressure on the water supply tank. The CGR data as a function of temperature yielded activation energies of 252 kJ/mol for a double-J weld and 189 kJ/mol for a deep-groove weld. These values are in good agreement with the data reported in the literature. The data reported here and those in the literature suggest that the average activation energy for Alloy 182 welds is on the order of 220-230 kJ/mol, higher than the 130 kJ/mol commonly used for Alloy 600. The consequences of using a larger value of activation energy for SCC CGR data analysis are discussed.

  17. Technical Highlight: NREL Tests Integrated Heat Pump Water Heater Performance in Different Climates

    SciTech Connect (OSTI)

    Sparn, Bethany

    2012-01-01

    This technical highlight describes NREL tests to capture information about heat pump performance across a wide range of ambient conditions for five heat pump water heaters.

  18. NREL's e-Ca Test: A Scalable, High-Sensitivity Water Permeation Measurement Methodology (Poster)

    SciTech Connect (OSTI)

    Dameron, A.; Kempe, M.; Reese, M.

    2014-02-01

    A test method is described that uses the resistivity of a Calcium film to detect very small amounts of water permeating through a barrier material.

  19. Insights for aging management of light water reactor components: Metal containments. Volume 5

    SciTech Connect (OSTI)

    Shah, V.N.; Sinha, U.P.; Smith, S.K.

    1994-03-01

    This report evaluates the available technical information and field experience related to management of aging damage to light water reactor metal containments. A generic aging management approach is suggested for the effective and comprehensive aging management of metal containments to ensure their safe operation. The major concern is corrosion of the embedded portion of the containment vessel and detection of this damage. The electromagnetic acoustic transducer and half-cell potential measurement are potential techniques to detect corrosion damage in the embedded portion of the containment vessel. Other corrosion-related concerns include inspection of corrosion damage on the inaccessible side of BWR Mark I and Mark II containment vessels and corrosion of the BWR Mark I torus and emergency core cooling system piping that penetrates the torus, and transgranular stress corrosion cracking of the penetration bellows. Fatigue-related concerns include reduction in the fatigue life (a) of a vessel caused by roughness of the corroded vessel surface and (b) of bellows because of any physical damage. Maintenance of surface coatings and sealant at the metal-concrete interface is the best protection against corrosion of the vessel.

  20. Thermalhydraulic calculation for boiling water reactor and its natural circulation component

    SciTech Connect (OSTI)

    Trianti, Nuri Nurjanah,; Su’ud, Zaki; Arif, Idam; Permana, Sidik

    2015-09-30

    Thermalhydraulic of reactor core is the thermal study on fluids within the core reactor, i.e. analysis of the thermal energy transfer process produced by fission reaction from fuel to the reactor coolant. This study include of coolant temperature and reactor power density distribution. The purposes of this analysis in the design of nuclear power plant are to calculate the coolant temperature distribution and the chimney height so natural circulation could be occurred. This study was used boiling water reactor (BWR) with cylinder type reactor core. Several reactor core properties such as linear power density, mass flow rate, coolant density and inlet temperature has been took into account to obtain distribution of coolant density, flow rate and pressure drop. The results of calculation are as follows. Thermal hydraulic calculations provide the uniform pressure drop of 1.1 bar for each channels. The optimum mass flow rate to obtain the uniform pressure drop is 217g/s. Furthermore, from the calculation it could be known that outlet temperature is 288°C which is the saturated fluid’s temperature within the system. The optimum chimney height for natural circulation within the system is 14.88 m.

  1. HOWSE (HOt Water SAver) test program. Final report

    SciTech Connect (OSTI)

    Olson, W.R.

    1983-06-15

    The feasibility of recovering heat from a domestic dishwasher was demonstrated in a working, full scale model. That project showed it could be done. This test program showed the HOWSE to be effective and safe over a period of eighteen months. The data from the test program is essential to show safety for requesting approval for use of this appliance by building code authorities.

  2. Disaggregating Hot Water Use and Predicting Hot Water Waste in Five Test Homes

    SciTech Connect (OSTI)

    Henderson, Hugh; Wade, Jeremy

    2014-04-01

    While it is important to make the equipment (or "plant") in a residential hot water system more efficient, the hot water distribution system also affects overall system performance and energy use. Energy wasted in heating water that is not used is estimated to be on the order of 10%-30% of total domestic hot water (DHW) energy use. This field monitoring project installed temperature sensors on the distribution piping (on trunks and near fixtures) in five houses near Syracuse, NY, and programmed a data logger to collect data at 5 second intervals whenever there was a hot water draw. This data was used to assign hot water draws to specific end uses in the home as well as to determine the portion of each hot water that was deemed useful (i.e., above a temperature threshold at the fixture). Overall, the procedures to assign water draws to each end use were able to successfully assign about 50% of the water draws, but these assigned draws accounted for about 95% of the total hot water use in each home. The amount of hot water deemed as useful ranged from low of 75% at one house to a high of 91% in another. At three of the houses, new water heaters and distribution improvements were implemented during the monitoring period and the impact of these improvements on hot water use and delivery efficiency were evaluated.

  3. Disaggregating Hot Water Use and Predicting Hot Water Waste in Five Test Homes

    SciTech Connect (OSTI)

    Henderson, H.; Wade, J.

    2014-04-01

    While it is important to make the equipment (or 'plant') in a residential hot water system more efficient, the hot water distribution system also affects overall system performance and energy use. Energy wasted in heating water that is not used is estimated to be on the order of 10 to 30 percent of total domestic hot water (DHW) energy use. This field monitoring project installed temperature sensors on the distribution piping (on trunks and near fixtures) and programmed a data logger to collect data at 5 second intervals whenever there was a hot water draw. This data was used to assign hot water draws to specific end uses in the home as well as to determine the portion of each hot water that was deemed useful (i.e., above a temperature threshold at the fixture). Five houses near Syracuse NY were monitored. Overall, the procedures to assign water draws to each end use were able to successfully assign about 50% of the water draws, but these assigned draws accounted for about 95% of the total hot water use in each home. The amount of hot water deemed as useful ranged from low of 75% at one house to a high of 91% in another. At three of the houses, new water heaters and distribution improvements were implemented during the monitoring period and the impact of these improvements on hot water use and delivery efficiency were evaluated.

  4. Simulation of the passive condensation cooling tank of the PASCAL test facility using the component thermal-hydraulic analysis code CUPID

    SciTech Connect (OSTI)

    Cho, H. K.; Lee, S. J.; Kang, K. H.; Yoon, H. Y.

    2012-07-01

    For the analysis of transient two-phase flows in nuclear reactor components, a three-dimensional thermal hydraulics code, named CUPID, has been being developed. In the present study, the CUPID code was applied for the simulation of the PASCAL (PAFS Condensing Heat Removal Assessment Loop) test facility constructed with an aim of validating the cooling and operational performance of the PAFS (Passive Auxiliary Feedwater System). The PAFS is one of the advanced safety features adopted in the APR+ (Advanced Power Reactor +), which is intended to completely replace the conventional active auxiliary feedwater system. This paper presents the preliminary simulation results of the PASCAL facility performed with the CUPID code in order to verify its applicability to the thermal-hydraulic phenomena inside the system. A standalone calculation for the passive condensation cooling tank was performed by imposing a heat source boundary condition and the transient thermal-hydraulic behaviors inside the system, such as the water level, temperature and velocity, were qualitatively investigated. The simulation results verified that the natural circulation and boiling phenomena in the water pool can be well reproduced by the CUPID code. (authors)

  5. Water Power Calculator Temperature and Analog Input/Output Module Ambient Temperature Testing

    SciTech Connect (OSTI)

    Mark D. McKay

    2011-02-01

    Water Power Calculator Temperature and Analog input/output Module Ambient Temperature Testing A series of three ambient temperature tests were conducted for the Water Power Calculator development using the INL Calibration Laboratorys Tenney Environmental Chamber. The ambient temperature test results demonstrate that the Moore Industries Temperature Input Modules, Analog Input Module and Analog Output Module, ambient temperature response meet or exceed the manufactures specifications

  6. Ultrasonic testing device having an adjustable water column

    DOE Patents [OSTI]

    Roach, Dennis P.; Neidigk, Stephen O.; Rackow, Kirk A.; Duvall, Randy L.

    2015-09-01

    An ultrasonic testing device having a variable fluid column height is disclosed. An operator is able to adjust the fluid column height in real time during an inspection to to produce optimum ultrasonic focus and separate extraneous, unwanted UT signals from those stemming from the area of interest.

  7. Test Plan for the Boiling Water Reactor Dry Cask Simulator

    SciTech Connect (OSTI)

    Durbin, Samuel; Lindgren, Eric R.

    2015-11-01

    The thermal performance of commercial nuclear spent fuel dry storage casks are evaluated through detailed numerical analysis . These modeling efforts are completed by the vendor to demonstrate performance and regulatory compliance. The calculations are then independently verified by the Nuclear Regulatory Commission (NRC). Carefully measured data sets generated from testing of full sized casks or smaller cask analogs are widely recognized as vital for validating these models. Recent advances in dry storage cask designs have significantly increased the maximum thermal load allowed in a cask in part by increasing the efficiency of internal conduction pathways and by increasing the internal convection through greater canister helium pressure. These same vertical, canistered cask systems rely on ventilation between the canister and the overpack to convect heat away from the canister to the environment for both above and below-ground configurations. While several testing programs have been previously conducted, these earlier validation attempts did not capture the effects of elevated helium pressures or accurately portray the external convection of above-ground and below-ground canistered dry cask systems. The purpose of the investigation described in this report is to produce a data set that can be used to test the validity of the assumptions associated with the calculations presently used to determine steady-state cladding temperatures in modern vertical, canistered dry cask systems. The BWR cask simulator (BCS) has been designed in detail for both the above-ground and below-ground venting configurations. The pressure vessel representing the canister has been designed, fabricated, and pressure tested for a maximum allowable pressure (MAWP) rating of 24 bar at 400 deg C. An existing electrically heated but otherwise prototypic BWR Incoloy-clad test assembly is being deployed inside of a representative storage basket and cylindrical pressure vessel that represents the

  8. A NORMETEX MODEL 15 M3/HR WATER VAPOR PUMPING TEST

    SciTech Connect (OSTI)

    Klein, J.; Fowley, M.; Steeper, T.

    2010-12-20

    Tests were performed using a Model 15 m{sup 3}/hr Normetex vacuum pump to determine if pump performance degraded after pumping a humid gas stream. An air feed stream containing 30% water vapor was introduced into the pump for 365 hours with the outlet pressure of the pump near the condensation conditions of the water. Performance of the pump was tested before and after the water vapor pumping test and indicated no loss in performance of the pump. The pump also appeared to tolerate small amounts of condensed water of short duration without increased noise, vibration, or other adverse indications. The Normetex pump was backed by a dual-head diaphragm pump which was affected by the condensation of water and produced some drift in operating conditions during the test.

  9. Development of Water Radiolysis Code for the JMTR IASCC Test Loop

    SciTech Connect (OSTI)

    Satoshi Hanawa; Tomonori Sato; Yuichiro Mori; Jin Oogiyanagi; Yoshiyuki Kaji; Shunsuke Uchida

    2006-07-01

    In order to evaluate the water chemistry in the irradiation field during IASCC irradiation test, a water radiolysis code for IASCC irradiation loop system was developed. In the water radiolysis code, a multiple node model was introduced since the irradiation loop system has a wide rage temperature distribution as well as the dose distribution. To investigate the applicability of developed water radiolysis code, water chemistry at the water sampling point of the irradiation loop system was measured and compared with analytical results under several water chemistry conditions. Further, water chemistry distribution in the in-pile region as well as in the out-pile region was calculated by the developed water radiolysis code. (authors)

  10. LIGHT WATER REACTOR ACCIDENT TOLERANT FUELS IRRADIATION TESTING

    SciTech Connect (OSTI)

    Carmack, William Jonathan; Barrett, Kristine Eloise; Chichester, Heather Jean MacLean

    2015-09-01

    The purpose of Accident Tolerant Fuels (ATF) experiments is to test novel fuel and cladding concepts designed to replace the current zirconium alloy uranium dioxide (UO2) fuel system. The objective of this Research and Development (R&D) is to develop novel ATF concepts that will be able to withstand loss of active cooling in the reactor core for a considerably longer time period than the current fuel system while maintaining or improving the fuel performance during normal operations, operational transients, design basis, and beyond design basis events. It was necessary to design, analyze, and fabricate drop-in capsules to meet the requirements for testing under prototypic LWR temperatures in Idaho National Laboratory's Advanced Test Reactor (ATR). Three industry led teams and one DOE team from Oak Ridge National Laboratory provided fuel rodlet samples for their new concepts for ATR insertion in 2015. As-built projected temperature calculations were performed on the ATF capsules using the BISON fuel performance code. BISON is an application of INL’s Multi-physics Object Oriented Simulation Environment (MOOSE), which is a massively parallel finite element based framework used to solve systems of fully coupled nonlinear partial differential equations. Both 2D and 3D models were set up to examine cladding and fuel performance.

  11. Exparte Memo: 4-26-16 Meeting on Test Procedures for Water Heaters,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EERE-2015-BT-TP-0007-0002 | Department of Energy Exparte Memo: 4-26-16 Meeting on Test Procedures for Water Heaters, EERE-2015-BT-TP-0007-0002 Exparte Memo: 4-26-16 Meeting on Test Procedures for Water Heaters, EERE-2015-BT-TP-0007-0002 Energy Conservation Program for Consumer Products and Certain Industrial Equipment: Test Procedures for Water Heaters, EERE-2015-BT-TP-0007-0002, specifically issues surrounding the Conversion Factor status. EXPARTE MEMO 4 26-rbc (83.88 KB) More Documents

  12. Stability of CIGS Solar Cells and Component Materials Evaluated by a Step-Stress Accelerated Degradation Test Method: Preprint

    SciTech Connect (OSTI)

    Pern, F. J.; Noufi, R.

    2012-10-01

    A step-stress accelerated degradation testing (SSADT) method was employed for the first time to evaluate the stability of CuInGaSe2 (CIGS) solar cells and device component materials in four Al-framed test structures encapsulated with an edge sealant and three kinds of backsheet or moisture barrier film for moisture ingress control. The SSADT exposure used a 15oC and then a 15% relative humidity (RH) increment step, beginning from 40oC/40%RH (T/RH = 40/40) to 85oC/70%RH (85/70) as of the moment. The voluminous data acquired and processed as of total DH = 3956 h with 85/70 = 704 h produced the following results. The best CIGS solar cells in sample Set-1 with a moisture-permeable TPT backsheet showed essentially identical I-V degradation trend regardless of the Al-doped ZnO (AZO) layer thickness ranging from standard 0.12 μm to 0.50 μm on the cells. No clear 'stepwise' feature in the I-V parameter degradation curves corresponding to the SSADT T/RH/time profile was observed. Irregularity in I-V performance degradation pattern was observed with some cells showing early degradation at low T/RH < 55/55 and some showing large Voc, FF, and efficiency degradation due to increased series Rs (ohm-cm2) at T/RH ≥ 70/70. Results of (electrochemical) impedance spectroscopy (ECIS) analysis indicate degradation of the CIGS solar cells corresponded to increased series resistance Rs (ohm) and degraded parallel (minority carrier diffusion/recombination) resistance Rp, capacitance C, overall time constant Rp*C, and 'capacitor quality' factor (CPE-P), which were related to the cells? p-n junction properties. Heating at 85/70 appeared to benefit the CIGS solar cells as indicated by the largely recovered CPE-P factor. Device component materials, Mo on soda lime glass (Mo/SLG), bilayer ZnO (BZO), AlNi grid contact, and CdS/CIGS/Mo/SLG in test structures with TPT showed notable to significant degradation at T/RH ≥ 70/70. At T/RH = 85/70, substantial blistering of BZO layers on CIGS

  13. 2014-02-21 Issuance: Test Procedure for Commercial Water Heating Equipment; Request for Information

    Office of Energy Efficiency and Renewable Energy (EERE)

    This document is a pre-publication Federal Register request for information regarding test procedures for commercial water heating equipment, as issued by the Deputy Assistant Secretary for Energy Efficiency (February 21, 2014).

  14. Lockheed Testing the Waters for Ocean Thermal Energy System | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Lockheed Testing the Waters for Ocean Thermal Energy System Lockheed Testing the Waters for Ocean Thermal Energy System May 27, 2010 - 11:46am Addthis Paul Lester Paul Lester Digital Content Specialist, Office of Public Affairs A floating platform, simple turbine and tropical oceans could be the key to producing 30 percent or more of the total energy the world consumes today, according to Lockheed Martin. The technology in play: Ocean Thermal Energy Conversion (OTEC). Lockheed Martin

  15. OTEC (Ocean Thermal Energy Conversion) CWP (Cold Water Pipe) Laboratory Test Program. Ocean Systems Test Plan

    SciTech Connect (OSTI)

    Not Available

    1980-09-01

    This document presents the plan for validating the ocean systems response codes used in the OTEC community. Ocean systems used here includes the platform, the CWP, and the mooring system. The objectives of the present program are to acquire test data on the response of the ocean system to wave excitation available frequency domain computer codes. If the codes are not fully validated upon comparison of the test data with the calculations, the objectives are to identify discrepancies, establish the range of code usefulness and to recommend improvements. Model tests will be conducted in the OTC model basin with the CWP extending into the 30 foot deep pit. This limits the model scale to 1:110. Three types of prototype CWP's will be modeled: rigid, articulated and compliant. Two mooring stiffnesses will be tested based on the Lockheed mooring study. The model platform is a modified version of the APL barge redesigned to improve seakeeping performance. Computer code calculations will be made with the ROTEC and NOAA/DOE frequency domain codes. Standard response parameters will be compared with the test data (stress and motion maxima, significant and RMS magnitudes as well as selected RAO's). Wave drift forces will be estimated and compared to test data.

  16. Predicting the occurrence of mixed mode failure associated with hydraulic fracturing, part 2 water saturated tests

    SciTech Connect (OSTI)

    Bauer, Stephen J.; Broome, Scott Thomas; Choens, Charles; Barrow, Perry Carl

    2015-09-14

    Seven water-saturated triaxial extension experiments were conducted on four sedimentary rocks. This experimental condition was hypothesized more representative of that existing for downhole hydrofracture and thus it may improve our understanding of the phenomena. In all tests the pore pressure was 10 MPa and confirming pressure was adjusted to achieve tensile and transitional failure mode conditions. Using previous work in this LDRD for comparison, the law of effective stress is demonstrated in extension using this sample geometry. In three of the four lithologies, no apparent chemo-mechanical effect of water is apparent, and in the fourth lithology test results indicate some chemo-mechanical effect of water.

  17. Building America Case Study: Indirect Solar Water Heating Systems...

    Energy Savers [EERE]

    Indirect Solar Water Heating Systems in Single-Family Homes Greenfield, Massachusetts ... Building Component: Solar water heating Application: Single-family Years Tested: 2010-2013 ...

  18. Sodium-water reaction testing in support of LMFBR steam generator development

    SciTech Connect (OSTI)

    Neely, H.H.; Tessier, M.J.

    1981-10-01

    This paper briefly describes the Large Leak Test Rig after its conversion for the second series program to test internals typical of the Clinch River Breeder Reactor steam generator. The test article instrumentation provided and the data gathered are described. An explanation of the phenomena observed is discussed. The Series II tests are dedicated to investigating intermediate-to-large sodium-water reaction (SWR) and nonreactive events (nitrogen-sodium). The first two tests were double-ended guillotine (DEG) nonreactive tests utilizing single and double rupture disks for sodium containment to investigate pure hydraulic effects. The third test was locatd in about the same location as the other two and was a SWR DEG test. 9 refs.

  19. Field Test Design Simulations of Pore-Water Extraction for the SX Tank Farm

    SciTech Connect (OSTI)

    Truex, Michael J.; Oostrom, Martinus

    2013-09-01

    A proof of principle test of pore water extraction is being performed by Washington River Protection Solutions for the U.S. Department of Energy, Office of River Protection. This test is being conducted to meet the requirements of Hanford Federal Facility Agreement and Consent Order (HFFACO) (Ecology et al. 1989) Milestone M 045-20, and is described in RPP-PLAN-53808, 200 West Area Tank Farms Interim Measures Investigation Work Plan. To support design of this test, numerical simulations were conducted to help define equipment and operational parameters. The modeling effort builds from information collected in laboratory studies and from field characterization information collected at the test site near the Hanford Site 241-SX Tank Farm. Numerical simulations were used to evaluate pore-water extraction performance as a function of the test site properties and for the type of extraction well configuration that can be constructed using the direct-push installation technique. Output of simulations included rates of water and soil-gas production as a function of operational conditions for use in supporting field equipment design. The simulations also investigated the impact of subsurface heterogeneities in sediment properties and moisture distribution on pore-water extraction performance. Phenomena near the extraction well were also investigated because of their importance for pore-water extraction performance.

  20. Argonne Liquid-Metal Advanced Burner Reactor : components and in-vessel system thermal-hydraulic research and testing experience - pathway forward.

    SciTech Connect (OSTI)

    Kasza, K.; Grandy, C.; Chang, Y.; Khalil, H.; Nuclear Engineering Division

    2007-06-30

    -flow operation to natural circulation. Low-flow coolant events are the most difficult to design for because they involve the most complex thermal-hydraulic behavior induced by the dominance of thermal-buoyancy forces acting on the coolants. Such behavior can cause multiple-component flow interaction phenomena, which are not adequately understood or appreciated by reactor designers as to their impact on reactor performance and safety. Since the early 1990s, when DOE canceled the U.S. Liquid Metal Fast Breeder Reactor (LMFBR) program, little has been done experimentally to further understand the importance of the complex thermal-buoyancy phenomena and their impact on reactor design or to improve the ability of three-dimensional (3-D) transient computational fluid dynamics (CFD) and structures codes to model the phenomena. An improved experimental data base and the associated improved validated codes would provide needed design tools to the reactor community. The improved codes would also facilitate scale-up from small-scale testing to prototype size and would facilitate comparing performance of one reactor/component design with another. The codes would also have relevance to the design and safety of water-cooled reactors. To accomplish the preceding, it is proposed to establish a national GNEP-LMR research and development center at Argonne having as its foundation state-of-art science-based infrastructure consisting of: (a) thermal-hydraulic experimental capabilities for conducting both water and sodium testing of individual reactor components and complete reactor in-vessel models and (b) a computational modeling development and validation capability that is strongly interfaced with the experimental facilities. The proposed center would greatly advance capabilities for reactor development by establishing the validity of high-fidelity (i.e., close to first principles) models and tools. Such tools could be used directly for reactor design or for qualifying/tuning of lower

  1. Ground-water data for 1990--91 and ground-water withdrawals for 1951--91, Nevada Test Site and vicinity, Nye County, Nevada

    SciTech Connect (OSTI)

    Wood, D.B.; Reiner, S.R.

    1996-12-31

    This report presents selected ground-water data collected from wells and test holes at and in the vicinity of the Nevada Test Site. Depth-to-water measurements were made at 74 sites at and in the vicinity of the Nevada Test Site during water years 1990--91. Measured depths to water ranged from 301 to 2,215 feet below land surface and measured altitudes of the ground-water surface at the Nevada Test Site ranged from 2,091 to 6,083 feet above sea level. Depth-to-water measurements were obtained by a combination of wire-line, electric-tape, iron-horse, and steel-tape methods. Available historic withdrawal and depth-to-water data for ground-water supply wells have been included to show changes through time. Water samples were collected and analyzed for tritium concentrations at 15 sites during water years 1990--91. Tritium concentrations in bailed water samples ranged from below detection limits to 5,550,000 picocuries per liter. Tritium concentrations in samples from three wells exceeded drinking water standards established by the US Environmental Protection Agency. All three wells are separate piezometers contained within a single test hole near an area of extensive underground nuclear testing.

  2. Energetic component treatability study

    SciTech Connect (OSTI)

    Gildea, P.D.; Brandon, S.L.; Brown, B.G. [and others

    1997-11-01

    The effectiveness of three environmentally sound processes for small energetic component disposal was examined experimentally in this study. The three destruction methods, batch reactor supercritical water oxidation, sodium hydroxide base hydrolysis and calcium carbonate cookoff were selected based on their potential for producing a clean solid residue and minimum release of toxic gases after component detonation. The explosive hazard was destroyed by all three processes. Batch supercritical water oxidation destroyed both the energetics and organics. Further development is desired to optimize process parameters. Sodium hydroxide base hydrolysis and calcium carbonate cookoff results indicated the potential for scrubbing gaseous detonation products. Further study and testing are needed to quantify the effectiveness of these later two processes for full-scale munition destruction. The preliminary experiments completed in this study have demonstrated the promise of these three processes as environmentally sound technologies for energetic component destruction. Continuation of these experimental programs is strongly recommended to optimize batch supercritical water oxidation processing, and to fully develop the sodium hydroxide base hydrolysis and calcium carbonate cookoff technologies.

  3. Pore Water Extraction Test Near 241-SX Tank Farm at the Hanford Site, Washington, USA

    SciTech Connect (OSTI)

    Eberlein, Susan J.; Parker, Danny L.; Tabor, Cynthia L.; Holm, Melissa J.

    2013-11-11

    A proof-of-principle test is underway near the Hanford Site 241-SX Tank Farm. The test will evaluate a potential remediation technology that will use tank farm-deployable equipment to remove contaminated pore water from vadose zone soils. The test system was designed and built to address the constraints of working within a tank farm. Due to radioactive soil contamination and limitations in drilling near tanks, small-diameter direct push drilling techniques applicable to tank farms are being utilized for well placement. To address space and weight limitations in working around tanks and obstacles within tank farms, the above ground portions of the test system have been constructed to allow deployment flexibility. The test system utilizes low vacuum over a sealed well screen to establish flow into an extraction well. Extracted pore water is collected in a well sump,and then pumped to the surface using a small-diameter bladder pump.If pore water extraction using this system can be successfully demonstrated, it may be possible to target local contamination in the vadose zone around underground storage tanks. It is anticipated that the results of this proof-of-principle test will support future decision making regarding interim and final actions for soil contamination within the tank farms.

  4. Diel patterns of water potential components for the crassulacean acid metabolism plant Opuntia ficus-indica when well-watered or droughted

    SciTech Connect (OSTI)

    Goldstein, G.; Ortega, J.K.E.; Nerd, A.; Nobel, P.S. )

    1991-01-01

    Under well-watered conditions, chlorenchyma acidity in cladodes of Opuntia ficus-indica increased substantially at night, fully accounting for the 0.26-megapascal nocturnal increase in osmotic pressure in the outer 2 millimeters. Osmotic pressure in the inner part of the chlorenchyma and in the water-storage parenchyma did not change significantly over 24-hour periods. Three months of drought decreased nocturnal acid accumulation by 73% and essentially abolished transpiration; also, 27% of the chlorenchyma water and 61% of the parenchyma water was lost during such drought, but the average tissue osmotic pressure was little affected. Turgor pressure was maintained in the chlorenchyma after 3 months of drought, although it decreased sevenfold in the water-storage parenchyma compared with the well-watered condition. Moreover, the nocturnal increases in turgor pressure of about 0.08 megapascal in the outer part of the chlorenchyma was also unchanged by such drought. The water potential magnitudes favored water movement from the parenchyma to the chlorenchyma at the end of the night and in the reverse direction during the late afternoon. Experiments with tritiated water support this pattern of water movement, which is also in agreement with predictions based on electric-circuit analog models for Crassulacean acid metabolism plants.

  5. Compliance testing of hot-water and steam boilers, Shaw Afb, South Carolina. Final report

    SciTech Connect (OSTI)

    Garrison, J.A.

    1989-02-01

    At the request of HQ TAC/DEEV, personnel of the USAFOEHL Air Quality Function conducted source testing of eighteen small hot water and steam boilers to determine stack-gas moisture content and velocity. The data obtained during the survey was necessary for boiler operating application.

  6. NREL Tests Integrated Heat Pump Water Heater Performance in Different Climates (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-01-01

    This technical highlight describes NREL tests to capture information about heat pump performance across a wide range of ambient conditions for five heat pump water heaters (HPWH). These water heaters have the potential to significantly reduce water heater energy use relative to traditional electric resistance water heaters. These tests have provided detailed performance data for these appliances, which have been used to evaluate the cost of saved energy as a function of climate. The performance of HPWHs is dependent on ambient air temperature and humidity and the logic controlling the heat pump and the backup resistance heaters. The laboratory tests were designed to measure each unit's performance across a range of air conditions and determine the specific logic controlling the two heat sources, which has a large effect on the comfort of the users and the energy efficiency of the system. Unlike other types of water heaters, HPWHs are both influenced by and have an effect on their surroundings. Since these effects are complex and different for virtually every house and climate region, creating an accurate HPWH model from the data gathered during the laboratory tests was a main goal of the project. Using the results from NREL's laboratory tests, such as the Coefficient of Performance (COP) curves for different air conditions as shown in Figure 1, an existing HPWH model is being modified to produce more accurate whole-house simulations. This will allow the interactions between the HPWH and the home's heating and cooling system to be evaluated in detail, for any climate region. Once these modeling capabilities are in place, a realistic cost-benefit analysis can be performed for a HPWH installation anywhere in the country. An accurate HPWH model will help to quantify the savings associated with installing a HPWH in the place of a standard electric water heater. In most locations, HPWHs are not yet a cost-effective alternative to natural gas water heaters. The detailed

  7. Accuracy of the European solar water heater test procedure. Part 1: Measurement errors and parameter estimates

    SciTech Connect (OSTI)

    Rabl, A.; Leide, B. ); Carvalho, M.J.; Collares-Pereira, M. ); Bourges, B.

    1991-01-01

    The Collector and System Testing Group (CSTG) of the European Community has developed a procedure for testing the performance of solar water heaters. This procedure treats a solar water heater as a black box with input-output parameters that are determined by all-day tests. In the present study the authors carry out a systematic analysis of the accuracy of this procedure, in order to answer the question: what tolerances should one impose for the measurements and how many days of testing should one demand under what meteorological conditions, in order to be able to quarantee a specified maximum error for the long term performance The methodology is applicable to other test procedures as well. The present paper (Part 1) examines the measurement tolerances of the current version of the procedure and derives a priori estimates of the errors of the parameters; these errors are then compared with the regression results of the Round Robin test series. The companion paper (Part 2) evaluates the consequences for the accuracy of the long term performance prediction. The authors conclude that the CSTG test procedure makes it possible to predict the long term performance with standard errors around 5% for sunny climates (10% for cloudy climates). The apparent precision of individual test sequences is deceptive because of large systematic discrepancies between different sequences. Better results could be obtained by imposing tighter control on the constancy of the cold water supply temperature and on the environment of the test, the latter by enforcing the recommendation for the ventilation of the collector.

  8. FEM calculation of eddy current losses and forces in thin conducting sheets of test facilities for fusion reactor components

    SciTech Connect (OSTI)

    Biro, O.; Preis, K.; Richter, K.R. ); Heller, R.; Komarek, P.; Maurer, W. )

    1992-03-01

    The eddy current carrying conducting parts in fusion reactor models are frequently relatively thin sheets. To avoid the associated numerical problems, the surface current density is represented in this paper by a scalar quantity and, as a novelty, the magnetic field is described overall by a magnetic vector potential to treat multiply connected conductors easily. The method is applied to several problems involving fusion reactor components.

  9. Design and Testing of Vacuum Breaker Check Valve for Simplified Boiling Water Reactor

    SciTech Connect (OSTI)

    Ishii, M.; Xu, Y.; Revankar, S.T.

    2002-07-01

    A new design of the vacuum breaker check valve was developed to replace the mechanical valve in a simplified boiling water reactor. Scaling and design calculations were performed to obtain the geometry of new passive hydraulic vacuum breaker check valve. In order to check the valve performance, a RELAP5 model of the simplified boiling water reactor system with the new valve was developed. The valve was implemented in an integral facility, PUMA and was tested for large break loss of coolant accident. (authors)

  10. HWMA/RCRA CLOSURE PLAN FOR THE MATERIALS TEST REACTOR WING (TRA-604) LABORATORY COMPONENTS VOLUNTARY CONSENT ORDER ACTION PLAN VCO-5.8 D REVISION2

    SciTech Connect (OSTI)

    KIRK WINTERHOLLER

    2008-02-25

    This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan was developed for the laboratory components of the Test Reactor Area Catch Tank System (TRA-630) that are located in the Materials Test Reactor Wing (TRA-604) at the Reactor Technology Complex, Idaho National Laboratory Site, to meet a further milestone established under Voluntary Consent Order Action Plan VCO-5.8.d. The TRA-604 laboratory components addressed in this closure plan were deferred from the TRA-630 Catch Tank System closure plan due to ongoing laboratory operations in the areas requiring closure actions. The TRA-604 laboratory components include the TRA-604 laboratory warm wastewater drain piping, undersink drains, subheaders, and the east TRA-604 laboratory drain header. Potentially contaminated surfaces located beneath the TRA-604 laboratory warm wastewater drain piping and beneath the island sinks located in Laboratories 126 and 128 (located in TRA-661) are also addressed in this closure plan. The TRA-604 laboratory components will be closed in accordance with the interim status requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act as implemented by the Idaho Administrative Procedures Act 58.01.05.009 and 40 Code of Federal Regulations 265, Subparts G and J. This closure plan presents the closure performance standards and the methods for achieving those standards.

  11. LWRS Fuels Pathway: Engineering Design and Fuels Pathway Initial Testing of the Hot Water Corrosion System

    SciTech Connect (OSTI)

    Dr. John Garnier; Dr. Kevin McHugh

    2012-09-01

    The Advanced LWR Nuclear Fuel Development R&D pathway performs strategic research focused on cladding designs leading to improved reactor core economics and safety margins. The research performed is to demonstrate the nuclear fuel technology advancements while satisfying safety and regulatory limits. These goals are met through rigorous testing and analysis. The nuclear fuel technology developed will assist in moving existing nuclear fuel technology to an improved level that would not be practical by industry acting independently. Strategic mission goals are to improve the scientific knowledge basis for understanding and predicting fundamental nuclear fuel and cladding performance in nuclear power plants, and to apply this information in the development of high-performance, high burn-up fuels. These will result in improved safety, cladding, integrity, and nuclear fuel cycle economics. To achieve these goals various methods for non-irradiated characterization testing of advanced cladding systems are needed. One such new test system is the Hot Water Corrosion System (HWCS) designed to develop new data for cladding performance assessment and material behavior under simulated off-normal reactor conditions. The HWCS is capable of exposing prototype rodlets to heated, high velocity water at elevated pressure for long periods of time (days, weeks, months). Water chemistry (dissolved oxygen, conductivity and pH) is continuously monitored. In addition, internal rodlet heaters inserted into cladding tubes are used to evaluate repeated thermal stressing and heat transfer characteristics of the prototype rodlets. In summary, the HWCS provides rapid ex-reactor evaluation of cladding designs in normal (flowing hot water) and off-normal (induced cladding stress), enabling engineering and manufacturing improvements to cladding designs before initiation of the more expensive and time consuming in-reactor irradiation testing.

  12. Energy Storage Components and Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Components and Systems - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  13. Performance of Charcoal Cookstoves for Haiti Part 1: Results from the Water Boiling Test

    SciTech Connect (OSTI)

    Booker, Kayje; Han, Tae Won; Granderson, Jessica; Jones, Jennifer; Lsk, Kathleen; Yang, Nina; Gadgil, Ashok

    2011-06-01

    In April 2010, a team of scientists and engineers from Lawrence Berkeley National Lab (LBNL) and UC Berkeley, with support from the Darfur Stoves Project (DSP), undertook a fact-finding mission to Haiti in order to assess needs and opportunities for cookstove intervention. Based on data collected from informal interviews with Haitians and NGOs, the team, Scott Sadlon, Robert Cheng, and Kayje Booker, identified and recommended stove testing and comparison as a high priority need that could be filled by LBNL. In response to that recommendation, five charcoal stoves were tested at the LBNL stove testing facility using a modified form of version 3 of the Shell Foundation Household Energy Project Water Boiling Test (WBT). The original protocol is available online. Stoves were tested for time to boil, thermal efficiency, specific fuel consumption, and emissions of CO, CO{sub 2}, and the ratio of CO/CO{sub 2}. In addition, Haitian user feedback and field observations over a subset of the stoves were combined with the experiences of the laboratory testing technicians to evaluate the usability of the stoves and their appropriateness for Haitian cooking. The laboratory results from emissions and efficiency testing and conclusions regarding usability of the stoves are presented in this report.

  14. Developing an Instrumentation Package for in-Water Testing of Marine Hydrokinetic Energy Devices: Preprint

    SciTech Connect (OSTI)

    Nelson, E.

    2010-08-01

    The ocean-energy industry is still in its infancy and device developers have provided their own equipment and procedures for testing. Currently, no testing standards exist for ocean energy devices in the United States. Furthermore, as prototype devices move from the test tank to in-water testing, the logistical challenges and costs grow exponentially. Development of a common instrumentation package that can be moved from device to device is one means of reducing testing costs and providing normalized data to the industry as a whole. As a first step, the U.S. National Renewable Energy Laboratory (NREL) has initiated an effort to develop an instrumentation package to provide a tool to allow common measurements across various ocean energy devices. The effort is summarized in this paper. First, we present the current status of ocean energy devices. We then review the experiences of the wind industry in its development of the instrumentation package and discuss how they can be applied in the ocean environment. Next, the challenges that will be addressed in the development of the ocean instrumentation package are discussed. For example, the instrument package must be highly adaptable to fit a large array of devices but still conduct common measurements. Finally, some possible system configurations are outlined followed by input from the industry regarding its measurement needs, lessons learned from prior testing, and other ideas.

  15. SUPERCRITICAL WATER PARTIAL OXIDATION PHASE I - PILOT-SCALE TESTING / FEASIBILITY STUDIES FINAL REPORT

    SciTech Connect (OSTI)

    SPRITZER,M; HONG,G

    2005-01-01

    Under Cooperative Agreement No. DE-FC36-00GO10529 for the Department of Energy, General Atomics (GA) is developing Supercritical Water Partial Oxidation (SWPO) as a means of producing hydrogen from low-grade biomass and other waste feeds. The Phase I Pilot-scale Testing/Feasibility Studies have been successfully completed and the results of that effort are described in this report. The Key potential advantages of the SWPO process is the use of partial oxidation in-situ to rapidly heat the gasification medium, resulting in less char formation and improved hydrogen yield. Another major advantage is that the high-pressure, high-density aqueous environment is ideal for reaching and gasifying organics of all types. The high water content of the medium encourages formation of hydrogen and hydrogen-rich products and is especially compatible with high water content feeds such as biomass materials. The high water content of the medium is also effective for gasification of hydrogen-poor materials such as coal. A versatile pilot plant for exploring gasification in supercritical water has been established at GA's facilities in San Diego. The Phase I testing of the SWPO process with wood and ethanol mixtures demonstrated gasification efficiencies of about 90%, comparable to those found in prior laboratory-scale SCW gasification work carreid out at the University of Hawaii at Manoa (UHM) as well as other biomass gasification experience with conventional gasifiers. As in the prior work at UHM, a significant amount of the hydrogen found in the gas phase products is derived from the water/steam matrix. The studies at UHM utilized an indirectly heated gasifier with an acitvated carbon catalyst. In contrast, the GA studies utilized a directly heated gasifier without catalyst, plus a surrogate waste fuel. Attainment of comparable gasification efficiencies without catalysis is an important advancement for the GA process, and opens the way for efficient hydrogen production from low

  16. The Mission and Technology of a Gas Dynamic Trap Neutron Source for Fusion Material and Component Testing and Qualification

    SciTech Connect (OSTI)

    Ivanov, A; Kulcinski, J; Molvik, A; Ryutov, D; Santarius, J; Simonen, T; Wirth, B D; Ying, A

    2009-11-23

    The successful operation (with {beta} {le} 60%, classical ions and electrons with Te = 250 eV) of the Gas Dynamic Trap (GDT) device at the Budker Institute of Nuclear Physics (BINP) in Novosibirsk, Russia, extrapolates to a 2 MW/m{sup 2} Dynamic Trap Neutron Source (DTNS), which burns only {approx}100 g of tritium per full power year. The DTNS has no serious physics, engineering, or technology obstacles; the extension of neutral beam lines to steady state can use demonstrated engineering; and it supports near-term tokamaks and volume neutron sources. The DTNS provides a neutron spectrum similar to that of ITER and satisfies the missions specified by the materials community to test fusion materials (listed as one of the top grand challenges for engineering in the 21st century by the U.S. National Academy of Engineering) and subcomponents (including tritium-breeding blankets) needed to construct DEMO. The DTNS could serve as the first Fusion Nuclear Science Facility (FNSF), called for by ReNeW, and could provide the data necessary for licensing subsequent FSNFs.

  17. Test results for the Oasis 3C high performance water-pumping windmill

    SciTech Connect (OSTI)

    Eggleston, D.M.

    1997-12-31

    The WINDTech International, L.L.C. Oasis 3C, a 3 m diameter, high-performance water-pumping windmill, was tested at the DME Engineering Wind Test Site just south of Midland, Texas from August through December, 1996. This machine utilizes a 3:1 gearbox with rotating counterweights, similar to a conventional oilfield pumping unit, driven by a multibladed rotor. The rotating counterweight system balances most of the pumping loads and reduces gear loads and starting torque by a factor of at least two and often by a factor of four or more. The torque reduction substantially extends gear and bearing life, and reduces wind speeds required for starting by 30 to 50% or more. The O3C was tested pumping from a quiescent fluid depth of 12.2 m (40 ft) from a 28.3 m (93 ft)-deep well, with additional pumping depth simulated using a pressure regulator valve system. A 9.53 cm (3.75 in.) diameter Harbison-Fischer seal-less single-acting piston pump was used to eliminate pump seal friction as a variable, and standard O3C stroke lengths of 30.5 and 15.2 cm (12 and 6 inches) were used. The regulator spring was set to give a maximum stroke rate of 33 strokes per minute. The water pumped was returned to the well after flowing through a settling tank. The tests were performed in accordance with AWEA WECS testing standards. Instrumentation provided 16 channels of data to accurately measure machine performance, including starting wind speeds, flow rates, O3C azimuth, tail furl angle, wind direction tracking errors, RPM, sucker rod loads, and other variables. The most significant performance data is summarized herein. A mathematical model of machine performance was developed that fairly accurately predicts performance for each of three test conditions. The results verify that the O3C is capable of pumping water at wind speeds from 30% to more than 50% lower than comparable un-counterbalanced units.

  18. MIT jar test of the natural polymer chitosan with fresh pond water from the Cambridge Water Department, November-December 1992

    SciTech Connect (OSTI)

    Murcott, S.; Harleman, D.R.F.

    1993-01-01

    The purpose of the MIT (Massachusetts Institute of Technology) jar tests of chitosan using CWD (Cambridge Water Department Treatment Plant) water was to demonstrate the effectiveness of chitosan as a coagulant in drinking water applications. The approach was to compare the performance of the natural organic coagulant, chitosan, to the performance of alum and other chemical coagulants in terms of the parameters turbidity, color, pH and alkalinity. Twenty-five jar tests were conducted during November and December, 1992, at Parsons Laboratory, MIT, Cambridge, Massachusetts.

  19. Preliminary Feasibility, Design, and Hazard Analysis of a Boiling Water Test Loop Within the Idaho National Laboratory Advanced Test Reactor National Scientific User Facility

    SciTech Connect (OSTI)

    Douglas M. Gerstner

    2009-05-01

    The Advanced Test Reactor (ATR) is a pressurized light-water reactor with a design thermal power of 250 MW. The principal function of the ATR is to provide a high neutron flux for testing reactor fuels and other materials. The ATR and its support facilities are located at the Idaho National Laboratory (INL). A Boiling Water Test Loop (BWTL) is being designed for one of the irradiation test positions within the. The objective of the new loop will be to simulate boiling water reactor (BWR) conditions to support clad corrosion and related reactor material testing. Further it will accommodate power ramping tests of candidate high burn-up fuels and fuel pins/rods for the commercial BWR utilities. The BWTL will be much like the pressurized water loops already in service in 5 of the 9 “flux traps” (region of enhanced neutron flux) in the ATR. The loop coolant will be isolated from the primary coolant system so that the loop’s temperature, pressure, flow rate, and water chemistry can be independently controlled. This paper presents the proposed general design of the in-core and auxiliary BWTL systems; the preliminary results of the neutronics and thermal hydraulics analyses; and the preliminary hazard analysis for safe normal and transient BWTL and ATR operation.

  20. 2014-06-27 Issuance: Test Procedures for Residential and Commercial Water Heaters; Final Rule

    Office of Energy Efficiency and Renewable Energy (EERE)

    This document is a pre-publication Federal Register final rule regarding test procedures for residential and commercial water heaters, as issued by the Deputy Assistant Secretary for Energy Efficiency on June 27, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  1. A rating procedure for solar domestic hot water systems based on ASHRAE-95 test results

    SciTech Connect (OSTI)

    Minnerly, B.V.; Klein, S.A.; Beckman, W.A. )

    1991-01-01

    A rating method for solar domestic hot water (SDHW) systems is presented that provides site-specific annual performance estimates based on ASHRAE-95 test results. An overall loss and overall gain coefficient are estimated by lumping the entire thermal behavior of the actual system exhibited during the ASHRAE-95 test into the collector parameters of a simplified system model. The performance of the simplified model can then be predicted using either the F-chart or TRNSYS and presented as an estimate of the annual performance of the actual system. Experimental performance measurements taken from relevant literature as well as extensive simulations, indicate that this method is capable of predicting the annual performance of a wide range of SDHW system types to within 5%, independent of location.

  2. Tensile and Fatigue Testing and Material Hardening Model Development for 508 LAS Base Metal and 316 SS Similar Metal Weld under In-air and PWR Primary Loop Water Conditions

    SciTech Connect (OSTI)

    Mohanty, Subhasish; Soppet, William; Majumdar, Saurin; Natesan, Ken

    2015-09-01

    This report provides an update on an assessment of environmentally assisted fatigue for light water reactor components under extended service conditions. This report is a deliverable in September 2015 under the work package for environmentally assisted fatigue under DOE’s Light Water Reactor Sustainability program. In an April 2015 report we presented a baseline mechanistic finite element model of a two-loop pressurized water reactor (PWR) for systemlevel heat transfer analysis and subsequent thermal-mechanical stress analysis and fatigue life estimation under reactor thermal-mechanical cycles. In the present report, we provide tensile and fatigue test data for 508 low-alloy steel (LAS) base metal, 508 LAS heat-affected zone metal in 508 LAS–316 stainless steel (SS) dissimilar metal welds, and 316 SS-316 SS similar metal welds. The test was conducted under different conditions such as in air at room temperature, in air at 300 oC, and under PWR primary loop water conditions. Data are provided on materials properties related to time-independent tensile tests and time-dependent cyclic tests, such as elastic modulus, elastic and offset strain yield limit stress, and linear and nonlinear kinematic hardening model parameters. The overall objective of this report is to provide guidance to estimate tensile/fatigue hardening parameters from test data. Also, the material models and parameters reported here can directly be used in commercially available finite element codes for fatigue and ratcheting evaluation of reactor components under in-air and PWR water conditions.

  3. Barrier erosion control test plan: Gravel mulch, vegetation, and soil water interactions

    SciTech Connect (OSTI)

    Waugh, W.J.; Link, S.O. (Pacific Northwest Lab., Richland, WA (USA))

    1988-07-01

    Soil erosion could reduce the water storage capacity of barriers that have been proposed for the disposal of near-surface waste at the US Department of Energy's Hanford Site. Gravel mixed into the top soil surface may create a self-healing veneer that greatly retards soil loss. However, gravel admixtures may also enhance infiltration of rainwater, suppress plant growth and water extraction, and lead to the leaching of underlying waste. This report describes plans for two experiments that were designed to test hypotheses concerning the interactive effects of surface gravel admixtures, revegetation, and enhanced precipitation on soil water balance and plant abundance. The first experiment is a factorial field plot set up on the site selected as a soil borrow area for the eventual construction of barriers. The treatments, arranged in a a split-split-plot design structure, include two densities of gravel admix, a mixture of native and introduced grasses, and irrigation to simulate a wetter climate. Changes in soil water storage and plant cover are monitored with neutron moisture probes and point intercept sampling, respectively. The second experiment consists of an array of 80 lysimeters containing several different barrier prototypes. Surface treatments are similar to the field-plot experiment. Drainage is collected from a valve at the base of each lysimeter tube, and evapotranspiration is estimated by subtraction. The lysimeters are also designed to be coupled to a whole-plant gas exchange system that will be used to conduct controlled experiments on evapotranspiration for modeling purposes. 56 refs., 6 figs., 8 tabs.

  4. Leachate concentrations from water leach and column leach tests on fly ash-stabilized soils

    SciTech Connect (OSTI)

    Bin-Shafique, S.; Benson, C.H.; Edil, T.B.; Hwang, K.

    2006-01-15

    Batch water leaching tests (WLTs) and column leaching tests (CLTs) were conducted on coal-combustion fly ashes, soil, and soil-fly ash mixtures to characterize leaching of Cd, Cr, Se, and Ag. The concentrations of these metals were also measured in the field at two sites where soft fine-grained soils were mechanically stabilized with fly ash. Concentrations in leachate from the WLTs on soil-fly ash mixtures are different from those on fly ash alone and cannot be accurately estimated based on linear dilution calculations using concentrations from WLTs on fly ash alone. The concentration varies nonlinearly with fly ash content due to the variation in pH with fly ash content. Leachate concentrations are low when the pH of the leachate or the cation exchange capacity (CEC) of the soil is high. Initial concentrations from CLTs are higher than concentrations from WLTs due to differences in solid-liquid ratio, pH, and solid-liquid contact. However, both exhibit similar trends with fly ash content, leachate pH, and soil properties. Scaling factors can be applied to WLT concentrations (50 for Ag and Cd, 10 for Cr and Se) to estimate initial concentrations for CLTs. Concentrations in leachate collected from the field sites were generally similar or slightly lower than concentrations measured in CLTs on the same materials. Thus, CLTs appear to provide a good indication of conditions that occur in the field provided that the test conditions mimic the field conditions. In addition, initial concentrations in the field can be conservatively estimated from WLT concentrations using the aforementioned scaling factors provided that the pH of the infiltrating water is near neutral.

  5. Superclean coal-water slurry combustion testing in an oil-fired boiler

    SciTech Connect (OSTI)

    Miller, B.G.; Pisupati, S.V.; Poe, R.L.; Morrison, J.L.; Xie, J.; Walsh, P.M.; Wincek, R.T.; Clark, D.A.; Scaroni, A.W.

    1993-04-21

    The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the capability of effectively firing SCCWS in an industrial boiler designed for heavy fuel oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with 3.0 wt.% ash and 0.9 wt.% sulfur) can effectively be burned in a heavy fuel oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) program expansion (additional 1,000 hours of testing). The boiler testing wig determine if the SCCWS combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion limits, and fuel transport, storage, and handling characteristics can be accommodated in an oil-designed boiler system. In addition, the proof-of-concept demonstration will generate data to determine how the properties of SCCWS and its parent coal affect boiler performance. Economic factors associated with retrofitting boilers will be identified

  6. Superclean coal-water slurry combustion testing in an oil-fired boiler

    SciTech Connect (OSTI)

    Miller, B.G.; Pisupati, S.V.; Poe, R.L.; Morrison, J.L.; Xie, J.; Walsh, P.M.; Shamanna, S.; Schobert, H.H.; Scaroni, A.W.

    1992-10-13

    The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the capability of effectively firing SCCWS in an industrial boiler designed for oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with 3.0 wt.% ash and 0.9 wt.% sulfur) can effectively be burned in an oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) program expansion (additional 1,000 hours of testing). The boiler testing will determine if the SCCWS combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion limits, and fuel transport, storage, and handling characteristics can be accommodated in an oil-designed boiler system. In addition, the proof-of-concept demonstration will generate data to determine how the properties of SCCWS and its parent coal affect boiler performance. Economic factors associated with retrofitting and operating boilers will be identified to assess the viability of future oil-to-coal retrofits.

  7. ENVIRONMENTAL REACTIVITY OF SOLID STATE HYDRIDE MATERIALS: MODELING AND TESTING FOR AIR AND WATER EXPOSURE

    SciTech Connect (OSTI)

    Anton, D.; James, C.; Cortes-Concepcion, J.; Tamburello, D.; Brinkman, K.; Gray, J.

    2010-05-18

    To make commercially acceptable condensed phase hydrogen storage systems, it is important to understand quantitatively the risks involved in using these materials. A rigorous set of environmental reactivity tests have been developed based on modified testing procedures codified by the United Nations for the transportation of dangerous goods. Potential hydrogen storage material, 2LiBH4{center_dot}MgH2 and NH3BH3, have been tested using these modified procedures to evaluate the relative risks of these materials coming in contact with the environment in hypothetical accident scenarios. It is apparent that an ignition event will only occur if both a flammable concentration of hydrogen and sufficient thermal energy were available to ignite the hydrogen gas mixture. In order to predict hydride behavior for hypothesized accident scenarios, an idealized finite element model was developed for dispersed hydride from a breached system. Empirical thermodynamic calculations based on precise calorimetric experiments were performed in order to quantify the energy and hydrogen release rates and to quantify the reaction products resulting from water and air exposure. Both thermal and compositional predictions were made with identification of potential ignition event scenarios.

  8. Ocean Thermal Energy Conversion cold water pipe at-sea test program status report. Design, fabrication, materials testing

    SciTech Connect (OSTI)

    Not Available

    1982-02-01

    This report describes the selection, testing, fabrication, and eventual deployment of a piping system for an OTEC platform.

  9. Design and Construction of a 500 KW CW, 400 MHZ Klystron To Be Used As RF Power Source For LHC/RF Component Tests

    SciTech Connect (OSTI)

    Pearson, Chris

    2003-05-05

    A 500 kW cw klystron operating at 400 MHz was developed and constructed jointly by CERN and SLAC for use as a high-power source at CERN for testing LHC/RF components such as circulators, RF absorbers and superconducting cavities with their input couplers. The design is a modification of the 353 MHz SLAC PEP-I klystron. More than 80% of the original PEP-I tube parts could thus be incorporated in the LHC test klystron which resulted in lower engineering costs as well as reduced development and construction time. The physical length between cathode plane and upper pole plate was kept unchanged so that a PEP-I tube focusing solenoid, available at CERN, could be re-used. With the aid of the klystron simulation codes JPNDISK and CONDOR, the design of the LHC tube was accomplished, which resulted in a tube with noticeably higher efficiency than its predecessor, the PEP-I klystron. The integrated cavities were redesigned using SUPERFISH and the output coupling circuit, which also required redesigning, was done with the aid of MAFIA. Details of the tube development and test results are presented.

  10. Investigation of CTBT OSI Radionuclide Techniques at the DILUTED WATERS Nuclear Test Site

    SciTech Connect (OSTI)

    Baciak, James E.; Milbrath, Brian D.; Detwiler, Rebecca S.; Kirkham, Randy R.; Keillor, Martin E.; Lepel, Elwood A.; Seifert, Allen; Emer, Dudley; Floyd, Michael

    2012-11-01

    Under the Comprehensive Nuclear-Test-Ban Treaty (CTBT), a verification regime that includes the ability to conduct an On-Site Inspection (OSI) will be established. The Treaty allows for an OSI to include many techniques, including the radionuclide techniques of gamma radiation surveying and spectrometry and environmental sampling and analysis. Such radioactivity detection techniques can provide the smoking gun evidence that a nuclear test has occurred through the detection and quantification of indicative recent fission products. An OSI faces restrictions in time and manpower, as dictated by the Treaty; not to mention possible logistics difficulties due to the location and climate of the suspected explosion site. It is thus necessary to have a good understanding of the possible source term an OSI will encounter and the proper techniques that will be necessary for an effective OSI regime. One of the challenges during an OSI is to locate radioactive debris that has escaped an underground nuclear explosion (UNE) and settled on the surface near and downwind of ground zero. To support the understanding and selection of sampling and survey techniques for use in an OSI, we are currently designing an experiment, the Particulate Release Experiment (PRex), to simulate a small-scale vent from an underground nuclear explosion. PRex will occur at the Nevada National Security Site (NNSS). The project is conducted under the National Center for Nuclear Security (NCNS) funded by the National Nuclear Security Agency (NNSA). Prior to the release experiment, scheduled for Spring of 2013, the project scheduled a number of activities at the NNSS to prepare for the release experiment as well as to utilize the nuclear testing past of the NNSS for the development of OSI techniques for CTBT. One such activitythe focus of this reportwas a survey and sampling campaign at the site of an old UNE that vented: DILUTED WATERS. Activities at DILUTED WATERS included vehicle-based survey, in situ

  11. ISSUANCE 2015-05-12: Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Test Procedures for Consumer and Commercial Water Heaters

    Broader source: Energy.gov [DOE]

    Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Test Procedures for Consumer and Commercial Water Heaters

  12. SUPERCRITICAL WATER PARTIAL OXIDATION PHASE I - PILOT-SCALE TESTING/FEASIBILTY SUDIES FINAL REPORT

    SciTech Connect (OSTI)

    SPRITZER.M; HONG,G

    2005-01-01

    General Atomics (GA) is developing Supercritical Water Partial Oxidation (SWPO) as a means of producing hydrogen from low-grade biomass and other waste feeds. The Phase I Pilot-scale Testing/Feasibility Studies have been successfully completed and the results of that effort are described in this report. The key potential advantage of the SWPO process is the use of partial oxidation in-situ to rapidly heat the gasification medium, resulting in less char formation and improved hydrogen yield. Another major advantage is that the high-pressure, high-density aqueous environment is ideal for reacting and gasifying organics of all types. The high water content of the medium encourages formation of hydrogen and hydrogen-rich products and is especially compatible with high water content feeds such as biomass materials. The high water content of the medium is also effective for gasification of hydrogen-poor materials such as coal. A versatile pilot plant for exploring gasification in supercritical water has been established at GA's facilities in San Diego. The Phase I testing of the SWPO process with wood and ethanol mixtures demonstrated gasification efficiencies of about 90%, comparable to those found in prior laboratory-scale SCW gasification work carried out at the University of Hawaii at Manoa (UHM), as well as other biomass gasification experience with conventional gasifiers. As in the prior work at UHM, a significant amount of the hydrogen found in the gas phase products is derived from the water/steam matrix. The studies at UHM utilized an indirectly heated gasifier with an activated carbon catalyst. In contrast, the GA studies utilized a directly heated gasifier without catalyst, plus a surrogate waste fuel. Attainment of comparable gasification efficiencies without catalysis is an important advancement for the GA process, and opens the way for efficient hydrogen production from low-value, dirty feed materials. The Phase I results indicate that a practical means to

  13. Effect of hydrothermal condition on the formation of multi-component oxides of Ni-based metallic glass under high temperature water near the critical point

    SciTech Connect (OSTI)

    Kim, J. S.; Lee, M. H.; Kim, S. Y.; Kim, D. H.; Ott, R. T.; Kim, H. G.

    2015-07-15

    The specific feature of multi-component oxides synthesized by hydrothermal process under high temperature (633 K) and highly pressurized water (18.9 MPa) near critical point. Effects of hydrothermal processing duration times 24 hours and 72 hours, respectively, on the oxide formation of the Ni{sub 59}Zr{sub 20}Ti{sub 16}Si{sub 2}Sn{sub 3} metallic glass synthesized by powder metallurgy process were characterized by X-ray diffractometer, differential scanning calorimeter along with the particle size, morphology and crystalline phase of the oxides. The crystallization of the needle-shape NiTiO{sub 3}, ZrTiO{sub 4} and ZrSnO{sub 4} ternary oxide phases observed on the surface of metallic glass at below glass transition temperature and the morphology of oxide phases changed to plate-shape around 2 μm in diameter by the increase processing time. This hydrothermal processing in subcritical water provides accelerated dense metal oxide crystals due to the reaction medium being at higher pressure than conventional oxidation processing.

  14. Effect of hydrothermal condition on the formation of multi-component oxides of Ni-based metallic glass under high temperature water near the critical point

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kim, J. S.; Kim, S. Y.; Kim, D. H.; Ott, R. T.; Kim, H. G.; Lee, M. H.

    2015-07-01

    The specific feature of multi-component oxides synthesized by hydrothermal process under high temperature (633 K) and highly pressurized water (18.9 MPa) near critical point. Effects of hydrothermal processing duration times 24 hours and 72 hours, respectively, on the oxide formation of the Ni59Zr20Ti16Si2Sn3 metallic glass synthesized by powder metallurgy process were characterized by X-ray diffractometer, differential scanning calorimeter along with the particle size, morphology and crystalline phase of the oxides. The crystallization of the needle-shape NiTiO3, ZrTiO4 and ZrSnO4 ternary oxide phases observed on the surface of metallic glass at below glass transition temperature and the morphology of oxide phasesmore » changed to plate-shape around 2 μm in diameter by the increase processing time. This hydrothermal processing in subcritical water provides accelerated dense metal oxide crystals due to the reaction medium being at higher pressure than conventional oxidation processing.« less

  15. Effect of hydrothermal condition on the formation of multi-component oxides of Ni-based metallic glass under high temperature water near the critical point

    SciTech Connect (OSTI)

    Kim, J. S.; Kim, S. Y.; Kim, D. H.; Ott, R. T.; Kim, H. G.; Lee, M. H.

    2015-07-01

    The specific feature of multi-component oxides synthesized by hydrothermal process under high temperature (633 K) and highly pressurized water (18.9 MPa) near critical point. Effects of hydrothermal processing duration times 24 hours and 72 hours, respectively, on the oxide formation of the Ni59Zr20Ti16Si2Sn3 metallic glass synthesized by powder metallurgy process were characterized by X-ray diffractometer, differential scanning calorimeter along with the particle size, morphology and crystalline phase of the oxides. The crystallization of the needle-shape NiTiO3, ZrTiO4 and ZrSnO4 ternary oxide phases observed on the surface of metallic glass at below glass transition temperature and the morphology of oxide phases changed to plate-shape around 2 μm in diameter by the increase processing time. This hydrothermal processing in subcritical water provides accelerated dense metal oxide crystals due to the reaction medium being at higher pressure than conventional oxidation processing.

  16. Superclean coal-water slurry combustion testing in an oil-fired boiler

    SciTech Connect (OSTI)

    Miller, B.G.; Schobert, H.H.

    1990-09-28

    The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program with the objective of demonstrating the capability of effectively firing SCCWS in industrial boilers designed for oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with less than 3.0% ash and 0.9% sulfur) can effectively be burned in oil-designed industrial boilers without adverse impact on boiler rating, maintainability, reliability and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of three phases: (1) design, permitting, and test planning, (2) construction and start up, and (3) demonstration and evaluation. The boiler testing will determine if the SCCWS combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion limits, and fuel transport, storage, and handling characteristics can be accommodated in an oil-designed boiler system. In addition, the proof-of-concept demonstration will generate data to determine how the properties of SCCWS and its parent coal affect boiler performance. Economic factors associated with retrofitting and operating boilers will be identified to assess the viability of future oil-to-coal retrofits. Progress is reported. 7 refs., 7 figs., 1 tab.

  17. NREL's e-Ca Test: A Scalable, High-Sensitivity Water Permeation Measurement Methodology (Poster), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Motivation: Barriers to oxygen and moisture are critical packaging components for a wide variety of industries. The requirements of each application vary significantly, with differing needs for cost, flexibility, transparency, and permeation rates. It is believed that for next generation technologies like OLEDs and organic PV (OPV) modules, extremely low (10 -6 to 10 -8 g/m 2 /day) water vapor transmission rates (WVTR) may be required. To aid in the research and development of such barriers, a

  18. Testing of the method for water microleakage detection from OH hydroxyl spectral lines at the L-2M stellarator

    SciTech Connect (OSTI)

    Voronov, G. S. Berezhetskii, M. S.; Bondar', Yu. F.; Vafin, I. Yu.; Vasil'kov, D. G.; Voronova, E. V.; Grebenshchikov, S. E.; Grishina, I. A.; Larionova, N. F.; Letunov, A. A.; Logvinenko, V. P.; Meshcheryakov, A. I.; Pleshkov, E. I.; Khol'nov, Yu. V.; Fedyanin, O. I.; Tsygankov, V. A.; Shchepetov, S. V.; Kurnaev, V. A.; Vizgalov, I. V.; Urusov, V. A.; and others

    2013-04-15

    Results are presented from L-2M stellarator experiments on testing a possible method for detection of water microleakages in the cooling system of the first wall and vacuum chamber of ITER. The method consists in the spectroscopic detection of spectral lines of the OH hydroxyl, which forms via the dissociation of water molecules in plasma. Emission in the spectral band of 305-310 nm can be detected even at water leakage rates less than 10{sup -4} Pa m{sup 3}/s. Chemical reactions between water and boron compounds on the vacuum chamber wall delay the detection of leakages up to {approx}2000 s. A similar phenomenon can be expected when a leakage will occur in ITER, where the materials suggested for the first wall (Be, Li) can also chemically react with water.

  19. Use of system code to estimate equilibrium tritium inventory in fusion DT machines, such as ARIES-AT and components testing facilities

    SciTech Connect (OSTI)

    C.P.C. Wong; B. Merrill

    2014-10-01

    ITER is under construction and will begin operation in 2020. This is the first 500 MWfusion class DT device, and since it is not going to breed tritium, it will consume most of the limited supply of tritium resources in the world. Yet, in parallel, DT fusion nuclear component testing machines will be needed to provide technical data for the design of DEMO. It becomes necessary to estimate the tritium burn-up fraction and corresponding initial tritium inventory and the doubling time of these machines for the planning of future supply and utilization of tritium. With the use of a system code, tritium burn-up fraction and initial tritium inventory for steady state DT machines can be estimated. Estimated tritium burn-up fractions of FNSF-AT, CFETR-R and ARIES-AT are in the range of 1–2.8%. Corresponding total equilibrium tritium inventories of the plasma flow and tritium processing system, and with the DCLL blanket option are 7.6 kg, 6.1 kg, and 5.2 kg for ARIES-AT, CFETR-R and FNSF-AT, respectively.

  20. Conceptual Engineering Method for Attenuating He Ion Interactions on First Wall Components in the Fusion Test Facility (FTF) Employing a Low-Pressure Noble Gas

    SciTech Connect (OSTI)

    C.A.Gentile, W.R.Blanchard, T.Kozub, C.Priniski, I.Zatz, S.Obenschain

    2009-09-21

    It has been shown that post detonation energetic helium ions can drastically reduce the useful life of the (dry) first wall of an IFE reactor due to the accumulation of implanted helium. For the purpose of attenuating energetic helium ions from interacting with first wall components in the Fusion Test Facility (FTF) target chamber, several concepts have been advanced. These include magnetic intervention (MI), deployment of a dynamically moving first wall, use of a sacrificial shroud, designing the target chamber large enough to mitigate the damage caused by He ions on the target chamber wall, and the use of a low pressure noble gas resident in the target chamber during pulse power operations. It is proposed that employing a low-pressure (~ 1 torr equivalent) noble gas in the target chamber will thermalize energetic helium ions prior to interaction with the wall. The principle benefit of this concept is the simplicity of the design and the utilization of (modified) existing technologies for pumping and processing the noble ambient gas. Although the gas load in the system would be increased over other proposed methods, the use of a "gas shield" may provide a cost effective method of greatly extending the first wall of the target chamber. An engineering study has been initiated to investigate conceptual engineering metmethods for implementing a viable gas shield strategy in the FTF.

  1. Development of a centrifugal downhold separator with in-situ recycle of produced water (initial tests with 34.1 API gravity crude)

    SciTech Connect (OSTI)

    Walker, J.F.; Jubin, R.T.; Robinson, S.M.

    1998-11-01

    Oak Ridge National Laboratory (ORNL) is currently developing a Centrifugal Downhole Separator (CDHS) which will extend the application of remotely operated separations equipment developed for the nuclear industry to in-well recovery of oil with in-situ recycle of the produced water. These units have been successfully used for surface treatment of produced water and wastewater generated during environmental clean-up operations. Performance data has shown that centrifugal units are capable of separating stable emulsions into ``single-phase`` streams with generally less than 1% cross-phase contamination. Initial testing will be conducted with a bench-scale separator to determine the separation efficiency of various crude oils and to provide information necessary to scale up the separator. Information from the bench-scale unit will be used in the design of a larger prototype, which will have a much larger height/diameter ratio and will incorporate some of the components necessary for down-hole operations. The prototype separator will be operated in the lab to verify scale-up parameters and separation efficiencies, as well as to provide information necessary to design a full-scale system. The full-scale system will be fabricated, installed in the field, and operated to demonstrate the technology. This paper discusses the initial testing of the bench-scale separator with a crude oil having an API gravity of 34.06{degrees}.

  2. Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization

    Broader source: Energy.gov [DOE]

    This presentation, which focuses on water transport in PEM fuel cells, was given by CFDRC's J. Vernon Cole at a DOE fuel cell meeting in February 2007.

  3. Final report on development and testing of the microwave oil-water monitor

    SciTech Connect (OSTI)

    Swanson, C.

    1991-06-15

    The oil-water monitor is a device invented by Dr. Claude Swanson of Applied Physics Technology to respond to the petroleum-loss problem in crude oil transfers. It is a device which measures water content in crude oil and other petroleum products, in a flowing pipe such as a pipeline or tanker manifold. It is capable of accurately measuring the water contamination levels in crude oil shipments, in real time as the crude oil flows through the loading manifold into the tanker, or at the receiving point as the oil is off-loaded. The oil-water monitor has application in the verification of oil volumes and concentration of contaminants at petroleum transfer points. The industry-estimated level of water loss at transfer points due to inadequate monitoring technology amounts to several billion dollars per year, so there is a definite perceived need within the petroleum community for this type of accurate water monitoring technology. News articles indicating the importance of this problem are shown. The microwave oil-water monitor measures the water content in the oil, whether in the form of small droplets or large globules. Therefore it can be applied to the crude oil as it flows through crude oil pipes into the ship, or at transfer points in a crude oil distribution system. 4 refs., 18 figs.

  4. Testing of Alternative Abrasives for Water-Jet Cutting at C Tank Farm

    SciTech Connect (OSTI)

    Krogstad, Eirik J.

    2013-08-01

    Legacy waste from defense-related activities at the Hanford Site has predominantly been stored in underground tanks, some of which have leaked; others may be at risk to do so. The U.S. Department of Energys goal is to empty the tanks and transform their contents into more stable waste forms. To do so requires breaking up, and creating a slurry from, solid wastes in the bottoms of the tanks. A technology developed for this purpose is the Mobile Arm Retrieval System. This system is being used at some of the older single shell tanks at C tank farm. As originally planned, access ports for the Mobile Arm Retrieval System were to be cut using a high- pressure water-jet cutter. However, water alone was found to be insufficient to allow effective cutting of the steel-reinforced tank lids, especially when cutting the steel reinforcing bar (rebar). The abrasive added in cutting the hole in Tank C-107 was garnet, a complex natural aluminosilicate. The hardness of garnet (Mohs hardness ranging from H 6.5 to 7.5) exceeds that of solids currently in the tanks, and was regarded to be a threat to Hanford Waste Treatment and Immobilization Plant systems. Olivine, an iron-magnesium silicate that is nearly as hard as garnet (H 6.5 to 7), has been proposed as an alternative to garnet. Pacific Northwest National Laboratory proposed to test pyrite (FeS2), whose hardness is slightly less (H 6 to 6.5) for 1) cutting effectiveness, and 2) propensity to dissolve (or disintegrate by chemical reaction) in chemical conditions similar to those of tank waste solutions. Cutting experiments were conducted using an air abrader system and a National Institute of Standards and Technology Standard Reference Material (SRM 1767 Low Alloy Steel), which was used as a surrogate for rebar. The cutting efficacy of pyrite was compared with that of garnet and olivine in identical size fractions. Garnet was found to be most effective in removing steel from the target; olivine and pyrite were less effective

  5. WaterTransport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing and Design Optimization

    SciTech Connect (OSTI)

    J. Vernon Cole; Abhra Roy; Ashok Damle; Hari Dahr; Sanjiv Kumar; Kunal Jain; Ned Djilai

    2012-10-02

    Water management in Proton Exchange Membrane, PEM, Fuel Cells is challenging because of the inherent conflicts between the requirements for efficient low and high power operation. Particularly at low powers, adequate water must be supplied to sufficiently humidify the membrane or protons will not move through it adequately and resistance losses will decrease the cell efficiency. At high power density operation, more water is produced at the cathode than is necessary for membrane hydration. This excess water must be removed effectively or it will accumulate in the Gas Diffusion Layers, GDLs, between the gas channels and catalysts, blocking diffusion paths for reactants to reach the catalysts and potentially flooding the electrode. As power density of the cells is increased, the challenges arising from water management are expected to become more difficult to overcome simply due to the increased rate of liquid water generation relative to fuel cell volume. Thus, effectively addressing water management based issues is a key challenge in successful application of PEMFC systems. In this project, CFDRC and our partners used a combination of experimental characterization, controlled experimental studies of important processes governing how water moves through the fuel cell materials, and detailed models and simulations to improve understanding of water management in operating hydrogen PEM fuel cells. The characterization studies provided key data that is used as inputs to all state-of-the-art models for commercially important GDL materials. Experimental studies and microscopic scale models of how water moves through the GDLs showed that the water follows preferential paths, not branching like a river, as it moves toward the surface of the material. Experimental studies and detailed models of water and airflow in fuel cells channels demonstrated that such models can be used as an effective design tool to reduce operating pressure drop in the channels and the associated

  6. Puget Sound Tidal Energy In-Water Testing and Development Project Final Technical Report

    SciTech Connect (OSTI)

    Craig W. Collar

    2012-11-16

    Tidal energy represents potential for the generation of renewable, emission free, environmentally benign, and cost effective energy from tidal flows. A successful tidal energy demonstration project in Puget Sound, Washington may enable significant commercial development resulting in important benefits for the northwest region and the nation. This project promoted the United States Department of Energy’s Wind and Hydropower Technologies Program’s goals of advancing the commercial viability, cost-competitiveness, and market acceptance of marine hydrokinetic systems. The objective of the Puget Sound Tidal Energy Demonstration Project is to conduct in-water testing and evaluation of tidal energy technology as a first step toward potential construction of a commercial-scale tidal energy power plant. The specific goal of the project phase covered by this award was to conduct all activities necessary to complete engineering design and obtain construction approvals for a pilot demonstration plant in the Admiralty Inlet region of the Puget Sound. Public Utility District No. 1 of Snohomish County (The District) accomplished the objectives of this award through four tasks: Detailed Admiralty Inlet Site Studies, Plant Design and Construction Planning, Environmental and Regulatory Activities, and Management and Reporting. Pre-Installation studies completed under this award provided invaluable data used for site selection, environmental evaluation and permitting, plant design, and construction planning. However, these data gathering efforts are not only important to the Admiralty Inlet pilot project. Lessons learned, in particular environmental data gathering methods, can be applied to future tidal energy projects in the United States and other parts of the world. The District collaborated extensively with project stakeholders to complete the tasks for this award. This included Federal, State, and local government agencies, tribal governments, environmental

  7. Investigations into High Temperature Components and Packaging

    SciTech Connect (OSTI)

    Marlino, L.D.; Seiber, L.E.; Scudiere, M.B.; M.S. Chinthavali, M.S.; McCluskey, F.P.

    2007-12-31

    The purpose of this report is to document the work that was performed at the Oak Ridge National Laboratory (ORNL) in support of the development of high temperature power electronics and components with monies remaining from the Semikron High Temperature Inverter Project managed by the National Energy Technology Laboratory (NETL). High temperature electronic components are needed to allow inverters to operate in more extreme operating conditions as required in advanced traction drive applications. The trend to try to eliminate secondary cooling loops and utilize the internal combustion (IC) cooling system, which operates with approximately 105 C water/ethylene glycol coolant at the output of the radiator, is necessary to further reduce vehicle costs and weight. The activity documented in this report includes development and testing of high temperature components, activities in support of high temperature testing, an assessment of several component packaging methods, and how elevated operating temperatures would impact their reliability. This report is organized with testing of new high temperature capacitors in Section 2 and testing of new 150 C junction temperature trench insulated gate bipolar transistor (IGBTs) in Section 3. Section 4 addresses some operational OPAL-GT information, which was necessary for developing module level tests. Section 5 summarizes calibration of equipment needed for the high temperature testing. Section 6 details some additional work that was funded on silicon carbide (SiC) device testing for high temperature use, and Section 7 is the complete text of a report funded from this effort summarizing packaging methods and their reliability issues for use in high temperature power electronics. Components were tested to evaluate the performance characteristics of the component at different operating temperatures. The temperature of the component is determined by the ambient temperature (i.e., temperature surrounding the device) plus the

  8. ISSUANCE 2015-06-25: Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Test Procedures for Residential and Commercial Water Heaters; Correction

    Broader source: Energy.gov [DOE]

    Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Test Procedures for Residential and Commercial Water Heaters; Correction

  9. 2D-Raman-THz spectroscopy: A sensitive test of polarizable water models

    SciTech Connect (OSTI)

    Hamm, Peter

    2014-11-14

    In a recent paper, the experimental 2D-Raman-THz response of liquid water at ambient conditions has been presented [J. Savolainen, S. Ahmed, and P. Hamm, Proc. Natl. Acad. Sci. U. S. A. 110, 20402 (2013)]. Here, all-atom molecular dynamics simulations are performed with the goal to reproduce the experimental results. To that end, the molecular response functions are calculated in a first step, and are then convoluted with the laser pulses in order to enable a direct comparison with the experimental results. The molecular dynamics simulation are performed with several different water models: TIP4P/2005, SWM4-NDP, and TL4P. As polarizability is essential to describe the 2D-Raman-THz response, the TIP4P/2005 water molecules are amended with either an isotropic or a anisotropic polarizability a posteriori after the molecular dynamics simulation. In contrast, SWM4-NDP and TL4P are intrinsically polarizable, and hence the 2D-Raman-THz response can be calculated in a self-consistent way, using the same force field as during the molecular dynamics simulation. It is found that the 2D-Raman-THz response depends extremely sensitively on details of the water model, and in particular on details of the description of polarizability. Despite the limited time resolution of the experiment, it could easily distinguish between various water models. Albeit not perfect, the overall best agreement with the experimental data is obtained for the TL4P water model.

  10. Accuracy of the European solar water heater test procedure. Part 2: Prediction of long-term performance

    SciTech Connect (OSTI)

    Rabl, A. ); Carvalho, M.J.; Collares-Pereira, M. ); Bourges, B.

    1991-01-01

    This paper continues the evaluation of the European test procedure for solar water heaters, by considering what consequences the errors of the parameters (derived in Part 1, the companion paper) will have for the prediction of the long-term performance. A simple criterion is derived for the required length of the test period, as a function of climatic variables and desired accuracy of the long-term performance prediction. Typically a duration of 10 to 50 days will suffice. Since the actual conditions during a test cannot be foreseen, it will be more efficient to calculate the error of the long-term performance prediction on line at the end of each test day and terminate the series whenever acceptable accuracy is reached.

  11. Summary of hydrogeologic controls on ground-water flow at the Nevada Test Site, Nye County, Nevada

    SciTech Connect (OSTI)

    Laczniak, R.J.; Cole, J.C.; Sawyer, D.A.; Trudeau, D.A.

    1996-07-01

    The underground testing of nuclear devices has generated substantial volumes of radioactive and other chemical contaminants below ground at the Nevada Test Site (NTS). Many of the more radioactive contaminants are highly toxic and are known to persist in the environment for thousands of years. In response to concerns about potential health hazards, the US Department of Energy, under its Environmental Restoration Program, has made NTS the subject of a long-term investigation. Efforts will assess whether byproducts of underground testing pose a potential hazard to the health and safety of the public and, if necessary, will evaluate and implement steps to remediate any of the identified dangers. Ground-water flow is the primary mechanism by which contaminants can be transported significant distances away from the initial point of injection. Flow paths between contaminant sources and potential receptors are separated by remote areas that span tens of miles. The diversity and structural complexity of the rocks along these flow paths complicates the hydrology of the region. Although the hydrology has been studied in some detail, much still remains uncertain about flow rates and directions through the fractured-rock aquifers that transmit water great distances across this arid region. Unique to the hydrology of NTS are the effects of underground testing, which severely alter local rock characteristics and affect hydrologic conditions throughout the region. This report summarizes what is known and inferred about ground-water flow throughout the NTS region. The report identifies and updates what is known about some of the major controls on ground-water flow, highlights some of the uncertainties in the current understanding, and prioritizes some of the technical needs as related to the Environmental Restoration Program. 113 refs.

  12. Topical report : NSTF facilities plan for water-cooled VHTR RCCS : normal operational tests.

    SciTech Connect (OSTI)

    Farmer, M. T.; Kilsdonk, D. J.; Tzanos, C. P.; Lomperski, S.; Aeschlimann, R. W.; Nuclear Engineering Division

    2006-09-01

    As part of the Department of Energy (DOE) Generation IV roadmapping activity, the gas-cooled Very High Temperature Reactor (VHTR) has been selected as the principal concept for hydrogen production and other process-heat applications such as district heating and potable water production. On this basis, the DOE has selected the VHTR for additional R&D with the ultimate goal of demonstrating emission-free electricity and hydrogen production with this advanced reactor concept.

  13. Evaluation of precipitates used in strainer head loss testing : Part III. Long-term aluminum hydroxide precipitation tests in borated water.

    SciTech Connect (OSTI)

    Bahn, C. B.; Kasza, K. E.; Shack, W. J.; Natesan, K.; Klein, P.

    2011-05-01

    Long-term aluminum (Al) hydroxide precipitation tests were conducted in slightly alkaline solutions containing 2500 ppm boron. The solution temperature was cycled to obtain a temperature history more representative of emergency core cooling system temperatures after a loss-of-coolant accident. The observed Al precipitation boundary was close to predicted results for amorphous precipitates, which are higher than the solubility expected for crystalline forms. Bench-scale and loop head loss test results under various conditions were successfully combined into single map in a temperature - 'pH + p[Al]{sub T}' domain, which yielded two bounding lines for Al hydroxide solubility in borated alkaline water that depend on whether or not loop head loss tests with Al alloy coupons are included. Precipitates were observed to form either as fine, cloudy suspensions, which showed very little tendency to settle, or as flocculated precipitates. The flocculation tendency of the precipitates can be qualitatively explained by a colloid stability theory or a phase diagram for protein solutions.

  14. FY15 Status Report: CIRFT Testing of Spent Nuclear Fuel Rods from Boiler Water Reactor Limerick

    SciTech Connect (OSTI)

    Wang, Jy-An John; Wang, Hong; Jiang, Hao

    2015-06-01

    The objective of this project is to perform a systematic study of used nuclear fuel (UNF, also known as spent nuclear fuel [SNF]) integrity under simulated transportation environments using the Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT) hot-cell testing technology developed at Oak Ridge National Laboratory (ORNL) in August 2013. Under Nuclear Regulatory Commission (NRC) sponsorship, ORNL completed four benchmark tests, four static tests, and twelve dynamic or cycle tests on H. B. Robinson (HBR) high burn-up (HBU) fuel. The clad of the HBR fuels was made of Zircaloy-4. Testing was continued in fiscal year (FY) 2014 using Department of Energy (DOE) funds. The additional CIRFT was conducted on three HBR rods (R3, R4, and R5) in which two specimens failed and one specimen was tested to over 2.23 10⁷ cycles without failing. The data analysis on all the HBR UNF rods demonstrated that it is necessary to characterize the fatigue life of the UNF rods in terms of (1) the curvature amplitude and (2) the maximum absolute of curvature extremes. The maximum extremes are significant because they signify the maximum of tensile stress for the outer fiber of the bending rod. CIRFT testing has also addressed a large variation in hydrogen content on the HBR rods. While the load amplitude is the dominant factor that controls the fatigue life of bending rods, the hydrogen content also has an important effect on the lifetime attained at each load range tested. In FY 15, ten SNF rod segments from BWR Limerick were tested using ORNL CIRFT, with one under static and nine dynamic loading conditions. Under static unidirectional loading, a moment of 85 N·m was obtained at maximum curvature 4.0 m⁻¹. The specimen did not show any sign of failure in three repeated loading cycles to almost same maximum curvature. Ten cyclic tests were conducted with amplitude varying from 15.2 to 7.1 N·m. Failure was observed in nine of the tested rod specimens. The cycles to failure were

  15. Hanford Waste Vitrification Plant full-scale feed preparation testing with water and process simulant slurries

    SciTech Connect (OSTI)

    Gaskill, J.R.; Larson, D.E.; Abrigo, G.P.

    1996-03-01

    The Hanford Waste Vitrification Plant was intended to convert selected, pretreated defense high-level waste and transuranic waste from the Hanford Site into a borosilicate glass. A full-scale testing program was conducted with nonradioactive waste simulants to develop information for process and equipment design of the feed-preparation system. The equipment systems tested included the Slurry Receipt and Adjustment Tank, Slurry Mix Evaporator, and Melter-Feed Tank. The areas of data generation included heat transfer (boiling, heating, and cooling), slurry mixing, slurry pumping and transport, slurry sampling, and process chemistry. 13 refs., 129 figs., 68 tabs.

  16. Superclean coal-water slurry combustion testing in an oil-fired boiler

    SciTech Connect (OSTI)

    Miller, B.G.; Morrison, J.L.; Xie, Jiangyang; Walsh, P.M.; Schobert, H.H.; Scaroni, A.W.

    1991-10-01

    Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program with the objective of determining the capability of effectively firing SCCWS in an industrial boiler designed for oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with less that 3.0% ash and 0.9% sulfur) can effectively be burned in an oil-designed industrial boiler without adverse impact on boiler rating maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels.

  17. Pore-water extraction from unsaturated tuff by triaxial and one-dimensional compression methods, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    Mower, T.E.; Higgins, J.D.; Yang, In C.; Peters, C.A.

    1994-07-01

    The hydrologic system in the unsaturated tuff at Yucca Mountain, Nevada, is being evaluated for the US Department of Energy by the Yucca Mountain Project Branch of the US Geological Survey as a potential site for a high-level radioactive-waste repository. Part of this investigation includes a hydrochemical study that is being made to assess characteristics of the hydrologic system such as: traveltime, direction of flow, recharge and source relations, and types and magnitudes of chemical reactions in the unsaturated tuff. In addition, this hydrochemical information will be used in the study of the dispersive and corrosive effects of unsaturated-zone water on the radioactive-waste storage canisters. This report describes the design and validation of laboratory experimental procedures for extracting representative samples of uncontaminated pore water from welded and nonwelded, unsaturated tuffs from the Nevada Test Site.

  18. Determination of Hydrogen Bond Structure in Water versus Aprotic Environments To Test the Relationship Between Length and Stability

    SciTech Connect (OSTI)

    Sigala, Paul A.; Ruben, Eliza A.; Liu, Corey W.; Piccoli, Paula M. B.; Hohenstein, Edward G.; Martinez, Todd J.; Schultz, Arthur J.; Herschiag, Daniel

    2015-05-06

    Hydrogen bonds profoundly influence the architecture and activity of biological macromolecules. Deep appreciation of hydrogen bond contributions to biomolecular function thus requires a detailed understanding of hydrogen bond structure and energetics and the relationship between these properties. Hydrogen bond formation energies (Delta G(f)) are enormously more favorable in aprotic solvents than in water, and two classes of contributing factors have been proposed to explain this energetic difference, focusing respectively on the isolated and hydrogen-bonded species: (I) water stabilizes the dissociated donor and acceptor groups much better than aprotic solvents, thereby reducing the driving force for hydrogen bond formation; and (II) water lengthens hydrogen bonds compared to aprotic environments, thereby decreasing the potential energy within the hydrogen bond. Each model has been proposed to provide a dominant contribution to Delta G(f), but incisive tests that distinguish the importance of these contributions are lacking. Here we directly test the structural basis of model II. Neutron crystallography, NMR spectroscopy, and quantum mechanical calculations demonstrate that O-H center dot center dot center dot O hydrogen bonds in crystals, chloroform, acetone, and water have nearly identical lengths and very similar potential energy surfaces despite Delta G(f) differences >8 kcal/mol across these solvents. These results rule out a substantial contribution from solvent-dependent differences in hydrogen bond structure and potential energy after association (model II) and thus support the conclusion that differences in hydrogen bond Delta G(f) are predominantly determined by solvent interactions with the dissociated groups (model I). These findings advance our understanding of universal hydrogen-bonding interactions and have important implications for biology and engineering.

  19. Water and gas chemistry from HGP-A geothermal well: January 1980 flow test

    SciTech Connect (OSTI)

    Thomas, D.M.

    1980-09-01

    A two-week production test was conducted on the geothermal well HGP-A. Brine chemistry indicates that approximately six percent of the well fluids are presently derived from seawater and that this fraction will probably increase during continued production. Reservoir production is indicated to be from two chemically distinct aquifers: one having relatively high salinity and low production and the other having lower salinity and producing the bulk of the discharge.

  20. 2014-10-14 Issuance: Test Procedures and Energy Conservation Standards for Residential Solar Water Heaters; Request for Information

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register request for information regarding test procedures and energy conservation standards for residential solar water heaters, as issued by the Deputy Assistant Secretary for Energy Efficiency on October 14, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  1. Superclean coal-water slurry combustion testing in an oil-fired boiler

    SciTech Connect (OSTI)

    Miller, B.G.; Poe, R.L.; Morrison, J.L.; Xie, Jianyang; Walsh, P.M.; Schobert, H.H.; Scaroni, A.W.

    1992-05-29

    The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the capability of effectively firing SCCWS in an industrial boiler designed for oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with less than 3.0 wt.% ash and 0.9 wt.% sulfur) can effectively be burned in an oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels.

  2. Cyclone reburn using coal-water fuel: Pilot-scale development and testing

    SciTech Connect (OSTI)

    Eckhart, C.F.; DeVault, R.F.

    1991-10-01

    There is an ongoing effort to develop retrofit technologies capable of converting oil- and/or gas-fired boilers to coal combustion. The objective of this project is to demonstrate the technical feasibility of an improved portion of a previously developed retrofit system designed for the purpose of converting oil/gas boilers. This improvement would almost entirely eliminate the use of premium fuels, thereby significantly increasing the economical attractiveness of the system. Specifically, the goals in this program were to replace natural gas as a reburning fuel with coal-water fuel (CWF). The advantages of such a system include: (1) increased return on investment (ROI) for conversions; (2) nearly complete elimination of premium oil or gas fuel; (3) a more integrated approach to the conversion of oil- or gas-designed boilers to CWF.

  3. Cyclone reburn using coal-water fuel: Pilot-scale development and testing. Final report

    SciTech Connect (OSTI)

    Eckhart, C.F.; DeVault, R.F.

    1991-10-01

    There is an ongoing effort to develop retrofit technologies capable of converting oil- and/or gas-fired boilers to coal combustion. The objective of this project is to demonstrate the technical feasibility of an improved portion of a previously developed retrofit system designed for the purpose of converting oil/gas boilers. This improvement would almost entirely eliminate the use of premium fuels, thereby significantly increasing the economical attractiveness of the system. Specifically, the goals in this program were to replace natural gas as a reburning fuel with coal-water fuel (CWF). The advantages of such a system include: (1) increased return on investment (ROI) for conversions; (2) nearly complete elimination of premium oil or gas fuel; (3) a more integrated approach to the conversion of oil- or gas-designed boilers to CWF.

  4. Analysis of Ground-Water Levels and Associated Trends in Yucca Flat, Nevada Test Site, Nye County, Nevada, 1951-2003

    SciTech Connect (OSTI)

    J.M. Fenelon

    2005-10-05

    Almost 4,000 water-level measurements in 216 wells in the Yucca Flat area from 1951 to 2003 were quality assured and analyzed. An interpretative database was developed that describes water-level conditions for each water level measured in Yucca Flat. Multiple attributes were assigned to each water-level measurement in the database to describe the hydrologic conditions at the time of measurement. General quality, temporal variability, regional significance, and hydrologic conditions are attributed for each water-level measurement. The database also includes narratives that discuss the water-level history of each well. Water levels in 34 wells were analyzed for variability and for statistically significant trends. An attempt was made to identify the cause of many of the water-level fluctuations or trends. Potential causes include equilibration following well construction or development, pumping in the monitoring well, withdrawals from a nearby supply well, recharge from precipitation, earthquakes, underground nuclear tests, land subsidence, barometric pressure, and Earth tides. Some of the naturally occurring fluctuations in water levels may result from variations in recharge. The magnitude of the overall water-level change for these fluctuations generally is less than 2 feet. Long-term steady-state hydrographs for most of the wells open to carbonate rock have a very similar pattern. Carbonate-rock wells without the characteristic pattern are directly west of the Yucca and Topgallant faults in the southwestern part of Yucca Flat. Long-term steady-state hydrographs from wells open to volcanic tuffs or the Eleana confining unit have a distinctly different pattern from the general water-level pattern of the carbonate-rock aquifers. Anthropogenic water-level fluctuations were caused primarily by water withdrawals and nuclear testing. Nuclear tests affected water levels in many wells. Trends in these wells are attributed to test-cavity infilling or the effects of

  5. Development of wear-resistant ceramic coatings for diesel engine components. Volume 1, Coating development and tribological testing: Final report: DOE/ORNL Ceramic Technology Project

    SciTech Connect (OSTI)

    Naylor, M.G.S.

    1992-06-01

    The tribological properties of a variety of advanced coating materials have been evaluated under conditions which simulate the piston ring -- cylinder liner environment near top ring reversal in a heavy duty diesel engine. Coated ``ring`` samples were tested against a conventional pearlitic grey cast iron liner material using a high temperature reciprocating wear test rig. Tests were run with a fresh CE/SF 15W40lubricant at 200 and 350{degrees}C, with a high-soot, engine-tested oil at 200{degrees}C and with no lubrication at 200{degrees}C. For lowest wear under boundary lubricated conditions, the most promising candidates to emerge from this study were high velocity oxy-fuel (HVOF) Cr{sub 3} C{sub 2} - 20% NiCr and WC - 12% Co cermets, low temperature arc vapor deposited (LTAVD) CrN and plasma sprayed chromium oxides. Also,plasma sprayed Cr{sub 2}O{sub 3} and A1{sub 2}O{sub 3}-ZrO{sub 2} materials were found to give excellent wear resistance in unlubricated tests and at extremely high temperatures (450{degrees}C) with a syntheticoil. All of these materials would offer substantial wear reductions compared to the conventional electroplated hard chromium ring facing and thermally sprayed metallic coatings, especially at high temperatures and with high-soot oils subjected to degradation in diesel environments. The LTAVD CrN coating provided the lowest lubricated wear rates of all the materials evaluated, but may be too thin (4 {mu}m) for use as a top ring facing. Most of the coatings evaluated showed higher wear rates with high-soot, engine-tested oil than with fresh oil, with increases of more than a factor of ten in some cases. Generally, metallic materials were found to be much more sensitive to soot/oil degradation than ceramic and cermet coatings. Thus, decreased ``soot sensitivity`` is a significant driving force for utilizing ceramic or cermet coatings in diesel engine wear applications.

  6. Status of the Norwegian thorium light water reactor (LWR) fuel development and irradiation test program

    SciTech Connect (OSTI)

    Drera, S.S.; Bjork, K.I.; Kelly, J.F.; Asphjell, O.

    2013-07-01

    Thorium based fuels offer several benefits compared to uranium based fuels and should thus be an attractive alternative to conventional fuel types. In order for thorium based fuel to be licensed for use in current LWRs, material properties must be well known for fresh as well as irradiated fuel, and accurate prediction of fuel behavior must be possible to make for both normal operation and transient scenarios. Important parameters are known for fresh material but the behaviour of the fuel under irradiation is unknown particularly for low Th content. The irradiation campaign aims to widen the experience base to irradiated (Th,Pu)O{sub 2} fuel and (Th,U)O{sub 2} with low Th content and to confirm existing data for fresh fuel. The assumptions with respect to improved in-core fuel performance are confirmed by our preliminary irradiation test results, and our fuel manufacture trials so far indicate that both (Th,U)O{sub 2} and (Th,Pu)O{sub 2} fuels can be fabricated with existing technologies, which are possible to upscale to commercial volumes.

  7. Application of water jet assisted drag bit and pick cutter for the cutting of coal measure rocks. Final technical report. [Tests of combination in different rocks

    SciTech Connect (OSTI)

    Ropchan, D.; Wang, F.D.; Wolgamott, J.

    1980-04-01

    A laboratory investigation was made of the effects of high pressure water jets on the cutting forces of drag bit cutters in sedimentary rocks. A hard and soft sandstone, shale and limestone were tested with commercially obtainable conical and plow type drag bits on the EMI linear cutting machine. About 1200 cuts were made at different bit penetration, jet orientation, and water pressure to determine the reduction of cutting forces on the bit from the use of the water jet. Both independent and interactive cutting was used. The greatest reduction in cutting forces were with both of the sandstones; the drag forces were reduced about 30 percent and the normal forces about 60 percent at 5000 psi water pressure with the nozzle behind the bit. The method was less effective in the shale, except at 10,000 psi water pressure the reduction in drag force was about 55 percent. Of the rocks tested, the limestone was least affected by the water jet. The cutting forces for the plow bit showed continuous change with wear so a machined conical bit was used for most of the testing. Tests with the plow bit did show a large reduction in cutting forces by using the water jet with worn bits. An economic analysis of equipping a drag bit tunnel boring machine indicated that the water jet system could reduce costs per foot in sandstone by up to 40 percent.

  8. Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Power Sandia's 117-scale WEC device with being tested in the maneuvering and ... EC, News, Renewable Energy, Water Power Sandia National Laboratories Uses Its Wave Energy ...

  9. A Serendipitous, Long-Term Infiltration Experiment: Water and Tritium Circulation Beneath the CAMBRIC Ditch at the Nevada Test Site

    SciTech Connect (OSTI)

    Maxwell, R M; Tompson, A B; Kollet, S J

    2008-11-20

    Underground nuclear weapons testing at the Nevada Test Site introduced numerous radionuclides that may be used to characterize subsurface hydrologic transport processes in arid climates. A sixteen year pumping experiment designed to examine radionuclide migration away from the CAMBRIC nuclear test, conducted in groundwater beneath Frenchman Flat in 1965, gave rise to an unintended second experiment involving radionuclide infiltration through the vadose zone, as induced by seepage of pumping effluents beneath an unlined discharge trench. The combined experiments have been reanalyzed using a detailed, three-dimensional numerical model of transient, variably saturated flow and mass transport, tailored specifically for large scale and efficient calculations. Simulations have been used to estimate radionuclide travel and residence times in various parts of the system for comparison with observations in wells. Model predictions of mass transport were able to clearly demonstrate radionuclide recycling behavior between the ditch and pumping well previously suggested by isotopic age dating information; match travel time estimates for radionuclides moving between the ditch, the water table, and monitoring wells; and provide more realistic ways in which to interpret the pumping well elution curves. Collectively, the results illustrate the utility of integrating detailed numerical modeling with diverse observational data in developing accurate interpretations and forecasts of contaminant migration processes.

  10. Pressure Build-Up During the Fire Test in Type B(U) Packages Containing Water - 13280

    SciTech Connect (OSTI)

    Feldkamp, Martin; Nehrig, Marko; Bletzer, Claus; Wille, Frank

    2013-07-01

    The safety assessment of packages for the transport of radioactive materials with content containing liquids requires special consideration. The main focus is on water as supplementary liquid content in Type B(U) packages. A typical content of a Type B(U) package is ion exchange resin, waste of a nuclear power plant, which is not dried, normally only drained. Besides the saturated ion exchange resin, a small amount of free water can be included in these contents. Compared to the safety assessment of packages with dry content, attention must be paid to some more specific issues. An overview of these issues is provided. The physical and chemical compatibility of the content itself and the content compatibility with the packages materials must be demonstrated for the assessment. Regarding the mechanical resistance the package has to withstand the forces resulting from the freezing liquid. The most interesting point, however, is the pressure build-up inside the package due to vaporization. This could for example be caused by radiolysis of the liquid and must be taken into account for the storage period. If the package is stressed by the total inner pressure, this pressure leads to mechanical loads to the package body, the lid and the lid bolts. Thus, the pressure is the driving force on the gasket system regarding the activity release and a possible loss of tightness. The total pressure in any calculation is the sum of partial pressures of different gases which can be caused by different effects. The pressure build-up inside the package caused by the regulatory thermal test (30 min at 800 deg. C), as part of the cumulative test scenario under accident conditions of transport is discussed primarily. To determine the pressure, the temperature distribution in the content must be calculated for the whole period from beginning of the thermal test until cooling-down. In this case, while calculating the temperature distribution, conduction and radiation as well as evaporation

  11. Cooling Towers: Understanding Key Components of Cooling Towers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cooling Towers: Understanding Key Components of Cooling Towers and How to Improve Water Efficiency Cooling Towers: Understanding Key Components of Cooling Towers and How to Improve ...

  12. Water Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SunShot Grand Challenge: Regional Test Centers Water Security HomeTag:Water Security Electricity use by water service sector and county. Shown are electricity use by (a) ...

  13. Measurement of two-component flow using ultrasonic flowmeters

    SciTech Connect (OSTI)

    Whitehouse, J.C.; Eghbali, D.A.; Flitton, V.E.; Anderson, D.G.

    1991-12-31

    Calibration of transit-time and Doppler ultrasonic flowmeters under two-component flow conditions has been conducted on 400 mm (16-in.) pipe. Testing covered total flows of 0.19 to 1.89 m{sup 3}/s (3000 to 30,000 gpm) and void fractions up to 40%. Both flowmeter types of accurately measured total volumetric flow over a portion of their ranges. Pipe average void fraction, based on a three-beam gamma densitometer, was used to determine water component flow under stratified flow conditions, with similar results. 2 refs.

  14. Measurement of two-component flow using ultrasonic flowmeters

    SciTech Connect (OSTI)

    Whitehouse, J.C.; Eghbali, D.A. ); Flitton, V.E. ); Anderson, D.G. )

    1991-01-01

    Calibration of transit-time and Doppler ultrasonic flowmeters under two-component flow conditions has been conducted on 400 mm (16-in.) pipe. Testing covered total flows of 0.19 to 1.89 m{sup 3}/s (3000 to 30,000 gpm) and void fractions up to 40%. Both flowmeter types of accurately measured total volumetric flow over a portion of their ranges. Pipe average void fraction, based on a three-beam gamma densitometer, was used to determine water component flow under stratified flow conditions, with similar results. 2 refs.

  15. Development and testing of a photometric method to identify non-operating solar hot water systems in field settings.

    SciTech Connect (OSTI)

    He, Hongbo; Vorobieff, Peter V.; Menicucci, David; Mammoli, Andrea A.; Carlson, Jeffrey J.

    2012-06-01

    This report presents the results of experimental tests of a concept for using infrared (IR) photos to identify non-operational systems based on their glazing temperatures; operating systems have lower glazing temperatures than those in stagnation. In recent years thousands of new solar hot water (SHW) systems have been installed in some utility districts. As these numbers increase, concern is growing about the systems dependability because installation rebates are often based on the assumption that all of the SHW systems will perform flawlessly for a 20-year period. If SHW systems routinely fail prematurely, then the utilities will have overpaid for grid-energy reduction performance that is unrealized. Moreover, utilities are responsible for replacing energy for loads that failed SHW system were supplying. Thus, utilities are seeking data to quantify the reliability of SHW systems. The work described herein is intended to help meet this need. The details of the experiment are presented, including a description of the SHW collectors that were examined, the testbed that was used to control the system and record data, the IR camera that was employed, and the conditions in which testing was completed. The details of the associated analysis are presented, including direct examination of the video records of operational and stagnant collectors, as well as the development of a model to predict glazing temperatures and an analysis of temporal intermittency of the images, both of which are critical to properly adjusting the IR camera for optimal performance. Many IR images and a video are presented to show the contrast between operating and stagnant collectors. The major conclusion is that the technique has potential to be applied by using an aircraft fitted with an IR camera that can fly over an area with installed SHW systems, thus recording the images. Subsequent analysis of the images can determine the operational condition of the fielded collectors. Specific

  16. Assessment of simulated water balance from Noah, Noah-MP, CLM, and VIC over CONUS using the NLDAS test bed

    SciTech Connect (OSTI)

    Cai, Xitian; Yang, Zong-Liang; Xia, Youlong; Huang, Maoyi; Wei, Helin; Leung, Lai-Yung R.; Ek, Michael

    2014-12-27

    This study assesses the hydrologic performance of four land surface models (LSMs) for the conterminous United States using the North American Land Data Assimilation System (NLDAS) test bed. The four LSMs are the baseline community Noah LSM (Noah, version 2.8), the Variable Infiltration Capacity (VIC, version 4.0.5) model, the substantially augmented Noah LSM with multiparameterization options (hence Noah-MP), and the Community Land Model version 4 (CLM4). All four models are driven by the same NLDAS-2 atmospheric forcing. Modeled terrestrial water storage (TWS), streamflow, evapotranspiration (ET), and soil moisture are compared with each other and evaluated against the identical observations. Relative to Noah, the other three models offer significant improvements in simulating TWS and streamflow and moderate improvements in simulating ET and soil moisture. Noah-MP provides the best performance in simulating soil moisture and is among the best in simulating TWS, CLM4 shows the best performance in simulating ET, and VIC ranks the highest in performing the streamflow simulations. Despite these improvements, CLM4, Noah-MP, and VIC exhibit deficiencies, such as the low variability of soil moisture in CLM4, the fast growth of spring ET in Noah-MP, and the constant overestimation of ET in VIC.

  17. An Assessment of Remote Visual Methods to Detect Cracking in Reactor Components

    SciTech Connect (OSTI)

    Cumblidge, Stephen E.; Anderson, Michael T.; Doctor, Steven R.; Simonen, Fredric A.; Elliot, Anthony J.

    2008-01-01

    Recently, the U.S. nuclear industry has proposed replacing current volumetric and/or surface examinations of certain components in commercial nuclear power plants, as required by the American Society of Mechanical Engineers Boiler and Pressure Vessel Code Section XI, “Inservice Inspection of Nuclear Power Plant Components,” with a simpler visual testing (VT) method. The advantages of VT are that these tests generally involve much less radiation exposure and time to perform the examination than do volumetric examinations such as ultrasonic testing. The issues relative to the reliability of VT in determining the structural integrity of reactor components were examined. Some piping and pressure vessel components in a nuclear power station are examined using VT as they are either in high radiation fields or component geometry precludes the use of ultrasonic testing (UT) methodology. Remote VT with radiation-hardened video systems has been used by nuclear utilities to find cracks in pressure vessel cladding in pressurized water reactors, core shrouds in boiling water reactors, and to investigate leaks in piping and reactor components. These visual tests are performed using a wide variety of procedures and equipment. The techniques for remote VT use submersible closed-circuit video cameras to examine reactor components and welds. PNNL conducted a parametric study that examined the important variables influencing the effectiveness of a remote visual test. Tested variables included lighting techniques, camera resolution, camera movement, and magnification. PNNL also conducted a limited laboratory test using a commercial visual testing camera system to experimentally determine the ability of the camera system to detect cracks of various widths under ideal conditions. The results of these studies and their implications are presented in this paper.

  18. Materials and Components Technology Division research summary, 1991

    SciTech Connect (OSTI)

    Not Available

    1991-04-01

    This division has the purpose of providing a R and D capability for design, fabrication, and testing of high-reliability materials, components, and instrumentation. Current divisional programs are in support of the Integral Fast Reactor, life extension for light water reactors, fuels development for the new production reactor and research and test reactors, fusion reactor first-wall and blanket technology, safe shipment of hazardous materials, fluid mechanics/materials/instrumentation for fossile energy systems, and energy conservation and renewables (including tribology, high- temperature superconductivity). Separate abstracts have been prepared for the data base.

  19. ISSUANCE 2015-06-30: Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards and Test Procedures for Commercial Heating, Air-Conditioning, and Water-Heating Equipment, Final Rule

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards and Test Procedures for Commercial Heating, Air-Conditioning, and Water-Heating Equipment, Final Rule

  20. ISSUANCE 2014-12-23: Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards and Test Procedures for Commercial Heating, Air-Conditioning, and Water-Heating Equipment, Notice of Proposed Rulemaking

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards and Test Procedures for Commercial Heating, Air-Conditioning, and Water-Heating Equipment, Notice of Proposed Rulemaking

  1. ISSUANCE 2015-03-27: Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Test Procedures for Consumer and Commercial Water Heaters, Notice of Proposed Rulemaking

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Test Procedures for Consumer and Commercial Water Heaters, Notice of Proposed Rulemaking

  2. Analysis of the toxicity in Rocky Flats Plant surface water through a correlation between the whole effluent toxicity test and the Microtox assay

    SciTech Connect (OSTI)

    Ford, S.M.; Wolaver, H.A.; Figueroa, L.A.

    1992-07-01

    Results were correlated from the Microtox assay and the whole effluent acute toxicity test for effluents from the (1) wastewater treatment plant (WWTP) and (2) terminal ponds located at the Rocky Flats Plant. Literature reviews indicate that Photobacterium phosphoreum (Microtox assay) may be used as screening test for the reaction of Ceriodaphnia dubia and Pimephales promelas to toxins present in effluents. This study indicates that the Microtox is less sensitive to toxins present in the WWTP effluent than other test organisms (Ceriodaphnia dubia and Pimephales promelas). Toxicity appears to be from unionized ammonia. Ten months of data reveal that the surface water effluents which leave Rocky Flats boundaries are non-toxic when judged by all three test organisms.

  3. Analysis of the toxicity in Rocky Flats Plant surface water through a correlation between the whole effluent toxicity test and the Microtox assay

    SciTech Connect (OSTI)

    Ford, S.M.; Wolaver, H.A. ); Figueroa, L.A. )

    1992-01-01

    Results were correlated from the Microtox assay and the whole effluent acute toxicity test for effluents from the (1) wastewater treatment plant (WWTP) and (2) terminal ponds located at the Rocky Flats Plant. Literature reviews indicate that Photobacterium phosphoreum (Microtox assay) may be used as screening test for the reaction of Ceriodaphnia dubia and Pimephales promelas to toxins present in effluents. This study indicates that the Microtox is less sensitive to toxins present in the WWTP effluent than other test organisms (Ceriodaphnia dubia and Pimephales promelas). Toxicity appears to be from unionized ammonia. Ten months of data reveal that the surface water effluents which leave Rocky Flats boundaries are non-toxic when judged by all three test organisms.

  4. Application of the Split Hopkinson Resonant Bar Test for Seismic Property Characterization of Hydrate-bearing Sand Undergoing Water Saturation

    SciTech Connect (OSTI)

    Nakagawa, S.; Kneafsey, T.J.

    2011-05-03

    Conventional resonant bar tests allow the measurement of seismic properties of rocks and sediments at low frequencies (several kilohertz). However, the tests require a long, slender sample which is often difficult to obtain from the deep subsurface and weak and fractured formations. We present an alternative low-frequency measurement technique to the conventional resonant bar tests. This technique involves a jacketed core sample placed between a pair of long, metal extension rods with attached seismic source and receiver—the same geometry as the split Hopkinson pressure bar test for large-strain, dynamic impact experiments. Because of the added length and mass to the sample, the resonance frequency of the entire system can be lowered significantly, compared to the sample alone. The proposed “Split Hopkinson Resonant Bar (SHRB)” test is applied in two steps. In the first step, extension and torsion-mode resonance frequencies and attenuation of the system are measured. Then, numerical inversions for the compressional and shear wave velocities and attenuation are performed. We initially applied the SHRB test to synthetic materials (plastics) for testing its accuracy, then used it for measuring the seismic velocities and attenuation of a rock core containing supercritical CO{sub 2}, and a sediment core while methane hydrate formed in the pore space.

  5. Permeability, geochemical, and water quality tests in support of an aquifer thermal energy storage site in Minnesota

    SciTech Connect (OSTI)

    Blair, S.C.; Deutsch, W.J.; Mitchell, P.J.

    1985-04-01

    This report describes the Underground Energy Storage Program's efforts to characterize physicochemical processes at DOE's ATES Field Test Facility (FTF) located on the University of Minnesota campus at St. Paul, Minnesota. Experimental efforts include: field tests at the St. Paul FTF to characterize fluid injectability and to evaluate the effectiveness of fluid-conditioning equipment, geochemical studies to investigate chemical reactions resulting from alterations to the aquifer's thermal regime, and laboratory tests on sandstone core from the site. Each experimental area is discussed and results obtained thus far are reported. 23 refs., 39 figs., 12 tabs.

  6. Major Components of Lending

    Broader source: Energy.gov [DOE]

    The major components of a clean energy financing program are described below, centered around the characteristics and sources of capital.

  7. Reactor component automatic grapple

    DOE Patents [OSTI]

    Greenaway, Paul R.

    1982-01-01

    A grapple for handling nuclear reactor components in a medium such as liquid sodium which, upon proper seating and alignment of the grapple with the component as sensed by a mechanical logic integral to the grapple, automatically seizes the component. The mechanical logic system also precludes seizure in the absence of proper seating and alignment.

  8. Selecting a New Water Heater | Department of Energy

    Energy Savers [EERE]

    Heat & Cool Water Heating Selecting a New Water Heater Selecting a New Water Heater Water heater testing facility at Oak Ridge National Laboratory. Water heater testing ...

  9. Enhanced test facility for OTEC at Keahole Point

    SciTech Connect (OSTI)

    Hillis, D.L.; Stevens, H.C.; Panchal, C.B.

    1983-01-01

    Additional test facilities are being planned for Keahole Point, Hawaii, that would greatly increase the amounts of warm and cold water available for OTEC research and development. Present activities include the design of seawater systems and a pumping station, using the existing OTEC-1 cold-water pipe and pumps. Future options include the installation of available heat exchangers and ammonia-system equipment, the addition of a turbine generator, and facilities for open- and closed-cycle testing of components and systems.

  10. Nuclear waste package materials testing report: basaltic and tuffaceous environments

    SciTech Connect (OSTI)

    Bradley, D.J.; Coles, D.G.; Hodges, F.N.; McVay, G.L.; Westerman, R.E.

    1983-03-01

    The disposal of high-level nuclear wastes in underground repositories in the continental United States requires the development of a waste package that will contain radionuclides for a time period commensurate with performance criteria, which may be up to 1000 years. This report addresses materials testing in support of a waste package for a basalt (Hanford, Washington) or a tuff (Nevada Test Site) repository. The materials investigated in this testing effort were: sodium and calcium bentonites and mixtures with sand or basalt as a backfill; iron and titanium-based alloys as structural barriers; and borosilicate waste glass PNL 76-68 as a waste form. The testing also incorporated site-specific rock media and ground waters: Reference Umtanum Entablature-1 basalt and reference basalt ground water, Bullfrog tuff and NTS J-13 well water. The results of the testing are discussed in four major categories: Backfill Materials: emphasizing water migration, radionuclide migration, physical property and long-term stability studies. Structural Barriers: emphasizing uniform corrosion, irradiation-corrosion, and environmental-mechanical testing. Waste Form Release Characteristics: emphasizing ground water, sample surface area/solution volume ratio, and gamma radiolysis effects. Component Compatibility: emphasizing solution/rock, glass/rock, glass/structural barrier, and glass/backfill interaction tests. This area also includes sensitivity testing to determine primary parameters to be studied, and the results of systems tests where more than two waste package components were combined during a single test.

  11. Light Water Reactor Sustainability Program Risk Informed Safety Margin Characterization (RISMC) Advanced Test Reactor Demonstration Case Study

    SciTech Connect (OSTI)

    Curtis Smith; David Schwieder; Cherie Phelan; Anh Bui; Paul Bayless

    2012-08-01

    Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). Consequently, the ability to better characterize and quantify safety margin holds the key to improved decision making about LWR design, operation, and plant life extension. A systematic approach to characterization of safety margins and the subsequent margins management options represents a vital input to the licensee and regulatory analysis and decision making that will be involved. The purpose of the RISMC Pathway R&D is to support plant decisions for risk-informed margins management with the aim to improve economics, reliability, and sustain safety of current NPPs. Goals of the RISMC Pathway are twofold: (1) Develop and demonstrate a risk-assessment method coupled to safety margin quantification that can be used by NPP decision makers as part of their margin recovery strategies. (2) Create an advanced “RISMC toolkit” that enables more accurate representation of NPP safety margin. This report describes the RISMC methodology demonstration where the Advanced Test Reactor (ATR) was used as a test-bed for purposes of determining safety margins. As part of the demonstration, we describe how both the thermal-hydraulics and probabilistic safety calculations are integrated and used to quantify margin management strategies.

  12. Ceramic component for electrodes

    DOE Patents [OSTI]

    Marchant, David D.

    1979-01-01

    A ceramic component suitable for preparing MHD generator electrodes consists of HfO.sub.2 and sufficient Tb.sub.4 O.sub.7 to stabilize at least 60 volume percent of the HfO.sub.2 into the cubic structure. The ceramic component may also contain a small amount of PrO.sub.2, Yb.sub.2 O.sub.3 or a mixture of both to improve stability and electronic conductivity of the electrode. The component is highly resistant to corrosion by molten potassium seed and molten coal slag in the MHD fluid and exhibits both ionic and electronic conductivity.

  13. Comparison of Test Procedures and Energy Efficiency Criteria in Selected International Standards and Labeling Programs for Clothes Washers, Water Dispensers, Vending Machines and CFLs

    SciTech Connect (OSTI)

    Fridley, David; Zheng, Nina; Zhou, Nan

    2010-06-01

    Since the late 1970s, energy labeling programs and mandatory energy performance standards have been used in many different countries to improve the efficiency levels of major residential and commercial equipment. As more countries and regions launch programs covering a greater range of products that are traded worldwide, greater attention has been given to harmonizing the specific efficiency criteria in these programs and the test methods for measurements. For example, an international compact fluorescent light (CFL) harmonization initiative was launched in 2006 to focus on collaboration between Australia, China, Europe and North America. Given the long history of standards and labeling programs, most major energy-consuming residential appliances and commercial equipment are already covered under minimum energy performance standards (MEPS) and/or energy labels. For these products, such as clothes washers and CFLs, harmonization may still be possible when national MEPS or labeling thresholds are revised. Greater opportunity for harmonization exists in newer energy-consuming products that are not commonly regulated but are under consideration for new standards and labeling programs. This may include commercial products such as water dispensers and vending machines, which are only covered by MEPS or energy labels in a few countries or regions. As China continues to expand its appliance standards and labeling programs and revise existing standards and labels, it is important to learn from recent international experiences with efficiency criteria and test procedures for the same products. Specifically, various types of standards and labeling programs already exist in North America, Europe and throughout Asia for products in China's 2010 standards and labeling programs, namely clothes washers, water dispensers, vending machines and CFLs. This report thus examines similarities and critical differences in energy efficiency values, test procedure specifications and other

  14. Measurement of two-component flow using ultrasonic flowmeters

    SciTech Connect (OSTI)

    Whitehouse, J.C.; Eghbali, D.A. ); Flitton, V.E. ); Anderson, D.G. )

    1991-01-01

    A novel application of existing ultrasonic flowmeter technology is described. This application was motivated by the need to make nonintrusive measurements of two-component flow in support of reactor safety research at the Savannah River Site (SRS). Two types of ultrasonic flowmeters were used during the test program in 1989. Both types were posttest calibrated in the summer of 1990 in a large gas/water flow facility at Wyle Laboratory in Norco, California. Both flowmeter types were found to measure total volumetric flow over a portion of their ranges accurately. When combined with void fraction measured by a three-beam gamma densitometer system it was possible to determine the individual gas and water flows.

  15. Community Environmental Monitoring Program (CEMP) Data related to Air, Soil, and Water Monitoring around the Nevada Test Site

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Community Environmental Monitoring Program (CEMP) is a network of 29 monitoring stations located in communities surrounding and downwind of the Nevada Test Site (NTS) that monitor the airborne environment for manmade radioactivity that could result from NTS activities. The network stations, located in Nevada, Utah, and California are comprised of instruments that collect a variety of environmental radiological and meteorological data. The emphasis of the CEMP is to monitor airborne radioactivity and weather conditions, and make the results available to the public. Instrumentation that records these data is connected to a datalogger, and real-time radiation levels or weather conditions can immediately and easily be seen on a display at each station. These data are transmitted via direct or wireless internet connection, landline or cellular phone, or satellite transmission to DRI's Western Regional Climate Center in Reno, Nevada, and are updated as frequently as every 10 minutes on the World Wide Web at http://www.cemp.dri.edu. DOE and DRI also publish the results of the monitoring program and distribute these reports throughout the network community. The reports provide summaries of average values for each station and the entire network, and show deviations from the expected range values. [Copied from the CEMP website (Introduction) at http://www.cemp.dri.edu/cemp/moreinfo.html

  16. Initial field testing definition of subsurface sealing and backfilling tests in unsaturated tuff; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Fernandez, J.A.; Case, J.B.; Tyburski, J.R.

    1993-05-01

    This report contains an initial definition of the field tests proposed for the Yucca Mountain Project repository sealing program. The tests are intended to resolve various performance and emplacement concerns. Examples of concerns to be addressed include achieving selected hydrologic and structural requirements for seals, removing portions of the shaft liner, excavating keyways, emplacing cementitious and earthen seals, reducing the impact of fines on the hydraulic conductivity of fractures, efficient grouting of fracture zones, sealing of exploratory boreholes, and controlling the flow of water by using engineered designs. Ten discrete tests are proposed to address these and other concerns. These tests are divided into two groups: Seal component tests and performance confirmation tests. The seal component tests are thorough small-scale in situ tests, the intermediate-scale borehole seal tests, the fracture grouting tests, the surface backfill tests, and the grouted rock mass tests. The seal system tests are the seepage control tests, the backfill tests, the bulkhead test in the Calico Hills unit, the large-scale shaft seal and shaft fill tests, and the remote borehole sealing tests. The tests are proposed to be performed in six discrete areas, including welded and non-welded environments, primarily located outside the potential repository area. The final selection of sealing tests will depend on the nature of the geologic and hydrologic conditions encountered during the development of the Exploratory Studies Facility and detailed numerical analyses. Tests are likely to be performed both before and after License Application.

  17. Montena Components | Open Energy Information

    Open Energy Info (EERE)

    Components Jump to: navigation, search Name: Montena Components Place: Rossens, Switzerland Zip: CH 1728 Product: Montena Components is a manufacturer of ultracapacitors and...

  18. Integrating Program Component Executables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrating Program Component Executables on Distributed Memory Architectures via MPH Chris Ding and Yun He Computational Research Division, Lawrence Berkeley National Laboratory University of California, Berkeley, CA 94720, USA chqding@lbl.gov, yhe@lbl.gov Abstract A growing trend in developing large and complex ap- plications on today's Teraflop computers is to integrate stand-alone and/or semi-independent program components into a comprehensive simulation package. One example is the climate

  19. Superclean coal-water slurry combustion testing in an oil-fired boiler. Semiannual technical progress report, August 15, 1992--February 15, 1993

    SciTech Connect (OSTI)

    Miller, B.G.; Pisupati, S.V.; Poe, R.L.; Morrison, J.L.; Xie, J.; Walsh, P.M.; Wincek, R.T.; Clark, D.A.; Scaroni, A.W.

    1993-04-21

    The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the capability of effectively firing SCCWS in an industrial boiler designed for heavy fuel oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with 3.0 wt.% ash and 0.9 wt.% sulfur) can effectively be burned in a heavy fuel oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) program expansion (additional 1,000 hours of testing). The boiler testing wig determine if the SCCWS combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion limits, and fuel transport, storage, and handling characteristics can be accommodated in an oil-designed boiler system. In addition, the proof-of-concept demonstration will generate data to determine how the properties of SCCWS and its parent coal affect boiler performance. Economic factors associated with retrofitting boilers will be identified

  20. Superclean coal-water slurry combustion testing in an oil-fired boiler. Semiannual technical progress report, February 15, 1992--August 15, 1992

    SciTech Connect (OSTI)

    Miller, B.G.; Pisupati, S.V.; Poe, R.L.; Morrison, J.L.; Xie, J.; Walsh, P.M.; Shamanna, S.; Schobert, H.H.; Scaroni, A.W.

    1992-10-13

    The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the capability of effectively firing SCCWS in an industrial boiler designed for oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with 3.0 wt.% ash and 0.9 wt.% sulfur) can effectively be burned in an oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) program expansion (additional 1,000 hours of testing). The boiler testing will determine if the SCCWS combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion limits, and fuel transport, storage, and handling characteristics can be accommodated in an oil-designed boiler system. In addition, the proof-of-concept demonstration will generate data to determine how the properties of SCCWS and its parent coal affect boiler performance. Economic factors associated with retrofitting and operating boilers will be identified to assess the viability of future oil-to-coal retrofits.

  1. Revisions to the SRCC Rating Process for Solar Water Heaters: Preprint

    SciTech Connect (OSTI)

    Burch, J.; Huggins, J.; Long, S.; Thornton, J.

    2012-06-01

    In the United States, annual performance ratings for solar water heaters are computed with component-based simulation models driven by typical meteorological year weather and specified water draw. Changes in the process are being implemented to enhance credibility through increased transparency and accuracy. Changes to the process include using a graphical rather than text-based model-building tool, performing analytical tests on all components and systems, checking energy balances on every component, loop, and system at every time step, comparing the results to detect outliers and potential errors, and documenting the modeling process in detail. Examples of changes in ratings are shown, along with analytical and comparative testing results.

  2. Recovery of precious metals from military electronic components

    SciTech Connect (OSTI)

    Gundiler, I.H.; Lutz, J.D.; Neiswander, P.G.

    1996-09-01

    Sandia National Laboratories developed a process to identify and remove the hazardous sub-components from dismantled weapons components utilizing real-time radiography and abrasive water-jet cutting. The components were then crushed, granulated, screened, and separated into an aluminium and a precious-and-base-metals fraction using air-tables. Plastics were further cleaned for disposal as non- hazardous waste.

  3. Measured Performance and Analysis of Ground Source Heat Pumps for Space Conditioning and for Water Heating in a Low-Energy Test House Operated under Simulated Occupancy Conditions

    SciTech Connect (OSTI)

    Ally, Moonis Raza [ORNL] [ORNL; Munk, Jeffrey D [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Gehl, Anthony C [ORNL] [ORNL

    2012-01-01

    In this paper we present measured performance and efficiency metrics of Ground Source Heat Pumps (GSHPs) for space conditioning and for water heating connected to a horizontal ground heat exchanger (GHX) loop. The units were installed in a 345m2 (3700ft2) high-efficiency test house built with structural insulated panels (SIPs), operated under simulated occupancy conditions, and located in Oak Ridge, Tennessee (USA) in US Climate Zone 4 . The paper describes distinctive features of the building envelope, ground loop, and equipment, and provides detailed monthly performance of the GSHP system. Space conditioning needs of the house were completely satisfied by a nominal 2-ton (7.0 kW) water-to-air GSHP (WA-GSHP) unit with almost no auxiliary heat usage. Recommendations for further improvement through engineering design changes are identified. The comprehensive set of data and analyses demonstrate the feasibility and practicality of GSHPs in residential applications and their potential to help achieve source energy and greenhouse gas emission reduction targets set under the IECC 2012 Standard.

  4. Ceramic component for electrodes

    DOE Patents [OSTI]

    Marchant, David D.; Bates, J. Lambert

    1980-01-01

    A ceramic component suitable for preparing MHD generator electrodes having the compositional formula: Y.sub.x (Mg.sub.y Cr.sub.z).sub.w Al.sub.(1-w) O.sub.3 where x=0.9 to 1.05, y=0.02 to 0.2, z=0.8 to 1.05 and w=1.0 to 0.5. The component is resistant to the formation of hydration products in an MHD environment, has good electrical conductivity and exhibits a lower electrochemical corrosion rate than do comparable compositions of lanthanum chromite.

  5. Components in the Pipeline

    SciTech Connect (OSTI)

    Gorton, Ian; Wynne, Adam S.; Liu, Yan; Yin, Jian

    2011-02-24

    Scientists commonly describe their data processing systems metaphorically as software pipelines. These pipelines input one or more data sources and apply a sequence of processing steps to transform the data and create useful results. While conceptually simple, pipelines often adopt complex topologies and must meet stringent quality of service requirements that place stress on the software infrastructure used to construct the pipeline. In this paper we describe the MeDICi Integration Framework, which is a component-based framework for constructing complex software pipelines. The framework supports composing pipelines from distributed heterogeneous software components and provides mechanisms for controlling qualities of service to meet demanding performance, reliability and communication requirements.

  6. Implementation and testing of the on-the-fly thermal scattering Monte Carlo sampling method for graphite and light water in MCNP6

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pavlou, Andrew T.; Ji, Wei; Brown, Forrest B.

    2016-01-23

    Here, a proper treatment of thermal neutron scattering requires accounting for chemical binding through a scattering law S(α,β,T). Monte Carlo codes sample the secondary neutron energy and angle after a thermal scattering event from probability tables generated from S(α,β,T) tables at discrete temperatures, requiring a large amount of data for multiscale and multiphysics problems with detailed temperature gradients. We have previously developed a method to handle this temperature dependence on-the-fly during the Monte Carlo random walk using polynomial expansions in 1/T to directly sample the secondary energy and angle. In this paper, the on-the-fly method is implemented into MCNP6 andmore » tested in both graphite-moderated and light water-moderated systems. The on-the-fly method is compared with the thermal ACE libraries that come standard with MCNP6, yielding good agreement with integral reactor quantities like k-eigenvalue and differential quantities like single-scatter secondary energy and angle distributions. The simulation runtimes are comparable between the two methods (on the order of 5–15% difference for the problems tested) and the on-the-fly fit coefficients only require 5–15 MB of total data storage.« less

  7. Cooling Towers: Understanding Key Components of Cooling Towers and How to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improve Water Efficiency | Department of Energy Cooling Towers: Understanding Key Components of Cooling Towers and How to Improve Water Efficiency Cooling Towers: Understanding Key Components of Cooling Towers and How to Improve Water Efficiency Fact sheet covers the key components of cooling towers and how to improve water efficiency. waterfs_coolingtowers.pdf (3.16 MB) More Documents & Publications Guidelines for Estimating Unmetered Industrial Water Use Side Stream Filtration for

  8. Light Water Reactor Sustainability Technical Documents | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Light Water Reactors: Life After 60 Nuclear reactors present a very harsh environment for components service. Components within a reactor core must tolerate high...

  9. Solid state lighting component

    DOE Patents [OSTI]

    Yuan, Thomas; Keller, Bernd; Ibbetson, James; Tarsa, Eric; Negley, Gerald

    2010-10-26

    An LED component comprising an array of LED chips mounted on a planar surface of a submount with the LED chips capable of emitting light in response to an electrical signal. The LED chips comprise respective groups emitting at different colors of light, with each of the groups interconnected in a series circuit. A lens is included over the LED chips. Other embodiments can comprise thermal spreading structures included integral to the submount and arranged to dissipate heat from the LED chips.

  10. Solid state lighting component

    DOE Patents [OSTI]

    Keller, Bernd; Ibbetson, James; Tarsa, Eric; Negley, Gerald; Yuan, Thomas

    2012-07-10

    An LED component comprising an array of LED chips mounted on a planar surface of a submount with the LED chips capable of emitting light in response to an electrical signal. The LED chips comprise respective groups emitting at different colors of light, with each of the groups interconnected in a series circuit. A lens is included over the LED chips. Other embodiments can comprise thermal spreading structures included integral to the submount and arranged to dissipate heat from the LED chips.

  11. Component for thermoelectric generator

    DOE Patents [OSTI]

    Purdy, David L.

    1977-01-01

    In a thermoelectric generator, a component comprises a ceramic insulator, having over limited areas thereof, each area corresponding to a terminal end of thermoelectric wires, a coating of a first metal which adheres to the insulator, and an electrical thermoelectric junction including a second metal which wets said first metal and adheres to said terminal ends but does not wet said insulator, and a cloth composed of electrically insulating threads interlaced with thermoelectric wires.

  12. Injection molded component

    DOE Patents [OSTI]

    James, Allister W; Arrell, Douglas J

    2014-09-30

    An intermediate component includes a first wall member, a leachable material layer, and a precursor wall member. The first wall member has an outer surface and first connecting structure. The leachable material layer is provided on the first wall member outer surface. The precursor wall member is formed adjacent to the leachable material layer from a metal powder mixed with a binder material, and includes second connecting structure.

  13. Surface mount component jig

    DOE Patents [OSTI]

    Kronberg, James W.

    1990-08-07

    A device for bending and trimming the pins of a dual-inline-package component and the like for surface mounting rather than through mounting to a circuit board comprises, in a first part, in pin cutter astride a holder having a recess for holding the component, a first spring therebetween, and, in a second part, two flat members pivotally interconnected by a hinge and urged to an upward peaked position from a downward peaked position by a second spring. As a downward force is applied to the pin cutter it urges the holder downward, assisted by the first spring and a pair of ridges riding on shoulders of the holder, to carry the component against the upward peaked flat members which guide the pins outwardly. As the holder continues downwardly, the flat members pivot to the downward peaked position bending the pins upwardly against the sides of the holder. When the downward movement is met with sufficient resistance, the ridges of the pin cutter ride over the holder's shoulders to continue downward to cut any excess length of pin.

  14. Experimental Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Testing - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  15. Mechanical Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Testing - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  16. Follow-up Audit on Stockpile Surveillance Testing, IG-0744 |...

    Energy Savers [EERE]

    Surveillance Testing Program---laboratory tests, flight tests, and component tests---as of September 30? 2005. Laboratory tests are conducted on weapons' non-nuclear systems to ...

  17. A User’s Guide to the Comprehensive Water Quality Database for Groundwater in the Vicinity of the Nevada Test Site, Rev. No.: 1

    SciTech Connect (OSTI)

    Farnham, Irene

    2006-09-01

    This water quality database (viz.GeochemXX.mdb) has been developed as part of the Underground Test Area (UGTA) Program with the cooperation of several agencies actively participating in ongoing evaluation and characterization activities under contract to the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). The database has been constructed to provide up-to-date, comprehensive, and quality controlled data in a uniform format for the support of current and future projects. This database provides a valuable tool for geochemical and hydrogeologic evaluations of the Nevada Test Site (NTS) and surrounding region. Chemistry data have been compiled for groundwater within the NTS and the surrounding region. These data include major ions, organic compounds, trace elements, radionuclides, various field parameters, and environmental isotopes. Colloid data are also included in the database. The GeochemXX.mdb database is distributed on an annual basis. The extension ''XX'' within the database title is replaced by the last two digits of the release year (e.g., Geochem06 for the version released during the 2006 fiscal year). The database is distributed via compact disc (CD) and is also uploaded to the Common Data Repository (CDR) in order to make it available to all agencies with DOE intranet access. This report provides an explanation of the database configuration and summarizes the general content and utility of the individual data tables. In addition to describing the data, subsequent sections of this report provide the data user with an explanation of the quality assurance/quality control (QA/QC) protocols for this database.

  18. The Capabilities and Limitation of Remote Visual Methods to Detect Service-Induced Cracks in Reactor Components

    SciTech Connect (OSTI)

    Cumblidge, Stephen E.; Doctor, Steven R.; Anderson, Michael T.

    2006-11-01

    Since 1977, the U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research has funded a multiyear program at the Pacific Northwest National Laboratory (PNNL) to evaluate the reliability and accuracy of nondestructive evaluation (NDE) techniques employed for inservice inspection (ISI). Recently, the U.S. nuclear industry proposed replacing current volumetric and/or surface examinations of certain components in commercial nuclear power plants, as required by ASME Boiler and Pressure Vessel Code Section XI, with a simpler visual testing (VT) method. The advantages of VT are that these tests generally involve much less radiation exposure and examination times than do volumetric examinations such as ultrasonic testing (UT). However, for industry to justify supplamenting volumetric metods with VT, and analysis of pertinent issues is needed to support the reliability of VT in determining the structural intefrity of reactor components. As piping and pressure vessel compoents in a nuclear power station are generally underwater and in high radiation field, they need to be examined by VT from a distance with radiation-hardened video systems. Remote visual testing has been used by nuclear utilities to find cracks in pressure vessel cladding in pressurized water reactors, for shrouds in boiling water reactors, and to investigate leaks in piping and reactor components. These visual tests are performed using a wide variety of procedures and equipment. The techniques for remote visual testing use submersible closed-circuit video cameras to examine reactor components and welds. PNNL has conducted a parametric study that examines the important variables that affect the effectiveness of a remote visual test. Tested variables include lighting techniques, camera resolution, camera movement, and magnification. PNNL has also conductrd a laboratory test using a commercial visual testing camera system to experimentally determine the ability of the camera system to

  19. Sandia_HighTemperatureComponentEvaluation_2015.

    SciTech Connect (OSTI)

    Cashion, Avery T.

    2015-03-01

    The objective of this project is to perform independent evaluation of high temperature components to determine their suitability for use in high temperature geothermal tools. Development of high temperature components has been increasing rapidly due to demand from the high temperature oil and gas exploration and aerospace industries. Many of these new components are at the late prototype or first production stage of development and could benefit from third party evaluation of functionality and lifetime at elevated temperatures. In addition to independent testing of new components, this project recognizes that there is a paucity of commercial-off-the-shelf COTS components rated for geothermal temperatures. As such, high-temperature circuit designers often must dedicate considerable time and resources to determine if a component exists that they may be able to knead performance out of to meet their requirements. This project aids tool developers by characterization of select COTS component performances beyond published temperature specifications. The process for selecting components includes public announcements of project intent (e.g., FedBizOps), direct discussions with candidate manufacturers,and coordination with other DOE funded programs.

  20. Component failure data handbook

    SciTech Connect (OSTI)

    Gentillon, C.D.

    1991-04-01

    This report presents generic component failure rates that are used in reliability and risk studies of commercial nuclear power plants. The rates are computed using plant-specific data from published probabilistic risk assessments supplemented by selected other sources. Each data source is described. For rates with four or more separate estimates among the sources, plots show the data that are combined. The method for combining data from different sources is presented. The resulting aggregated rates are listed with upper bounds that reflect the variability observed in each rate across the nuclear power plant industry. Thus, the rates are generic. Both per hour and per demand rates are included. They may be used for screening in risk assessments or for forming distributions to be updated with plant-specific data.

  1. Sprayed skin turbine component

    DOE Patents [OSTI]

    Allen, David B

    2013-06-04

    Fabricating a turbine component (50) by casting a core structure (30), forming an array of pits (24) in an outer surface (32) of the core structure, depositing a transient liquid phase (TLP) material (40) on the outer surface of the core structure, the TLP containing a melting-point depressant, depositing a skin (42) on the outer surface of the core structure over the TLP material, and heating the assembly, thus forming both a diffusion bond and a mechanical interlock between the skin and the core structure. The heating diffuses the melting-point depressant away from the interface. Subsurface cooling channels (35) may be formed by forming grooves (34) in the outer surface of the core structure, filling the grooves with a fugitive filler (36), depositing and bonding the skin (42), then removing the fugitive material.

  2. NREL: Hydrogen and Fuel Cells Research - Hydrogen System Component

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Validation System Component Validation NREL's hydrogen system component validation studies focus on improving the reliability of compressors and other hydrogen system components. Reliable components are needed to ensure the success of hydrogen fueling stations and support the commercial deployment of fuel cell electric vehicles and material handling equipment. NREL's technology validation team is collaborating with industry to test and validate the commercial readiness of hydrogen system

  3. Energy Department Announces $8 Million to Develop Advanced Components...

    Office of Environmental Management (EM)

    Energy Department Awards 7.4 Million to Develop Advanced Components for Wave and Tidal Energy Systems Riding the Clean Energy Wave: New Projects Aim to Improve Water Power Devices ...

  4. Atmosphere Component in Community Earth System Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atiq Warraich About Us Atiq Warraich - Technical Lead/Project Manager Atiq Warraich Most Recent Digital Strategy May

    Atmosphere Component in Community Earth System Model - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy

  5. System for treating produced water

    DOE Patents [OSTI]

    Sullivan, Enid J.; Katz, Lynn; Kinney, Kerry; Bowman, Robert S.; Kwon, Soondong

    2010-08-03

    A system and method were used to treat produced water. Field-testing demonstrated the removal of contaminants from produced water from oil and gas wells.

  6. Watts nickel and rinse water recovery via an advanced reverse osmosis system

    SciTech Connect (OSTI)

    Schmidt, C.; White, I.E.; Ludwig, R.

    1993-08-01

    The report summarizes the results of an eight month test program conducted at the Hewlett Packard Printed Circuit Board Production Plant, Sunnyvale, CA (H.P.) to assess the effectiveness of an advanced reverse osmosis system (AROS). The AROS unit, manufactured by Water Technologies, Inc. (WTI) of Minneapolis, MN, incorporates membrane materials and system components designed to treat metal plating rinse water and produce two product streams; (1) a concentrated metal solution suitable for the plating bath, and (2) rinse water suitable for reuse as final rinse. Waste water discharge can be virtually eliminated and significant reductions realized in the need for new plating bath solution and rinse water.

  7. Selecting a New Water Heater | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Water heater testing facility at Oak Ridge National Laboratory. Water heater testing facility at Oak Ridge National Laboratory. When selecting a new water heater for your home, ...

  8. ANAEROBIC BIOLOGICAL TREATMENT OF PRODUCED WATER

    SciTech Connect (OSTI)

    John R. Gallagher

    2001-07-31

    reactor. Batch tests were conducted to examine naphthenic acid biodegradability under several conditions. The conditions used were seed from the anaerobic reactor, wetland sediments under aerobic and anaerobic conditions, and a sterile control. The naphthenic acid was from a commercial source isolated from Gulf Coast petroleum as was dosed at 2 mg/mL. The incubations were for 30 days at 30 C. The results showed that the naphthenic acids were not biodegraded under anaerobic conditions, but were degraded under aerobic conditions. Despite poor performance of the anaerobic reactor, it remains likely that anaerobic treatment of acetate, toluene, and, potentially, other produced-water components is feasible.

  9. Cooling system for electronic components

    DOE Patents [OSTI]

    Anderl, William James; Colgan, Evan George; Gerken, James Dorance; Marroquin, Christopher Michael; Tian, Shurong

    2015-12-15

    Embodiments of the present invention provide for non interruptive fluid cooling of an electronic enclosure. One or more electronic component packages may be removable from a circuit card having a fluid flow system. When installed, the electronic component packages are coincident to and in a thermal relationship with the fluid flow system. If a particular electronic component package becomes non-functional, it may be removed from the electronic enclosure without affecting either the fluid flow system or other neighboring electronic component packages.

  10. Technique for Measuring Hybrid Electronic Component Reliability

    SciTech Connect (OSTI)

    Green, C.C.; Hernandez, C.L.; Hosking, F.M.; Robinson, D.; Rutherford, B.; Uribe, F.

    1999-01-01

    Materials compatibility studies of aged, engineered materials and hardware are critical to understanding and predicting component reliability, particularly for systems with extended stockpile life requirements. Nondestructive testing capabilities for component reliability would significantly enhance lifetime predictions. For example, if the detection of crack propagation through a solder joint can be demonstrated, this technique could be used to develop baseline information to statistically determine solder joint lifelengths. This report will investigate high frequency signal response techniques for nondestructively evaluating the electrical behavior of thick film hybrid transmission lines.

  11. Degradation mechanisms and accelerated testing in PEM fuel cells

    SciTech Connect (OSTI)

    Borup, Rodney L; Mukundan, Rangachary

    2010-01-01

    The durability of PEM fuel cells is a major barrier to the commercialization of these systems for stationary and transportation power applications. Although there has been recent progress in improving durability, further improvements are needed to meet the commercialization targets. Past improvements have largely been made possible because of the fundamental understanding of the underlying degradation mechanisms. By investigating component and cell degradation modes; defining the fundamental degradation mechanisms of components and component interactions new materials can be designed to improve durability. Various factors have been shown to affect the useful life of PEM fuel cells. Other issues arise from component optimization. Operational conditions (such as impurities in either the fuel and oxidant stream), cell environment, temperature (including subfreezing exposure), pressure, current, voltage, etc.; or transient versus continuous operation, including start-up and shutdown procedures, represent other factors that can affect cell performance and durability. The need for Accelerated Stress Tests (ASTs) can be quickly understood given the target lives for fuel cell systems: 5000 hours ({approx} 7 months) for automotive, and 40,000 hrs ({approx} 4.6 years) for stationary systems. Thus testing methods that enable more rapid screening of individual components to determine their durability characteristics, such as off-line environmental testing, are needed for evaluating new component durability in a reasonable turn-around time. This allows proposed improvements in a component to be evaluated rapidly and independently, subsequently allowing rapid advancement in PEM fuel cell durability. These tests are also crucial to developers in order to make sure that they do not sacrifice durability while making improvements in costs (e.g. lower platinum group metal [PGM] loading) and performance (e.g. thinner membrane or a GDL with better water management properties). To

  12. Task 8 -- Design and test of critical components

    SciTech Connect (OSTI)

    Chance, T.F.

    1996-11-01

    This report covers tasks 8.1, 8.1.1, and 8.2. The primary objective of Task 8.1, Particulates Flow Deposition, is to characterize the particulate generated in an operating gas turbine combined cycle (GTCC) power plant whose configuration approximates that proposed for an ATS power plant. In addition, the task is to evaluate the use of full-flow filtering to reduce the steam particulate loads. Before the start of this task, GE had already negotiated an agreement with the candidate power plant, piping and a filter unit had already been installed at the power plant site, and major elements of the data acquisition system had been purchased. The objective of Task 8.1.1, Coolant Purity, is to expose typical ATS gas turbine airfoil cooling channel geometries to real steam flow to determine whether there are any unexpected deposit formations. The task is a static analog of the centrifugal deposition rig trials of Task 8.2, in which a bucket channel return bend is exposed to steam flow. Two cooling channel geometries are of primary interest in this static exposure. The primary objective of Task 8.2, Particle Centrifugal Sedimentation, is to determine the settling characteristics of particles in a cooling stream from an operating gas turbine combined cycle (GTCC) power plant when that stream is ducted through a passage experiencing the G-loads expected in a simulated bucket channel specimen representative of designs proposed for an ATS gas turbine.

  13. Initial Component Testing for a Germanium Array Cryostat (Technical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Close Cite: Bibtex Format Close 0 pages in this document matching the terms "" Search For Terms: Enter terms in the toolbar above to search the full text of this document for ...

  14. Water on BN doped benzene: A hard test for exchange-correlation functionals and the impact of exact exchange on weak binding

    SciTech Connect (OSTI)

    Al-Hamdani, Yasmine S.; Alf, Dario; von Lilienfeld, O. Anatole; Michaelides, Angelos

    2014-10-22

    Density functional theory (DFT) studies of weakly interacting complexes have recently focused on the importance of van der Waals dispersion forces, whereas the role of exchange has received far less attention. Here, by exploiting the subtle binding between water and a boron and nitrogen doped benzene derivative (1,2-azaborine) we show how exact exchange can alter the binding conformation within a complex. Benchmark values have been calculated for three orientations of the water monomer on 1,2-azaborine from explicitly correlated quantum chemical methods, and we have also used diffusion quantum Monte Carlo. For a host of popular DFT exchange-correlation functionals we show that the lack of exact exchange leads to the wrong lowest energy orientation of water on 1,2-azaborine. As such, we suggest that a high proportion of exact exchange and the associated improvement in the electronic structure could be needed for the accurate prediction of physisorption sites on doped surfaces and in complex organic molecules. Meanwhile to predict correct absolute interaction energies an accurate description of exchange needs to be augmented by dispersion inclusive functionals, and certain non-local van der Waals functionals (optB88- and optB86b-vdW) perform very well for absolute interaction energies. Through a comparison with water on benzene and borazine (B?N?H?) we show that these results could have implications for the interaction of water with doped graphene surfaces, and suggest a possible way of tuning the interaction energy.

  15. Evaluation of Sialon internal combustion engine components and fabrication of several ceramic components for automotive applications

    SciTech Connect (OSTI)

    McMurtry, C.H.; Ten Eyck, M.O.

    1992-10-01

    Fabrication development work was carried out on a push-rod tip having a stepped OD design and a 90{degree} shoulder in the transition area. Spray-dried Sialon premix was used in dry press tooling, and components were densified to about 98% of theoretical density using pressureless sintering conditions. Upon evaluation of the sintered components, it was found that afl components showed defects in the transition area. Modifications of the pressing parameters, incorporation of a 45{degree} angle in the shoulder area, and the use of tailored premix did not lead to the fabrication of defect-free parts. From these observations, it was concluded that the original part design could not easily be adapted to high-volume ceramic manufacturing methods. Subsequently, a modification to the desip was implemented. An SiC material with improved toughness (Hexoloy SX) was used for fabricating several test components with a closely machined, straight OD design. Pressureless-sintered and post-hot isostatically pressed (HIPed) Hexoloy SX components were supplied to The American Ceramic Engine Company (ACE) for assembly and testing. Fuel pump push-rod assemblies with Hemoloy SX tips were prepared by ACE, but no testing has been carried out to date.

  16. Evaluation of Sialon internal combustion engine components and fabrication of several ceramic components for automotive applications

    SciTech Connect (OSTI)

    McMurtry, C.H.; Ten Eyck, M.O.

    1992-10-01

    Fabrication development work was carried out on a push-rod tip having a stepped OD design and a 90[degree] shoulder in the transition area. Spray-dried Sialon premix was used in dry press tooling, and components were densified to about 98% of theoretical density using pressureless sintering conditions. Upon evaluation of the sintered components, it was found that afl components showed defects in the transition area. Modifications of the pressing parameters, incorporation of a 45[degree] angle in the shoulder area, and the use of tailored premix did not lead to the fabrication of defect-free parts. From these observations, it was concluded that the original part design could not easily be adapted to high-volume ceramic manufacturing methods. Subsequently, a modification to the desip was implemented. An SiC material with improved toughness (Hexoloy SX) was used for fabricating several test components with a closely machined, straight OD design. Pressureless-sintered and post-hot isostatically pressed (HIPed) Hexoloy SX components were supplied to The American Ceramic Engine Company (ACE) for assembly and testing. Fuel pump push-rod assemblies with Hemoloy SX tips were prepared by ACE, but no testing has been carried out to date.

  17. Multi-tipped optical component

    DOE Patents [OSTI]

    D'Urso, Brian R.; Simpson, John T.

    2010-04-13

    An optical component has a plurality of parallel noncontiguous optical conduits of at least one protrusive phase material embedded in a recessive phase material that acts as a support structure. The optical conduits extend from a proximal surface to a distal surface of the optical component. The distal surface has a plurality of spaced apart surface features of the protrusive phase material. Each independent optical conduits act as waveguides for a wavelength or range of wavelengths. The optical component can be formed such that the protruding surface features at the distal end of the component form an ordered array. An optical instrument can include the optical component in conjunction with a light source for illuminating a sample and a detector in optical communication optical component via the optical conduits.

  18. Multi-component assembly casting

    DOE Patents [OSTI]

    James, Allister W.

    2015-10-13

    Multi-component vane segment and method for forming the same. Assembly includes: positioning a pre-formed airfoil component (12) and a preformed shroud heat resistant material (18) in a mold, wherein the airfoil component (12) and the shroud heat resistant material (18) each comprises an interlocking feature (24); preheating the mold; introducing molten structural material (46) into the mold; and solidifying the molten structural material such that it interlocks the pre-formed airfoil component (12) with respect to the preformed shroud heat resistant material (18) and is effective to provide structural support for the shroud heat resistant material (18). Surfaces between the airfoil component (12) and the structural material (46), between the airfoil component (12) and the shroud heat resistant material (18), and between the shroud heat resistant material (18) and the structural material (46) are free of metallurgical bonds.

  19. Enabling Technologies for Ceramic Hot Section Components

    SciTech Connect (OSTI)

    Venkat Vedula; Tania Bhatia

    2009-04-30

    components for gas turbine engines. Significant technical progress has been made towards maturation of the EBC and CMC technologies for incorporation into gas turbine engine hot-section. Promising EBC candidates for longer life and/or higher temperature applications relative to current state of the art BSAS-based EBCs have been identified. These next generation coating systems have been scaled-up from coupons to components and are currently being field tested in Solar Centaur 50S engine. CMC combustor liners were designed, fabricated and tested in a FT8 sector rig to demonstrate the benefits of a high temperature material system. Pretest predictions made through the use of perfectly stirred reactor models showed a 2-3x benefit in CO emissions for CMC versus metallic liners. The sector-rig test validated the pretest predictions with >2x benefit in CO at the same NOx levels at various load conditions. The CMC liners also survived several trip shut downs thereby validating the CMC design methodology. Significant technical progress has been made towards incorporation of ceramic matrix composites (CMC) and environmental barrier coatings (EBC) technologies into gas turbine engine hot-section. The second phase of the program focused on the demonstration of a reverse flow annular CMC combustor. This has included overcoming the challenges of design and fabrication of CMCs into 'complex' shapes; developing processing to apply EBCs to 'engine hardware'; testing of an advanced combustor enabled by CMCs in a PW206 rig; and the validation of performance benefits against a metal baseline. The rig test validated many of the pretest predictions with a 40-50% reduction in pattern factor compared to the baseline and reductions in NOx levels at maximum power conditions. The next steps are to develop an understanding of the life limiting mechanisms in EBC and CMC materials, developing a design system for EBC coated CMCs and durability testing in an engine environment.

  20. Low-temperature Swelling in LWR Internal Components: Current Data and Modeling Assessment

    Broader source: Energy.gov [DOE]

    Recent experimental observations have made it clear that cavity formation can occur in light-water reactor internal components fabricated from austenitic stainless during the course of their...

  1. Seawater magnetohydrodynamic test apparatus

    SciTech Connect (OSTI)

    Meng, J.

    1993-02-11

    Accordingly, it is an object of the present invention to provide a hydrodynamic test facility suitable for low turbulence and low radiated noise experiments. It is another object to provide a hydrodynamic test facility having no moving parts in the water flow path. It is yet another to provide a hydrodynamic test facility having a water flow powered by a magnetohydrodynamic pump. Accordingly, the invention is a hydrodynamic test facility using a magnetohydrodynamic (MHD) drive unit to provide the force necessary to circulate water in the test loop section. The test loop is fed by water from a pretreatment section which mixes seawater and tapwater to provide the desired salinity. A post-treatment section neutralizes emitted chlorine gases.

  2. Materials Degradation in Light Water Reactors: Life After 60

    Broader source: Energy.gov [DOE]

    Nuclear reactors present a very harsh environment for components service. Components within a reactor core must tolerate high temperature water, stress, vibration, and an intense neutron field....

  3. Water on BN doped benzene: A hard test for exchange-correlation functionals and the impact of exact exchange on weak binding

    SciTech Connect (OSTI)

    Al-Hamdani, Yasmine S.; Michaelides, Angelos; Alf, Dario; Lilienfeld, O. Anatole von

    2014-11-14

    Density functional theory (DFT) studies of weakly interacting complexes have recently focused on the importance of van der Waals dispersion forces, whereas the role of exchange has received far less attention. Here, by exploiting the subtle binding between water and a boron and nitrogen doped benzene derivative (1,2-azaborine) we show how exact exchange can alter the binding conformation within a complex. Benchmark values have been calculated for three orientations of the water monomer on 1,2-azaborine from explicitly correlated quantum chemical methods, and we have also used diffusion quantum Monte Carlo. For a host of popular DFT exchange-correlation functionals we show that the lack of exact exchange leads to the wrong lowest energy orientation of water on 1,2-azaborine. As such, we suggest that a high proportion of exact exchange and the associated improvement in the electronic structure could be needed for the accurate prediction of physisorption sites on doped surfaces and in complex organic molecules. Meanwhile to predict correct absolute interaction energies an accurate description of exchange needs to be augmented by dispersion inclusive functionals, and certain non-local van der Waals functionals (optB88- and optB86b-vdW) perform very well for absolute interaction energies. Through a comparison with water on benzene and borazine (B{sub 3}N{sub 3}H{sub 6}) we show that these results could have implications for the interaction of water with doped graphene surfaces, and suggest a possible way of tuning the interaction energy.

  4. Water on BN doped benzene: A hard test for exchange-correlation functionals and the impact of exact exchange on weak binding

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Al-Hamdani, Yasmine S.; Alfè, Dario; von Lilienfeld, O. Anatole; Michaelides, Angelos

    2014-10-22

    Density functional theory (DFT) studies of weakly interacting complexes have recently focused on the importance of van der Waals dispersion forces, whereas the role of exchange has received far less attention. Here, by exploiting the subtle binding between water and a boron and nitrogen doped benzene derivative (1,2-azaborine) we show how exact exchange can alter the binding conformation within a complex. Benchmark values have been calculated for three orientations of the water monomer on 1,2-azaborine from explicitly correlated quantum chemical methods, and we have also used diffusion quantum Monte Carlo. For a host of popular DFT exchange-correlation functionals we showmore » that the lack of exact exchange leads to the wrong lowest energy orientation of water on 1,2-azaborine. As such, we suggest that a high proportion of exact exchange and the associated improvement in the electronic structure could be needed for the accurate prediction of physisorption sites on doped surfaces and in complex organic molecules. Meanwhile to predict correct absolute interaction energies an accurate description of exchange needs to be augmented by dispersion inclusive functionals, and certain non-local van der Waals functionals (optB88- and optB86b-vdW) perform very well for absolute interaction energies. Through a comparison with water on benzene and borazine (B₃N₃H₆) we show that these results could have implications for the interaction of water with doped graphene surfaces, and suggest a possible way of tuning the interaction energy.« less

  5. Vehicle Technologies Office: Integration, Validation and Testing...

    Energy Savers [EERE]

    Integration Laboratory to integrate, validate, and test advanced vehicle technologies. ... To integrate and test vehicle components and subsystems, DOE's national laboratories use ...

  6. Accelerators for Testing Radiation Tolerances of Electronics...

    Office of Science (SC) Website

    Accelerated beams test semiconductor devices for tolerances to space radiation. ... The ability to test in air makes it possible to quickly change components and to easily ...

  7. Upcoming H2USA Workshop: Hydrogen Fueling Station Component Listings

    Broader source: Energy.gov [DOE]

    H2USA will host an online workshop about hydrogen fueling station component listings on April 22 from 2 to 3:30 p.m. Eastern Daylight Time. This workshop will focus on the need for components for hydrogen fueling stations to be listed by Nationally Recognized Testing Laboratories (NRTLs).

  8. Heat treating of manufactured components

    SciTech Connect (OSTI)

    Ripley, Edward B.

    2012-05-22

    An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material is disclosed. The system typically includes an insulating vessel placed within a microwave applicator chamber. A moderating material is positioned inside the insulating vessel so that a substantial portion of the exterior surface of each component for heat treating is in contact with the moderating material.

  9. Significant issues and changes for ANSI/ASME OM-1 1981, part 1, ASME OMc code-1994, and ASME OM Code-1995, Appendix I, inservice testing of pressure relief devices in light water reactor power plants

    SciTech Connect (OSTI)

    Seniuk, P.J.

    1996-12-01

    This paper identifies significant changes to the ANSI/ASME OM-1 1981, Part 1, and ASME Omc Code-1994 and ASME OM Code-1995, Appendix I, {open_quotes}Inservice Testing of Pressure Relief Devices in Light-Water Reactor Power Plants{close_quotes}. The paper describes changes to different Code editions and presents insights into the direction of the code committee and selected topics to be considered by the ASME O&M Working Group on pressure relief devices. These topics include scope issues, thermal relief valve issues, as-found and as-left set-pressure determinations, exclusions from testing, and cold setpoint bench testing. The purpose of this paper is to describe some significant issues being addressed by the O&M Working Group on Pressure Relief Devices (OM-1). The writer is currently the chair of OM-1 and the statements expressed herein represents his personal opinion.

  10. Apparatus for remotely handling components

    DOE Patents [OSTI]

    Szkrybalo, Gregory A.; Griffin, Donald L.

    1994-01-01

    The inventive apparatus for remotely handling bar-like components which define a longitudinal direction includes a gripper mechanism for gripping the component including first and second gripper members longitudinally fixedly spaced from each other and oriented parallel to each other in planes transverse to the longitudinal direction. Each gripper member includes a jaw having at least one V-groove with opposing surfaces intersecting at a base and extending radially relative to the longitudinal direction for receiving the component in an open end between the opposing surfaces. The V-grooves on the jaw plate of the first and second gripper members are aligned in the longitudinal direction to support the component in the first and second gripper members. A jaw is rotatably mounted on and a part of each of the first and second gripper members for selectively assuming a retracted mode in which the open end of the V-groove is unobstructed and active mode in which the jaw spans the open end of the V-groove in the first and second gripper members. The jaw has a locking surface for contacting the component in the active mode to secure the component between the locking surface of the jaw and the opposing surfaces of the V-groove. The locking surface has a plurality of stepped portions, each defining a progressively decreasing radial distance between the base of the V-groove and the stepped portion opposing the base to accommodate varying sizes of components.

  11. Ceramic component for MHD electrode

    DOE Patents [OSTI]

    Marchant, David D.; Bates, Junior L.

    1981-01-01

    A ceramic component which exhibits electrical conductivity down to near room temperatures has the formula: Hf.sub.x In.sub.y A.sub.z O.sub.2 where x=0.1 to 0.4, y=0.3 to 0.6, z=0.1 to 0.4 and A is a lanthanide rare earth or yttrium. The component is suitable for use in the fabrication of MHD electrodes or as the current leadout portion of a composite electrode with other ceramic components.

  12. HVAC, Water Heating and Appliances Sub-Program Logic Model

    Broader source: Energy.gov (indexed) [DOE]

    & water heating technologies Researchers equipped with validated solutions to develop or improve components & optimize tech. systems at reduced cost High-efficiency HVAC, water ...

  13. Superclean coal-water slurry combustion testing in an oil-fired boiler. Semiannual technical progress report, February 15, 1991--August 15, 1991

    SciTech Connect (OSTI)

    Miller, B.G.; Morrison, J.L.; Xie, Jiangyang; Walsh, P.M.; Schobert, H.H.; Scaroni, A.W.

    1991-10-01

    Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program with the objective of determining the capability of effectively firing SCCWS in an industrial boiler designed for oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with less that 3.0% ash and 0.9% sulfur) can effectively be burned in an oil-designed industrial boiler without adverse impact on boiler rating maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels.

  14. In-Reactor Oxidation of Zircaloy-4 Under Low Water Vapor Pressures

    SciTech Connect (OSTI)

    Luscher, Walter G.; Senor, David J.; Clayton, Kevin; Longhurst, Glen

    2015-01-01

    Complementary in- and ex-reactor oxidation tests have been performed to evaluate the oxidation and hydrogen absorption performance of Zircaloy-4 (Zr-4) under relatively low partial pressures (300 and 1000 Pa) of water vapor at specified test temperatures (330 and 370C). Data from these tests will be used to support fabrication of components intended for isotope-producing targets and provide information regarding the temperature and pressure dependence of oxidation and hydrogen absorption of Zr-4 over the specified range of test conditions. Comparisons between in- and ex- reactor test results were performed to evaluate the influence of irradiation.

  15. In-reactor oxidation of zircaloy-4 under low water vapor pressures

    SciTech Connect (OSTI)

    Luscher, Walter G.; Senor, David J.; Clayton, Kevin K.; Longhurst, Glen R.

    2015-01-01

    Complementary in- and ex-reactor oxidation tests have been performed to evaluate the oxidation and hydrogen absorption performance of Zircaloy-4 (Zr-4) under relatively low partial pressures (300 and 1000 Pa) of water vapor at specified test temperatures (330 and 370 C). Data from these tests will be used to support the fabrication of components intended for isotope-producing targets and provide information regarding the temperature and pressure dependence of oxidation and hydrogen absorption of Zr- 4 over the specified range of test conditions. Comparisons between in- and ex-reactor test results were performed to evaluate the influence of irradiation.

  16. Advanced Component Research Facility (ACRES)

    SciTech Connect (OSTI)

    Bohn, M.

    1980-07-01

    A detailed description of the SERI Advanced Component Research Facility (ACRES) is given. Background information explicates the facility's history, developed around the two Omnium-G parabolic dish concentrators. The Omnium-G concentrators and electrical power plant are described. The purpose and a detailed descripttion of ACRES is also given. Included is a description of the measurement capabilities, the controls, and each component of the facility.

  17. Guidelines to achieve seals with minimal leak rates for HWR-NPR coolant system components

    SciTech Connect (OSTI)

    Finn, P.A.

    1991-03-01

    Seal design practices that are acceptable in pressurized-water and boiling-water reactors in the United States are not usable for the Heavy Water Reactor-New Production Reactor (HWR-NPR) because of the stringent requirement on tritium control for the atmosphere within its containment building. To maintain an atmosphere in which workers do not need protective equipment, the components of the coolant system must have a cumulative leak rate less than 0.00026 L/s. Existing technology for seal systems was reviewed with regard to flange, elastomer, valve, and pump design. A technology data base for the designers of the HWR-NPR coolant system was derived from operating experience and seal development work on reactors in the United States, Canada, and Europe. This data base was then used to generate guidelines for the design of seals and/or joints for the HWR-NPR coolant system. Also discussed are needed additional research and development, as well as the necessary component qualification tests for an effective quality control program. 141 refs., 21 figs., 14 tabs.

  18. Superclean coal-water slurry combustion testing in an oil-fired boiler. Semiannual technical progress report, August 15, 1991--February 15, 1992

    SciTech Connect (OSTI)

    Miller, B.G.; Poe, R.L.; Morrison, J.L.; Xie, Jianyang; Walsh, P.M.; Schobert, H.H.; Scaroni, A.W.

    1992-05-29

    The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the capability of effectively firing SCCWS in an industrial boiler designed for oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with less than 3.0 wt.% ash and 0.9 wt.% sulfur) can effectively be burned in an oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels.

  19. ZEST flight test experiments, Kauai Test Facility, Hawaii. Test report

    SciTech Connect (OSTI)

    Cenkci, M.J.

    1991-07-01

    The Strategic Defense Initiative Organization (SDIO) is proposing to execute two ZEST flight experiments to obtain information related to the following objectives: validation of payload modeling; characterization of a high energy release cloud; and documentation of scientific phenomena that may occur as a result of releasing a high energy cloud. The proposed action is to design, develop, launch, and detonate two payloads carrying high energy explosives. Activities required to support this proposal include: (1) execution of component assembly tests at Space Data Division (SDD) in Chandler, Arizona and Los Alamos National Laboratory (LANL) in Los Alamos, New Mexico, and (2) execution of pre-flight flight test activities at Kauai Test Facility.

  20. Field Testing of Pre-Production Prototype Residential Heat Pump...

    Energy Savers [EERE]

    Field Testing of Pre-Production Prototype Residential Heat Pump Water Heaters Field Testing of Pre-Production Prototype Residential Heat Pump Water Heaters Provides and overview of ...

  1. Severe shock and vibration environments for electronic components

    SciTech Connect (OSTI)

    Martinez, D.R.

    1990-01-01

    Electronic components used in system applications must be qualified to mechanical shock and vibration environments. Often these environments are severe, requiring the development and use of special test techniques and procedures. Environmental specifications are based upon analytical model predictions and measured test data. Test specifications are determined after careful consideration of simulation techniques, input levels, dynamic behavior of the test fixturing, as well as an assessment of the degree of conservatism imposed by the specification and testing procedures. The process of determining component shock and vibration specifications is discussed, beginning with the initial description of system and subsystem level environments, and concluding with component level test specifications. Included is a discussion of the difference between environmental specifications and test specifications, and the instrumentation/measurement problems associated with obtaining valid field measurements for severe shock data. The role of finite element analysis in predicting the dynamic structural response of components is also explained. Shock data analysis techniques are described including both time-domain and frequency-domain characterizations of the data. The resonant plate shock testing technique for simulating severe shock environments is presented, including difficulties that arise in practical applications. 18 refs., 10 figs.

  2. Irrigation Pump Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the pump's operating performance including lift, discharge pressure, power input, and water flow. The results of the pump test provide a value for the overall efficiency of the...

  3. High Efficiency Hydrogen Production from Nuclear Energy: Laboratory Demonstration of S-I Water-Splitting

    SciTech Connect (OSTI)

    Buckingham, R.; Russ, B.; Brown, L.; Besenbruch, G.E.; Gelbard, F.; Pickard F.S.; Leybros, J.; Le Duigou, A.; Borgard, J.M.

    2004-11-30

    The objective of the French CEA, US-DOE INERI project is to perform a lab scale demonstration of the sulfur iodine (S-I) water splitting cycle, and assess the potential of this cycle for application to nuclear hydrogen production. The project will design, construct and test the three major component reaction sections that make up the S-I cycle. The CEA will design and test the prime (Bunsen) reaction section. General Atomics will develop and test the HI decomposition section, and SNL will develop and test the H2SO4 decomposition section. Activities for this period included initial program coordination and information exchange, the development of models and analyses that will support the design of the component sections, and preliminary designs for the component reaction sections. The sections are being designed to facilitate integration into a closed loop demonstration in a later stage of the program.

  4. LEAKAGE TESTING METHOD

    DOE Patents [OSTI]

    McAdams, Wm.A.; Foss, M.H.

    1958-08-12

    A method of testing containers for leaks is described, particularly the testing of containers or cans in which the uranium slugs for nuelear reactors are jacketed. This method involves the immersion of the can in water under l50 pounds of pressure, then removing, drying, and coating the can with anhydrous copper sulfate. Amy water absorbed by the can under pressure will exude and discolor the copper sulfate in the area about the leak.

  5. Transducer for downhole drilling components

    DOE Patents [OSTI]

    Hall, David R; Fox, Joe R

    2006-05-30

    A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. The transmission element may include an annular housing forming a trough, an electrical conductor disposed within the trough, and an MCEI material disposed between the annular housing and the electrical conductor.

  6. Water Power News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    four entities selected to receive 7.4 million to spur innovation of next-generation water power component technologies, designed for manufacturability and built specifically...

  7. Nambe Pueblo Water Budget and Forecasting model.

    SciTech Connect (OSTI)

    Brainard, James Robert

    2009-10-01

    This report documents The Nambe Pueblo Water Budget and Water Forecasting model. The model has been constructed using Powersim Studio (PS), a software package designed to investigate complex systems where flows and accumulations are central to the system. Here PS has been used as a platform for modeling various aspects of Nambe Pueblo's current and future water use. The model contains three major components, the Water Forecast Component, Irrigation Scheduling Component, and the Reservoir Model Component. In each of the components, the user can change variables to investigate the impacts of water management scenarios on future water use. The Water Forecast Component includes forecasting for industrial, commercial, and livestock use. Domestic demand is also forecasted based on user specified current population, population growth rates, and per capita water consumption. Irrigation efficiencies are quantified in the Irrigated Agriculture component using critical information concerning diversion rates, acreages, ditch dimensions and seepage rates. Results from this section are used in the Water Demand Forecast, Irrigation Scheduling, and the Reservoir Model components. The Reservoir Component contains two sections, (1) Storage and Inflow Accumulations by Categories and (2) Release, Diversion and Shortages. Results from both sections are derived from the calibrated Nambe Reservoir model where historic, pre-dam or above dam USGS stream flow data is fed into the model and releases are calculated.

  8. Commercial Off-the-Shelf (COTS) Components and Enterprise Component Information System (eCIS)

    SciTech Connect (OSTI)

    John Minihan; Ed Schmidt; Greg Enserro; Melissa Thompson

    2008-06-30

    The purpose of the project was to develop the processes for using commercial off-the-shelf (COTS) parts for WR production and to put in place a system for implementing the data management tools required to disseminate, store, track procurement, and qualify vendors. Much of the effort was devoted to determining if the use of COTS parts was possible. A basic question: How does the Nuclear Weapons Complex (NWC) begin to use COTS in the weapon Stockpile Life Extension Programs with high reliability, affordability, while managing risk at acceptable levels? In FY00, it was determined that a certain weapon refurbishment program could not be accomplished without the use of COTS components. The elements driving the use of COTS components included decreased cost, greater availability, and shorter delivery time. Key factors that required implementation included identifying the best suppliers and components, defining life cycles and predictions of obsolescence, testing the feasibility of using COTS components with a test contractor to ensure capability, as well as quality and reliability, and implementing the data management tools required to disseminate, store, track procurement, and qualify vendors. The primary effort of this project then was to concentrate on the risks involved in the use of COTS and address the issues of part and vendor selection, procurement and acceptance processes, and qualification of the parts via part and sample testing. The Enterprise Component Information System (eCIS) was used to manage the information generated by the COTS process. eCIS is a common interface for both the design and production of NWC components and systems integrating information between SNL National Laboratory (SNL) and the Kansas City Plant (KCP). The implementation of COTS components utilizes eCIS from part selection through qualification release. All part related data is linked across an unclassified network for access by both SNL and KCP personnel. The system includes not

  9. Carderock Circulating Water Channel | Open Energy Information

    Open Energy Info (EERE)

    Features The Circulating Water Channel is a vertical plane, open to the atmosphere test section with a free surface in a closed recirculating water circuit, variable speed,...

  10. Large Component Removal/Disposal

    SciTech Connect (OSTI)

    Wheeler, D. M.

    2002-02-27

    This paper describes the removal and disposal of the large components from Maine Yankee Atomic Power Plant. The large components discussed include the three steam generators, pressurizer, and reactor pressure vessel. Two separate Exemption Requests, which included radiological characterizations, shielding evaluations, structural evaluations and transportation plans, were prepared and issued to the DOT for approval to ship these components; the first was for the three steam generators and one pressurizer, the second was for the reactor pressure vessel. Both Exemption Requests were submitted to the DOT in November 1999. The DOT approved the Exemption Requests in May and July of 2000, respectively. The steam generators and pressurizer have been removed from Maine Yankee and shipped to the processing facility. They were removed from Maine Yankee's Containment Building, loaded onto specially designed skid assemblies, transported onto two separate barges, tied down to the barges, th en shipped 2750 miles to Memphis, Tennessee for processing. The Reactor Pressure Vessel Removal Project is currently under way and scheduled to be completed by Fall of 2002. The planning, preparation and removal of these large components has required extensive efforts in planning and implementation on the part of all parties involved.

  11. Kauai Test Facility

    SciTech Connect (OSTI)

    Hay, R.G.

    1982-01-01

    The Kauai Test Facility (KTF) is a Department of Energy rocket launch facility operated by Sandia National Laboratories. Originally it was constructed in support of the high altitude atmospheric nuclear test phase of operation Dominic in the early 1960's. Later, the facility went through extensive improvement and modernization to become an integral part of the Safeguard C readiness to resume nuclear testing program. Since its inception and build up, in the decade of the sixties and the subsequent upgrades of the seventies, range test activities have shifted from full scale test to emphasis on research and development of materials and components, and to making high altitude scientific measurements. Primarily, the facility is intended to be utilized in support of development programs at the DOE weapons laboratories, however, other organizations may make use of the facility on a non-interface basis. The physical components at KTF and their operation are described.

  12. Water Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Quality Water Quality We protect water quality through stormwater control measures and an extensive network of monitoring wells and stations encompassing groundwater, surface ...

  13. Water Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Quality Water Quality We protect water quality through stormwater control measures and an extensive network of monitoring wells and stations encompassing groundwater, surface...

  14. Underground test area quality assurance project plan, Nevada test site, Nevada. Revision 1

    SciTech Connect (OSTI)

    1997-04-01

    This Quality Assurance Project Plan (QAPP) is one of the planning documents used for the Underground Test Area (UGTA) Subproject at the Nevada Test Site (NTS) which falls under the oversight of the U.S. Department of Energy, Nevada Operations Office (DOE/NV) Nevada Environmental Restoration Project (NV ERP). The Nevada ERP consists of environmental restoration activities on the NTS, Tonopah Test Range, Nellis Air Force Range, and eight sites in five other states. The UGTA Subproject constitutes a component of the Nevada Environmental Restoration Project. The purposes of the UGTA Subproject are to define boundaries around each Corrective Action Unit (CAU), as defined by the Federal Facility Agreement and Consent Order (FFACO), that establish areas containing water that may be unsafe for domestic or municipal use and to establish monitoring programs for each CAU that will verify modeling upon which the boundaries are based.

  15. Seismic ruggedness of aged electrical components: Final report (Phase 2)

    SciTech Connect (OSTI)

    Gleason, J.F.

    1987-01-01

    Seismic tests on new and aged components have shown that, for many types of commonly used nuclear plant electrical components, deterioration due to aging does not significantly affect the ability of the components to function during and after a seismic event. This was demonstrated for capacitors, circuit breakers, contactors (motor starters), control station assemblies, electronic alarms, electronics, fuses, fuse blocks, inductors, meters, motors, pressure transmitters, power supplies, relays, RTDs, solenoid valves, terminal blocks, time delay relays, transformers and switches. A few switch types (limit, pressure and rotary) were observed to be more prone to contact chatter in an aged condition than in an unaged condition. However, the ability of these devices to switch during and after shaking was not affected by aging. These results can be referenced to eliminate the cost of aging prior to seismic qualification testing for many types of electrical components.

  16. Adaptation of Crack Growth Detection Techniques to US Material Test Reactors

    SciTech Connect (OSTI)

    A. Joseph Palmer; Sebastien P. Teysseyre; Kurt L. Davis; Joy L. Rempe; Gordon Kohse; Yakov Ostrovsky; David M. Carpenter

    2014-04-01

    A key component in evaluating the ability of Light Water Reactors to operate beyond 60 years is characterizing the degradation of materials exposed to radiation and various water chemistries. Of particular concern is the response of reactor materials to Irradiation Assisted Stress Corrosion Cracking (IASCC). Some materials testing reactors (MTRs) outside the U.S., such as the Halden Boiling Water Reactor (HBWR), have deployed a technique to measure crack growth propagation during irradiation. This technique incorporates a compact loading mechanism to stress the specimen during irradiation. A crack in the specimen is monitored using the Direct Current Potential Drop (DCPD) method. A project is underway to develop and demonstrate the performance of a similar type of test rig for use in U.S. MTRs. The first year of this three year project was devoted to designing, analyzing, fabricating, and bench top testing a mechanism capable of applying a controlled stress to specimens while they are irradiated in a pressurized water loop (simulating PWR reactor conditions). During the second year, the mechanism will be tested in autoclaves containing high pressure, high temperature water with representative water chemistries. In addition, necessary documentation and safety reviews for testing in a reactor environment will be completed. In the third year, the assembly will be tested in the Massachusetts Institute of Technology Reactor (MITR) and Post Irradiation Examinations (PIE) will be performed.

  17. Effectiveness of 700{degrees}C thermal treatment on primary water stress corrosion sensitivity of Alloy 600 steam generator tubes: Laboratory tests and in field experience

    SciTech Connect (OSTI)

    Cattant, F.; Keroulas, F. de; Garriga-Majo, D.; Todeschini, P.; Van Duysen, J.C.

    1992-12-31

    In France, the steam generators of some 900 MWe reactors, and of all the 1 300 MWe reactors in service are equipped with heat treated Alloy 600 tubes. The purpose of the heat treatment, performed at 700{degrees}C, is to relieve the residual stresses. Generally, it also increases the SCC resistance of the alloy. A laboratory study has been carried out in order to gain a better understanding of the metallurgical factors influencing the PWSCC resistance of Alloy 600 after heat treatment. It has been shown that there are two kinds of tubes for which the heat treatment does not produce a microstructure having a potentially high resistance to SCC: tubes with a high carbon content (over 0.032%) or tubes mill-annealed at high temperatures and heavily cold-worked by the straightening. The analysis of the behaviour of french steam generators reveals that the heat treatment generally had the expected beneficial effect. However, the early cracking in service of some treated tubes led EDF (national power company) to proceed with removals. The majority of the cracked pulled-out tubes exhibit microstructures having a potentially high PWSCC sensibility in laboratory tests. It has been shown that these microstructures can be correlated to a high carbon content.

  18. Par Pond water balance

    SciTech Connect (OSTI)

    Hiergesell, R.A.; Dixon, K.L.

    1996-06-01

    A water budget for the Par Pond hydrologic system was established in order to estimate the rate of groundwater influx to Par Pond. This estimate will be used in modeling exercises to predict Par Pond reservoir elevation and spillway discharge in the scenario where Savannah River water is no longer pumped and discharged into Par Pond. The principal of conservation of mass was used to develop the water budget, where water inflow was set equal to water outflow. Components of the water budget were identified, and the flux associated with each was determined. The water budget was considered balanced when inflow and outflow summed to zero. The results of this study suggest that Par Pond gains water from the groundwater system in the upper reaches of the reservoir, but looses water to the groundwater system near the dam. The rate of flux of groundwater from the water table aquifer into Par Pond was determined to be 13 cfs. The rate of flux from Par Pond to the water table aquifer near the dam was determined to be 7 cfs.

  19. Waste Package Component Design Methodology Report

    SciTech Connect (OSTI)

    D.C. Mecham

    2004-07-12

    This Executive Summary provides an overview of the methodology being used by the Yucca Mountain Project (YMP) to design waste packages and ancillary components. This summary information is intended for readers with general interest, but also provides technical readers a general framework surrounding a variety of technical details provided in the main body of the report. The purpose of this report is to document and ensure appropriate design methods are used in the design of waste packages and ancillary components (the drip shields and emplacement pallets). The methodology includes identification of necessary design inputs, justification of design assumptions, and use of appropriate analysis methods, and computational tools. This design work is subject to ''Quality Assurance Requirements and Description''. The document is primarily intended for internal use and technical guidance for a variety of design activities. It is recognized that a wide audience including project management, the U.S. Department of Energy (DOE), the U.S. Nuclear Regulatory Commission, and others are interested to various levels of detail in the design methods and therefore covers a wide range of topics at varying levels of detail. Due to the preliminary nature of the design, readers can expect to encounter varied levels of detail in the body of the report. It is expected that technical information used as input to design documents will be verified and taken from the latest versions of reference sources given herein. This revision of the methodology report has evolved with changes in the waste package, drip shield, and emplacement pallet designs over many years and may be further revised as the design is finalized. Different components and analyses are at different stages of development. Some parts of the report are detailed, while other less detailed parts are likely to undergo further refinement. The design methodology is intended to provide designs that satisfy the safety and operational

  20. Abstract: Air, Thermal and Water Management for PEM Fuel Cell Systems

    SciTech Connect (OSTI)

    Mark K. Gee Zia Mirza

    2008-10-01

    PEM fuel cells are excellent candidates for transportation applications due to their high efficiencies. PEM fuel cell Balance of Plant (BOP) components, such as air, thermal, and water management sub-systems, can have a significant effect on the overall system performance, but have traditionally not been addressed in research and development efforts. Recognizing this, the U.S. Department of Energy and Honeywell International Inc. are funding an effort that emphasizes the integration and optimization of air, thermal and water management sub-systems. This effort is one of the major elements to assist the fuel cell system developers and original equipment manufacturers to achieve the goal of an affordable and efficient power system for transportation applications. Past work consisted of: (1) Analysis, design, and fabrication of a motor driven turbocompressor. (2) A systematic trade study to select the most promising water and thermal management systems from five different concepts (absorbent wheel humidifier, gas to gas membrane humidifier, porous metal foam humidifier, cathode recycle compressor, and water injection pump.) This presentation will discuss progress made in the research and development of air, water and thermal management sub-systems for PEM fuel cell systems in transportation applications. More specifically, the presentation will discuss: (1) Progress of the motor driven turbocompressor design and testing; (2) Progress of the humidification component selection and testing; and (3) Progress of the thermal management component preliminary design. The programs consist of: (1) The analysis, design, fabrication and testing of a compact motor driven turbocompressor operating on foil air bearings to provide contamination free compressed air to the fuel cell stack while recovering energy from the exhaust streams to improve system efficiency. (2) The analysis, design, fabrication and testing of selected water and thermal management systems and components to

  1. Nuclear component horizontal seismic restraint

    DOE Patents [OSTI]

    Snyder, Glenn J.

    1988-01-01

    A nuclear component horizontal seismic restraint. Small gaps limit horizontal displacement of components during a seismic occurrence and therefore reduce dynamic loadings on the free lower end. The reactor vessel and reactor guard vessel use thicker section roll-forged rings welded between the vessel straight shell sections and the bottom hemispherical head sections. The inside of the reactor guard vessel ring forging contains local vertical dovetail slots and upper ledge pockets to mount and retain field fitted and installed blocks. As an option, the horizontal displacement of the reactor vessel core support cone can be limited by including shop fitted/installed local blocks in opposing alignment with the reactor vessel forged ring. Beams embedded in the wall of the reactor building protrude into apertures in the thermal insulation shell adjacent the reactor guard vessel ring and have motion limit blocks attached thereto to provide to a predetermined clearance between the blocks and reactor guard vessel ring.

  2. Component Modeling Approach Software Tool

    SciTech Connect (OSTI)

    2010-08-23

    The Component Modeling Approach Software Tool (CMAST) establishes a set of performance libraries of approved components (frames, glass, and spacer) which can be accessed for configuring fenestration products for a project, and btaining a U-factor, Solar Heat Gain Coefficient (SHGC), and Visible Transmittance (VT) rating for those products, which can then be reflected in a CMA Label Certificate for code compliance. CMAST is web-based as well as client-based. The completed CMA program and software tool will be useful in several ways for a vast array of stakeholders in the industry: Generating performance ratings for bidding projects Ascertaining credible and accurate performance data Obtaining third party certification of overall product performance for code compliance

  3. Component Modeling Approach Software Tool

    Energy Science and Technology Software Center (OSTI)

    2010-08-23

    The Component Modeling Approach Software Tool (CMAST) establishes a set of performance libraries of approved components (frames, glass, and spacer) which can be accessed for configuring fenestration products for a project, and btaining a U-factor, Solar Heat Gain Coefficient (SHGC), and Visible Transmittance (VT) rating for those products, which can then be reflected in a CMA Label Certificate for code compliance. CMAST is web-based as well as client-based. The completed CMA program and software toolmore » will be useful in several ways for a vast array of stakeholders in the industry: Generating performance ratings for bidding projects Ascertaining credible and accurate performance data Obtaining third party certification of overall product performance for code compliance« less

  4. Dynamic characterization of satellite components through non-invasive methods

    SciTech Connect (OSTI)

    Mullins, Joshua G; Wiest, Heather K; Mascarenas, David D. L.; Macknelly, David

    2010-10-21

    The rapid deployment of satellites is hindered by the need to flight-qualify their components and the resulting mechanical assembly. Conventional methods for qualification testing of satellite components are costly and time consuming. Furthermore, full-scale vehicles must be subjected to launch loads during testing. This harsh testing environment increases the risk of component damage during qualification. The focus of this research effort was to assess the performance of Structural Health Monitoring (SHM) techniques as a replacement for traditional vibration testing. SHM techniques were applied on a small-scale structure representative of a responsive satellite. The test structure consisted of an extruded aluminum space-frame covered with aluminum shear plates, which was assembled using bolted joints. Multiple piezoelectric patches were bonded to the test structure and acted as combined actuators and sensors. Various methods of SHM were explored including impedance-based health monitoring, wave propagation, and conventional frequency response functions. Using these methods in conjunction with finite element modelling, the dynamic properties of the test structure were established and areas of potential damage were identified and localized. The adequacy of the results from each SHM method was validated by comparison to results from conventional vibration testing.

  5. Dynamic characterization of satellite components through non-invasive methods

    SciTech Connect (OSTI)

    Mullens, Joshua G; Wiest, Heather K; Mascarenas, David D; Park, Gyuhae

    2011-01-24

    The rapid deployment of satellites is hindered by the need to flight-qualify their components and the resulting mechanical assembly. Conventional methods for qualification testing of satellite components are costly and time consuming. Furthermore, full-scale vehicles must be subjected to launch loads during testing. The harsh testing environment increases the risk of component damage during qualification. The focus of this research effort was to assess the performance of Structural Health Monitoring (SHM) techniques as replacement for traditional vibration testing. SHM techniques were applied on a small-scale structure representative of a responsive satellite. The test structure consisted of an extruded aluminum space-frame covered with aluminum shear plates, which was assembled using bolted joints. Multiple piezoelectric patches were bonded to the test structure and acted as combined actuators and sensors. Various methods of SHM were explored including impedance-based health monitoring, wave propagation, and conventional frequency response functions. Using these methods in conjunction with finite element modeling, the dynamic properties of the test structure were established and areas of potential damage were identified and localized. The adequacy of the results from each SHM method was validated by comparison to results from conventional vibration testing.

  6. Rocky Mountain Basins Produced Water Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Historical records for produced water data were collected from multiple sources, including Amoco, British Petroleum, Anadarko Petroleum Corporation, United States Geological Survey (USGS), Wyoming Oil and Gas Commission (WOGC), Denver Earth Resources Library (DERL), Bill Barrett Corporation, Stone Energy, and other operators. In addition, 86 new samples were collected during the summers of 2003 and 2004 from the following areas: Waltman-Cave Gulch, Pinedale, Tablerock and Wild Rose. Samples were tested for standard seven component "Stiff analyses", and strontium and oxygen isotopes. 16,035 analyses were winnowed to 8028 unique records for 3276 wells after a data screening process was completed. [Copied from the Readme document in the zipped file available at http://www.netl.doe.gov/technologies/oil-gas/Software/database.html] Save the Zipped file to your PC. When opened, it will contain four versions of the database: ACCESS, EXCEL, DBF, and CSV formats. The information consists of detailed water analyses from basins in the Rocky Mountain region.

  7. Laser ultrasonic multi-component imaging

    SciTech Connect (OSTI)

    Williams, Thomas K.; Telschow, Kenneth

    2011-01-25

    Techniques for ultrasonic determination of the interfacial relationship of multi-component systems are discussed. In implementations, a laser energy source may be used to excite a multi-component system including a first component and a second component at least in partial contact with the first component. Vibrations resulting from the excitation may be detected for correlation with a resonance pattern indicating if discontinuity exists at the interface of the first and second components.

  8. Characterization of Soluble Organics in Produced Water

    SciTech Connect (OSTI)

    Bostick, D.T.

    2002-01-16

    Soluble organics in produced water and refinery effluents represent treatment problems for the petroleum industry. Neither the chemistry involved in the production of soluble organics nor the impact of these chemicals on total effluent toxicity is well understood. The U.S. Department of Energy provides funding for Oak Ridge National Laboratory (ORNL) to support a collaborative project with Shell, Chevron, Phillips, and Statoil entitled ''Petroleum and Environmental Research Forum project (PERF 9844: Manage Water-Soluble Organics in Produced Water''). The goal of this project, which involves characterization and evaluation of these water-soluble compounds, is aimed at reducing the future production of such contaminants. To determine the effect that various drilling conditions might have on water-soluble organics (WSO) content in produced water, a simulated brine water containing the principal inorganic components normally found in Gulf of Mexico (GOM) brine sources was prepared. The GOM simulant was then contacted with as-received crude oil from a deep well site to study the effects of water cut, produced-water pH, salinity, pressure, temperature, and crude oil sources on the type and content of the WSO in produced water. The identities of individual semivolatile organic compounds (SVOCs) were determined in all as-received crude and actual produced water samples using standard USEPA Method (8270C) protocol. These analyses were supplemented with the more general measurements of total petroleum hydrocarbon (TPH) content in the gas (C{sub 6}-C{sub 10}), diesel (C{sub 10}-C{sub 20}), and oil (C{sub 20}-C{sub 28}) carbon ranges as determined by both gas chromatographic (GC) and infrared (IR) analyses. An open liquid chromatographic procedure was also used to differentiate the saturated hydrocarbon, aromatic hydrocarbon, and polar components within the extractable TPH. Inorganic constituents in the produced water were analyzed by ion-selective electrodes and inductively

  9. Electric Drive Component Manufacturing Facilities | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Component Manufacturing Facilities Electric Drive Component Manufacturing Facilities 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review ...

  10. Electric Drive Component Manufacturing Facilities | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Component Manufacturing Facilities Electric Drive Component Manufacturing Facilities 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review ...

  11. Transformer Resilience and Advanced Components (TRAC) Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OE's Transformer Resilience and Advanced Components (TRAC) program supports modernization ... which are a critical component of the electricity delivery system, are a concern because ...

  12. Porous templated pyrolytic carbons as electrocatalyst components...

    Office of Scientific and Technical Information (OSTI)

    Porous templated pyrolytic carbons as electrocatalyst components. Citation Details In-Document Search Title: Porous templated pyrolytic carbons as electrocatalyst components. ...

  13. An evaluation of the whole effluent toxicity test method

    SciTech Connect (OSTI)

    Osteen, D.V.

    1999-12-17

    Whole effluent toxicity (WET) testing has become increasingly more important to the Environmental Protection Agency (EPA) and the States in the permitting of wastewater discharges from industry and municipalities. The primary purpose of the WET test is to protect aquatic life by predicting the effect of an effluent on the receiving stream. However, there are both scientific and regulatory concerns that using WET tests to regulate industrial effluents may result in either false positives and/or false negatives. In order to realistically predict the effect of an effluent on the receiving stream, the test should be as representative as possible of the conditions in the receiving stream. Studies (Rand and Petrocelli 1985) suggested several criteria for an ideal aquatic toxicity test organism, one of which is that the organism be indigenous to, or representative of, the ecosystem receiving the effluent. The other component needed in the development of a predictive test is the use of the receiving stream water or similar synthetic water as the control and dilution water in the test method. Use of an indigenous species and receiving water in the test should help reduce the variability in the method and allow the test to predict the effect of the effluent on the receiving stream. The experience with toxicity testing at the Savannah River Site (SRS) has yielded inconclusive data because of the inconsistency and unreliability of the results. The SRS contention is that the WET method in its present form does not adequately mimic actual biological/chemical conditions of the receiving streams and is neither reasonable nor accurate. This paper discusses the rationale for such a position by SRS on toxicity testing in terms of historical permitting requirements, outfall effluent test results, standard test method evaluation, scientific review of alternate test species, and concerns over the test method expressed by other organizations. This paper presents the Savannah River Site

  14. Rotor component displacement measurement system

    DOE Patents [OSTI]

    Mercer, Gary D.; Li, Ming C.; Baum, Charles R.

    2003-05-27

    A measuring system for measuring axial displacement of a tube relative to an axially stationary component in a rotating rotor assembly includes at least one displacement sensor adapted to be located normal to a longitudinal axis of the tube; an insulated cable system adapted for passage through the rotor assembly; a rotatable proximitor module located axially beyond the rotor assembly to which the cables are connected; and a telemetry system operatively connected to the proximitor module for sampling signals from the proximitor module and forwarding data to a ground station.

  15. Thermal Systems Process and Components Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Thermal Systems Process and Components Laboratory at the Energy Systems Integration Facility. The focus of the Thermal Systems Process and Components Laboratory at NREL's Energy Systems Integration Facility (ESIF) is to research, develop, test, and evaluate new techniques for thermal energy storage systems that are relevant to utility-scale concentrating solar power plants. The laboratory holds test systems that can provide heat transfer fluids for the evaluation of heat exchangers and thermal energy storage devices. The existing system provides molten salt at temperatures up to 800 C. This unit is charged with nitrate salt rated to 600 C, but is capable of handling other heat transfer fluid compositions. Three additional test bays are available for future deployment of alternative heat transfer fluids such as hot air, carbon dioxide, or steam systems. The Thermal Systems Process and Components Laboratory performs pilot-scale thermal energy storage system testing through multiple charge and discharge cycles to evaluate heat exchanger performance and storage efficiency. The laboratory equipment can also be utilized to test instrument and sensor compatibility with hot heat transfer fluids. Future applications in the laboratory may include the evaluation of thermal energy storage systems designed to operate with supercritical heat transfer fluids such as steam or carbon dioxide. These tests will require the installation of test systems capable of providing supercritical fluids at temperatures up to 700 C.

  16. Field Evaluations of Low-Frequency SAFT-UT on Cast Stainless Steel and Dissimilar Metal Weld Components

    SciTech Connect (OSTI)

    Diaz, Aaron A.; Harris, R. V.; Doctor, Steven R.

    2008-11-01

    This report documents work performed at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington, and at the Electric Power Research Institute's (EPRI) Nondestructive Examination (NDE) Center in Charlotte, North Carolina, on evalutating a low frequency ultrasonic inspection technique used for examination of cast stainless steel (CSS) and dissimilar metal (DMW) reactor piping components. The technique uses a zone-focused, multi-incident angle, low frequency (250-450 kHz) inspection protocol coupled with the synthetic aperture focusing technique (SAFT). The primary focus of this work is to provide information to the United States Nuclear Regulatory Commission on the utility, effectiveness and reliability of ultrasonic testing (UT) inspection techniques as related to the inservice ultrasonic inspection of coarse grained primary piping components in pressurized water reactors (PWRs).

  17. Three-component gyrotropic metamaterial

    SciTech Connect (OSTI)

    Tralle, Igor, E-mail: tralle@ur.edu.pl; Zi?ba, Pawe?; Pa?ko, Wioletta [Faculty of Mathematics and Natural Sciences, Theoretical Physics Department, University of Rzeszw, Pigonia 1, 35-310 Rzeszw (Poland)

    2014-06-21

    All of the proposed ever since designs of metamaterials are characterized by ever-increasing sophistication of fabrication methods. Here, a comparatively simple recipe for the fabrication of a metamaterial, which is both gyrotropic and of the simultaneously negative permittivity and permeability, is proposed. The idea is to make a mixture of three ingredients, where one of them would be responsible for the negativity of ?, while the other two would be responsible for the negativity of ?. The first component of the mixture is the swarm of single-domain ferromagnetic nano-particles, immersed in a mixture of other two, silver and mercury cadmium telluride. By carrying out the computer simulations, the domains of gyromagnetic metamaterial exist, relative to all parameters characterizing the model, that is, the temperature, external magnetic field, parameters of nano-particles, and the fraction of cadmium in Hg{sub 1?x}Cd{sub x}Te-compound as well as relative concentrations of the mixture components are established.

  18. Vendor System Vulnerability Testing Test Plan

    SciTech Connect (OSTI)

    James R. Davidson

    2005-01-01

    The Idaho National Laboratory (INL) prepared this generic test plan to provide clients (vendors, end users, program sponsors, etc.) with a sense of the scope and depth of vulnerability testing performed at the INL’s Supervisory Control and Data Acquisition (SCADA) Test Bed and to serve as an example of such a plan. Although this test plan specifically addresses vulnerability testing of systems applied to the energy sector (electric/power transmission and distribution and oil and gas systems), it is generic enough to be applied to control systems used in other critical infrastructures such as the transportation sector, water/waste water sector, or hazardous chemical production facilities. The SCADA Test Bed is established at the INL as a testing environment to evaluate the security vulnerabilities of SCADA systems, energy management systems (EMS), and distributed control systems. It now supports multiple programs sponsored by the U.S. Department of Energy, the U.S. Department of Homeland Security, other government agencies, and private sector clients. This particular test plan applies to testing conducted on a SCADA/EMS provided by a vendor. Before performing detailed vulnerability testing of a SCADA/EMS, an as delivered baseline examination of the system is conducted, to establish a starting point for all-subsequent testing. The series of baseline tests document factory delivered defaults, system configuration, and potential configuration changes to aid in the development of a security plan for in depth vulnerability testing. The baseline test document is provided to the System Provider,a who evaluates the baseline report and provides recommendations to the system configuration to enhance the security profile of the baseline system. Vulnerability testing is then conducted at the SCADA Test Bed, which provides an in-depth security analysis of the Vendor’s system.b a. The term System Provider replaces the name of the company/organization providing the system

  19. An Assessment of Visual Testing

    SciTech Connect (OSTI)

    Cumblidge, Stephen E.; Anderson, Michael T.; Doctor, Steven R.

    2004-11-01

    In response to increasing interest from nuclear utilities in replacing some volumetric examinations of nuclear reactor components with remote visual testing, the Pacific Northwest National Laboratory has examined the capabilities of remote visual testing for the Nuclear Regulatory Commission. This report describes visual testing and explores the visual acuities of the camera systems used to examine nuclear reactor components. The types and sizes of cracks typically found in nuclear reactor components are reviewed. The current standards in visual testing are examined critically, and several suggestions for improving these standards are proposed. Also proposed for future work is a round robin test to determine the effectiveness of visual tests and experimental studies to determine the values for magnification and resolution needed to reliably image very tight cracks.

  20. Component failures that lead to reactor scrams. [PWR; BWR

    SciTech Connect (OSTI)

    Burns, E. T.; Wilson, R. J.; Lim, E. Y.

    1980-04-01

    This report summarizes the operating experience scram data compiled from 35 operating US light water reactors (LWRs) to identify the principal components/systems related to reactor scrams. The data base utilized to identify the scram causes is developed from a EPRI-utility sponsored survey conducted by SAI coupled with recent data from the USNRC Gray Books. The reactor population considered in this evaluation is limited to 23 PWRs and 12 BWRs because of the limited scope of the program. The population includes all the US NSSS vendors. It is judged that this population accurately characterizes the component-related scrams in LWRs over the first 10 years of plant operation.

  1. Method for separating disparate components in a fluid stream

    DOE Patents [OSTI]

    Meikrantz, David H.

    1990-01-01

    The invention provides a method of separating a mixed component waste stream in a centrifugal separator. The mixed component waste stream is introduced into the separator and is centrifugally separated within a spinning rotor. A dual vortex separation occurs due to the phase density differences, with the phases exiting the rotor distinct from one another. In a preferred embodiment, aqueous solutions of organics can be separated with up to 100% efficiency. The relatively more dense water phase is centrifugally separated through a radially outer aperture in the separator, while the relatively less dense organic phase is separated through a radially inner aperture.

  2. Electrochemical sensor for monitoring electrochemical potentials of fuel cell components

    DOE Patents [OSTI]

    Kunz, Harold R.; Breault, Richard D.

    1993-01-01

    An electrochemical sensor comprised of wires, a sheath, and a conduit can be utilized to monitor fuel cell component electric potentials during fuel cell shut down or steady state. The electrochemical sensor contacts an electrolyte reservoir plate such that the conduit wicks electrolyte through capillary action to the wires to provide water necessary for the electrolysis reaction which occurs thereon. A voltage is applied across the wires of the electrochemical sensor until hydrogen evolution occurs at the surface of one of the wires, thereby forming a hydrogen reference electrode. The voltage of the fuel cell component is then determined with relation to the hydrogen reference electrode.

  3. Status of the Boeing Dish Engine Critical Component Project

    SciTech Connect (OSTI)

    Brau, H.W.; Diver, R.B.; Nelving, H.; Stone, K.W.

    1999-01-08

    The Boeing Company's Dish Engine Critical Component (DECC) project started in April of 1998. It is a continuation of a solar energy program started by McDonnell Douglas (now Boeing) and United Stirling of Sweden in the mid 1980s. The overall objectives, schedule, and status of this project are presented in this paper. The hardware test configuration, hardware background, operation, and test plans are also discussed. A summary is given of the test data, which includes the daily power performance, generated energy, working-gas usage, mirror reflectivity, solar insolation, on-sun track time, generating time, and system availability. The system performance based upon the present test data is compared to test data from the 1984/88 McDonnell Douglas/United Stirling AB/Southem California Edison test program. The test data shows that the present power, energy, and mirror performance is comparable to when the hardware was first manufactured 14 years ago.

  4. The John Deere E diesel Test & Research Project

    SciTech Connect (OSTI)

    Fields, Nathan; Mitchell, William E.

    2008-09-23

    Three non-road Tier II emissions compliant diesel engines manufactured by John Deere were placed on a durability test plan of 2000 hours each at full load, rated speed (FLRS). The fuel was a blend of 10% fuel ethanol and 90% low sulfur #2 diesel fuel. Seven operational failures involving twenty seven fuel system components occurred prior to completion of the intended test plan. Regulated emissions measured prior to component failure indicated compliance to Tier II certification goals for the observed test experience. The program plan included operating three non-road Tier II diesel engines for 2000 hours each monitoring the regulated emissions at 500 hour intervals for changes/deterioration. The program was stopped prematurely due to number and frequency of injection system failures. The failures and weaknesses observed involved injector seat and valve wear, control solenoid material incompatibility, injector valve deposits and injector high pressure seal cavitation erosion. Future work should target an E diesel fuel standard that emphasizes minimum water content, stability, lubricity, cetane neutrality and oxidation resistance. Standards for fuel ethanol need to require water content no greater than the base diesel fuel standard. Lubricity bench test standards may need new development for E diesel.

  5. Evaluation of water saturation in oil-bearing shaly sands

    SciTech Connect (OSTI)

    Martinovic, S.; Vojnovic, V. )

    1990-06-01

    The physical properties of shaly formations are difficult to evaluate because the shale component strongly affects geophysical well log and laboratory test data. This is particularly true in the case of water saturation. On the other hand, the accuracy of in-situ hydrocarbon estimates depends directly on the accuracy of water saturation values. The most important interpretation models for water saturation rely on double-layer models. These interpretation models compute highly probably water saturation values of oil-bearing shaly sands using sound mathematical and physical postulates. Certain disadvantages, such as the inability to evaluate some crucial parameters directly from geophysical well logs, simplifications along the system-model line, inherent deficiencies of logging techniques, etc., give rise to errors and other problems which are more or less solved at this stage of development. A simple program for water saturation of oil-bearing shaly sands was designed and tested. The program uses equations based on double layer models. Program listing and test results also are presented.

  6. Virtual Vehicle - Component-in-the-Loop | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Virtual Tours Nuclear Weapons Mission at Sandia Sandia Labs: Who we are Related Topics apm

    Virtual Vehicle - Component-in-the-Loop Preparing a plug-in hybrid electric vehicle (PHEV) battery for testing on Argonne's Battery-in-the-Loop system Preparing a plug-in hybrid electric vehicle (PHEV) battery for testing on Argonne's Battery-in-the-Loop system How do you evaluate unique vehicle configurations without building each vehicle from the ground up? Argonne researchers have developed

  7. In-situ continuous water analyzing module

    DOE Patents [OSTI]

    Thompson, Cyril V.; Wise, Marcus B.

    1998-01-01

    An in-situ continuous liquid analyzing system for continuously analyzing volatile components contained in a water source comprises: a carrier gas supply, an extraction container and a mass spectrometer. The carrier gas supply continuously supplies the carrier gas to the extraction container and is mixed with a water sample that is continuously drawn into the extraction container. The carrier gas continuously extracts the volatile components out of the water sample. The water sample is returned to the water source after the volatile components are extracted from it. The extracted volatile components and the carrier gas are delivered continuously to the mass spectometer and the volatile components are continuously analyzed by the mass spectrometer.

  8. In-situ continuous water monitoring system

    DOE Patents [OSTI]

    Thompson, C.V.; Wise, M.B.

    1998-03-31

    An in-situ continuous liquid monitoring system for continuously analyzing volatile components contained in a water source comprises: a carrier gas supply, an extraction container and a mass spectrometer. The carrier gas supply continuously supplies the carrier gas to the extraction container and is mixed with a water sample that is continuously drawn into the extraction container by the flow of carrier gas into the liquid directing device. The carrier gas continuously extracts the volatile components out of the water sample. The water sample is returned to the water source after the volatile components are extracted from it. The extracted volatile components and the carrier gas are delivered continuously to the mass spectrometer and the volatile components are continuously analyzed by the mass spectrometer. 2 figs.

  9. In-situ continuous water monitoring system

    DOE Patents [OSTI]

    Thompson, Cyril V.; Wise, Marcus B.

    1998-01-01

    An in-situ continuous liquid monitoring system for continuously analyzing volatile components contained in a water source comprises: a carrier gas supply, an extraction container and a mass spectrometer. The carrier gas supply continuously supplies the carrier gas to the extraction container and is mixed with a water sample that is continuously drawn into the extraction container by the flow of carrier gas into the liquid directing device. The carrier gas continuously extracts the volatile components out of the water sample. The water sample is returned to the water source after the volatile components are extracted from it. The extracted volatile components and the carrier gas are delivered continuously to the mass spectrometer and the volatile components are continuously analyzed by the mass spectrometer.

  10. Module Encapsulation Materials, Processing and Testing (Presentation)

    SciTech Connect (OSTI)

    Pern, J.

    2008-12-01

    Study of PV module encapsulation materials, processing, and testing shows that overall module reliability is determined by all component materials and processing factors.

  11. Multi-tipped optical component

    DOE Patents [OSTI]

    D'urso, Brian R; Simpson, John T

    2010-04-13

    An optical component includes a support structure having a first composition including a recessive phase material and a second composition including protrusive phase material, the protrusive phase material defining a plurality of spaced apart surface features, each of the surface features comprising a distal end opposite the support structure, integrated with the support structure, and protruding distally from a surface of the support structure, each of the surface features reducing in cross sectional area distally from the support structure to provide a lowest cross sectional area at the distal end, the recessive phase material supporting and separating the surface features and defining a contiguous recessed surface area between the surface features, at least two of the protrusive features being characterized as optical waveguides.

  12. ,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components"

    U.S. Energy Information Administration (EIA) Indexed Site

    Relative Standard Errors for Table 7.1;" " Unit: Percents." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected Wood and Other Biomass Components" ,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components" " "," ",,,,,,,,,,,,,"Total",,,,,,,,,,,,,,,,,,,,,,,"Wood Residues",,,," " " "," ","

  13. Novel method for detecting the hadronic component of extensive air showers

    SciTech Connect (OSTI)

    Gromushkin, D. M.; Volchenko, V. I.; Petrukhin, A. A.; Stenkin, Yu. V.; Stepanov, V. I.; Shchegolev, O. B.; Yashin, I. I.

    2015-05-15

    A novel method for studying the hadronic component of extensive air showers (EAS) is proposed. The method is based on recording thermal neutrons accompanying EAS with en-detectors that are sensitive to two EAS components: an electromagnetic (e) component and a hadron component in the form of neutrons (n). In contrast to hadron calorimeters used in some arrays, the proposed method makes it possible to record the hadronic component over the whole area of the array. The efficiency of a prototype array that consists of 32 en-detectors was tested for a long time, and some parameters of the neutron EAS component were determined.

  14. Prototype Testing Could Help Prove a Promising Energy Source...

    Energy Savers [EERE]

    of the choppy waters at the Navy's Wave Energy Test Site (WETS) in Kaneohe Bay on Oahu. ... Further testing at the Navy's WETS, the nation's only grid-connected open-water test site, ...

  15. Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary PowerEnergy Conversion EfficiencyWater Power Water Power Tara Camacho-Lopez 2016-06-01T22:32:54+00:00 Enabling a successful water power industry. Hydropower ...

  16. Accelerated Stress Test and Polarization Curve Protocols for...

    Office of Environmental Management (EM)

    Team Cell Component Accelerated Stress Test and Polarization Curve Protocols for PEM ... This document describes test protocols to assess the performance and durability of fuel ...

  17. DARHT: Dual-Axis Radiographic Hydrodynamic Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DARHT: Dual-Axis Radiographic Hydrodynamic Test Facility DARHT: Dual-Axis Radiographic Hydrodynamic Test Facility DARHT, supports a critical component of LANL's primary mission: to...

  18. REVIEW OF CLEANING SOLUTIONS FOR USE ON COMPONENTS OF THE 9975 SHIPPING PACKAGE

    SciTech Connect (OSTI)

    Daugherty, W.

    2013-09-30

    Several candidate cleaning products have been reviewed for use as a disinfectant on 9975 shipping package components which contain or have contacted mold. Following review of the compatibility of these products with each component, ammonia (ammonium hydroxide diluted to 1.5 wt% concentration) appears compatible with all package components that it might contact. Each of the other candidate products is incompatible with one or more package components. Accordingly, ammonia is recommended for this purpose. It is further recommended that all components which are disinfected be subsequently rinsed with di-ionized or distilled water.

  19. water scarcity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  20. water savings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  1. water infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  2. Water Demand

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  3. drinking water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    drinking water - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ...

  4. Water Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5-6, 2014 Cape Canaveral, Florida WATER EFFICIENCY Federal Utility Partnership ...ate.mcmordie@pnnl.gov * Francis Wheeler - Water Savers, LLC * fwheeler@watersaversllc.com ...

  5. Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  6. Water Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Security - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ...

  7. Optical monitor for water vapor concentration

    DOE Patents [OSTI]

    Kebabian, Paul

    1998-01-01

    A system for measuring and monitoring water vapor concentration in a sample uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to a water vapor absorption line. In a preferred embodiment, the argon line is split by a magnetic field parallel to the direction of light propagation from the lamp into sets of components of downshifted and upshifted frequencies of approximately 1575 Gauss. The downshifted components are centered on a water vapor absorption line and are thus readily absorbed by water vapor in the sample; the upshifted components are moved away from that absorption line and are minimally absorbed. A polarization modulator alternately selects the upshifted components or downshifted components and passes the selected components to the sample. After transmission through the sample, the transmitted intensity of a component of the argon line varies as a result of absorption by the water vapor. The system then determines the concentration of water vapor in the sample based on differences in the transmitted intensity between the two sets of components. In alternative embodiments alternate selection of sets of components is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to the emitting plasma.

  8. Optical monitor for water vapor concentration

    DOE Patents [OSTI]

    Kebabian, P.

    1998-06-02

    A system for measuring and monitoring water vapor concentration in a sample uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to a water vapor absorption line. In a preferred embodiment, the argon line is split by a magnetic field parallel to the direction of light propagation from the lamp into sets of components of downshifted and upshifted frequencies of approximately 1575 Gauss. The downshifted components are centered on a water vapor absorption line and are thus readily absorbed by water vapor in the sample; the upshifted components are moved away from that absorption line and are minimally absorbed. A polarization modulator alternately selects the upshifted components or downshifted components and passes the selected components to the sample. After transmission through the sample, the transmitted intensity of a component of the argon line varies as a result of absorption by the water vapor. The system then determines the concentration of water vapor in the sample based on differences in the transmitted intensity between the two sets of components. In alternative embodiments alternate selection of sets of components is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to the emitting plasma. 5 figs.

  9. Forklift Test

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forklift Safety Test Instructions: All Training and Testing Material is for LSU CAMD Users ... A minimum passing score is 80% (8 out of 10) This test can only be taken once in a thirty ...

  10. Fabrication Control Plan for ORNL RH-LOCA ATF Test Specimens to be Irradiated in the ATR

    SciTech Connect (OSTI)

    Kevin G. Field; Richard Howard; Michael Teague

    2014-06-01

    The purpose of this fabrication plan is (1) to summarize the design of a set of rodlets that will be fabricated and then irradiated in the Advanced Test Reactor (ATR) and (2) provide requirements for fabrication and acceptance criteria for inspections of the Light Water Reactor (LWR) – Accident Tolerant Fuels (ATF) rodlet components. The functional and operational (F&OR) requirements for the ATF program are identified in the ATF Test Plan. The scope of this document only covers fabrication and inspections of rodlet components detailed in drawings 604496 and 604497. It does not cover the assembly of these items to form a completed test irradiation assembly or the inspection of the final assembly, which will be included in a separate INL final test assembly specification/inspection document. The controls support the requirements that the test irradiations must be performed safely and that subsequent examinations must provide valid results.

  11. High temperature two component explosive

    DOE Patents [OSTI]

    Mars, James E.; Poole, Donald R.; Schmidt, Eckart W.; Wang, Charles

    1981-01-01

    A two component, high temperature, thermally stable explosive composition comprises a liquid or low melting oxidizer and a liquid or low melting organic fuel. The oxidizer and fuel in admixture are incapable of substantial spontaneous exothermic reaction at temperatures on the order of 475.degree. K. At temperatures on the order of 475.degree. K., the oxidizer and fuel in admixture have an activation energy of at least about 40 kcal/mol. As a result of the high activation energy, the preferred explosive compositions are nondetonable as solids at ambient temperature, and become detonable only when heated beyond the melting point. Preferable oxidizers are selected from alkali or alkaline earth metal nitrates, nitrites, perchlorates, and/or mixtures thereof. Preferred fuels are organic compounds having polar hydrophilic groups. The most preferred fuels are guanidinium nitrate, acetamide and mixtures of the two. Most preferred oxidizers are eutectic mixtures of lithium nitrate, potassium nitrate and sodium nitrate, of sodium nitrite, sodium nitrate and potassium nitrate, and of potassium nitrate, calcium nitrate and sodium nitrate.

  12. Lustre Tests

    Energy Science and Technology Software Center (OSTI)

    2007-08-31

    Lustre-tests is a package of regression tests for the Lustre file system containing I/O workloads representative of problems discovered on production systems.

  13. wave energy testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    testing - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  14. Central Receiver Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Receiver Test Facility - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  15. Pratt Whitney Rocketdyne Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pratt Whitney Rocketdyne Testing - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs

  16. Evaluation of aging degradation of structural components

    SciTech Connect (OSTI)

    Chopra, O.K.; Shack, W.J.

    1992-03-01

    Irradiation embrittlement of the neutron shield tank (NST) A212 Grade B steel from the Shippingport reactor, as well as thermal embrittlement of CF-8 cast stainless steel components from the Shippingport and KRB reactors, has been characterized. Increases in Charpy transition temperature (CTT), yield stress, and hardness of the NST material in the low-temperature low-flux environment are consistent with the test reactor data for irradiations at < 232{degrees}C. The shift in CTT is not as severe as that observed in surveillance samples from the High Flux Isotope Reactor (HFIR): however, it shows very good agreement with the results for HFIR A212-B steel irradiated in the Oak Ridge Research Reactor. The results indicate that fluence rate has not effect on radiation embrittlement at rates as low as 2 {times} 10{sup 8} n/cm{sup 2}{center dot}s at the low operating temperature of the Shippingport NST, i.e., 55{degrees}C. This suggest that radiation damage in Shippingport NST and HFIR surveillance samples may be different because of the neutron spectra and/or Cu and Ni content of the two materials. Cast stainless steel components show relatively modest decreases in fracture toughness and Charpy-impact properties and a small increase in tensile strength. Correlations for estimating mechanical properties of cast stainless steels predict accurate or slightly conservative values for Charpy-impact energy, tensile flow stress, fracture toughness J-R curve, and J{sub IC} of the materials. The kinetics of thermal embrittlement and degree of embrittlement at saturation, i.e., the minimum impact energy achieved after long-term aging, were established from materials that were aged further in the laboratory. The results were consistent with the estimates. The correlations successfully predict the mechanical properties of the Ringhals 2 reactor hot- and crossover-leg elbows (CF-8M steel) after service of {approx}15 y.

  17. Evaluation of aging degradation of structural components

    SciTech Connect (OSTI)

    Chopra, O.K.; Shack, W.J.

    1992-03-01

    Irradiation embrittlement of the neutron shield tank (NST) A212 Grade B steel from the Shippingport reactor, as well as thermal embrittlement of CF-8 cast stainless steel components from the Shippingport and KRB reactors, has been characterized. Increases in Charpy transition temperature (CTT), yield stress, and hardness of the NST material in the low-temperature low-flux environment are consistent with the test reactor data for irradiations at < 232{degrees}C. The shift in CTT is not as severe as that observed in surveillance samples from the High Flux Isotope Reactor (HFIR): however, it shows very good agreement with the results for HFIR A212-B steel irradiated in the Oak Ridge Research Reactor. The results indicate that fluence rate has not effect on radiation embrittlement at rates as low as 2 {times} 10{sup 8} n/cm{sup 2}{center_dot}s at the low operating temperature of the Shippingport NST, i.e., 55{degrees}C. This suggest that radiation damage in Shippingport NST and HFIR surveillance samples may be different because of the neutron spectra and/or Cu and Ni content of the two materials. Cast stainless steel components show relatively modest decreases in fracture toughness and Charpy-impact properties and a small increase in tensile strength. Correlations for estimating mechanical properties of cast stainless steels predict accurate or slightly conservative values for Charpy-impact energy, tensile flow stress, fracture toughness J-R curve, and J{sub IC} of the materials. The kinetics of thermal embrittlement and degree of embrittlement at saturation, i.e., the minimum impact energy achieved after long-term aging, were established from materials that were aged further in the laboratory. The results were consistent with the estimates. The correlations successfully predict the mechanical properties of the Ringhals 2 reactor hot- and crossover-leg elbows (CF-8M steel) after service of {approx}15 y.

  18. Rapid classification of biological components

    DOE Patents [OSTI]

    Thompson, Vicki S.; Barrett, Karen B.; Key, Diane E.

    2010-03-23

    A method is disclosed for analyzing a biological sample by antibody profiling for identifying forensic samples or for detecting the presence of an analyte. In an illustrative embodiment of the invention, the analyte is a drug, such as marijuana, cocaine (crystalline tropane alkaloid), methamphetamine, methyltestosterone, or mesterolone. The method involves attaching antigens to a surface of a solid support in a preselected pattern to form an array wherein the locations of the antigens are known; contacting the array with the biological sample such that a portion of antibodies in the sample reacts with and binds to antigens in the array, thereby forming immune complexes; washing away antibodies that do not form immune complexes; and detecting the immune complexes, thereby forming an antibody profile. Forensic samples are identified by comparing a sample from an unknown source with a sample from a known source. Further, an assay, such as a test for illegal drug use, can be coupled to a test for identity such that the results of the assay can be positively correlated to a subject's identity.

  19. Rapid classification of biological components

    DOE Patents [OSTI]

    Thompson, Vicki S.; Barrett, Karen B.; Key, Diane E.

    2013-10-15

    A method is disclosed for analyzing a biological sample by antibody profiling for identifying forensic samples or for detecting the presence of an analyte. In an illustrative embodiment of the invention, the analyte is a drug, such as marijuana, cocaine (crystalline tropane alkaloid), methamphetamine, methyltestosterone, or mesterolone. The method involves attaching antigens to a surface of a solid support in a preselected pattern to form an array wherein the locations of the antigens are known; contacting the array with the biological sample such that a portion of antibodies in the sample reacts with and binds to antigens in the array, thereby forming immune complexes; washing away antibodies that do not form immune complexes; and detecting the immune complexes, thereby forming an antibody profile. Forensic samples are identified by comparing a sample from an unknown source with a sample from a known source. Further, an assay, such as a test for illegal drug use, can be coupled to a test for identity such that the results of the assay can be positively correlated to a subject's identity.

  20. Rapid classification of biological components

    DOE Patents [OSTI]

    Thompson, Vicki S.; Barrett, Karen B.; Key, Diane E.

    2010-03-23

    A method is disclosed for analyzing a biological sample by antibody profiling for identifying forensic samples or for detecting the presence of an analyte. In an illustrative embodiment of the invention, the analyte is a drug, such as marijuana, Cocaine (crystalline tropane alkaloid), methamphetamine, methyltestosterone, or mesterolone. The method involves attaching antigens of the surface of a solid support in a preselected pattern to form an array wherein the locations of the antigens are known; contacting the array with the biological sample such that a portion of antibodies in the sample reacts with and binds to antigens in the array, thereby forming immune complexes; washing away antibodies that do not form immune complexes; and detecting the immune complexes, thereby forming an antibody profile. Forensic samples are identified by comparing a sample from an unknown source with a sample from a known source. Further, an assay, such as a test for illegal drug use, can be coupled to a test for identity such that the results of the assay can be positively correlated to a subject's identity.

  1. Rapid classification of biological components

    DOE Patents [OSTI]

    Thompson, Vicki S.; Barrett, Karen B.; Key, Diane E.

    2006-01-24

    A method is disclosed for analyzing a biological sample by antibody profiling for identifying forensic samples or for detecting the presence of an analyte. In an illustrative embodiment of the invention, the analyte is a drug, such as marijuana, cocaine, methamphetamine, methyltestosterone, or mesterolone. The method involves attaching antigens to the surface of a solid support in a preselected pattern to form an array wherein the locations of the antigens are known; contacting the array with the biological sample such that a portion of antibodies in the sample reacts with and binds to antigens in the array, thereby forming immune complexes; washing away antibodies that do form immune complexes; and detecting the immune complexes, thereby forming an antibody profile. Forensic samples are identified by comparing a sample from an unknown source with a sample from a known source. Further, an assay, such as a test for illegal drug use, can be coupled to a test for identity such that the results of the assay can be positively correlated to the subject's identity.

  2. Metal Cutting for Large Component Removal

    SciTech Connect (OSTI)

    Hulick, Robert M.

    2008-01-15

    Decommissioning of commercial nuclear power plants presents technological challenges. One major challenge is the removal of large components mainly consisting of the reactor vessel, steam generators and pressurizer. In order to remove and package these large components nozzles must be cut from the reactor vessel to precise tolerances. In some cases steam generators must be segmented for size and weight reduction. One innovative technology that has been used successfully at several commercial nuclear plant decommissioning is diamond wire sawing. Diamond wire sawing is performed by rotating a cable with diamond segments attached using a flywheel approximately 24 inches in diameter driven remotely by a hydraulic pump. Tension is provided using a gear rack drive which also takes up the slack in the wire. The wire is guided through the use of pulleys keeps the wire in a precise location. The diamond wire consists of 1/4 inch aircraft cable with diamond beads strung over the cable separated by springs and brass crimps. Standard wire contains 40 diamond beads per meter and can be made to any length. Cooling the wire and controlling the spread of contamination presents significant challenges. Under normal circumstances the wire is cooled and the cutting kerf cleaned by using water. In some cases of reactor nozzle cuts the use of water is prohibited because it cannot be controlled. This challenge was solved by using liquid Carbon Dioxide as the cooling agent. The liquid CO{sub 2} is passed through a special nozzle which atomizes the liquid into snowflakes which is introduced under pressure to the wire. The snowflakes attach to the wire keeping it cool and to the metal shavings. As the CO{sub 2} and metal shavings are released from the wire due to its fast rotation, the snowflakes evaporate leaving only the fine metal shavings as waste. Secondary waste produced is simply the small volume of fine metal shavings removed from the cut surface. Diamond wire sawing using CO{sub 2

  3. Instrumentation of Current Technology Testing and Replicating Harsh Environments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Abrasion Testing of Critical Components of Hydrokinetic Devices 10/17/2012 University of Alaska Anchorage 2 Project Team o Ocean Renewable Power Company (ORPC) o Jarlath McEntee o Monty Worthington o University of Alaska Anchorage (UAA) o Faculty o Thomas Ravens o Todd Petersen o Muhammad Ali o Research Assistants o Tim Kirk o Jacob Clark o Angus Bromaghin 10/17/2012 University of Alaska Anchorage 3 ORPC Technology o TideGen Power System (TGU) o Designed to generate electricity at water depths

  4. Decant pump assembly and controls qualification testing - test report

    SciTech Connect (OSTI)

    Staehr, T.W., Westinghouse Hanford

    1996-05-02

    This report summarizes the results of the qualification testing of the supernate decant pump and controls system to be used for in-tank sludge washing in aging waste tank AZ-101. The test was successful and all components are qualified for installation and use in the tank.

  5. OLED Testing Opportunity | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development » OLED Testing Opportunity OLED Testing Opportunity Ongoing discussions with the OLED lighting community have identified the need for a collaborative R&D framework to accelerate developments in OLED lighting technology and manufacturing. DOE has implemented a new testing opportunity to enable component makers to incorporate various R&D-stage components into a baseline state-of-the art (SOTA) OLED device. The results of the testing will lead to the

  6. Safety evaluation report related to the Department of Energy`s proposal for the irradiation of lead test assemblies containing tritium-producing burnable absorber rods in commercial light-water reactors. Project Number 697

    SciTech Connect (OSTI)

    1997-05-01

    The NRC staff has reviewed a report, submitted by DOE to determine whether the use of a commercial light-water reactor (CLWR) to irradiate a limited number of tritium-producing burnable absorber rods (TPBARs) in lead test assemblies (LTAs) raises generic issues involving an unreviewed safety question. The staff has prepared this safety evaluation to address the acceptability of these LTAs in accordance with the provision of 10 CFR 50.59 without NRC licensing action. As summarized in Section 10 of this safety evaluation, the staff has identified issues that require NRC review. The staff has also identified a number of areas in which an individual licensee undertaking irradiation of TPBAR LTAs will have to supplement the information in the DOE report before the staff can determine whether the proposed irradiation is acceptable at a particular facility. The staff concludes that a licensee undertaking irradiation of TPBAR LTAs in a CLWR will have to submit an application for amendment to its facility operating license before inserting the LTAs into the reactor.

  7. Certification of alternative aviation fuels and blend components

    SciTech Connect (OSTI)

    Wilson III, George R. ); Edwards, Tim; Corporan, Edwin ); Freerks, Robert L. )

    2013-01-15

    Aviation turbine engine fuel specifications are governed by ASTM International, formerly known as the American Society for Testing and Materials (ASTM) International, and the British Ministry of Defence (MOD). ASTM D1655 Standard Specification for Aviation Turbine Fuels and MOD Defence Standard 91-91 are the guiding specifications for this fuel throughout most of the world. Both of these documents rely heavily on the vast amount of experience in production and use of turbine engine fuels from conventional sources, such as crude oil, natural gas condensates, heavy oil, shale oil, and oil sands. Turbine engine fuel derived from these resources and meeting the above specifications has properties that are generally considered acceptable for fuels to be used in turbine engines. Alternative and synthetic fuel components are approved for use to blend with conventional turbine engine fuels after considerable testing. ASTM has established a specification for fuels containing synthesized hydrocarbons under D7566, and the MOD has included additional requirements for fuels containing synthetic components under Annex D of DS91-91. New turbine engine fuel additives and blend components need to be evaluated using ASTM D4054, Standard Practice for Qualification and Approval of New Aviation Turbine Fuels and Fuel Additives. This paper discusses these specifications and testing requirements in light of recent literature claiming that some biomass-derived blend components, which have been used to blend in conventional aviation fuel, meet the requirements for aviation turbine fuels as specified by ASTM and the MOD. The 'Table 1' requirements listed in both D1655 and DS91-91 are predicated on the assumption that the feedstocks used to make fuels meeting these requirements are from approved sources. Recent papers have implied that commercial jet fuel can be blended with renewable components that are not hydrocarbons (such as fatty acid methyl esters). These are not allowed blend

  8. A Plan for Modularization of Tritium Components

    Office of Environmental Management (EM)

    Tritium Components Randy Davis Davis Consultants M-TRT-H-00089 Savannah River Nuclear Solutions, LLC April 22, 2014 M-TRT-H-00089 Current Approach * All "tritium wetted components" ...

  9. Battery components employing a silicate binder

    DOE Patents [OSTI]

    Delnick, Frank M.; Reinhardt, Frederick W.; Odinek, Judy G.

    2011-05-24

    A battery component structure employing inorganic-silicate binders. In some embodiments, casting or coating of components may be performed using aqueous slurries of silicates and electrode materials or separator materials.

  10. Effect of compression on individual pressure vessel nickel/hydrogen components

    SciTech Connect (OSTI)

    Manzo, M.A.; Perez-Davis, M.E.

    1988-08-01

    Compression tests were performed on representative Individual Pressure Vessel (IPV) Nickel/Hydrogen cell components in an effort to better understand the effects of force on component compression and the interactions of components under compression. It appears that the separator is the most easily compressed of all of the stack components. It will typically partially compress before any of the other components begin to compress. The compression characteristics of the cell components in assembly differed considerably from what would be predicted based on individual compression characteristics. Component interactions played a significant role in the stack response to compression. The results of the compression tests were factored into the design and selection of Belleville washers added to the cell stack to accommodate nickel electrode expansion while keeping the pressure on the stack within a reasonable range of the original preset.

  11. Manufacturing complex silica aerogel target components

    SciTech Connect (OSTI)

    Defriend Obrey, Kimberly Ann [Los Alamos National Laboratory; Day, Robert D [Los Alamos National Laboratory; Espinoza, Brent F [Los Alamos National Laboratory; Hatch, Doug [Los Alamos National Laboratory; Patterson, Brian M [Los Alamos National Laboratory; Feng, Shihai [Los Alamos National Laboratory

    2008-01-01

    Aerogel is a material used in numerous components in High Energy Density Physics targets. In the past these components were molded into the proper shapes. Artifacts left in the parts from the molding process, such as contour irregularities from shrinkage and density gradients caused by the skin, have caused LANL to pursue machining as a way to make the components.

  12. Clean Diesel Component Improvement Program

    SciTech Connect (OSTI)

    2005-06-30

    The research conducted in this program significantly increased the knowledge and understanding in the fields of plasma physics and chemistry in diesel exhaust, the performance and characteristics of multifunctional catalysts in diesel exhaust, and the complexities of controlling a combination of such systems to remove NOx. Initially this program was designed to use an in-line plasma system (know as a plasma assisted catalyst system or PAC) to convert NO {yields} NO{sub 2}, a more catalytically active form of nitrogen oxides, and to crack hydrocarbons (diesel fuel in particular) into active species. The NO{sub 2} and the cracked hydrocarbons were then flowed over an in-line ceramic NOx catalyst that removed NO{sub 2} from the diesel exhaust. Even though the PAC system performed well technically and was able to remove over 95% of NOx from diesel exhaust the plasma component proved not to be practical or commercially feasible. The lack of practical and commercial viability was due to high unit costs and lack of robustness. The plasma system and its function was replaced in the NOx removal process by a cracking reforming catalyst that converted diesel fuel to a highly active reductant for NOx over a downstream ceramic NOx catalyst. This system was designated the ceramic catalyst system (CCS). It was also determined that NO conversion to NO{sub 2} was not required to achieve high levels of NOx reduction over ceramic NOx catalyst if that catalyst was properly formulated and the cracking reforming produced a reductant optimized for that NOx catalyst formulation. This system has demonstrated 92% NOx reduction in a diesel exhaust slipstream and 65% NOx reduction from the full exhaust of a 165 hp diesel engine using the FTP cycle. Although this system needs additional development to be commercial, it is simple, cost effective (does not use precious metals), sulfur tolerant, operates at high space velocities, does not require a second fluid be supplied as a reductant, has low

  13. Battery Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering ...

  14. Strontium Isotopes Test Long-Term Zonal Isolation of Injected...

    Office of Scientific and Technical Information (OSTI)

    Water after Hydraulic Fracturing Citation Details In-Document Search Title: Strontium Isotopes Test Long-Term Zonal Isolation of Injected and Marcellus Formation Water after ...

  15. Method of using infrared radiation for assembling a first component with a second component

    DOE Patents [OSTI]

    Sikka, Vinod K.; Whitson, Barry G.; Blue, Craig A.

    1999-01-01

    A method of assembling a first component for assembly with a second component involves a heating device which includes an enclosure having a cavity for inserting a first component. An array of infrared energy generators is disposed within the enclosure. At least a portion of the first component is inserted into the cavity, exposed to infrared energy and thereby heated to a temperature wherein the portion of the first component is sufficiently softened and/or expanded for assembly with a second component.

  16. Expandable Metal Liner For Downhole Components

    DOE Patents [OSTI]

    Hall, David R.; Fox, Joe R.

    2004-10-05

    A liner for an annular downhole component is comprised of an expandable metal tube having indentations along its surface. The indentations are formed in the wall of the tube either by drawing the tube through a die, by hydroforming, by stamping, or roll forming and may extend axially, radially, or spirally along its wall. The indentations accommodate radial and axial expansion of the tube within the downhole component. The tube is inserted into the annular component and deformed to match an inside surface of the component. The tube may be expanded using a hydroforming process or by drawing a mandrel through the tube. The tube may be expanded in such a manner so as to place it in compression against the inside wall of the component. The tube is useful for improving component hydraulics, shielding components from contamination, inhibiting corrosion, and preventing wear to the downhole component during use. It may also be useful for positioning conduit and insulated conductors within the component. An insulating material may be disposed between the tube and the component in order to prevent galvanic corrosion of the downhole component.

  17. Performance and production requirements for the optical components in a high-average-power laser system

    SciTech Connect (OSTI)

    Chow, R.; Doss, F.W.; Taylor, J.R.; Wong, J.N.

    1999-07-02

    Optical components needed for high-average-power lasers, such as those developed for Atomic Vapor Laser Isotope Separation (AVLIS), require high levels of performance and reliability. Over the past two decades, optical component requirements for this purpose have been optimized and performance and reliability have been demonstrated. Many of the optical components that are exposed to the high power laser light affect the quality of the beam as it is transported through the system. The specifications for these optics are described including a few parameters not previously reported and some component manufacturing and testing experience. Key words: High-average-power laser, coating efficiency, absorption, optical components

  18. Damage rates for FFTF structural components and surveillance assemblies

    SciTech Connect (OSTI)

    Simons, R.L.

    1993-08-01

    The Fast Flux Test Facility (FFTF) surveillance program provides coupon surveillance materials that are irradiated to the expected lifetime damage dose that the represented component will experience. This methodology requires a knowledge of the damage dose rates to the surveillance assemblies and to the critical locations of the structural components. This analysis updates the predicted exposures from a total fluence to a displacement per atom (dpa) basis using Monte Carlo (computer code for) neutron photon (transport) code (MCNP). The MCNP calculation improves the relative consistency and lowers the predicted damage rates uncertainty in a number of out-of-core locations. The results were used an part of the evaluation to extend the lifetime of the invessel components to 30 years in support of multiple missions for FFTF.

  19. LONG TERM AGING AND SURVEILLANCE OF 9975 PACKAGE COMPONENTS

    SciTech Connect (OSTI)

    Hoffman, E.; Skidmore, E.; Daugherty, W.; Dunn, K.

    2009-11-10

    The mission of the 9975 package, originally designed only for transportation of radioactive materials, has been broadened to include storage at the Savannah River Site. Two components of this package, namely the containment vessel O-rings and fiberboard overpack, require continued integrity assessment under the storage conditions. The performance of the components over time is being evaluated using accelerated-aging studies. Compression stress relaxation (CSR) and leak testing are being used to measure the performance of O-rings. The performance of the fiberboard is being evaluated using compression strength, thermal conductivity, specific heat capacity and other physical properties. Models developed from the data collected provide an initial prediction of service life for the two components, and support the conclusion that normal service conditions will not degrade the performance of the package beyond specified functional requirements for the first assessment interval. Increased confidence in this conclusion is derived from field surveillance data and destructive evaluation of packages removed from storage.

  20. Evaluation of systems and components for hybrid optical firing sets

    SciTech Connect (OSTI)

    Landry, M.J.; Rupert, J.W.; Mittas, A.

    1989-06-01

    High-energy density light appears to be a unique energy form that may be used to enhance the nuclear safety of weapon systems. Hybrid optical firing sets (HOFS) utilize the weak-link/strong-link exclusion region concept for nuclear safety; this method is similar to present systems, but uses light to transmit power across the exclusion region barrier. This report describes the assembling, operating, and testing of fourteen HOFS. These firing sets were required to charge a capacitor-discharge unit to 2.0 and 2.5 kV (100 mJ) in less than 1 s. First, we describe the components, the measurement techniques used to evaluate the components, and the different characteristics of the measured components. Second, we describe the HOFS studied, the setups used for evaluating them, and the resulting characteristics. Third, we make recommendations for improving the overall performance and suggest the best HOFS for packaging. 36 refs., 145 figs., 14 tabs.

  1. Revised evaluation of steam generator testing alternatives

    SciTech Connect (OSTI)

    1981-01-01

    A scoping evaluation was made of various facility alternatives for test of LMFBR prototype steam generators and models. Recommendations are given for modifications to EBR-II and SCTI (Sodium Components Test Installation) for prototype SG testing, and for few-tube model testing. (DLC)

  2. Net Test

    Energy Science and Technology Software Center (OSTI)

    2001-09-01

    Nettest is a secure, real-time network utility. The nettest framework is designed to incorporate existing and new network tests, and be run as a daemon or an interactive process. Requests for network tests are received via a SSL connection or the user interface and are authorized using a ACL list (in the future authorization using Akenti will also be supported). For tests that require coordination between the two ends of the test, Nettest establishes anmore » SSL connection to accomplish this coordination. A test between two remote computers can be requested via the user interlace if the Nettest daemon is running on both remote machines and the user is authorized. Authorization for the test is through a chain of trust estabtished by the nettest daemons. Nettest is responsible for determining if the test request is authorized, but it does nothing further to secure the test once the test is running. Currently the Nettest framework incorporates lperf-vl.2, a simple ping type test, and a tuned TCP test that uses a given required throughput and ping results to determine the round trip time to set a buffer size (based on the delay bandwidth product) and then performs an iperf TCP throughput test. Additional network test tools can be integrated into the Nettest framework in the future.« less

  3. Reusing Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reusing Water Reusing Water Millions of gallons of industrial wastewater is recycled at LANL by virtue of a long-term strategy to treat wastewater rather than discharging it into ...

  4. Water Summit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    host Water Summit March 21, 2016 Los Alamos watershed research among featured projects LOS ALAMOS, N.M., March 21, 2016-On Tuesday, March 22, 2016-World Water Day-the ...

  5. Reusing Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reusing Water Reusing Water Millions of gallons of industrial wastewater is recycled at LANL by virtue of a long-term strategy to treat wastewater rather than discharging it into...

  6. Analysis of Fission Products on the AGR-1 Capsule Components

    SciTech Connect (OSTI)

    Paul A. Demkowicz; Jason M. Harp; Philip L. Winston; Scott A. Ploger

    2013-03-01

    The components of the AGR-1 irradiation capsules were analyzed to determine the retained inventory of fission products in order to determine the extent of in-pile fission product release from the fuel compacts. This includes analysis of (i) the metal capsule components, (ii) the graphite fuel holders, (iii) the graphite spacers, and (iv) the gas exit lines. The fission products most prevalent in the components were Ag-110m, Cs 134, Cs 137, Eu-154, and Sr 90, and the most common location was the metal capsule components and the graphite fuel holders. Gamma scanning of the graphite fuel holders was also performed to determine spatial distribution of Ag-110m and radiocesium. Silver was released from the fuel components in significant fractions. The total Ag-110m inventory found in the capsules ranged from 1.210 2 (Capsule 3) to 3.810 1 (Capsule 6). Ag-110m was not distributed evenly in the graphite fuel holders, but tended to concentrate at the axial ends of the graphite holders in Capsules 1 and 6 (located at the top and bottom of the test train) and near the axial center in Capsules 2, 3, and 5 (in the center of the test train). The Ag-110m further tended to be concentrated around fuel stacks 1 and 3, the two stacks facing the ATR reactor core and location of higher burnup, neutron fluence, and temperatures compared with Stack 2. Detailed correlation of silver release with fuel type and irradiation temperatures is problematic at the capsule level due to the large range of temperatures experienced by individual fuel compacts in each capsule. A comprehensive Ag 110m mass balance for the capsules was performed using measured inventories of individual compacts and the inventory on the capsule components. For most capsules, the mass balance was within 11% of the predicted inventory. The Ag-110m release from individual compacts often exhibited a very large range within a particular capsule.

  7. Thermal well-test method

    DOE Patents [OSTI]

    Tsang, Chin-Fu; Doughty, Christine A.

    1985-01-01

    A well-test method involving injection of hot (or cold) water into a groundwater aquifer, or injecting cold water into a geothermal reservoir. By making temperature measurements at various depths in one or more observation wells, certain properties of the aquifer are determined. These properties, not obtainable from conventional well test procedures, include the permeability anisotropy, and layering in the aquifer, and in-situ thermal properties. The temperature measurements at various depths are obtained from thermistors mounted in the observation wells.

  8. Wind Testing and Certification | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing and Certification Wind Testing and Certification Recognizing that access to testing facilities is a key enabler of wind technology validation and commercialization, the Wind Program invests in and works with partners on the development of testing facilities that support research and certification of wind turbine technologies at the component, turbine, and wind plant levels. These testing facilities are geographically diverse, located in key wind energy regions, and possess unique testing

  9. K West integrated water treatment system subproject safety analysis document

    SciTech Connect (OSTI)

    SEMMENS, L.S.

    1999-02-24

    This Accident Analysis evaluates unmitigated accident scenarios, and identifies Safety Significant and Safety Class structures, systems, and components for the K West Integrated Water Treatment System.

  10. TREATMENT OF PRODUCED OIL AND GAS WATERS WITH SURFACTANT-MODIFIED ZEOLITE

    SciTech Connect (OSTI)

    Lynn E. Katz; R.S. Bowman; E.J. Sullivan

    2003-11-01

    Co-produced water from the oil and gas industry accounts for a significant waste stream in the United States. It is by some estimates the largest single waste stream in the country, aside from nonhazardous industrial wastes. Characteristics of produced water include high total dissolved solids content, dissolved organic constituents such as benzene and toluene, an oil and grease component, and chemicals added during the oil-production process. While most of the produced water is disposed via reinjection, some must be treated to remove organic constituents before the water is discharged. Current treatment options are successful in reducing the organic content; however, they cannot always meet the levels of current or proposed regulations for discharged water. Therefore, an efficient, cost-effective treatment technology is needed. Surfactant-modified zeolite (SMZ) has been used successfully to treat contaminated ground water for organic and inorganic constituents. In addition, the low cost of natural zeolites makes their use attractive in water-treatment applications. This report summarizes the work and results of this four-year project. We tested the effectiveness of surfactant-modified zeolite (SMZ) for removal of BTEX with batch and column experiments using waters with BTEX concentrations that are comparable to those of produced waters. The data from our experimental investigations showed that BTEX sorption to SMZ can be described by a linear isotherm model, and competitive effects between compounds were not significant. The SMZ can be readily regenerated using air stripping. We field-tested a prototype SMZ-based water treatment system at produced water treatment facilities and found that the SMZ successfully removes BTEX from produced waters as predicted by laboratory studies. When compared to other existing treatment technologies, the cost of the SMZ system is very competitive. Furthermore, the SMZ system is relatively compact, does not require the storage of

  11. Evaluation and silicon nitride internal combustion engine components. Final report, Phase I

    SciTech Connect (OSTI)

    Voldrich, W.

    1992-04-01

    The feasibility of silicon nitride (Si{sub 3}N{sub 4}) use in internal combustion engines was studied by testing three different components for wear resistance and lower reciprocating mass. The information obtained from these preliminary spin rig and engine tests indicates several design changes are necessary to survive high-stress engine applications. The three silicon nitride components tested were valve spring retainers, tappet rollers, and fuel pump push rod ends. Garrett Ceramic Components` gas-pressure sinterable Si{sub 3}N{sub 4} (GS-44) was used to fabricate the above components. Components were final machined from densified blanks that had been green formed by isostatic pressing of GS-44 granules. Spin rig testing of the valve spring retainers indicated that these Si{sub 3}N{sub 4} components could survive at high RPM levels (9,500) when teamed with silicon nitride valves and lower spring tension than standard titanium components. Silicon nitride tappet rollers showed no wear on roller O.D. or I.D. surfaces, steel axles and lifters; however, due to the uncrowned design of these particular rollers the cam lobes indicated wear after spin rig testing. Fuel pump push rod ends were successful at reducing wear on the cam lobe and rod end when tested on spin rigs and in real-world race applications.

  12. Uranium Weapons Components Successfully Dismantled | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Uranium Weapons Components Successfully Dismantled Uranium Weapons Components Successfully Dismantled Oak Ridge, TN Continuing its efforts to reduce the size of the U.S. nuclear weapons stockpile, the National Nuclear Security Administration announced that uranium components from two major nuclear weapons systems formerly deployed on U.S. Air Force missiles and aircraft have been dismantled at the Y-12 National Security Complex in Oak Ridge, TN. Y-12 workers

  13. Solid tags for identifying failed reactor components

    DOE Patents [OSTI]

    Bunch, Wilbur L.; Schenter, Robert E.

    1987-01-01

    A solid tag material which generates stable detectable, identifiable, and measurable isotopic gases on exposure to a neutron flux to be placed in a nuclear reactor component, particularly a fuel element, in order to identify the reactor component in event of its failure. Several tag materials consisting of salts which generate a multiplicity of gaseous isotopes in predetermined ratios are used to identify different reactor components.

  14. Cold worked ferritic alloys and components

    DOE Patents [OSTI]

    Korenko, Michael K.

    1984-01-01

    This invention relates to liquid metal fast breeder reactor and steam generator precipitation hardening fully ferritic alloy components which have a microstructure substantially free of the primary precipitation hardening phase while having cells or arrays of dislocations of varying population densities. It also relates to the process by which these components are produced, which entails solution treating the alloy followed by a final cold working step. In this condition, the first significant precipitation hardening of the component occurs during high temperature use.

  15. Fine and coarse components in surface sediments from Bikini Lagoon

    SciTech Connect (OSTI)

    Noshkin, V. E., LLNL

    1997-01-01

    In 1979, 21 years after the moratorium on nuclear testing in the Marshall Islands, surface sediment samples (to depths of 2 and 4 cm) were collected from 87 locations in the lagoon of Bikini Atoll, one of the two sites in the Marshall Islands used by the United States to test nuclear devices from 1946 through 1958. The main purpose for the collections was to map the distribution of long-lived man-made radionuclides associated with the bottom material. In addition the samples were processed to estimate the fraction of fine and coarse components to show, by comparison, what modifications occurred in the composition since the sediments were first described in samples collected before testing in 1946. Nuclear testing produced more finely divided material that is now found in the surface sediment layer over large areas of the lagoon and especially in regions of the lagoon and reef adjacent to test sites. The 5 cratering events alone at Bikini Atoll redistributed sufficient material to account for the higher inventory of fine material found over the surface 4 cm of the sediment of the lagoon. Although the fraction of fine material in the bottom sediments was altered by the nuclear events, the combined processes of formation, transport and deposition were not sufficiently dynamic to greatly change the general geographical features of the major sedimentary components over most of the lagoon floor.

  16. ARM - Field Campaign - Water Cycle Pilot Study Intensive Observations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sets, see below. Abstract The U.S. DOE Water Cycle Pilot Study (WCPS) is a 3-year feasibility investigation focused on accurately evaluating the water cycle components and using...

  17. Assessing Impact of Biofuel Production on Regional Water Resource...

    Broader source: Energy.gov (indexed) [DOE]

    Impact of Biofuel Production on Regional Water Resource Use and Availability May Wu Ph.D. ... 15, 2012 Biofuel Is a Key Component in Water-Energy Nexus 1 2 Potential Cellulosic ...

  18. NREL: Water Power Research - Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities NREL supports the development of marine and hydrokinetic technologies and hydropower R&D through the U.S. Department of Energy's Water Power Program. Our activities span a wide spectrum of disciplines, including fluid mechanics; dynamics, structures, and fatigue; power systems and electronics; resource assessment and mapping; economic analysis; and grid interconnection. Read more about NREL's water power R&D capabilities: Design Review and Analysis Device and Component

  19. Building Component Library | Open Energy Information

    Open Energy Info (EERE)

    Technology characterizations Resource Type: Dataset Website: bcl.nrel.gov Cost: Free OpenEI Keyword(s): buildings, nrel, data, component Language: English Building...

  20. Vehicle Component Heat Dissipation Improvements - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Vehicle Component Heat Dissipation Improvements Improvements to efficiently, safely, and inexpensively dispel heat from power modules, circuitry, ...

  1. Project Profile: Concurrent Optimization of Component Capital...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    solar power (CSP) plants by characterizing and forecasting operations and maintenance costs, component failure behavior, and the impact of design and maintenance policies. ...

  2. Aging management of major LWR components with nondestructive evaluation

    SciTech Connect (OSTI)

    Shah, V.N.; MacDonald, P.E.; Akers, D.W.; Sellers, C.; Murty, K.L.; Miraglia, P.Q.; Mathew, M.D.; Haggag, F.M.

    1997-12-31

    Nondestructive evaluation of material damage can contribute to continued safe, reliable, and economical operation of nuclear power plants through their current and renewed license period. The aging mechanisms active in the major light water reactor components are radiation embrittlement, thermal aging, stress corrosion cracking, flow-accelerated corrosion, and fatigue, which reduce fracture toughness, structural strength, or fatigue resistance of the components and challenge structural integrity of the pressure boundary. This paper reviews four nondestructive evaluation methods with the potential for in situ assessment of damage caused by these mechanisms: stress-strain microprobe for determining mechanical properties of reactor pressure vessel and cast stainless materials, magnetic methods for estimating thermal aging damage in cast stainless steel, positron annihilation measurements for estimating early fatigue damage in reactor coolant system piping, and ultrasonic guided wave technique for detecting cracks and wall thinning in tubes and pipes and corrosion damage to embedded portion of metal containments.

  3. High-Heat-Flux Testing of Irradiated Tungsten-Based Materials for Fusion Applications Using Infrared Plasma Arc Lamps

    SciTech Connect (OSTI)

    Sabau, Adrian S.; Ohriner, Evan K.; Kiggans, Jim; Schaich, Charles R.; Ueda, Yoshio; Harper, David C.; Katoh, Yutai; Snead, Lance L.; Byun, Thak S.

    2014-11-01

    Testing of advanced materials and component mock-ups under prototypical fusion high-heat-flux conditions, while historically a mainstay of fusion research, has proved to be quite challenging, especially for irradiated materials. A new high-heat-flux–testing (HHFT) facility based on water-wall plasma arc lamps (PALs) is now introduced for materials and small-component testing. Two PAL systems, utilizing a 12 000°C plasma arc contained in a quartz tube cooled by a spiral water flow over the inside tube surface, provide maximum incident heat fluxes of 4.2 and 27 MW/m2 over areas of 9×12 and 1×10 cm2, respectively. This paper will present the overall design and implementation of a PAL-based irradiated material target station (IMTS). The IMTS is primarily designed for testing the effects of heat flux or thermal cycling on material coupons of interest, such as those for plasma-facing components. Temperature results are shown for thermal cycling under HHFT of tungsten coupon specimens that were neutron irradiated in HFIR. Finally, radiological surveys indicated minimal contamination of the 36-× 36-× 18-cm test section, demonstrating the capability of the new facility to handle irradiated specimens at high temperature.

  4. High-heat-flux testing of irradiated tungsten-based materials for fusion applications using infrared plasma arc lamps

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sabau, Adrian S.; Ohriner, Evan K.; Kiggans, Jim; Schaich, Charles R.; Ueda, Yoshio; Harper, David C.; Katoh, Yutai; Snead, Lance L.; Byun, Thak S.

    2014-11-01

    Testing of advanced materials and component mock-ups under prototypical fusion high-heat-flux conditions, while historically a mainstay of fusion research, has proved to be quite challenging, especially for irradiated materials. A new high-heat-flux–testing (HHFT) facility based on water-wall plasma arc lamps (PALs) is now introduced for materials and small-component testing. Two PAL systems, utilizing a 12 000°C plasma arc contained in a quartz tube cooled by a spiral water flow over the inside tube surface, provide maximum incident heat fluxes of 4.2 and 27 MW/m2 over areas of 9×12 and 1×10 cm2, respectively. This paper will present the overall design andmore » implementation of a PAL-based irradiated material target station (IMTS). The IMTS is primarily designed for testing the effects of heat flux or thermal cycling on material coupons of interest, such as those for plasma-facing components. Temperature results are shown for thermal cycling under HHFT of tungsten coupon specimens that were neutron irradiated in HFIR. Finally, radiological surveys indicated minimal contamination of the 36×36×18 cm test section, demonstrating the capability of the new facility to handle irradiated specimens at high temperature.« less

  5. Pressure Testing of a High Temperature Naturally Fractured Reservoir...

    Office of Scientific and Technical Information (OSTI)

    and flow-through tests at the Hot Dry rock (HDR) test site at Fenton Hill, New Mexico. ... FRACTURING; FRESH WATER; GRANITES; NEW MEXICO; PERMEABILITY; POROSITY; PUMPING; ...

  6. Testing of GFL Geosiphon

    SciTech Connect (OSTI)

    Steimke, J.L.

    2001-07-10

    A full-scale, transparent replica of a GeoSiphon was constructed in the TFL to test a new concept, using a solar powered vacuum pump to remove accumulated gases from the air chamber. It did not have a treatment cell containing iron filings as do the actual TNX GeoSiphons in the field, but it was accurate in all other respects. The gas generation that is observed in an actual GeoSiphon was simulated by air injection at the inlet of the TFL GeoSiphon. After facility shakedown, three stages of testing were conducted: verification testing, parametric testing and long term testing. In verification testing, the TFL GeoSiphon was used to reproduce a particular test at TNX in which the water flowrate decreased gradually as the result of air accumulation at the crest of a siphon without an air chamber. For this test the vacuum pump was not used and the air chamber was initially filled with air rather than water. Agreement between data from the TNX GeoSiphon and the TFL GeoSiphon was good, which gave confidence that the TFL GeoSiphon was a good hydraulic representation of the TNX GeoSiphon. For the remaining tests, the solar powered vacuum pump and air chamber were used. In parametric testing, steady state runs were made for water flowrates ranging from 1 gpm to 19 gpm, air injection rates ranging from 0 to 77 standard cc/min and outfall line angles ranging from vertical to 60 degrees from vertical. In all cases, the air chamber and vacuum pump removed nearly all of the air and the GeoSiphon operated without problems. In long term testing, the GeoSiphon was allowed to run continuously for 21 days at one set of conditions. During this time the solar cell kept the storage battery fully charged at all times and the control circuit for the vacuum pump operated reliably. The solar panel was observed to have a large excess capacity when used with the vacuum pump. With two changes, the concept of using a solar powered vacuum pump attached to an air chamber should be ready for long

  7. Hybrid solar lighting distribution systems and components

    DOE Patents [OSTI]

    Muhs, Jeffrey D.; Earl, Dennis D.; Beshears, David L.; Maxey, Lonnie C.; Jordan, John K.; Lind, Randall F.

    2011-07-05

    A hybrid solar lighting distribution system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates all components.

  8. Hybrid solar lighting systems and components

    DOE Patents [OSTI]

    Muhs, Jeffrey D.; Earl, Dennis D.; Beshears, David L.; Maxey, Lonnie C.; Jordan, John K.; Lind, Randall F.

    2007-06-12

    A hybrid solar lighting system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates each component.

  9. Densified edge seals for fuel cell components

    DOE Patents [OSTI]

    DeCasperis, Anthony J.; Roethlein, Richard J.; Breault, Richard D.

    1982-01-01

    A porous fuel cell component, such as an electrode substrate, has a densified edge which forms an improved gas seal during operation when soaked with electrolyte. The edges are made from the same composition as the rest of the component and are made by compressing an increased thickness of this material along the edges during the fabrication process.

  10. Hot gas path component cooling system

    DOE Patents [OSTI]

    Lacy, Benjamin Paul; Bunker, Ronald Scott; Itzel, Gary Michael

    2014-02-18

    A cooling system for a hot gas path component is disclosed. The cooling system may include a component layer and a cover layer. The component layer may include a first inner surface and a second outer surface. The second outer surface may define a plurality of channels. The component layer may further define a plurality of passages extending generally between the first inner surface and the second outer surface. Each of the plurality of channels may be fluidly connected to at least one of the plurality of passages. The cover layer may be situated adjacent the second outer surface of the component layer. The plurality of passages may be configured to flow a cooling medium to the plurality of channels and provide impingement cooling to the cover layer. The plurality of channels may be configured to flow cooling medium therethrough, cooling the cover layer.

  11. Control system health test system and method

    DOE Patents [OSTI]

    Hoff, Brian D.; Johnson, Kris W.; Akasam, Sivaprasad; Baker, Thomas M.

    2006-08-15

    A method is provided for testing multiple elements of a work machine, including a control system, a component, a sub-component that is influenced by operations of the component, and a sensor that monitors a characteristic of the sub-component. In one embodiment, the method is performed by the control system and includes sending a command to the component to adjust a first parameter associated with an operation of the component. Also, the method includes detecting a sensor signal from the sensor reflecting a second parameter associated with a characteristic of the sub-component and determining whether the second parameter is acceptable based on the command. The control system may diagnose at least one of the elements of the work machine when the second parameter of the sub-component is not acceptable.

  12. Gas Test Loop Booster Fuel Hydraulic Testing

    SciTech Connect (OSTI)

    Gas Test Loop Hydraulic Testing Staff

    2006-09-01

    The Gas Test Loop (GTL) project is for the design of an adaptation to the Advanced Test Reactor (ATR) to create a fast-flux test space where fuels and materials for advanced reactor concepts can undergo irradiation testing. Incident to that design, it was found necessary to make use of special booster fuel to enhance the neutron flux in the reactor lobe in which the Gas Test Loop will be installed. Because the booster fuel is of a different composition and configuration from standard ATR fuel, it is necessary to qualify the booster fuel for use in the ATR. Part of that qualification is the determination that required thermal hydraulic criteria will be met under routine operation and under selected accident scenarios. The Hydraulic Testing task in the GTL project facilitates that determination by measuring flow coefficients (pressure drops) over various regions of the booster fuel over a range of primary coolant flow rates. A high-fidelity model of the NW lobe of the ATR with associated flow baffle, in-pile-tube, and below-core flow channels was designed, constructed and located in the Idaho State University Thermal Fluids Laboratory. A circulation loop was designed and constructed by the university to provide reactor-relevant water flow rates to the test system. Models of the four booster fuel elements required for GTL operation were fabricated from aluminum (no uranium or means of heating) and placed in the flow channel. One of these was instrumented with Pitot tubes to measure flow velocities in the channels between the three booster fuel plates and between the innermost and outermost plates and the side walls of the flow annulus. Flow coefficients in the range of 4 to 6.5 were determined from the measurements made for the upper and middle parts of the booster fuel elements. The flow coefficient for the lower end of the booster fuel and the sub-core flow channel was lower at 2.3.

  13. Water pollution

    SciTech Connect (OSTI)

    Not Available

    1990-06-01

    Ballast water, which is sea water that is carried in oil tankers to provide stability, can become contaminated with oil. Alyeska Pipeline Service Company runs a water treatment plant at its pipeline terminal at Prot Valdez, Alaska, to treat ballast water before it is discharged into the sea. GAO reviewed EPA's recently reissued National Pollution Discharge Elimination System permit for the Port Valdez facility. In this report, GAO compares the effluent limits and other requirements under the reissued permit with those of the old permit, determines the reasons for changes in the reissued permit, and examines Alyeska's initial efforts to comply with the reissued permit's effluent limits and reporting requirements.

  14. Plasma Facing Components Generic Facilities Review Panel (PFC-GFRP): Final report

    SciTech Connect (OSTI)

    McGrath, R.; Allen, S.; Hill, D.; Brooks, J.; Mattas, R.; Davis, J.; Lipschultz, B.; Ulrickson, M.

    1993-10-01

    The Plasma Facing Components (PFC) Facilities Review Panel was chartered by the US Department of Energy, Office of Fusion Energy, ITER (International Thermonuclear Experimental Reactor) and Technology Division, to outline the program plan and identify the supporting test facilities that lead to reliable, long-lived plasma facing components for ITER. This report summarizes the panel`s findings and identifies the necessary and sufficient set of test facilities required for ITER PFC development.

  15. electricity use to lift water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Laboratories Social Twitter Google + Vimeo GovDelivery SlideShare SunShot Grand Challenge: Regional Test Centers electricity use to lift water HomeTag:electricity use to lift

  16. electricity use to treat water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Laboratories Social Twitter Google + Vimeo GovDelivery SlideShare SunShot Grand Challenge: Regional Test Centers electricity use to treat water HomeTag:electricity use to treat

  17. electricity use to convey water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Laboratories Social Twitter Google + Vimeo GovDelivery SlideShare SunShot Grand Challenge: Regional Test Centers electricity use to convey water HomeTag:electricity use to convey

  18. South Atlantic sag basins: new petroleum system components

    SciTech Connect (OSTI)

    Henry, S.G. Mohriak, W.U.; Mello, M.R.

    1996-08-01

    Newly discovered pre-salt source rocks, reservoirs and seals need to be included as components to the petroleum systems of both sides of the South Atlantic. These new components lie between the pre-salt rift strata and the Aptian salt layers, forming large, post-rift, thermal subsidence sag basins. These are differentiated from the older rift basins by the lack of syn-rift faulting and a reflector geometry that is parallel to the base salt regional unconformity rather than to the Precambrian basement. These basins are observed in deep water regions overlying areas where both the mantle and the crust have been involved in the extension. This mantle involvement creates post-rift subsiding depocenters in which deposition is continuous while proximal rift-phase troughs with little or no mantle involvement are bypassed and failed to accumulate potential source rocks during anoxic times. These features have been recognized in both West African Kwanza Basin and in the East Brasil Rift systems. The pre-salt source rocks that are in the West African sag basins were deposited in lacustrine brackish to saline water environment and are geochemically distinct from the older, syn-rift fresh to brackish water lakes, as well as from younger, post-salt marine anoxic environments of the drift phase. Geochemical analyses of the source rocks and their oils have shown a developing source rock system evolving from isolated deep rift lakes to shallow saline lakes, and culminating with the infill of the sag basin by large saline lakes to a marginally marine restricted gulf. Sag basin source rocks may be important in the South Atlantic petroleum system by charging deep-water prospects where syn-rift source rocks are overmature and the post-salt sequences are immature.

  19. Design guide for testing type-B packaging

    SciTech Connect (OSTI)

    Stumpfl, E.

    1996-12-31

    The U.S. Department of Energy-Albuquerque Operations Office (DOE-ALO), Office of National Defense Programs (ONDP) is responsible for evaluating and certifying type-B radioactive material packaging. This packaging is used for nuclear components and special assemblies associated with the nuclear explosive and weapon safety program under the direction and supervision of ONDP. This evaluation and certification process is conducted according to the U.S. Department of Transportation Specification Authorized Type B packages in the Code of Federal Regulations, Title 49, Part 178, Sec. 178.416 (49 CFR 178.416). This section states that each type-B package must be designed and constructed to meet the requirements in 10 CFR 71. Water spray tests and immersion tests [0.9 m (3 ft) and 15 m (50 ft)] are used in part to ensure that these requirements are satisfied.

  20. Commercial Water Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Heaters Commercial Water Heaters The Department of Energy (DOE) develops standardized data templates for reporting the results of tests conducted in accordance with current DOE test procedures. Templates may be used by third-party laboratories under contract with DOE that conduct testing in support of ENERGY STAR® verification, DOE rulemakings, and enforcement of the federal energy conservation standards. Commercial Water Heaters -- v2.0 (96.96 KB) More Documents & Publications

  1. INL Bettis Water Treatment Project Report

    SciTech Connect (OSTI)

    Not Available

    2009-06-01

    Bechtel Bettis Atomic Power Laboratory (Bettis), West Mifflin, PA, requested that the Idaho National Laboratory (INL) (Battelle Energy Alliance) perform tests using water simulants and three specified media to determine if those ion-exchange (IX) resins will be effective at removing the plutonium contamination from water. This report details the testing and results of the tests to determine the suitability of the media to treat plutonium contaminated water at near nuetral pH.

  2. Storage Electric Water Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Water Heaters Storage Electric Water Heaters The Department of Energy (DOE) develops standardized data templates for reporting the results of tests conducted in accordance with current DOE test procedures. Templates may be used by third-party laboratories under contract with DOE that conduct testing in support of ENERGY STAR® verification, DOE rulemakings, and enforcement of the federal energy conservation standards. Water Heaters, Storage Electric -- v2.0 (102.27 KB) More Documents

  3. Storage Gas Water Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gas Water Heaters Storage Gas Water Heaters The Department of Energy (DOE) develops standardized data templates for reporting the results of tests conducted in accordance with current DOE test procedures. Templates may be used by third-party laboratories under contract with DOE that conduct testing in support of ENERGY STAR® verification, DOE rulemakings, and enforcement of the federal energy conservation standards. Water Heaters, Storage Gas -- v2.0 (106.02 KB) More Documents &

  4. Storage Oil Water Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil Water Heaters Storage Oil Water Heaters The Department of Energy (DOE) develops standardized data templates for reporting the results of tests conducted in accordance with current DOE test procedures. Templates may be used by third-party laboratories under contract with DOE that conduct testing in support of ENERGY STAR® verification, DOE rulemakings, and enforcement of the federal energy conservation standards. Water Heaters, Storage Oil -- v2.0 (103.3 KB) More Documents & Publications

  5. Tankless Electric Water Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Water Heaters Tankless Electric Water Heaters The Department of Energy (DOE) develops standardized data templates for reporting the results of tests conducted in accordance with current DOE test procedures. Templates may be used by third-party laboratories under contract with DOE that conduct testing in support of ENERGY STAR® verification, DOE rulemakings, and enforcement of the federal energy conservation standards. Water Heaters, Tankless Electric -- v2.0 (98.91 KB) More Documents

  6. Tankless Gas Water Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gas Water Heaters Tankless Gas Water Heaters The Department of Energy (DOE) develops standardized data templates for reporting the results of tests conducted in accordance with current DOE test procedures. Templates may be used by third-party laboratories under contract with DOE that conduct testing in support of ENERGY STAR® verification, DOE rulemakings, and enforcement of the federal energy conservation standards. Water Heaters, Tankless Gas -- v1_2 (108.48 KB) More Documents &

  7. Heat Pump Water Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Pump Water Heaters Heat Pump Water Heaters The Department of Energy (DOE) develops standardized data templates for reporting the results of tests conducted in accordance with current DOE test procedures. Templates may be used by third-party laboratories under contract with DOE that conduct testing in support of ENERGY STAR® verification, DOE rulemakings, and enforcement of the federal energy conservation standards. Heat Pump Water Heaters -- v1.7 (350.5 KB) More Documents &

  8. NREL: Water Power Research - Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects NREL's water power R&D projects support industry efforts to develop and deploy cost-effective water power technologies and to better understand the value and potential of conventional hydropower generation and pumped storage hydropower facilities. Here are some examples of current R&D projects focused on achieving these objectives: Testing and Standards Computer-Aided Engineering Resource Characterization Economic and Power System Modeling and Analysis Printable Version Water

  9. Fuel Summary Report: Shippingport Light Water Breeder Reactor - Rev. 2

    SciTech Connect (OSTI)

    Olson, Gail Lynn; Mc Cardell, Richard Keith; Illum, Douglas Brent

    2002-09-01

    The Shippingport Light Water Breeder Reactor (LWBR) was developed by Bettis Atomic Power Laboratory to demonstrate the potential of a water-cooled, thorium oxide fuel cycle breeder reactor. The LWBR core operated from 1977-82 without major incident. The fuel and fuel components suffered minimal damage during operation, and the reactor testing was deemed successful. Extensive destructive and nondestructive postirradiation examinations confirmed that the fuel was in good condition with minimal amounts of cladding deformities and fuel pellet cracks. Fuel was placed in wet storage upon arrival at the Expended Core Facility, then dried and sent to the Idaho Nuclear Technology and Engineering Center for underground dry storage. It is likely that the fuel remains in good condition at its current underground dry storage location at the Idaho Nuclear Technology and Engineering Center. Reports show no indication of damage to the core associated with shipping, loading, or storage.

  10. Chemical coal cleaning process and costs refinement for coal-water slurry manufacture. Monthly report

    SciTech Connect (OSTI)

    Berggren, M.H.

    1985-02-22

    Test work centered on investigation of HCl leaching parameters. Some initial hot-water leaching tests were also performed.

  11. WATER TREATMENT

    DOE Patents [OSTI]

    Pitman, R.W.; Conley, W.R. Jr.

    1962-12-01

    An automated system for adding clarifying chemicals to water in a water treatment plant is described. To a sample of the floc suspension polyacrylamide or similar filter aid chemicals are added, and the sample is then put through a fast filter. The resulting filtrate has the requisite properties for monitoring in an optical turbidimeter to control the automated system. (AEC)

  12. Water Wars

    Energy Science and Technology Software Center (OSTI)

    2012-09-11

    Sandia National Laboratories and Intel Corporation are cooperating on a project aimed at developing serious games to assist in resource planners in conducting open and participatory projects. Water Wars serves as a prototype game focused on water issues. Water Wars is a multi-player, online role-playing "serious game" combining large-scale simulation (e.g. SimCity), with strategy and interpersonal interaction (e.g. Diplomacy). The game is about water use set in present-day New Mexico. Players enact various stakeholder rolesmore » and compete for water while simultaneously cooperating to prevent environmental collapse. The gamespace utilizes immersive 3D graphics to bring the problem alive. The game integrates Intel's OpenSim visualization engine with Sandia developed agent-based and system dynamics models.« less

  13. Funding Opportunity Announcement for Water Power Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Competitive Marine and Hydrokinetic (MHK) Demonstrations at the Navy's Wave Energy Test Site (WETS) Water Power Program About the Program Research & Development...

  14. HVAC component data modeling using industry foundation classes

    SciTech Connect (OSTI)

    Bazjanac, Vladimir; Forester, James; Haves, Philip; Sucic, Darko; Xu, Peng

    2002-07-01

    The Industry Foundation Classes (IFC) object data model of buildings is being developed by the International Alliance for Interoperability (IAI). The aim is to support data sharing and exchange in the building and construction industry across the life-cycle of a building. This paper describes a number of aspects of a major extension of the HVAC part of the IFC data model. First is the introduction of a more generic approach for handling HVAC components. This includes type information, which corresponds to catalog data, occurrence information, which defines item-specific attributes such as location and connectivity, and performance history information, which documents the actual performance of the component instance over time. Other IFC model enhancements include an extension of the connectivity model used to specify how components forming a system can be traversed and the introduction of time-based data streams. This paper includes examples of models of particular types of HVAC components, such as boilers and actuators, with all attributes included in the definitions. The paper concludes by describing the on-going process of model testing, implementation and integration into the complete IFC model and how the model can be used by software developers to support interoperability between HVAC-oriented design and analysis tools.

  15. Description of the RDCDS Meteorological Component

    SciTech Connect (OSTI)

    Pekour, Mikhail S.; Berg, Larry K.

    2007-10-01

    This report provides a detailed description of the Rapidly Deployable Chemical Defense System (RDCDS) Meteorological Component. The Meteorological Component includes four surface meteorological stations, miniSODAR, laptop computers, and communications equipment. This report describes the equipment that is used, explains the operation of the network, and gives instructions for setting up the Component and replacing defective parts. A detailed description of operation and use of the individual sensors, including the data loggers is not covered in the current document, and the interested reader should refer to the manufacturer’s documentation.

  16. Downhole component with a pressure equalization passageway

    DOE Patents [OSTI]

    Hall, David R.; Pixton, David S.; Dahlgren, Scott; Reynolds, Jay T.; Breihan, James W.; Briscoe, Michael A.

    2006-08-22

    The present invention includes a downhole component adapted for transmitting downhole data. The downhole component includes a threaded end on a downhole component. The threaded end furthermore includes an interior region, and exterior region, and a mating surface wherein a cavity is formed. A data transmission element is disposed in the cavity and displaces a volume of the cavity. At least one passageway is formed in the threaded region between interior and exterior regions. The passageway is in fluid communication with both the interior and exterior regions and thereby relieves pressure build up of thread lubricant upon tool joint make up.

  17. NHI Component Technical Readiness Evaluation System

    SciTech Connect (OSTI)

    Steven R. Sherman; Dane F. Wilson; Steven J. Pawel

    2007-09-01

    A decision process for evaluating the technical readiness or maturity of components (i.e., heat exchangers, chemical reactors, valves, etc.) for use by the U.S. DOE Nuclear Hydrogen Initiative is described. This system is used by the DOE NHI to assess individual components in relation to their readiness for pilot-scale and larger-scale deployment and to drive the research and development work needed to attain technical maturity. A description of the evaluation system is provided, and examples are given to illustrate how it is used to assist in component R&D decisions.

  18. Investigation of properties and performance of ceramic composite components

    SciTech Connect (OSTI)

    Stinchcomb, W.W.; Reifsnider, K.L.; Dunyak, T.J.

    1992-06-15

    The objective of the work reported herein is to develop an understanding of the mechanical behavior of advanced ceramic composites subjected to elevated temperature and dynamic (cyclic) loading, to develop a test system and test methods to obtain the properties and performance information required to design engineering components made from ceramic composite materials, and to provide critical and comprehensive evaluations of such materials to material synthesizers and developers to support and enhance progress in ceramic composite material development. The accomplishments of the investigation include the design, development, and demonstration of a high temperature, biaxial mechanical test facility for ceramic composite tubes and the development and validation of a performance simulation model (MRLife) for ceramic composites.

  19. Crane Test

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Crane Safety Test Instructions: All Training and Testing Material is for LSU CAMD Users ONLY! Please enter your personal information in the spaces below. A minimum passing score is 80% (8 out of 10) This test can only be taken once in a thirty day period. All fields are required to be filled in. Login: Login First Name: Last Name: Phone Number: Contact: 1. The first thing you should do when using the crane is to: a. verify the battery power on the remote control. b. drag the load to the desired

  20. DESIGN AND PERFORMANCE OBJECTIVES OF THE SINGLE CELL TEST SYSTEM FOR SO2 DEPOLARIZED ELECTROLYZER DEVELOPMENT

    SciTech Connect (OSTI)

    Steimke, J

    2007-01-15

    The single cell test system development for the SRNL sulfur dioxide-depolarized electrolyzer has been completed. Operating experience and improved operating procedures were developed during test operations in FY06 and the first quarter of FY07. Eight different cell configurations, using various MEA designs, have been tested. The single cell test electrolyzer has been modified to overcome difficulties experienced during testing, including modifications to the inlet connection to eliminate minute acid leaks that caused short circuits. The test facility was modified by adding a water bath for cell heating, thus permitting operation over a wider range of flowrates and cell temperatures. Modifications were also identified to permit continuous water flushing of the cathode to remove sulfur, thus extending operating time between required shutdowns. This is also expected to permit a means of independently measuring the rate of sulfur formation, and the corresponding SO{sub 2} flux through the membrane. This report contains a discussion of the design issues being addressed by the single cell test program, a test matrix being conducted to address these issues, and a summary of the performance objectives for the single cell test system. The current primary objective of single cell test system is to characterize and qualify electrolyzer configurations for the following 100-hour longevity tests. Although the single cell test system development is considered complete, SRNL will continue to utilize the test facility and the single cell electrolyzer to measure the operability and performance of various cell design configurations, including new MEA's produced by the component development tasks.

  1. H2A Delivery Components Model and Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    assumes MACRS depreciation - Replacement capital includes for some components H2A Delivery ... Financial Analysis DirectIndirect Capital Costs Component Capital Costs Component ...

  2. Uranium Weapons Components Successfully Dismantled | National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    components from two major nuclear weapons systems formerly deployed on U.S. Air Force missiles and aircraft have been dismantled at the Y-12 National Security Complex in Oak Ridge, ...

  3. Photovoltaics: Basic Design Principles and Components

    SciTech Connect (OSTI)

    1997-03-01

    This publication will introduce you to the basic design principles and components of PV systems. It will also help you discuss these systems knowledgeably with an equipment supplier or system installer.

  4. Stationary turbine component with laminated skin

    DOE Patents [OSTI]

    James, Allister W.

    2012-08-14

    A stationary turbine engine component, such as a turbine vane, includes a internal spar and an external skin. The internal spar is made of a plurality of spar laminates, and the external skin is made of a plurality of skin laminates. The plurality of skin laminates interlockingly engage the plurality of spar laminates such that the external skin is located and held in place. This arrangement allows alternative high temperature materials to be used on turbine engine components in areas where their properties are needed without having to make the entire component out of such material. Thus, the manufacturing difficulties associated with making an entire component of such a material and the attendant high costs are avoided. The skin laminates can be made of advanced generation single crystal superalloys, intermetallics and refractory alloys.

  5. Thermochemical nanolithography components, systems, and methods

    DOE Patents [OSTI]

    Riedo, Elisa; Marder, Seth R.; de Heer, Walt A.; Szoskiewicz, Robert J.; Kodali, Vamsi K.; Jones, Simon C.; Okada, Takashi; Wang, Debin; Curtis, Jennifer E.; Henderson, Clifford L.; Hua, Yueming

    2013-06-18

    Improved nanolithography components, systems, and methods are described herein. The systems and methods generally employ a resistively heated atomic force microscope tip to thermally induce a chemical change in a surface. In addition, certain polymeric compositions are also disclosed.

  6. Data transmission element for downhole drilling components

    DOE Patents [OSTI]

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Dahlgren, Scott; Fox, Joe; Sneddon, Cameron; Briscoe, Michael

    2006-01-31

    A robust data transmission element for transmitting information between downhole components, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The data transmission element components include a generally U-shaped annular housing, a generally U-shaped magnetically conductive, electrically insulating element such as ferrite, and an insulated conductor. Features on the magnetically conducting, electrically insulating element and the annular housing create a pocket when assembled. The data transmission element is filled with a polymer to retain the components within the annular housing by filling the pocket with the polymer. The polymer can bond with the annular housing and the insulated conductor but preferably not the magnetically conductive, electrically insulating element. A data transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe.

  7. Development and setting of a new system for advanced rheocast components

    SciTech Connect (OSTI)

    Rosso, Mario; Peter, I.; Calosso, F.

    2011-05-04

    This paper presents an overview of alternative methods of production of enhanced performance Al-based alloys components for critical areas. In particular, a new rheocasting system, suitable for the manufacturing of high performance industrial components has been considered. The aforementioned method allows obtaining component quickly and results a more convenient process, from economical point of view than other innovative processes. Two series of components have been produced with A356 and A357 alloys, then have been heat treated using T5 and T6 treatments. On polished transverse sections of samples the microstructure of the alloy has been observed. Their soundness has been previously certified by non destructive tests. Samples for tensile and three point bending tests have been machined directly from the produced components. On the fractured samples, fracture surface analysis has been performed in order to analyze and evaluate the influence of the process and of the alloy on the fracture behaviour.

  8. Physics-Based Stress Corrosion Cracking Component Reliability Model cast in an R7-Compatible Cumulative Damage Framework

    SciTech Connect (OSTI)

    Unwin, Stephen D.; Lowry, Peter P.; Layton, Robert F.; Toloczko, Mychailo B.; Johnson, Kenneth I.; Sanborn, Scott E.

    2011-07-01

    This is a working report drafted under the Risk-Informed Safety Margin Characterization pathway of the Light Water Reactor Sustainability Program, describing statistical models of passives component reliabilities.

  9. Energy Department Awards $7.4 Million to Develop Advanced Components for Wave and Tidal Energy Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Department today announced four entities selected to receive $7.4 million to spur innovation of next-generation water power component technologies, designed for manufacturability and built specifically for marine and hydrokinetic systems.

  10. Component and System Qualification Workshop Proceedings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Component and System Qualification Workshop Sandia National Laboratory, Livermore, CA November 4, 2010 Background The Workshop was held at the Combustion Research Center, Sandia National Laboratories, Livermore, CA, on November 4, 2010. The goal of the Workshop was to identify key needs, barriers, and actions to facilitate the qualification and listing of hydrogen and fuel cell systems and components essential for widespread market deployment. To this end, representatives of fuel cell

  11. SA3654 Component characterization. Final report

    SciTech Connect (OSTI)

    Meir, G.W.

    1996-06-01

    AlliedSignal Inc., Federal Manufacturing & Technologies (FM&T), was provided with production capability assurance program (PCAP) funding to develop, characterize, and qualify purchased product components for use on the PRESS-A program. The SA3654, N-Channel, Power MOSFET was identified as a component needing such activity to support PRESS-A. This report presents the characterization activities and results for the SA3654.

  12. Electrochemical components employing polysiloxane-derived binders

    DOE Patents [OSTI]

    Delnick, Frank M.

    2013-06-11

    A processed polysiloxane resin binder for use in electrochemical components and the method for fabricating components with the binder. The binder comprises processed polysiloxane resin that is partially oxidized and retains some of its methyl groups following partial oxidation. The binder is suitable for use in electrodes of various types, separators in electrochemical devices, primary lithium batteries, electrolytic capacitors, electrochemical capacitors, fuel cells and sensors.

  13. RDCDS Meteorologoical Component Quick Installation Guide

    SciTech Connect (OSTI)

    Berg, Larry K.; Pekour, Mikhail S.

    2007-11-20

    This guide provides step-by-step instructions for the deployment of one of the Rapidly Deployable Chemical Defense System (RDCDS) weather stations and central control system. Instructions for the deployment and operation of the Atmospheric Systems Corporation miniSODAR™ (SOnic Detection and Ranging) can be found in accompanying manuals developed by Atmospheric Systems Corporation. A detailed description of the system and its components can be found in the manual entitled Description of the RDCDS Meteorological Component.

  14. Method and apparatus for monitoring aircraft components

    DOE Patents [OSTI]

    Dickens, L.M.; Haynes, H.D.; Ayers, C.W.

    1996-01-16

    Operability of aircraft mechanical components is monitored by analyzing the voltage output of an electrical generator of the aircraft. Alternative generators, for a turbine-driven rotor aircraft, include the gas producer turbine tachometer generator, the power turbine tachometer generator, and the aircraft systems power producing starter/generator. Changes in the peak amplitudes of the fundamental frequency and its harmonics are correlated to changes in condition of the mechanical components. 14 figs.

  15. Method and apparatus for monitoring aircraft components

    DOE Patents [OSTI]

    Dickens, Larry M.; Haynes, Howard D.; Ayers, Curtis W.

    1996-01-01

    Operability of aircraft mechanical components is monitored by analyzing the voltage output of an electrical generator of the aircraft. Alternative generators, for a turbine-driven rotor aircraft, include the gas producer turbine tachometer generator, the power turbine tachometer generator, and the aircraft systems power producing starter/generator. Changes in the peak amplitudes of the fundamental frequency and its harmonics are correlated to changes in condition of the mechanical components.

  16. Advanced component research in the solar thermal program

    SciTech Connect (OSTI)

    Brown, C.T.

    1982-08-01

    The Advanced Components Test Facility (ACTF) is a 325 kW /SUB th/ central receiver solar thermal test facility that has as its primary purpose the encouragement of research and development in the area of high temperature solar technology. Five major test programs were undertaken and completed at the ACTF in the 1980-1981 time frame. The objective of each program was to evaluate the technical viability of the concept of converting concentrated solar energy into some other useful form such as high pressure steam, hot compressed air, chemical feedstock, grid connected electrical power, etc. Each program involved the operation of a high temperature central receiver heat exchanger device at or near the facility focus. Specific test programs were undertaken to evaluate a directly heated fluidized bed solar receiver; a high pressure, single-pass-to superheat steam generator; a liquid sodium heat pipe receiver; a flash pyrolysis biomass gasifier; and a Stirling engine/electrical generator. This paper provides a description of the test facility, its capabilities, and the results of the 1980-1981 solar receiver test program.

  17. Nuclear reactor spacer grid and ductless core component

    DOE Patents [OSTI]

    Christiansen, David W.; Karnesky, Richard A.

    1989-01-01

    The invention relates to a nuclear reactor spacer grid member for use in a liquid cooled nuclear reactor and to a ductless core component employing a plurality of these spacer grid members. The spacer grid member is of the egg-shell type and is constructed so that the walls of the cell members of the grid member are formed of a single thickness of metal to avoid tolerance problems. Within each cell member is a hydraulic spring which laterally constrains the nuclear material bearing rod which passes through each cell member against a hardstop in response to coolant flow through the cell member. This hydraulic spring is also suitable for use in a water cooled nuclear reactor. A core component constructed of, among other components, a plurality of these spacer grid members, avoids the use of a full length duct by providing spacer sleeves about the sodium tubes passing through the spacer grid members at locations between the grid members, thereby maintaining a predetermined space between adjacent grid members.

  18. Micro-fabrication Techniques for Target Components

    SciTech Connect (OSTI)

    Miles, R; Hamilton, J; Crawford, J; Ratti, S; Trevino, J; Graff, T; Stockton, C; Harvey, C

    2008-06-10

    Micro-fabrication techniques, derived from the semi-conductor industry, can be used to make a variety of useful mechanical components for targets. A selection of these components including supporting cooling arms for prototype cryogenic inertial confinement fusion targets, stepped and graded density targets for materials dynamics experiments are described. Micro-fabrication enables cost-effective, simultaneous fabrication of multiple high-precision components with complex geometries. Micro-fabrication techniques such as thin-film deposition, photo-lithographic patterning and etch processes normally used in the semi-conductor manufacture industry, can be exploited to make useful mechanical target components. Micro-fabrication processes have in recent years been used to create a number of micro-electro-mechanical systems (MEMS) components such as pressure sensors, accelerometers, ink jet printer heads, microfluidics platforms and the like. These techniques consist primarily of deposition of thin films of material, photo-lithographic patterning and etching processes performed sequentially to produce three dimensional structures using essentially planar processes. While the planar technology can be limiting in terms of the possible geometries of the final product, advantages of using these techniques include the ability to make multiple complex structures simultaneously and cost-effectively. Target components fabricated using these techniques include the supporting cooling arms for cryogenic prototype fusion ignition targets, stepped targets for equation-of-state experiments, and graded density reservoirs for material strength experiments.

  19. Symposium on electroslag component casting: proceedings

    SciTech Connect (OSTI)

    Judkins, R.R.; Hobday, J.M.

    1984-03-01

    The US Department of Energy (DOE), Office of Fossil Energy, Office of Surface Coal Gasification, has established a Materials Program to develop and apply appropriate materials to coal gasification plant components. The overall goals of the Surface Gasification Materials Program (SGMP) are to improve operational reliability and system durability and to reduce fabrication and operating costs of coal gasification plant components. The SGMP Electroslag Component Casting Project is directed to the development of electroslag casting (ESC) technology for use in coal conversion components such as valve bodies, pump housings, and pipe fittings. The aim is to develop a sufficient data base to permit ESC to become an ASME Code-accepted process. It is also intended to transfer the ESC process technology to private industry. This symposium was planned to discuss not only the SGMP Electroslag Component Casting Project but the activities and experiences of other organizations as well. The symposium addressed descriptions of electroslag processes; a worldwide perspective on the status of ESC technology; and details of production, mechanical properties, economics, and use of ESC for coal gasification components. Ten papers were presented, and a panel discussion was held to provide participants an opportunity to express their opinions and to offer recommendations on the content of the DOE program. This document constitutes the proceedings of that symposium. The papers included here are minimally edited transcripts of the presentations made at the symposium. All papers have been processed for inclusion in the Energy Data Base.

  20. The waste water free coke plant

    SciTech Connect (OSTI)

    Schuepphaus, K.; Brink, N.

    1995-12-01

    Apart from coke which is the actual valuable material a coke oven plant also produces a substantial volume of waste water. These effluent water streams are burdened with organic components (e.g. phenols) and inorganic salts (e.g. NH{sub 4}Cl); due to the concentration of the constituents contained therein these effluent waters must be subjected to a specific treatment before they can be introduced into public waters. For some years a lot of separation tasks have been solved successfully by applying the membrane technology. It was especially the growing number of membrane facilities for cleaning of landfill leakage water whose composition can in fact be compared with that of coking plant waste waters (organic constituents, high salt fright, ammonium compounds) which gave Thyssen Still Otto Anlagentechnik the idea for developing a process for coke plant effluent treatment which contains the membrane technology as an essential component.

  1. Water Supply Infrastructure System Surety

    SciTech Connect (OSTI)

    EKMAN,MARK E.; ISBELL,DARYL

    2000-01-06

    The executive branch of the United States government has acknowledged and identified threats to the water supply infrastructure of the United States. These threats include contamination of the water supply, aging infrastructure components, and malicious attack. Government recognition of the importance of providing safe, secure, and reliable water supplies has a historical precedence in the water works of the ancient Romans, who recognized the same basic threats to their water supply infrastructure the United States acknowledges today. System surety is the philosophy of ''designing for threats, planning for failure, and managing for success'' in system design and implementation. System surety is an alternative to traditional compliance-based approaches to safety, security, and reliability. Four types of surety are recognized: reactive surety; proactive surety, preventative surety; and fundamental, inherent surety. The five steps of the system surety approach can be used to establish the type of surety needed for the water infrastructure and the methods used to realize a sure water infrastructure. The benefit to the water industry of using the system surety approach to infrastructure design and assessment is a proactive approach to safety, security, and reliability for water transmission, treatment, distribution, and wastewater collection and treatment.

  2. Component Repair Times Obtained from MSPI Data

    SciTech Connect (OSTI)

    Eide, Steven A.

    2015-05-01

    Information concerning times to repair or restore equipment to service given a failure is valuable to probabilistic risk assessments (PRAs). Examples of such uses in modern PRAs include estimation of the probability of failing to restore a failed component within a specified time period (typically tied to recovering a mitigating system before core damage occurs at nuclear power plants) and the determination of mission times for support system initiating event (SSIE) fault tree models. Information on equipment repair or restoration times applicable to PRA modeling is limited and dated for U.S. commercial nuclear power plants. However, the Mitigating Systems Performance Index (MSPI) program covering all U.S. commercial nuclear power plants provides up-to-date information on restoration times for a limited set of component types. This paper describes the MSPI program data available and analyzes the data to obtain median and mean component restoration times as well as non-restoration cumulative probability curves. The MSPI program provides guidance for monitoring both planned and unplanned outages of trains of selected mitigating systems deemed important to safety. For systems included within the MSPI program, plants monitor both train UA and component unreliability (UR) against baseline values. If the combined system UA and UR increases sufficiently above established baseline results (converted to an estimated change in core damage frequency or CDF), a “white” (or worse) indicator is generated for that system. That in turn results in increased oversight by the US Nuclear Regulatory Commission (NRC) and can impact a plant’s insurance rating. Therefore, there is pressure to return MSPI program components to service as soon as possible after a failure occurs. Three sets of unplanned outages might be used to determine the component repair durations desired in this article: all unplanned outages for the train type that includes the component of interest, only

  3. Cerium migration during PEM fuel cell accelerated stress testing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Baker, Andrew M.; Mukundan, Rangachary; Borup, Rodney L.; Spernjak, Dusan; Judge, Elizabeth J.; Advani, Suresh G.; Prasad, Ajay K.

    2016-01-01

    Cerium is a radical scavenger which improves polymer electrolyte membrane (PEM) fuel cell durability. During operation, however, cerium rapidly migrates in the PEM and into the catalyst layers (CLs). In this work, membrane electrode assemblies (MEAs) were subjected to accelerated stress tests (ASTs) under different humidity conditions. Cerium migration was characterized in the MEAs after ASTs using X-ray fluorescence. During fully humidified operation, water flux from cell inlet to outlet generated in-plane cerium gradients. Conversely, cerium profiles were flat during low humidity operation, where in-plane water flux was negligible, however, migration from the PEM into the CLs was enhanced. Humiditymore » cycling resulted in both in-plane cerium gradients due to water flux during the hydration component of the cycle, and significant migration into the CLs. Fluoride and cerium emissions into effluent cell waters were measured during ASTs and correlated, which signifies that ionomer degradation products serve as possible counter-ions for cerium emissions. Fluoride emission rates were also correlated to final PEM cerium contents, which indicates that PEM degradation and cerium migration are coupled. Lastly, it is proposed that cerium migrates from the PEM due to humidification conditions and degradation, and is subsequently stabilized in the CLs by carbon catalyst supports.« less

  4. Cerium migration during PEM fuel cell accelerated stress testing

    SciTech Connect (OSTI)

    Baker, Andrew M.; Mukundan, Rangachary; Borup, Rodney L.; Spernjak, Dusan; Judge, Elizabeth J.; Advani, Suresh G.; Prasad, Ajay K.

    2016-01-01

    Cerium is a radical scavenger which improves polymer electrolyte membrane (PEM) fuel cell durability. During operation, however, cerium rapidly migrates in the PEM and into the catalyst layers (CLs). In this work, membrane electrode assemblies (MEAs) were subjected to accelerated stress tests (ASTs) under different humidity conditions. Cerium migration was characterized in the MEAs after ASTs using X-ray fluorescence. During fully humidified operation, water flux from cell inlet to outlet generated in-plane cerium gradients. Conversely, cerium profiles were flat during low humidity operation, where in-plane water flux was negligible, however, migration from the PEM into the CLs was enhanced. Humidity cycling resulted in both in-plane cerium gradients due to water flux during the hydration component of the cycle, and significant migration into the CLs. Fluoride and cerium emissions into effluent cell waters were measured during ASTs and correlated, which signifies that ionomer degradation products serve as possible counter-ions for cerium emissions. Fluoride emission rates were also correlated to final PEM cerium contents, which indicates that PEM degradation and cerium migration are coupled. Lastly, it is proposed that cerium migrates from the PEM due to humidification conditions and degradation, and is subsequently stabilized in the CLs by carbon catalyst supports.

  5. Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ...016-03-01T17:12:00+00:00 March 1st, 2016|News, News & Events, Water Power, Workshops|0 Comments Read More Wave energy distribution example Permalink Gallery Sandia releases 2nd ...

  6. IMHEX fuel cell repeat component manufacturing continuous improvement accomplishments

    SciTech Connect (OSTI)

    Jakaitis, L.A.; Petraglia, V.J.; Bryson, E.S.

    1996-12-31

    M-C Power is taking a power generation technology that has been proven in the laboratory and is making it a commercially competitive product. There are many areas in which this technology required scale up and refinement to reach the market entry goals for the IMHEX{reg_sign} molten carbonate fuel cell power plant. One of the primary areas that needed to be addressed was the manufacturing of the fuel cell stack. Up to this point, the fuel cell stack and associated components were virtually hand made for each system to be tested. M-C Power has now continuously manufactured the repeat components for three 250 kW stacks. M-C Power`s manufacturing strategy integrated both evolutionary and revolutionary improvements into its comprehensive commercialization effort. M-C Power`s objectives were to analyze and continuously improve stack component manufacturing and assembly techniques consistent with established specifications and commercial scale production requirements. Evolutionary improvements are those which naturally occur as the production rates are increased and experience is gained. Examples of evolutionary (learning curve) improvements included reducing scrap rates and decreasing raw material costs by buying in large quantities. Revolutionary improvements result in significant design and process changes to meet cost and performance requirements of the market entry system. Revolutionary changes often involve identifying new methods and developing designs to accommodate the new process. Based upon our accomplishments, M-C Power was able to reduce the cost of continuously manufactured fuel cell repeat components from the first to third 250 kW stack by 63%. This paper documents the continuous improvement accomplishments realized by M-C Power during IMHEX{reg_sign} fuel cell repeat component manufacturing.

  7. BACKPRESSURE TESTING OF ROTARY MICROFILTER DISKS

    SciTech Connect (OSTI)

    Fowley, M.; Herman, D.

    2011-04-14

    The Savannah River National Laboratory (SRNL), under the Department of Energy (DOE) Office of Environmental Management (EM), is modifying and testing the SpinTek{trademark} rotary microfilter (RMF) for radioactive filtration service in the Department of Energy (DOE) complex. The RMF has been shown to improve filtration throughput when compared to other conventional methods such as cross-flow filtration. A concern with the RMF was that backpressure, or reverse flow through the disk, would damage the filter membranes. Reverse flow might happen as a result of an inadvertent valve alignment during flushing. Testing was completed in the Engineering Development Laboratory (EDL) located in SRNL to study the physical effects of backpressure as well as to determine the maximum allowable back-pressure for RMF disks. The RMF disks tested at the EDL were manufactured by SpinTek{trademark} Filtration and used a Pall Corporation PMM050 filter membrane (0.5 micron nominal pore size) made from 316L stainless steel. Early versions of the RMF disks were made from synthetic materials that were incompatible with caustic solutions and radioactive service as well as being susceptible to delaminating when subjected to backpressure. Figure 1-1 shows the essential components of the RMF; 3 rotating disks and 3 stationary turbulence promoters (or shear elements) are shown. Figure 1-2 show the assembly view of a 25 disk RMF proposed for use at the Savannah River Site (SRS) and at the Hanford Facility. The purpose of the testing discussed in this report was to determine the allowable backpressure for RMF disks as well as study the physical effects of backpressure on RMF disks made with the Pall PMM050 membrane. This was accomplished by pressurizing the disks in the reverse flow direction (backpressure) until the test limit was reached or until membrane failure occurred. Backpressure was applied to the disks with air while submerged in deionized (DI) water. This method provided a visual

  8. Recovery and recycling of aluminum, copper, and precious metals from dismantled weapon components

    SciTech Connect (OSTI)

    Lutz, J.D.; Wheelis, W.T.; Gundiler, I.H.

    1995-02-01

    Sandia National Laboratories (SNL) is tasked to support the Department of Energy in the dismantlement and disposal of SNL designed weapon components. These components are sealed in a potting compound, and contain heavy metals, explosive, radioactive, and toxic materials in discrete sub-components. SNL developed and demonstrated a process to identify and remove the hazardous sub-components utilizing real-time radiography and abrasive water-jet cutting. The remaining components were then crushed, granulated, screened, and separated into an aluminum and a precious-and-base-metals fraction using air-tables. Plastics were further cleaned for disposal as non-hazardous waste. The New Mexico Bureau of Mines & Mineral Resources assisted SNL in investigation of size-reduction and separation technologies and in the development of a conceptual design for a mechanical separation system.

  9. DECELERATING RELATIVISTIC TWO-COMPONENT JETS

    SciTech Connect (OSTI)

    Meliani, Z.; Keppens, R. E-mail: Rony.Keppens@wis.kuleuven.b

    2009-11-10

    Transverse stratification is a common intrinsic feature of astrophysical jets. There is growing evidence that jets in radio galaxies consist of a fast low-density outflow at the jet axis, surrounded by a slower, denser, extended jet. The inner and outer jet components then have a different origin and launching mechanism, making their effective inertia, magnetization, associated energy flux, and angular momentum content different as well. Their interface will develop differential rotation, where disruptions may occur. Here we investigate the stability of rotating, two-component relativistic outflows typical for jets in radio galaxies. For this purpose, we parametrically explore the long-term evolution of a transverse cross section of radially stratified jets numerically, extending our previous study where a single, purely hydrodynamic evolution was considered. We include cases with poloidally magnetized jet components, covering hydro and magnetohydrodynamic (MHD) models. With grid-adaptive relativistic MHD simulations, augmented with approximate linear stability analysis, we revisit the interaction between the two jet components. We study the influence of dynamically important poloidal magnetic fields, with varying contributions of the inner component jet to the total kinetic energy flux of the jet, on their non-linear azimuthal stability. We demonstrate that two-component jets with high kinetic energy flux and inner jet effective inertia which is higher than the outer jet effective inertia are subject to the development of a relativistically enhanced, rotation-induced Rayleigh-Taylor-type instability. This instability plays a major role in decelerating the inner jet and the overall jet decollimation. This novel deceleration scenario can partly explain the radio source dichotomy, relating it directly to the efficiency of the central engine in launching the inner jet component. The FRII/FRI transition could then occur when the relative kinetic energy flux of the

  10. Vortex Hydro Energy Develops Transformational Technology to Harness Energy from Water Currents

    Broader source: Energy.gov [DOE]

    Laboratory testing of new hydrokinetic energy device to harness energy in slow-moving water currents.

  11. ACTUAL-WASTE TESTS OF ENHANCED CHEMICAL CLEANING FOR RETRIEVAL OF SRS HLW SLUDGE TANK HEELS AND DECOMPOSITION OF OXALIC ACID

    SciTech Connect (OSTI)

    Martino, C.; King, W.; Ketusky, E.

    2012-01-12

    Savannah River National Laboratory conducted a series of tests on the Enhanced Chemical Cleaning (ECC) process using actual Savannah River Site waste material from Tanks 5F and 12H. Testing involved sludge dissolution with 2 wt% oxalic acid, the decomposition of the oxalates by ozonolysis (with and without the aid of ultraviolet light), the evaporation of water from the product, and tracking the concentrations of key components throughout the process. During ECC actual waste testing, the process was successful in decomposing oxalate to below the target levels without causing substantial physical or chemical changes in the product sludge.

  12. Validation Specimen for Contour Method Extension to Multiple Residual Stress Components

    SciTech Connect (OSTI)

    Pagliaro, Pierluigi; Prime, Michael B; Zuccarello, B; Clausen, Bjorn; Watkins, Thomas R

    2007-01-01

    A new theoretical development of the contour method, that allow the user to measure the three normal residual stress components on cross sections of a generic mechanical part, is presented. To validate such a theoretical development, a residual stress test specimen was properly designed, fabricated and then tested with different experimental techniques.

  13. SNL Begins Field Testing on First SMART Blades | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    began field testing a set of wind turbine blades with active load control capabilities. ... control during peak loads experienced by the turbine blades and drivetrain components. ...

  14. Seismic fragility analysis of structural components for HFBR facilities

    SciTech Connect (OSTI)

    Park, Y.J.; Hofmayer, C.H.

    1992-01-01

    The paper presents a summary of recently completed seismic fragility analyses of the HFBR facilities. Based on a detailed review of past PRA studies, various refinements were made regarding the strength and ductility evaluation of structural components. Available laboratory test data were analysed to evaluate the formulations used to predict the ultimate strength and deformation capacities of steel, reinforced concrete and masonry structures. The biasness and uncertainties were evaluated within the framework of the fragility evaluation methods widely accepted in the nuclear industry. A few examples of fragility calculations are also included to illustrate the use of the presented formulations.

  15. Seismic fragility analysis of structural components for HFBR facilities

    SciTech Connect (OSTI)

    Park, Y.J.; Hofmayer, C.H.

    1992-04-01

    The paper presents a summary of recently completed seismic fragility analyses of the HFBR facilities. Based on a detailed review of past PRA studies, various refinements were made regarding the strength and ductility evaluation of structural components. Available laboratory test data were analysed to evaluate the formulations used to predict the ultimate strength and deformation capacities of steel, reinforced concrete and masonry structures. The biasness and uncertainties were evaluated within the framework of the fragility evaluation methods widely accepted in the nuclear industry. A few examples of fragility calculations are also included to illustrate the use of the presented formulations.

  16. Progress in photovoltaic system and component improvements

    SciTech Connect (OSTI)

    Thomas, H.P.; Kroposki, B.; McNutt, P.; Witt, C.E.; Bower, W.; Bonn, R.; Hund, T.D.

    1998-07-01

    The Photovoltaic Manufacturing Technology (PVMaT) project is a partnership between the US government (through the US Department of Energy [DOE]) and the PV industry. Part of its purpose is to conduct manufacturing technology research and development to address the issues and opportunities identified by industry to advance photovoltaic (PV) systems and components. The project was initiated in 1990 and has been conducted in several phases to support the evolution of PV industrial manufacturing technology. Early phases of the project stressed PV module manufacturing. Starting with Phase 4A and continuing in Phase 5A, the goals were broadened to include improvement of component efficiency, energy storage and manufacturing and system or component integration to bring together all elements for a PV product. This paper summarizes PV manufacturers` accomplishments in components, system integration, and alternative manufacturing methods. Their approaches have resulted in improved hardware and PV system performance, better system compatibility, and new system capabilities. Results include new products such as Underwriters Laboratories (UL)-listed AC PV modules, modular inverters, and advanced inverter designs that use readily available and standard components. Work planned in Phase 5A1 includes integrated residential and commercial roof-top systems, PV systems with energy storage, and 300-Wac to 4-kWac inverters.

  17. EVALUATION OF FABRIC MEMBRANES FOR USE IN SALTSTONE DRAIN WATER SYSTEM

    SciTech Connect (OSTI)

    Pickenheim, B.; Miller, D.; Burket, P.

    2012-03-08

    Saltstone Disposal Unit 2 contains a sheet drain fabric intended to separate solids from drain water to be returned to the Salt Feed Tank. A similar system installed in Vault 4 appears to be ineffective in keeping solids out of the drain water return lines. Waste Solidification Engineering is considering installation of an additional fabric membrane to supplement the existing sheet drain in SDU 2. Amerdrain 200 is the product currently installed in SDU 2. This product is no longer available, so Sitedrain 94 was used as the replacement product in this testing. Fabrics with apparent opening sizes of 10, 25, 50 and 100 microns were evaluated. These fabrics were evaluated under three separate test conditions, a water flow test, a solids retention test and a grout pour test. A flow test with water showed that installation of an additional filter layer will predictably reduce the theoretical flux through the sheet drain. The manufacturer reports the flux for Sitedrain 94 as 150 gpm/ft{sup 2} by ASTM D-4491. This compares reasonably well with the 117 gpm/ft{sup 2} obtained in this testing. A combination of the 10 micron fabric with Sitedrain 94 could be expected to decrease flux by about 10 times as compared to Sitedrain 94 alone. The different media were used to filter a slag and fly ash mixture from water. Slag historically has the smallest nominal particle size of the premix components. Cement was omitted from the test because of its reactivity with water would prohibit accurately particle size measurements of the filtered samples. All four media sizes were able to remove greater than 95% of particles larger than 100 microns from the slurry. The smaller opening sizes were increasingly effective in removing more particles. The 10 micron filter captured 15% of the total amount of solids used in the test. This result implies that some insoluble particles may still be able to enter the drain water collection system, although the overall solids rejection is significantly

  18. Protection of lithographic components from particle contamination

    DOE Patents [OSTI]

    Klebanoff, Leonard E.; Rader, Daniel J.

    2000-01-01

    A system that employs thermophoresis to protect lithographic surfaces from particle deposition and operates in an environment where the pressure is substantially constant and can be sub-atmospheric. The system (thermophoretic pellicle) comprises an enclosure that surrounds a lithographic component whose surface is being protected from particle deposition. The enclosure is provided with means for introducing a flow of gas into the chamber and at least one aperture that provides for access to the lithographic surface for the entry and exit of a beam of radiation, for example, and further controls gas flow into a surrounding low pressure environment such that a higher pressure is maintained within the enclosure and over the surface being protected. The lithographic component can be heated or, alternatively the walls of the enclosure can be cooled to establish a temperature gradient between the surface of the lithographic component and the walls of the enclosure, thereby enabling the thermophoretic force that resists particle deposition.

  19. Component technology for Stirling power converters

    SciTech Connect (OSTI)

    Thieme, L.G.

    1994-09-01

    NASA Lewis Research Center has organized a component technology program as part of the efforts to develop Stirling converter technology for space power applications. The Stirling space power program is part of the NASA High Capacity Power Project of the Civil Space Technology Initiative (CSTI). NASA Lewis is also providing technical management for a DOE/Sandia program to develop Stirling converters for solar terrestrial power producing electricity for the utility grid. The primary contractors for the space power and solar terrestrial programs develop component technologies directly related to their program goals. This Lewis component technology effort, while coordinated with the main programs, aims at longer term issues, advanced technologies, and independent assessments. This paper will present an overview of work on linear alternators, engine/alternator/load interactions and controls, heat exchangers, materials, life and reliability, and bearings.

  20. Loaded transducer for downhole drilling components

    DOE Patents [OSTI]

    Hall, David R.; Fox, Joe; Daly, Jeffery E.

    2009-05-05

    A system for transmitting information between downhole components has a first downhole component with a first mating surface and a second downhole component having a second mating surface configured to substantially mate with the first mating surface. The system also has a first transmission element with a first communicating surface and is mounted within a recess in the first mating surface. The first transmission element also has an angled surface. The recess has a side with multiple slopes for interacting with the angled surface, each slope exerting a different spring force on the first transmission element. A second transmission element has a second communicating surface mounted proximate the second mating surface and adapted to communicate with the first communicating surface.

  1. Advanced NDE Technologies for Powder Metal Components

    SciTech Connect (OSTI)

    Martin, P; Haskins, J; Thomas, G; Dolan, K

    2003-05-01

    Nondestructive evaluation encompasses numerous technologies that assess materials and determine important properties. This paper demonstrates the applicability of several of these technologies to the field of powder metallurgy. The usual application of nondestructive evaluation is to detect and quantify defects in fully sintered product. But probably its most appealing role is to sense problems earlier in the manufacturing process to avoid making defects at all. Also nondestructive evaluation can be incorporated into the manufacturing processes to monitor important parameters and control the processes to produce defect free product. Nondestructive evaluation can characterize powders, evaluate components in the green state, monitor the sintering process, and inspect the final component.

  2. Loaded Transducer Fpr Downhole Drilling Component

    DOE Patents [OSTI]

    Hall, David R.; Hall, H. Tracy; Pixton, David; Dahlgren, Scott; Sneddon, Cameron; Briscoe, Michael; Fox, Joe

    2005-07-05

    A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. To close gaps present between transmission elements, transmission elements may be biased with a "spring force," urging them closer together.

  3. Loaded transducer for downhole drilling components

    DOE Patents [OSTI]

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Briscoe, Michael A.; Dahlgren, Scott Steven; Fox, Joe; Sneddon, Cameron

    2006-02-21

    A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. To close gaps present between transmission elements, transmission elements may be biased with a "spring force, urging them closer together."

  4. Effect of lithium hydroxide on primary water stress corrosion cracking of Alloy 600 tubing

    SciTech Connect (OSTI)

    Jacko, R. )

    1991-09-01

    Primary water stress corrosion cracking (PWSCC) studies were performed on Alloy 600 in simulated PWR high lithium primary water. Tests were conducted at 330{degree}C with Li concentrations ranging from 0.7 to 3.5 ppM in solutions containing boric acid and dissolved hydrogen. Highly stressed, Alloy 600 reverse U-bend specimens (RUBs) were predominantly used for tests. Both mill-annealed (MA) and thermally treated (TT) Alloy 600 were tested. The large number of specimens tested allowed the use of rigorous statistical techniques to interpret the variability of PWSCC performance. Results of tests of MA 600 RUBs at 2 stress levels show no effect of chemistry on the time to initiate PWSCC cracks over the range from 0.7 to 3.5 ppM Li. However, results for TT 600 RUBs and in MA 600 RUBs at a third stress level show the tendency for a shorter time to initiate PWSCC cracks at a Li concentration of 3.5 ppM. Analysis suggests that certain Alloy 600 components may experience an increase in PWSCC by using the higher LI content primary water due to a subtle influence of chemistry on PWSCC. 5 refs. 8 figs., 3 tabs.

  5. Hydrogen Tank Testing R&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4.29.2010 | Presented by Joe Wong, P.Eng. DOE Tank Safety Workshop Hydrogen Tank Safety Testing 1 POWERTECH - Hydrogen & CNG Services  Certification testing of individual high pressure components  Design Verification, Performance, End-of-Life testing of complete fuel systems  Design, construction, and operation of Hydrogen Fill Stations  Safety Studies  Standards Development 2 PRESENTATION  Discuss CNG Field Performance Data  Discuss Safety Testing of Type 4 Tanks 

  6. Results of Characterization and Retrieval Testing on Tank 241-C-109 Heel Solids

    SciTech Connect (OSTI)

    Callaway, William S.

    2013-09-26

    test samples at temperatures ranging from 26-30 °C. The metathesized sodium aluminate was then dissolved by addition of volumes of water approximately equal to 1.3 times the volumes of caustic added to the test slurries. Aluminate dissolution was allowed to proceed for 2 days at ambient temperatures of ≈29 °C. Overall, the sequential water and caustic dissolution tests dissolved and removed 80.0 wt% of the tank 241-C-109 crushed heel solids composite test sample. The 20 wt% of solids remaining after the dissolution tests were 85-88 wt% gibbsite. If the density of the residual solids was approximately equal to that of gibbsite, they represented ≈17 vol% of the initial crushed solids composite test sample. In the water dissolution tests, addition of a volume of water ≈6.9 times the initial volume of the crushed solids composite was sufficient to dissolve and recover essentially all of the natrophosphate present. The ratio of the weight of water required to dissolve the natrophosphate solids to the estimated weight of natrophosphate present was 8.51. The Environmental Simulation Program (OLI Systems, Inc., Morris Plains, New Jersey) predicts that an 8.36 w/w ratio would be required to dissolve the estimated weight of natrophosphate present in the absence of other components of the heel solids. Only minor amounts of Al-bearing solids were removed from the composite solids in the water dissolution tests. The caustic metathesis/aluminate dissolution test sequence, executed at temperatures ranging from 27-30 °C, dissolved and recovered ≈69 wt% of the gibbsite estimated to have been present in the initial crushed heel solids composite. This level of gibbsite recovery is consistent with that measured in previous scoping tests on the dissolution of gibbsite in strong caustic solutions. Overall, the sequential water and caustic dissolution tests dissolved and removed 80.3 wt% of the tank 241-C-109 aggregate solids test sample. The residual solids were

  7. Thermal well-test method

    DOE Patents [OSTI]

    Tsang, C.F.; Doughty, C.A.

    1984-02-24

    A well-test method involving injection of hot (or cold) water into a groundwater aquifer, or injecting cold water into a geothermal reservoir is disclosed. By making temperature measurements at various depths in one or more observation wells, certain properties of the aquifer are determined. These properties, not obtainable from conventional well test procedures, include the permeability anisotropy, and layering in the aquifer, and in-situ thermal properties. The temperature measurements at various depths are obtained from thermistors mounted in the observation wells.

  8. Columbia River Component Data Gap Analysis

    SciTech Connect (OSTI)

    L. C. Hulstrom

    2007-10-23

    This Data Gap Analysis report documents the results of a study conducted by Washington Closure Hanford (WCH) to compile and reivew the currently available surface water and sediment data for the Columbia River near and downstream of the Hanford Site. This Data Gap Analysis study was conducted to review the adequacy of the existing surface water and sediment data set from the Columbia River, with specific reference to the use of the data in future site characterization and screening level risk assessments.

  9. September 2004 Water Sampling

    Office of Legacy Management (LM)

    .........9 Water Sampling Field Activities Verification ... Groundwater Quality Data Surface Water Quality Data Static Water Level Data ...

  10. Microgrid Testing

    SciTech Connect (OSTI)

    Shirazi, M.; Kroposki, B.

    2012-01-01

    With the publication of IEEE 1574.4 Guide for Design, Operation, and Integration of Distributed Resource Island Systems with Electric Power Systems, there is an increasing amount of attention on not only the design and operations of microgrids, but also on the proper operation and testing of these systems. This standard provides alternative approaches and good practices for the design, operation, and integration of microgrids. This includes the ability to separate from and reconnect to part of the utility grid while providing power to the islanded power system. This presentation addresses the industry need to develop standardized testing and evaluation procedures for microgrids in order to assure quality operation in the grid connected and islanded modes of operation.

  11. WATER CONSERVATION PLAN

    National Nuclear Security Administration (NNSA)

    ... Average water consumers can save thousands of gallons of water per year by being aware of ... program on the water distribution systems to include water saving replacement parts. ...

  12. Energy Savings from Industrial Water Reductions

    SciTech Connect (OSTI)

    Rao, Prakash; McKane, Aimee; de Fontaine, Andre

    2015-08-03

    Although it is widely recognized that reducing freshwater consumption is of critical importance, generating interest in industrial water reduction programs can be hindered for a variety of reasons. These include the low cost of water, greater focus on water use in other sectors such as the agriculture and residential sectors, high levels of unbilled and/or unregulated self-supplied water use in industry, and lack of water metering and tracking capabilities at industrial facilities. However, there are many additional components to the resource savings associated with reducing site water use beyond the water savings alone, such as reductions in energy consumption, greenhouse gas emissions, treatment chemicals, and impact on the local watershed. Understanding and quantifying these additional resource savings can expand the community of businesses, NGOs, government agencies, and researchers with a vested interest in water reduction. This paper will develop a methodology for evaluating the embedded energy consumption associated with water use at an industrial facility. The methodology developed will use available data and references to evaluate the energy consumption associated with water supply and wastewater treatment outside of a facility’s fence line for various water sources. It will also include a framework for evaluating the energy consumption associated with water use within a facility’s fence line. The methodology will develop a more complete picture of the total resource savings associated with water reduction efforts and allow industrial water reduction programs to assess the energy and CO2 savings associated with their efforts.

  13. Geochemistry of Natural Components in the Near-Field Environment, Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Peterman, Zell E.; Oliver, Thomas A.

    2007-07-01

    The natural near-field environment in and around the emplacement drifts of the proposed nuclear waste repository at Yucca Mountain, Nevada, includes the host rock, dust, seepage, and pore water. The chemical compositions of these components have been determined for assessing possible chemical and mineralogical reactions that may occur after nuclear waste is emplaced. The rock hosting the proposed repository is relatively uniform as shown by a mean coefficient of variation (CV) of 9 percent for major elements. In contrast, compositional variations of dust (bulk and water-soluble fractions), pore water, and seepage are large with mean CVs ranging from 28 to 64 percent. (authors)

  14. Test plan for sonic drilling at the Hanford Site in FY 1993

    SciTech Connect (OSTI)

    McLellan, G.W.

    1993-07-08

    This test plan describes the field demonstration of the sonic drilling system being conducted as a coordinated effort between the VOC-Arid ID (Integrated Demonstration) and the 200 West Area Carbon Tetrachloride ERA (Expedited Response Action) programs at Hanford. The purpose of this test is to evaluate the Water Development Corporation`s drilling system, modify components as necessary and determine compatible drilling applications for the sonic drilling method for use at facilities in the DOE complex. The sonic demonstration is being conducted as the first field test under the Cooperative Research and Development Agreement (CRADA) which involves the US Department of Energy, Pacific Northwest Laboratory, Westinghouse Hanford Company and Water Development Corporation. The sonic drilling system will be used to drill a 45 degree vadose zone well, two vertical wells at the VOC-Arid ID site, and several test holes at the Drilling Technology Test Site north of the 200 Area fire station. Testing at other locations will depend on the performance of the drilling method. Performance of this technology will be compared to the baseline drilling method (cable-tool).

  15. Electrostatic discharge testing of electroexplosive devices

    SciTech Connect (OSTI)

    Hingorani, S.L.

    1990-01-01

    Electrostatic discharge (ESD) testing of electroexplosive devices has previously been regarded as single pulse, go/no-go testing, the emphasis being on the safety of the devices when exposed to human handling. For some components it has been found to be a destructive test; for others the test is performed 100% in production product-acceptance testing and is considered a nondestructive and nondegrading test if the component does not fire. Recent studies performed by R. J. Fisher at Sandia have resulted in a new model of the worst case human body electrostatic discharge that is more accurate than the model that is currently in use for testing electroexplosive components. In addition, recent requirements for no degradation or loss of reliability after multiple exposures (up to 100) have changed the go/no-go nature of the test. Several components have been tested to the new ESD model; results regarding both safety and reliability will be presented and discussed. 9 refs., 7 figs., 2 tabs.

  16. Bench-scale treatability testing of biological, UV oxidation, distillation, and ion-exchange treatment of trench water from a low-level radioactive waste disposal area at West Valley, New York

    SciTech Connect (OSTI)

    Sundquist, J.A.; Gillings, J.C.; Sonntag, T.L.; Denault, R.P.

    1993-03-01

    Ecology and Environment, Inc. (E and E), under subcontract to Pacific Nuclear Services (PNS), conducted for the New York State Energy Research and Development Authority (NYSERDA) treatability tests to support the selection and design of a treatment system for leachate from Trench 14 of the West Valley State-Licensed, Low-Level Radioactive Waste Disposal Area (SDA). In this paper E and E presents and discusses the treatability test results and provides recommendations for the design of the full-scale treatment system.

  17. ADAPTATION OF CRACK GROWTH DETECTION TECHNIQUES TO US MATERIAL TEST REACTORS

    SciTech Connect (OSTI)

    A. Joseph Palmer; Sebastien P. Teysseyre; Kurt L. Davis; Gordon Kohse; Yakov Ostrovsky; David M. Carpenter; Joy L. Rempe

    2015-04-01

    A key component in evaluating the ability of Light Water Reactors to operate beyond 60 years is characterizing the degradation of materials exposed to radiation and various water chemistries. Of particular concern is the response of reactor materials to Irradiation Assisted Stress Corrosion Cracking (IASCC). Some test reactors outside the United States, such as the Halden Boiling Water Reactor (HBWR), have developed techniques to measure crack growth propagation during irradiation. The basic approach is to use a custom-designed compact loading mechanism to stress the specimen during irradiation, while the crack in the specimen is monitored in-situ using the Direct Current Potential Drop (DCPD) method. In 2012 the US Department of Energy commissioned the Idaho National Laboratory and the MIT Nuclear Reactor Laboratory (MIT NRL) to take the basic concepts developed at the HBWR and adapt them to a test rig capable of conducting in-pile IASCC tests in US Material Test Reactors. The first two and half years of the project consisted of designing and testing the loader mechanism, testing individual components of the in-pile rig and electronic support equipment, and autoclave testing of the rig design prior to insertion in the MIT Reactor. The load was applied to the specimen by means of a scissor like mechanism, actuated by a miniature metal bellows driven by pneumatic pressure and sized to fit within the small in-core irradiation volume. In addition to the loader design, technical challenges included developing robust connections to the specimen for the applied current and voltage measurements, appropriate ceramic insulating materials that can endure the LWR environment, dealing with the high electromagnetic noise environment of a reactor core at full power, and accommodating material property changes in the specimen, due primarily to fast neutron damage, which change the specimen resistance without additional crack growth. The project culminated with an in

  18. An overview of the Yucca Mountain Site Characterization Project field test program for evaluating seal performance

    SciTech Connect (OSTI)

    Fernandez, J.A.; Case, J.B.

    1993-12-31

    Sandia National Laboratories (SNL), a participant in the Yucca Mountain Site Characterization Project, is responsible for implementing the repository sealing program. One aspect of this program is the definition and fielding of tests related to sealing components which comprise the sealing subsystem. The sealing components are identified in the Site Characterization Plan (U.S. DOE, 1988) and Fernandez et al. (1987). These include an anchor-to-bedrock plug, single dams (or single bulkheads with not settlement), general shaft fill, drift backfill, station and shaft plugs, double bulkheads, backfilled sumps, and channels in a backfilled room. The materials used to create these components are cementitious and earthen. Earthen materials will be used for as many applications as possible to minimize potential degradation of physical properties and potential adverse effects on ground-water chemistry in the repository environment. In places where low strength is acceptable, earthen materials may be used. The most likely application for cementitious materials is where high strength and low deformability may be required. (Hinkebein and Fernandez, 1989). The basis for performing seal component testing is divided into two parts: regulatory requirements and technical requirements. The regulatory requirements are derived primarily from Title 10 Code of Federal Regulations, Part 60 (10 CFR 60) (U.S. Nuclear Regulatory Commission, 1986). The technical requirements are defined by the uncertainties associated with seal performance and seal emplacement. Both categories of requirements are discussed below.

  19. Analysis of Femtosecond Timing Noise and Stability in Microwave Components

    SciTech Connect (OSTI)

    Whalen, Michael R.; /Stevens Tech. /SLAC

    2011-06-22

    To probe chemical dynamics, X-ray pump-probe experiments trigger a change in a sample with an optical laser pulse, followed by an X-ray probe. At the Linac Coherent Light Source, LCLS, timing differences between the optical pulse and x-ray probe have been observed with an accuracy as low as 50 femtoseconds. This sets a lower bound on the number of frames one can arrange over a time scale to recreate a 'movie' of the chemical reaction. The timing system is based on phase measurements from signals corresponding to the two laser pulses; these measurements are done by using a double-balanced mixer for detection. To increase the accuracy of the system, this paper studies parameters affecting phase detection systems based on mixers, such as signal input power, noise levels, temperature drift, and the effect these parameters have on components such as the mixers, splitters, amplifiers, and phase shifters. Noise data taken with a spectrum analyzer show that splitters based on ferrite cores perform with less noise than strip-line splitters. The data also shows that noise in specific mixers does not correspond with the changes in sensitivity per input power level. Temperature drift is seen to exist on a scale between 1 and 27 fs/{sup o}C for all of the components tested. Results show that any components using more metallic conductor tend to exhibit more noise as well as more temperature drift. The scale of these effects is large enough that specific care should be given when choosing components and designing the housing of high precision microwave mixing systems for use in detection systems such as the LCLS. With these improvements, the timing accuracy can be improved to lower than currently possible.

  20. WaterSense Program: Methodology for National Water Savings Analysis Model Indoor Residential Water Use

    SciTech Connect (OSTI)

    Whitehead, Camilla Dunham; McNeil, Michael; Dunham_Whitehead, Camilla; Letschert, Virginie; della_Cava, Mirka

    2008-02-28

    WaterSense program saves nationwide involves integrating two components, or modules, of the NWS model. Module 1 calculates the baseline national water consumption of typical fixtures, fittings, and appliances prior to the program (as described in Section 2.0 of this report). Module 2 develops trends in efficiency for water-using products both in the business-as-usual case and as a result of the program (Section 3.0). The NWS model combines the two modules to calculate total gallons saved by the WaterSense program (Section 4.0). Figure 1 illustrates the modules and the process involved in modeling for the NWS model analysis.The output of the NWS model provides the base case for each end use, as well as a prediction of total residential indoor water consumption during the next two decades. Based on the calculations described in Section 4.0, we can project a timeline of water savings attributable to the WaterSense program. The savings increase each year as the program results in the installation of greater numbers of efficient products, which come to compose more and more of the product stock in households throughout the United States.