National Library of Energy BETA

Sample records for water azusa light

  1. Columbia Water & Light- Solar Rebates

    Broader source: Energy.gov [DOE]

    Columbia Water & Light electric customers are eligible for a $400 rebate for the purchase of a new solar water heater. To apply for this rebate, a customer submits a pre-approval application to...

  2. Columbia Water & Light- HVAC and Lighting Efficiency Rebates

    Broader source: Energy.gov [DOE]

    Columbia Water & Light (CWL) offers rebates to its commercial and industrial customers for the purchase of high efficiency HVAC installations and efficient lighting. Incentives for certain...

  3. Columbia Water & Light- Solar Energy Loans

    Office of Energy Efficiency and Renewable Energy (EERE)

    Columbia Water & Light (CWL) offers electric residential and commercial customers low-interest loans for photovoltaic (PV) systems and solar water heaters.

  4. Fukushima Light Water Detritiation System Presentation

    Office of Environmental Management (EM)

    Doc No: 8000-0685 1 Light Isotope Technology Centre of Excellence Fukushima Light Water Detritiation System Water Distillation Option A. Busigin, Ph.D., P.Eng. and P. Mason, P.Eng....

  5. Columbia Water & Light- Residential HVAC Rebates

    Broader source: Energy.gov [DOE]

    Columbia Water & Light (CWL) provides residential customers with rebates on energy efficient HVAC equipment. Customers should submit the mechanical permit from a Protective Inspection, a copy...

  6. Fukushima Light Water Detritiation System | Department of Energy

    Office of Environmental Management (EM)

    Fukushima Light Water Detritiation System Fukushima Light Water Detritiation System Presentation from the 34th Tritium Focus Group Meeting held in Idaho Falls, Idaho on September...

  7. Development of Light Water Reactor Fuels with Enhanced Accident...

    Energy Savers [EERE]

    Development of Light Water Reactor Fuels with Enhanced Accident Tolerance - Report to Congress Development of Light Water Reactor Fuels with Enhanced Accident Tolerance - Report to...

  8. Sandia Energy - Consortium for Advanced Simulation of Light Water...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consortium for Advanced Simulation of Light Water Reactors (CASL) Home Stationary Power Nuclear Fuel Cycle Advanced Nuclear Energy Consortium for Advanced Simulation of Light Water...

  9. Characterization of light gluten and light steep water from a corn wet milling plant

    E-Print Network [OSTI]

    Characterization of light gluten and light steep water from a corn wet milling plant K.D. Rausch. There are few data on the effect of composition of the parent process streams, light steep water (LSW) and light value of CGF and CGM. CGF and CGM are formed from two process streams, light steep water (LSW) and light

  10. Light-water reactor accident classification

    SciTech Connect (OSTI)

    Washburn, B.W.

    1980-02-01

    The evolution of existing classifications and definitions of light-water reactor accidents is considered. Licensing practice and licensing trends are examined with respect to terms of art such as Class 8 and Class 9 accidents. Interim definitions, consistent with current licensing practice and the regulations, are proposed for these terms of art.

  11. Review of light water reactor safety

    SciTech Connect (OSTI)

    Cheng, H.S.

    1980-12-01

    A review of the present status of light water reactor (LWR) safety is presented. The review starts with a brief discussion of the outstanding accident scenarios concerning LWRs. Where possible the areas of present technological uncertainties are stressed. To provide a better perspective of reactor safety, it then reviews the probabilistic assessment of the outstanding LWR accidents considered in the Reactor Safety Study (WASH-1400) and discusses the potential impact of the present technological uncertainties on WASH-1400.

  12. Light Water Reactor Fuel Cladding Research and Testing | ornl...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Light Water Reactor Fuel Cladding Research June 01, 2013 Severe Accident Test Station ORNL is the focus point for Light Water Reactor (LWR) fuel cladding research and testing. The...

  13. Aalborg Universitet Water cooling of high power light emitting diode

    E-Print Network [OSTI]

    Berning, Torsten

    Aalborg Universitet Water cooling of high power light emitting diode Sřrensen, Henrik Published in Citation for published version (APA): Sřrensen, H. (2012). Water cooling of high power light emitting diode from vbn.aau.dk on: juli 07, 2015 #12;Water Cooling of High Power Light Emitting Diode Henrik Sřrensen

  14. Commercial Light Water Reactor Tritium Extraction Facility

    SciTech Connect (OSTI)

    McHood, M D

    2000-10-12

    A geotechnical investigation program has been completed for the Commercial Light Water Reactor - Tritium Extraction Facility (CLWR-TEF) at the Savannah River Site (SRS). The program consisted of reviewing previous geotechnical and geologic data and reports, performing subsurface field exploration, field and laboratory testing, and geologic and engineering analyses. The purpose of this investigation was to characterize the subsurface conditions for the CLWR-TEF in terms of subsurface stratigraphy and engineering properties for design and to perform selected engineering analyses. The objectives of the evaluation were to establish site-specific geologic conditions, obtain representative engineering properties of the subsurface and potential fill materials, evaluate the lateral and vertical extent of any soft zones encountered, and perform engineering analyses for slope stability, bearing capacity and settlement, and liquefaction potential. In addition, provide general recommendations for construction and earthwork.

  15. Environmentally assisted cracking in light water reactors

    SciTech Connect (OSTI)

    Chopra, O.K.; Chung, H.M.; Gruber, E.E. [and others

    1996-07-01

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors (LWRs) from April 1995 to December 1995. Topics that have been investigated include fatigue of carbon and low-alloy steel used in reactor piping and pressure vessels, EAC of Alloy 600 and 690, and irradiation-assisted stress corrosion cracking (IASCC) of Type 304 SS. Fatigue tests were conducted on ferritic steels in water that contained various concentrations of dissolved oxygen (DO) to determine whether a slow strain rate applied during different portions of a tensile-loading cycle are equally effective in decreasing fatigue life. Crack-growth-rate tests were conducted on compact-tension specimens from several heats of Alloys 600 and 690 in simulated LWR environments. Effects of fluoride-ion contamination on susceptibility to intergranular cracking of high- and commercial- purity Type 304 SS specimens from control-tensile tests at 288 degrees Centigrade. Microchemical changes in the specimens were studied by Auger electron spectroscopy and scanning electron microscopy to determine whether trace impurity elements may contribute to IASCC of these materials.

  16. Lansing Board of Water & Light- Hometown Energy Savers Commercial Rebates

    Broader source: Energy.gov [DOE]

    Franklin Energy Services and the Lansing Board of Water & Light (LBWL) partner together to offer the Hometown Energy Savers® Commercial and Industrial Energy Efficiency Rebate Program. Eligible...

  17. ORNL). Consortium for Advanced Simulation of Light Water Reactors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simulation of Light Water Reactors (CASL) was established by the US Department of Energy in 2010 to advance modeling and simulation capabilities for nuclear reactors. CASL's...

  18. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    J.C., CASL: Consortium for the Advanced Simulation of Light Water Reactors - A DOE Energy Innovation Hub, ANS MC2015 Joint Internation Conference on Mathematics and Computation...

  19. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Virtual Environment for Scientific Collaboration Posted: April 30, 2013 The Consortium for Advanced Simulation of Light Water Reactors, the Department of Energy's first...

  20. Light Water Reactor Sustainability Program - Non-Destructive...

    Energy Savers [EERE]

    for Determining Remaining Useful Life of Aging Cables in Nuclear Power Plants Light Water Reactor Sustainability Program - Non-Destructive Evaluation R&D Roadmap for...

  1. Chemical and light-stable isotope characteristics of waters from...

    Open Energy Info (EERE)

    Chemical and light-stable isotope characteristics of waters from the raft river geothermal area and environs, Cassia County, Idaho, Box Elder county, Utah Jump to: navigation,...

  2. Light Water Reactor Sustainability Accomplishments Report

    SciTech Connect (OSTI)

    McCarthy, Kathryn A.

    2015-02-01

    Welcome to the 2014 Light Water Reactor Sustainability (LWRS) Program Accomplishments Report, covering research and development highlights from 2014. The LWRS Program is a U.S. Department of Energy research and development program to inform and support the long-term operation of our nation’s commercial nuclear power plants. The research uses the unique facilities and capabilities at the Department of Energy national laboratories in collaboration with industry, academia, and international partners. Extending the operating lifetimes of current plants is essential to supporting our nation’s base load energy infrastructure, as well as reaching the Administration’s goal of reducing greenhouse gas emissions to 80% below 1990 levels by the year 2050. The purpose of the LWRS Program is to provide technical results for plant owners to make informed decisions on long-term operation and subsequent license renewal, reducing the uncertainty, and therefore the risk, associated with those decisions. In January 2013, 104 nuclear power plants operated in 31 states. However, since then, five plants have been shut down (several due to economic reasons), with additional shutdowns under consideration. The LWRS Program aims to minimize the number of plants that are shut down, with R&D that supports long-term operation both directly (via data that is needed for subsequent license renewal), as well indirectly (with models and technology that provide economic benefits). The LWRS Program continues to work closely with the Electric Power Research Institute (EPRI) to ensure that the body of information needed to support SLR decisions and actions is available in a timely manner. This report covers selected highlights from the three research pathways in the LWRS Program: Materials Aging and Degradation, Risk-Informed Safety Margin Characterization, and Advanced Instrumentation, Information, and Control Systems Technologies, as well as a look-ahead at planned activities for 2015. If you have any questions about the information in the report, or about the LWRS Program, please contact me, Richard A. Reister (the Federal Program Manager), or the respective research pathway leader (noted on pages 26 and 27), or visit the LWRS Program website (www.inl.gov/lwrs). The annually updated Integrated Program Plan and Pathway Technical Program Plans are also available for those seeking more detailed technical Information.

  3. Commercial Light Water Production of Tritium Update and Path...

    Office of Environmental Management (EM)

    Light Water Production of Tritium: Update and Path Forward Dave Senor April 23, 2013 Tritium Focus Group 1 PNNL-SA-94431 Background United States defense maintains a stockpile of...

  4. Columbia Water & Light- Home Performance with ENERGY STAR Rebates

    Broader source: Energy.gov [DOE]

    Columbia Water and Light, a municipal utility, offers rebates to its residential customers who make certain energy efficient improvements to the home. Under the Home Performance with Energy Star...

  5. Columbia Water & Light- New Home ENERGY STAR Rebate

    Broader source: Energy.gov [DOE]

    Columbia Water and Light offers a $1,000 rebate to customers for the construction of new homes that achieve certification as Energy Star homes. The Energy Star designation is given to homes that...

  6. Safety of light water reactor fuel with silicon carbide cladding

    E-Print Network [OSTI]

    Lee, Youho

    2013-01-01

    Structural aspects of the performance of light water reactor (LWR) fuel rod with triplex silicon carbide (SiC) cladding - an emerging option to replace the zirconium alloy cladding - are assessed. Its behavior under accident ...

  7. McMinnville Water & Light- Commercial Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    McMinnville Water and Light Company offers a variety of rebates for commercial and industrial customers to make energy efficient improvements to eligible facilities. MW&L offers rebates in...

  8. Reduced heat flow in light water (H2O) due to heavy water (D2O)

    E-Print Network [OSTI]

    William R. Gorman; James D. Brownridge

    2008-09-04

    The flow of heat, from top to bottom, in a column of light water can be decreased by over 1000% with the addition of heavy water. A column of light water cools from 25 C to 0 C in 11 hours, however, with the addition of heavy water it takes more than 100 hours. There is a concentration dependence where the cooling time increases as the concentration of added (D2O) increases, with a near maximum being reached with as little as 2% of (D2O) added. This phenomenon will not occur if the water is mixed after the heavy water is added.

  9. Standard practice for evaluation of surveillance capsules from light-water moderated nuclear power reactor vessels

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    Standard practice for evaluation of surveillance capsules from light-water moderated nuclear power reactor vessels

  10. Assessment of light water reactor accident management programs and experience

    SciTech Connect (OSTI)

    Hammersley, R.J. [Fauske and Associates, Inc., Burr Ridge, IL (United States)

    1992-03-01

    The objective of this report is to provide an assessment of the current light water reactor experience regarding accident management programs and associated technology developments. This assessment for light water reactor (LWR) designs is provided as a resource and reference for the development of accident management capabilities for the production reactors at the Savannah River Site. The specific objectives of this assessment are as follows: 1. Perform a review of the NRC, utility, and industry (NUMARC, EPRI) accident management programs and implementation experience. 2. Provide an assessment of the problems and opportunities in developing an accident management program in conjunction or following the Individual Plant Examination process. 3. Review current NRC, utility, and industry technological developments in the areas of computational tools, severe accident predictive tools, diagnostic aids, and severe accident training and simulation.

  11. Assessment of innovative fuel designs for high performance light water reactors

    E-Print Network [OSTI]

    Carpenter, David Michael

    2006-01-01

    To increase the power density and maximum allowable fuel burnup in light water reactors, new fuel rod designs are investigated. Such fuel is desirable for improving the economic performance light water reactors loaded with ...

  12. Superior Water, Light and Power Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEuropeEnergy InformationSunrain JumpSuperior Water, Light

  13. Fuel Summary Report: Shippingport Light Water Breeder Reactor - Rev. 2

    SciTech Connect (OSTI)

    Olson, Gail Lynn; Mc Cardell, Richard Keith; Illum, Douglas Brent

    2002-09-01

    The Shippingport Light Water Breeder Reactor (LWBR) was developed by Bettis Atomic Power Laboratory to demonstrate the potential of a water-cooled, thorium oxide fuel cycle breeder reactor. The LWBR core operated from 1977-82 without major incident. The fuel and fuel components suffered minimal damage during operation, and the reactor testing was deemed successful. Extensive destructive and nondestructive postirradiation examinations confirmed that the fuel was in good condition with minimal amounts of cladding deformities and fuel pellet cracks. Fuel was placed in wet storage upon arrival at the Expended Core Facility, then dried and sent to the Idaho Nuclear Technology and Engineering Center for underground dry storage. It is likely that the fuel remains in good condition at its current underground dry storage location at the Idaho Nuclear Technology and Engineering Center. Reports show no indication of damage to the core associated with shipping, loading, or storage.

  14. Method of burning lightly loaded coal-water slurries

    DOE Patents [OSTI]

    Krishna, C.R.

    1984-07-27

    In a preferred arrangement of the method of the invention, a lightly loaded coal-water slurry, containing in the range of approximately 40% to 52% + 2% by weight coal, is atomized to strip water from coal particles in the mixture. Primary combustor air is forced around the atomized spray in a combustion chamber of a combustor to swirl the air in a helical path through the combustion chamber. A flame is established within the combustion chamber to ignite the stripped coal particles, and flame temperature regulating means are provided for maintaining the flame temperature within a desired predetermined range of temperatures that is effective to produce dry, essentially slag-free ash from the combustion process.

  15. Accident Performance of Light Water Reactor Cladding Materials

    SciTech Connect (OSTI)

    Nelson, Andrew T.

    2012-07-24

    During a loss of coolant accident as experienced at Fukushima, inadequate cooling of the reactor core forces component temperatures ever higher where they must withstand aggressive chemical environments. Conventional zirconium cladding alloys will readily oxidize in the presence of water vapor at elevated temperatures, rapidly degrading and likely failing. A cladding breach removes the critical barrier between actinides and fission products and the coolant, greatly increasing the probability of the release of radioactivity in the event of a containment failure. These factors have driven renewed international interest in both study and improvement of the materials used in commercial light water reactors. Characterization of a candidate cladding alloy or oxidation mitigation technique requires understanding of both the oxidation kinetics and hydrogen production as a function of temperature and atmosphere conditions. Researchers in the MST division supported by the DOE-NE Fuel Cycle Research and Development program are working to evaluate and quantify these parameters across a wide range of proposed cladding materials. The primary instrument employed is a simultaneous thermal analyzer (STA) equipped with a specialized water vapor furnace capable of maintaining temperatures above 1200 C in a range of atmospheres and water vapor contents. The STA utilizes thermogravimetric analysis and a coupled mass spectrometer to measure in situ oxidation and hydrogen production of candidate materials. This capability is unprecedented in study of materials under consideration for reactor cladding use, and is currently being expanded to investigate proposed coating techniques as well as the effect of coating defects on corrosion resistance.

  16. Multi-Applications Small Light Water Reactor - NERI Final Report

    SciTech Connect (OSTI)

    S. Michale Modro; James E. Fisher; Kevan D. Weaver; Jose N. Reyes, Jr.; John T. Groome; Pierre Babka; Thomas M. Carlson

    2003-12-01

    The Multi-Application Small Light Water Reactor (MASLWR) project was conducted under the auspices of the Nuclear Energy Research Initiative (NERI) of the U.S. Department of Energy (DOE). The primary project objectives were to develop the conceptual design for a safe and economic small, natural circulation light water reactor, to address the economic and safety attributes of the concept, and to demonstrate the technical feasibility by testing in an integral test facility. This report presents the results of the project. After an initial exploratory and evolutionary process, as documented in the October 2000 report, the project focused on developing a modular reactor design that consists of a self-contained assembly with a reactor vessel, steam generators, and containment. These modular units would be manufactured at a single centralized facility, transported by rail, road, and/or ship, and installed as a series of self-contained units. This approach also allows for staged construction of an NPP and ''pull and replace'' refueling and maintenance during each five-year refueling cycle.

  17. Fuel Summary Report: Shippingport Light Water Breeder Reactor

    SciTech Connect (OSTI)

    Illum, D.B.; Olson, G.L.; McCardell, R.K.

    1999-01-01

    The Shippingport Light Water Breeder Reactor (LWBR) was a small water cooled, U-233/Th-232 cycle breeder reactor developed by the Pittsburgh Naval Reactors to improve utilization of the nation's nuclear fuel resources in light water reactors. The LWBR was operated at Shippingport Atomic Power Station (APS), which was a Department of Energy (DOE) (formerly Atomic Energy Commission)-owned reactor plant. Shippingport APS was the first large-scale, central-station nuclear power plant in the United States and the first plant of such size in the world operated solely to produce electric power. The Shippingport LWBR was operated successfully from 1977 to 1982 at the APS. During the five years of operation, the LWBR generated more than 29,000 effective full power hours (EFPH) of energy. After final shutdown, the 39 core modules of the LWBR were shipped to the Expended Core Facility (ECF) at Naval Reactors Facility at the Idaho National Engineering and Environmental Laboratory (INEEL). At ECF, 12 of the 39 modules were dismantled and about 1000 of more than 17,000 rods were removed from the modules of proof-of-breeding and fuel performance testing. Some of the removed rods were kept at ECF, some were sent to Argonne National Laboratory-West (ANL-W) in Idaho and some to ANL-East in Chicago for a variety of physical, chemical and radiological examinations. All rods and rod sections remaining after the experiments were shipped back to ECF, where modules and loose rods were repackaged in liners for dry storage. In a series of shipments, the liners were transported from ECF to Idaho Nuclear Technology Engineering Center (INTEC), formerly the Idaho Chemical Processing Plant (ICPP). The 47 liners containing the fully-rodded and partially-derodded core modules, the loose rods, and the rod scraps, are now stored in underground dry wells at CPP-749.

  18. Commercial Light Water Reactor Tritium Extraction Facility Geotechnical Summary Report

    SciTech Connect (OSTI)

    Lewis, M.R.

    2000-01-11

    A geotechnical investigation program has been completed for the Circulating Light Water Reactor - Tritium Extraction Facility (CLWR-TEF) at the Savannah River Site (SRS). The program consisted of reviewing previous geotechnical and geologic data and reports, performing subsurface field exploration, field and laboratory testing and geologic and engineering analyses. The purpose of this investigation was to characterize the subsurface conditions for the CLWR-TEF in terms of subsurface stratigraphy and engineering properties for design and to perform selected engineering analyses. The objectives of the evaluation were to establish site-specific geologic conditions, obtain representative engineering properties of the subsurface and potential fill materials, evaluate the lateral and vertical extent of any soft zones encountered, and perform engineering analyses for slope stability, bearing capacity and settlement, and liquefaction potential. In addition, provide general recommendations for construction and earthwork.

  19. Materials Inventory Database for the Light Water Reactor Sustainability Program

    SciTech Connect (OSTI)

    Kazi Ahmed; Shannon M. Bragg-Sitton

    2013-08-01

    Scientific research involves the purchasing, processing, characterization, and fabrication of many sample materials. The history of such materials can become complicated over their lifetime – materials might be cut into pieces or moved to various storage locations, for example. A database with built-in functions to track these kinds of processes facilitates well-organized research. The Material Inventory Database Accounting System (MIDAS) is an easy-to-use tracking and reference system for such items. The Light Water Reactor Sustainability Program (LWRS), which seeks to advance the long-term reliability and productivity of existing nuclear reactors in the United States through multiple research pathways, proposed MIDAS as an efficient way to organize and track all items used in its research. The database software ensures traceability of all items used in research using built-in functions which can emulate actions on tracked items – fabrication, processing, splitting, and more – by performing operations on the data. MIDAS can recover and display the complete history of any item as a simple report. To ensure the database functions suitably for the organization of research, it was developed alongside a specific experiment to test accident tolerant nuclear fuel cladding under the LWRS Advanced Light Water Reactor Nuclear Fuels Pathway. MIDAS kept track of materials used in this experiment from receipt at the laboratory through all processes, test conduct and, ultimately, post-test analysis. By the end of this process, the database proved to be right tool for this program. The database software will help LWRS more efficiently conduct research experiments, from simple characterization tests to in-reactor experiments. Furthermore, MIDAS is a universal tool that any other research team could use to organize their material inventory.

  20. Light Water Reactor Sustainability Constellation Pilot Project FY13 Summary Report

    SciTech Connect (OSTI)

    R. Johansen

    2013-09-01

    Summary report for Light Water Reactor Sustainability (LWRS) activities related to the R. E. Ginna and Nine Mile Point Unit 1 for FY13.

  1. Light Water Reactor Sustainability Constellation Pilot Project FY12 Summary Report

    SciTech Connect (OSTI)

    R. Johansen

    2012-09-01

    Summary report for Light Water Reactor Sustainability (LWRS) activities related to the R. E. Ginna and Nine Mile Point Unit 1 for FY12.

  2. McMinnville Water and Light- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    McMinnville Water and Light (MWL) offers rebates on energy efficient homes, appliances and equipment to residential customers. Rebates are valid on: 

  3. Incorporation of Hydride Nuclear Fuels in Commercial Light Water Reactors

    E-Print Network [OSTI]

    Terrani, Kurt Amir

    2010-01-01

    re- actor (PWR) and boiling-water reactor (BWR) designsin integral boiling water super heat reactors. Technical

  4. Technologies for Upgrading Light Water Reactor Outlet Temperature

    SciTech Connect (OSTI)

    Daniel S. Wendt; Piyush Sabharwall; Vivek Utgikar

    2013-07-01

    Nuclear energy could potentially be utilized in hybrid energy systems to produce synthetic fuels and feedstocks from indigenous carbon sources such as coal and biomass. First generation nuclear hybrid energy system (NHES) technology will most likely be based on conventional light water reactors (LWRs). However, these LWRs provide thermal energy at temperatures of approximately 300°C, while the desired temperatures for many chemical processes are much higher. In order to realize the benefits of nuclear hybrid energy systems with the current LWR reactor fleets, selection and development of a complimentary temperature upgrading technology is necessary. This paper provides an initial assessment of technologies that may be well suited toward LWR outlet temperature upgrading for powering elevated temperature industrial and chemical processes during periods of off-peak power demand. Chemical heat transformers (CHTs) are a technology with the potential to meet LWR temperature upgrading requirements for NHESs. CHTs utilize chemical heat of reaction to change the temperature at which selected heat sources supply or consume thermal energy. CHTs could directly utilize LWR heat output without intermediate mechanical or electrical power conversion operations and the associated thermodynamic losses. CHT thermal characteristics are determined by selection of the chemical working pair and operating conditions. This paper discusses the chemical working pairs applicable to LWR outlet temperature upgrading and the CHT operating conditions required for providing process heat in NHES applications.

  5. Technology Implementation Plan. Fully Ceramic Microencapsulated Fuel for Commercial Light Water Reactor Application

    SciTech Connect (OSTI)

    Snead, Lance Lewis; Terrani, Kurt A.; Powers, Jeffrey J.; Worrall, Andrew; Robb, Kevin R.; Snead, Mary A.

    2015-04-01

    This report is an overview of the implementation plan for ORNL's fully ceramic microencapsulated (FCM) light water reactor fuel. The fully ceramic microencapsulated fuel consists of tristructural isotropic (TRISO) particles embedded inside a fully dense SiC matrix and is intended for utilization in commercial light water reactor application.

  6. Highly efficient nonradiative energy transfer mediated light harvesting in water using aqueous

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    Highly efficient nonradiative energy transfer mediated light harvesting in water using aqueous Cd harvesting factor, along with substantial lifetime modifications of these water-soluble quantum dots, from 25@bilkent.edu.tr Abstract: We present light harvesting of aqueous colloidal quantum dots to nonradiatively transfer

  7. `Pure air, pure water and good light' Sanitary reform in the Dublin hospitals, 1858-1898

    E-Print Network [OSTI]

    `Pure air, pure water and good light' Sanitary reform in the Dublin hospitals, 1858-1898 Irish Centre for Nursing & Midwifery History Spring-summer Seminar series Sanitary reform in the Dublin and hospital sanitation `Pure air, pure water and good light' Sanitary reform in the Dublin hospitals, 1858

  8. Light Water Reactor Sustainability Program Integrated Program Plan

    SciTech Connect (OSTI)

    McCarthy, Kathryn A.; Busby, Jeremy; Hallbert, Bruce; Bragg-Sitton, Shannon; Smith, Curtis; Barnard, Cathy

    2014-04-01

    Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline—even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy’s Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program’s plans.

  9. Light Water Reactor Sustainability Program Integrated Program Plan

    SciTech Connect (OSTI)

    Kathryn McCarthy; Jeremy Busby; Bruce Hallbert; Shannon Bragg-Sitton; Curtis Smith; Cathy Barnard

    2013-04-01

    Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline—even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy’s Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program’s plans.

  10. Light Water Reactor Sustainability Program Integrated Program Plan

    SciTech Connect (OSTI)

    George Griffith; Robert Youngblood; Jeremy Busby; Bruce Hallbert; Cathy Barnard; Kathryn McCarthy

    2012-01-01

    Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline - even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy's Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration's energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program's plans.

  11. Multi-Application Small Light Water Reactor Final Report

    SciTech Connect (OSTI)

    Modro, S.M.; Fisher, J.E.; Weaver, K.D.; Reyes, J.N.; Groome, J.T.; Babka, P.; Carlson, T.M.

    2003-12-01

    The Multi-Application Small Light Water Reactor (MASLWR) project was conducted under the auspices of the Nuclear Energy Research Initiative (NERI) of the U.S. Department of Energy (DOE). The primary project objectives were to develop the conceptual design for a safe and economic small, natural circulation light water reactor, to address the economic and safety attributes of the concept, and to demonstrate the technical feasibility by testing in an integral test facility. This report presents the results of the project. After an initial exploratory and evolutionary process, as documented in the October 2000 report, the project focused on developing a modular reactor design that consists of a self-contained assembly with a reactor vessel, steam generators, and containment. These modular units would be manufactured at a single centralized facility, transported by rail, road, and/or ship, and installed as a series of self-contained units. This approach also allows for staged construction of an NPP and ''pull and replace'' refueling and maintenance during each five-year refueling cycle. Development of the baseline design concept has been sufficiently completed to determine that it complies with the safety requirements and criteria, and satisfies the major goals already noted. The more significant features of the baseline single-unit design concept include: (1) Thermal Power--150 MWt; (2) Net Electrical Output--35 MWe; (3) Steam Generator Type--Vertical, helical tubes; (4) Fuel UO{sub 2}, 8% enriched; (5) Refueling Intervals--5 years; (6) Life-Cycle--60 years. The economic performance was assessed by designing a power plant with an electric generation capacity in the range of current and advanced evolutionary systems. This approach allows for direct comparison of economic performance and forms a basis for further evaluation, economic and technical, of the proposed design and for the design evolution towards a more cost competitive concept. Applications such as cogeneration, water desalination or district heating were not addressed directly in the economic analyses since these depend more on local conditions, demand and economy and can not be easily generalized. Current economic performance experience and available cost data were used. The preliminary cost estimate, based on a concept that could be deployed in less than a decade, is: (1) Net Electrical Output--1050 MWe; (2) Net Station Efficiency--23%; (3) Number of Power Units--30; (4) Nominal Plant Capacity Factor--95%; (5) Total capital cost--$1241/kWe; and (6) Total busbar cost--3.4 cents/kWh. The project includes a testing program that has been conducted at Oregon State University (OSU). The test facility is a 1/3-height and 1/254.7 volume scaled design that will operate at full system pressure and temperature, and will be capable of operation at 600 kW. The design and construction of the facility have been completed. Testing is scheduled to begin in October 2002. The MASLWR conceptual design is simple, safe, and economical. It operates at NSSS parameters much lower than for a typical PWR plant, and has a much simplified power generation system. The individual reactor modules can be operated as on/off units, thereby limiting operational transients to startup and shutdown. In addition, a plant can be built in increments that match demand increases. The ''pull and replace'' concept offers automation of refueling and maintenance activities. Performing refueling in a single location improves proliferation resistance and eliminates the threat of diversion. Design certification based on testing is simplified because of the relatively low cost of a full-scale prototype facility. The overall conclusion is that while the efficiency of the power generation unit is much lower (23% versus 30%), the reduction in capital cost due to simplification of design more than makes up for the increased cost of nuclear fuel. The design concept complies with the safety requirements and criteria. It also satisfies the goals for modularity, standard plant design, certification before construction, c

  12. Cross section generation strategy for high conversion light water reactors

    E-Print Network [OSTI]

    Herman, Bryan R. (Bryan Robert)

    2011-01-01

    High conversion water reactors (HCWR), such as the Resource-renewable Boiling Water Reactor (RBWR), are being designed with axial heterogeneity of alternating fissile and blanket zones to achieve a conversion ratio of ...

  13. Sustained Recycle in Light Water and Sodium-Cooled Reactors

    SciTech Connect (OSTI)

    Steven J. Piet; Samuel E. Bays; Michael A. Pope; Gilles J. Youinou

    2010-11-01

    From a physics standpoint, it is feasible to sustain recycle of used fuel in either thermal or fast reactors. This paper examines multi-recycle potential performance by considering three recycling approaches and calculating several fuel cycle parameters, including heat, gamma, and neutron emission of fresh fuel; radiotoxicity of waste; and uranium utilization. The first recycle approach is homogeneous mixed oxide (MOX) fuel assemblies in a light water reactor (LWR). The transuranic portion of the MOX was varied among Pu, NpPu, NpPuAm, or all-TRU. (All-TRU means all isotopes through Cf-252.) The Pu case was allowed to go to 10% Pu in fresh fuel, but when the minor actinides were included, the transuranic enrichment was kept below 8% to satisfy the expected void reactivity constraint. The uranium portion of the MOX was enriched uranium. That enrichment was increased (to as much as 6.5%) to keep the fuel critical for a typical LWR irradiation. The second approach uses heterogeneous inert matrix fuel (IMF) assemblies in an LWR - a mix of IMF and traditional UOX pins. The uranium-free IMF fuel pins were Pu, NpPu, NpPuAm, or all-TRU. The UOX pins were limited to 4.95% U-235 enrichment. The number of IMF pins was set so that the amount of TRU in discharged fuel from recycle N (from both IMF and UOX pins) was made into the new IMF pins for recycle N+1. Up to 60 of the 264 pins in a fuel assembly were IMF. The assembly-average TRU content was 1-6%. The third approach uses fast reactor oxide fuel in a sodium-cooled fast reactor with transuranic conversion ratio of 0.50 and 1.00. The transuranic conversion ratio is the production of transuranics divided by destruction of transuranics. The FR at CR=0.50 is similar to the CR for the MOX case. The fast reactor cases had a transuranic content of 33-38%, higher than IMF or MOX.

  14. Light Water Reactor Sustainability Program. Digital Architecture Requirements

    SciTech Connect (OSTI)

    Thomas, Kenneth; Oxstrand, Johanna

    2015-03-01

    The Digital Architecture effort is a part of the Department of Energy (DOE) sponsored Light-Water Reactor Sustainability (LWRS) Program conducted at Idaho National Laboratory (INL). The LWRS program is performed in close collaboration with industry research and development (R&D) programs that provides the technical foundations for licensing and managing the long-term, safe, and economical operation of current nuclear power plants (NPPs). One of the primary missions of the LWRS program is to help the U.S. nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. Therefore, a major objective of the LWRS program is the development of a seamless digital environment for plant operations and support by integrating information from plant systems with plant processes for nuclear workers through an array of interconnected technologies. In order to get the most benefits of the advanced technology suggested by the different research activities in the LWRS program, the nuclear utilities need a digital architecture in place to support the technology. A digital architecture can be defined as a collection of information technology (IT) capabilities needed to support and integrate a wide-spectrum of real-time digital capabilities for nuclear power plant performance improvements. It is not hard to imagine that many processes within the plant can be largely improved from both a system and human performance perspective by utilizing a plant wide (or near plant wide) wireless network. For example, a plant wide wireless network allows for real time plant status information to easily be accessed in the control room, field workers’ computer-based procedures can be updated based on the real time plant status, and status on ongoing procedures can be incorporated into smart schedules in the outage command center to allow for more accurate planning of critical tasks. The goal of the digital architecture project is to provide a long-term strategy to integrate plant systems, plant processes, and plant workers. This include technologies to improve nuclear worker efficiency and human performance; to offset a range of plant surveillance and testing activities with new on-line monitoring technologies; improve command, control, and collaboration in settings such as outage control centers and work execution centers; and finally to improve operator performance with new operator aid technologies for the control room. The requirements identified through the activities in the Digital Architecture project will be used to estimate the amount of traffic on the network and hence estimating the minimal bandwidth needed.

  15. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sensitivities and uncertainties in full-scale multi physics Pressurized Water Reactors (PWR) simulations Research & Development VERA COBRA-TF Dakota Hydra-TH Insilico MAMBA MPACT...

  16. Materials Degradation in Light Water Reactors: Life After 60

    Broader source: Energy.gov [DOE]

    Nuclear reactors present a very harsh environment for components service. Components within a reactor core must tolerate high temperature water, stress, vibration, and an intense neutron field....

  17. Assessment of light water reactor power plant cost and ultra-acceleration depreciation financing

    E-Print Network [OSTI]

    El-Magboub, Sadek Abdulhafid.

    Although in many regions of the U.S. the least expensive electricity is generated from light-water reactor (LWR) plants, the fixed (capital plus operation and maintenance) cost has increased to the level where the cost ...

  18. EIS-0288: Production of Tritium in a Commercial Light Water Reactor

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Environmental Impact Statement for the Production of Tritium in a Commercial Light Water Reactor (CLWR EIS) evaluates the environmental impacts associated with producing tritium at one or more...

  19. The impact of passive safety systems on desirability of advanced light water reactors

    E-Print Network [OSTI]

    Eul, Ryan C

    2006-01-01

    This work investigates whether the advanced light water reactor designs with passive safety systems are more desirable than advanced reactor designs with active safety systems from the point of view of uncertainty in the ...

  20. CHEMICAL ASPECTS OF PELLET-CLADDING INTERACTION IN LIGHT WATER REACTOR FUEL ELEMENTS

    E-Print Network [OSTI]

    Olander, D.R.

    2010-01-01

    in LWR Fuel Pods Relevant to PCI Failures", paper presented1981). D. R. Olander, "Is PCI an Iodine SCC Phenomenon?" ,pellet-cladding interaction(PCI) in light water reactor fuel

  1. Light Water Reactor Sustainability Nondestructive Evaluation for Concrete

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPA PublicLED ADOPTIONto CommercializationLight My

  2. Light Water Reactor Sustainability Program - Integrated Program Plan |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPA PublicLED ADOPTIONto CommercializationLight MyDepartment of

  3. Light Water Reactor Sustainability Program - Non-Destructive Evaluation

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPA PublicLED ADOPTIONto CommercializationLight MyDepartment

  4. Light Water Reactor Sustainability Program: Integrated Program Plan |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPA PublicLED ADOPTIONto CommercializationLight

  5. Light Water Reactor Sustainability Program: Materials Aging and Degradation

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPA PublicLED ADOPTIONto CommercializationLightTechnical Program

  6. City Water and Light Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLCLtd Jump to:ChangingCNEInformation ChungCircadianBoroughLight

  7. Impact of Pilot Light Modeling on the Predicted Annual Performance of Residential Gas Water Heaters: Preprint

    SciTech Connect (OSTI)

    Maguire, J.; Burch, J.

    2013-08-01

    Modeling residential water heaters with dynamic simulation models can provide accurate estimates of their annual energy consumption, if the units? characteristics and use conditions are known. Most gas storage water heaters (GSWHs) include a standing pilot light. It is generally assumed that the pilot light energy will help make up standby losses and have no impact on the predicted annual energy consumption. However, that is not always the case. The gas input rate and conversion efficiency of a pilot light for a GSWH were determined from laboratory data. The data were used in simulations of a typical GSWH with and without a pilot light, for two cases: 1) the GSWH is used alone; and 2) the GSWH is the second tank in a solar water heating (SWH) system. The sensitivity of wasted pilot light energy to annual hot water use, climate, and installation location was examined. The GSWH used alone in unconditioned space in a hot climate had a slight increase in energy consumption. The GSWH with a pilot light used as a backup to an SWH used up to 80% more auxiliary energy than one without in hot, sunny locations, from increased tank losses.

  8. Newberry Water & Light Board | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg, Oregon: Energy Resources Jump to: navigation,Water &

  9. Sun Prairie Water & Light Comm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter BatterySolarfinMarketMember Corp Jump to: navigation,Water &

  10. Waterloo Light & Water Comm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company)Idaho)Vossloh Kiepe JumpWaranaWater Power

  11. Advanced Nuclear Technology: Advanced Light Water Reactors Utility Requirements Document Small Modular Reactors Inclusion Summary

    SciTech Connect (OSTI)

    Loflin, Leonard; McRimmon, Beth

    2014-12-18

    This report summarizes a project by EPRI to include requirements for small modular light water reactors (smLWR) into the EPRI Utility Requirements Document (URD) for Advanced Light Water Reactors. The project was jointly funded by EPRI and the U.S. Department of Energy (DOE). The report covers the scope and content of the URD, the process used to revise the URD to include smLWR requirements, a summary of the major changes to the URD to include smLWR, and how to use the URD as revised to achieve value on new plant projects.

  12. Definition: Cloudiness of the water, caused by suspended materials that can be seen and that scatter the light which passes through the water...(Turbid waters are those in which you cannot see your feet in knee deep water).

    E-Print Network [OSTI]

    Lawrence, Deborah

    feet in knee deep water). The Secchi Disk Low Turbidity High Turbidity Causes of Turbidity: SoilDefinition: Cloudiness of the water, caused by suspended materials that can be seen and that scatter the light which passes through the water...(Turbid waters are those in which you cannot see your

  13. Calculation of heat capacities of light and heavy water by path-integral molecular dynamics

    E-Print Network [OSTI]

    Nielsen, Steven O.

    Calculation of heat capacities of light and heavy water by path-integral molecular dynamics 30 September 2005 As an application of atomistic simulation methods to heat capacities, path-integral has estimated the heat capacities too high, the quantum simulation based on path-integral molecular

  14. Light Water Reactor Sustainability Constellation Pilot Project FY11 Summary Report

    SciTech Connect (OSTI)

    R. Johansen

    2011-09-01

    Summary report for Fiscal Year 2011 activities associated with the Constellation Pilot Project. The project is a joint effor between Constellation Nuclear Energy Group (CENG), EPRI, and the DOE Light Water Reactor Sustainability Program. The project utilizes two CENG reactor stations: R.E. Ginna and Nine Point Unit 1. Included in the report are activities associate with reactor internals and concrete containments.

  15. Supplementary material1 Water-Soluble Organic Aerosol Material and the Light-5

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    1 Supplementary material1 2 3 4 Water-Soluble Organic Aerosol Material and the Light-5 Absorption., (2010) Fig. 1S.36 37 Reference38 Zhang, X., A. Hecobian, M. Zheng, N. Frank, and R. J. Weber, Biomass measurements,40 MODIS fire counts and PMF analysis, Atm. Chem. Phys. Disc., 10, 7037-7077, 2010.41 42 #12;2 1 2

  16. Search for Free Decay of Negative Pions in Water and Light Materials

    E-Print Network [OSTI]

    T. Numao; Yu. I. Davydov; J-M. Poutissou; T. C. Awes; V. Cianciolo; S. Berridge; W. Bugg; Yu. Efremenko; R. Gearhart; S. Ovchinnikov

    2006-05-30

    We report on a search for the free decay component of pi- stopped in water and light materials. A non-zero value of this would be an indication of anomalous nu_e contamination to the nu_e and nu_mu_bar production at stopped-pion neutrino facilities. No free decay component of pi- was observed in water, Beryllium, and Aluminum, for which upper limits were established at 8.2E-4, 3.2E-3, and 7.7E-3, respectively.

  17. DOE/NNSA perspective safeguard by design: GEN III/III+ light water reactors and beyond

    SciTech Connect (OSTI)

    Pan, Paul Y

    2010-12-10

    An overview of key issues relevant to safeguards by design (SBD) for GEN III/IV nuclear reactors is provided. Lessons learned from construction of typical GEN III+ water reactors with respect to SBD are highlighted. Details of SBD for safeguards guidance development for GEN III/III+ light water reactors are developed and reported. This paper also identifies technical challenges to extend SBD including proliferation resistance methodologies to other GEN III/III+ reactors (except HWRs) and GEN IV reactors because of their immaturity in designs.

  18. Transmission of light in deep sea water at the site of the Antares neutrino telescope

    E-Print Network [OSTI]

    ANTARES collaboration

    2004-12-06

    The ANTARES neutrino telescope is a large photomultiplier array designed to detect neutrino-induced upward-going muons by their Cherenkov radiation. Understanding the absorption and scattering of light in the deep Mediterranean is fundamental to optimising the design and performance of the detector. This paper presents measurements of blue and UV light transmission at the ANTARES site taken between 1997 and 2000. The derived values for the scattering length and the angular distribution of particulate scattering were found to be highly correlated, and results are therefore presented in terms of an absorption length lambda_abs and an effective scattering length lambda_sct^eff. The values for blue (UV) light are found to be lambda_abs ~ 60(26) m, lambda_sct^eff ~ 265(122) m, with significant (15%) time variability. Finally, the results of ANTARES simulations showing the effect of these water properties on the anticipated performance of the detector are presented.

  19. Measurement of the Group Velocity of Light in Sea Water at the ANTARES Site

    E-Print Network [OSTI]

    S. Adrián-Martínez; I. Al Samarai; A. Albert; M. André; M. Anghinolfi; G. Anton; S. Anvar; M. Ardid; A. C. Assis Jesus; T. Astraatmadja; J-J. Aubert; B. Baret; S. Basa; V. Bertin; S. Biagi; A. Bigi; C. Bigongiari; C. Bogazzi; M. Bou-Cabo; B. Bouhou; M. C. Bouwhuis; J. Brunner; J. Busto; F. Camarena; A. Capone; C. Carloganu; G. Carminati; J. Carr; S. Cecchini; Z. Charif; Ph. Charvis; T. Chiarusi; M. Circella; H. Costantini; P. Coyle; C. Curtil; G. De Bonis; M. P. Decowski; I. Dekeyser; A. Deschamps; C. Distefano; C. Donzaud; D. Dornic; Q. Dorosti; D. Drouhin; T. Eberl; U. Emanuele; A. Enzenhöfer; J-P. Ernenwein; S. Escoffier; P. Fermani; M. Ferri; V. Flaminio; F. Folger; U. Fritsch; J-L. Fuda; S. Galatá; P. Gay; K. Geyer; G. Giacomelli; V. Giordano; J. P. Gómez-González; K. Graf; G. Guillard; G. Halladjian; G. Hallewell; H. van Haren; J. Hartman; A. J. Heijboer; Y. Hello; J. J. Hernández-Rey; B. Herold; J. Hößl; C. C. Hsu; M. de Jong; M. Kadler; O. Kalekin; A. Kappes; U. Katz; O. Kavatsyuk; P. Kooijman; C. Kopper; A. Kouchner; I. Kreykenbohm; V. Kulikovskiy; R. Lahmann; P. Lamare; G. Larosa; D. Lattuada; D. Lefévre; G. Lim; D. Lo Presti; H. Loehner; S. Loucatos; S. Mangano; M. Marcelin; A. Margiotta; J. A. Martínez-Mora; J. E. McMillan; A. Meli; T. Montaruli; L. Moscoso; H. Motz; M. Neff; E. Nezri; D. Palioselitis; G. E. P?v?la?; K. Payet; P. Payre; J. Petrovic; P. Piattelli; N. Picot-Clemente; V. Popa; T. Pradier; E. Presani; C. Racca; C. Reed; G. Riccobene; C. Richardt; R. Richter; C. Riviére; A. Robert; K. Roensch; A. Rostovtsev; J. Ruiz-Rivas; M. Rujoiu; G. V. Russo; F. Salesa; D. F. E. Samtleben; P. Sapienza; F. Schöck; J-P. Schuller; F. Schüssler; T. Seitz; R. Shanidze; F. Simeone; A. Spies; M. Spurio; J. J. M. Steijger; Th. Stolarczyk; A. Sánchez-Losa; M. Taiuti; C. Tamburini; L. F. Thompson; S. Toscano; B. Vallage; V. Van Elewyck; G. Vannoni; M. Vecchi; P. Vernin; S. Wagner; G. Wijnker; J. Wilms; E. de Wolf; H. Yepes; D. Zaborov; J. D. Zornoza; J. Zúńiga

    2012-02-13

    The group velocity of light has been measured at eight different wavelengths between 385 nm and 532 nm in the Mediterranean Sea at a depth of about 2.2 km with the ANTARES optical beacon systems. A parametrisation of the dependence of the refractive index on wavelength based on the salinity, pressure and temperature of the sea water at the ANTARES site is in good agreement with these measurements.

  20. Fuel assembly for the production of tritium in light water reactors

    DOE Patents [OSTI]

    Cawley, W.E.; Trapp, T.J.

    1983-06-10

    A nuclear fuel assembly is described for producing tritium in a light water moderated reactor. The assembly consists of two intermeshing arrays of subassemblies. The first subassemblies comprise concentric annular elements of an outer containment tube, an annular target element, an annular fuel element, and an inner neutron spectrums shifting rod. The second subassemblies comprise an outer containment tube and an inner rod of either fuel, target, or neutron spectrum shifting neutral.

  1. Establishment of a Hub for the Light Water Reactor Sustainability Online Monitoring Community

    SciTech Connect (OSTI)

    Nancy J. Lybeck; Magdy S. Tawfik; Binh T. Pham

    2011-08-01

    Implementation of online monitoring and prognostics in existing U.S. nuclear power plants will involve coordinating the efforts of national laboratories, utilities, universities, and private companies. Internet-based collaborative work environments provide necessary communication tools to facilitate interaction between geographically diverse participants. Available technologies were considered, and a collaborative workspace was established at INL as a hub for the light water reactor sustainability online monitoring community.

  2. Overview of the US Department of Energy Light Water Reactor Sustainability Program

    SciTech Connect (OSTI)

    K. A. McCarthy; D. L. Williams; R. Reister

    2012-05-01

    The US Department of Energy Light Water Reactor Sustainability Program is focused on the long-term operation of US commercial power plants. It encompasses two facets of long-term operation: (1) manage the aging of plant systems, structures, and components so that nuclear power plant lifetimes can be extended and the plants can continue to operate safely, efficiently, and economically; and (2) provide science-based solutions to the nuclear industry that support implementation of performance improvement technologies. An important aspect of the Light Water Reactor Sustainability Program is partnering with industry and the Nuclear Regulatory Commission to support and conduct the long-term research needed to inform major component refurbishment and replacement strategies, performance enhancements, plant license extensions, and age-related regulatory oversight decisions. The Department of Energy research, development, and demonstration role focuses on aging phenomena and issues that require long-term research and/or unique Department of Energy laboratory expertise and facilities and are applicable to all operating reactors. This paper gives an overview of the Department of Energy Light Water Reactor Sustainability Program, including vision, goals, and major deliverables.

  3. Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production

    SciTech Connect (OSTI)

    Mac Donald, Philip Elsworth; Buongiorno, Jacopo; Davis, Cliff Bybee; Weaver, Kevan Dean

    2002-01-01

    The use of supercritical temperature and pressure light water as the coolant in a direct-cycle nuclear reactor offers potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to 46%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type recirculation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed. If a tight fuel rod lattice is adopted, it is possible to significantly reduce the neutron moderation and attain fast neutron energy spectrum conditions. In this project a supercritical water reactor concept with a simple, blanket-free, pancake-shaped core will be developed. This type of core can make use of either fertile or fertile-free fuel and retain the hard spectrum to effectively burn plutonium and minor actinides from LWR spent fuel while efficiently generating electricity.

  4. Light Water Reactor Sustainability Program Status of Silicon Carbide Joining Technology Development

    SciTech Connect (OSTI)

    Shannon M. Bragg-Sitton

    2013-09-01

    Advanced, accident tolerant nuclear fuel systems are currently being investigated for potential application in currently operating light water reactors (LWR) or in reactors that have attained design certification. Evaluation of potential options for accident tolerant nuclear fuel systems point to the potential benefits of silicon carbide (SiC) relative to Zr-based alloys, including increased corrosion resistance, reduced oxidation and heat of oxidation, and reduced hydrogen generation under steam attack (off-normal conditions). If demonstrated to be applicable in the intended LWR environment, SiC could be used in nuclear fuel cladding or other in-core structural components. Achieving a SiC-SiC joint that resists corrosion with hot, flowing water, is stable under irradiation and retains hermeticity is a significant challenge. This report summarizes the current status of SiC-SiC joint development work supported by the Department of Energy Light Water Reactor Sustainability Program. Significant progress has been made toward SiC-SiC joint development for nuclear service, but additional development and testing work (including irradiation testing) is still required to present a candidate joint for use in nuclear fuel cladding.

  5. Azusa, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex AAustria Geothermal RegionAvraPáginasSolar JumpPower India

  6. Criticality benchmark guide for light-water-reactor fuel in transportation and storage packages

    SciTech Connect (OSTI)

    Lichtenwalter, J.J.; Bowman, S.M.; DeHart, M.D.; Hopper, C.M.

    1997-03-01

    This report is designed as a guide for performing criticality benchmark calculations for light-water-reactor (LWR) fuel applications. The guide provides documentation of 180 criticality experiments with geometries, materials, and neutron interaction characteristics representative of transportation packages containing LWR fuel or uranium oxide pellets or powder. These experiments should benefit the U.S. Nuclear Regulatory Commission (NRC) staff and licensees in validation of computational methods used in LWR fuel storage and transportation concerns. The experiments are classified by key parameters such as enrichment, water/fuel volume, hydrogen-to-fissile ratio (H/X), and lattice pitch. Groups of experiments with common features such as separator plates, shielding walls, and soluble boron are also identified. In addition, a sample validation using these experiments and a statistical analysis of the results are provided. Recommendations for selecting suitable experiments and determination of calculational bias and uncertainty are presented as part of this benchmark guide.

  7. Nanostructure of Metallic Particles in Light Water Reactor Used Nuclear Fuel

    SciTech Connect (OSTI)

    Buck, Edgar C.; Mausolf, Edward J.; Mcnamara, Bruce K.; Soderquist, Chuck Z.; Schwantes, Jon M.

    2015-03-11

    The extraordinary nano-structure of metallic particles in light water reactor fuels points to possible high reactivity through increased surface area and a high concentration of high energy defect sites. We have analyzed the metallic epsilon particles from a high burn-up fuel from a boiling water reactor using transmission electron microscopy and have observed a much finer nanostructure in these particles than has been reported previously. The individual round particles that varying in size between ~20 and ~50 nm appear to consist of individual crystallites on the order of 2-3 nm in diameter. It is likely that in-reactor irradiation induce displacement cascades results in the formation of the nano-structure. The composition of these metallic phases is variable yet the structure of the material is consistent with the hexagonal close packed structure of epsilon-ruthenium. These findings suggest that unusual catalytic behavior of these materials might be expected, particularly under accident conditions.

  8. Estimation of light penetration, and horizontal and vertical visibility in oceanic and coastal waters from surface reflectance

    E-Print Network [OSTI]

    Babin, Marcel

    Estimation of light penetration, and horizontal and vertical visibility in oceanic and coastal penetration, and horizontal and vertical visibility in oceanic and coastal waters from surface reflectance, J. The algorithms are found to be valid both in coastal and oceanic waters, and largely insensitive to regional

  9. Depolarized light scattering and dielectric response of a peptide dissolved in water

    E-Print Network [OSTI]

    Daniel R. Martin; Daniele Fioretto; Dmitry V. Matyushov

    2013-12-04

    The density and orientational relaxation of bulk water can be separately studied by depolarized light scattering (DLS) and dielectric spectroscopy (DS), respectively. Here we ask the question of what are the leading collective modes responsible for polarization anisotropy relaxation (DLS) and dipole moment relaxation (DS) of solutions involving mostly hydrophobic solute-water interfaces. We study, by atomistic molecular dynamics simulations, the dynamics and structure of hydration water interfacing N-Acetyl-leucine-methylamide (NALMA) dipeptide. The DLS response of the solution is consistent with three relaxation processes: bulk water, rotations of single solutes, and collective dipole-induced-dipole polarizability of the solutes, with the time-scale of 130-200 ps. No separate DLS response of the hydration shell has been identified by our simulations. Density fluctuations of the hydration layer, which largely contribute to the response, do not produce a dynamical process distinct from bulk water. We find that the structural perturbation of the orientational distribution of hydration waters by the dipeptide solute is quite significant and propagates 3-5 hydration layers into the bulk. This perturbation is still below that produced by hydrated globular proteins. Despite this structural perturbation, there is little change in the orientational dynamics of the hydration layers, compared to the bulk, as probed by both single-particle orientational dynamics and collective dynamics of the dipole moment of the shells. There is a clear distinction between the perturbation of the interfacial structure by the solute-solvent interaction potential and the perturbation of the interfacial dynamics by the corresponding forces.

  10. Standard Practice for Design of Surveillance Programs for Light-Water Moderated Nuclear Power Reactor Vessels

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice covers procedures for designing a surveillance program for monitoring the radiation-induced changes in the mechanical properties of ferritic materials in light-water moderated nuclear power reactor vessels. This practice includes the minimum requirements for the design of a surveillance program, selection of vessel material to be included, and the initial schedule for evaluation of materials. 1.2 This practice was developed for all light-water moderated nuclear power reactor vessels for which the predicted maximum fast neutron fluence (E > 1 MeV) at the end of license (EOL) exceeds 1 × 1021 neutrons/m2 (1 × 1017 n/cm2) at the inside surface of the reactor vessel. 1.3 This practice applies only to the planning and design of surveillance programs for reactor vessels designed and built after the effective date of this practice. Previous versions of Practice E185 apply to earlier reactor vessels. 1.4 This practice does not provide specific procedures for monitoring the radiation induced cha...

  11. Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and-E C H N13,CenterCenterLighting Sign In

  12. Environmentally assisted cracking in light water reactors annual report January - December 2005.

    SciTech Connect (OSTI)

    Alexandreanu, B.; Chen, Y.; Chopra, O. K.; Chung, H. M.; Gruber, E. E.; Shack, W. J.; Soppet, W. K.

    2007-08-31

    This report summarizes work performed from January to December 2005 by Argonne National Laboratory on fatigue and environmentally assisted cracking in light water reactors (LWRs). Existing statistical models for estimating the fatigue life of carbon and low-alloy steels and austenitic stainless steels (SSs) as a function of material, loading, and environmental conditions were updated. Also, the ASME Code fatigue adjustment factors of 2 on stress and 20 on life were critically reviewed to assess the possible conservatism in the current choice of the margins. An approach, based on an environmental fatigue correction factor, for incorporating the effects of LWR environments into ASME Section III fatigue evaluations is discussed. The susceptibility of austenitic stainless steels and their welds to irradiation-assisted stress corrosion cracking (IASCC) is being evaluated as a function of the fluence level, water chemistry, material chemistry, and fabrication history. For this task, crack growth rate (CGR) tests and slow strain rate tensile (SSRT) tests are being conducted on various austenitic SSs irradiated in the Halden boiling water reactor. The SSRT tests are currently focused on investigating the effects of the grain boundary engineering process on the IASCC of the austenitic SSs. The CGR tests were conducted on Type 316 SSs irradiated to 0.45-3.0 dpa, and on sensitized Type 304 SS and SS weld heat-affected-zone material irradiated to 2.16 dpa. The CGR tests on materials irradiated to 2.16 dpa were followed by a fracture toughness test in a water environment. The effects of material composition, irradiation, and water chemistry on growth rates are discussed. The susceptibility of austenitic SS core internals to IASCC and void swelling is also being evaluated for pressurized water reactors. Both SSRT tests and microstructural examinations are being conducted on specimens irradiated in the BOR-60 reactor in Russia to doses up to 20 dpa. Crack growth rate data, obtained in the pressurized water reactor environment, are presented on Ni-alloy welds prepared in the laboratory or obtained from the nozzle-to-pipe weld of the V. C. Summer reactor. The experimental CGRs under cyclic and constant load are compared with the existing CGR data for Ni-alloy welds to determine the relative susceptibility of these materials to environmentally enhanced cracking under a variety of loading conditions.

  13. Advanced dry head-end reprocessing of light water reactor spent nuclear fuel

    SciTech Connect (OSTI)

    Collins, Emory D.; Delcul, Guillermo D.; Hunt, Rodney D.; Johnson, Jared A.; Spencer, Barry B.

    2014-06-10

    A method for reprocessing spent nuclear fuel from a light water reactor includes the step of reacting spent nuclear fuel in a voloxidation vessel with an oxidizing gas having nitrogen dioxide and oxygen for a period sufficient to generate a solid oxidation product of the spent nuclear fuel. The reacting step includes the step of reacting, in a first zone of the voloxidation vessel, spent nuclear fuel with the oxidizing gas at a temperature ranging from 200-450.degree. C. to form an oxidized reaction product, and regenerating nitrogen dioxide, in a second zone of the voloxidation vessel, by reacting oxidizing gas comprising nitrogen monoxide and oxygen at a temperature ranging from 0-80.degree. C. The first zone and the second zone can be separate. A voloxidation system is also disclosed.

  14. Advanced dry head-end reprocessing of light water reactor spent nuclear fuel

    DOE Patents [OSTI]

    Collins, Emory D; Delcul, Guillermo D; Hunt, Rodney D; Johnson, Jared A; Spencer, Barry B

    2013-11-05

    A method for reprocessing spent nuclear fuel from a light water reactor includes the step of reacting spent nuclear fuel in a voloxidation vessel with an oxidizing gas having nitrogen dioxide and oxygen for a period sufficient to generate a solid oxidation product of the spent nuclear fuel. The reacting step includes the step of reacting, in a first zone of the voloxidation vessel, spent nuclear fuel with the oxidizing gas at a temperature ranging from 200-450.degree. C. to form an oxidized reaction product, and regenerating nitrogen dioxide, in a second zone of the voloxidation vessel, by reacting oxidizing gas comprising nitrogen monoxide and oxygen at a temperature ranging from 0-80.degree. C. The first zone and the second zone can be separate. A voloxidation system is also disclosed.

  15. Vibrational spectra of light and heavy water with application to neutron cross section calculations

    SciTech Connect (OSTI)

    Damian, J. I. Marquez; Granada, J. R. [Neutron Physics Department and Instituto Balseiro, Centro Atomico Bariloche, CNEA (Argentina); Malaspina, D. C. [Department of Biomedical Engineering and Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (United States)

    2013-07-14

    The design of nuclear reactors and neutron moderators require a good representation of the interaction of low energy (E < 1 eV) neutrons with hydrogen and deuterium containing materials. These models are based on the dynamics of the material, represented by its vibrational spectrum. In this paper, we show calculations of the frequency spectrum for light and heavy water at room temperature using two flexible point charge potentials: SPC-MPG and TIP4P/2005f. The results are compared with experimental measurements, with emphasis on inelastic neutron scattering data. Finally, the resulting spectra are applied to calculation of neutron scattering cross sections for these materials, which were found to be a significant improvement over library data.

  16. Report from the Light Water Reactor Sustainability Workshop on On-Line Monitoring Technologies

    SciTech Connect (OSTI)

    Thomas Baldwin; Magdy Tawfik; Leonard Bond

    2010-06-01

    In support of expanding the use of nuclear power, interest is growing in methods of determining the feasibility of longer term operation for the U.S. fleet of nuclear power plants, particularly operation beyond 60 years. To help establish the scientific and technical basis for such longer term operation, the DOE-NE has established a research and development (R&D) objective. This objective seeks to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of current reactors. The Light Water Reactor Sustainability (LWRS) Program, which addresses the needs of this objective, is being developed in collaboration with industry R&D programs to provide the technical foundations for licensing and managing the long-term, safe, and economical operation of nuclear power plants. The LWRS Program focus is on longer-term and higher-risk/reward research that contributes to the national policy objectives of energy and environmental security. In moving to identify priorities and plan activities, the Light Water Reactor Sustainability Workshop on On-Line Monitoring (OLM) Technologies was held June 10–12, 2010, in Seattle, Washington. The workshop was run to enable industry stakeholders and researchers to identify the nuclear industry needs in the areas of future OLM technologies and corresponding technology gaps and research capabilities. It also sought to identify approaches for collaboration that would be able to bridge or fill the technology gaps. This report is the meeting proceedings, documenting the presentations and discussions of the workshop and is intended to serve as a basis for a plan which is under development that will enable the I&C research pathway to achieve its goals. Benefits to the nuclear industry accruing from On Line Monitoring Technology cannot be ignored. Information gathered thus far has contributed significantly to the Department of Energy’s Light Water Reactor Sustainability Program. DOE has shown great interest in supplying necessary support to help this industry to move forward as indicated by the recent workshop conducted in support of this interest. The Light Water Reactor Sustainability Workshop on On-Line Monitoring Technologies provided an opportunity for industry stakeholders and researchers to gather in order to collectively identify the nuclear industry’s needs in the areas of OLM technologies including diagnostics, prognostics, and RUL. Additionally, the workshop provided the opportunity for attendees to pinpoint technology gaps and research capabilities along with the fostering of future collaboration in order to bridge the gaps identified. Attendees concluded that a research and development program is critical to future nuclear operations. Program activities would result in enhancing and modernizing the critical capabilities of instrumentation, information, and control technologies for long-term nuclear asset operation and management. Adopting a comprehensive On Line Monitoring research program intends to: • Develop national capabilities at the university and laboratory level • Create or renew infrastructure needed for long-term research, education, and testing • Support development and testing of needed I&C technologies • Improve understanding of, confidence in, and decisions to employ these new technologies in the nuclear power sector and achieve successful licensing and deployment.

  17. Standard Guide for In-Service Annealing of Light-Water Moderated Nuclear Reactor Vessels

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 This guide covers the general procedures to be considered for conducting an in-service thermal anneal of a light-water moderated nuclear reactor vessel and demonstrating the effectiveness of the procedure. The purpose of this in-service annealing (heat treatment) is to improve the mechanical properties, especially fracture toughness, of the reactor vessel materials previously degraded by neutron embrittlement. The improvement in mechanical properties generally is assessed using Charpy V-notch impact test results, or alternatively, fracture toughness test results or inferred toughness property changes from tensile, hardness, indentation, or other miniature specimen testing (1). 1.2 This guide is designed to accommodate the variable response of reactor-vessel materials in post-irradiation annealing at various temperatures and different time periods. Certain inherent limiting factors must be considered in developing an annealing procedure. These factors include system-design limitations; physical constrain...

  18. Passive and inherent safety technologies for light-water nuclear reactors

    SciTech Connect (OSTI)

    Forsberg, C.W.

    1990-07-01

    Passive/inherent safety implies a technical revolution in our approach to nuclear power safety. This direction is discussed herein for light-water reactors (LWRs) -- the predominant type of power reactor used in the world today. At Oak Ridge National Laboratory (ORNL) the approach to the development of passive/inherent safety for LWRs consists of four steps: identify and quantify safety requirements and goals; identify and quantify the technical functional requirements needed for safety; identify, invent, develop, and quantify technical options that meet both of the above requirements; and integrate safety systems into designs of economic and reliable nuclear power plants. Significant progress has been achieved in the first three steps of this program. The last step involves primarily the reactor vendors. These activities, as well as related activities worldwide, are described here. 27 refs., 7 tabs.

  19. Accuracy Based Generation of Thermodynamic Properties for Light Water in RELAP5-3D

    SciTech Connect (OSTI)

    Cliff B. Davis

    2010-09-01

    RELAP5-3D interpolates to obtain thermodynamic properties for use in its internal calculations. The accuracy of the interpolation was determined for the original steam tables currently used by the code. This accuracy evaluation showed that the original steam tables are generally detailed enough to allow reasonably accurate interpolations in most areas needed for typical analyses of nuclear reactors cooled by light water. However, there were some regions in which the original steam tables were judged to not provide acceptable accurate results. Revised steam tables were created that used a finer thermodynamic mesh between 4 and 21 MPa and 530 and 640 K. The revised steam tables solved most of the problems observed with the original steam tables. The accuracies of the original and revised steam tables were compared throughout the thermodynamic grid.

  20. Final report for the Light Water Breeder Reactor proof-of-breeding analytical support project

    SciTech Connect (OSTI)

    Graczyk, D.G.; Hoh, J.C.; Martino, F.J.; Nelson, R.E.; Osudar, J.; Levitz, N.M.

    1987-05-01

    The technology of breeding /sup 233/U from /sup 232/Th in a light water reactor is being developed and evaluated by the Westinghouse Bettis Atomic Power Laboratory (BAPL) through operation and examination of the Shippingport Light Water Breeder Reactor (LWBR). Bettis is determining the end-of-life (EOL) inventory of fissile uranium in the LWBR core by nondestructive assay of a statistical sample comprising approximately 500 EOL fuel rods. This determination is being made with an irradiated-fuel assay gauge based on neutron interrogation and detection of delayed neutrons from each rod. The EOL fissile inventory will be compared with the beginning-of-life fissile loading of the LWBR to determine the extent of breeding. In support of the BAPL proof-of-breeding (POB) effort, Argonne National Laboratory (ANL) carried out destructive physical, chemical, and radiometric analyses on 17 EOL LWBR fuel rods that were previously assayed with the nondestructive gauge. The ANL work included measurements on the intact rods; shearing of the rods into pre-designated contiguous segments; separate dissolution of each of the more than 150 segments; and analysis of the dissolver solutions to determine each segment's uranium content, uranium isotopic composition, and loading of selected fission products. This report describes the facilities in which this work was carried out, details operations involved in processing each rod, and presents a comprehensive discussion of uncertainties associated with each result of the ANL measurements. Most operations were carried out remotely in shielded cells. Automated equipment and procedures, controlled by a computer system, provided error-free data acquisition and processing, as well as full replication of operations with each rod. Despite difficulties that arose during processing of a few rod segments, the ANL destructive-assay results satisfied the demanding needs of the parent LWBR-POB program.

  1. Environmentally assisted cracking in light water reactors - annual report, January-December 2001.

    SciTech Connect (OSTI)

    Chopra, O. K.; Chung, H. M.; Clark, R. W.; Gruber, E. E; Hiller, R. W.; Shack, W. J.; Soppet, W. K.; Strain, R. V.; Energy Technology

    2003-06-01

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors (LWRs) from January to December 2001. Topics that have been investigated include (a) environmental effects on fatigue S-N behavior of austenitic stainless steels (SSs), (b) irradiation-assisted stress corrosion cracking (IASCC) of austenitic SSs, and (c) EAC of Alloy 600. The effects of key material and loading variables, such as strain amplitude, strain rate, temperature, dissolved oxygen (DO) level in water, and material heat treatment, on the fatigue lives of wrought and cast austenitic SSs in air and LWR environments have been evaluated. The mechanism of fatigue crack initiation in austenitic SSs in LWR environments has also been examined. The results indicate that the presence of a surface oxide film or difference in the characteristics of the oxide film has no effect on fatigue crack initiation in austenitic SSs in LWR environments. Slow-strain-rate tensile tests and post-test fractographic analyses were conducted on several model SS alloys irradiated to {approx}2 x 10{sup 21} n {center_dot} cm{sup -2} (E > 1 MeV) ({approx}3 dpa) in He at 289 C in the Halden reactor. The results were used to determine the influence of alloying and impurity elements on the susceptibility of these steels to IASCC. Corrosion fatigue tests were conducted on nonirradiated austenitic SSs in high-purity water at 289 C to establish the test procedure and conditions that will be used for the tests on irradiated materials. A comprehensive irradiation experiment was initiated to obtain many tensile and disk specimens irradiated under simulated pressurized water reactor conditions at {approx}325 C to 5, 10, 20, and 40 dpa. Crack growth tests were completed on 30% cold-worked Alloy 600 in high-purity water under various environmental and loading conditions. The results are compared with data obtained earlier on several heats of Alloy 600 tested in high-DO water under several heat treatment conditions.

  2. Comparative study of plutonium burning in heavy and light water reactors.

    SciTech Connect (OSTI)

    Taiwo, T. A.; Kim, T. K.; Szakaly, F. J.; Hill, R. N.; Yang, W. S.; Dyck, G. R.; Hyland, B.; Edwards, G. W. R.; Nuclear Engineering Division; Atomic Energy Canada Ltd.

    2008-01-01

    There is interest in the U.S. and world-wide in reducing the burden on geological nuclear fuel disposal sites. In some disposal scenarios, the decay heat loading of the surrounding rock limits the commercial spent fuel capacity of the sites. In the long term (100 to 1,500 years), this decay heat is generated primarily by actinides, particularly {sup 241}Am and {sup 241}Pu. One possible approach to reducing this decay-heat burden would be to reprocess commercial spent nuclear fuel and use intermediate-tier thermal reactors to 'burn' these actinides and other transuranics (plutonium and higher actinides). The viability of this approach is dependent on the detailed changes in chemical and isotopic compositions of actinide-bearing fuels after irradiation in thermal reactor spectra. The intermediate-tier thermal burners could bridge the commercial water-cooled reactors and fast reactors required for ultimate consumption of the transuranics generated in the commercial reactors. This would reduce the number of such fast reactors required to complete the mission of burning transuranics. If thermal systems are to be used for the transmutation mission, it is likely that they would be similar to or are advanced versions of the systems currently used for power generation. In both the U.S. and Canada, light- and heavy-water-cooled thermal reactors are used for power generation in the commercial nuclear sector. About 103 pressurized- and boiling- light water reactors (PWRs and BRWs) are deployed in the U.S. nuclear industry while about 18 CANDU (heavy-water-cooled) reactors are used in the Canadian industry. There are substantial differences between light and heavy water-cooled reactors that might affect transmutation potential. These arise from differences in neutron balance of the reactors, in neutron energy spectra, in operational approaches (e.g., continuous refueling enhancing fuel burnup), and so on. A systematic study has been conducted to compare the transmutation potentials of CANDU and PWR systems using (U,Pu)O{sub 2} mixed oxide fuels. First, we examine and compare the isotopic evolution of plutonium-containing fuel under irradiation in these reactor types to understand the physics processes involved. The core-physics parameters to be compared for these systems are generated using two-dimensional lattice physics models for a single fuel assembly that is representative of the whole-core (e.g., using the linear reactivity model). Results from a parametric study of the discharge burnup as a function of the Pu fraction in the initial heavy metal are presented for each system. The Pu consumption level, minor actinides buildup level, and the masses destroyed per unit energy generation are summarized and compared. In addition, assessment results for a simple plutonium recycling concept in realistic CANDU and PWR cores are presented. In these cases, plutonium from commercial spent PWR fuel will be separated and burned in realistic intermediate thermal burner reactors using (U,Pu)O{sub 2} mixed oxide fuel. The spent fuel from this thermal burner will be separated and the resulting Pu will be burned in a second pass through the thermal burner reactor. The resulting transuranics are assumed to then be burned in a fast burner reactor. The impact of using the spent fuels of these systems on the core performance of the fast burner reactor and the required numbers of the various reactor types will be discussed.

  3. Crack initiation in smooth fatigue specimens of austenitic stainless steel in light water reactor environments.

    SciTech Connect (OSTI)

    Chopra, O. K.; Smith, J. L.

    1999-04-08

    The fatigue design curves for structural materials specified in Section III of the ASME Boiler and Pressure Vessel Code are based on tests of smooth polished specimens at room temperature in air. The effects of light water reactor (LWR) coolant environments are not explicitly addressed by the Code design curves; however, recent test data illustrate the detrimental effects of LWR coolant environments on the fatigue resistance of austenitic stainless steels (SSs). Certain loading and environmental conditions have led to test specimen fatigue lives that are significantly shorter than those obtained in air. Results of fatigue tests that examine the influence of reactor environments on crack initiation and crack growth of austenitic SSs are presented. Block loading was used to mark the fracture surface to determine crack length as a function of fatigue cycles in water environments, Crack lengths were measured by scanning electron microscopy. The mechanism for decreased fatigue life in LWR environments is discussed, and crack growth rates in the smooth fatigue specimens are compared with existing data from studies of crack growth rates.

  4. Removal of pollutant compounds from water supplies using ozone, ultraviolet light, and a counter, current packed column. Master's thesis

    SciTech Connect (OSTI)

    Kelly, E.L.

    1991-01-01

    Many water pollutants are determined to be carcinogenic and often appear in very low concentrations and still pose a health risk. Conventional water treatment processes cannot remove these contaminants and there is a great demand for the development of alternative removal technologies. The use of ozone and ultraviolet light in a counter current packed column could prove to be an effective treatment process to remove these contaminants.

  5. Stress corrosion cracking and crack tip characterization of Alloy X-750 in light water reactor environments

    E-Print Network [OSTI]

    Gibbs, Jonathan Paul

    2011-01-01

    Stress corrosion cracking (SCC) susceptibility of Inconel Alloy X-750 in the HTH condition has been evaluated in high purity water at 93 and 288°C under Boiling Water Reactor Normal Water Chemistry (NWC) and Hydrogen Water ...

  6. Stress Corrosion Cracking and Crack Tip Characterization of Alloy X-750 in Light Water Reactor Environments

    E-Print Network [OSTI]

    Gibbs, Jonathan Paul

    Stress corrosion cracking (SCC) susceptibility of Inconel Alloy X-750 in the HTH condition has been evaluated in high purity water at 93 and 288°C under Boiling Water Reactor Normal Water Chemistry (NWC) and Hydrogen Water ...

  7. EIS-0071: Memphis Light, Gas and Water Division Industrial Fuels Gas Demonstration Plant, Memphis, Shelby County, Tennessee

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this EIS to assesses the potential environmental impacts associated with the construction and operation of a 3,155-ton-per-day capacity facility, which will demonstrate the technical operability, economic viability, and environmental acceptability of the Memphis Division of Light, Gas and Water coal gasification plant at Memphis, Tennessee.

  8. EIS-0288-S1: Production of Tritium in a Commercial Light Water Reactor (CLWR) Tritium Readiness Supplemental Environmental Impact Statement

    Broader source: Energy.gov [DOE]

    This Supplemental EIS updates the environmental analyses in DOE’s 1999 EIS for the Production of Tritium in a Commercial Light Water Reactor (CLWR EIS). The CLWR EIS addressed the production of tritium in Tennessee Valley Authority reactors in Tennessee using tritium-producing burnable absorber rods.

  9. 309NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.37 NO.4, AUGUST 2005 A NEW BOOK: "LIGHT-WATER REACTOR MATERIALS"

    E-Print Network [OSTI]

    Motta, Arthur T.

    309NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.37 NO.4, AUGUST 2005 A NEW BOOK: "LIGHT-WATER REACTOR review; it is a book preview. Thirty years ago, "Fundamental Aspects of Nuclear Reactor Fuel Elements of nuclear fuels among other topics pertinent to the materials in the ensemble of the nuclear reactor

  10. Ferritic Alloys as Accident Tolerant Fuel Cladding Material for Light Water Reactors

    SciTech Connect (OSTI)

    Rebak, Raul B.

    2014-12-30

    The objective of the GE project is to demonstrate that advanced steels such as iron-chromium-aluminum (FeCrAl) alloys could be used as accident tolerant fuel cladding material in commercial light water reactors. The GE project does not include fuel development. Current findings support the concept that a FeCrAl alloy could be used for the cladding of commercial nuclear fuel. The use of this alloy will benefit the public since it is going to make the power generating light water reactors safer. In the Phase 1A of this cost shared project, GE (GRC + GNF) teamed with the University of Michigan, Los Alamos National Laboratory, Brookhaven National Laboratory, Idaho National Laboratory, and Oak Ridge National Laboratory to study the environmental and mechanical behavior of more than eight candidate cladding materials both under normal operation conditions of commercial nuclear reactors and under accident conditions in superheated steam (loss of coolant condition). The main findings are as follows: (1) Under normal operation conditions the candidate alloys (e.g. APMT, Alloy 33) showed excellent resistance to general corrosion, shadow corrosion and to environmentally assisted cracking. APMT also showed resistance to proton irradiation up to 5 dpa. (2) Under accident conditions the selected candidate materials showed several orders of magnitude improvement in the reaction with superheated steam as compared with the current zirconium based alloys. (3) Tube fabrication feasibility studies of FeCrAl alloys are underway. The aim is to obtain a wall thickness that is below 400 µm. (4) A strategy is outlined for the regulatory path approval and for the insertion of a lead fuel assembly in a commercial reactor by 2022. (5) The GE team worked closely with INL to have four rodlets tested in the ATR. GE provided the raw stock for the alloys, the fuel for the rodlets and the cost for fabrication/welding of the rodlets. INL fabricated the rodlets and the caps and welded them to provide hermetic seal. The replacement of a zirconium alloy using a ferritic material containing chromium and aluminum appears to be the most near term implementation for accident tolerant nuclear fuels.

  11. Effects of Pulsed Low Frequency Electromagnetic Fields on Water Characterized by Light Scattering Techniques: Role of Bubbles

    E-Print Network [OSTI]

    Vallée, P; Legrand, L; Mentré, P; Monod, M O; Thomas, Y; Vall\\'{e}e, Philippe; Lafait, Jacques; Legrand, Laurent; Mentr\\'{e}, Pascale; Monod, Marie-Odile; Thomas, Yol\\`{e}ne

    2005-01-01

    Well-characterized purified water was exposed for 6 h to pulsed low-frequency weak electromagnetic fields. After various time periods, nondegassed and degassed water samples were analyzed by static light scattering. Just after electromagnetic exposure (day 0), a reduction of over 20% in the maximum light scattering intensity at 488 nm wavelength in both nondegassed and degassed samples was observed. By contrast, on day 12 the difference was observed only in nondegassed water samples. The latter effect was attributed to the different geometries of the containers combined with the basic origin of the whole phenomenon due to gas bubbles present in water. By the use of dynamic light scattering, the bubble mean diameter was estimated to be around 300 nm. Our results suggest that the electromagnetic exposure acts on gas nanobubbles present in water and emphasizes the role of the gas/liquid interface. The possibility that exposure to electromagnetic fields disturbs the ionic double-layer that contributes to bubble s...

  12. Feasibility Study of Supercritical Light Water Cooled Reactors for Electrical Power Production, 5th Quarterly Report, October - December 2002

    SciTech Connect (OSTI)

    Philip MacDonald; Jacopo Buongiorno; Cliff Davis; J. Stephen Herring; Kevan Weaver; Ron Latanision; Bryce Mitton; Gary Was; Luca Oriani; Mario Carelli; Dmitry Paramonov; Lawrence Conway

    2003-01-01

    The overall objective of this project is to evaluate the feasibility of supercritical light water cooled reactors for electric power production. The use of light water at supercritical pressures as the coolant in a nuclear reactor offers the potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies for the power conversion cycle are possible (i.e. up to about 45%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type re-circulation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel and smaller containment building than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed. If no additional moderator is added to the fuel rod lattice, it is possible to attain fast neutron energy spectrum conditions in a supercritical water-cooled reactor (SCWR). This type of core can make use of either fertile or fertile-free fuel and retain a hard spectrum to effectively burn plutonium and minor actinides from LWR spent fuel while efficiently generating electricity. One can also add moderation and design a thermal spectrum SCWR that can also burn actinides. The project is organized into three tasks:

  13. Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production, 3rd Quarterly Report

    SciTech Connect (OSTI)

    Mac Donald, Philip Elsworth

    2002-06-01

    The use of light water at supercritical pressures as the coolant in a nuclear reactor offers the potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to about 45%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type re-circulation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel and smaller containment building than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed.

  14. Survey of Worldwide Light Water Reactor Experience with Mixed Uranium-Plutonium Oxide Fuel

    SciTech Connect (OSTI)

    Cowell, B.S.; Fisher, S.E.

    1999-02-01

    The US and the Former Soviet Union (FSU) have recently declared quantities of weapons materials, including weapons-grade (WG) plutonium, excess to strategic requirements. One of the leading candidates for the disposition of excess WG plutonium is irradiation in light water reactors (LWRs) as mixed uranium-plutonium oxide (MOX) fuel. A description of the MOX fuel fabrication techniques in worldwide use is presented. A comprehensive examination of the domestic MOX experience in US reactors obtained during the 1960s, 1970s, and early 1980s is also presented. This experience is described by manufacturer and is also categorized by the reactor facility that irradiated the MOX fuel. A limited summary of the international experience with MOX fuels is also presented. A review of MOX fuel and its performance is conducted in view of the special considerations associated with the disposition of WG plutonium. Based on the available information, it appears that adoption of foreign commercial MOX technology from one of the successful MOX fuel vendors will minimize the technical risks to the overall mission. The conclusion is made that the existing MOX fuel experience base suggests that disposition of excess weapons plutonium through irradiation in LWRs is a technically attractive option.

  15. Qualification Requirements of Guided Ultrasonic Waves for Inspection of Piping in Light Water Reactors

    SciTech Connect (OSTI)

    Meyer, Ryan M.; Ramuhalli, Pradeep; Doctor, Steven R.; Bond, Leonard J.

    2013-08-01

    Guided ultrasonic waves (GUW) are being increasingly used for both NDT and monitoring of piping. GUW offers advantages over many conventional NDE technologies due to the ability to inspect large volumes of piping components without significant removal of thermal insulation or protective layers. In addition, regions rendered inaccessible to more conventional NDE technologies may be more accessible using GUW techniques. For these reasons, utilities are increasingly considering the use of GUWs for performing the inspection of piping components in nuclear power plants. GUW is a rapidly evolving technology and its usage for inspection of nuclear power plant components requires refinement and qualification to ensure it is able to achieve consistent and acceptable levels of performance. This paper will discuss potential requirements for qualification of GUW techniques for the inspection of piping components in light water reactors (LWRs). The Nuclear Regulatory Commission has adopted ASME Boiler and Pressure Vessel Code requirements in Sections V, III, and XI for nondestructive examination methods, fabrication inspections, and pre-service and in-service inspections. A Section V working group has been formed to place the methodology of GUW into the ASME Boiler and Pressure Vessel Code but no requirements for technique, equipment, or personnel exist in the Code at this time.

  16. Advanced Fuels Campaign Light Water Reactor Accident Tolerant Fuel Performance Metrics Executive Summary

    SciTech Connect (OSTI)

    Shannon Bragg-Sitton

    2014-02-01

    Research and development (R&D) activities on advanced, higher performance Light Water Reactor (LWR) fuels have been ongoing for the last few years. Following the unfortunate March 2011 events at the Fukushima Nuclear Power Plant in Japan, the R&D shifted toward enhancing the accident tolerance of LWRs. Qualitative attributes for fuels with enhanced accident tolerance, such as improved reaction kinetics with steam resulting in slower hydrogen generation rate, provide guidance for the design and development of fuels and cladding with enhanced accident tolerance. A common set of technical metrics should be established to aid in the optimization and down selection of candidate designs on a more quantitative basis. “Metrics” describe a set of technical bases by which multiple concepts can be fairly evaluated against a common baseline and against one another. This report describes a proposed technical evaluation methodology that can be applied to evaluate the ability of each concept to meet performance and safety goals relative to the current UO2 – zirconium alloy system and relative to one another. The resultant ranked evaluation can then inform concept down-selection, such that the most promising accident tolerant fuel design option(s) can continue to be developed toward qualification.

  17. Safeguards and security requirements for weapons plutonium disposition in light water reactors

    SciTech Connect (OSTI)

    Thomas, L.L.; Strait, R.S. [Lawrence Livermore National Lab., CA (United States). Fission Energy and Systems Safety Program

    1994-10-01

    This paper explores the issues surrounding the safeguarding of the plutonium disposition process in support of the United States nuclear weapons dismantlement program. It focuses on the disposition of the plutonium by burning mixed oxide fuel in light water reactors (LWR) and addresses physical protection, material control and accountability, personnel security and international safeguards. The S and S system needs to meet the requirements of the DOE Orders, NRC Regulations and international safeguards agreements. Experience has shown that incorporating S and S measures into early facility designs and integrating them into operations provides S and S that is more effective, more economical, and less intrusive. The plutonium disposition safeguards requirements with which the US has the least experience are the implementation of international safeguards on plutonium metal; the large scale commercialization of the mixed oxide fuel fabrication; and the transportation to and loading in the LWRs of fresh mixed oxide fuel. It is in these areas where the effort needs to be concentrated if the US is to develop safeguards and security systems that are effective and efficient.

  18. Modeling of the performance of weapons MOX fuel in light water reactors

    SciTech Connect (OSTI)

    Alvis, J.; Bellanger, P.; Medvedev, P.G.; Peddicord, K.L.; Gellene, G.I.

    1999-05-01

    Both the Russian Federation and the US are pursing mixed uranium-plutonium oxide (MOX) fuel in light water reactors (LWRs) for the disposition of excess plutonium from disassembled nuclear warheads. Fuel performance models are used which describe the behavior of MOX fuel during irradiation under typical power reactor conditions. The objective of this project is to perform the analysis of the thermal, mechanical, and chemical behavior of weapons MOX fuel pins under LWR conditions. If fuel performance analysis indicates potential questions, it then becomes imperative to assess the fuel pin design and the proposed operating strategies to reduce the probability of clad failure and the associated release of radioactive fission products into the primary coolant system. Applying the updated code to anticipated fuel and reactor designs, which would be used for weapons MOX fuel in the US, and analyzing the performance of the WWER-100 fuel for Russian weapons plutonium disposition are addressed in this report. The COMETHE code was found to do an excellent job in predicting fuel central temperatures. Also, despite minor predicted differences in thermo-mechanical behavior of MOX and UO{sub 2} fuels, the preliminary estimate indicated that, during normal reactor operations, these deviations remained within limits foreseen by fuel pin design.

  19. Accident source terms for Light-Water Nuclear Power Plants. Final report

    SciTech Connect (OSTI)

    Soffer, L.; Burson, S.B.; Ferrell, C.M.; Lee, R.Y.; Ridgely, J.N.

    1995-02-01

    In 1962 tile US Atomic Energy Commission published TID-14844, ``Calculation of Distance Factors for Power and Test Reactors`` which specified a release of fission products from the core to the reactor containment for a postulated accident involving ``substantial meltdown of the core``. This ``source term``, tile basis for tile NRC`s Regulatory Guides 1.3 and 1.4, has been used to determine compliance with tile NRC`s reactor site criteria, 10 CFR Part 100, and to evaluate other important plant performance requirements. During the past 30 years substantial additional information on fission product releases has been developed based on significant severe accident research. This document utilizes this research by providing more realistic estimates of the ``source term`` release into containment, in terms of timing, nuclide types, quantities and chemical form, given a severe core-melt accident. This revised ``source term`` is to be applied to the design of future light water reactors (LWRs). Current LWR licensees may voluntarily propose applications based upon it.

  20. Evaluation of fission gas release in high-burnup light water reactor fuel rods

    SciTech Connect (OSTI)

    Barner, J.O.; Cunningham, M.E.; Freshley, M.D.; Lanning, D.D. )

    1993-05-01

    Research to define the behavior of Zircaloy-clad light water reactor (LWR) UO[sub 2] fuel irradiated to high burnup levels was conducted as part of the High Burnup Effects Program (HBEP). The HBEP was a 12-yr program that ultimately acquired, characterized, irradiated, and examined after irradiation 82 LWR fuel rods ranging in rod-average fuel burnup from 22 to 69 MWd/kgM with a peak pellet burnup of 83 MWd/kg M. A principal emphasis of the HBEP was to evaluate the effect of high burnup on fission gas release. It was confirmed that fission gas release remained as dependent on design and irradiation history parameters at high burnup levels as at low to moderate burnup levels. One observed high-burnup effect was the development of a burnup-dependent microstructure at the fuel pellet surface when pellet-edge burnup exceeded 65 MWd/kgM. This low-temperature rim region' was characterized by a loss of optically definable grain structure, a high volume of porosity, and diffusion of fission gas from the UO[sub 2] matrix to the porosity. Although the rim region has the potential for enhanced fission gas release, it is concluded that no significant enhancement of rod-average fission gas release at high burnup levels was observed for the examined fuel rods.

  1. Plutonium Recycling in Light Water Reactors at Framatome ANP: Status and Trends

    SciTech Connect (OSTI)

    Porsch, Dieter [Framatome ANP GmbH (France); Stach, Walter [Framatome ANP GmbH (France); Charmensat, Pascal [Framatome ANP S.A.S. (France); Pasquet, Michel [Framatome ANP S.A.S. (France)

    2005-08-15

    The civil and military utilization of nuclear power results in continuously increasing stockpiles of spent fuel and separated plutonium. Since fast breeder reactors are at present not available, the majority of spent fuel discharged from commercial nuclear reactors is intended for direct final disposal or designated for interim storage. An effective form of intermediate plutonium storage is recycling in thermal reactors. Recycling of the recovered plutonium in commercial light water reactors (LWRs) is currently practiced in Belgium, France, Germany, and Switzerland. The number of mixed-oxide (MOX) assemblies reloaded each year in a large variety of reactors demonstrates that plutonium recycling in LWRs has reached industrial maturity. The status of experience gained today at Framatome ANP confirms the reliability of the design codes and the suitability of fuel assembly and core designs. The validation database for increasing exposures of MOX fuel is being continuously expanded. This provides the basis for further extending the discharge exposures of MOX assemblies and for licensing the use of higher plutonium concentrations. Options to support the weapons plutonium reduction programs and for the development of advanced MOX assembly designs are investigated.

  2. Swelling in light water reactor internal components: Insights from computational modeling

    SciTech Connect (OSTI)

    Stoller, Roger E.; Barashev, Alexander V.; Golubov, Stanislav I.

    2015-08-01

    A modern cluster dynamics model has been used to investigate the materials and irradiation parameters that control microstructural evolution under the relatively low-temperature exposure conditions that are representative of the operating environment for in-core light water reactor components. The focus is on components fabricated from austenitic stainless steel. The model accounts for the synergistic interaction between radiation-produced vacancies and the helium that is produced by nuclear transmutation reactions. Cavity nucleation rates are shown to be relatively high in this temperature regime (275 to 325°C), but are sensitive to assumptions about the fine scale microstructure produced under low-temperature irradiation. The cavity nucleation rates observed run counter to the expectation that void swelling would not occur under these conditions. This expectation was based on previous research on void swelling in austenitic steels in fast reactors. This misleading impression arose primarily from an absence of relevant data. The results of the computational modeling are generally consistent with recent data obtained by examining ex-service components. However, it has been shown that the sensitivity of the model s predictions of low-temperature swelling behavior to assumptions about the primary damage source term and specification of the mean-field sink strengths is somewhat greater that that observed at higher temperatures. Further assessment of the mathematical model is underway to meet the long-term objective of this research, which is to provide a predictive model of void swelling at relevant lifetime exposures to support extended reactor operations.

  3. Nuclear Systems Enhanced Performance Program, Maintenance Cycle Extension in Advanced Light Water Reactor Design

    SciTech Connect (OSTI)

    Professor Neill Todreas

    2001-10-01

    A renewed interest in new nuclear power generation in the US has spurred interest in developing advanced reactors with features which will address the public's concerns regarding nuclear generation. However, it is economic performance which will dictate whether any new orders for these plants will materialize. Economic performance is, to a great extent, improved by maximizing the time that the plant is on-line generating electricity relative to the time spent off-line conducting maintenance and refueling. Indeed, the strategy for the advanced light water reactor plant IRIS (International Reactor, Innovative and Secure) is to utilize an eight year operating cycle. This report describes a formalized strategy to address, during the design phase, the maintenance-related barriers to an extended operating cycle. The top-level objective of this investigation was to develop a methodology for injecting component and system maintainability issues into the reactor plant design process to overcome these barriers. A primary goal was to demonstrate the applicability and utility of the methodology in the context of the IRIS design. The first step in meeting the top-level objective was to determine the types of operating cycle length barriers that the IRIS design team is likely to face. Evaluation of previously identified regulatory and investment protection surveillance program barriers preventing a candidate operating PWR from achieving an extended (48 month) cycle was conducted in the context of the IRIS design. From this analysis, 54 known IRIS operating cycle length barriers were identified. The resolution methodology was applied to each of these barriers to generate design solution alternatives for consideration in the IRIS design. The methodology developed has been demonstrated to narrow the design space to feasible design solutions which enable a desired operating cycle length, yet is general enough to have broad applicability. Feedback from the IRIS design team indicates that the proposed solutions to the investigated operating cycle length barriers are both feasible and consistent with sound design practice.

  4. Weapons-grade plutonium dispositioning. Volume 4. Plutonium dispositioning in light water reactors

    SciTech Connect (OSTI)

    Sterbentz, J.W.; Olsen, C.S.; Sinha, U.P.

    1993-06-01

    This study is in response to a request by the Reactor Panel Subcommittee of the National Academy of Sciences (NAS) Committee on International Security and Arms Control (CISAC) to evaluate the feasibility of using plutonium fuels (without uranium) for disposal in existing conventional or advanced light water reactor (LWR) designs and in low temperature/pressure LWR designs that might be developed for plutonium disposal. Three plutonium-based fuel forms (oxides, aluminum metallics, and carbides) are evaluated for neutronic performance, fabrication technology, and material and compatibility issues. For the carbides, only the fabrication technologies are addressed. Viable plutonium oxide fuels for conventional or advanced LWRs include plutonium-zirconium-calcium oxide (PuO{sub 2}-ZrO{sub 2}-CaO) with the addition of thorium oxide (ThO{sub 2}) or a burnable poison such as erbium oxide (Er{sub 2}O{sub 3}) or europium oxide (Eu{sub 2}O{sub 3}) to achieve acceptable neutronic performance. Thorium will breed fissile uranium that may be unacceptable from a proliferation standpoint. Fabrication of uranium and mixed uranium-plutonium oxide fuels is well established; however, fabrication of plutonium-based oxide fuels will require further development. Viable aluminum-plutonium metallic fuels for a low temperature/pressure LWR include plutonium aluminide in an aluminum matrix (PuAl{sub 4}-Al) with the addition of a burnable poison such as erbium (Er) or europium (Eu). Fabrication of low-enriched plutonium in aluminum-plutonium metallic fuel rods was initially established 30 years ago and will require development to recapture and adapt the technology to meet current environmental and safety regulations. Fabrication of high-enriched uranium plate fuel by the picture-frame process is a well established process, but the use of plutonium would require the process to be upgraded in the United States to conform with current regulations and minimize the waste streams.

  5. Light Water Reactor Sustainability Program A Reference Plan for Control Room Modernization: Planning and Analysis Phase

    SciTech Connect (OSTI)

    Jacques Hugo; Ronald Boring; Lew Hanes; Kenneth Thomas

    2013-09-01

    The U.S. Department of Energy’s Light Water Reactor Sustainability (LWRS) program is collaborating with a U.S. nuclear utility to bring about a systematic fleet-wide control room modernization. To facilitate this upgrade, a new distributed control system (DCS) is being introduced into the control rooms of these plants. The DCS will upgrade the legacy plant process computer and emergency response facility information system. In addition, the DCS will replace an existing analog turbine control system with a display-based system. With technology upgrades comes the opportunity to improve the overall human-system interaction between the operators and the control room. To optimize operator performance, the LWRS Control Room Modernization research team followed a human-centered approach published by the U.S. Nuclear Regulatory Commission. NUREG-0711, Rev. 3, Human Factors Engineering Program Review Model (O’Hara et al., 2012), prescribes four phases for human factors engineering. This report provides examples of the first phase, Planning and Analysis. The three elements of Planning and Analysis in NUREG-0711 that are most crucial to initiating control room upgrades are: • Operating Experience Review: Identifies opportunities for improvement in the existing system and provides lessons learned from implemented systems. • Function Analysis and Allocation: Identifies which functions at the plant may be optimally handled by the DCS vs. the operators. • Task Analysis: Identifies how tasks might be optimized for the operators. Each of these elements is covered in a separate chapter. Examples are drawn from workshops with reactor operators that were conducted at the LWRS Human System Simulation Laboratory HSSL and at the respective plants. The findings in this report represent generalized accounts of more detailed proprietary reports produced for the utility for each plant. The goal of this LWRS report is to disseminate the technique and provide examples sufficient to serve as a template for other utilities’ projects for control room modernization.

  6. Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems

    SciTech Connect (OSTI)

    D. E. Shropshire

    2009-01-01

    The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program’s understanding of the cost drivers that will determine nuclear power’s cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-iradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

  7. Advanced Fuels Campaign Light Water Reactor Accident Tolerant Fuel Performance Metrics

    SciTech Connect (OSTI)

    Brad Merrill; Melissa Teague; Robert Youngblood; Larry Ott; Kevin Robb; Michael Todosow; Chris Stanek; Mitchell Farmer; Michael Billone; Robert Montgomery; Nicholas Brown; Shannon Bragg-Sitton

    2014-02-01

    The safe, reliable and economic operation of the nation’s nuclear power reactor fleet has always been a top priority for the United States’ nuclear industry. As a result, continual improvement of technology, including advanced materials and nuclear fuels, remains central to industry’s success. Decades of research combined with continual operation have produced steady advancements in technology and yielded an extensive base of data, experience, and knowledge on light water reactor (LWR) fuel performance under both normal and accident conditions. In 2011, following the Great East Japan Earthquake, resulting tsunami, and subsequent damage to the Fukushima Daiichi nuclear power plant complex, enhancing the accident tolerance of LWRs became a topic of serious discussion. As a result of direction from the U.S. Congress, the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) initiated an Accident Tolerant Fuel (ATF) Development program. The complex multiphysics behavior of LWR nuclear fuel makes defining specific material or design improvements difficult; as such, establishing qualitative attributes is critical to guide the design and development of fuels and cladding with enhanced accident tolerance. This report summarizes a common set of technical evaluation metrics to aid in the optimization and down selection of candidate designs. As used herein, “metrics” describe a set of technical bases by which multiple concepts can be fairly evaluated against a common baseline and against one another. Furthermore, this report describes a proposed technical evaluation methodology that can be applied to assess the ability of each concept to meet performance and safety goals relative to the current UO2 – zirconium alloy system and relative to one another. The resultant ranked evaluation can then inform concept down-selection, such that the most promising accident tolerant fuel design option(s) can continue to be developed for lead test rod or lead test assembly insertion into a commercial reactor within the desired timeframe (by 2022).

  8. Light Water Reactor Sustainability Research and Development Program Plan -- Fiscal Year 2009–2013

    SciTech Connect (OSTI)

    Idaho National Laboratory

    2009-12-01

    Nuclear power has reliably and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. By the year 2030, domestic demand for electrical energy is expected to grow to levels of 16 to 36% higher than 2007 levels. At the same time, most currently operating nuclear power plants will begin reaching the end of their 60-year operating licenses. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline—even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary this year. U.S. regulators have begun considering extended operations of nuclear power plants and the research needed to support long-term operations. The Light Water Reactor Sustainability (LWRS) Research and Development (R&D) Program, developed and sponsored by the Department of Energy, is performed in close collaboration with industry R&D programs. The purpose of the LWRS R&D Program is to provide technical foundations for licensing and managing long-term, safe and economical operation of the current operating nuclear power plants. The LWRS R&D Program vision is captured in the following statements: Existing operating nuclear power plants will continue to safely provide clean and economic electricity well beyond their first license- extension period, significantly contributing to reduction of United States and global carbon emissions, enhancement of national energy security, and protection of the environment. There is a comprehensive technical basis for licensing and managing the long-term, safe, economical operation of nuclear power plants. Sustaining the existing operating U.S. fleet also will improve its international engagement and leadership on nuclear safety and security issues.

  9. Wastes from selected activities in two light-water reactor fuel cycles

    SciTech Connect (OSTI)

    Palmer, C.R.; Hill, O.F.

    1980-07-01

    This report presents projected volumes and radioactivities of wastes from the production of electrical energy using light-water reactors (LWR). The projections are based upon data developed for a recent environmental impact statement in which the transuranic wastes (i.e., those wastes containing certain long-lived alpha emitters at concentrations of at least 370 becquerels, or 10 nCi, per gram of waste) from fuel cycle activities were characterized. In addition, since the WG.7 assumed that all fuel cycle wastes except mill tailings are placed in a mined geologic repository, the nontransuranic wastes from several activities are included in the projections reported. The LWR fuel cycles considered are the LWR, once-through fuel cycle (Strategy 1), in which spent fuel is packaged in metal canisters and then isolated in geologic formations; and the LWR U/Pu recycle fuel cycle (Strategy 2), wherein spent fuel is reprocessed for recovery and recycle of uranium and plutonium in LWRs. The wastes projected for the two LWR fuel cycles are summarized. The reactor operations and decommissioning were found to dominate the rate of waste generation in each cycle. These activities account for at least 85% of the fuel cycle waste volume (not including head-end wastes) when normalized to per unit electrical energy generated. At 10 years out of reactor, however, spent fuel elements in Strategy 1 represent 98% of the fuel cycle activity but only 4% of the volume. Similarly, the packaged high-level waste, fuel hulls and hardware in Strategy 2 concentrate greater than 95% of the activity in 2% of the waste volume.

  10. MWCNT/WO{sub 3} nanocomposite photoanode for visible light induced water splitting

    SciTech Connect (OSTI)

    Yousefzadeh, Samira; Reyhani, Ali; Naseri, Naimeh; Moshfegh, Alireza Z.

    2013-08-15

    The Multi-walled carbon nanotube (MWCNT)/WO{sub 3} nanocomposite thin films with different MWCNT’s weight percentages were prepared by sol–gel method as visible light induced photoanode in water splitting reaction. Weight percentage of MWCNT in the all nanocomposite thin films was confirmed by TGA/DSC analysis. According to XPS analysis, oxygenated groups at the surface of the MWCNT and stoichiometric formation of WO{sub 3} thin films were determined, while the crystalline structure of the nanocomposite samples was studied by XRD indicating (0 0 2) peak of MWCNT in the monoclinic phase of WO{sub 3}. The influence of different weight percentage (wt%) of MWCNT on WO{sub 3} photoactivity showed that the electron conductivity, charge transfer and electron life time had improved as compared with the pure WO{sub 3}. Based on linear sweep voltammetry and chronoamperometry measurements, the (1 wt%) MWCNT/WO{sub 3} nanocomposite thin films photoanode has a maximum photocurrent density of ?4.5 A/m{sup 2} and electron life time of about 57 s. - Graphical abstract: Photocurrent density versus time at constant potential (0.7 V) for the WO{sub 3} films containing different MWCNT weight percentages annealed at 400 °C under 1000 Wm{sup ?2} visible photo-illumination. Display Omitted - Highlights: • MWCNT/ WO{sub 3} nanocomposite thin films were synthesized using sol–gel derived method. • TGA/DSC confirmed the weight percentage of MWCNT in the all nanocomposite thin films. • XPS analysis revealed that WO{sub 3} was attached on the oxygenated group of MWCNT surface. • The Highest Photoelectrochemical activity is achieved for (1 wt%)MWCNT/WO{sub 3} thin film.

  11. Bright, Coherent, Ultrafast Soft X-Ray Harmonics Spanning the Water Window from a Tabletop Light Source

    E-Print Network [OSTI]

    M. C. Chen; P. Arpin; T. Popmintchev; M. Gerrity; B. Zhang; M. Seaberg; M. M. Murnane; H. C. Kapteyn

    2010-06-20

    We demonstrate fully phase matched high-order harmonic generation with emission spanning the water window spectral region important for bio- and nano-imaging and a breadth of materials and molecular dynamics studies. We also generate the broadest bright coherent bandwidth (~300eV) to date obtained from any light source, small or large. The harmonic photon flux at 0.5 keV is 10^3 higher than demonstrated previously, making it possible for the first time to demonstrate spatial coherence in the water window. The continuum emission is consistent with a single attosecond burst, that extends bright attosecond pulses into the soft x-ray region.

  12. LIGHT WATER REACTOR SUSTAINABILITY PROGRAM ADVANCED INSTRUMENTATION, INFORMATION, AND CONTROL SYSTEMS TECHNOLOGIES TECHNICAL PROGRAM PLAN FOR 2013

    SciTech Connect (OSTI)

    Hallbert, Bruce; Thomas, Ken

    2014-07-01

    Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

  13. Light Water Reactor Sustainability Program Advanced Instrumentation, Information, and Control Systems Technologies Technical Program Plan for 2013

    SciTech Connect (OSTI)

    Hallbert, Bruce; Thomas, Ken

    2014-09-01

    Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

  14. The use of reduced-moderation light water reactors for transuranic isotope burning in thorium fuel

    E-Print Network [OSTI]

    Lindley, Benjamin A.

    2015-02-03

    -moderation LWRs can improve TRU transmutation performance, but the VC is still severely limiting for these designs. Reduced-moderation pressurized water reactors (RMPWRs) and boiling water reactors (RBWRs) are considered in this study. Using thorium (Th) instead...

  15. Development of Advanced Accident Tolerant Fuels for Commercial Light Water Reactors

    SciTech Connect (OSTI)

    Bragg-Sitton, Shannon M.

    2014-03-01

    The safe, reliable and economic operation of the nation’s nuclear power reactor fleet has always been a top priority for the United States’ nuclear industry. Continual improvement of technology, including advanced materials and nuclear fuels remains central to industry’s success. Decades of research combined with continual operation have produced steady advancements in technology and yielded an extensive base of data, experience, and knowledge on light water reactor (LWR) fuel performance under both normal and accident conditions. Thanks to efforts by both the U.S. government and private companies, nuclear technologies have advanced over time to optimize economic operations in nuclear utilities while ensuring safety. One of the missions of the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) is to develop nuclear fuels and claddings with enhanced accident tolerance. In 2011, following the Great East Japan Earthquake, resulting tsunami, and subsequent damage to the Fukushima Daiichi nuclear power plant complex, enhancing the accident tolerance of LWRs became a topic of serious discussion. As a result of direction from the U.S. Congress, DOE-NE initiated Accident Tolerant Fuel (ATF) development as a primary component of the Fuel Cycle Research & Development (FCRD) Advanced Fuels Campaign (AFC). Prior to the unfortunate events at Fukushima, the emphasis for advanced LWR fuel development was on improving nuclear fuel performance in terms of increased burnup for waste minimization, increased power density for power upgrades, and increased fuel reliability. Fukushima highlighted some undesirable performance characteristics of the standard fuel system during severe accidents, including accelerated hydrogen production under certain circumstances. Thus, fuel system behavior under design basis accident and severe accident conditions became the primary focus for advanced fuels while still striving for improved performance under normal operating conditions to ensure that proposed new fuels will be economically viable. The goal of the ATF development effort is to demonstrate performance with a lead test assembly or lead test rod (LTR) or lead test assembly (LTA) irradiation in a commercial power reactor by 2022. Research and development activities are being conducted at multiple DOE national laboratories, universities and within industry with support from the DOE program. A brief program overview and status are provided.

  16. Environmentally assisted cracking in light water reactors : semiannual report, July 2000 - December 2000.

    SciTech Connect (OSTI)

    Chopra, O. K.; Chung, H. M.; Gruber, E. E.; Shack, W. J.; Soppet, W. K.; Strain, R. V.; Energy Technology

    2002-04-01

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors (LWRs) from July 2000 to December 2000. Topics that have been investigated include (a) environmental effects on fatigue S-N behavior of primary pressure boundary materials, (b) irradiation-assisted stress corrosion cracking (IASCC) of austenitic stainless steels (SSs), and (c) EAC of Alloys 600 and 690. The fatigue strain-vs.-life data are summarized for the effects of various material, loading, and environmental parameters on the fatigue lives of carbon and low-alloy steels and austenitic SSs. Effects of the reactor coolant environment on the mechanism of fatigue crack initiation are discussed. Two methods for incorporating the effects of LWR coolant environments into the ASME Code fatigue evaluations are presented. Slow-strain-rate tensile tests and posttest fractographic analyses were conducted on several model SS alloys irradiated to {approx}0.9 x 10{sup 21} n {center_dot} cm{sup -2} (E > 1 MeV) in He at 289 C in the Halden reactor. The results were used to determine the influence of alloying and impurity elements on the susceptibility of these steels to IASCC. A fracture toughness J-R curve test was conducted on a commercial heat of Type 304 SS that was irradiated to {approx}2.0 x 10{sup 21} n {center_dot} cm{sup -2} in the Halden reactor. The results were compared with the data obtained earlier on steels irradiated to 0.3 and 0.9 x 10{sup 21} n {center_dot} cm{sup -2} (E > 1 MeV) (0.45 and 1.35 dpa). Neutron irradiation at 288 C was found to decrease the fracture toughness of austenitic SSs. Tests were conducted on compact-tension specimens of Alloy 600 under cyclic loading to evaluate the enhancement of crack growth rates in LWR environments. Then, the existing fatigue crack growth data on Alloys 600 and 690 were analyzed to establish the effects of temperature, load ratio, frequency, and stress intensity range on crack growth rates in air.

  17. Development of Advanced Accident Tolerant Fuels for Commercial Light Water Reactors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bragg-Sitton, Shannon M.

    2014-03-01

    The safe, reliable and economic operation of the nation’s nuclear power reactor fleet has always been a top priority for the United States’ nuclear industry. Continual improvement of technology, including advanced materials and nuclear fuels remains central to industry’s success. Decades of research combined with continual operation have produced steady advancements in technology and yielded an extensive base of data, experience, and knowledge on light water reactor (LWR) fuel performance under both normal and accident conditions. Thanks to efforts by both the U.S. government and private companies, nuclear technologies have advanced over time to optimize economic operations in nuclear utilitiesmore »while ensuring safety. One of the missions of the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) is to develop nuclear fuels and claddings with enhanced accident tolerance. In 2011, following the Great East Japan Earthquake, resulting tsunami, and subsequent damage to the Fukushima Daiichi nuclear power plant complex, enhancing the accident tolerance of LWRs became a topic of serious discussion. As a result of direction from the U.S. Congress, DOE-NE initiated Accident Tolerant Fuel (ATF) development as a primary component of the Fuel Cycle Research & Development (FCRD) Advanced Fuels Campaign (AFC). Prior to the unfortunate events at Fukushima, the emphasis for advanced LWR fuel development was on improving nuclear fuel performance in terms of increased burnup for waste minimization, increased power density for power upgrades, and increased fuel reliability. Fukushima highlighted some undesirable performance characteristics of the standard fuel system during severe accidents, including accelerated hydrogen production under certain circumstances. Thus, fuel system behavior under design basis accident and severe accident conditions became the primary focus for advanced fuels while still striving for improved performance under normal operating conditions to ensure that proposed new fuels will be economically viable. The goal of the ATF development effort is to demonstrate performance with a lead test assembly or lead test rod (LTR) or lead test assembly (LTA) irradiation in a commercial power reactor by 2022. Research and development activities are being conducted at multiple DOE national laboratories, universities and within industry with support from the DOE program. A brief program overview and status are provided.« less

  18. 3D Simulation of Missing Pellet Surface Defects in Light Water Reactor Fuel Rods

    SciTech Connect (OSTI)

    B.W. Spencer; J.D. Hales; S.R. Novascone; R.L. Williamson

    2012-09-01

    The cladding on light water reactor (LWR) fuel rods provides a stable enclosure for fuel pellets and serves as a first barrier against fission product release. Consequently, it is important to design fuel to prevent cladding failure due to mechanical interactions with fuel pellets. Cladding stresses can be effectively limited by controlling power increase rates. However, it has been shown that local geometric irregularities caused by manufacturing defects known as missing pellet surfaces (MPS) in fuel pellets can lead to elevated cladding stresses that are sufficiently high to cause cladding failure. Accurate modeling of these defects can help prevent these types of failures. Nuclear fuel performance codes commonly use a 1.5D (axisymmetric, axially-stacked, one-dimensional radial) or 2D axisymmetric representation of the fuel rod. To study the effects of MPS defects, results from 1.5D or 2D fuel performance analyses are typically mapped to thermo-mechanical models that consist of a 2D plane-strain slice or a full 3D representation of the geometry of the pellet and clad in the region of the defect. The BISON fuel performance code developed at Idaho National Laboratory employs either a 2D axisymmetric or 3D representation of the full fuel rod. This allows for a computational model of the full fuel rod to include local defects. A 3D thermo-mechanical model is used to simulate the global fuel rod behavior, and includes effects on the thermal and mechanical behavior of the fuel due to accumulation of fission products, fission gas production and release, and the effects of fission gas accumulation on thermal conductivity across the fuel-clad gap. Local defects can be modeled simply by including them in the 3D fuel rod model, without the need for mapping between two separate models. This allows for the complete set of physics used in a fuel performance analysis to be included naturally in the computational representation of the local defect, and for the effects of the local defect to be coupled with the global fuel rod model. This approach for modeling fuel with MPS defects is demonstrated and compared with alternative techniques. The effects of varying parameters of the MPS defect are studied using this technique and presented here.

  19. Light Water Reactor Sustainability Program Grizzly Year-End Progress Report

    SciTech Connect (OSTI)

    Benjamin Spencer; Yongfeng Zhang; Pritam Chakraborty; S. Bulent Biner; Marie Backman; Brian Wirth; Stephen Novascone; Jason Hales

    2013-09-01

    The Grizzly software application is being developed under the Light Water Reactor Sustainability (LWRS) program to address aging and material degradation issues that could potentially become an obstacle to life extension of nuclear power plants beyond 60 years of operation. Grizzly is based on INL’s MOOSE multiphysics simulation environment, and can simultaneously solve a variety of tightly coupled physics equations, and is thus a very powerful and flexible tool with a wide range of potential applications. Grizzly, the development of which was begun during fiscal year (FY) 2012, is intended to address degradation in a variety of critical structures. The reactor pressure vessel (RPV) was chosen for an initial application of this software. Because it fulfills the critical roles of housing the reactor core and providing a barrier to the release of coolant, the RPV is clearly one of the most safety-critical components of a nuclear power plant. In addition, because of its cost, size and location in the plant, replacement of this component would be prohibitively expensive, so failure of the RPV to meet acceptance criteria would likely result in the shutting down of a nuclear power plant. The current practice used to perform engineering evaluations of the susceptibility of RPVs to fracture is to use the ASME Master Fracture Toughness Curve (ASME Code Case N-631 Section III). This is used in conjunction with empirically based models that describe the evolution of this curve due to embrittlement in terms of a transition temperature shift. These models are based on an extensive database of surveillance coupons that have been irradiated in operating nuclear power plants, but this data is limited to the lifetime of the current reactor fleet. This is an important limitation when considering life extension beyond 60 years. The currently available data cannot be extrapolated with confidence further out in time because there is a potential for additional damage mechanisms (i.e. late blooming phases) to become active later in life beyond the current operational experience. To develop a tool that can eventually serve a role in decision-making, it is clear that research and development must be perfomed at multiple scales. At the engineering scale, a multiphysics analysis code that can capture the thermomechanical response of the RPV under accident conditions, including detailed fracture mechanics evaluations of flaws with arbitrary geometry and orientation, is needed to assess whether the fracture toughness, as defined by the master curve, including the effects of embrittlement, is exceeded. At the atomistic scale, the fundamental mechanisms of degradation need to be understood, including the effects of that degradation on the relevant material properties. In addition, there is a need to better understand the mechanisms leading to the transition from ductile to brittle fracture through improved continuum mechanics modeling at the fracture coupon scale. Work is currently being conducted at all of these levels with the goal of creating a usable engineering tool informed by lower length-scale modeling. This report summarizes progress made in these efforts during FY 2013.

  20. Light-induced water oxidation at silicon electrodes functionalized with a cobalt oxygen-evolving catalyst

    E-Print Network [OSTI]

    Pijpers, Joep J. H.

    Integrating a silicon solar cell with a recently developed cobalt-based water-splitting catalyst (Co-Pi) yields a robust, monolithic, photo-assisted anode for the solar fuels process of water splitting to O2 at neutral pH. ...

  1. Silicon carbide performance as cladding for advanced uranium and thorium fuels for light water reactors

    E-Print Network [OSTI]

    Sukjai, Yanin

    2014-01-01

    There has been an ongoing interest in replacing the fuel cladding zirconium-based alloys by other materials to reduce if not eliminate the autocatalytic and exothermic chemical reaction with water and steam at above 1,200 ...

  2. Feasibility Study of Supercritical Light Water Cooled Reactors for Electric Power Production

    SciTech Connect (OSTI)

    Philip MacDonald; Jacopo Buongiorno; James Sterbentz; Cliff Davis; Robert Witt; Gary Was; J. McKinley; S. Teysseyre; Luca Oriani; Vefa Kucukboyaci; Lawrence Conway; N. Jonsson: Bin Liu

    2005-02-13

    The supercritical water reactor (SCWR) has been the object of interest throughout the nuclear Generation IV community because of its high potential: a simple, direct cycle, compact configuration; elimination of many traditional LWR components, operation at coolant temperatures much higher than traditional LWRs and thus high thermal efficiency. It could be said that the SWR was viewed as the water counterpart to the high temperature gas reactor.

  3. Light Water Reactor Sustainability (LWRS) Program - R&D Roadmap for

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPA PublicLED ADOPTIONto CommercializationLight My Fire...Or9,

  4. Light Water Reactor Sustainability Program: Analysis of Pressurized Water Reactor Station Blackout caused by external flooding using the RISMC toolkit

    SciTech Connect (OSTI)

    Mandelli, Diego; Smith, Curtis; Prescott, Steven; Alfonsi, Andrea; Rabiti, Cristian; Cogliati, Joshua; Kinoshita, Robert

    2014-08-01

    The existing fleet of nuclear power plants is in the process of extending its lifetime and increasing the power generated from these plants via power uprates. In order to evaluate the impacts of these two factors on the safety of the plant, the Risk Informed Safety Margin Characterization project aims to provide insights to decision makers through a series of simulations of the plant dynamics for different initial conditions (e.g., probabilistic analysis and uncertainty quantification). This paper focuses on the impacts of power uprate on the safety margin of a boiling water reactor for a flooding induced station black-out event. Analysis is performed by using a combination of thermal-hydraulic codes and a stochastic analysis tool currently under development at the Idaho National Laboratory, i.e. RAVEN. We employed both classical statistical tools, i.e. Monte-Carlo, and more advanced machine learning based algorithms to perform uncertainty quantification in order to quantify changes in system performance and limitations as a consequence of power uprate. Results obtained give a detailed investigation of the issues associated with a plant power uprate including the effects of station black-out accident scenarios. We were able to quantify how the timing of specific events was impacted by a higher nominal reactor core power. Such safety insights can provide useful information to the decision makers to perform risk informed margins management.

  5. Study of Pu consumption in Advanced Light Water Reactors. Evaluation of GE Advanced Boiling Water Reactor plants

    SciTech Connect (OSTI)

    Not Available

    1993-05-13

    Timely disposal of the weapons plutonium is of paramount importance to permanently safeguarding this material. GE`s 1300 MWe Advanced Boiling Water Reactor (ABWR) has been designed to utilize fill] core loading of mixed uranium-plutonium oxide fuel. Because of its large core size, a single ABWR reactor is capable of disposing 100 metric tons of plutonium within 15 years of project inception in the spiking mode. The same amount of material could be disposed of in 25 years after the start of the project as spent fuel, again using a single reactor, while operating at 75 percent capacity factor. In either case, the design permits reuse of the stored spent fuel assemblies for electrical energy generation for the remaining life of the plant for another 40 years. Up to 40 percent of the initial plutonium can also be completely destroyed using ABWRS, without reprocessing, either by utilizing six ABWRs over 25 years or by expanding the disposition time to 60 years, the design life of the plants and using two ABWRS. More complete destruction would require the development and testing of a plutonium-base fuel with a non-fertile matrix for an ABWR or use of an Advanced Liquid Metal Reactor (ALMR). The ABWR, in addition, is fully capable of meeting the tritium target production goals with already developed target technology.

  6. Fatigue crack initiation in carbon and low-alloy steels in light water reactor environments : mechanism and prediction.

    SciTech Connect (OSTI)

    Chopra, O. K.; Shack, W. J.

    1998-01-27

    Section 111 of the ASME Boiler and Pressure Vessel Code specifies fatigue design curves for structural materials. The effects of reactor coolant environments are not explicitly addressed by the Code design curves. Recent test data illustrate potentially significant effects of light water reactor (LWR) coolant environments on the fatigue resistance of carbon and low-alloy steels. Under certain loading and environmental conditions, fatigue lives of test specimens may be shorter than those in air by a factor of {approx}70. The crack initiation and crack growth characteristics of carbon and low-alloy steels in LWR environments are presented. Decreases in fatigue life of these steels in high-dissolved-oxygen water are caused primarily by the effect of environment on growth of short cracks < 100 {micro}m in depth. The material and loading parameters that influence fatigue life in LWR environments are defined. Fatigue life is decreased significantly when five conditions are satisfied simultaneously, viz., applied strain range, service temperature, dissolved oxygen in water, and S content in steel are above a threshold level, and loading strain rate is below a threshold value. Statistical models have been developed for estimating the fatigue life of these steels in LWR environments. The significance of the effect of environment on the current Code design curve is evaluated.

  7. FEASIBILITY OF RECYCLING PLUTONIUM AND MINOR ACTINIDES IN LIGHT WATER REACTORS USING HYDRIDE FUEL

    SciTech Connect (OSTI)

    Greenspan, Ehud; Todreas, Neil; Taiwo, Temitope

    2009-03-10

    The objective of this DOE NERI program sponsored project was to assess the feasibility of improving the plutonium (Pu) and minor actinide (MA) recycling capabilities of pressurized water reactors (PWRs) by using hydride instead of oxide fuels. There are four general parts to this assessment: 1) Identifying promising hydride fuel assembly designs for recycling Pu and MAs in PWRs 2) Performing a comprehensive systems analysis that compares the fuel cycle characteristics of Pu and MA recycling in PWRs using the promising hydride fuel assembly designs identified in Part 1 versus using oxide fuel assembly designs 3) Conducting a safety analysis to assess the likelihood of licensing hydride fuel assembly designs 4) Assessing the compatibility of hydride fuel with cladding materials and water under typical PWR operating conditions Hydride fuel was found to offer promising transmutation characteristics and is recommended for further examination as a possible preferred option for recycling plutonium in PWRs.

  8. Condensing Heating and Water Heating Equipment Workshop Location: Washington Gas Light Appliance Training Facility

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p aDepartment ofCommercialEnergyDepartment ofHeating and Water

  9. Light Water Reactor Sustainability Program Risk-Informed Safety Margins Characterization (RISMC) PathwayTechnical Program Plan

    SciTech Connect (OSTI)

    Curtis Smith; Cristian Rabiti; Richard Martineau

    2012-11-01

    Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). As the current Light Water Reactor (LWR) NPPs age beyond 60 years, there are possibilities for increased frequency of Systems, Structures, and Components (SSCs) degradations or failures that initiate safety-significant events, reduce existing accident mitigation capabilities, or create new failure modes. Plant designers commonly “over-design” portions of NPPs and provide robustness in the form of redundant and diverse engineered safety features to ensure that, even in the case of well-beyond design basis scenarios, public health and safety will be protected with a very high degree of assurance. This form of defense-in-depth is a reasoned response to uncertainties and is often referred to generically as “safety margin.” Historically, specific safety margin provisions have been formulated, primarily based on “engineering judgment.”

  10. An Estimate of the Cost of Electricity from Light Water Reactors and Fossil Plants with Carbon Capture and Sequestration

    SciTech Connect (OSTI)

    Simon, A J

    2009-08-21

    As envisioned in this report, LIFE technology lends itself to large, centralized, baseload (or 'always on') electrical generation. Should LIFE plants be built, they will have to compete in the electricity market with other generation technologies. We consider the economics of technologies with similar operating characteristics: significant economies of scale, limited capacity for turndown, zero dependence on intermittent resources and ability to meet environmental constraints. The five generation technologies examined here are: (1) Light Water Reactors (LWR); (2) Coal; (3) Coal with Carbon Capture and Sequestration (CCS); (4) Natural Gas; and (5) Natural Gas with Carbon Capture and Sequestration. We use MIT's cost estimation methodology (Du and Parsons, 2009) to determine the cost of electricity at which each of these technologies is viable.

  11. Dose rate estimates from irradiated light-water-reactor fuel assemblies in air

    SciTech Connect (OSTI)

    Lloyd, W.R.; Sheaffer, M.K.; Sutcliffe, W.G.

    1994-01-31

    It is generally considered that irradiated spent fuel is so radioactive (self-protecting) that it can only be moved and processed with specialized equipment and facilities. However, a small, possibly subnational, group acting in secret with no concern for the environment (other than the reduction of signatures) and willing to incur substantial but not lethal radiation doses, could obtain plutonium by stealing and processing irradiated spent fuel that has cooled for several years. In this paper, we estimate the dose rate at various distances and directions from typical pressurized-water reactor (PWR) and boiling-water reactor (BWR) spent-fuel assemblies as a function of cooling time. Our results show that the dose rate is reduced rapidly for the first ten years after exposure in the reactor, and that it is reduced by a factor of {approx}10 (from the one year dose rate) after 15 years. Even for fuel that has cooled for 15 years, a lethal dose (LD50) of 450 rem would be received at 1 m from the center of the fuel assembly after several minutes. However, moving from 1 to 5 m reduces the dose rate by over a factor of 10, and moving from 1 to 10 m reduces the dose rate by about a factor of 50. The dose rates 1 m from the top or bottom of the assembly are considerably less (about 10 and 22%, respectively) than 1 m from the center of the assembly, which is the direction of the maximum dose rate.

  12. Design of a proteus lattice representative of a burnt and fresh fuel interface at power conditions in light water reactors

    SciTech Connect (OSTI)

    Hursin, M.; Perret, G. [Paul Scherrer Institut (PSI), 5232 Villigen (Switzerland)

    2012-07-01

    The research program LIFE (Large-scale Irradiated Fuel Experiment) between PSI and Swissnuclear has been started in 2006 to study the interaction between large sets of burnt and fresh fuel pins in conditions representative of power light water reactors. Reactor physics parameters such as flux ratios and reaction rate distributions ({sup 235}U and {sup 238}U fissions and {sup 238}U capture) are calculated to estimate an appropriate arrangement of burnt and fresh fuel pins within the central element of the test zone of the zero-power research reactor PROTEUS. The arrangement should minimize the number of burnt fuel pins to ease fuel handling and reduce costs, whilst guaranteeing that the neutron spectrum in both burnt and fresh fuel regions and at their interface is representative of a large uniform array of burnt and fresh pins in the same moderation conditions. First results are encouraging, showing that the burnt/fresh fuel interface is well represented with a 6 x 6 bundle of burnt pins. The second part of the project involves the use of TSUNAMI, CASMO-4E and DAKOTA to perform parametric and optimization studies on the PROTEUS lattice by varying its pitch (P) and fraction of D{sub 2}O in moderator (F{sub D2O}) to be as representative as possible of a power light water reactor core at hot full power conditions at beginning of cycle (BOC). The parameters P and F{sub D2O} that best represent a PWR at BOC are 1.36 cm and 5% respectively. (authors)

  13. LWR (Light Water Reactor) power plant simulations using the AD10 and AD100 systems

    SciTech Connect (OSTI)

    Wulff, W.; Cheng, H.S.; Chien, C.J.; Jang, J.Y.; Lin, H.C.; Mallen, A.N.; Wang, S.J. (Brookhaven National Lab., Upton, NY (USA); Institute of Nuclear Energy Research, Lung-Tan (Taiwan); Tawian Power Co., Taipei (Taiwan); Brookhaven National Lab., Upton, NY (USA); Institute of Nuclear Energy Research, Lung-Tan (Taiwan))

    1989-01-01

    Boiling (BWR) and Pressurized (PWR) Water Reactor Power Plants are being simulated at BNL with the AD10 and AD100 Peripheral Processor Systems. The AD10 system has been used for BWR simulations since 1984 for safety analyses, emergency training and optimization studies. BWR simulation capabilities have been implemented recently on the AD100 system and PWR simulation capabilities are currently being developed under the auspices of international cooperation. Modeling and simulation methods are presented with emphasis on the simulation of the Nuclear Steam Supply System. Results are presented for BWR simulation and performance characteristics are compared of the AD10 and AD100 systems. It will be shown that the AD100 simulates two times faster than two AD10 processors operating in parallel and that the computing capacity of one AD100 (with FMU processor) is twice as large as that of two AD10 processors. 9 refs., 5 figs., 1 tab.

  14. A new class of photo-catalytic materials and a novel principle for efficient water splitting under infrared and visible light - MgB2 as unexpected example

    E-Print Network [OSTI]

    Kravets, V G

    2015-01-01

    Water splitting is unanimously recognized as environment friendly, potentially low cost and renewable energy solution based on the future hydrogen economy. Especially appealing is photo-catalytic water splitting whereby a suitably chosen catalyst dramatically improves efficiency of the hydrogen production driven by direct sunlight and allows it to happen even at zero driving potential. Here, we suggest a new class of stable photo-catalysts and the corresponding principle for catalytic water splitting in which infrared and visible light play the main role in producing the photocurrent and hydrogen. The new class of catalysts based on ionic binary metals with layered graphite-like structures which effectively absorb visible and infrared light facilitating the reaction of water splitting, suppress the inverse reaction of ion recombination by separating ions due to internal electric fields existing near alternating layers, provide the sites for ion trapping of both polarities, and finally deliver the electrons an...

  15. A REVIEW OF LIGHT-WATER REACTOR SAFETY STUDIES. VOLUME 3 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01

    Charges Relating to Nuclear Reactor Safety," 1976, availablestudies of light-water nuclear reactor safety, emphasizingstudies of overall nuclear reactor safety have been

  16. A REVIEW OF LIGHT-WATER REACTOR SAFETY STUDIES. VOLUME 3 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01

    discussed, between the Nuclear safety assurance and riskCharges Relating to Nuclear Reactor Safety," 1976, availableof light-water nuclear reactor safety, emphasizing the

  17. Thermal neutron steady-state spectra in light water reactor fuel assemblies poisoned with various non-1/v absorbers of different concentrations

    SciTech Connect (OSTI)

    Swaminathan, K.; Chandra, S.; Jha, R.C.; Tewari, S.P. )

    1991-07-01

    This paper reports on the thermal neutron scattering kernel that explicitly incorporates the presence of chemical binding energy and the collective oscillations in the dynamics of water, the steady-state thermal neutron spectra in light water reactor fuel assemblies poisoned with non-1/v absorbers, such as cadmium, samarium, erbium, and gadolinium, in various concentrations have been computed at 298 K. The calculated spectra are in reasonable agreement with the corresponding experimental spectra for realistic source terms.

  18. Mechanism of Irradiation Assisted Cracking of Core Components in Light Water Reactors

    SciTech Connect (OSTI)

    Gary S. Was; Michael Atzmon; Lumin Wang

    2003-04-28

    The overall goal of the project is to determine the mechanism of irradiation assisted stress corrosion cracking (IASCC). IASCC has been linked to hardening, microstructural and microchemical changes during irradiation. Unfortunately, all of these changes occur simultaneously and at similar rates during irradiation, making attribution of IASCC to any one of these features nearly impossible to determine. The strategy set forth in this project is to develop means to separate microstructural from microchemical changes to evaluate each separately for their effect on IASCC. In the first part, post irradiation annealing (PIA) treatments are used to anneal the irradiated microstructure, leaving only radiation induced segregation (RIS) for evaluation for its contribution to IASCC. The second part of the strategy is to use low temperature irradiation to produce a radiation damage dislocation loop microstructure without radiation induced segregation in order to evaluate the effect of the dislocation microstructure alone. A radiation annealing model was developed based on the elimination of dislocation loops by vacancy absorption. Results showed that there were indeed, time-temperature annealing combinations that leave the radiation induced segregation profile largely unaltered while the dislocation microstructure is significantly reduced. Proton irradiation of 304 stainless steel irradiated with 3.2 MeV protons to 1.0 or 2.5 dpa resulted in grain boundary depletion of chromium and enrichment of nickel and a radiation damaged microstructure. Post irradiation annealing at temperatures of 500 ? 600°C for times of up to 45 min. removed the dislocation microstructure to a greater degree with increasing temperatures, or times at temperature, while leaving the radiation induced segregation profile relatively unaltered. Constant extension rate tensile (CERT) experiments in 288°C water containing 2 ppm O2 and with a conductivity of 0.2 mS/cm and at a strain rate of 3 x 10-7 s-1 showed that the IASCC susceptibility, as measured by the crack length per unit strain, decreased with very short anneals and was almost completely removed by an anneal at 500°C for 45 min. This annealing treatment removed about 15% of the dislocation microstructure and the irradiation hardening, but did not affect the grain boundary chromium depletion or nickel segregation, nor did it affect the grain boundary content of other minor impurities. These results indicate that RIS is not the sole controlling feature of IASCC in irradiated stainless steels in normal water chemistry. The isolation of the irradiated microstructure was approached using low temperature irradiation or combinations of low and high temperature irradiations to achieve a stable, irradiated microstructure without RIS. Experiments were successful in achieving a high degree of irradiation hardening without any evidence of RIS of either major or minor elements. The low temperature irradiations to doses up to 0.3 dpa at T<75°C were also very successful in producing hardening to levels considerably above that for irradiations conducted under nominal conditions of 1 dpa at 360°C. However, the microstructure consisted of an extremely fine dispersion of defect clusters of sizes that are not resolvable by either transmission electron microscopy (TEM) or small angle x-ray scattering (SAXS). The microstructure was not stable at the 288°C IASCC test temperature and resulted in rapid reduction of hardening and presumably, annealing of the defect clusters at this temperature as well. Nevertheless, the annealing studies showed that treatments that resulted in significant decreases in the hardening produced small changes in the dislocation microstructure that were confined to the elimination of the finest of loops (~1 nm). These results substantiate the importance of the very fine defect microstructure in the IASCC process. The results of this program provide the first definitive evidence that RIS is not the sole controlling factor in the irradiation assisted stress corrosion cracking of austenitic stain

  19. Light Water Reactor Sustainability Program: Computer-based procedure for field activities: results from three evaluations at nuclear power plants

    SciTech Connect (OSTI)

    Oxstrand, Johanna; Bly, Aaron; LeBlanc, Katya

    2014-09-01

    Nearly all activities that involve human interaction with the systems of a nuclear power plant are guided by procedures. The paper-based procedures (PBPs) currently used by industry have a demonstrated history of ensuring safety; however, improving procedure use could yield tremendous savings in increased efficiency and safety. One potential way to improve procedure-based activities is through the use of computer-based procedures (CBPs). Computer-based procedures provide the opportunity to incorporate context driven job aids, such as drawings, photos, just-in-time training, etc into CBP system. One obvious advantage of this capability is reducing the time spent tracking down the applicable documentation. Additionally, human performance tools can be integrated in the CBP system in such way that helps the worker focus on the task rather than the tools. Some tools can be completely incorporated into the CBP system, such as pre-job briefs, placekeeping, correct component verification, and peer checks. Other tools can be partly integrated in a fashion that reduces the time and labor required, such as concurrent and independent verification. Another benefit of CBPs compared to PBPs is dynamic procedure presentation. PBPs are static documents which limits the degree to which the information presented can be tailored to the task and conditions when the procedure is executed. The CBP system could be configured to display only the relevant steps based on operating mode, plant status, and the task at hand. A dynamic presentation of the procedure (also known as context-sensitive procedures) will guide the user down the path of relevant steps based on the current conditions. This feature will reduce the user’s workload and inherently reduce the risk of incorrectly marking a step as not applicable and the risk of incorrectly performing a step that should be marked as not applicable. As part of the Department of Energy’s (DOE) Light Water Reactors Sustainability Program, researchers at Idaho National Laboratory (INL) along with partners from the nuclear industry have been investigating the design requirements for computer-based work instructions (including operations procedures, work orders, maintenance procedures, etc.) to increase efficiency, safety, and cost competitiveness of existing light water reactors.

  20. Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production Progress Report for Year 1, Quarter 2 (January - March 2002)

    SciTech Connect (OSTI)

    Mac Donald, Philip Elsworth; Buongiorno, Jacopo; Davis, Cliff Bybee; Weaver, Kevan Dean

    2002-03-01

    The use of light water at supercritical pressures as the coolant in a nuclear reactor offers the potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to about 45%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type re-circulation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel and smaller containment building than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed.

  1. 3D PIC simulations of electron beams created via reflection of intense laser light from a water target

    E-Print Network [OSTI]

    Ngirmang, Gregory K; Feister, Scott; Morrison, John T; Chowdhury, Enam A; Frische, Kyle; Roquemore, W M

    2015-01-01

    We present 3D Particle-in-Cell (PIC) modeling of an ultra-intense laser experiment by the Extreme Light group at the Air Force Research Laboratory (AFRL) using the PIC code LSP. This is the first time PIC simulations have been performed in 3D for this experiment which involves an ultra-intense, short-pulse (30 fs) laser interacting with a water jet target at normal incidence. These 3D PIC simulation results are compared to results from 2D(3$v$) PIC simulations for both $5.4\\cdot10^{17}$ W cm$^{-2}$ and $3\\cdot10^{18}$ W cm$^{-2}$ intensities. Comparing the 2D(3$v$) and 3D simulation results, the laser-energy-to-ejected-electron-energy conversion efficiencies were comparable, but the angular distribution of ejected electrons show interesting differences with qualitative differences at higher intensity. An analytic plane-wave model is provided that provides some explanation for the angular distribution and energies of ejected electrons in the 2D(3$v$) simulations. We also performed a 3D simulation with circular...

  2. Human-In-The-Loop Simulation in Support of Long-Term Sustainability of Light Water Reactors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hallbert, Bruce P

    2015-01-01

    Reliable instrumentation, information, and control systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration. The NPP owners and operators realize that this analog technology represents a significant challenge to sustaining the operation of the current fleet of NPPs. Beyond control systems, new technologies are neededmore »to monitor and characterize the effects of aging and degradation in critical areas of key structures, systems, and components. The objective of the efforts sponsored by the U.S. Department of Energy is to develop, demonstrate, and deploy new digital technologies for II&C architectures and provide monitoring capabilities to ensure the continued safe, reliable, and economic operation of the nation’s NPPs.« less

  3. A global approach of the representativity concept: Application on a high-conversion light water reactor MOX lattice case

    SciTech Connect (OSTI)

    Santos, N. D.; Blaise, P.; Santamarina, A.

    2013-07-01

    The development of new types of reactor and the increase in the safety specifications and requirements induce an enhancement in both nuclear data knowledge and a better understanding of the neutronic properties of the new systems. This enhancement is made possible using ad hoc critical mock-up experiments. The main difficulty is to design these experiments in order to obtain the most valuable information. Its quantification is usually made by using representativity and transposition concepts. These theories enable to extract some information about a quantity of interest (an integral parameter) on a configuration, but generally a posteriori. This paper presents a more global approach of this theory, with the idea of optimizing the representativity of a new experiment, and its transposition a priori, based on a multiparametric approach. Using a quadratic sum, we show the possibility to define a global representativity which permits to take into account several quantities of interest at the same time. The maximization of this factor gives information about all quantities of interest. An optimization method of this value in relation to technological parameters (over-clad diameter, atom concentration) is illustrated on a high-conversion light water reactor MOX lattice case. This example tackles the problematic of plutonium experiment for the plutonium aging and a solution through the optimization of both the over-clad and the plutonium content. (authors)

  4. Human-In-The-Loop Simulation in Support of Long-Term Sustainability of Light Water Reactors

    SciTech Connect (OSTI)

    Hallbert, Bruce P

    2015-01-01

    Reliable instrumentation, information, and control systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration. The NPP owners and operators realize that this analog technology represents a significant challenge to sustaining the operation of the current fleet of NPPs. Beyond control systems, new technologies are needed to monitor and characterize the effects of aging and degradation in critical areas of key structures, systems, and components. The objective of the efforts sponsored by the U.S. Department of Energy is to develop, demonstrate, and deploy new digital technologies for II&C architectures and provide monitoring capabilities to ensure the continued safe, reliable, and economic operation of the nation’s NPPs.

  5. Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel Research and Development by the Light Water Reactor Sustainability Program

    SciTech Connect (OSTI)

    Smith, Cyrus M [ORNL; Nanstad, Randy K [ORNL; Clayton, Dwight A [ORNL; Matlack, Katie [Georgia Institute of Technology; Ramuhalli, Pradeep [Pacific Northwest National Laboratory (PNNL); Light, Glenn [Southwest Research Institute, San Antonio

    2012-09-01

    The Department of Energy s (DOE) Light Water Reactor Sustainability (LWRS) Program is a five year effort which works to develop the fundamental scientific basis to understand, predict, and measure changes in materials and systems, structure, and components as they age in environments associated with continued long-term operations of existing commercial nuclear power reactors. This year, the Materials Aging and Degradation (MAaD) Pathway of this program has placed emphasis on emerging Non-Destructive Evaluation (NDE) methods which support these objectives. DOE funded Research and Development (R&D) on emerging NDE techniques to support commercial nuclear reactor sustainability is expected to begin next year. This summer, the MAaD Pathway invited subject matter experts to participate in a series of workshops which developed the basis for the research plan of these DOE R&D NDE activities. This document presents the results of one of these workshops which are the DOE LWRS NDE R&D Roadmap for Reactor Pressure Vessels (RPV). These workshops made a substantial effort to coordinate the DOE NDE R&D with that already underway or planned by the Electric Power Research Institute (EPRI) and the Nuclear Regulatory Commission (NRC) through their representation at these workshops.

  6. City of Azusa, California (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIRChurch Point, Louisiana:Alpha,Augusta, Kansas (UtilityAztec,

  7. Assessment of Possible Cycle Lengths for Fully-Ceramic Micro-Encapsulated Fuel-Based Light Water Reactor Concepts

    SciTech Connect (OSTI)

    R. Sonat Sen; Michael A. Pope; Abderrafi M. Ougouag; Kemal O. Pasamehmetoglu

    2012-04-01

    The tri-isotropic (TRISO) fuel developed for High Temperature reactors is known for its extraordinary fission product retention capabilities [1]. Recently, the possibility of extending the use of TRISO particle fuel to Light Water Reactor (LWR) technology, and perhaps other reactor concepts, has received significant attention [2]. The Deep Burn project [3] currently focuses on once-through burning of transuranic fissile and fissionable isotopes (TRU) in LWRs. The fuel form for this purpose is called Fully-Ceramic Micro-encapsulated (FCM) fuel, a concept that borrows the TRISO fuel particle design from high temperature reactor technology, but uses SiC as a matrix material rather than graphite. In addition, FCM fuel may also use a cladding made of a variety of possible material, again including SiC as an admissible choice. The FCM fuel used in the Deep Burn (DB) project showed promising results in terms of fission product retention at high burnup values and during high-temperature transients. In the case of DB applications, the fuel loading within a TRISO particle is constituted entirely of fissile or fissionable isotopes. Consequently, the fuel was shown to be capable of achieving reasonable burnup levels and cycle lengths, especially in the case of mixed cores (with coexisting DB and regular LWR UO2 fuels). In contrast, as shown below, the use of UO2-only FCM fuel in a LWR results in considerably shorter cycle length when compared to current-generation ordinary LWR designs. Indeed, the constraint of limited space availability for heavy metal loading within the TRISO particles of FCM fuel and the constraint of low (i.e., below 20 w/0) 235U enrichment combine to result in shorter cycle lengths compared to ordinary LWRs if typical LWR power densities are also assumed and if typical TRISO particle dimensions and UO2 kernels are specified. The primary focus of this summary is on using TRISO particles with up to 20 w/0 enriched uranium kernels loaded in Pressurized Water Reactor (PWR) assemblies. In addition to consideration of this 'naive' use of TRISO fuel in LWRs, several refined options are briefly examined and others are identified for further consideration including the use of advanced, high density fuel forms and larger kernel diameters and TRISO packing fractions. The combination of 800 {micro}m diameter kernels of 20% enriched UN and 50% TRISO packing fraction yielded reactivity sufficient to achieve comparable burnup to present-day PWR fuel.

  8. A REVIEW OF LIGHT-WATER REACTOR SAFETY STUDIES. VOLUME 3 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01

    of Michigan for the Atomic Power Development Association).light-water power plants now the Atomic Energy resides withU.S. Atomic Energy Commission, "The, Safety of Nuclear Power

  9. Nanotechnology creates potential for enhanced quality of life light-emitting diodes for energy-efficient water purification, new

    E-Print Network [OSTI]

    Linke, Heiner

    -efficient water purification into a reality, along with high-efficiency solar power cells and new methods-efficient water purification, new energy-saving electronic components, high-efficiency solar cells and new methods is home to one of the world's leading research environments in the field, the Nanometer Structure

  10. Investigation of the use of nanofluids to enhance the In-Vessel Retention capabilities of Advanced Light Water Reactors

    E-Print Network [OSTI]

    Hannink, Ryan Christopher

    2007-01-01

    Nanofluids at very low concentrations experimentally exhibit a substantial increase in Critical Heat Flux (CHF) compared to water. The use of a nanofluid in the In-Vessel Retention (IVR) severe accident management strategy, ...

  11. Feasibility Study of Supercritical Light Water Cooled Reactors for Electric Power Production, Progress Report for Work Through September 2003, 2nd Annual/8th Quarterly Report

    SciTech Connect (OSTI)

    Philip E. MacDonald

    2003-09-01

    The supercritical water-cooled reactor (SCWR) is one of the six reactor technologies selected for research and development under the Generation-IV program. SCWRs are promising advanced nuclear systems because of their high thermal efficiency (i.e., about 45% vs. about 33% efficiency for current Light Water Reactors, LWRs) and considerable plant simplification. SCWRs are basically LWRs operating at higher pressure and temperatures with a direct once-through cycle. Operation above the critical pressure eliminates coolant boiling, so the coolant remains single-phase throughout the system. Thus the need for recirculation and jet pumps, a pressurizer, steam generators, steam separators and dryers is eliminated. The main mission of the SCWR is generation of low-cost electricity. It is built upon two proven technologies, LWRs, which are the most commonly deployed power generating reactors in the world, and supercritical fossil-fired boilers, a large number of which is also in use around the world.

  12. Meso-porous ?-Fe{sub 2}O{sub 3} thin films synthesized via the sol-gel process for light-driven water oxidation

    SciTech Connect (OSTI)

    Hamd, Wael; Laberty-Robert, Christel; Sanchez, Clement [Laboratoire de Chimie de la Matiere Condensee de Paris-UMR 7574, Universite Paris 6, College de France, 11 place Marcelin Berthelot 75005, Paris, (France); Cobo, Saioa; Fize, Jennifer; Artero, Vincent [Laboratoire de Chimie et Biologie des Metaux, Universite Grenoble 1, CNRS, CEA, 17 rue des Martyrs 38054, Grenoble Cedex 9, (France); Baldinozzi, Gianguido [SPMS, MFE, CNRS-Ecole Centrale Paris et CEA, DEN, DMN, 91191 Gif-sur-Yvette, (France); Schwartz, Wilfrid; Reymermier, Maryse; Pereira, Alexandre [CEA Institut Liten, DTNM/L2CE, 17 rue des Martyrs 38054, Grenoble Cedex 9, (France); Fontecave, Marc [Laboratoire de Chimie et Biologie des Metaux, Universite Grenoble 1, CNRS, CEA, 17 rue des Martyrs 38054, Grenoble Cedex 9, (France); SPMS, MFE, CNRS-Ecole Centrale Paris et CEA, DEN, DMN, 91191 Gif-sur-Yvette, (France)

    2012-07-01

    This work reports a facile and cost-effective method for synthesizing photoactive ?-Fe{sub 2}O{sub 3} films as well as their performances when used as photoanodes for water oxidation. Transparent ?-Fe{sub 2}O{sub 3} meso-porous films were fabricated by template-directed sol-gel chemistry coupled with the dip-coating approach, followed by annealing at various temperatures from 350 degrees C to 750 degrees C in air. ?-Fe{sub 2}O{sub 3} films were characterized by X-ray diffraction, XPS, FE-SEM and electrochemical measurements. The photoelectrochemical performance of ?-Fe{sub 2}O{sub 3} photoanodes was characterized and optimized through the deposition of Co-based co-catalysts via different methods (impregnation, electro-deposition and photo-electro-deposition). Interestingly, the resulting hematite films heat-treated at relatively low temperature (500 degrees C), and therefore devoid of any extrinsic dopant, achieve light-driven water oxidation under near-to-neutral (pH = 8) aqueous conditions after decoration with a Co catalyst. The onset potential is 0.75 V vs. the reversible hydrogen electrode (RHE), thus corresponding to 450 mV light-induced under potential, although modest photocurrent density values (40 ?Acm{sup -2}) are obtained below 1.23 V vs. RHE. These new materials with a very large interfacial area in contact with the electrolyte and allowing for a high loading of water oxidation catalysts open new avenues for the optimization of photo-electrochemical water splitting. (authors)

  13. Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production, Progress Report for Work Through September 2002, 4th Quarterly Report

    SciTech Connect (OSTI)

    Mac Donald, Philip Elsworth

    2002-09-01

    The use of light water at supercritical pressures as the coolant in a nuclear reactor offers the potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to about 45%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type re-circulation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel and smaller containment building than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed. If no additional moderator is added to the fuel rod lattice, it is possible to attain fast neutron energy spectrum conditions in a supercritical water-cooled reactor (SCWR). This type of core can make use of either fertile or fertile-free fuel and retain a hard spectrum to effectively burn plutonium and minor actinides from LWR spent fuel while efficiently generating electricity. One can also add moderation and design a thermal spectrum SCWR. The Generation IV Roadmap effort has identified the thermal spectrum SCWR (followed by the fast spectrum SCWR) as one of the advanced concepts that should be developed for future use. Therefore, the work in this NERI project is addressing both types of SCWRs.

  14. Study of Pu consumption in advanced light water reactors: Evaluation of GE advanced boiling water reactor plants - compilation of Phase 1B task reports

    SciTech Connect (OSTI)

    1993-09-15

    This report contains an extensive evaluation of GE advanced boiling water reactor plants prepared for United State Department of Energy. The general areas covered in this report are: core and system performance; fuel cycle; infrastructure and deployment; and safety and environmental approval.

  15. The concept of the use of recycled uranium for increasing the degree of security of export deliveries of fuel for light-water reactors

    SciTech Connect (OSTI)

    Alekseev, P. N.; Ivanov, E. A.; Nevinitsa, V. A.; Ponomarev-Stepnoi, N. N.; Rumyantsev, A. N.; Shmelev, V. M. [Russian Research Center Kurchatov Institute (Russian Federation); Borisevich, V. D.; Smirnov, A. Yu.; Sulaberidze, G. A. [National Nuclear Research University MEPhI (Russian Federation)

    2010-12-15

    The present paper deals with investigation of the possibilities for reducing the risk of proliferation of fissionable materials by means of increasing the degree of protection of fresh fuel intended for light-water reactors against unsanctioned use in the case of withdrawal of a recipient country of deliveries from IAEA safeguards. It is shown that the use of recycled uranium for manufacturing export nuclear fuel makes transfer of nuclear material removed from the fuel assemblies for weapons purposes difficult because of the presence of isotope {sup 232}U, whose content increases when one attempts to enrich uranium extracted from fresh fuel. In combination with restricted access to technologies for isotope separation by means of establishing international centers for uranium enrichment, this technical measure can significantly reduce the risk of proliferation associated with export deliveries of fuel made of low-enriched uranium. The assessment of a maximum level of contamination of nuclear material being transferred by isotope {sup 232}U for the given isotope composition of the initial fuel is obtained. The concept of further investigations of the degree of security of export deliveries of fuel assemblies with recycled uranium intended for light-water reactors is suggested.

  16. Particle Size Distributions of Debris Upstream and Downstream of the Containment Sump Strainer in a Light Water Reactor 

    E-Print Network [OSTI]

    Kappes, Matthew Jareb

    2015-07-30

    During a LOCA in a LWR, a containment-sump strainer filters debris, generated from fibrous thermal insulation, from the water collected in the containment sump. The buildup of debris on the strainer and the bypass of debris through the strainer lead...

  17. Light Water Reactor Sustainability (LWRS) Initiative Science-Based R&D to Extend Nuclear Plant Operation

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPA PublicLED ADOPTIONto CommercializationLight My Fire...Or9, 2010

  18. Chapter 5: Lighting, HVAC, and Plumbing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    : Lighting, HVAC, and Plumbing High-Performance Engineering Design Lighting System Design Mechanical System Design Central Plant Systems Plumbing and Water Use Building Control...

  19. A domain-specific analysis system for examining nuclear reactor simulation data for light-water and sodium-cooled fast reactors

    E-Print Network [OSTI]

    Billings, Jay Jay; Hull, S Forest; Lingerfelt, Eric J; Wojtowicz, Anna

    2014-01-01

    Building a new generation of fission reactors in the United States presents many technical and regulatory challenges. One important challenge is the need to share and present results from new high-fidelity, high-performance simulations in an easily usable way. Since modern multiscale, multi-physics simulations can generate petabytes of data, they will require the development of new techniques and methods to reduce the data to familiar quantities of interest (e.g., pin powers, temperatures) with a more reasonable resolution and size. Furthermore, some of the results from these simulations may be new quantities for which visualization and analysis techniques are not immediately available in the community and need to be developed. This paper describes a new system for managing high-performance simulation results in a domain-specific way that naturally exposes quantities of interest for light water and sodium-cooled fast reactors. It describes requirements to build such a system and the technical challenges faced...

  20. A Parametric Study of the Thermal-Hydraulic Response of Supercritical Light Water Reactors During Loss-of-Feedwater and Turbine-Trip Events

    SciTech Connect (OSTI)

    Cliff B. Davis; Jacopo Buongiorno; Philip E. MacDonald

    2003-09-01

    The Idaho National Engineering and Environmental Laboratory in investigating the feasibility of supercritical light water reactors for low-cost electric power production through a Nuclear Energy Research Initiative Project sponsored by the United State Department of Energy. The project is evaluating a variety of technical issues related to the fuel and reactor design, material corrosion, and safety characteristics. This paper presents the results of parametric calculations using the RELAP5 computer code to characterize the thermal-hydraulic response of supercritical reactors to transients initiated by loss-of-feedwater and turbine-trip events. The purpose of the calculations was to aid in the design of the safety systems by determining the time available for the safety systems to respond and their required capacities.

  1. Comparative assessment of nuclear fuel cycles. Light-water reactor once-through, classical fast breeder reactor, and symbiotic fast breeder reactor cycles

    SciTech Connect (OSTI)

    Hardie, R.W.; Barrett, R.J.; Freiwald, J.G.

    1980-06-01

    The object of the Alternative Nuclear Fuel Cycle Study is to perform comparative assessments of nuclear power systems. There are two important features of this study. First, this evaluation attempts to encompass the complete, integrated fuel cycle from mining of uranium ore to disposal of waste rather than isolated components. Second, it compares several aspects of each cycle - energy use, economics, technological status, proliferation, public safety, and commercial potential - instead of concentrating on one or two assessment areas. This report presents assessment results for three fuel cycles. These are the light-water reactor once-through cycle, the fast breeder reactor on the classical plutonium cycle, and the fast breeder reactor on a symbiotic cycle using plutonium and /sup 233/U as fissile fuels. The report also contains a description of the methodology used in this assessment. Subsequent reports will present results for additional fuel cycles.

  2. An integrated approach for the verification of fresh mixed oxide fuel (MOX) assemblies at light water reactor MOX recycle reactors

    SciTech Connect (OSTI)

    Menlove, Howard O; Lee, Sang - Yoon

    2009-01-01

    This paper presents an integrated approach for the verification of mixed oxide (MOX) fuel assemblies prior to their being loaded into the reactor. There is a coupling of the verification approach that starts at the fuel fabrication plant and stops with the transfer of the assemblies into the thermal reactor. The key measurement points are at the output of the fuel fabrication plant, the receipt at the reactor site, and the storage in the water pool as fresh fuel. The IAEA currently has the capability to measure the MOX fuel assemblies at the output of the fuel fabrication plants using a passive neutron coincidence counting systems of the passive neutron collar (PNCL) type. Also. at the MOX reactor pool, the underwater coincidence counter (UWCC) has been developed to measure the MOX assemblies in the water. The UWCC measurement requires that the fuel assembly be lifted about two meters up in the storage rack to avoid interference from the fuel that is stored in the rack. This paper presents a new method to verify the MOX fuel assemblies that are in the storage rack without the necessity of moving the fuel. The detector system is called the Underwater MOX Verification System (UMVS). The integration and relationship of the three measurements systems is described.

  3. NRC review of Electric Power Research Institute`s advanced light water reactor utility requirements document. Passive plant designs, chapters 2-13, project number 669

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    The Electric Power Research Institute (EPRI) is preparing a compendium of technical requirements, referred to as the {open_quotes}Advanced Light Water Reactor [ALWR] Utility Requirements Document{close_quotes}, that is acceptable to the design of an ALWR power plant. When completed, this document is intended to be a comprehensive statement of utility requirements for the design, construction, and performance of an ALWR power plant for the 1990s and beyond. The Requirements Document consists of three volumes. Volume I, {open_quotes}ALWR Policy and Summary of Top-Tier Requirements{close_quotes}, is a management-level synopsis of the Requirements Document, including the design objectives and philosophy, the overall physical configuration and features of a future nuclear plant design, and the steps necessary to take the proposed ALWR design criteria beyond the conceptual design state to a completed, functioning power plant. Volume II consists of 13 chapters and contains utility design requirements for an evolutionary nuclear power plant [approximately 1350 megawatts-electric (MWe)]. Volume III contains utility design requirements for nuclear plants for which passive features will be used in their designs (approximately 600 MWe). In April 1992, the staff of the Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, issued Volume 1 and Volume 2 (Parts 1 and 2) of its safety evaluation report (SER) to document the results of its review of Volumes 1 and 2 of the Requirements Document. Volume 1, {open_quotes}NRC Review of Electric Power Research Institute`s Advanced Light Water Reactor Utility Requirements Document - Program Summary{close_quotes}, provided a discussion of the overall purpose and scope of the Requirements Document, the background of the staff`s review, the review approach used by the staff, and a summary of the policy and technical issues raised by the staff during its review.

  4. NRC review of Electric Power Research Institute`s advanced light water reactor utility requirements document. Passive plant designs, chapter 1, project number 669

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    The Electric Power Research Institute (EPRI) is preparing a compendium of technical requirements, referred to as the {open_quotes}Advanced Light Water Reactor [ALWR] Utility Requirements Document{close_quotes}, that is acceptable to the design of an ALWR power plant. When completed, this document is intended to be a comprehensive statement of utility requirements for the design, construction, and performance of an ALWR power plant for the 1990s and beyond. The Requirements Document consists of three volumes. Volume 1, {open_quotes}ALWR Policy and Summary of Top-Tier Requirements{close_quotes}, is a management-level synopsis of the Requirements Document, including the design objectives and philosophy, the overall physical configuration and features of a future nuclear plant design, and the steps necessary to take the proposed ALWR design criteria beyond the conceptual design state to a completed, functioning power plant. Volume II consists of 13 chapters and contains utility design requirements for an evolutionary nuclear power plant [approximately 1350 megawatts-electric (MWe)]. Volume III contains utility design requirements for nuclear plants for which passive features will be used in their designs (approximately 600 MWe). In April 1992, the staff of the Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, issued Volume 1 and Volume 2 (Parts 1 and 2) of its safety evaluation report (SER) to document the results of its review of Volumes 1 and 2 of the Requirements Document. Volume 1, {open_quotes}NRC Review of Electric Power Research Institute`s Advanced Light Water Reactor Utility Requirements Document - Program Summary{close_quotes}, provided a discussion of the overall purpose and scope of the Requirements Document, the background of the staff`s review, the review approach used by the staff, and a summary of the policy and technical issues raised by the staff during its review.

  5. Light-Light Scattering

    E-Print Network [OSTI]

    Naohiro Kanda

    2011-06-03

    For a long time, it is believed that the light by light scattering is described properly by the Lagrangian density obtained by Heisenberg and Euler. Here, we present a new calculation which is based on the modern field theory technique. It is found that the light-light scattering is completely different from the old expression. The reason is basically due to the unphysical condition (gauge condition) which was employed by the QED calcualtion of Karplus and Neumann. The correct cross section of light-light scattering at low energy of $(\\frac{\\omega}{m} \\ll 1)$ can be written as $ \\displaystyle{\\frac{d\\sigma}{d\\Omega}=\\frac{1}{(6\\pi)^2}\\frac{\\alpha^4} {(2\\omega)^2}(3+2\\cos^2\\theta +\\cos^4\\theta)}$.

  6. Light Water Reactor Sustainability Program Support and Modeling for the Boiling Water Reactor Station Black Out Case Study Using RELAP and RAVEN

    SciTech Connect (OSTI)

    Diego Mandelli; Curtis Smith; Thomas Riley; John Schroeder; Cristian Rabiti; Aldrea Alfonsi; Joe Nielsen; Dan Maljovec; Bie Wang; Valerio Pascucci

    2013-09-01

    The existing fleet of nuclear power plants is in the process of extending its lifetime and increasing the power generated. In order to evaluate the impact of these two factors on the safety of the plant, the Risk Informed Safety Margin Characterization (RISMC) project aims to provide insight to decision makers through a series of simulations of the plant dynamics for different initial conditions (e.g., probabilistic analysis and uncertainty quantification). This report focuses, in particular, on the impact of power uprate on the safety of a boiled water reactor system. The case study considered is a loss of off-site power followed by the loss of diesel generators, i.e., a station black out (SBO) event. Analysis is performed by using a thermo-hydraulic code, i.e. RELAP-5, and a stochastic analysis tool currently under development at INL, i.e. RAVEN. Starting from the event tree models contained in SAPHIRE, we built the input file for RELAP-5 that models in great detail system dynamics under SBO conditions. We also interfaced RAVEN with RELAP-5 so that it would be possible to run multiple RELAP-5 simulation runs by changing specific keywords of the input file. We both employed classical statistical tools, i.e. Monte-Carlo, and more advanced machine learning based algorithms to perform uncertainty quantification in order to quantify changes in system performance and limitations as a consequence of power uprate. We also employed advanced data analysis and visualization tools that helped us to correlate simulation outcome such as maximum core temperature with a set of input uncertain parameters. Results obtained gave a detailed overview of the issues associated to power uprate for a SBO accident scenario. We were able to quantify how timing of safety related events were impacted by a higher reactor core power. Such insights can provide useful material to the decision makers to perform risk-infomed safety margins management.

  7. Report from the Light Water Reactor Sustainability Workshop on Advanced Instrumentation, Information, and Control Systems and Human-System Interface Technologies

    SciTech Connect (OSTI)

    Bruce P. Hallbert; J. J. Persensky; Carol Smidts; Tunc Aldemir; Joseph Naser

    2009-08-01

    The Light Water Reactor Sustainability (LWRS) Program is a research and development (R&D) program sponsored by the U.S. Department of Energy (DOE). The program is operated in close collaboration with industry R&D programs to provide the technical foundations for licensing and managing the long-term, safe, and economical operation of Nuclear Power Plants that are currently in operation. The LWRS Program focus is on longer-term and higher-risk/reward research that contributes to the national policy objectives of energy and environmental security. Advanced instruments and control (I&C) technologies are needed to support the safe and reliable production of power from nuclear energy systems during sustained periods of operation up to and beyond their expected licensed lifetime. This requires that new capabilities to achieve process control be developed and eventually implemented in existing nuclear assets. It also requires that approaches be developed and proven to achieve sustainability of I&C systems throughout the period of extended operation. The strategic objective of the LWRS Program Advanced Instrumentation, Information, and Control Systems Technology R&D pathway is to establish a technical basis for new technologies needed to achieve safety and reliability of operating nuclear assets and to implement new technologies in nuclear energy systems. This will be achieved by carrying out a program of R&D to develop scientific knowledge in the areas of: • Sensors, diagnostics, and prognostics to support characterization and prediction of the effects of aging and degradation phenomena effects on critical systems, structures, and components (SSCs) • Online monitoring of SSCs and active components, generation of information, and methods to analyze and employ online monitoring information • New methods for visualization, integration, and information use to enhance state awareness and leverage expertise to achieve safer, more readily available electricity generation. As an initial step in accomplishing this effort, the Light Water Reactor Sustainability Workshop on Advanced Instrumentation, Information, and Control Systems and Human-System Interface Technologies was held March 20–21, 2009, in Columbus, Ohio, to enable industry stakeholders and researchers in identification of the nuclear industry’s needs in the areas of future I&C technologies and corresponding technology gaps and research capabilities. Approaches for collaboration to bridge or fill the technology gaps were presented and R&D activities and priorities recommended. This report documents the presentations and discussions of the workshop and is intended to serve as a basis for the plan under development to achieve the goals of the I&C research pathway.

  8. A SCOPING STUDY: Development of Probabilistic Risk Assessment Models for Reactivity Insertion Accidents During Shutdown In U.S. Commercial Light Water Reactors

    SciTech Connect (OSTI)

    S. Khericha

    2011-06-01

    This report documents the scoping study of developing generic simplified fuel damage risk models for quantitative analysis from inadvertent reactivity insertion events during shutdown (SD) in light water pressurized and boiling water reactors. In the past, nuclear fuel reactivity accidents have been analyzed both mainly deterministically and probabilistically for at-power and SD operations of nuclear power plants (NPPs). Since then, many NPPs had power up-rates and longer refueling intervals, which resulted in fuel configurations that may potentially respond differently (in an undesirable way) to reactivity accidents. Also, as shown in a recent event, several inadvertent operator actions caused potential nuclear fuel reactivity insertion accident during SD operations. The set inadvertent operator actions are likely to be plant- and operation-state specific and could lead to accident sequences. This study is an outcome of the concern which arose after the inadvertent withdrawal of control rods at Dresden Unit 3 in 2008 due to operator actions in the plant inadvertently three control rods were withdrawn from the reactor without knowledge of the main control room operator. The purpose of this Standardized Plant Analysis Risk (SPAR) Model development project is to develop simplified SPAR Models that can be used by staff analysts to perform risk analyses of operating events and/or conditions occurring during SD operation. These types of accident scenarios are dominated by the operator actions, (e.g., misalignment of valves, failure to follow procedures and errors of commissions). Human error probabilities specific to this model were assessed using the methodology developed for SPAR model human error evaluations. The event trees, fault trees, basic event data and data sources for the model are provided in the report. The end state is defined as the reactor becomes critical. The scoping study includes a brief literature search/review of historical events, developments of a small set of comprehensive event trees and fault trees and recommendation for future work.

  9. SCDAP/RELAP5/MOD 3.1 code manual: MATPRO, A library of materials properties for Light-Water-Reactor accident analysis. Volume 4

    SciTech Connect (OSTI)

    Hagrman, D.T.; Allison, C.M.; Berna, G.A.

    1995-06-01

    The SCDAP/RELAP5 code has been developed for best estimate transient simulation of light -- water-reactor coolant systems during a severe accident. The code models the coupled behavior of the reactor coolant system, the core, fission products released during a severe accident transient as well as large and small break loss of coolant accidents, operational transients such as anticipated transient without SCRAM, loss of offsite power, loss of feedwater, and loss of flow. A generic modeling approach is used that permits as much of a particular system to be modeled as necessary. Control system and secondary system components are included to permit modeling of plant controls, turbines, condensers, and secondary feedwater conditioning systems. This volume, Volume IV, describes the material properties correlations and computer subroutines (MATPRO) used by SCDAP/RELAP5. formulation of the materials properties are generally semi-empirical in nature. The materials property subroutines contained in this document are for uranium, uranium dioxide, mixed uranium-plutonium dioxide fuel, zircaloy cladding, zirconium dioxide, stainless steel, stainless steel oxide, silver-indium-cadmium alloy, cadmium, boron carbide, Inconel 718, zirconium-uranium-oxygen melts, fill gas mixtures, carbon steel, and tungsten. This document also contains descriptions of the reaction and solution rate models needed to analyze a reactor accident.

  10. A study of a zone approach to IAEA (International Atomic Energy Agency) safeguards: The low-enriched-uranium zone of a light-water-reactor fuel cycle

    SciTech Connect (OSTI)

    Fishbone, L.G.; Higinbotham, W.A.

    1986-06-01

    At present the IAEA designs its safeguards approach with regard to each type of nuclear facility so that the safeguards activities and effort are essentially the same for a given type and size of nuclear facility wherever it may be located. Conclusions regarding a state are derived by combining the conclusions regarding the effectiveness of safeguards for the individual facilities within a state. In this study it was convenient to define three zones in a state with a closed light-water-reactor nuclear fuel cycle. Each zone contains those facilities or parts thereof which use or process nuclear materials of the same safeguards significance: low-enriched uranium, radioactive spent fuel, or recovered plutonium. The possibility that each zone might be treated as an extended material balance area for safeguards purposes is under investigation. The approach includes defining the relevant features of the facilities in the three zones and listing the safeguards activities which are now practiced. This study has focussed on the fresh-fuel zone, the several facilities of which use or process low-enriched uranium. At one extreme, flows and inventories would be verified at each material balance area. At the other extreme, the flows into and out of the zone and the inventory of the whole zone would be verified. There are a number of possible safeguards approaches which fall between the two extremes. The intention is to develop a rational approach which will make it possible to compare the technical effectiveness and the inspection effort for the facility-oriented approach, for the approach involving the zone as a material balance area, and for some reasonable intermediate safeguards approaches.

  11. Smart Lighting Controller!! Smart lighting!

    E-Print Network [OSTI]

    Anderson, Betty Lise

    'll build the circuit! We'll use an LED to represent the room lights! #12;4! Block diagram! Battery! Rail! #12;23! LED: light-emitting diode! Diode conducts current in only one direction! When current flows1! Smart Lighting Controller!! #12;2! Smart lighting! No need to spend energy lighting the room if

  12. Cheyenne Light, Fuel and Power (Electric) - Residential Energy...

    Broader source: Energy.gov (indexed) [DOE]

    Water Heaters Lighting Other EE Program Info Sector Name Utility Administrator Cheyenne Light, Fuel and Power Website http:www.cheyennelight.comhowto?refwww.cheyennelighthowto...

  13. Light and Color in Nature -Scattering Effects -

    E-Print Network [OSTI]

    Assarsson, Ulf

    1 Seminar WS 2003/04 Light and Color in Nature - Scattering Effects - Marcus Magnor WS03/04: Light and Color in Nature ­ Scattering Overview · Last Lecture ­ Interference · Today ­ Light scattering: water rendering #12;2 WS03/04: Light and Color in Nature ­ Scattering List of Topics · Rainbow ­ Stephan

  14. Light Induced Guard Cell Sunando Roy

    E-Print Network [OSTI]

    Albert, Réka

    Light Induced Guard Cell Signaling Sunando Roy #12;Guard cells and the stomata The tradeoff between water and carbon dioxide Roelfsema et. al. New Phytologist (2005) 167: 665 - 691 #12;The Light Signaling features · The blue light signaling carried out through ion channels · The red light signaling occurs

  15. Light Properties Light travels at the speed of light `c'

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    LIGHT!! #12;Light Properties Light travels at the speed of light `c' C = 3 x 108 m/s Or 190,000 miles/second!! Light could travel around the world about 8 times in one second #12;What is light?? Light is a "wave packet" A photon is a "light particle" #12;Electromagnetic Radiation and You Light is sometimes

  16. Cerenkov Light

    ScienceCinema (OSTI)

    Slifer, Karl

    2014-05-22

    The bright blue glow from nuclear reactors is Cerenkov light. Karl Slifer describes how nuclear physicists can use this phenomenon to study the nucleus of the atom.

  17. Cerenkov Light

    SciTech Connect (OSTI)

    Slifer, Karl

    2013-06-13

    The bright blue glow from nuclear reactors is Cerenkov light. Karl Slifer describes how nuclear physicists can use this phenomenon to study the nucleus of the atom.

  18. Lighting Renovations

    Broader source: Energy.gov [DOE]

    When undertaking a lighting renovation in a Federal building, daylighting is the primary renewable energy opportunity. Photovoltaics (PV) also present an excellent opportunity. While this guide...

  19. Greater-than-Class C low-level radioactive waste characterization. Appendix A-3: Basis for greater-than-Class C low-level radioactive waste light water reactor projections

    SciTech Connect (OSTI)

    Mancini, A.; Tuite, P.; Tuite, K.; Woodberry, S.

    1994-09-01

    This study characterizes low-level radioactive waste types that may exceed Class C limits at light water reactors, estimates the amounts of waste generated, and estimates radionuclide content and distribution within the waste. Waste types that may exceed Class C limits include metal components that become activated during operations, process wastes such as cartridge filters and decontamination resins, and activated metals from decommissioning activities. Operating parameters and current management practices at operating plants are reviewed and used to estimate the amounts of low-level waste exceeding Class C limits that is generated per fuel cycle, including amounts of routinely generated activated metal components and process waste. Radionuclide content is calculated for specific activated metals components. Empirical data from actual low-level radioactive waste are used to estimate radionuclide content for process wastes. Volumes and activities are also estimated for decommissioning activated metals that exceed Class C limits. To estimate activation levels of decommissioning waste, six typical light water reactors are modeled and analyzed. This study does not consider concentration averaging.

  20. Chong Ho Yu, Ph.D., D. Phil Azusa Pacific University

    E-Print Network [OSTI]

    Yu, Alex

    is on the shoulder of the psychic. #12; If someone insists that UFO and aliens had visited the earth, the burden of proof is on the people making the assertion. We should not believe in the existence of UFO or aliens

  1. NEC's Itanium prototype server (see Figure 1), code-named AzusA after a river

    E-Print Network [OSTI]

    Huang, Wei

    DIMMs, and four connec- tions to peripheral component interconnect (PCI) adapters via proprietary, additional PCI, add-on base I/O cards are inserted into designated PCI slots, except for the primary domain processor serves all domains simultaneously. Each PCI adapter has two 64-bit PCI buses that are configurable

  2. Special Analysis for the Disposal of the Idaho National Laboratory Unirradiated Light Water Breeder Reactor Rods and Pellets Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    SciTech Connect (OSTI)

    Shott, Gregory [NSTec

    2014-08-31

    The purpose of this special analysis (SA) is to determine if the Idaho National Laboratory (INL) Unirradiated Light Water Breeder Reactor (LWBR) Rods and Pellets waste stream (INEL103597TR2, Revision 2) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS). The INL Unirradiated LWBR Rods and Pellets waste stream consists of 24 containers with unirradiated fabricated rods and pellets composed of uranium oxide (UO2) and thorium oxide (ThO2) fuel in zirconium cladding. The INL Unirradiated LWBR Rods and Pellets waste stream requires an SA because the 229Th, 230Th, 232U, 233U, and 234U activity concentrations exceed the Nevada National Security Site (NNSS) Waste Acceptance Criteria (WAC) Action Levels.

  3. Lighting in the Library

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by your library lights E Kilowatt-hours consumed by your library lights F Annual cost of operating your library lights H Current lighting index for your library ...

  4. Light's Darkness

    ScienceCinema (OSTI)

    Padgett, Miles [University of Glasgow, Glasgow, Scotland

    2010-01-08

    Optical vortices and orbital angular momentum are currently topical subjects in the optics literature. Although seemingly esoteric, they are, in fact, the generic state of light and arise whenever three or more plane waves interfere. To be observed by eye the light must be monochromatic. Laser speckle is one such example, where the optical energy circulates around each black spot, giving a local orbital angular momentum. This talk with report three on-going studies. First, when considering a volume of interfering waves, the laser specs map out threads of complete darkness embedded in the light. Do these threads form loops? Links? Or even knots? Second, when looking through a rapidly spinning window, the image of the world on the other side is rotated: true or false? Finally, the entanglement of orbital angular momentum states means measuring how the angular position of one photons sets the angular momentum of another: is this an angular version of the EPR (Einstein, Podolsky, and Rosen) paradox?

  5. Types of Lights Types of Lights

    E-Print Network [OSTI]

    1 Types of Lights Types of Lights q So far we have studied point lights ­ Radiate in all direc7ons q Other lights ­ Direc7onal lights (posi7on-independent) ­ Spotlights #12;2 Direc1onal Lights q Shine in a single, uniform direc7on q All rays

  6. Light Computing

    E-Print Network [OSTI]

    Gordon Chalmers

    2006-10-13

    A configuration of light pulses is generated, together with emitters and receptors, that allows computing. The computing is extraordinarily high in number of flops per second, exceeding the capability of a quantum computer for a given size and coherence region. The emitters and receptors are based on the quantum diode, which can emit and detect individual photons with high accuracy.

  7. Steam turbine: Alternative emergency drive for the secure removal of residual heat from the core of light water reactors in ultimate emergency situation

    SciTech Connect (OSTI)

    Souza Dos Santos, R.

    2012-07-01

    In 2011 the nuclear power generation has suffered an extreme probation. That could be the meaning of what happened in Fukushima Nuclear Power Plants. In those plants, an earthquake of 8.9 on the Richter scale was recorded. The quake intensity was above the trip point of shutting down the plants. Since heat still continued to be generated, the procedure to cooling the reactor was started. One hour after the earthquake, a tsunami rocked the Fukushima shore, degrading all cooling system of plants. Since the earthquake time, the plant had lost external electricity, impacting the pumping working, drive by electric engine. When operable, the BWR plants responded the management of steam. However, the lack of electricity had degraded the plant maneuvers. In this paper we have presented a scheme to use the steam as an alternative drive to maintain operable the cooling system of nuclear power plant. This scheme adds more reliability and robustness to the cooling systems. Additionally, we purposed a solution to the cooling in case of lacking water for the condenser system. In our approach, steam driven turbines substitute electric engines in the ultimate emergency cooling system. (authors)

  8. Turbid water Clear water

    E-Print Network [OSTI]

    Jaffe, Jules

    Turbid water Clear water pixel position cameraresponsecameraresponse pixel position ABSTRACT: A new underwater laser scanning system, providing microbathymetric information in coastal waters is described the backscatter component resulting in enhanced performance in turbid waters. The system is expected to provide

  9. Residential Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100Nationalquestionnaires 0 Averagequestionnaires 7tniLighting Sign In

  10. LED Lighting Basics

    Broader source: Energy.gov [DOE]

    Light-Emitting diodes (LEDs) efficiently produce light in a fundamentally different way than any legacy or traditional source of light.

  11. Safety evaluation report related to the Department of Energy`s proposal for the irradiation of lead test assemblies containing tritium-producing burnable absorber rods in commercial light-water reactors. Project Number 697

    SciTech Connect (OSTI)

    1997-05-01

    The NRC staff has reviewed a report, submitted by DOE to determine whether the use of a commercial light-water reactor (CLWR) to irradiate a limited number of tritium-producing burnable absorber rods (TPBARs) in lead test assemblies (LTAs) raises generic issues involving an unreviewed safety question. The staff has prepared this safety evaluation to address the acceptability of these LTAs in accordance with the provision of 10 CFR 50.59 without NRC licensing action. As summarized in Section 10 of this safety evaluation, the staff has identified issues that require NRC review. The staff has also identified a number of areas in which an individual licensee undertaking irradiation of TPBAR LTAs will have to supplement the information in the DOE report before the staff can determine whether the proposed irradiation is acceptable at a particular facility. The staff concludes that a licensee undertaking irradiation of TPBAR LTAs in a CLWR will have to submit an application for amendment to its facility operating license before inserting the LTAs into the reactor.

  12. Enhancing the use of coals by gas reburning-sorbent injection: Volume 4 -- Gas reburning-sorbent injection at Lakeside Unit 7, City Water, Light and Power, Springfield, Illinois. Final report

    SciTech Connect (OSTI)

    NONE

    1996-03-01

    A demonstration of Gas Reburning-Sorbent Injection (GR-SI) has been completed at a cyclone-fired utility boiler. The Energy and Environmental Research Corporation (EER) has designed, retrofitted and tested a GR-SI system at City Water Light and Power`s 33 MWe Lakeside Station Unit 7. The program goals of 60% NO{sub x} emissions reduction and 50% SO{sub 2} emissions reduction were exceeded over the long-term testing period; the NO{sub x} reduction averaged 63% and the SO{sub 2} reduction averaged 58%. These were achieved with an average gas heat input of 22% and a calcium (sorbent) to sulfur (coal) molar ratio of 1.8. GR-SI resulted in a reduction in thermal efficiency of approximately 1% at full load due to firing natural gas which forms more moisture in flue gas than coal and also results in a slight increase in air heater exit gas temperature. Minor impacts on other areas of unit performance were measured and are detailed in this report. The project at Lakeside was carried out in three phases, in which EER designed the GR-SI system (Phase 1), completed construction and start-up activities (Phase 2), and evaluated its performance with both short parametric tests and a long-term demonstration (Phase 3). This report contains design and technical performance data; the economics data for all sites are presented in Volume 5.

  13. Feasibility Study of Supercritical Light Water Cooled Reactors for Electric Power Production, Nuclear Energy Research Initiative Project 2001-001, Westinghouse Electric Co. Grant Number: DE-FG07-02SF22533, Final Report

    SciTech Connect (OSTI)

    Philip E. MacDonald

    2005-01-01

    The supercritical water-cooled reactor (SCWR) is one of the six reactor technologies selected for research and development under the Generation IV program. SCWRs are promising advanced nuclear systems because of their high thermal efficiency (i.e., about 45% versus about 33% efficiency for current Light Water Reactors [LWRs]) and considerable plant simplification. SCWRs are basically LWRs operating at higher pressure and temperatures with a direct once-through cycle. Operation above the critical pressure eliminates coolant boiling, so the coolant remains single-phase throughout the system. Thus, the need for a pressurizer, steam generators, steam separators, and dryers is eliminated. The main mission of the SCWR is generation of low-cost electricity. It is built upon two proven technologies: LWRs, which are the most commonly deployed power generating reactors in the world, and supercritical fossil-fired boilers, a large number of which are also in use around the world. The reference SCWR design for the U.S. program is a direct cycle system operating at 25.0 MPa, with core inlet and outlet temperatures of 280 and 500 C, respectively. The coolant density decreases from about 760 kg/m3 at the core inlet to about 90 kg/m3 at the core outlet. The inlet flow splits with about 10% of the inlet flow going down the space between the core barrel and the reactor pressure vessel (the downcomer) and about 90% of the inlet flow going to the plenum at the top of the rector pressure vessel, to then flow down through the core in special water rods to the inlet plenum. Here it mixes with the feedwater from the downcomer and flows upward to remove the heat in the fuel channels. This strategy is employed to provide good moderation at the top of the core. The coolant is heated to about 500 C and delivered to the turbine. The purpose of this NERI project was to assess the reference U.S. Generation IV SCWR design and explore alternatives to determine feasibility. The project was organized into three tasks: Task 1. Fuel-cycle Neutronic Analysis and Reactor Core Design Task 2. Fuel Cladding and Structural Material Corrosion and Stress Corrosion Cracking Task 3. Plant Engineering and Reactor Safety Analysis. moderator rods. materials.

  14. Effects of light and nutrients on seasonal phytoplankton succession in a temperate eutrophic coastal lagoon

    E-Print Network [OSTI]

    Drake, Jeana L.; Carpenter, Edward J.; Cousins, Mary; Nelson, Kara L.; Guido-Zarate, Alejandro; Loftin, Keith

    2010-01-01

    between pho- tosynthesis and light for natural assemblagesRESEARCH PAPER Effects of light and nutrients on seasonalkW m -2 d -1 ), water column light attenuation (max = 14 m -

  15. Peninsula Light Company- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Peninsula Light Company offers a rebate program for residential customers who want to install energy efficient products in homes. Rebates are provided for window replacements, water heaters, heat...

  16. Orcas Power & Light- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Orcas Power and Light Cooperative offers incentives for residential customers to pursue energy efficiency upgrades in eligible homes. Rebates are offered for Energy Star rated appliances, water...

  17. A REVIEW OF LIGHT-WATER REACTOR SAFETY STUDIES. VOLUME 3 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01

    this man- (PWRs) and boiling-water reactors to compare thesepressur- ized and boiling water reactors is presented. ItAmerican Physical reactor cooling - boiling-water ECC(S) -

  18. Sandia Energy - (Lighting and) Solid-State Lighting: Science...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Lighting and) Solid-State Lighting: Science, Technology, Economic Perspectives Home Energy Research EFRCs Solid-State Lighting Science EFRC (Lighting and) Solid-State Lighting:...

  19. Light Water Detritiation using the CECE Process

    Broader source: Energy.gov [DOE]

    Presentation from the 35th Tritium Focus Group Meeting held in Princeton, New Jersey on May 05-07, 2015.

  20. Rethinking the light water reactor fuel cycle

    E-Print Network [OSTI]

    Shwageraus, Evgeni, 1973-

    2004-01-01

    The once through nuclear fuel cycle adopted by the majority of countries with operating commercial power reactors imposes a number of concerns. The radioactive waste created in the once through nuclear fuel cycle has to ...

  1. Sustainable Office Lighting Options

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Sustainable Office Lighting Options Task Lighting: Task lighting is a localized method of lighting a workspace so that additional, unnecessary lighting is eliminated, decreasing energy usage and costs. Illumination levels in the targeted work areas are higher with task lighting than with the ambient levels

  2. PUBLIC NOTICE CLEAN WATER ACT PROPOSED RULE FOR DEFINITION OF WATERS OF THE U.S.

    E-Print Network [OSTI]

    US Army Corps of Engineers

    PUBLIC NOTICE CLEAN WATER ACT PROPOSED RULE FOR DEFINITION OF WATERS OF THE U.S. Comment Period Extension for the Clean Water Act Proposed Rule for Definition of Waters of the U.S. On 21 April 2014 of waters protected under the Clean Water Act (CWA), in light of the U.S. Supreme Court cases in U.S. v

  3. What's your water footprint? 

    E-Print Network [OSTI]

    Jordan, Leslie

    2009-01-01

    stream_source_info What's your water footprint.pdf.txt stream_content_type text/plain stream_size 6622 Content-Encoding ISO-8859-1 stream_name What's your water footprint.pdf.txt Content-Type text/plain; charset=ISO-8859...-1 tx H2O | pg. 21 What?s your water footprint? When it comes to your water use, do you tread lightly or are you an H2O Sasquatch? How much water do you think you consume every day? You might initially consider the length of your daily shower...

  4. Water Resources Water Quality and Water Treatment

    E-Print Network [OSTI]

    Sohoni, Milind

    Water Resources TD 603 Lecture 1: Water Quality and Water Treatment CTARA Indian Institute of Technology, Bombay 2nd November, 2011 #12;OVERVIEW Water Quality WATER TREATMENT PLANTS WATER TREATMENT PLANTS WATER TREATMENT PLANTS WATER TRE OVERVIEW OF THE LECTURE 1. Water Distribution Schemes Hand Pump

  5. Robustness of RISMC Insights under Alternative Aleatory/Epistemic Uncertainty Classifications: Draft Report under the Risk-Informed Safety Margin Characterization (RISMC) Pathway of the DOE Light Water Reactor Sustainability Program

    SciTech Connect (OSTI)

    Unwin, Stephen D.; Eslinger, Paul W.; Johnson, Kenneth I.

    2012-09-20

    The Risk-Informed Safety Margin Characterization (RISMC) pathway is a set of activities defined under the U.S. Department of Energy (DOE) Light Water Reactor Sustainability Program. The overarching objective of RISMC is to support plant life-extension decision-making by providing a state-of-knowledge characterization of safety margins in key systems, structures, and components (SSCs). A technical challenge at the core of this effort is to establish the conceptual and technical feasibility of analyzing safety margin in a risk-informed way, which, unlike conventionally defined deterministic margin analysis, would be founded on probabilistic characterizations of uncertainty in SSC performance. In the context of probabilistic risk assessment (PRA) technology, there has arisen a general consensus about the distinctive roles of two types of uncertainty: aleatory and epistemic, where the former represents irreducible, random variability inherent in a system, whereas the latter represents a state of knowledge uncertainty on the part of the analyst about the system which is, in principle, reducible through further research. While there is often some ambiguity about how any one contributing uncertainty in an analysis should be classified, there has nevertheless emerged a broad consensus on the meanings of these uncertainty types in the PRA setting. However, while RISMC methodology shares some features with conventional PRA, it will nevertheless be a distinctive methodology set. Therefore, the paradigms for classification of uncertainty in the PRA setting may not fully port to the RISMC environment. Yet the notion of risk-informed margin is based on the characterization of uncertainty, and it is therefore critical to establish a common understanding of uncertainty in the RISMC setting.

  6. Water Clean Water Clean

    E-Print Network [OSTI]

    Ishida, Yuko

    Keep Our Water Clean Keep Our Water Clean Home and garden pesticides and fertilizers are polluting residues wash into gutters, storm drains, and streams by rain,garden watering,or cleaning up drinking water. Follow these tips to keep our rivers, creeks, and oceans clean. What can you do to protect

  7. Water, water everywhere,

    E-Print Network [OSTI]

    Eberhard, Marc O.

    1 Water, water everywhere, but is it safe to drink? An Inquiry-based unit investigating the journey of your drinking water from source to tap of drinking water will contain different contaminants, based on surrounding land uses (guided inquiry activity

  8. Water Resources Forests & Water

    E-Print Network [OSTI]

    Water Resources Forests & Water More than half of the nation's freshwater supply originates on forestland. Healthy and sustainable forests can help ensure a continuous supply of clean and abundant water. Not only does forestland provide the cleanest water of any land use, it also helps absorb rainfall

  9. Lighting Options for Homes.

    SciTech Connect (OSTI)

    Baker, W.S.

    1991-04-01

    This report covers many aspects of various lighting options for homes. Types of light sources described include natural light, artificial light, incandescent lamps, fluorescent lamps, and high intensity discharge lamps. A light source selection guide gives the physical characteristics of these, design considerations, and common applications. Color, strategies for efficient lighting, and types of lighting are discussed. There is one section giving tips for various situations in specific rooms. Rooms and types of fixtures are shown on a matrix with watts saved by using the recommended type lighting for that room and room location. A major emphasis of this report is saving energy by utilizing the most suitable, recommended lighting option. (BN)

  10. Mobile lighting apparatus

    DOE Patents [OSTI]

    Roe, George Michael; Klebanoff, Leonard Elliott; Rea, Gerald W; Drake, Robert A; Johnson, Terry A; Wingert, Steven John; Damberger, Thomas A; Skradski, Thomas J; Radley, Christopher James; Oros, James M; Schuttinger, Paul G; Grupp, David J; Prey, Stephen Carl

    2013-05-14

    A mobile lighting apparatus includes a portable frame such as a moveable trailer or skid having a light tower thereon. The light tower is moveable from a stowed position to a deployed position. A hydrogen-powered fuel cell is located on the portable frame to provide electrical power to an array of the energy efficient lights located on the light tower.

  11. ENVIR 202: EARTH, AIR, WATER PERSPECTIVES ON EXPERIMENTAL PROJECTS for Water (W)

    E-Print Network [OSTI]

    much discussion of water pollution. One of the most serious of environmental problems is the poor in looking at light and optics, and talking about wavelengths (~ colors) of light. We noted that light waves' as the waves are slowed down. Waves `refract' as they come into shore just as light beams are refracted

  12. Practical image based lighting 

    E-Print Network [OSTI]

    Lee, Jaemin

    2003-01-01

    information is lighting. Image based lighting that is developed to recover illumination information of the real world from photographs has recently been popular in computer graphics. In this thesis we present a practical image based lighting method. Our...

  13. Light in the city

    E-Print Network [OSTI]

    Srinivasan, Kavita, 1976-

    2002-01-01

    This thesis focuses on enhancing the awareness of light for the pedestrian,and using light as a way of revealing the structure of the city and its relation to the cosmos. It proposes that aesthetic qualities of light inform ...

  14. Advances in Lighting 

    E-Print Network [OSTI]

    Tumber, A. J.

    1981-01-01

    Increasing electricity costs have made a significant impact on lighting. The Illuminating Engineering society (I.E.S.) and the lighting industry are producing new standards, procedures and products to make lighting more appropriate and energy...

  15. Natural lighting and skylights 

    E-Print Network [OSTI]

    Evans, Benjamin Hampton

    1961-01-01

    There are many physiological and psychological factors which enter into the proper design of space for human occupancy. One of these elements is light. Both natural light and manufactured light are basic tools with which any designer must work...

  16. Specific light in sculpture

    E-Print Network [OSTI]

    Powell, John William

    1989-01-01

    Specific light is defined as light from artificial or altered natural sources. The use and manipulation of light in three dimensional sculptural work is discussed in an historic and contemporary context. The author's work ...

  17. Advanced Demand Responsive Lighting

    E-Print Network [OSTI]

    Advanced Demand Responsive Lighting Host: Francis Rubinstein Demand Response Research Center demand responsive lighting systems ­ Importance of dimming ­ New wireless controls technologies · Advanced Demand Responsive Lighting (commenced March 2007) #12;Objectives · Provide up-to-date information

  18. Light Duty Combustion Research: Advanced Light-Duty Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments 2009 DOE Hydrogen Program and...

  19. Lighting in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    are also under consideration. Outside the DOE, the Environmental Protection Agency's Green Lights program promotes energy-efficient lighting as a means to reducing...

  20. Lighting in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Motivation and Computation of Lighting Measures Floorspace by Lighting Equipment Configuration As described in Appendix A, for each building b, the CBECS data set has the total...

  1. Lighting in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    more comprehensive understanding of commercial lighting and the potential for lighting energy savings. Steps to build on this analysis can be taken in many directions. One...

  2. Leavenworth Tree Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Join HERO for our annual Leavenworth Tree Lighting Ceremony & Shopping SATURDAY DECEMBER 12, 2015 Leavenworth Christmas Lighting Festival Visitors return year after year for some...

  3. Lighting in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    light by passing electricity through mercury vapor, which causes the fluorescent coating to glow or fluoresce. High-Efficiency Ballast (HEB): A lighting conservation feature...

  4. Exciting White Lighting

    Broader source: Energy.gov [DOE]

    Windows that emit light and are more energy efficient? Universal Display’s PHOLED technology enables windows that have transparent light-emitting diodes in them.

  5. Environmental regulation of carbon isotope composition and crassulacean acid metabolism in three plant communities along a water availability gradient

    E-Print Network [OSTI]

    2010-01-01

    communities along a water availability gradient M. Fernandawith decreasing water availability. Overall, variation inrelated to water and light availability and CAM appeared to

  6. PUBLIC NOTICE CLEAN WATER ACT PROPOSED RULE FOR DEFINITION OF WATERS OF THE U.S.

    E-Print Network [OSTI]

    US Army Corps of Engineers

    PUBLIC NOTICE CLEAN WATER ACT PROPOSED RULE FOR DEFINITION OF WATERS OF THE U.S. On 21 April 2014 the scope of waters protected under the Clean Water Act (CWA), in light of the U.S. Supreme Court cases in U by increasing clarity as to the scope of "waters of the United States" protected under the Act. Developing

  7. A REVIEW OF LIGHT-WATER REACTOR SAFETY STUDIES. VOLUME 3 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01

    Risks In U.S. Commercial Nuclear Power Plants", U.S. NuclearCommission, "The, Safety of Nuclear Power Reactors (Light-October 1, 1976. "Nuclear Power and the Environment," a

  8. Lighting Controls | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Controls Lighting Controls Use lighting controls to automatically turn lights on and off as needed, and save energy. | Photo courtesy of iStockphoto.comMaliketh. Use lighting...

  9. Pedestrian Friendly Outdoor Lighting

    SciTech Connect (OSTI)

    Miller, N. J.; Koltai, R. N.; McGowan, T. K.

    2013-12-01

    The GATEWAY program followed two pedestrian-scale lighting projects that required multiple mockups – one at Stanford University in California and the other at Chautauqua Institution in upstate New York. The report provides insight into pedestrian lighting criteria, how they differ from street and area lighting criteria, and how solid-state lighting can be better applied in pedestrian applications.

  10. Tips: Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tips: Lighting Tips: Lighting Lighting choices save you money. Energy-efficient light bulbs are available in a wide variety of sizes and shapes. Lighting choices save you money....

  11. Deficiencies of Lighting Codes and Ordinances in Controlling Light Pollution from Parking Lot Lighting Installations

    E-Print Network [OSTI]

    Royal, Emily

    2012-05-31

    The purpose of this research was to identify the main causes of light pollution from parking lot electric lighting installations and highlight the deficiencies of lighting ordinances in preventing light pollution. Using an industry-accepted lighting...

  12. Water Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Quality Water Quality We protect water quality through stormwater control measures and an extensive network of monitoring wells and stations encompassing groundwater, surface...

  13. OpenGL Lighting 13. OpenGL Lighting

    E-Print Network [OSTI]

    McDowell, Perry

    OpenGL Lighting 13. OpenGL Lighting · Overview of Lighting in OpenGL In order for lighting to have an effect in OpenGL, two things are required: A light An object to be lit Lights can be set to any color determine how they reflect the light which hits them. The color(s) of an object is determined

  14. CONNECTED LIGHTING SYSTEMS MEETING

    Office of Energy Efficiency and Renewable Energy (EERE)

    There is a lot of buzz today about the Internet of Things and the convergence of intelligent controllable light sources, communication networks, sensors, and data exchange in future lighting...

  15. Fast Light, Fast Neutrinos?

    E-Print Network [OSTI]

    Kevin Cahill

    2011-10-10

    In certain media, light has been observed with group velocities faster than the speed of light. The recent OPERA report of superluminal 17 GeV neutrinos may describe a similar phenomenon.

  16. Kyler Nelson Light Timer

    E-Print Network [OSTI]

    Kachroo, Pushkin

    designated by the user, the Arduino board will dim the light to save energy. The user designates the time instance, the light is dimmed using pulse width modulation (PWM) in the Arduino's pin number 11

  17. Automatic lighting controls demonstration

    SciTech Connect (OSTI)

    Rubinstein, F.; Verderber, R.

    1990-03-01

    The purpose of this work was to demonstrate, in a real building situation, the energy and peak demand reduction capabilities of an electronically ballasted lighting control system that can utilize all types of control strategies to efficiently manage lighting. The project has demonstrated that a state-of-the-art electronically ballasted dimmable lighting system can reduce energy and lighting demand by as least 50% using various combinations of control strategies. By reducing light levels over circulation areas (tuning) and reducing after hours light levels to accommodate the less stringent lighting demands of the cleaning crew (scheduling), lighting energy consumption on weekdays was reduced an average of 54% relative to the initial condition. 10 refs., 14 figs., 3 tabs.

  18. Lighting and Daylight Harvesting 

    E-Print Network [OSTI]

    Bos, J.

    2011-01-01

    in 1992 to serve the lighting design needs of the architectural and interior design communities. With over fifty years of combined experience, our areas of expertise range from architectural and theatrical lighting to custom fixture design. Bos... Lighting Design We are active members of the International Association of Lighting Designers, the American Institute of Architects, the Illuminating Engineering Society, International Dark Skies Association and the United States Green Building Council...

  19. LED Lighting Retrofit 

    E-Print Network [OSTI]

    Shaw-Meadow, N.

    2011-01-01

    kWh is the one that never gets used? ?Dedicated to making environmentally responsible products? Ringdale Introduction LED Roadway Lighting Better Light, Fewer Watts. Period. Nathan Shaw-Meadow LED Lighting Specialist Ringdale ActiveLED ESL.../exponential efficiency growth often deters investment today 7 Challenges to Implementation ESL-KT-11-11-57 CATEE 2011, Dallas, Texas, Nov. 7 ? 9, 2011 ? Municipal Street Light Case Study 8 ? Replaced 400W High Pressure Sodium fixtures with 52W Active...

  20. Light hydrocarbon geochemistry of brines and sediments of the red sea 

    E-Print Network [OSTI]

    Burke, Roger Allen

    1979-01-01

    -induced hydzccarbon po!. lution in the oceans [Bi"oaks and Sockett, 1973]; "sniffing" of light hydrocarbons to evaluate the oil producing potential of an area !Sackett, 1977]; and determination of light hydrocarbons in anoxic. waters [Bunt, 1974; Vtesenbpnp, 1975...

  1. Energy -Matter Interactions: Water Open water covers about 74% of the

    E-Print Network [OSTI]

    Frank, Thomas D.

    Energy - Matter Interactions: Water #12;Open water covers about 74% of the earth's surface. Oceans this material come from? #12;Energy - Matter Interactions As incident light strikes the water surface, some by energy that is scattered and reflected within the water body itself, known as volume reflection. #12

  2. Light emitting device comprising phosphorescent materials for white light generation

    DOE Patents [OSTI]

    Thompson, Mark E.; Dapkus, P. Daniel

    2014-07-22

    The present invention relates to phosphors for energy downconversion of high energy light to generate a broadband light spectrum, which emit light of different emission wavelengths.

  3. And the Oscar for Sustainable Mobile Lighting Goes to.... Lighting...

    Energy Savers [EERE]

    And the Oscar for Sustainable Mobile Lighting Goes to.... Lighting Up Operations with Hydrogen and Fuel Cell Technology And the Oscar for Sustainable Mobile Lighting Goes to.......

  4. Investigating Water 

    E-Print Network [OSTI]

    Howard Jr., Ronald A.

    2002-01-02

    This 3-ring binder contains teaching plans for 12 lessons on topics such as "Water in Our Daily Lives," "The Water Cycle," "Amazing Aquifers," "Water and Soil," "Aquatic Ecosystems," and "Water Wise Use." Accompanying each lesson plan are activity...

  5. Lighting Design | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Design Lighting Design Energy-efficient indoor and outdoor lighting design focuses on ways to improve both the quality and efficiency of lighting. | Photo courtesy of...

  6. Light Water Reactor Sustainability Program BWR High-Fluence Material Project: Assessment of the Role of High-Fluence on the Efficiency of HWC Mitigation on SCC Crack Growth Rates

    SciTech Connect (OSTI)

    Sebastien Teysseyre

    2014-04-01

    As nuclear power plants age, the increasing neutron fluence experienced by stainless steels components affects the materials resistance to stress corrosion cracking and fracture toughness. The purpose of this report is to identify any new issues that are expected to rise as boiling water reactor power plants reach the end of their initial life and to propose a path forward to study such issues. It has been identified that the efficiency of hydrogen water chemistry mitigation technology may decrease as fluence increases for high-stress intensity factors. This report summarizes the data available to support this hypothesis and describes a program plan to determine the efficiency of hydrogen water chemistry as a function of the stress intensity factor applied and fluence. This program plan includes acquisition of irradiated materials, generation of material via irradiation in a test reactor, and description of the test plan. This plan offers three approaches, each with an estimated timetable and budget.

  7. Light extraction from organic light-emitting diodes for lighting applications by sand-blasting

    E-Print Network [OSTI]

    Light extraction from organic light-emitting diodes for lighting applications by sand@ust.hk Abstract: Light extraction from organic light-emitting diodes (OLEDs) by scattering the light is one of the effective methods for large-area lighting applications. In this paper, we present a very simple and cost

  8. COLLOQUIUM: CASL: Consortium for Advanced Simulation of Light...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2013, 4:15pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: CASL: Consortium for Advanced Simulation of Light Water Reactors, a DOE Energy Innovation Hub Dr. Douglas Kothe Oak...

  9. Chicopee Electric Light- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Chicopee Electric Light (CEL) offers a variety of incentives for its residential customers to increase the energy efficiency of participating homes. CEL provides rebates for heat pump water heaters...

  10. Induction Lighting: An Old Lighting Technology Made New Again

    Broader source: Energy.gov [DOE]

    Induction lighting is one of the best kept secrets in energy-efficient lighting. Simply stated, induction lighting is essentially a fluorescent light without electrodes or filaments, the items that...

  11. Lighting the Night: Technology, Urban Life and the Evolution of Street Lighting [Light in Place

    E-Print Network [OSTI]

    Holden, Alfred

    1992-01-01

    Electrical 16. "Highway Lighting by So­ dium Vapor Lamps,"Possibilities of Street: Lighting Improve­ ments," TheLaunches Broad Street Lighting Promotion Campaign," The

  12. Laterally injected light-emitting diode and laser diode

    DOE Patents [OSTI]

    Miller, Mary A.; Crawford, Mary H.; Allerman, Andrew A.

    2015-06-16

    A p-type superlattice is used to laterally inject holes into an III-nitride multiple quantum well active layer, enabling efficient light extraction from the active area. Laterally-injected light-emitting diodes and laser diodes can enable brighter, more efficient devices that impact a wide range of wavelengths and applications. For UV wavelengths, applications include fluorescence-based biological sensing, epoxy curing, and water purification. For visible devices, applications include solid state lighting and projection systems.

  13. ECE 466: LED Lighting Systems -Incandescent lightings rise and

    E-Print Network [OSTI]

    Connors, Daniel A.

    ECE 466: LED Lighting Systems - Incandescent lightings rise and demise via government policy - Alternative Fluorescent light sources and compact fluorescent lights (CFL) to incandescents - Alternative LED light sources - Color index as well as Watts to Lumens efficiency available from all three light sources

  14. Lighting and Surfaces 11.1 Introduction to Lighting

    E-Print Network [OSTI]

    Boyd, John P.

    Chapter 11 Lighting and Surfaces 11.1 Introduction to Lighting Three-dimensional surfaces can react to light, and how computer graphics simulates this. There are three species of light (or "illumination models"): 1. Intrinsic (self-emitting) 2. Ambient light (sometimes called "diffuse light") 3

  15. Sandia Energy - Light Creation Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Light Creation Materials Home Energy Research EFRCs Solid-State Lighting Science EFRC Overview Light Creation Materials Light Creation MaterialsAlyssa Christy2015-03-26T16:28:52+00...

  16. Arnold Schwarzenegger LIGHTING RESEARCH PROGRAM

    E-Print Network [OSTI]

    Project Summaries ELEMENT 2: ADVANCE LIGHTING TECHNOLOGIES PROJECT 2.1 LIGHT EMITTING DIODE (LED light emitting diodes (LED) technology for general lighting applications by developing a task lamp

  17. Water Heaters and Hot Water Distribution Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01

    LBNL collected water and waste water tariffs in Californiastate. Current water and waste water tariffs for these areaswas based on water and waste water tariffs in California

  18. High efficiency incandescent lighting

    DOE Patents [OSTI]

    Bermel, Peter; Ilic, Ognjen; Chan, Walker R.; Musabeyoglu, Ahmet; Cukierman, Aviv Ruben; Harradon, Michael Robert; Celanovic, Ivan; Soljacic, Marin

    2014-09-02

    Incandescent lighting structure. The structure includes a thermal emitter that can, but does not have to, include a first photonic crystal on its surface to tailor thermal emission coupled to, in a high-view-factor geometry, a second photonic filter selected to reflect infrared radiation back to the emitter while passing visible light. This structure is highly efficient as compared to standard incandescent light bulbs.

  19. National Synchrotron Light Source

    ScienceCinema (OSTI)

    BNL

    2009-09-01

    A tour of Brookhaven's National Synchrotron Light Source (NSLS), hosted by Associate Laboratory Director for Light Sources, Stephen Dierker. The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviolet, and x-ray light for basic and applied research in physics, chemistry, medicine, geophysics, environmental, and materials sciences.

  20. Faster Than Light?

    E-Print Network [OSTI]

    Robert Geroch

    2010-05-10

    It is argued that special relativity remains a viable physical theory even when there is permitted signals traveling faster than light.

  1. Comparing Light Bulbs

    Office of Energy Efficiency and Renewable Energy (EERE)

    In this exercise, students will use a light to demonstrate the difference between being energy-efficient and energy-wasteful, and learn what energy efficiency means.

  2. Lighting in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Illuminance Assignments for CBECS Building Activity Categories Illuminance ranges were adopted from the 1987 Illuminating Engineering Society (IES) Lighting Handbook. The IES...

  3. Lighting in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    from the engineering literature, based on CBECS building activity.) 4. Efficacy: an energy efficiency measure. Technically, the amount of light produced per unit of energy...

  4. Lighting in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    (CEC), March 1990. Advanced Lighting Technologies Application Guidelines (ALTAG), Building and Appliance Efficiency Office. 3. Dubin, F.S., Mindell, H.L., and Bloome, S., 1976....

  5. Lighting in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    energy are presented in this section. Statistics are presented by subgroups based on building characteristics, and by subgroups based on lighting equipment. The three sets of...

  6. Edmund G. Brown Jr. LIGHTING CALIFORNIA'S FUTURE

    E-Print Network [OSTI]

    Edmund G. Brown Jr. Governor LIGHTING CALIFORNIA'S FUTURE: SMART LIGHT-EMITTING DIODE LIGHTING's Future: Smart LightEmitting Diode Lighting in Residential Fans. California Energy Commission, PIER

  7. Condensing Heating and Water Heating Equipment Workshop Location...

    Energy Savers [EERE]

    Condensing Heating and Water Heating Equipment Workshop Location: Washington Gas Light Appliance Training Facility 6801 Industrial Road Springfield, VA Date: October 9, 2014 Time:...

  8. 2003 Federal Energy and Water Management Award Winners | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    eliminate the need for electrical lighting during the day. A solar-powered radiant floor heating system prevents the water lines in the fire engine bays from freezing....

  9. Water Intoxication

    E-Print Network [OSTI]

    Lingampalli, Nithya

    2013-01-01

    2008, May 14). Too much water raises seizure risk in babies.id=4844 9. Schoenly, Lorry. “Water Intoxication and Inmates:article/246650- overview>. 13. Water intoxication alert. (

  10. Water Efficiency

    Energy Savers [EERE]

    Water Efficiency Hosted by: FEDERAL UTILITY PARTNERSHIP WORKING GROUP SEMINAR November 5-6, 2014 Cape Canaveral, Florida WATER EFFICIENCY Federal Utility Partnership Working Group...

  11. Explosively pumped laser light

    DOE Patents [OSTI]

    Piltch, Martin S. (Los Alamos, NM); Michelotti, Roy A. (Los Alamos, NM)

    1991-01-01

    A single shot laser pumped by detonation of an explosive in a shell casing. The shock wave from detonation of the explosive causes a rare gas to luminesce. The high intensity light from the gas enters a lasing medium, which thereafter outputs a pulse of laser light to disable optical sensors and personnel.

  12. Light intensity compressor

    DOE Patents [OSTI]

    Rushford, Michael C. (Livermore, CA)

    1990-01-01

    In a system for recording images having vastly differing light intensities over the face of the image, a light intensity compressor is provided that utilizes the properties of twisted nematic liquid crystals to compress the image intensity. A photoconductor or photodiode material that is responsive to the wavelength of radiation being recorded is placed adjacent a layer of twisted nematic liquid crystal material. An electric potential applied to a pair of electrodes that are disposed outside of the liquid crystal/photoconductor arrangement to provide an electric field in the vicinity of the liquid crystal material. The electrodes are substantially transparent to the form of radiation being recorded. A pair of crossed polarizers are provided on opposite sides of the liquid crystal. The front polarizer linearly polarizes the light, while the back polarizer cooperates with the front polarizer and the liquid crystal material to compress the intensity of a viewed scene. Light incident upon the intensity compressor activates the photoconductor in proportion to the intensity of the light, thereby varying the field applied to the liquid crystal. The increased field causes the liquid crystal to have less of a twisting effect on the incident linearly polarized light, which will cause an increased percentage of the light to be absorbed by the back polarizer. The intensity of an image may be compressed by forming an image on the light intensity compressor.

  13. Building America Top Innovations 2012: Tankless Gas Water Heater Performance

    SciTech Connect (OSTI)

    none,

    2013-01-01

    This Building America Top Innovations profile describes Building America field testing that shed light on how real-world water usage affects energy saving estimates of high-efficiency water heating systems.

  14. Lighting affects appearance LightSource emits photons

    E-Print Network [OSTI]

    Jacobs, David

    1 Lighting affects appearance #12;2 LightSource emits photons Photons travel in a straight line). And then some reach the eye/camera. #12;3 Reflectance Model how objects reflect light. Model light sources Algorithms for computing Shading: computing intensities within polygons Determine what light strikes what

  15. VIRTUAL LIGHT: DIGITALLY-GENERATED LIGHTING FOR VIDEO CONFERENCING APPLICATIONS

    E-Print Network [OSTI]

    Greenberg, Albert

    VIRTUAL LIGHT: DIGITALLY-GENERATED LIGHTING FOR VIDEO CONFERENCING APPLICATIONS Andrea Basso method to improve the lighting conditions of a real scene or video sequence. In particular we concentrate on modifying real light sources intensities and inserting virtual lights into a real scene viewed from a fixed

  16. LightBox -Exploring Interaction Modalities with Colored Light

    E-Print Network [OSTI]

    of light to very subtle animations, transitions and dimmed lighting effects. Implementation LightBox is housed in an aluminum suitcase measuring 48x38x25cm. The lid of the suitcase contains a panel of 12x12 Design. Figure 1. An animated lighting sequence visualized on the hi-power LEDs of LightBox #12

  17. Indoor positioning algorithm using light-emitting diode visible light

    E-Print Network [OSTI]

    Kavehrad, Mohsen

    Indoor positioning algorithm using light- emitting diode visible light communications Zhou Zhou of Use: http://spiedl.org/terms #12;Indoor positioning algorithm using light-emitting diode visible light. This paper proposes a novel indoor positioning algorithm using visible light communications (VLC

  18. The effect of environment, chemistry, and microstructure on the corrosion fatigue behavior of austenitic stainless steels in high temperature water

    E-Print Network [OSTI]

    O'Brien, Lindsay Beth

    2014-01-01

    The effect of sulfur on the corrosion fatigue crack growth of austenitic stainless steel was evaluated under Light Water Reactor (LWR) conditions of 288°C deaerated (less than 5ppb O?) water, to shed light on the accelerating ...

  19. Pollution of Natural Waters 1. Redox chemistry

    E-Print Network [OSTI]

    Schofield, Jeremy

    Pollution of Natural Waters Outline: 1. Redox chemistry 2. Redox potential in aquatic systems 3; Photosynthetic algae limited to euphotic zone where light can penetrate #15; Below euphotic zone, O 2

  20. White light velocity interferometer

    DOE Patents [OSTI]

    Erskine, D.J.

    1999-06-08

    The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s. 41 figs.

  1. Green Light Pulse Oximeter

    DOE Patents [OSTI]

    Scharf, John Edward (Oldsmar, FL)

    1998-11-03

    A reflectance pulse oximeter that determines oxygen saturation of hemoglobin using two sources of electromagnetic radiation in the green optical region, which provides the maximum reflectance pulsation spectrum. The use of green light allows placement of an oximetry probe at central body sites (e.g., wrist, thigh, abdomen, forehead, scalp, and back). Preferably, the two green light sources alternately emit light at 560 nm and 577 nm, respectively, which gives the biggest difference in hemoglobin extinction coefficients between deoxyhemoglobin, RHb, and oxyhemoglobin, HbO.sub.2.

  2. Lakeview Light and Power- Commercial Lighting Rebate Program

    Broader source: Energy.gov [DOE]

    Lakeview Light and Power offers a commercial lighting rebate program. Rebates apply to the installation of energy efficient lighting retrofits in non-residential buildings. The rebate program is...

  3. Demonstration Assessment of Light-Emitting Diode (LED) Roadway Lighting

    SciTech Connect (OSTI)

    None

    2009-11-01

    A U.S. Department of Energy Solid-State Lighting Gateway Report on a Demonstration Assessment of Light-Emitting Diode (LED) Roadway Lighting in Lija Loop, Portland, Oregon.

  4. Strawberry Nursery Plant Propagation in Relation to Soil Phosphorus and Water Variation

    E-Print Network [OSTI]

    Li, Hong; Li, Tingxian; Gordon, Robert J.; Asiedu, Samuel K.

    2009-01-01

    and variability of soil pH, water, magnesium and Diaprepesdesign for light and water management in strawberry.P concentrations vary with soil water content (SWC) and pH

  5. Bidentate Dicarboxylate Capping Groups and Photosensitizers Control the Size of IrO2 Nanoparticle Catalysts for Water Oxidation

    E-Print Network [OSTI]

    . Introduction Visible light water splitting has been described as one of the "holy grails" of chemistry.1

  6. Effect of wettability on light oil steamflooding

    SciTech Connect (OSTI)

    Olsen, D.K.

    1991-12-01

    This report summarizes NIPER`s research on four interrelated topics for Light Oil Steamflooding. Four interrelated topics are described: The methodology for measuring capillary pressure and wettability at elevated temperature, the use of silylating agents to convert water-wet Berea sandstones or unconsolidated quartz sands to oil-wetted surfaces, the evaluation of the thermal hydrolytic stability of these oil-wet surfaces for possible use in laboratory studies using steam and hot water to recover oil, and the effect of porous media of different wettabilities on oil recovery where the porous media is first waterflooded and then steamflooded.

  7. Effect of wettability on light oil steamflooding

    SciTech Connect (OSTI)

    Olsen, D.K.

    1991-12-01

    This report summarizes NIPER's research on four interrelated topics for Light Oil Steamflooding. Four interrelated topics are described: The methodology for measuring capillary pressure and wettability at elevated temperature, the use of silylating agents to convert water-wet Berea sandstones or unconsolidated quartz sands to oil-wetted surfaces, the evaluation of the thermal hydrolytic stability of these oil-wet surfaces for possible use in laboratory studies using steam and hot water to recover oil, and the effect of porous media of different wettabilities on oil recovery where the porous media is first waterflooded and then steamflooded.

  8. Peninsula Light Company- Commercial Efficient Lighting Rebate Program

    Broader source: Energy.gov [DOE]

    Peninsula Light Company (PLC) offers a rebate program for commercial customers who wish to upgrade to energy efficient lighting. Participating customers must be served by PLC commercial service....

  9. Light Vector Mesons

    E-Print Network [OSTI]

    Alexander Milov

    2008-12-21

    This article reviews the current status of experimental results obtained in the measurement of light vector mesons produced in proton-proton and heavy ion collisions at different energies. The review is focused on two phenomena related to the light vector mesons; the modification of the spectral shape in search of Chiral symmetry restoration and suppression of the meson production in heavy ion collisions. The experimental results show that the spectral shape of light vector mesons are modified compared to the parameters measured in vacuum. The nature and the magnitude of the modification depends on the energy density of the media in which they are produced. The suppression patterns of light vector mesons are different from the measurements of other mesons and baryons. The mechanisms responsible for the suppression of the mesons are not yet understood. Systematic comparison of existing experimental results points to the missing data which may help to resolve the problem.

  10. lighting in the library

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lamp produces about 1750 lumens. Footcandle: a lumen of light distributed over a 1-square-foot (0.09-square-meter) area. Ideal Illumination: the minimum number of footcandles...

  11. Solid State Lighting Reliability

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solid State Lighting Reliability 2015Building Technologies Office Peer Review Lynn Davis, PhD RTI International ldavis@rti.org --- 919-316-3325 Project Summary Timeline: Start...

  12. The Facts of Light

    E-Print Network [OSTI]

    Horn, Berthold K.P.

    This is a random collection of facts about radiant and luminous energy. Some of this information may be useful in the design of photo-diode image sensors, in the set-up of lighting for television microscopes and the ...

  13. National Synchrotron Light Source

    ScienceCinema (OSTI)

    None

    2010-01-08

    A tour of Brookhaven's National Synchrotron Light Source (NSLS). The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviole

  14. Lighting in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    5.2 152.6 160.5 54.6 Assembly Health Care Lodging Office 0 20 40 60 80 100 120 140 160 180 Energy Information Administration Energy Consumption Series: Lighting in Commercial...

  15. Solid state lighting component

    DOE Patents [OSTI]

    Yuan, Thomas; Keller, Bernd; Ibbetson, James; Tarsa, Eric; Negley, Gerald

    2010-10-26

    An LED component comprising an array of LED chips mounted on a planar surface of a submount with the LED chips capable of emitting light in response to an electrical signal. The LED chips comprise respective groups emitting at different colors of light, with each of the groups interconnected in a series circuit. A lens is included over the LED chips. Other embodiments can comprise thermal spreading structures included integral to the submount and arranged to dissipate heat from the LED chips.

  16. Solid state lighting component

    DOE Patents [OSTI]

    Keller, Bernd; Ibbetson, James; Tarsa, Eric; Negley, Gerald; Yuan, Thomas

    2012-07-10

    An LED component comprising an array of LED chips mounted on a planar surface of a submount with the LED chips capable of emitting light in response to an electrical signal. The LED chips comprise respective groups emitting at different colors of light, with each of the groups interconnected in a series circuit. A lens is included over the LED chips. Other embodiments can comprise thermal spreading structures included integral to the submount and arranged to dissipate heat from the LED chips.

  17. Light and Plants Plants use light to photosynthesize. Name two places that light can come from

    E-Print Network [OSTI]

    Koptur, Suzanne

    Light and Plants Plants use light to photosynthesize. Name two places that light can come from: 1 (CO2, a gas) from the air and turn it into SUGARS (food). This process is powered by energy from light plants) for energy. Photosynthetically Active Radiation (PAR) is a combination of red light and blue

  18. LED Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    focusing light in ways that are useful in homes and commercial settings. The light-emitting diode (LED) is one of today's most energy-efficient and rapidly-developing lighting...

  19. Energy Conservation in Industrial Lighting 

    E-Print Network [OSTI]

    Meharg, E.

    1979-01-01

    were identified. Savings in power and cost were quantified for typical examples as follows: Task lighting, high light source efficacy, high luminaire mounting height, efficient luminaires, surroundings painted a light color, regular luminaire cleaning...

  20. Higher order light propagation volumes

    E-Print Network [OSTI]

    Martin, Timothy Ly; Martin, Timothy Ly

    2012-01-01

    1.1 Introduction . . . . . . . . . 1.2 Light Propagation4.1.1 Injection of Virtual Point Lights and Geometryof the Stanford bunny, lit by an area light, rendered using

  1. Light as a Healing Mechanism

    E-Print Network [OSTI]

    Lingampalli, Nithya

    2013-01-01

    S. (1991). Meridians conduct light. Moskow: Raum and Zeit.the bod’ys absorption of light. Explore, 9(2), doi: https://01). The healing use of light and color. Health Care Design

  2. Lighting and the Bottom Line 

    E-Print Network [OSTI]

    Christensen, M.

    1981-01-01

    A discussion of the cost of light and how it relates to the cost of people. The new Illuminating Engineering Society recommended method of determining lighting levels will be explained. Also several ways of providing good lighting to increase...

  3. New Light Sources for Tomorrow's Lighting Designs 

    E-Print Network [OSTI]

    Krailo, D. A.

    1986-01-01

    and lighting systems. Table 2 shows the development of four-foot energy-saving retrofit lamps. By utilizing new cathode designed and different gas fills, 34-watt energy-saving lamps were developed that operate on existing rapid start ballasts and afford... of fluorescent lamps, two watts of system power are consumed in heating the lamp cath odes. The shedding of cathode heating wattage was the next lamp efficiency improvement to be introduced. One available sy tern dis connects the lamp cathodes from...

  4. Lighting Design | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    as part of your whole-house design -- an approach for building an energy-efficient home. Indoor Lighting Design When designing indoor lighting for energy efficiency,...

  5. GATEWAY Demonstrations: LED Street Lighting

    SciTech Connect (OSTI)

    Cook, Tyson; Shackelford, Jordan; Pang, Terrance Pang

    2008-12-01

    This report summarizes an assessment project conducted to study the performance of light emitting diode (LED) luminaires in a street lighting application in San Francisco, CA.

  6. Interior Lighting Efficiency for Municipalities

    Broader source: Energy.gov [DOE]

    This webinar covered a basic understanding of lighting, different types of lamps and luminaries, importance of energy efficiency in lighting, and knowledge of where to find financial resources.

  7. 2010 US Lighting Market Characterization

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2010 U.S. Lighting Market Characterization January 2012 Prepared for: Solid-State Lighting Program Building Technologies Program Office of Energy Efficiency and Renewable Energy...

  8. Lighting Controls | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    fluorescent lighting fixtures rather than replace them. Dimmers and LEDs Some light-emitting diode (LED) lightbulbs can be used with dimmers. LED bulbs and fixtures must be...

  9. Lighting affects appearance LightSource emits photons

    E-Print Network [OSTI]

    Jacobs, David

    1 Lighting affects appearance #12;2 LightSource emits photons Photons travel in a straight line). And then some reach the eye/camera. #12;3 Basic fact: Light is linear Double intensity of sources, double photons reaching eye. Turn on two lights, and photons reaching eye are same as sum of number when each

  10. Quasi light fields: extending the light field to coherent radiation

    E-Print Network [OSTI]

    Wornell, Gregory W.

    Quasi light fields: extending the light field to coherent radiation Anthony Accardi1,2 and Gregory light field, and for coherent radiation using electromagnetic field theory. We present a model of coherent image formation that strikes a balance between the utility of the light field

  11. Interior Light Level Measurements Appendix F -Interior Light Level Measurements

    E-Print Network [OSTI]

    Appendix F ­ Interior Light Level Measurements #12;F.1 Appendix F - Interior Light Level. A potential concern is that a lower VT glazing may increase electric lighting use to compensate for lost qualify and quantify a representative loss of daylighting, and therefore electric lighting use

  12. Demonstration Assessment of LED Roadway Lighting: Philadelphia...

    Office of Scientific and Technical Information (OSTI)

    LED Roadway Lighting: Philadelphia, PA Royer, Michael P.; Tuenge, Jason R.; Poplawski, Michael E. Roadway Lighting; Solid-state lighting; LED lighting; SSL; LED; GATEWAY Roadway...

  13. Lighting Principles and Terms | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Principles and Terms Lighting Principles and Terms Light quantity, energy consumption, and light quality are the basic principles of lighting. | Photo courtesy of

  14. Testimonials - Partnerships in LED Lighting - Philips Lumileds...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LED Lighting - Philips Lumileds Lighting, LLC Testimonials - Partnerships in LED Lighting - Philips Lumileds Lighting, LLC Addthis An error occurred. Try watching this video on...

  15. Light Quark Mass Reweighting

    E-Print Network [OSTI]

    Qi Liu; Norman H. Christ; Chulwoo Jung

    2012-06-01

    We present a systematic study of the effectiveness of light quark mass reweighting. This method allows a single lattice QCD ensemble, generated with a specific value of the dynamical light quark mass, to be used to determine results for other, nearby light dynamical quark masses. We study two gauge field ensembles generated with 2+1 flavors of dynamical domain wall fermions with light quark masses m_l=0.02 (m_\\pi=620 MeV) and m_l=0.01 (m_\\pi=420 MeV). We reweight each ensemble to determine results which could be computed directly from the other and check the consistency of the reweighted results with the direct results. The large difference between the 0.02 and 0.01 light quark masses suggests that this is an aggressive application of reweighting as can be seen from fluctuations in the magnitude of the reweighting factor by four orders of magnitude. Never-the-less, a comparison of the reweighed topological charge, average plaquette, residual mass, pion mass, pion decay constant, and scalar correlator between these two ensembles shows agreement well described by the statistical errors. The issues of the effective number of configurations and finite sample size bias are discussed. An examination of the topological charge distribution implies that it is more favorable to reweight from heavier mass to lighter quark mass.

  16. Are Light Gluinos Dead?

    E-Print Network [OSTI]

    Glennys R. Farrar

    1997-07-25

    Not yet. ALEPH's recent exclusion limit employs an aggressive determination of theoretical uncertainties using a simplified application of the Bayesian method. The validity of their analysis can be evaluated by its further implications, such as contradicting the existence a b quark and requiring relations between hadronic event-shape observables which are not observed. Traditional error estimation methods result in a much larger estimate for the theoretical uncertainties. This puts the ALEPH and also Csikor-Fodor limits at the $\\sim 1~ \\sigma$ level for the very light gluino scenario. A recent astrophysical result implies direct searches will be more difficult than previously anticipated, adding to the importance of reducing the QCD uncertainty in predictions sensitive to indirect effects of light gluinos. Some possible indications in favor of a light gluino are noted.

  17. Light harvesting arrays

    DOE Patents [OSTI]

    Lindsey, Jonathan S. (Raleigh, NC)

    2002-01-01

    A light harvesting array useful for the manufacture of devices such as solar cells comprises: (a) a first substrate comprising a first electrode; and (b) a layer of light harvesting rods electrically coupled to the first electrode, each of the light harvesting rods comprising a polymer of Formula I: X.sup.1.paren open-st.X.sup.m+1).sub.m (I) wherein m is at least 1, and may be from two, three or four to 20 or more; X.sup.1 is a charge separation group (and preferably a porphyrinic macrocycle, which may be one ligand of a double-decker sandwich compound) having an excited-state of energy equal to or lower than that of X.sup.2, and X.sup.2 through X.sup.m+1 are chromophores (and again are preferably porphyrinic macrocycles).

  18. Pupillary efficient lighting system

    DOE Patents [OSTI]

    Berman, Samuel M. (San Francisco, CA); Jewett, Don L. (Mill Valley, CA)

    1991-01-01

    A lighting system having at least two independent lighting subsystems each with a different ratio of scotopic illumination to photopic illumination. The radiant energy in the visible region of the spectrum of the lighting subsystems can be adjusted relative to each other so that the total scotopic illumination of the combined system and the total photopic illumination of the combined system can be varied independently. The dilation or contraction of the pupil of an eye is controlled by the level of scotopic illumination and because the scotopic and photopic illumination can be separately controlled, the system allows the pupil size to be varied independently of the level of photopic illumination. Hence, the vision process can be improved for a given level of photopic illumination.

  19. Sneaky light stop

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Eifert, Till; Nachman, Benjamin

    2015-02-20

    A light supersymmetric top quark partner (stop) with a mass nearly degenerate with that of the standard model (SM) top quark can evade direct searches. The precise measurement of SM top properties such as the cross-section has been suggested to give a handle for this ‘stealth stop’ scenario. We present an estimate of the potential impact a light stop may have on top quark mass measurements. The results indicate that certain light stop models may induce a bias of up to a few GeV, and that this effect can hide the shift in, and hence sensitivity from, cross-section measurements. Duemore »to the different initial states, the size of the bias is slightly different between the LHC and the Tevatron. The studies make some simplifying assumptions for the top quark measurement technique, and are based on truth-level samples.« less

  20. Light emitting ceramic device

    DOE Patents [OSTI]

    Valentine, Paul; Edwards, Doreen D.; Walker, Jr., William John; Slack, Lyle H.; Brown, Wayne Douglas; Osborne, Cathy; Norton, Michael; Begley, Richard

    2010-05-18

    A light-emitting ceramic based panel, hereafter termed "electroceramescent" panel, is herein claimed. The electroceramescent panel is formed on a substrate providing mechanical support as well as serving as the base electrode for the device. One or more semiconductive ceramic layers directly overlay the substrate, and electrical conductivity and ionic diffusion are controlled. Light emitting regions overlay the semiconductive ceramic layers, and said regions consist sequentially of a layer of a ceramic insulation layer and an electroluminescent layer, comprised of doped phosphors or the equivalent. One or more conductive top electrode layers having optically transmissive areas overlay the light emitting regions, and a multi-layered top barrier cover comprising one or more optically transmissive non-combustible insulation layers overlay said top electrode regions.

  1. Radioluminescent lighting technology

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The glow-in-the-dark stereotype that characterizes the popular image of nuclear materials is not accidental. When the French scientist, Henri Becquerel, first discovered radioactivity in 1896, he was interested in luminescence. Radioluminescence, the production of light from a mixture of energetic and passive materials, is probably the oldest practical application of the unstable nucleus. Tritium-based radioluminescent lighting, in spite of the biologically favorable character of the gaseous tritium isotope, was included in the general tightening of environmental and safety regulations. Tritium light manufacturers would have to meet two fundamental conditions: (1) The benefit clearly outweighed the risk, to the extent that even the perceived risk of a skeptical public would be overcome. (2) The need was significant enough that the customer/user would be willing and able to afford the cost of regulation that was imposed both in the manufacture, use and eventual disposal of nuclear materials. In 1981, researchers at Oak Ridge National Laboratory were investigating larger radioluminescent applications using byproduct nuclear material such as krypton-85, as well as tritium. By 1982, it appeared that large source, (100 Curies or more) tritium gas tube, lights might be useful for marking runways and drop zones for military operations and perhaps even special civilian aviation applications. The successful development of this idea depended on making the light bright enough and demonstrating that large gas tube sources could be used and maintained safely in the environment. This successful DOE program is now in the process of being completed and closed-out. Working closely with the tritium light industry, State governments and other Federal agencies, the basic program goals have been achieved. This is a detailed report of what they have learned, proven, and discovered. 91 refs., 29 figs., 5 tabs. (JF)

  2. Light is Heavy

    E-Print Network [OSTI]

    van der Mark, M B

    2015-01-01

    Einstein's relativity theory appears to be very accurate, but at times equally puzzling. On the one hand, electromagnetic radiation must have zero rest mass in order to propagate at the speed of light, but on the other hand, since it definitely carries momentum and energy, it has non-zero inertial mass. Hence, by the principle of equivalence, it must have non-zero gravitational mass, and so, light must be heavy. In this paper, no new results will be derived, but a possibly surprising perspective on the above paradox is given.

  3. EXTENSION WATER SUMMIT PRIORITY: WATER CONSERVATION

    E-Print Network [OSTI]

    Slatton, Clint

    EXTENSION WATER SUMMIT PRIORITY: WATER CONSERVATION Leadership Team Subcommittee: Joan Bradshaw Michael Dukes Pierce Jones Kati Migliaccio #12;Water Conservation - Situation · Florida water supplies are used for agriculture, natural resources, salt water intrusion protection, drinking water, industry

  4. Solid State Lighting

    SciTech Connect (OSTI)

    Hastbacka, Mildred; Dieckmann, John; Bouza, Antonio

    2013-03-30

    The article discusses solid state lighting technologies. This topic was covered in two previous ASHRAE Journal columns (2010). This article covers advancements in technologies and the associated efficacies. The life-cycle, energy savings and market potential of these technologies are addressed as well.

  5. Ground Water Ground Sky Sky Water Vegetation Ground Vegetation Water

    E-Print Network [OSTI]

    Chen, Tsuhan

    Bear Snow Vegetation RhinoWater Vegetation Ground Water Ground Sky Sky Rhino Water Vegetation Ground Vegetation Water Rhino Water Vegetation Ground Rhino Water Rhino Water Ground Ground Vegetation Water Rhino Vegetation Rhino Vegetation Ground Rhino Vegetation Ground Sky Rhino Vegetation Ground Sky

  6. Computerized Waters 

    E-Print Network [OSTI]

    Wythe, Kathy

    2006-01-01

    supply diversions, several hydroelectric plants and numerous environ- mental instream flow requirements. Each of these active permits is included in the datasets. Besides the commission using the WAM/WRAP modeling system in water rights permiting... actions be consistent with relevant regional plans. River authorities, water districts and other water management organizations are beginning to use the WRAP model in operational planning studies to optimize operations of their facilities...

  7. This article was originally published in the Encyclopedia of Inland Waters published by Elsevier, and the attached copy is provided by Elsevier for the

    E-Print Network [OSTI]

    Johnsen, Sönke

    on UV vision. Underwater Light Environment Light is both absorbed and scattered as it penetrates through, oceanic water, absorption by the water itself is the primary source of light attenuation. However penetrates farther, and UVR and blue light dominate. Although the average DOC concentration for freshwaters

  8. Demonstration Assessment of Light-Emitting Diode Roadway Lighting...

    Office of Scientific and Technical Information (OSTI)

    New York Citation Details In-Document Search Title: Demonstration Assessment of Light-Emitting Diode Roadway Lighting on the FDR Drive in New York, New York This a report about a...

  9. Light Dance : light and the nature of body movement

    E-Print Network [OSTI]

    Riskin, Seth

    1989-01-01

    Light Dance is a conscious transfiguration of the body, its movement and the encompassing space; a transposition of matter to light exalted in the dance. This corresponds to the conceptualized spirit of the performer whose ...

  10. Making fuel from light: Argonne research sheds light on photosynthesis...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Making fuel from light: Argonne research sheds light on photosynthesis and creation of solar fuel By Jo Napolitano * September 1, 2015 Tweet EmailPrint Refined by nature over a...

  11. Fusion pumped light source

    DOE Patents [OSTI]

    Pappas, Daniel S. (Los Alamos, NM)

    1989-01-01

    Apparatus is provided for generating energy in the form of light radiation. A fusion reactor is provided for generating a long, or continuous, pulse of high-energy neutrons. The neutron flux is coupled directly with the lasing medium. The lasing medium includes a first component selected from Group O of the periodic table of the elements and having a high inelastic scattering cross section. Gamma radiation from the inelastic scattering reactions interacts with the first component to excite the first component, which decays by photon emission at a first output wavelength. The first output wavelength may be shifted to a second output wavelength using a second liquid component responsive to the first output wavelength. The light outputs may be converted to a coherent laser output by incorporating conventional optics adjacent the laser medium.

  12. Scattering Of Light Nuclei

    SciTech Connect (OSTI)

    Quaglioni, S; Navratil, P; Roth, R

    2009-12-15

    The exact treatment of nuclei starting from the constituent nucleons and the fundamental interactions among them has been a long-standing goal in nuclear physics. Above all nuclear scattering and reactions, which require the solution of the many-body quantum-mechanical problem in the continuum, represent an extraordinary theoretical as well as computational challenge for ab initio approaches.We present a new ab initio many-body approach which derives from the combination of the ab initio no-core shell model with the resonating-group method [4]. By complementing a microscopic cluster technique with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters, this approach is capable of describing simultaneously both bound and scattering states in light nuclei. We will discuss applications to neutron and proton scattering on sand light p-shell nuclei using realistic nucleon-nucleon potentials, and outline the progress toward the treatment of more complex reactions.

  13. OLEDS FOR GENERAL LIGHTING

    SciTech Connect (OSTI)

    Anil Duggal; Don Foust; Chris Heller; Bill Nealon; Larry Turner; Joe Shiang; Nick Baynes; Tim Butler; Nalin Patel

    2004-02-29

    The goal of this program was to reduce the long term technical risks that were keeping the lighting industry from embracing and developing organic light-emitting diode (OLED) technology for general illumination. The specific goal was to develop OLEDs for lighting to the point where it was possible to demonstrate a large area white light panel with brightness and light quality comparable to a fluorescence source and with an efficacy comparable to that of an incandescent source. it was recognized that achieving this would require significant advances in three area: (1) the improvement of white light quality for illumination, (2) the improvement of OLED energy efficiency at high brightness, and (3) the development of cost-effective large area fabrication techniques. The program was organized such that, each year, a ''deliverable'' device would be fabricated which demonstrated progress in one or more of the three critical research areas. In the first year (2001), effort concentrated on developing an OLED capable of generating high illumination-quality white light. Ultimately, a down-conversion method where a blue OLED was coupled with various down-conversion layers was chosen. Various color and scattering models were developed to aid in material development and device optimization. The first year utilized this approach to deliver a 1 inch x 1 inch OLED with higher illumination-quality than available fluorescent sources. A picture of this device is shown and performance metrics are listed. To their knowledge, this was the first demonstration of true illumination-quality light from an OLED. During the second year, effort concentrated on developing a scalable approach to large area devices. A novel device architecture consisting of dividing the device area into smaller elements that are monolithically connected in series was developed. In the course of this development, it was realized that, in addition to being scalable, this approach made the device tolerant to the most common OLED defect--electrical shorts. This architecture enabled the fabrication of a 6 inch x 6 inch OLED deliverable for 2002. A picture of this deliverable is shown and the performance metrics are listed. At the time, this was the highest efficiency, highest lumen output illumination-quality OLED in existence. The third year effort concentrated on improving the fabrication yield of the 6 inch x 6 inch devices and improving the underlying blue device efficiency. An efficiency breakthrough was achieved through the invention of a new device structure such that now 15 lumen per watt devices could be fabricated. A 2 feet x 2 feet OLED panel consisting of sixteen 6 inch x 6 inch high efficiency devices tiled together was then fabricated. Pictures of this panel are shown with performance metrics listed. This panel met all project objectives and was the final deliverable for the project. It is now the highest efficiency, highest lumen output, illumination-quality OLED in existence.

  14. Solid State Lighting Reliability

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo.Hydrogen4EnergySolid State Lighting Reliability 2014 Building

  15. LED Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    are directional, focusing light in ways that are useful in homes and commercial settings. The light-emitting diode (LED) is one of today's most energy-efficient and...

  16. An International Year of Light

    E-Print Network [OSTI]

    Faure, Claudie

    of light-based technologies for the equitable development of global society. The project received, renewable energy and energy efficiency, and for PROSPECTUS An International Year of Light Science ­ Technology ­ Nature ­ Culture ­ Development

  17. Picosecond Kinetics of Light Harvesting and Photoprotective Quenching in Wild-Type and Mutant Phycobilisomes Isolated from the

    E-Print Network [OSTI]

    van Stokkum, Ivo

    Picosecond Kinetics of Light Harvesting and Photoprotective Quenching in Wild-Type and Mutant In high light conditions, cyanobacteria dissipate excess absorbed energy as heat in the light-harvesting of water and the release of oxygen. The central parts of these photosystems, i.e., the reaction centers

  18. P-107 / C.F. Qiu P-107: Very Bright and Efficient Phosphorescent Organic Light-Emitting

    E-Print Network [OSTI]

    . Introduction Organic-light emitting diodes (OLEDs) as pixels for flat- panel displays are being hotly pursuedP-107 / C.F. Qiu P-107: Very Bright and Efficient Phosphorescent Organic Light-Emitting Diode and Technology Clear Water Bay, Kowloon, Hong Kong Abstract The characteristics of an organic light

  19. Two Rivers Water & Light | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, New York: Energy ResourcesLake, Michigan:OpenJemez

  20. Advanced Nuclear Technology: Advanced Light Water Reactors Utility

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics AndBerylliumDepartment of Energy8pt1.doc&#0;47.1Science &LWRS Advanced

  1. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    products; Develop and evolve within VERA physics-based materials models of the fuel system, reactor vessel and internals, improved constitutive relations of coolant and...

  2. Cedarburg Light & Water Utility- Commercial Shared Savings Loan Program

    Broader source: Energy.gov [DOE]

    Wisconsin Focus on Energy offers other financial incentives to eligible business customers for installing qualifying energy efficiency measures. These measures include a variety of technologies i...

  3. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LWRs; Develop and effectively apply modern virtual reactor technology; Engage the nuclear energy community through modeling and simulation; and Deploy new partnership and...

  4. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    well-known thermal-hydraulic analysis codes that have found widespread use in the nuclear energy industry. This group of codes is related in that they were developed for modeling...

  5. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to develop the world's first nuclear fuel cycle and today is DOE's largest science and energy laboratory. ORNL has world-leading capabilities in computing and computational...

  6. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    plan to set up eight innovation hubs to solve the eight biggest energy problems in the world. CUNY Energy Institute The CUNY Energy Institute is proudly training the next...

  7. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Map Home About CASL Vision Mission Goals Strategy Integration Performance Metrics Partners Founding Partners Electric Power Research Institute Idaho National Laboratory Los...

  8. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Transport Methods (RTM) Delivers next-generation radiation transport tools to the virtual Reactor RTM Vision Statement Objectives and Strategies Next generation,...

  9. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Monte Carlo transport applications. Exnihilo is based on a package architecture model such that each package provides well-defined capabilities. Exnihilo currently...

  10. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    reactor physical phenomena using coupled multiphysics models. VERA also includes the software development environment and computational infrastructure needed for these...

  11. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to achieve challenge problem solutions A strong VERA infrastructure supporting software development, testing, and releases. Requirements Drivers Modeling of reactors...

  12. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    codes (e.g,. a physics simulation) and iterative systems analysis methods such as optimization or uncertainty quantification. It includes algorithms for: optimization with...

  13. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    One-Roof Culture CASL's "virtual one-roof" approach is implemented through physical collocation of a strong central leadership team, interdisciplinary collaboration, regular...

  14. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (VOCC Lab) to support CASL's mission, and it has three primary goals Under one-roof, to bring together (both physically and virtually) the best scientists, engineers,...

  15. Evolutionary/advanced light water reactor data report

    SciTech Connect (OSTI)

    1996-02-09

    The US DOE Office of Fissile Material Disposition is examining options for placing fissile materials that were produced for fabrication of weapons, and now are deemed to be surplus, into a condition that is substantially irreversible and makes its use in weapons inherently more difficult. The principal fissile materials subject to this disposition activity are plutonium and uranium containing substantial fractions of plutonium-239 uranium-235. The data in this report, prepared as technical input to the fissile material disposition Programmatic Environmental Impact Statement (PEIS) deal only with the disposition of plutonium that contains well over 80% plutonium-239. In fact, the data were developed on the basis of weapon-grade plutonium which contains, typically, 93.6% plutonium-239 and 5.9% plutonium-240 as the principal isotopes. One of the options for disposition of weapon-grade plutonium being considered is the power reactor alternative. Plutonium would be fabricated into mixed oxide (MOX) fuel and fissioned (``burned``) in a reactor to produce electric power. The MOX fuel will contain dioxides of uranium and plutonium with less than 7% weapon-grade plutonium and uranium that has about 0.2% uranium-235. The disposition mission could, for example, be carried out in existing power reactors, of which there are over 100 in the United States. Alternatively, new LWRs could be constructed especially for disposition of plutonium. These would be of the latest US design(s) incorporating numerous design simplifications and safety enhancements. These ``evolutionary`` or ``advanced`` designs would offer not only technological advances, but also flexibility in siting and the option of either government or private (e.g., utility) ownership. The new reactor designs can accommodate somewhat higher plutonium throughputs. This data report deals solely with the ``evolutionary`` LWR alternative.

  16. CONSORTIUM FOR ADVANCED SIMULATION OF LIGHT WATER REACTORS (CASL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    runs. Preliminary VERA results were produced for a high resolution (1.1 billion cells) full core model using STAR-CCM+ on the INL HPC. The model simulated velocities and...

  17. CONSORTIUM FOR ADVANCED SIMULATION OF LIGHT WATER REACTORS (CASL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    strategic plan to ensure long term success, and he presented one of several roadmaps, Reactor Applications. One IC member commented that the roadmap should be changes so that...

  18. ORGANIC SPECIES IN GEOTHERMAL WATERS IN LIGHT OF FLUID INCLUSION...

    Open Energy Info (EERE)

    > 0.001 mol % typically have ethane > ethylene, propane > propylene, and butane > butylene. There are three end member fluid compositions: type 1 fluids in which...

  19. Neutron economic reactivity control system for light water reactors

    DOE Patents [OSTI]

    Luce, Robert G. (Glenville, NY); McCoy, Daniel F. (Latham, NY); Merriman, Floyd C. (Rotterdam, NY); Gregurech, Steve (Scotia, NY)

    1989-01-01

    A neutron reactivity control system for a LWBR incorporating a stationary seed-blanket core arrangement. The core arrangement includes a plurality of contiguous hexagonal shaped regions. Each region has a central and a peripheral blanket area juxapositioned an annular seed area. The blanket areas contain thoria fuel rods while the annular seed area includes seed fuel rods and movable thoria shim control rods.

  20. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    model and numerical algorithm requirements of VERA. THM collaborates closely with Materials Performance and Optimization (MPO) for sub-grid material and chemistry models,...

  1. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    integration (VRI) for integration and development of VERA. Materials Performance and Optimization (MPO) - Develops improved materials performance models for fuels, cladding,...

  2. Incorporation of Hydride Nuclear Fuels in Commercial Light Water Reactors

    E-Print Network [OSTI]

    Terrani, Kurt Amir

    2010-01-01

    Fundamental aspects of nuclear reactor fuel elements.Unlike permanent nuclear reactor core components, nuclearof the first nuclear reactors, commercial nuclear fuel still

  3. Sandia Energy - Consortium for Advanced Simulation of Light-Water...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the modeling simulation tools built during its first phase to include additional nuclear reactor designs, including small, modular reactors. "As President Obama made clear...

  4. Light Water Reactors A DOE Energy Innovation Hub for Modeling...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Simulation of Nuclear Reactors CASL is focused on three issues for nuclear energy: reducing cost, reducing the amount of used nuclear fuel, and safety. CASL core...

  5. City Water Light and Power- Solar Rewards Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Funding for the SOLAR REWARDS Rebate program has been exhausted for the current fiscal year. Please check back after March 1, 2015, to see if funding has been reinstated.

  6. CONSORTIUM FOR ADVANCED SIMULATION OF LIGHT WATER REACTORS (CASL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    program director, chief scientist, two focus area leads, and the manager of partnersalliances responsible for intellectual property and commercialization matters. The DOE...

  7. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    user forum User support and VERA distribution systems capable of meeting user demand A sustainable model for continued use and development of CASL's technology after the active...

  8. Commercial Light Water Production of Tritium: Update and Path Forward

    Broader source: Energy.gov [DOE]

    Presentation from the 32nd Tritium Focus Group Meeting held in Germantown, Maryland on April 23-25, 2013.

  9. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Drekar, CASL Technical Report: CASL-U-2012-0080-000, June 30, 2012. Bakosi, J., N. Barnett, M.A. Christon, M.M. Francois, R.B. Lowrie and R. Sankaran, Integration of Hydra-TH...

  10. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that have included management of CERCLA and RCRA remediation projects at the INL, Rocky Flats, and Mound laboratories, management of special nuclear materials at the INL, and...

  11. Incorporation of Hydride Nuclear Fuels in Commercial Light Water Reactors

    E-Print Network [OSTI]

    Terrani, Kurt Amir

    2010-01-01

    Uranium in the fuel remains metallic since the equilibriumtype of hydride fuel consists of metallic uranium particlesalloying the metallic components of the fuel followed by a

  12. The burnup dependence of light water reactor spent fuel oxidation

    SciTech Connect (OSTI)

    Hanson, B.D.

    1998-07-01

    Over the temperature range of interest for dry storage or for placement of spent fuel in a permanent repository under the conditions now being considered, UO{sub 2} is thermodynamically unstable with respect to oxidation to higher oxides. The multiple valence states of uranium allow for the accommodation of interstitial oxygen atoms in the fuel matrix. A variety of stoichiometric and nonstoichiometric phases is therefore possible as the fuel oxidizers from UO{sub 2} to higher oxides. The oxidation of UO{sub 2} has been studied extensively for over 40 years. It has been shown that spent fuel and unirradiated UO{sub 2} oxidize via different mechanisms and at different rates. The oxidation of LWR spent fuel from UO{sub 2} to UO{sub 2.4} was studied previously and is reasonably well understood. The study presented here was initiated to determine the mechanism and rate of oxidation from UO{sub 2.4} to higher oxides. During the early stages of this work, a large variability in the oxidation behavior of samples oxidized under nearly identical conditions was found. Based on previous work on the effect of dopants on UO{sub 2} oxidation and this initial variability, it was hypothesized that the substitution of fission product and actinide impurities for uranium atoms in the spent fuel matrix was the cause of the variable oxidation behavior. Since the impurity concentration is roughly proportional to the burnup of a specimen, the oxidation behavior of spent fuel was expected to be a function of both temperature and burnup. This report (1) summarizes the previous oxidation work for both unirradiated UO{sub 2} and spent fuel (Section 2.2) and presents the theoretical basis for the burnup (i.e., impurity concentration) dependence of the rate of oxidation (Sections 2.3, 2.4, and 2.5), (2) describes the experimental approach (Section 3) and results (Section 4) for the current oxidation tests on spent fuel, and (3) establishes a simple model to determine the activation energies associated with spent fuel oxidation (Section 5).

  13. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources CASL Resources features selected science and engineering innovations, insights, and results from CASL staff R&D activities in the form of publications, software, images,...

  14. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in AP1000 reactor core Test run signals emergence of the next generation in nuclear power reactor analysis tools OAK RIDGE, Tenn., Feb. 18, 2014 - Scientists and engineers...

  15. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Directions Airport Airport Hotels Oak Ridge Hotels Knoxville Hotels ORNL Guest House Car Rental Taxi Service Tourism Information Regional Information Staff Directory Connect...

  16. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Challenge Problems, GTRF bdwirth@utk.edu 865-974-2554 Rob Montgomery Challenge Problems, PCI robert.montgomery@pnnl.gov 509-371-6231 Gregg Swindlehurst Challenge Problems, RIA,...

  17. Incorporation of Hydride Nuclear Fuels in Commercial Light Water Reactors

    E-Print Network [OSTI]

    Terrani, Kurt Amir

    2010-01-01

    6.3 Oxide layer characteristics . . . . . . . . . . . . .electron microscopy of the oxide layer grown on the sur-conditions. Different oxide layers were grown on the surface

  18. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    plant power uprates, life extension, and higher burnup fuels Provide the primary bridge between the scientific and computational capabilities developed by CASL and external...

  19. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    broadly throughout the nuclear energy industry to enhance safety, reliability, and economics. CASL's mission is to provide coupled, higher-fidelity, usable modeling and...

  20. Incorporation of Hydride Nuclear Fuels in Commercial Light Water Reactors

    E-Print Network [OSTI]

    Terrani, Kurt Amir

    2010-01-01

    Incoherent Quasielastic Neutron Scattering Study of Hydrogenand R.J. Elliott. Neutron scattering from a liquid on a jumpHempelmann. Quasielastic Neutron Scattering and Solid State

  1. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The toolkit also provides run-time parallel domain decomposition with data-migration for both static and dynamic load-balancing. Linear algebra is handled through an...

  2. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Subjected to High strain-rate Deformation and Fracture Modes," Jounral of Materials Research, Volume 30, Issue 15, pp. 2348-2359, August 5, 2015. Romano, P., N. Horelik, B.R....

  3. CONSORTIUM FOR ADVANCED SIMULATION OF LIGHT WATER REACTORS (CASL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    special session at NURETH-14, the premier T-H conference, with 9 papers on advanced thermal hydraulics * Recently hired former Director for CFD Technology of SIMULIA (leading...

  4. CONSORTIUM FOR ADVANCED SIMULATION OF LIGHT WATER REACTORS (CASL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Problem Integration Virtual Reactor Integration (VRI) Bridging the gap between research and engineering. Chemistry Mesh Motion Quality Improvement Multi- resolution...

  5. Incorporation of Hydride Nuclear Fuels in Commercial Light Water Reactors

    E-Print Network [OSTI]

    Terrani, Kurt Amir

    2010-01-01

    1.2.1 PWRs . . . . . . . . . . . . . . . . . . . . 1.2.2Actinides Multi-Recycling in PWR Using Hydride Fuels. InRecycling in Hydride Fueled PWR Cores. Nuclear Engineering

  6. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Subchannel Methods for the Thermal-Hydraulic Analysis for Nuclear Power Systems presented by Dr. Michael Doster...

  7. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal Hydraulics Methods (THM) Delivers next-generation thermal-hydraulic simulation tools to Virtual Environment for Reactor Applications (VERA) Thermal Hydraulics Methods...

  8. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from CASL (Dr. Mike Short, MIT, October, 31, 2013) Subchannel Methods for the Thermal-Hydraulic Analysis for Nuclear Power Systems (Dr. Michael Doster, NCSU, May 28, 2013)...

  9. Incorporation of Hydride Nuclear Fuels in Commercial Light Water Reactors

    E-Print Network [OSTI]

    Terrani, Kurt Amir

    2010-01-01

    1.4.3 Fission gas release . . . . . . . . . . . . 1.4.4Top: Fission-gas-release to birth-rate ratio as a functionBottom: Fractional fission-gas release as a function of

  10. Benthic effects on the polarization of light in shallow waters

    E-Print Network [OSTI]

    Cummings, Molly E.

    the depolarizing nature of the seafloor. The simulations, executed with the software package RayXP, are solutions be computed point- wise over a large range of scattering angles and wavelengths. Trends also become apparent impedes engineering applications, such as remote sensing and target detection, and hin- ders our

  11. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    capabilities to meet future CASL needs. DTK has been given an open source BSD 3-clause license. The primary code development repository is publicly-hosted under the GitHub group...

  12. Consortium for Advanced Simulation of Light Water Reactors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for TVA Watts Bar plant * First-of-a-kind three-dimensional (3D) assessment of fuel pellet-to- cladding interaction * VERA 1.0 established with infrastructure and basic industry...

  13. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of plant operation and fuel rod design on the thermo-mechanical behavior, including Pellet-Cladding Interaction (PCI) failures in PWRs. The multi-physics, multi-dimensional...

  14. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to deliver materials insight in the areas of CRUD, Grid-to-Rod-Fretting (GTRF), pellet-cladding interaction (PCI), reactivity insertion accident (RIA) and loss of cooling...

  15. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Nuclear Energy (NE) for their advancement of nuclear power; U.S. Nuclear Regulatory Commission (NRC) for safety reviews and licensing; R&D community for identification,...

  16. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    models are being developed based on higher fidelity CFD methods, and may also include adhesionstrength models16 for the crud's surface layer as well as other "release"...

  17. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry Council Members AREVA ANSYS, Inc. Battelle Memorial Institute Bettis Atomic Power Laboratory Cray Inc. Dominion Duke Energy The EDF Group Electric Power Research...

  18. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kit has been redesigned to provide a framework for more efficient and general algorithms for data transfer. These new algorithms, previously identified as an efficient means...

  19. Incorporation of Hydride Nuclear Fuels in Commercial Light Water Reactors

    E-Print Network [OSTI]

    Terrani, Kurt Amir

    2010-01-01

    filled gap between the zirconia layer and the hydride fuel (calculated peaks for zirconia is possibly due to preferredpossibly coupled with a thin zirconia layer, as a kinetic

  20. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reliable predictions of grid to rod gap, turbulent flow excitation, and resulting rod vibration and wear at any location in core. PCI Pellet-Clad Interaction. Cladding...

  1. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of technology. Management Performance reflects CASL's ability to meet its virtual one-roof plan (collocation), maintain consortium cohesion and chemistry, and deliver its...

  2. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    modeling and simulation technology that is deployed and applied broadly throughout the nuclear energy industry to enhance safety, reliability, and economics. CASL will address,...

  3. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on issues related to management, performance, strategic direction, and institutional interfaces within CASL. The CASL Director reports to the BOD on all matters related to CASL...

  4. Comments on: Consortium for Advanced Simulation of Light Water Reactors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D

  5. Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program:

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary From: JuliaDepartment-8-2008 October5 ofCTIAR.

  6. Lockwood Water & Light Company | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona:Oregon: EnergyLloyd, New York: EnergyLoanLockland, Ohio:Lockwood

  7. Light Water Reactor Sustainability Program - Integrated Program Plan |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics AndBeryllium Disease | Department of0 Inspection BEFORE9 - Energy andLife Events Life

  8. COLLOQUIUM: CASL: Consortium for Advanced Simulation of Light Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits &Bradbury ScienceComplexPlasma Physics Lab December

  9. Consortium for Advanced Simulation of Light Water Reactors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAuditsCluster Compatibilitydefaultin TestingAugustNational SecurityAn

  10. Consortium for Advanced Simulation of Light Water Reactors (CASL)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAuditsCluster Compatibilitydefaultin TestingAugustNational SecurityAnBack

  11. Consortium for Advanced Simulation of Light Water Reactors (CASL)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAuditsCluster Compatibilitydefaultin TestingAugustNational

  12. Consortium for Advanced Simulation of Light Water Reactors (CASL)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAuditsCluster Compatibilitydefaultin TestingAugustNationalBack Industry

  13. Consortium for Advanced Simulation of Light Water Reactors (CASL)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAuditsCluster Compatibilitydefaultin TestingAugustNationalBack IndustryMedia

  14. Consortium for Advanced Simulation of Light Water Reactors (CASL)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAuditsCluster Compatibilitydefaultin TestingAugustNationalBack

  15. Consortium for Advanced Simulation of Light Water Reactors (CASL)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAuditsCluster Compatibilitydefaultin TestingAugustNationalBackCASL Partners

  16. Consortium for Advanced Simulation of Light Water Reactors (CASL)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAuditsCluster Compatibilitydefaultin TestingAugustNationalBackCASL

  17. Light Water Reactor Sustainability Technical Documents | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLforLDRDEnergyTurbine bladesJuneLeucadiaDepartment of

  18. Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct. 7,DOE HDBK-1113-2008Broadband Plan

  19. Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct. 7,DOE HDBK-1113-2008Broadband PlanInitial Assessment of

  20. Albany Water Gas & Light Comm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendoMassachusetts:RenewableInc Jump& EnergyAlaskaGas

  1. Paragould Light & Water Comm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLC Jump to:3 of MasonPalcanOpenRuralPar Pastoril e

  2. Parkland Light & Water Company | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLC Jump to:3 of MasonPalcanOpenRuralParParityPark

  3. Lake Mills Light & Water | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervar HydroElectricColorado: Energy ResourcesMary, Florida:

  4. North Branch Municipal Water & Light - Commercial & Industrial Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartmentNew Jersey isDepartmentGasFacilityEnergyLoan Program

  5. Cedarburg Light & Water Comm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIR Jump to:RAPIDCavallo Energy Jump to:Iowa:WestSprings,

  6. Clarksville Light & Water Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company) Jump to:New York: EnergySouthClarkstown, New York:

  7. Consortium for Advanced Simulation of Light Water Reactors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecoveryplanningCoalSocial media isHome ›Publications

  8. Consortium for Advanced Simulation of Light Water Reactors (CASL)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecoveryplanningCoalSocial media isHome ›PublicationsEnabling

  9. Consortium for Advanced Simulation of Light Water Reactors (CASL)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecoveryplanningCoalSocial media isHome

  10. Consortium for Advanced Simulation of Light Water Reactors (CASL)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecoveryplanningCoalSocial media isHomeJournal and Conference

  11. Consortium for Advanced Simulation of Light Water Reactors (CASL)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecoveryplanningCoalSocial media isHomeJournal and

  12. Consortium for Advanced Simulation of Light Water Reactors (CASL)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecoveryplanningCoalSocial media isHomeJournal andCASL's Latest

  13. Consortium for Advanced Simulation of Light Water Reactors (CASL)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecoveryplanningCoalSocial media isHomeJournal andCASL's

  14. Consortium for Advanced Simulation of Light Water Reactors (CASL)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecoveryplanningCoalSocial media isHomeJournal

  15. Consortium for Advanced Simulation of Light Water Reactors (CASL)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecoveryplanningCoalSocial media isHomeJournalUpcoming Training

  16. Consortium for Advanced Simulation of Light Water Reactors (CASL)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecoveryplanningCoalSocial media isHomeJournalUpcoming Training

  17. Moose Lake Water & Light Comm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation, searchsource History ViewMoeOhio: EnergyMoonMoose Lake

  18. Brodhead Water & Lighting Comm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin:PontiacInformation ForestBroadStar Wind Systems

  19. Duquesne Light Company - Residential Solar Water Heating Program |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i Framing DocumentUnits atis from a BuildingSelf-SchedulersDepartment of

  20. Columbia Water & Light - Commercial Energy Efficiency Loans | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p aDepartment of Energyof theAction

  1. Columbia Water & Light - Home Performance with ENERGY STAR Loan |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p aDepartment of Energyof theActionDepartment of Energy

  2. Cedarburg Light & Water Utility - Commercial Energy Efficiency Rebate

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a lCaribElectricSouthApplying caulk to a window frame toDepartment

  3. Cedarburg Light & Water Utility - Residential Energy Efficiency Rebate

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a lCaribElectricSouthApplying caulk to a window frame

  4. City Water Light and Power - Commercial Energy Efficiency Rebate Programs |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a lCaribElectricSouthApplying2-2002Joshua DeLung What|

  5. City Water Light and Power - Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a lCaribElectricSouthApplying2-2002Joshua DeLung What|| Department of

  6. North Branch Water & Light Comm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to:Information 3rd| Open EnergyAndover, Massachusetts: Energy

  7. Oconto Falls Water & Light Comm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to:Information 3rd|Northfork ElectricName01988)

  8. Consortium for Advanced Simulation of Light Water Reactors (CASL)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of rare Kaonforsupernovae model (Journal Article)NationalAboutCASL: The

  9. Light Water Reactor Sustainability Technical Documents | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIALU.S.Leadership on Clean EnergysR&D Roadmap

  10. An Evaluation of the Proliferation Resistant Characteristics of Light Water

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment| DepartmentAL/FALGeologic CO2Solutions | Department ofof 2013-2014

  11. Development of Light Water Reactor Fuels with Enhanced Accident Tolerance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:IAbout Us|of EnergySmall- Report to Congress |

  12. Sandia Energy - Consortium for Advanced Simulation of Light Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumniProjects Caterpillar,Concentrating Solar

  13. Sandia Energy - Consortium for Advanced Simulation of Light-Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumniProjects Caterpillar,Concentrating SolarReactors To

  14. Light Water Reactor Sustainability (LWRS) Program | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and-E C H N13, 2009LienertProducts,Nuclear

  15. Photodetector with enhanced light absorption

    DOE Patents [OSTI]

    Kane, James (Lawrenceville, NJ)

    1985-01-01

    A photodetector including a light transmissive electrically conducting layer having a textured surface with a semiconductor body thereon. This layer traps incident light thereby enhancing the absorption of light by the semiconductor body. A photodetector comprising a textured light transmissive electrically conducting layer of SnO.sub.2 and a body of hydrogenated amorphous silicon has a conversion efficiency about fifty percent greater than that of comparative cells. The invention also includes a method of fabricating the photodetector of the invention.

  16. Webinar: Fuel Cell Mobile Lighting

    Broader source: Energy.gov [DOE]

    Video recording of the Fuel Cell Technologies Office webinar, Fuel Cell Mobile Lighting, originally presented on November 13, 2012.

  17. Faster than Light Quantum Communication

    E-Print Network [OSTI]

    A. Y. Shiekh

    2008-04-05

    Faster than light communication might be possible using the collapse of the quantum wave-function without any accompanying paradoxes.

  18. Lighting and Dark Sky Regulations

    E-Print Network [OSTI]

    Radcliffe, David

    Lighting and Dark Sky Regulations Marjorie Palmer Spring 2008 #12;The UGA Land Use Clinic provides Road, Room 101 Athens, GA 30602-1510 (706) 583-0373 · Fax (706) 583-0612 jroskie@uga.edu #12;Lighting......................................................................................................................................1 II. Approaches to Lighting Regulation

  19. Radiation, Matter and Energy What is light?

    E-Print Network [OSTI]

    Shirley, Yancy

    Radiation, Matter and Energy #12;What is light? #12;Light is an electromagnetic wave #12;Light is an electromagnetic wave #12;#12;Light is also a particle Photons: "pieces" of light, each with precise wavelength the visible spectrum, blue light has higher energy than red light Within the electromagnetic spectrum, X

  20. Light Board Operation 208 Jordan Hall

    E-Print Network [OSTI]

    Buechler, Steven

    Light Board Operation 208 Jordan Hall Using the Light Board 1. Turn on the lights next to the entry door. 2. Turn on the Light Board lights (illustration 1). The light switch is on the west wall, slightly behind the computer cart's display. 3. Locate the lapel microphone (usually on top of the Light

  1. Pedestrian Friendly Outdoor Lighting

    SciTech Connect (OSTI)

    Miller, Naomi J.; Koltai, Rita; McGowan, Terry

    2013-12-31

    This GATEWAY report discusses the problems of pedestrian lighting that occur with all technologies with a focus on the unique optical options and opportunities offered by LEDs through the findings from two pedestrian-focused projects, one at Stanford University in California, and one at the Chautauqua Institution in upstate New York. Incorporating user feedback this report reviews the tradeoffs that must be weighed among visual comfort, color, visibility, efficacy and other factors to stimulate discussion among specifiers, users, energy specialists, and in industry in hopes that new approaches, metrics, and standards can be developed to support pedestrian-focused communities, while reducing energy use.

  2. National Lighting Energy Consumption

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the BillDepartmentSites KDFNational Fuel Cell andEnergy NationalLighting

  3. Extragalactic Background Light

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report:Speeding accessby aLED Street Lighting HostDISCLAIMERlinacSYNCHROTRON

  4. Lighting Market Characterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and-E C H2015 Non-Residential Lighting Market

  5. Lighting Test Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and-E C H2015 Non-Residential Lighting

  6. Lighting in the Library

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and-E C H2015 Non-Residential LightingThe

  7. Water Privatisation 

    E-Print Network [OSTI]

    Zölls, Elisa

    2011-08-17

    This dissertation deals with the policy issues of large-scale, urban water privatisation projects in the face of uncertainty and variability. The main objective is to evaluate whether a single policy approach, namely privatisation associated...

  8. Grabbing Water

    E-Print Network [OSTI]

    Reis, Pedro Miguel

    We introduce a novel technique for grabbing water with a flexible solid. This new passive pipetting mechanism was inspired by floating flowers and relies purely on the coupling of the elasticity of thin plates and the ...

  9. Lighting Principles and Terms | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Light quantity, energy consumption, and light quality are the basic principles of lighting. | Photo courtesy of

  10. Embodied Energy and Off-Grid Lighting

    E-Print Network [OSTI]

    Alstone, Peter

    2012-01-01

    Self-reported Impacts of LED Lighting Technology Compared to2011. Adoption of LED Lighting by Night Market Vendors inbased to rechargeable LED lighting. However, as with most

  11. Types of Lighting | Department of Energy

    Energy Savers [EERE]

    For a technical comparison of the different types of lighting, visit Energy Basics. External Resources Find a Lighting Designer - International Association of Lighting...

  12. Demand Responsive Lighting: A Scoping Study

    E-Print Network [OSTI]

    Rubinstein, Francis; Kiliccote, Sila

    2007-01-01

    3 3.0 Previous Experience with Demand Responsive Lighting11 4.3. Prevalence of Lighting13 4.4. Impact of Title 24 on Lighting

  13. Ecological Consequences of Artificial Night Lighting

    E-Print Network [OSTI]

    Piselli, Kathy

    2006-01-01

    of Artificial Night Lighting Catherine Rich and Travisof artificial night lighting. This book provides editedage of modern urban lighting was ushered in. Coincidentally,

  14. LIGHTING CONTROLS: SURVEY OF MARKET POTENTIAL

    E-Print Network [OSTI]

    Verderber, R.R.

    2010-01-01

    REFERENCES Task Report to Lighting Systems Research,Berkeley Laboratory, "Lighting Control System Market1980). Task Report to Lighting Systems Research, Lawrence

  15. LED Outdoor Area Lighting Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Outdoor Area Lighting LED technology is rapidly becoming competitive with high-intensity discharge light sources for outdoor area lighting. This document reviews the major design...

  16. Controls for Solid-State Lighting

    E-Print Network [OSTI]

    Rubinstein, Francis

    2007-01-01

    of controlling LED lighting using the DALI protocol. Figurewith dimming white LED lighting depending on whether the LEDthe promising hybrid LED lighting systems are: 1. LED Hybrid

  17. Measuring Light Reflectance of BGO Crystal Surfaces

    E-Print Network [OSTI]

    Janecek, Martin

    2009-01-01

    Carlo program simulating light propagation in isotropic orTerms—Lambertian reflection, light collection, Monte Carloy-axis) and fraction specular light (right y- axis) for a

  18. Light propagation and Imaging in Indefinite Metamaterials

    E-Print Network [OSTI]

    Yao, Jie

    2010-01-01

    photolithography by polarized light,” Applied PhysicsZhang, “Imaging visible light using anisotropic metamaterialcross-sectional review of the light propagation of TE mode (

  19. Laser Sheet Light Flow Visualization For Evaluating Room Air Flows From

    E-Print Network [OSTI]

    LBNL-56483 Laser Sheet Light Flow Visualization For Evaluating Room Air Flows From Registers Iain S using a Planar Laser-Induced Fluorescence (PLIF) measurement technique. Water marked with fluorescent

  20. Water Resources Policy & Economics

    E-Print Network [OSTI]

    Buehrer, R. Michael

    Water Resources Policy & Economics FOR 4984 Selected Course Topics · Appropriative and riparian water institutions · Incentives for conservation · Water rights for in-stream environmental use · Surface water-groundwater management · Water quality regulations · Water markets · Economic and policy