Powered by Deep Web Technologies
Note: This page contains sample records for the topic "wastewater treatment plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Giardia Cysts in Wastewater Treatment Plants in Italy  

Science Journals Connector (OSTI)

...global level. The recycling of treated wastewaters...investigation in four wastewater treatment plants in...Giardia cysts in wastewater treatment plants in...global level. The recycling of treated wastewaters...investigation in four wastewater treatment plants in...

Simone M. Cacciò; Marzia De Giacomo; Francesca A. Aulicino; Edoardo Pozio

2003-06-01T23:59:59.000Z

2

Treated wastewater discharged from municipal wastewater treatment plants (WWTPs) contains  

E-Print Network (OSTI)

Treated wastewater discharged from municipal wastewater treatment plants (WWTPs) contains to provide rapid, field-ready, inexpen- sive testing of these chemicals in wastewater is also needed estrogenic chemicals, and 2) develop sensor technology for the rapid measure- ment in wastewater of two key

Fay, Noah

3

CHP and Bioenergy for Landfills and Wastewater Treatment Plants...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for Landfills and Wastewater Treatment Plants: Market Opportunities CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities This document explores...

4

ENERGY STAR Score for Wastewater Treatment Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

!! !! July 2013 ENERGY STAR Score for Wastewater Treatment Plants in the United States Page 1 ENERGY STAR Score for Wastewater Treatment Plants in the United States Technical Reference OVERVIEW ! The ENERGY STAR Score for Wastewater Treatment Plants applies to primary, secondary, and advanced treatment facilities with or without nutrient removal capacity. The objective of the ENERGY STAR score is to provide a fair assessment of the energy performance of a property relative to its peers, taking into account the climate, weather, and business activities at the property. To identify the aspects of building activity that are significant drivers of energy

5

ADAPTIVE MODEL BASED CONTROL FOR WASTEWATER TREATMENT PLANTS  

E-Print Network (OSTI)

ADAPTIVE MODEL BASED CONTROL FOR WASTEWATER TREATMENT PLANTS Arie de Niet1 , Maartje van de Vrugt2.j.boucherie@utwente.nl Abstract In biological wastewater treatment, nitrogen and phosphorous are removed by activated sludge considerably to the increase of energy-efficiency in wastewater treatment. To this end, we introduce

Boucherie, Richard J.

6

Calicivirus Removal in a Membrane Bioreactor Wastewater Treatment Plant  

Science Journals Connector (OSTI)

...Membrane Bioreactor Wastewater Treatment Plant Laura C. Sima...capacity of the plant, as the NoV...to calculate a mass balance, which would...activated sludge treatment alone can be...November, when plant operators reported...

Laura C. Sima; Julien Schaeffer; Jean-Claude Le Saux; Sylvain Parnaudeau; Menachem Elimelech; Françoise S. Le Guyader

2011-06-10T23:59:59.000Z

7

Involvement of Rhodocyclus-Related Organisms in Phosphorus Removal in Full-Scale Wastewater Treatment Plants  

Science Journals Connector (OSTI)

...Removal in Full-Scale Wastewater Treatment Plants Julie L. Zilles Jordan...organisms in two full-scale wastewater treatment plants were estimated to represent...successfully in full-scale wastewater treatment plants (WWTPs), identification...

Julie L. Zilles; Jordan Peccia; Myeong-Woon Kim; Chun-Hsiung Hung; Daniel R. Noguera

2002-06-01T23:59:59.000Z

8

Life-cycle assessment of wastewater treatment plants  

E-Print Network (OSTI)

This thesis presents a general model for the carbon footprints analysis of wastewater treatment plants (WWTPs), using a life cycle assessment (LCA) approach. In previous research, the issue of global warming is often related ...

Dong, Bo, M. Eng. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

9

CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities  

Energy.gov (U.S. Department of Energy (DOE))

Overview of market opportunities for CHP and bioenergy for landfills and wastewater treatment plants

10

Involvement of Rhodocyclus-Related Organisms in Phosphorus Removal in Full-Scale Wastewater Treatment Plants  

Science Journals Connector (OSTI)

...removal of phosphorus from the wastewater. Although this process...successfully in full-scale wastewater treatment plants (WWTPs...process plant without nitrate recycling, represented a traditional...the plants treated municipal wastewater with phosphorus concentrations...

Julie L. Zilles; Jordan Peccia; Myeong-Woon Kim; Chun-Hsiung Hung; Daniel R. Noguera

2002-06-01T23:59:59.000Z

11

Modification of Norfloxacin by a Microbacterium sp. Strain Isolated from a Wastewater Treatment Plant  

Science Journals Connector (OSTI)

...Microbacterium sp. Strain Isolated from a Wastewater Treatment Plant Dae-Wi Kim 1 Thomas...antibiotics in conventional and advanced wastewater treatment: implications for environmental discharge and wastewater recycling. Water Res. 41 :4164-4176...

Dae-Wi Kim; Thomas M. Heinze; Bong-Soo Kim; Laura K. Schnackenberg; Kellie A. Woodling; John B. Sutherland

2011-07-01T23:59:59.000Z

12

Control of Sludge Recycle Flow in Wastewater Treatment Plants Using Fuzzy Logic Controller  

Science Journals Connector (OSTI)

Sludge recycling system is an important part of wastewater treatment plants, because the lack of control ... almost all of the sludge return system with wastewater treatment plants is simply the ratio by ... appl...

Wangyani

2013-01-01T23:59:59.000Z

13

EIS-0224: Southeast Regional Wastewater Treatment Plant Facilities Improvements  

Energy.gov (U.S. Department of Energy (DOE))

"This EIS analyzes the Lake County Sanitation District joint venture with the geothermal industry, specifically the Northern California Power Agency, Calpine Corporation (Calpine), and Pacific Gas and Electric Company, to develop a plan for disposal of secondary-treated effluent from the Southeast Regional Wastewater Treatment Plant near the City of Clearlake, California, in the Southeast Geysers Geothermal Steam Field."

14

Developer Installed Treatment Plants  

E-Print Network (OSTI)

-installed treatment plants. These treatment plants are more commonly known as package wastewater treatment plants. 1

unknown authors

2008-01-01T23:59:59.000Z

15

Prediction of wastewater treatment plant performance using artificial neural networks  

Science Journals Connector (OSTI)

Artificial neural networks (ANN) models were developed to predict the performance of a wastewater treatment plant (WWTP) based on past information. The data used in this work were obtained from a major conventional treatment plant in the Greater Cairo district, Egypt, with an average flow rate of 1 million m3/day. Daily records of biochemical oxygen demand (BOD) and suspended solids (SS) concentrations through various stages of the treatment process over 10 months were obtained from the plant laboratory. Exploratory data analysis was used to detect relationships in the data and evaluate data dependence. Two ANN-based models for prediction of BOD and SS concentrations in plant effluent are presented. The appropriate architecture of the neural network models was determined through several steps of training and testing of the models. The ANN-based models were found to provide an efficient and a robust tool in predicting WWTP performance.

Maged M Hamed; Mona G Khalafallah; Ezzat A Hassanien

2004-01-01T23:59:59.000Z

16

Degradation of Estrogens by Rhodococcus zopfii and Rhodococcus equi Isolates from Activated Sludge in Wastewater Treatment Plants  

Science Journals Connector (OSTI)

...chromatography-mass spectrometry...flows into wastewater treatment plants. As some...treatment plants, and loss of ecological balance is causing...disruptors at 47 wastewater treatment plants in 13 districts...chromatography-mass spectrometry...

Takeshi Yoshimoto; Fumiko Nagai; Junji Fujimoto; Koichi Watanabe; Harumi Mizukoshi; Takashi Makino; Kazumasa Kimura; Hideyuki Saino; Haruji Sawada; Hiroshi Omura

2004-09-01T23:59:59.000Z

17

Accepted Manuscript High occurrence of Hepatitis E virus in samples from wastewater treatment plants in  

E-Print Network (OSTI)

Accepted Manuscript High occurrence of Hepatitis E virus in samples from wastewater treatment-Bianchi, D., Oppliger, A., High occurrence of Hepatitis E virus in samples from wastewater treatment plants MANUSCRIPT Highlights Hepatitis E virus (HEV) was searched in raw and treated wastewater in Switzerland

Alvarez, Nadir

18

Removal of nitrogen and phosphorus from reject water of municipal wastewater treatment plant.  

E-Print Network (OSTI)

??Reject water, the liquid fraction produced after dewatering of anaerobically digested activated sludge on a municipal wastewater treatment plant (MWWTP), contains from 750 to 1500… (more)

Guo, Chenghong

2011-01-01T23:59:59.000Z

19

Energy efficiency in municipal wastewater treatment plants: Technology assessment  

SciTech Connect

The New York State Energy Research and Development Authority (NYSERDA) estimates that municipal wastewater treatment plants (WWTPs) in New York State consume about 1.5 billion kWh of electricity each year for sewage treatment and sludge management based on the predominant types of treatment plants, the results of an energy use survey, and recent trends in the amounts of electricity WWTPs use nationwide. Electric utilities in New York State have encouraged demand-side management (DSM) to help control or lower energy costs and make energy available for new customers without constructing additional facilities. This report describes DSM opportunities for WWTPs in New York State; discusses the costs and benefits of several DSM measures; projects energy impact statewide of the DSM technologies; identifies the barrier to implementing DSM at WWTPs; and outlines one possible incentive that could stimulate widespread adoption of DSM by WWTP operators. The DSM technologies discussed are outfall hydropower, on-site generation, aeration efficiency, time-of-day electricity pricing, and storing wastewater.

NONE

1995-11-01T23:59:59.000Z

20

Technical analysis of advanced wastewater-treatment systems for coal-gasification plants  

SciTech Connect

This analysis of advanced wastewater treatment systems for coal gasification plants highlights the three coal gasification demonstration plants proposed by the US Department of Energy: The Memphis Light, Gas and Water Division Industrial Fuel Gas Demonstration Plant, the Illinois Coal Gasification Group Pipeline Gas Demonstration Plant, and the CONOCO Pipeline Gas Demonstration Plant. Technical risks exist for coal gasification wastewater treatment systems, in general, and for the three DOE demonstration plants (as designed), in particular, because of key data gaps. The quantities and compositions of coal gasification wastewaters are not well known; the treatability of coal gasification wastewaters by various technologies has not been adequately studied; the dynamic interactions of sequential wastewater treatment processes and upstream wastewater sources has not been tested at demonstration scale. This report identifies key data gaps and recommends that demonstration-size and commercial-size plants be used for coal gasification wastewater treatment data base development. While certain advanced treatment technologies can benefit from additional bench-scale studies, bench-scale and pilot plant scale operations are not representative of commercial-size facility operation. It is recommended that coal gasification demonstration plants, and other commercial-size facilities that generate similar wastewaters, be used to test advanced wastewater treatment technologies during operation by using sidestreams or collected wastewater samples in addition to the plant's own primary treatment system. Advanced wastewater treatment processes are needed to degrade refractory organics and to concentrate and remove dissolved solids to allow for wastewater reuse. Further study of reverse osmosis, evaporation, electrodialysis, ozonation, activated carbon, and ultrafiltration should take place at bench-scale.

Not Available

1981-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "wastewater treatment plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Reducing the Anaerobic Digestion Model N1 for its application to an industrial wastewater treatment plant  

E-Print Network (OSTI)

the Anaerobic Digestion Model N°1 for its application to an industrial wastewater treatment plant treating winery effluent wastewater Carlos García-Diéguez 1 , Olivier Bernard 2 , Enrique Roca 1, * 1 USC ­ PRODES for winery effluent wastewater. A new reduced stoichiometric matrix was identified and the kinetic parameters

Boyer, Edmond

22

ACCEPTED BY WATER ENVIRONMENT RESEARCH ODOR AND VOC REMOVAL FROM WASTEWATER TREATMENT PLANT  

E-Print Network (OSTI)

of their high rates of chemical consumption. Additionally, chemical scrubbers are ineffective for the removalACCEPTED BY WATER ENVIRONMENT RESEARCH _______ ODOR AND VOC REMOVAL FROM WASTEWATER TREATMENT PLANT of biofilters for sequential removal of H2S and VOCs from wastewater treatment plant waste air. The biofilter

23

Emergence of Competitive Dominant Ammonia-Oxidizing Bacterial Populations in a Full-Scale Industrial Wastewater Treatment Plant  

Science Journals Connector (OSTI)

...wastewater treatment plants (WWTPs) to...industrial WWTPs to balance the high organic...under normal plant operating conditions...may lead to treatment performance...gallons of wastewater daily, containing...Waltham, Mass.) under the...

Alice C. Layton; Hebe Dionisi; H.-W. Kuo; Kevin G. Robinson; Victoria M. Garrett; Arthur Meyers; Gary S. Sayler

2005-02-01T23:59:59.000Z

24

Process waste treatment system upgrades: Clarifier startup at the nonradiological wastewater treatment plant  

SciTech Connect

The Waste Management Operations Division at Oak Ridge National Laboratory recently modified the design of a reactor/clarifier at the Nonradiological Wastewater Treatment Plant, which is now referred to as the Process Waste Treatment Complex--Building 3608, to replace the sludge-blanket softener/clarifier at the Process Waste Treatment Plant, now referred to as the Process Waste Treatment Complex-Building 3544 (PWTC-3544). This work was conducted because periodic hydraulic overloads caused poor water-softening performance in the PWTC-3544 softener, which was detrimental to the performance and operating costs of downstream ion-exchange operations. Over a 2-month time frame, the modified reactor/clarifier was tested with nonradiological wastewater and then with radioactive wastewater to optimize softening performance. Based on performance to date, the new system has operated more effectively than the former one, with reduced employee radiological exposure, less downtime, lower costs, and improved effluent quality.

Lucero, A.J.; McTaggart, D.R.; Van Essen, D.C.; Kent, T.E.; West, G.D.; Taylor, P.A.

1998-07-01T23:59:59.000Z

25

Wastewater treatment and energy : an analysis on the feasibility of using renewable energy to power wastewater treatment plants in Singapore  

E-Print Network (OSTI)

Wastewater treatment is a very energy intensive industry. Singapore has a state-of-the-art wastewater treatment system that uses a number of sustainable techniques that greatly improve its overall efficiency. The centralized ...

Foley, Kevin John

2010-01-01T23:59:59.000Z

26

Evaluation of biological treatment for the degradation of petroleum hydrocarbons in a wastewater treatment plant  

E-Print Network (OSTI)

Training Field, 2004) 6 Figure 2. Layout of the Fire Training Field (Map of Brayton Fire Training Field and Disaster City, 2004 ) 7 TREATMENT PLANT UNITS The wastewater treatment plant consists of four basic units, namely...-Blaze contains several strains of non-pathogenic, spore forming, facultative bacteria, Bacillus, along with a surfactant and nutrients sufficient for biodegradation. The physical characteristics listed for the product (Micro Blaze Spill Control, 2004...

Basu, Pradipta Ranjan

2005-08-29T23:59:59.000Z

27

Saving Energy at 24/7 Wastewater Treatment Plant | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy at 24/7 Wastewater Treatment Plant Energy at 24/7 Wastewater Treatment Plant Saving Energy at 24/7 Wastewater Treatment Plant July 29, 2010 - 4:11pm Addthis How does it work? Longview, Texas received $781,900 in Recovery Act funding. Co-generation power plant to save 16,571 kWh annually. Local utility to provide the city $150 rebate for every kW of peak demand reduced. In the city of Longview, Texas, the wastewater treatment facility uses more electricity than any other public building. Making investments to permanently cut energy costs at the plant is important for this East Texas city of approximately 77,000. "Our city has felt the effects of the recession. Several companies have laid 100-200 folks off and many are still waiting to be hired back," said Shawn Raney, a safety specialist with the Longview city government. "The

28

Measurement and Treatment of Nuisance Odors at Wastewater Treatment Plants  

E-Print Network (OSTI)

230 D.1.a.8. Activated Sludge Area of Plant 1………………………………….D.2.a.4. Activated Sludge Area of Plant 2………………………………..there were not activated sludge organisms present in the

Abraham, Samantha Margaret

2014-01-01T23:59:59.000Z

29

The Energy-Water Nexus: State and Local Roles in Efficiency & Water and Wastewater Treatment Plants  

Energy.gov (U.S. Department of Energy (DOE))

This presentation, given through the DOE's Technical Assitance Program (TAP), provides information on the Energy-Water Nexus: State and Local Roles in Efficiency & Water and Wastewater Treatment Plants.

30

Cost-effective wastewater treatment and recycling in mini-plants using mass integration  

Science Journals Connector (OSTI)

This work illustrates the use of a mass integration approach to cost-effectively reduce wastewater treatment and discharge in mini-industrial plants. The approach focuses on the use of functional analysis, gr...

Ahmad Hamad; Ahmed Aidan; Muataz Douboni

2003-01-01T23:59:59.000Z

31

Water/Wastewater Treatment Plant Field Device Wiring Method Decision Analysis  

E-Print Network (OSTI)

The choice of field device wiring method for water and wastewater treatment plant design is extremely complex and contains many variables. The choice not only affects short-term startup and equipment costs, but also long-term operations...

Dicus, Scott C.

2011-12-16T23:59:59.000Z

32

Effect of Wastewater Treatment Plant Effluent on Microbial Function and Community Structure in the Sediment of a Freshwater Stream with Variable Seasonal Flow  

Science Journals Connector (OSTI)

...effects on the oxygen balance. J. Water Pollut...influence of untreated wastewater to aquatic communities...2006. Effects of wastewater treatment plant discharge on ecosystem...bacteria in a municipal wastewater treatment plant. Environ. Sci...

Steven A. Wakelin; Matt J. Colloff; Rai S. Kookana

2008-03-14T23:59:59.000Z

33

In situ investigation of tubular microbial fuel cells deployed in an aeration tank at a municipal wastewater treatment plant  

E-Print Network (OSTI)

wastewater treatment plant Fei Zhang a , Zheng Ge a , Julien Grimaud b , Jim Hurst b , Zhen He a: Microbial fuel cells Wastewater treatment Organic removal Aeration Activated sludge a b s t r a c of wastewater quality, and other operating conditions. Unlike prior lab stud- ies by others, the results

34

Development and Application of a Model to Estimate Wastewater Treatment Plant Prescription Pharmaceutical Influent Loadings and Concentrations  

Science Journals Connector (OSTI)

A mass balance model was developed to estimate prescription pharmaceutical loadings to municipal wastewater treatment plants via computation of influent concentrations (C IN). Model estimates of C

Karl J. Ottmar; Lisa M. Colosi…

2010-05-01T23:59:59.000Z

35

Demonstration of membrane aeration panels: City of Geneva Wastewater Treatment Plant. Final report  

SciTech Connect

This report describes the design, construction, and testing of membrane aeration panels at the Marsh Creek wastewater treatment plant (WWTP) in Geneva, NY. The operators at the Geneva plant have undertaken a long-term program to upgrade wastewater treatment processes and lower operating costs. The aging mechanical surface aerators at the Marsh Creek treatment plant were replaced by a state-of-the-art membrane panel system. This fine-bubble diffused air system offers higher oxygen transfer efficiency than surface aerators or other types of fine-bubble diffused-air systems. The project had four objectives: to decrease the amount of electricity used at the plant for aeration; to enable the plant`s existing aeration basins to accommodate higher organic loads and/or nitrify the wastewater should the need arise; to provide an even distribution of dissolved oxygen within the aeration basins to enhance biological wastewater treatment activity; and to provide technical data to assess the performance of the membrane panel system versus other forms of wastewater aeration.

NONE

1995-01-01T23:59:59.000Z

36

Onsite Wastewater Treatment Systems: Aerobic Treatment Unit  

E-Print Network (OSTI)

wastewater treatment systems use. They remove 85 to 98 percent of the organic matter and solids from the wastewater, producing effluent as clean as that from munici- pal wastewater treatment plants, and cleaner than that from conventional septic tanks.... Onsite wastewater treatment systems Single-compartment trash tank Chlorinator Aerobic treatment unit Spray heads Pump tank Bruce Lesikar Professor and Extension Agricultural Engineer The Texas A&M System Aerobic treatment units, which are certified...

Lesikar, Bruce J.

2008-10-31T23:59:59.000Z

37

Mercury mass balance at a wastewater treatment plant employing sludge incineration with offgas mercury control  

Science Journals Connector (OSTI)

Efforts to reduce the deliberate use of mercury (Hg) in modern industrialized societies have been largely successful, but the minimization and control of Hg in waste streams are of continuing importance. Municipal wastewater treatment plants are collection points for domestic, commercial, and industrial wastewaters, and Hg removal during wastewater treatment is essential for protecting receiving waters. Subsequent control of the Hg removed is also necessary to preclude environmental impacts. We present here a mass balance for Hg at a large metropolitan wastewater treatment plant that has recently been upgraded to provide for greater control of the Hg entering the plant. The upgrade included a new fluidized bed sludge incineration facility equipped with activated carbon addition and baghouse carbon capture for the removal of Hg from the incinerator offgas. Our results show that Hg discharges to air and water from the plant represented less than 5% of the mass of Hg entering the plant, while the remaining Hg was captured in the ash/carbon residual stream exiting the new incineration process. Sub-optimum baghouse operation resulted in some of the Hg escaping collection there and accumulating with the ash/carbon particulate matter in the secondary treatment tanks. Overall, the treatment process is effective in removing Hg from wastewater and sequestering it in a controllable stream for secure disposal.

Steven J. Balogh; Yabing H. Nollet

2008-01-01T23:59:59.000Z

38

Perceived Risk and the Siting of a Controversial Wastewater Treatment Plant in Central Texas  

E-Print Network (OSTI)

PERCEIVED RISK AND THE SITING OF A CONTROVERSIAL WASTEWATER TREATMENT PLANT IN CENTRAL TEXAS A Thesis by PAT MORRISON KULTGEN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... and guidance during times of confusion and stress. Finally, I am very thankful for the technical help and patient explanations I received from Dr. Li regarding wastewater and watershed management; he always greeted me with a friendly hello that calmed my self...

Kultgen, Pat Morrison

2013-08-16T23:59:59.000Z

39

Fossil organic carbon in wastewater and its fate in treatment plants  

Science Journals Connector (OSTI)

Abstract This study reports the presence of fossil organic carbon in wastewater and its fate in wastewater treatment plants. The findings pinpoint the inaccuracy of current greenhouse gas accounting guidelines which defines all organic carbon in wastewater to be of biogenic origin. Stable and radiocarbon isotopes (13C and 14C) were measured throughout the process train in four municipal wastewater treatment plants equipped with secondary activated sludge treatment. Isotopic mass balance analyses indicate that 4–14% of influent total organic carbon (TOC) is of fossil origin with concentrations between 6 and 35 mg/L; 88–98% of this is removed from the wastewater. The TOC mass balance analysis suggests that 39–65% of the fossil organic carbon from the influent is incorporated into the activated sludge through adsorption or from cell assimilation while 29–50% is likely transformed to carbon dioxide (CO2) during secondary treatment. The fossil organic carbon fraction in the sludge undergoes further biodegradation during anaerobic digestion with a 12% decrease in mass. 1.4–6.3% of the influent TOC consists of both biogenic and fossil carbon is estimated to be emitted as fossil CO2 from activated sludge treatment alone. The results suggest that current greenhouse gas accounting guidelines, which assume that all CO2 emission from wastewater is biogenic may lead to underestimation of emissions.

Yingyu Law; Geraldine E. Jacobsen; Andrew M. Smith; Zhiguo Yuan; Paul Lant

2013-01-01T23:59:59.000Z

40

A comprehensive substance flow analysis of a municipal wastewater and sludge treatment plant  

Science Journals Connector (OSTI)

Abstract The fate of total organic carbon, 32 elements (Al, Ag, As, Ba, Be, Br, Ca, Cd, Cl, Co, Cr, Cu, Fe, Hg, K, Li, Mg, Mn, Mo, N, Na, Ni, P, Pb, S, Sb, Se, Sn, Sr, Ti, V, and Zn) and 4 groups of organic pollutants (linear alkylbenzene sulfonates, bis(2-ethylhexyl)phthalate, polychlorinated biphenyl and polycyclic aromatic hydrocarbons) in a conventional wastewater treatment plant were assessed. Mass balances showed reasonable closures for most of the elements. However, gaseous emissions were accompanied by large uncertainties and show the limitation of mass balance based substance flow analysis. Based on the assessment, it is evident that both inorganic and organic elements accumulated in the sewage sludge, with the exception of elements that are highly soluble or degradable by wastewater and sludge treatment processes. The majority of metals and metalloids were further accumulated in the incineration ash, while the organic pollutants were effectively destroyed by both biological and thermal processes. Side streams from the sludge treatment process (dewatering and incineration) back to the wastewater treatment represented less than 1% of the total volume entering the wastewater treatment processes, but represented significant substance flows. In contrast, the contribution by spent water from the flue gas treatment process was almost negligible. Screening of human and eco-toxicity by applying the consensus-based environmental impact assessment method \\{USEtox\\} addressing 15 inorganic constituents showed that removal of inorganic constituents by the wastewater treatment plant reduced the toxic impact potential by 87–92%.

H. Yoshida; T.H. Christensen; T. Guildal; C. Scheutz

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wastewater treatment plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

ENERGY STAR Score for Wastewater Treatment Plants | ENERGY STAR Buildings &  

NLE Websites -- All DOE Office Websites (Extended Search)

Wastewater Treatment Plants Wastewater Treatment Plants Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

42

Simultaneous wastewater treatment and biological electricity generation  

E-Print Network (OSTI)

Simultaneous wastewater treatment and biological electricity generation B.E. Logan Department accomplishing wastewater treatment in processes based on microbial fuel cell technologies. When bacteria oxidize.4 £ 106 L of wastewater, a wastewater treatment plant has the potential to become a 2.3 MW power plant

43

Optimization of diclofenac quantification from wastewater treatment plant sludge by ultrasonication assisted extraction  

Science Journals Connector (OSTI)

Abstract A rapid quantification method of diclofenac from sludge samples through ultrasonication assisted extraction and solid phase extraction (SPE) was developed and used for the quantification of diclofenac concentrations in sludge samples with liquid chromatography/tandem mass spectrometry (LC–MS/MS). Although the concentration of diclofenac in sludge samples taken from different units of wastewater treatment plants in Istanbul was below the limit of quantification (LOQ; 5 ng/g), an optimized method for sludge samples along with the total mass balances in a wastewater treatment plant can be used to determine the phase with which diclofenac is mostly associated. Hence, the results will provide information on fate and transport of diclofenac, as well as on the necessity of alternative removal processes. In addition, since the optimization procedure is provided in detail, it is possible for other researchers to use this procedure as a starting point for the determination of other emerging pollutants in wastewater sludge samples.

Emel Topuz; Sevgi Sari; Gamze Ozdemir; Egemen Aydin; Elif Pehlivanoglu-Mantas; Didem Okutman Tas

2014-01-01T23:59:59.000Z

44

EECBG Success Story: Saving Energy at 24/7 Wastewater Treatment Plant  

Energy.gov (U.S. Department of Energy (DOE))

In the city of Longview, Texas, the wastewater treatment facility uses more electricity than any other public building. City officials were able to fund a new co-generation power plant and energy efficiency upgrades at the facility through a $781,900 Energy Efficiency and Conservation Block Grant (EECBG). Learn more.

45

Modeling and analysis of pumps in a wastewater treatment plant: A data-mining approach  

E-Print Network (OSTI)

Modeling and analysis of pumps in a wastewater treatment plant: A data-mining approach Andrew Available online 28 April 2013 Keywords: Data mining Pump modeling Multi-layer perceptron neural network Time series Pump scheduling and controlling Energy consumption a b s t r a c t A data-mining approach

Kusiak, Andrew

46

CHP and Bioenergy Systems for Landfills and Wastewater Treatment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems for Landfills and Wastewater Treatment Plants CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants There are important issues to consider when selecting...

47

STATE ESTIMATION FOR WASTEWATER TREATMENT PROCESSES  

E-Print Network (OSTI)

CHAPTER 1 STATE ESTIMATION FOR WASTEWATER TREATMENT PROCESSES O. Bernard1 , B. Chachuat2 , and J sensors (also called observers) for wastewater treatment plants (WWTPs). We give an overview in "Wastewater Quality Monitoring and Wastewater Quality Monitoring and Treatment, Philippe Quevauviller (Ed

Paris-Sud XI, Université de

48

Feasibility study for alternate fuels production: unconventional natural gas from wastewater treatment plants. Volume II, Appendix D. Final report  

SciTech Connect

Data are presented from a study performed to determined the feasibility of recovering methane from sewage at a typical biological secondary wastewater treatment plant. Three tasks are involved: optimization of digester gas; digester gas scrubbing; and application to the East Bay Municipal Utility District water pollution control plant. Results indicate that excess digester gas can be used economically at the wastewater treatment plant and that distribution and scrubbing can be complex and costly. (DMC) 193 references, 93 figures, 26 tables.

Overly, P.; Tawiah, K.

1981-12-01T23:59:59.000Z

49

Occurrence of pharmaceuticals in a municipal wastewater treatment plant: Mass balance and removal processes  

Science Journals Connector (OSTI)

Occurrence and removal efficiencies of fifteen pharmaceuticals were investigated in a conventional municipal wastewater treatment plant in Michigan. Concentrations of these pharmaceuticals were determined in both wastewater and sludge phases by a high-performance liquid chromatograph coupled to a tandem mass spectrometer. Detailed mass balance analysis was conducted during the whole treatment process to evaluate the contributing processes for pharmaceutical removal. Among the pharmaceuticals studied, demeclocycline, sulfamerazine, erythromycin and tylosin were not detected in the wastewater treatment plant influent. Other target pharmaceuticals detected in wastewater were also found in the corresponding sludge phase. The removal efficiencies of chlortetracycline, tetracycline, sulfamerazine, acetaminophen and caffeine were >99%, while doxycycline, oxytetracycline, sulfadiazine and lincomycin exhibited relatively lower removal efficiencies (e.g., mass, i.e. 41% more than the input from the influent. Based on the mass balance analysis, biotransformation is believed to be the predominant process responsible for the removal of pharmaceuticals (22% to 99%), whereas contribution of sorption to sludge was relatively insignificant (7%) for the investigated pharmaceuticals.

Pin Gao; Yunjie Ding; Hui Li; Irene Xagoraraki

2012-01-01T23:59:59.000Z

50

Estimation of nitrous oxide emissions (GHG) from wastewater treatment plants using closed-loop mass balance and data reconciliation  

Science Journals Connector (OSTI)

The amount of greenhouse gases (GHG), especially, nitrous oxide (N2O) emitted from wastewater treatment plants (WWTP) using data reconciliation and closed-loop mass balance was estimated. This study is based on a...

JungJin Lim; Boddupalli Sankarrao; TaeSeok Oh…

2012-09-01T23:59:59.000Z

51

Polycyclic aromatic hydrocarbons in the centralized wastewater treatment plant of a chemical industry zone: Removal, mass balance and source analysis  

Science Journals Connector (OSTI)

Increased attention has been given to the fate of pollutants such as polycyclic aromatic hydrocarbons (PAHs) introduced to the wastewater treatment plants. Dissolved and adsorbed PAHs were detected in the central...

Min Yao; XingWang Zhang; LeCheng Lei

2012-03-01T23:59:59.000Z

52

Thermal sludge dryer demonstration: Bird Island Wastewater Treatment Plant, Buffalo, NY. Final report  

SciTech Connect

The Buffalo Sewer Authority (BSA), in cooperation with the New York State Energy Research and Development Authority (Energy Authority), commissioned a demonstration of a full scale indirect disk-type sludge dryer at the Bird Island Wastewater Treatment Plant (BIWWTP). The purpose of the project was to determine the effects of the sludge dryer on the sludge incineration process at the facility. Sludge incineration is traditionally the most expensive, energy-intensive unit process involving solids handling at wastewater treatment plants; costs for incineration at the BIWWTP have averaged $2.4 million per year. In the conventional method of processing solids, a series of volume reduction measures, which usually includes thickening, digestion, and mechanical dewatering, is employed prior to incineration. Usually, a high level of moisture is still present within sewage sludge following mechanical dewatering. The sludge dryer system thermally dewaters wastewater sludge to approximately 26%, (and as high as 38%) dry solids content prior to incineration. The thermal dewatering system at the BIWWTP has demonstrated that it meets its design requirements. It has the potential to provide significant energy and other cost savings by allowing the BSA to change from an operation employing two incinerators to a single incinerator mode. While the long-term reliability of the thermal dewatering system has yet to be established, this project has demonstrated that installation of such a system in an existing treatment plant can provide the owner with significant operating cost savings.

NONE

1995-01-01T23:59:59.000Z

53

LCA as a Decision Support Tool for the Environmental Improvement of the Operation of a Municipal Wastewater Treatment Plant  

Science Journals Connector (OSTI)

LCA as a Decision Support Tool for the Environmental Improvement of the Operation of a Municipal Wastewater Treatment Plant ... Environmental diagnosis and improvement assessment (based on LCA) of sludge final disposal and biogas use alternatives for a municipal wastewater treatment plant. ... Life cycle assessment (LCA) methodology is used to evaluate the environmental profile of a product or process from its origin to its final destination. ...

Jorgelina C. Pasqualino; Montse Meneses; Montserrat Abella; Francesc Castells

2009-04-06T23:59:59.000Z

54

Occurrence and fate of polycyclic musks in wastewater treatment plants in Kentucky and Georgia, USA  

Science Journals Connector (OSTI)

Wastewater treatment plants (WWTPs) are a potential of source of polycyclic musks in the aquatic environment. In this study, contamination profiles and mass flow of polycyclic musks, 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta[?]-2-benzopyran (HHCB), 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene (AHTN), and HHCB-lactone (oxidation product of HHCB), in two WWTPs, one located in Kentucky (Plant A, rural area) and the other in Georgia (Plant B, urban), USA, were determined. HHCB, AHTN and HHCB-lactone were detected in the influent, effluent, and sludge samples analyzed. The concentrations in wastewater samples varied widely, from 10 to 7030 ng/l, 13 to 5400 ng/l, and 66 to 790 ng/l, for HHCB, AHTN, and HHCB-lactone, respectively. Sludge samples contained HHCB at Plant A and 31 g/day from Plant B. Mass balance analysis suggested that only 30% of HHCB and AHTN entering the plants was accounted for in the effluent and the sludge. Removal efficiencies of HHCB and AHTN in the two \\{WWTPs\\} ranged from 72% to 98%. In contrast, HHCB-lactone concentrations increased following the treatment. Concentrations of polycyclic musks in sludge were on the order of several parts per million. Incineration of sludge at one plant reduced the concentration of polycyclic musks.

Yuichi Horii; Jessica L. Reiner; Bommanna G. Loganathan; Kurunthachalam Senthil Kumar; Kenneth Sajwan; Kurunthachalam Kannan

2007-01-01T23:59:59.000Z

55

STATE ESTIMATION FOR WASTEWATER TREATMENT PROCESSES  

E-Print Network (OSTI)

CHAPTER 1 STATE ESTIMATION FOR WASTEWATER TREATMENT PROCESSES O. Bernard1 , B. Chachuat2 , and J sensors (also called observers) for wastewater treatment plants (WWTPs). We give an overview model description (e.g., the 1 #12;2 STATE ESTIMATION FOR WASTEWATER TREATMENT PROCESSES extended Kalman

Bernard, Olivier

56

E-Print Network 3.0 - anaerobic wastewater treatment Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Summary: ENVIRONMENTAL BIOTECHNOLOGY Electricity generation and treatment of paper recycling wastewater... production and treatment of a paper recycling plant wastewater...

57

Greenhouse gas emission by wastewater treatment plants of the pulp and paper industry – Modeling and simulation  

Science Journals Connector (OSTI)

Abstract Greenhouse gas (GHG) emission and energy consumption in wastewater treatment plants (WWTPs) of the pulp and paper industry were modeled and estimated. Aerobic, anaerobic, and hybrid biological processes were used for the removal of contaminants. In addition to the removal of carbonaceous compounds, anaerobic digestion of the produced sludge and the removal of excess nitrogen in the effluent of treatment plants by nitrification/denitrification processes were incorporated in the model. Carbon dioxide, methane, and nitrous oxide were the major \\{GHGs\\} generated during the biological treatment, combustion, energy generation, and transportation. The generated biogas from the anaerobic processes was assumed to be recovered and used as a source of energy for the treatment plant, in an effort to reduce GHG emissions while decreasing the total energy needs of the WWTP. The established kinetic relationships of wastewater treatment processes along with mass and energy balances were employed for the simulation of different treatment systems and estimation of GHG emissions. Various sources of GHG emission were divided into on-site and off-site sources to simplify the modeling and simulation procedure. The overall GHG generation in the presence of biogas recovery was equal to 1.576, 3.026, and 3.271 kg CO2-equivalent/kg BOD by the three examined systems. The energy produced by the recovery and combustion of biogas could exceed the energy demands of all different treatment plants examined in this study and reduce off-site GHG emission. The generation of \\{GHGs\\} from aerobic and hybrid processes increased by 27% and 33.2%, respectively, when N2O emission from nitrogen removal processes was taken into consideration.

Omid Ashrafi; Laleh Yerushalmi; Fariborz Haghighat

2013-01-01T23:59:59.000Z

58

The behaviors and fate of polycyclic aromatic hydrocarbons (PAHs) in a coking wastewater treatment plant  

Science Journals Connector (OSTI)

The occurrence, behaviors and fate of 18 \\{PAHs\\} were investigated in a coking wastewater treatment plant in Songshan coking plant, located in Shaoguan, Guangdong Province of China. It was found that the target compounds occurred widely in raw coking wastewater, treated effluent, sludge and gas samples. In raw coking wastewater, high molecular weight (MW) \\{PAHs\\} were the dominant compounds, while 3–6 ring \\{PAHs\\} predominated in the final effluent. The dominant compounds in gas samples were phenathrene, fluoranthene and pyrene, while they were fluoranthene, pyrene, chrysene and benzo[k]fluoranthene for sludge. The process achieved over 97% removal for all the PAHs, 47–92% of eliminations of these target compounds in liquid phase were achieved in biological stage. Different behaviors of \\{PAHs\\} were observed in the primary tank, anaerobic tank, aerobic tank, hydrolytic tank and coagulation tank units, while heavier and lower ones were mainly removed in anaerobic tank and aerobic tanks, respectively. Regarding the fate of PAHs, calculated fractions of mass losses for low MW \\{PAHs\\} due to transformation and adsorption to sludge accounted for 15–50% and 24–49%, respectively, while the rest was less than 1%. For high MW PAHs, the mass losses were mainly due to adsorption to sludge and separation with tar (contributing 56–76% and 22–39%, respectively), and the removal through transformation was less.

Wanhui Zhang; Chaohai Wei; Xinsheng Chai; Jingying He; Ying Cai; Man Ren; Bo Yan; Pingan Peng; Jiamo Fu

2012-01-01T23:59:59.000Z

59

Quantification of Nitrosomonas oligotropha-Like Ammonia-Oxidizing Bacteria and Nitrospira spp. from Full-Scale Wastewater Treatment Plants by Competitive PCR  

Science Journals Connector (OSTI)

...of these organisms from a wastewater treatment system. Chemolithotrophic...to NO3 via NO2 (6). In wastewater treatment plants (WWTPs...sludge process (with biomass recycling). The bioreactors were operated...compositions of the influent wastewater, in addition to various operational...

Hebe M. Dionisi; Alice C. Layton; Gerda Harms; Igrid R. Gregory; Kevin G. Robinson; Gary S. Sayler

2002-01-01T23:59:59.000Z

60

Proceedings ASCE EWRI World Water and Environmental Resources Congress 2005 May 15-19, 2005 Modeling and evaluating temperature dynamics in wastewater treatment plants  

E-Print Network (OSTI)

Modeling and evaluating temperature dynamics in wastewater treatment plants Scott A. Wells1 , Dmitriy into receiving waters, there is much interest in providing a model of temperature dynamics in wastewater using detailed temperature data from a Washington County, Oregon, USA wastewater treatment facility

Wells, Scott A.

Note: This page contains sample records for the topic "wastewater treatment plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Data evaluation of full-scale wastewater treatment plants by mass balance  

Science Journals Connector (OSTI)

Measured data of wastewater treatment plants (WWTPs) often contains errors. These errors can prohibit the use of WWTP data for process evaluation, process design, benchmarking or modelling purposes. In this paper a practical stepwise methodology is presented to check WWTP data using mass balances. The presented results show that poor WWTP data quality leads to large errors when calculating key operational conditions such as the solids retention time (SRT), oxygen consumption (OC) and the different internal conversions rates. By improving WWTP data quality using mass balance calculations useful new information becomes available for process evaluation, \\{WWTPs\\} design and benchmarking.

S. Puig; M.C.M. van Loosdrecht; J. Colprim; S.C.F. Meijer

2008-01-01T23:59:59.000Z

62

Integrated Fault Detection and Isolation: Application to a Winery's Wastewater Treatment Plant  

Science Journals Connector (OSTI)

In this paper, an integrated object-oriented fuzzy logic fault detection and isolation (FDI) module for a biological wastewater treatment process is presented. The defined FDI strategy and the software implementation are detailed. Using experimental ... Keywords: anaerobic digestion, fuzzy logic, object-oriented programming, on-line fault detection and isolation (FDI), wastewater treatment

Antoine Genovesi; Jérôme Harmand; Jean-Philippe Steyer

2000-07-01T23:59:59.000Z

63

2013 Annual Wastewater Reuse Report for the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant  

SciTech Connect

This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2012, through October 31, 2013. The report contains, as applicable, the following information: • Site description • Facility and system description • Permit required monitoring data and loading rates • Status of compliance conditions and activities • Discussion of the facility’s environmental impacts. During the 2013 permit year, no wastewater was land-applied to the irrigation area of the Central Facilities Area Sewage Treatment Plant and therefore, no effluent flow volumes or samples were collected from wastewater sampling point WW-014102. However, soil samples were collected in October from soil monitoring unit SU-014101.

Mike Lewis

2014-02-01T23:59:59.000Z

64

Abatement efficiency of municipal wastewater treatment plants using different technologies (Orbetello Lagoon, Italy)  

Science Journals Connector (OSTI)

Two small-scale municipal wastewater treatment plants (Neghelli and Terrarossa) discharging effluents into a lagoon of great environmental interest and highly stressed by tourism (Orbetello, Italy) were monitored over the year 2001. We evaluated plants' performances developing a general efficiency indicator of removal to select the suitable purification technology (activated sludge, Neghelli vs. rotating biodisc reactor, Terrarossa). Unexpected, conventional technologies (activated sludge) had best performances (84% vs. 62%) with higher removal efficiencies for dissolved nutrients producing, on average, better final effluents. Even if Terrarossa showed a great improvement in summertime, during winter it seemed to be considerably affected by sea aerosol. Before the final discharge in lagoon, effluents were phytodepurated in a pond to reduce their nutrient load. Although data showed that the pond had further abatement efficiency over 80%, final outlet water represented a dangerous input for the lagoon ecosystem.

Monia Renzi; Guido Perra; Cristiana Guerranti; Enrica Franchi; Silvia Focardi

2009-01-01T23:59:59.000Z

65

Effectiveness of wind-blown sands on treatment of wastewater from coal-fired power plants  

Science Journals Connector (OSTI)

Untreated disposal of wastewater from coal-fired power plants has environmental and public health concerns in ... situ experiment was conducted in the easily accessible wind-blown sands to study their efficiency ...

Yunfeng Li; Weifeng Wan; Wanfang Zhou; Juan Xie; Yaoguo Wu…

2011-11-01T23:59:59.000Z

66

Making wastewater environmentally sustainable: Innovative technology offers new possibilities for wastewater treatment  

E-Print Network (OSTI)

Story by Katie Heinrich 16 tx H2O Summer 2013 Making wastewater environmentally sustainable Innovative technology o#30;ers new possibilities for wastewater treatment Municipal wastewater treatment plants may soon become more sustainable... in their treatment of wastewater by pursuing new electron beam (e-beam) technology being researched at a Texas A&M AgriLife Research center in College Station. To help these plants in their move to increased sustainability in wastewater treatment, the National...

Heinrich, Katie

2013-01-01T23:59:59.000Z

67

Fate and removal of pharmaceuticals and illicit drugs in conventional and membrane bioreactor wastewater treatment plants and by riverbank filtration  

Science Journals Connector (OSTI)

...chemical contaminants in water and wastewater' compiled and edited by Michael...antibiotics in conventional and advanced wastewater treatment: implications for environmental discharge and wastewater recycling. Water Res. 41, 4164-4176...

2009-01-01T23:59:59.000Z

68

Feasibility of geothermal heat use in the San Bernardino Municipal Wastewater Treatment Plant. Final report, September 1980-June 1981  

SciTech Connect

The results of the feasibility study for utilizing low temperature geothermal heat in the City of San Bernardino Wastewater Treatment Plant are summarized. The study is presented in terms of preliminary engineering design, economic analysis, institutional issues, environmental impacts, resource development, and system implementation.

Racine, W.C.; Larson, T.C.; Stewart, C.A.; Wessel, H.B.

1981-06-01T23:59:59.000Z

69

Applications of Energy Efficiency Technologies in Wastewater Treatment Facilities  

E-Print Network (OSTI)

"Depending on the level and type of treatment, municipal wastewater treatment (WWT) can be an energy intensive process, constituting a major cost for the municipal governments. According to a 1993 study wastewater treatment plants consume close to 1...

Chow, S.; Werner, L.; Wu, Y. Y.; Ganji, A. R.

70

Fate of anthropogenic cyclic volatile methylsiloxanes in a wastewater treatment plant  

Science Journals Connector (OSTI)

Abstract The fate of cyclic volatile methylsiloxanes (cVMS) – octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) – was evaluated in a typical secondary activated sludge wastewater treatment plant (WWTP). Water samples (influent, primary effluent, and final effluent) and sludge (primary sludge and waste activated sludge) samples were collected at overnight low, morning high, afternoon low, and evening high flows. Concentrations of cVMS in influents fluctuated with the influent flows, ranging from 0.166 to 1.13 ?g L?1, 3.47–19.3 ?g L?1, and 0.446–3.87 ?g L?1 for D4, D5, and D6, respectively. Mass balance analysis of cVMS showed the average mass of D4, D5, and D6 entering and exiting the plant in influent and effluent, respectively, were 109 g d?1, 2050 g d?1, 280 g d?1, and 1.41 g d?1, 27.0 g d?1, 1.90 g d?1. The total removal efficiency of cVMS was >96%. To elucidate their detailed removal mechanisms, Mackay's fugacity-based treatment plant model was used to simulate the fate of cVMS through the WWTP. Due to the unusual combination of high hydrophobicity and volatility of cVMS, volatilization in the aeration tank and adsorption to sludge were the two main pathways of cVMS removal from water in this WWTP based on the experimental and modeled results. The morning and evening high influent mass flows contributed almost equally at approximately 40% of the total daily cVMS mass, with D5 accounting for the majority of this daily loading.

De-Gao Wang; Monica Aggarwal; Tara Tait; Samantha Brimble; Grazina Pacepavicius; Laura Kinsman; Mike Theocharides; Shirley Anne Smyth; Mehran Alaee

2014-01-01T23:59:59.000Z

71

WASTEWATER TREATMENT OVER SAND COLUMNS  

E-Print Network (OSTI)

93/0096 WASTEWATER TREATMENT OVER SAND COLUMNS TREATMENT YIELDS, LOCALISATION OF THE BIOMASS Domestic wastewater treatment by infiltration-percolation is a process that becomming common in France, a greater depth for desinfection purposes. KEYWORDS Wastewater treatment, Infiltration-percolation. Sand

Paris-Sud XI, Université de

72

A methodology to estimate greenhouse gases emissions in Life Cycle Inventories of wastewater treatment plants  

SciTech Connect

The main objective of this paper is to present the Direct Emissions Estimation Model (DEEM), a model for the estimation of CO{sub 2} and N{sub 2}O emissions from a wastewater treatment plant (WWTP). This model is consistent with non-specific but widely used models such as AS/AD and ASM no. 1 and presents the benefits of simplicity and application over a common WWTP simulation platform, BioWin Registered-Sign , making it suitable for Life Cycle Assessment and Carbon Footprint studies. Its application in a Spanish WWTP indicates direct N{sub 2}O emissions to be 8 times larger than those associated with electricity use and thus relevant for LCA. CO{sub 2} emissions can be of similar importance to electricity-associated ones provided that 20% of them are of non-biogenic origin. - Highlights: Black-Right-Pointing-Pointer A model has been developed for the estimation of GHG emissions in WWTP. Black-Right-Pointing-Pointer Model was consistent with both ASM no. 1 and AS/AD. Black-Right-Pointing-Pointer N{sub 2}O emissions are 8 times more relevant than the one associated with electricity. Black-Right-Pointing-Pointer CO{sub 2} emissions are as important as electricity if 20% of it is non-biogenic.

Rodriguez-Garcia, G., E-mail: gonzalo.rodriguez.garcia@usc.es [Department of Chemical Engineering, University of Santiago de Compostela, Rua Lope Gomez de Marzoa, S/N, 15782, Santiago de Compostela (Spain); Hospido, A., E-mail: almudena.hospido@usc.es [Department of Chemical Engineering, University of Santiago de Compostela, Rua Lope Gomez de Marzoa, S/N, 15782, Santiago de Compostela (Spain); Bagley, D.M., E-mail: bagley@uwyo.edu [Department of Chemical and Petroleum Engineering, University of Wyoming, 82072 Laramie, WY (United States); Moreira, M.T., E-mail: maite.moreira@usc.es [Department of Chemical Engineering, University of Santiago de Compostela, Rua Lope Gomez de Marzoa, S/N, 15782, Santiago de Compostela (Spain); Feijoo, G., E-mail: gumersindo.feijoo@usc.es [Department of Chemical Engineering, University of Santiago de Compostela, Rua Lope Gomez de Marzoa, S/N, 15782, Santiago de Compostela (Spain)

2012-11-15T23:59:59.000Z

73

Bioaccumulation of triclocarban, triclosan, and methyl-triclosan in a North Texas wastewater treatment plant receiving stream and effects of triclosan on algal lipid synthesis.  

E-Print Network (OSTI)

??Triclosan (TCS) and triclocarban (TCC), widely used antimicrobial agents found in numerous consumer products, are incompletely removed by wastewater treatment plant (WWTP) processing. Methyl-triclosan (M-TCS)… (more)

Coogan, Melinda Ann

2007-01-01T23:59:59.000Z

74

The carbon footprint analysis of wastewater treatment plants and nitrous oxide emissions from full-scale biological nitrogen removal processes in Spain  

E-Print Network (OSTI)

This thesis presents a general model for the carbon footprint analysis of advanced wastewater treatment plants (WWTPs) with biological nitrogen removal processes, using a life cycle assessment (LCA) approach. Literature ...

Xu, Xin, S.M. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

75

EA-1190: Wastewater Treatment Capability Upgrade, Amarillo, Texas  

Energy.gov (U.S. Department of Energy (DOE))

This EA evaluates the environmental impacts for the proposed upgrade of the U.S. Department of Energy Pantex Plant Wastewater Treatment Plant in Amarillo, Texas.

76

Research on Performance of Wastewater Purification Unit and Recycling of Wastewater and sludge Dewatering of In-Site in Feng Shan Wate Treatment Plant.  

E-Print Network (OSTI)

??During the water treatment process, each processing unit releases the sludge from the sedimentation process, and the wastewater from the rapid sand wash and filtration… (more)

Chen, Hsin-hung

2008-01-01T23:59:59.000Z

77

Occurrence and fate of eleven classes of antibiotics in two typical wastewater treatment plants in South China  

Science Journals Connector (OSTI)

Abstract Wastewater treatment plants (WWTPs) are regarded as one of the most important sources of antibiotics in the environment. Two sampling campaigns over a period of one year in two wastewater treatment plants (plant A: activated sludge with chlorination, and plant B: oxidation ditch with UV) of Guangdong Province, China were carried out to assess the occurrence and fate of 11 classes of 50 antibiotics. The wastewater samples were extracted by Oasis HLB cartridges (6 mL, 500 mg), while the solid samples (sludge and suspended solid matter) were extracted by ultrasonic-assisted extraction with solvents (acetonitrile and citric acid buffer), followed by an enrichment and clean-up step with solid-phase extraction using SAX-HLB cartridges in tandem. The results showed the presence of 20 and 17 target compounds in the influents and effluents, respectively, at the concentrations ranging from low ng/L to a few ?g/L. Sulfamethoxazole, norfloxacin, ofloxacin, anhydro erythromycin and trimethoprim were most frequently detected in the \\{WWTPs\\} wastewaters. Twenty-one antibiotics were found in the sewage sludge from the two \\{WWTPs\\} at the concentrations up to 5800 ng/g, with tetracycline, oxytetracycline, norfloxacin and ofloxacin being the predominant antibiotics. The total mass loads of antibiotics per capita in the two plants ranged from 494 to 901 ?g/d/inhabitant (672 ± 182 ?g/d/inhabitant) in the influents, from 130 to 238 ?g/d/inhabitant (175 ± 45 ?g/d/inhabitant) in the effluents and from 107 to 307 ?g/d/inhabitant (191 ± 87.9 ?g/d/inhabitant) in the dewatered sludge, respectively. The aqueous removals for sulfonamides, macrolides, trimethoprim, lincomycin and chloramphenicol in the \\{WWTPs\\} were mainly attributed to the degradation processes, while those for tetracyclines and fluoroquinolones were mainly due to the adsorption onto sludge.

Li-Jun Zhou; Guang-Guo Ying; Shan Liu; Jian-Liang Zhao; Bin Yang; Zhi-Feng Chen; Hua-Jie Lai

2013-01-01T23:59:59.000Z

78

Monitoring Precursor 16S rRNAs ofAcinetobacter spp. in Activated Sludge Wastewater Treatment Systems  

Science Journals Connector (OSTI)

...Sanitary District, Northeast Wastewater Treatment Plant (UCSD, NEWWTP), and...gallons/day) of municipal wastewater. The treatment plant reduces the average influent...community structure of wastewater treatment plants: a comparison of old...

Daniel B. Oerther; Jakob Pernthaler; Andreas Schramm; Rudolf Amann; Lutgarde Raskin

2000-05-01T23:59:59.000Z

79

^--'^ Poster session : 4st confrence on Small Wastewater Treatment Plants. Stratford-upon-Avon, April 18-21, 1999 f . Contact e-mail : catherine.boutin@cemagref.fr  

E-Print Network (OSTI)

^--'^ Poster session : 4st conférence on Small Wastewater Treatment Plants. Stratford a large number of communities with less than 2 000 inhabitants. The adjustment of wastewater treatment is to describe the five wastewater treatment Systems called "attached-growth cultures on fine média". A high

Paris-Sud XI, Université de

80

Assessing the feasibility of wastewater recycling and treatment efficiency of wastewater treatment units  

Science Journals Connector (OSTI)

Wastewater reuse can significantly reduce environmental pollution and ... in southern Taiwan to discuss the feasibility of wastewater recycling and treatment efficiency of wastewater treatment units. The treatmen...

Jie-Chung Lou; Yung-Chang Lin

2008-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "wastewater treatment plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Fuzzy predictive control for nitrogen removal in biological wastewater treatment  

E-Print Network (OSTI)

Fuzzy predictive control for nitrogen removal in biological wastewater treatment S. Marsili wastewater is too low, full denitrification is difficult to obtain and an additional source of organic carbon predictive control; wastewater treatment plant Introduction The problem of improving the nitrogen removal

82

Optimized Control Structure for a Wastewater Treatment Benchmark  

E-Print Network (OSTI)

Optimized Control Structure for a Wastewater Treatment Benchmark Michela Mulas , Antonio Carlos wastewater treat- ment, give rise to both technical and economical challenges since most of the existing structure design the efficiency of a wastewater treatment plant can be improved, minimizing operational

Skogestad, Sigurd

83

Wastewater treatment using ferrous sulfate  

SciTech Connect

Treatment of industrial wastewater with coagulants is used extensively in the thorough removal of emulsified tars and oils. The central plant laboratory at the Zhdanov Coke Works conducted investigations of the treatment of wastewater, subsequently used for quenching coke, with ferrous sulfate. Laboratory tests and subsequent industrial tests demonstrated the efficiency of the method. In order to further intensify the wastewater treatment process we conducted laboratory tests with the addition of certain quantities of other coagulation reagents, for example polyacrylamide (PAA) and caustic soda, in addition to the ferrous sulfate. The combined use of polyacrylamide and ferrous sulfate permits instant coagulation of the sludge and very rapid (5 to 10 min) clarification of the water. In addition, in this case the degree of purification of the water is less dependent on the initial concentration of impurities. The purification is also improved when caustic soda is added, raising the pH. From the data it is apparent that an identical degree of purification of the water may be achieved either by increasing the consumption of ferrous sulfate, or by adding PAA or NaOH. During industrial tests of the purification of wastewater with ferrous sulfate, we also investigated the resulting sludge. The use of ferrous sulfate causes a significant increase in its quantity (by a factor of 1.5 to 1.8) and in its oil content (by a factor of 2 to 2.5). The water content in the sludge decreases. The sludge (in the quantity of 0.6% of the charge) may be added to the coking charge.

Boetskaya, K.P.; Ioffe, E.M.

1980-01-01T23:59:59.000Z

84

Feasibility of geothermal heat use in the San Bernardino Municipal Wastewater Treatment Plant. Final report, September 1980-June 1981  

SciTech Connect

A system was developed for utilizing nearby low temperature geothermal energy to heat two high-rate primary anaerobic digesters at the San Bernardino Wastewater Treatment Plant. The geothermal fluid would replace the methane currently burned to fuel the digesters. A summary of the work accomplished on the feasibility study is presented. The design and operation of the facility are examined and potentially viable applications selected for additional study. Results of these investigations and system descriptions and equipment specifications for utilizing geothermal energy in the selected processes are presented. The economic analyses conducted on the six engineering design cases are discussed. The environmental setting of the project and an analysis of the environmental impacts that will result from construction and operation of the geothermal heating system are discussed. A Resource Development Plan describes the steps that the San Bernardino Municipal Water Department could follow in order to utilize the resource. A preliminary well program and rough cost estimates for the production and injection wells also are included. The Water Department is provided with a program and schedule for implementing a geothermal system to serve the wastewater treatment plant. Regulatory, financial, and legal issues that will impact the project are presented in the Appendix. An outline of a Public Awareness Program is included.

Racine, W.C.; Larson, T.C.; Stewart, C.A.; Wessel, H.B.

1981-06-01T23:59:59.000Z

85

Treatment of wastewater effluents from paper-recycling plants by coagulation process and optimization of treatment conditions with response surface methodology  

Science Journals Connector (OSTI)

In the present study, a coagulation process was used to treat paper-recycling wastewater with alum coupled with poly aluminum chloride ... optimum conditions for high treatment efficiency of paper-recycling wastewater

Noushin Birjandi; Habibollah Younesi; Nader Bahramifar

2014-09-01T23:59:59.000Z

86

Field's Point Wastewater Treatment Facility (Narragansett Bay...  

Open Energy Info (EERE)

Field's Point Wastewater Treatment Facility (Narragansett Bay Commission) Jump to: navigation, search Name Field's Point Wastewater Treatment Facility (Narragansett Bay Commission)...

87

Optimizing a Modular Expansion of a Wastewater Treatment Plant Using Option Theory and Moment Matching Approximation Abstract  

E-Print Network (OSTI)

We consider a municipality faced with the question of how big to make their new wastewater treatment facility to meet the demand of 10 % expected growth in the number of new connections. Previously, we developed a real options framework for determining optimal plant size and showed that the model takes on the form of an Asian option. Furthermore, it was shown that if the connection rate growths are closely correlated with the market growth, then the penalty costs associated with having insufficient capacity to treat the wastewater can be effectively hedged, significantly reducing overall expected costs. In this study, we introduce an approximate analytical solution and optimize the plant size of a staged / modular expansion. Based on the given construction cost estimates, we show that a staged expansion has a minimal (expected) savings when connection growth rates are closely correlated to the market growth rates. However, as the correlation decreases to zero, or, alternatively, no attempt is made to hedge the penalty costs, a staged expansion has an expected savings of 20%.

Yuri Lawryshyn; Sebastian Jaimungal

88

Fate of As, Se, and Hg in a Passive Integrated System for Treatment of Fossil Plant Wastewater  

SciTech Connect

TVA is collaborating with EPRI and DOE to demonstrate a passive treatment system for removing SCR-derived ammonia and trace elements from a coal-fired power plant wastewater stream. The components of the integrated system consist of trickling filters for ammonia oxidation, reaction cells containing zero-valent iron (ZVI) for trace contaminant removal, a settling basin for storage of iron hydroxide floc, and anaerobic vertical-flow wetlands for biological denitrification. The passive integrated treatment system will treat up to 0.25 million gallons per day (gpd) of flue gas desulfurization (FGD) pond effluent, with a configuration requiring only gravity flow to obviate the need for pumps. The design of the system will enable a comparative evaluation of two parallel treatment trains, with and without the ZVI extraction trench and settling/oxidation basin components. One of the main objectives is to gain a better understanding of the chemical transformations that species of trace elements such as arsenic, selenium, and mercury undergo as they are treated in passive treatment system components with differing environmental conditions. This progress report details the design criteria for the passive integrated system for treating fossil power plant wastewater as well as performance results from the first several months of operation. Engineering work on the project has been completed, and construction took place during the summer of 2005. Monitoring of the passive treatment system was initiated in October 2005 and continued until May 18 2006. The results to date indicate that the treatment system is effective in reducing levels of nitrogen compounds and trace metals. Concentrations of both ammonia and trace metals were lower than expected in the influent FGD water, and additions to increase these concentrations will be done in the future to further test the removal efficiency of the treatment system. In May 2006, the wetland cells were drained of FGD water, refilled with less toxic ash pond water, and replanted due to low survival rates from the first planting the previous summer. The goals of the TVA-EPRI-DOE collaboration include building a better understanding of the chemical transformations that trace elements such as arsenic, selenium, and mercury undergo as they are treated in a passive treatment system, and to evaluate the performance of a large-scale replicated passive treatment system to provide additional design criteria and economic factors.

Terry Yost; Paul Pier; Gregory Brodie

2007-12-31T23:59:59.000Z

89

Environmental Assessment and Finding of No Significant Impact: Wastewater Treatment Capability Upgrade, Project NO. 96-D-122 Pantex Plant Amarillo, Texas  

SciTech Connect

This Environmental Assessment (EA) addresses the U.S. Department of Energy (DOE) proposed action regarding an upgrade of the Pantex Plant Wastewater Treatment Facility (WWTF). Potential environmental consequences associated with the proposed action and alternative actions are provided. DOE proposes to design, build, and operate a new WWTF, consistent with the requirements of Title 30 of the Texas Administrative Code (TAC), Chapter 317, ''Design Criteria for Sewage Systems,'' capable of supporting current and future wastewater treatment requirements of the Plant. Wastewater treatment at Pantex must provide sufficient operational flexibility to meet Pantex Plant's anticipated future needs, including potential Plant mission changes, alternative effluent uses, and wastewater discharge permit requirements. Treated wastewater effluent and non-regulated water maybe used for irrigation on DOE-owned agricultural land. Five factors support the need for DOE action: (1) The current WWTF operation has the potential for inconsistent permit compliance. (2) The existing WWTF lies completely within the 100-year floodplain. (3) The Pantex Plant mission has the potential to change, requiring infrastructure changes to the facility. (4) The life expectancy of the existing facility would be nearing its end by the time a new facility is constructed. (5) The treated wastewater effluent and non-regulated water would have a beneficial agricultural use through irrigation. Evaluation during the internal scoping led to the conclusion that the following factors are present and of concern at the proposed action site on Pantex Plant: (1) Periodic wastewater effluent permit exceedances; (2) Wetlands protection and floodplain management; (3) Capability of the existing facility to meet anticipated future needs of Pantex (4) Existing facility design life; and (5) Use of treated wastewater effluent and non-regulated water for irrigation. Evaluation during the internal scoping led to the conclusion that the following conditions are not present, nor of concern at the proposed site on Pantex Plant, and no further analysis was conducted: (1) State or national parks, forests, or other conservation areas; (2) Wild and scenic rivers; (3) Natural resources, such as timber, range, soils, minerals; (4) Properties of historic, archeological, or architectural significance; (5) Native American concerns; (6) Minority and low-income populations; and (7) Prime or unique farmland. In this document, DOE describes the proposed action and a reasonable range of alternatives to the proposed action, including the ''No-Action'' alternative. The proposed action cited in the ''U.S. Department of Energy Application for a Texas Pollutant Discharge Elimination System Permit Modifying Permit to Dispose of Waste, No. 02296,'' December 1998, included the construction of a new wastewater treatment facility, a new irrigation storage pond, and the conversion of the current wastewater treatment facility into an irrigation storage pond. Although a permit modification application has been filed, if a decision on this EA necessitates it, an amendment to the permit application would be made. The permit application would be required for any of the alternatives and the filing does not preclude or predetermine selection of an alternative considered by this EA. This permit change would allow Pantex to land-dispose treated wastewater by irrigating agricultural land. This construction for the proposed action would include designing two new lagoons for wastewater treatment. One of the lagoons could function as a facultative lagoon for treatment of wastewater. The second lagoon would serve as an irrigation storage impoundment (storage pond), with the alternative use as a facultative lagoon if the first lagoon is out of service for any reason. The new facultative lagoon and irrigation water storage pond would be sited outside of the 100-year flood plain. The existing WWTF lagoon would be used as a storage pond for treated wastewater effluent for irrigation water, as needed. The two new lagoons would be li

N /A

1999-05-27T23:59:59.000Z

90

Combustion testing and heat recovery study: Frank E. Van Lare Wastewater Treatment Plant, Monroe County. Final report  

SciTech Connect

The objectives of the study were to record and analyze sludge management operations data and sludge incinerator combustion data; ascertain instrumentation and control needs; calculate heat balances for the incineration system; and determine the feasibility of different waste-heat recovery technologies for the Frank E. Van Lare (FEV) Wastewater Treatment Plant. As an integral part of this study, current and pending federal and state regulations were evaluated to establish their impact on furnace operation and subsequent heat recovery. Of significance is the effect of the recently promulgated Federal 40 CFR Part 503 regulations on the FEV facility. Part 503 regulations were signed into law in November 1992, and, with some exceptions, affected facilities must be in compliance by February 19, 1994. Those facilities requiring modifications or upgrades to their incineration or air pollution control equipment to meet Part 503 regulations must be in compliance by February 19, 1995.

NONE

1995-01-01T23:59:59.000Z

91

EECBG Success Story: Saving Energy at 24/7 Wastewater Treatment...  

Energy Savers (EERE)

Saving Energy at 247 Wastewater Treatment Plant EECBG Success Story: Saving Energy at 247 Wastewater Treatment Plant July 29, 2010 - 4:11pm Addthis In the city of Longview,...

92

Occurrence, fate and ecotoxicological assessment of pharmaceutically active compounds in wastewater and sludge from wastewater treatment plants in Chongqing, the Three Gorges Reservoir Area  

Science Journals Connector (OSTI)

Abstract The occurrence, removal and ecotoxicological assessment of 21 pharmaceutically active compounds (PhACs) including antibiotics, analgesics, antiepileptics, antilipidemics and antihypersensitives, were studied at four municipal wastewater treatment plants (WWTP) in Chongqing, the Three Gorges Reservoir Area. Individual treatment unit effluents, as well as primary and secondary sludge, were sampled and analyzed for the selected PhACs to evaluate their biodegradation, persistence and partitioning behaviors. PhACs were identified and quantified using high performance liquid chromatography/tandem mass spectrometry after solid-phase extraction. All the 21 analyzed PhACs were detected in wastewater and the target PhACs except acetaminophen, ibuprofen and gemfibrozil, were also found in sludge. The concentrations of the antibiotics and SVT were comparable to or even higher than those reported in developed countries, while the case of other target PhACs was opposite. The elimination of PhACs except acetaminophen was incomplete and a wide range of elimination efficiencies during the treatment were observed, i.e. from “negative removal” to 99.5%. The removal of PhACs was insignificant in primary and disinfection processes, and was mainly achieved during the biological treatment. Based on the mass balance analysis, biodegradation is believed to be the primary removal mechanism, whereas only about 1.5% of the total mass load of the target PhACs was removed by sorption. Experimentally estimated distribution coefficients (< 500 L/kg, with a few exceptions) also indicate that biodegradation/transformation was responsible for the removal of the target PhACs. Ecotoxicological assessment indicated that the environment concentrations of single compounds (including sulfadiazine, sulfamethoxazole, ofloxacin, azithromycin and erythromycin-H2O) in effluent and sludge, as well as the mixture of the 21 detected PhACs in effluent, sludge and receiving water had a significant ecotoxicological risk to algae. Therefore, further control of PhACs in effluent and sludge is required before their discharge and application to prevent their introduction into the environment.

Qing Yan; Xu Gao; You-Peng Chen; Xu-Ya Peng; Yi-Xin Zhang; Xiu-Mei Gan; Cheng-Fang Zi; Jin-Song Guo

2014-01-01T23:59:59.000Z

93

Use of Treated Municipal Wastewater as Power Plant Cooling System Makeup Water: Tertiary Treatment versus Expanded Chemical Regimen for Recirculating Water Quality Management  

SciTech Connect

Treated municipal wastewater is a common, widely available alternative source of cooling water for thermoelectric power plants across the U.S. However, the biodegradable organic matter, ammonia-nitrogen, carbonate and phosphates in the treated wastewater pose challenges with respect to enhanced biofouling, corrosion, and scaling, respectively. The overall objective of this study was to evaluate the benefits and life cycle costs of implementing tertiary treatment of secondary treated municipal wastewater prior to use in recirculating cooling systems. The study comprised bench- and pilot-scale experimental studies with three different tertiary treated municipal wastewaters, and life cycle costing and environmental analyses of various tertiary treatment schemes. Sustainability factors and metrics for reuse of treated wastewater in power plant cooling systems were also evaluated. The three tertiary treated wastewaters studied were: secondary treated municipal wastewater subjected to acid addition for pH control (MWW_pH); secondary treated municipal wastewater subjected to nitrification and sand filtration (MWW_NF); and secondary treated municipal wastewater subjected nitrification, sand filtration, and GAC adsorption (MWW_NFG). Tertiary treatment was determined to be essential to achieve appropriate corrosion, scaling, and biofouling control for use of secondary treated municipal wastewater in power plant cooling systems. The ability to control scaling, in particular, was found to be significantly enhanced with tertiary treated wastewater compared to secondary treated wastewater. MWW_pH treated water (adjustment to pH 7.8) was effective in reducing scale formation, but increased corrosion and the amount of biocide required to achieve appropriate biofouling control. Corrosion could be adequately controlled with tolytriazole addition (4-5 ppm TTA), however, which was the case for all of the tertiary treated waters. For MWW_NF treated water, the removal of ammonia by nitrification helped to reduce the corrosivity and biocide demand. Also, the lower pH and alkalinity resulting from nitrification reduced the scaling to an acceptable level, without the addition of anti-scalant chemicals. Additional GAC adsorption treatment, MWW_NFG, yielded no net benefit. Removal of organic matter resulted in pitting corrosion in copper and cupronickel alloys. Negligible improvement was observed in scaling control and biofouling control. For all of the tertiary treatments, biofouling control was achievable, and most effectively with pre-formed monochloramine (2-3 ppm) in comparison with NaOCl and ClO2. Life cycle cost (LCC) analyses were performed for the tertiary treatment systems studied experimentally and for several other treatment options. A public domain conceptual costing tool (LC3 model) was developed for this purpose. MWW_SF (lime softening and sand filtration) and MWW_NF were the most cost-effective treatment options among the tertiary treatment alternatives considered because of the higher effluent quality with moderate infrastructure costs and the relatively low doses of conditioning chemicals required. Life cycle inventory (LCI) analysis along with integration of external costs of emissions with direct costs was performed to evaluate relative emissions to the environment and external costs associated with construction and operation of tertiary treatment alternatives. Integrated LCI and LCC analysis indicated that three-tiered treatment alternatives such as MWW_NSF and MWW_NFG, with regular chemical addition for treatment and conditioning and/or regeneration, tend to increase the impact costs and in turn the overall costs of tertiary treatment. River water supply and MWW_F alternatives with a single step of tertiary treatment were associated with lower impact costs, but the contribution of impact costs to overall annual costs was higher than all other treatment alternatives. MWW_NF and MWW_SF alternatives exhibited moderate external impact costs with moderate infrastructure and chemical conditioner dosing, which makes them (especially

David Dzombak; Radisav Vidic; Amy Landis

2012-06-30T23:59:59.000Z

94

WASTEWATER CHARACTERIZATION OF' FISH PROCESSING PLANT EFFLUENTS  

E-Print Network (OSTI)

#12;WASTEWATER CHARACTERIZATION OF' FISH PROCESSING PLANT EFFLUENTS TECHNICAL REPORT SERIES FREMP in Publication Data Main entry under title Wastewater characterization of fish processing plant effluents (Canada)); DOE FRAP 1993-39. TD899.F5W37 1994 363.73'942'0971133 C94-960159-4 #12;WASTEWATER

95

To appear in Proceedings of ECSCW99 Dynamics in Wastewater Treatment  

E-Print Network (OSTI)

To appear in Proceedings of ECSCW99 Dynamics in Wastewater Treatment: A Framework for Understanding on the study of unskilled work in a Danish wastewater treatment plant, the problem of formalisation of work at the expense of the other tend to fail. Wastewater treatment plants are highly-distributed technical settings

Bertelsen, Olav W.

96

Pilot Scale Study of Excess Sludge Production Reduction in Wastewater Treatment by Ozone  

E-Print Network (OSTI)

Pilot Scale Study of Excess Sludge Production Reduction in Wastewater Treatment by Ozone Yuan Ma-scale reactors were operated at the LaPrairie Wastewater Treatment plant (one control and one ozonated

Barthelat, Francois

97

Onsite Wastewater Treatment Systems: Graywater Safety  

E-Print Network (OSTI)

irrigation and decr,ease the amount of wastewater entering sewers or onsite wastewater treatment systems. Onsite wastewater treatment systems However, homeowners who irrigate their lawns with graywater need to understand the risks and safety issues.... Residential wastewater can be classified as either blackwater (sew- age containing fecal matter or food wastes) or graywater. If graywater is collected separately from blackwater, it can be dispersed as irrigation water with less treatment than...

Melton, Rebecca; Lesikar, Bruce J.

2008-10-23T23:59:59.000Z

98

Economic Analysis of Wastewater Treatment Alternatives in Rural Texas Communities.  

E-Print Network (OSTI)

of size across capital. operation. and maintenance costs. Keywords: wastewater, rural communities, costs. treatment plants. 1 INTRODUCTION Public concern for the quality of water discharged into the nation's waterways contributed to the passage..., 1968. United States Environmental Protection Agency. Construction Costs for Municipal Waste Treatment Plants: 1973-1977. Washington, D.C .? January 1978. ___ . Needs Survey (1980): Cost Estimates for Construction of Publicly Owned Wastewater...

Victurine, Raymond F.; Goodwin, H.L. Jr; Lacewell, Ronald D.

1985-01-01T23:59:59.000Z

99

Plant species as a significant factor in wastewater treatment in constructed wetlands  

E-Print Network (OSTI)

) in microcosms fed rural septic influent. The water parameters studied were water usage, ammonium-nitrogen, phosphorus, coliforms, suspended solids, BOD, pH, and turbidity. The BOD for all plants was reduced below the standard levels but none were significantly...

Varvel, Tracey W

2013-02-22T23:59:59.000Z

100

Health and Treatment Requirements for Wastewater Irrigation  

Science Journals Connector (OSTI)

Recycling and reuse of wastewater in agriculture can be a highly effective ... irrigation techniques, and the treatment of the wastewater to an appropriate degree so as to ... consumers of crops from pathogenic m...

Hillel Shuval; Badri Fattal

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wastewater treatment plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Onsite Wastewater Treatment Systems: Ultraviolet Light Disinfection  

E-Print Network (OSTI)

Some onsite wastewater treatment systems include a disinfection component. This publication explains how homeowners can disinfect wastewater with ultraviolet light, what the components of such a system are, what factors affect the performance of a...

Lesikar, Bruce J.

2008-10-02T23:59:59.000Z

102

Domestic wastewater treatment with membrane filtration—two years experience  

Science Journals Connector (OSTI)

This study tested domestic wastewater treatment membrane filtration without external cleaning in sustained long term operation. Domestic wastewater treatment plant monitoring was performed at the municipal wastewater treatment plant Devínska Nová Ves, Bratislava between February 2005 and July 2007. Two membrane modules were tested by immersion in the domestic wastewater treatment plant. The flat sheet membrane module was operated without external cleaning at a flux of 20–60 L/m2 h for 6 months. The hollow fiber membrane module was operated for 4 months without external cleaning with a flux of 20–45 L/m2 h. Parallel operation of flat sheet and hollow fiber membrane modules showed similar results in effluent water quality. Both membrane modules were able to effectively remove organic matter (as much as 91%) and more than 97% of NH4+?N. Nitrogen removal via denitrification was observed during the short periods with low oxygen concentration. Treated water contained suspended solids under measurable limits.

A. Blšt’áková; I. Bodík; L. Dan?ová; Z. Jakub?ová

2009-01-01T23:59:59.000Z

103

A consistent modelling methodology for secondary settling tanks in wastewater treatment  

E-Print Network (OSTI)

A consistent modelling methodology for secondary settling tanks in wastewater treatment Stefan on a consistent modelling methodology (CMM) of complex real processes in wastewater treatment by utilizing both as a case since this is one of the most complex processes in a wastewater treatment plant and the simulation

Bürger, Raimund

104

A consistent modelling methodology for secondary settling tanks in wastewater treatment  

E-Print Network (OSTI)

A consistent modelling methodology for secondary settling tanks in wastewater treatment Raimund Bu in wastewater treatment by combining classical concepts with results from applied mathematics, and partly was chosen as a case since this is one of the most complex processes in a wastewater treatment plant

Bürger, Raimund

105

Impact of Onsite Wastewater Treatment Systems on Nitrogen and Baseflow in Urban Watersheds of Metropolitan Atlanta  

E-Print Network (OSTI)

Impact of Onsite Wastewater Treatment Systems on Nitrogen and Baseflow in Urban Watersheds 2401, Miller Plant Sciences Building Onsite wastewater treatment systems (OWTS) are widely used Septic Wastewater-Treatment Systems on Base Flow in Selected Watersheds in Gwinnett County, Georgia

Arnold, Jonathan

106

Models for Optimization of Energy Consumption of Pumps in a Wastewater Processing Plant  

E-Print Network (OSTI)

Models for Optimization of Energy Consumption of Pumps in a Wastewater Processing Plant Zijun Zhang in the wastewater preliminary treatment process is discussed. Data- mining algorithms are utilized to develop pump performance models based on industrial data collected at a municipal wastewater processing plant

Kusiak, Andrew

107

Onsite Wastewater Treatment Systems: Liquid Chlorination  

E-Print Network (OSTI)

This publication explains the process, components, legal requirements, factors affecting performance, and maintenance needs of liquid chlorination systems for onsite wastewater treatment....

Weaver, Richard; Lesikar, Bruce J.; Richter, Amanda; O'Neill, Courtney

2008-10-23T23:59:59.000Z

108

Anticipating the next century of wastewater treatment  

Science Journals Connector (OSTI)

...Anticipating the next century of wastewater treatment 10.1126/science...sewage. The settling and recycling of sludge inside treatment...and the contribution to the recycling of resources (2, 3). The...impact of human activities. Wastewater treatment is in itself a relatively...

Mark C. M. van Loosdrecht; Damir Brdjanovic

2014-06-27T23:59:59.000Z

109

A STELLA Model for Integrated Algal Biofuel Production and Wastewater Treatment.  

E-Print Network (OSTI)

??Based on a municipal wastewater treatment plant (WWTP) in Tampa, FL, a dynamic multiple-systems model was developed on the STELLA software platform to explore algae… (more)

Cormier, Ivy

2010-01-01T23:59:59.000Z

110

Wastewater and Wastewater Treatment Systems (Oklahoma)  

Energy.gov (U.S. Department of Energy (DOE))

The Oklahoma Department of Environmental Quality administers regulations for waste water and waste water treatment systems. Construction of a municipal treatment work, non-industrial waste water...

111

Onsite Wastewater Treatment Systems: Constructed Wetlands  

E-Print Network (OSTI)

Two-compartment septic tank Soil absorption field Constructed wetland Onsite wastewater treatment systems Constructed wetlands Natural wetlands generally have visible water in the system. However, for those at homes, the water flows beneath... the media surface, which limits contact between residents and wastewater. The constructed wetland waste- water treatment system has three main components that work together to purify wastewater: ? A septic tank, which is an en- closed watertight...

Lesikar, Bruce J.

2008-10-23T23:59:59.000Z

112

A case study of mercury and methylmercury dynamics in a Hg-contaminated municipal wastewater treatment plant  

Science Journals Connector (OSTI)

A study of total Hg (Hg) and methylmercury (MeHg) was performed in a 40 mgd capacity municipal sewage treatment plant in which elemental Hg was used as ... the Hg seals with mechanical seals. A mass balance condu...

C. C. Gilmour; N. S. Bloom

1995-02-01T23:59:59.000Z

113

A Case Study of Mercury and Methylmercury Dynamics in a Hg-Contaminated Municipal Wastewater Treatment Plant  

Science Journals Connector (OSTI)

A study of total Hg (Hg) and methylmercury (MeHg) was performed in a 40 mgd capacity municipal sewage treatment plant in which elemental Hg was used as ... the Hg seals with mechanical seals. A mass balance condu...

C. C. Gilmour; N. S. Bloom

1995-01-01T23:59:59.000Z

114

Ceramic membrane treatment of petrochemical wastewater  

SciTech Connect

Ceramic alumina microfiltration membranes were evaluated for treatment of 3 aqueous streams containing heavy metals, oils, and solids at petrochemical manufacturing facilities. To the best of the author's knowledge, this is the first reported use of ceramic alumina membranes for process water and wastewater treatment in a US petrochemical plant. In a pilot test at a vinyl chloride monomer (VCM) plant, precipitated heavy metal solids were filtered with the membranes. On another stream at that site, the ceramic membrane pilot system successfully treated emulsions of 1,2-dichloroethane (EDC), water, and solids. Membrane filtration of a linear alkyl benzene (LAB) oily wastewater stream produced water with less than 5 ppmw oil and grease, after pretreatment with HCl and ferric chloride. A preliminary financial analysis shows that the installed system cost for a ceramic membrane unit is comparable to other membrane technologies, while operating costs are anticipated to be lower. Specific process conditions that are particularly amenable to treatment by ceramic membrane microfiltration are also given in the paper. 10 refs., 11 figs., 7 tabs.

Lahiere, R.J. (Vista Chemical Co., Houston, TX (United States)); Goodboy, K.P.

1993-05-01T23:59:59.000Z

115

Long-term trends of PBDEs, triclosan, and triclocarban in biosolids from a wastewater treatment plant in the Mid-Atlantic region of the US  

Science Journals Connector (OSTI)

Abstract In the US, land application of biosolids has been utilized in government-regulated programs to recycle valuable nutrients and organic carbon that would otherwise be incinerated or buried in landfills. While many benefits have been reported, there are concerns that these practices represent a source of organic micropollutants to the environment. In this study, biosolids samples from a wastewater treatment plant in the Mid-Atlantic region of the US were collected approximately every 2 months over a 7-year period and analyzed for brominated diphenyl ethers (BDE-47, BDE-99, and BDE-209), triclosan, and triclocarban. During the collection period of 2005–2011, concentrations of the brominated diphenyl ethers BDE-47 + BDE-99 decreased by 42%, triclocarban decreased by 47%, but BDE-209 and triclosan remained fairly constant. Observed reductions in contaminant concentrations could not be explained by different seasons or by volumetric changes of wastewaters arriving at the treatment plant and instead may be the result of the recent phaseout of BDE-47 and BDE-99 as well as potential reductions in the use of triclocarban.

Natasha A. Andrade; Nuria Lozano; Laura L. McConnell; Alba Torrents; Clifford P. Rice; Mark Ramirez

2015-01-01T23:59:59.000Z

116

EPA ENERGY STAR Webcast: Benchmarking Water/Wastewater Treatment...  

Energy Savers (EERE)

Benchmarking WaterWastewater Treatment Facilities in Portfolio Manager EPA ENERGY STAR Webcast: Benchmarking WaterWastewater Treatment Facilities in Portfolio Manager November...

117

On-Site Wastewater Treatment Systems: Graywater  

E-Print Network (OSTI)

-6176 3-08 Figure 1: A diagram of separate blackwater and graywater plumbing systems. W ith water reuse gaining popularity, people increasingly consider graywater from their residences as a resource to be separated from the wastewater stream... and reused in their landscapes. Such reuse of graywater reduces the amount of wastewater entering sewers or onsite wastewater treatment systems, reduces demands to use potable water for other residential uses like irrigation and helps preserve limited...

Melton, Rebecca; Lesikar, Bruce J.; Smith, David; O'Neill, Courtney

2008-04-03T23:59:59.000Z

118

Utilization of municipal wastewater for cooling in thermoelectric power plants: Evaluation of the combined cost of makeup water treatment and increased condenser fouling  

SciTech Connect

A methodology is presented to calculate the total combined cost (TCC) of water sourcing, water treatment and condenser fouling in the recirculating cooling systems of thermoelectric power plants. The methodology is employed to evaluate the economic viability of using treated municipal wastewater (MWW) to replace the use of freshwater as makeup water to power plant cooling systems. Cost analyses are presented for a reference power plant and five different tertiary treatment scenarios to reduce the scaling tendencies of MWW. Results indicate that a 550 MW sub-critical coal fired power plant with a makeup water requirement of 29.3 ML/day has a TCC of $3.0 - 3.2 million/yr associated with the use of treated MWW for cooling. (All costs USD 2009). This translates to a freshwater conservation cost of $0.29/kL, which is considerably lower than that of dry air cooling technology, $1.5/kL, as well as the 2020 conservation cost target set by the U.S. Department of Energy, $0.74/kL. Results also show that if the available price of freshwater exceeds that of secondarytreated MWW by more than $0.13-0.14/kL, it can be economically advantageous to purchase secondary MWW and treat it for utilization in the recirculating cooling system of a thermoelectric power plant.

Walker, Michael E.; Theregowda, Ranjani B.; Safari, Iman; Abbasian, Javad; Arastoopour, Hamid; Dzombak, David A.; Hsieh, Ming-Kai; Miller, David C.

2013-10-01T23:59:59.000Z

119

Sandusky Wastewater Treatment | Open Energy Information  

Open Energy Info (EERE)

Treatment Treatment Jump to: navigation, search Name Sandusky Wastewater Treatment Facility Sandusky Wastewater Treatment Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Sandusky Wastewater Treatment Energy Purchaser Sandusky Wastewater Treatment Location Sandusky OH Coordinates 41.452091°, -82.723523° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.452091,"lon":-82.723523,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

120

Opportunities for Automated Demand Response in Wastewater Treatment  

NLE Websites -- All DOE Office Websites (Extended Search)

Opportunities for Automated Demand Response in Wastewater Treatment Opportunities for Automated Demand Response in Wastewater Treatment Facilities in California - Southeast Water Pollution Control Plant Case Study Title Opportunities for Automated Demand Response in Wastewater Treatment Facilities in California - Southeast Water Pollution Control Plant Case Study Publication Type Report LBNL Report Number LBNL-6056E Year of Publication 2012 Authors Olsen, Daniel, Sasank Goli, David Faulkner, and Aimee T. McKane Date Published 12/2012 Publisher CEC/LBNL Keywords market sectors, technologies Abstract This report details a study into the demand response potential of a large wastewater treatment facility in San Francisco. Previous research had identified wastewater treatment facilities as good candidates for demand response and automated demand response, and this study was conducted to investigate facility attributes that are conducive to demand response or which hinder its implementation. One years' worth of operational data were collected from the facility's control system, submetered process equipment, utility electricity demand records, and governmental weather stations. These data were analyzed to determine factors which affected facility power demand and demand response capabilities.

Note: This page contains sample records for the topic "wastewater treatment plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Occurrence and fate of pharmaceutically active compounds in the largest municipal wastewater treatment plant in Southwest China: Mass balance analysis and consumption back-calculated model  

Science Journals Connector (OSTI)

Abstract The occurrence and fate of twenty-one pharmaceutically active compounds (PhACs) were investigated in different steps of the largest wastewater treatment plant (WWTP) in Southwest China. Concentrations of these PhACs were determined in both wastewater and sludge phases by a high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Results showed that 21 target PhACs were present in wastewater and 18 in sludge. The calculated total mass load of PhACs per capita to the influent, the receiving water and sludge were 4.95 mg d?1 person?1, 889.94 ?g d?1 person?1 and 78.57 ?g d?1 person?1, respectively. The overall removal efficiency of the individual PhACs ranged from “negative removal” to almost complete removal. Mass balance analysis revealed that biodegradation is believed to be the predominant removal mechanism, and sorption onto sludge was a relevant removal pathway for quinolone antibiotics, azithromycin and simvastatin, accounting for 9.35–26.96% of the initial loadings. However, the sorption of the other selected PhACs was negligible. The overall pharmaceutical consumption in Chongqing, China, was back-calculated based on influent concentration by considering the pharmacokinetics of PhACs in humans. The back-estimated usage was in good agreement with usage of ofloxacin (agreement ratio: 72.5%). However, the back-estimated usage of PhACs requires further verification. Generally, the average influent mass loads and back-calculated annual per capita consumption of the selected antibiotics were comparable to or higher than those reported in developed countries, while the case of other target PhACs was opposite.

Qing Yan; Xu Gao; Lei Huang; Xiu-Mei Gan; Yi-Xin Zhang; You-Peng Chen; Xu-Ya Peng; Jin-Song Guo

2014-01-01T23:59:59.000Z

122

Estimating odour impact range of a selected wastewater treatment plant for winter and summer seasons in Polish conditions using CALPUFF model  

Science Journals Connector (OSTI)

Odour emission from wastewater treatment plants (WWTP) is a common cause of odour nuisance to neighbouring areas. The analysed object was mechanical biological WWTP designed for 1,200,000 population equivalent. Collection of the samples was carried out in accordance with the methodology described in VDI 3880 and PN-EN 13725 during the rainless weather. Odour concentration measurement was made using the method of dynamic olfactometry, in accordance with the procedures described in EN:13725 'Air Quality: Determination of odour concentration by dynamic olfactometry'. For selected emission sources model calculations were conducted using CALPUFF dispersion model for neighbouring residential areas, which are exceptionally exposed to odours. This study presents results of modelling in local scale, for different meteorological scenarios, respectively for winter and summer seasons.

Izabela Sówka; Maria SkrÄ?towicz; Piotr SobczyÅ?ski; Jerzy Zwoździak

2014-01-01T23:59:59.000Z

123

Onsite Wastewater Treatment Systems: Sand Filters  

E-Print Network (OSTI)

Sand filters are beds of granular material, or sand, drained from underneath so that pretreated wastewater can be treated, collected and distributed to a land application system. This publication explains the treatment, design, operation...

Lesikar, Bruce J.

2008-10-23T23:59:59.000Z

124

Catalytic Wastewater Treatment Using Pillared Clays  

Science Journals Connector (OSTI)

After introduction on the use of solid catalysts in wastewater treatment technologies, particularly advanced oxidation processes (AOPs), this review discussed the use of pillared clay (PILC) materials in three ap...

Siglinda Perathoner; Gabriele Centi

2010-01-01T23:59:59.000Z

125

Wastewater reclamation and reuse in a petrochemical plant  

SciTech Connect

A large petrochemical plant located in a water-limited area is a major water user. The plant is facing a critical water problem because of several factors: (1) the raw water total dissolved solids (TDS) content has been increasing, (2) water rationing, which limits plant production, occurs during drought periods, (3) the plant is planning for a major expansion that requires major additional water supply, and (4) there is persistent community pressure for wastewater discharge reduction. A water resource management and planning study was conducted for this plant to resolve the water problem. This chapter describes the results of the study and the design of a pilot plant program for the testing of a wastewater treatment and recycling system.

Wong, J.M. [Brown and Caldwell, Pleasant Hill, CA (United States)

1996-11-01T23:59:59.000Z

126

Reusing rinse wastewater at a semiconductor plant  

SciTech Connect

Two pilot rinse wastewater reuse projects were developed as part of a long-term water conservation program for a Motorola semiconductor manufacturing site in Phoenix, Ariz. The conceptual designs for the projects grew out of a detailed wastewater reuse study that characterized wastewater streams at their generation points. Both treatment techniques were specifically researched, bench-tested, and adapted to further water conservation efforts while ensuring 100 percent compliance with appropriate effluent regulations and industrial discharge permit conditions. Together, the pilot projects save the city of Phoenix approximately 45 mil gal (17 {times} 10{sup 4} m{sup 3}) of water annually.

Shah, A.R. [Motorola SCG, McDowell, MD (United States). Environmental, Safety, and Industrial Hygiene Dept.; Ploeser, J.H. [Phoenix Water Services Dept., AZ (United States). Water Conservation Office

1999-08-01T23:59:59.000Z

127

Determination of Baselines for Evaluation and Promotion of Energy Efficiency in Wastewater Treatment Facilities  

E-Print Network (OSTI)

Wastewater treatment plants are one of the largest energy consumers managed by the public sector. As plants expand in the future to accommodate population growth, energy requirements will substantially increase. Thus, implementation of energy...

Chow, S. A.; Ganji, A. R.; Fok, S.

128

Electrodialysis Treatment of Nickel Wastewater  

Science Journals Connector (OSTI)

The galvanic processes are one of the main activities contributing to metal discharges into the environment. A large volume of wastewater is generated that contains a high load of salts and metals and it must be ...

Tatiane Benvenuti; Marco Antônio Siqueira Rodrigues…

2014-01-01T23:59:59.000Z

129

Textile Wastewater Treatment and Recycling  

Science Journals Connector (OSTI)

Textile industry consumes huge quantities of fresh water (100–150 l/kg of cotton for direct dye). During various stages of textile processing, wastewater is charged with substantial amounts of chemical polluta...

Raja Ben Amar; Gazza Masmoudi

2013-01-01T23:59:59.000Z

130

Treatment of Wood Preserving Wastewater  

E-Print Network (OSTI)

The wastewater produced by the wood preserving industry presents a difficult problem to treat economically. A review of the literature indicates the size of the industry has limited the pursuit of an orderly and economic solution. Atmospheric...

Reynolds, T. D.; Shack, P. A.

131

Economic–environmental analysis of handling biogas from sewage sludge digesters in \\{WWTPs\\} (wastewater treatment plants) for energy recovery: Case study of Bekkelaget WWTP in Oslo (Norway)  

Science Journals Connector (OSTI)

Abstract This paper outlines a methodology for a systematic economic–environmental analysis of realistic and realisable options for recovering and utilising energy from biogas produced in sewage sludge digesters in \\{WWTPs\\} (wastewater treatment plants). Heat, electricity and transport fuel can be produced from biogas, consumed in-plant or even sold to external end-users. The paper initially considers global warming as the environmental impact of concern, but later also stresses on the necessity of avoiding problem shifting by factoring in other environmental impact categories as well. The methodology is subsequently applied to the Bekkelaget WWTP in Oslo (Norway). Five different options for handling biogas are considered, in addition to the status quo – the business-as-usual in year-2012, and a baseline case, where it is assumed that all biogas generated is flared completely and not utilised for energy recovery of any kind. Seven different cost scenarios – for electricity, natural gas, wood pellets, bio-methane and diesel – are constructed. This gives a total of 49 combinations, for each of which the net costs and net environmental impacts (global warming, eutrophication and acidification) are determined for the 10-year period 2012–2021. The changes (in percentages) with respect to the corresponding values for the baseline case, are recorded; suitable weighting factors are considered after interaction with experts and personnel associated with the plant, and the options are evaluated using this double-bottom-line approach (economic and environmental).

G. Venkatesh; Rashid Abdi Elmi

2013-01-01T23:59:59.000Z

132

Computing the Resilience of a Wastewater Treatment Bioreactor Nabil Mabrouk  

E-Print Network (OSTI)

Computing the Resilience of a Wastewater Treatment Bioreactor Nabil Mabrouk Laboratory guillaume.deffuant@cemagref.fr Abstract--Biological wastewater treatment reactor are de- signed to reduce the pollutant content of a wastewater to an acceptable level often fixed by wastewater discharge regula- tions

Paris-Sud XI, Université de

133

Production of Electricity during Wastewater Treatment Using a  

E-Print Network (OSTI)

Production of Electricity during Wastewater Treatment Using a Single Chamber Microbial Fuel Cell H wastewater, while at the same time accomplishing biological wastewater treatment (removal of chemical oxygen of the wastewater. Power output was proportional to the hydraulic retention time over a range of 3-33 h

134

Applications of nanotechnology in water and wastewater treatment  

E-Print Network (OSTI)

Applications of nanotechnology in water and wastewater treatment Xiaolei Qu, Pedro J.J. Alvarez and wastewater treatment Water reuse Sorption Membrane processes Photocatalysis Disinfection Microbial control. Nanotechnology holds great potential in advancing water and wastewater treatment to improve treatment efficiency

Alvarez, Pedro J.

135

On-Site Wastewater Treatment Systems: Selecting and Permitting (Spanish)  

E-Print Network (OSTI)

This publication explains how to select and obtain a permit for an on-site wastewater treatment system in Texas....

Lesikar, Bruce J.

2005-04-30T23:59:59.000Z

136

Most modern wastewater treatment systems rely on microbial processes to remove contaminants. This makes wastewater  

E-Print Network (OSTI)

Most modern wastewater treatment systems rely on microbial processes to remove contaminants. This makes wastewater treatment one of the largest biotechnology industries in the world. In New Zealand alone, about 1.5 billion litres of treated domestic wastewater is discharged each day

Auckland, University of

137

EPA ENERGY STAR Webcast: Benchmarking Water/Wastewater Treatment Facilities in Portfolio Manager  

Energy.gov (U.S. Department of Energy (DOE))

Learn how to track the progress of energy efficiency efforts and compare the energy use of wastewater treatment plants to other peer facilities across the country. Attendees will learn how to...

138

Chapter 1 - Industrial Wastewater Treatment, Recycling, and Reuse: An Overview  

Science Journals Connector (OSTI)

Abstract Water availability; usage, treatment, and discharge of used water; and possible ways of recycling and reusing this used water are briefly discussed here. Issues pertaining to industrial wastewaters, sources of generation, characterization of wastewaters, and various methodologies of wastewater treatment have been reviewed along with economic perspectives of water management. Recent developments in the area of industrial wastewater treatment, recycling, and reuse are also briefly outlined here.

Vivek V. Ranade; Vinay M. Bhandari

2014-01-01T23:59:59.000Z

139

Study on Further Treatment of Coal Coking Wastewater by Ultrasound Wave, Fenton's Reagent and Coagulation  

Science Journals Connector (OSTI)

The study on further treatment of coal coking wastewater by ultrasound wave, Fenton's reagent and coagulation was carried out in this paper at the first time, Furthermore, this paper discussed the optimum cooperative reaction condition of their combined ... Keywords: ultrasound wave, coke plant wastewater, Fenton reagent, coagulation

Jun Shi; Liangbo Zhang

2009-10-01T23:59:59.000Z

140

Modeling of Immobilized Cell Columns for Bioconversion and Wastewater Treatment  

E-Print Network (OSTI)

Modeling of Immobilized Cell Columns for Bioconversion and Wastewater Treatment Tingyue Gu* and Mei used in bioconversions to produce biological products as well as in wastewater treatment such as solvent removal from wastewater streams. In this work, a rate model is proposed to simulate this kind

Gu, Tingyue

Note: This page contains sample records for the topic "wastewater treatment plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Treatment of Seafood Processing Wastewater  

Science Journals Connector (OSTI)

Dissolved air flotation (DAF) has been widely used for the pre-treatment or the primary treatment of seafood processing wastes. Screening for removal of large ... and shut down easily to accommodate fluctuations ...

Lawrence K. Wang PhD; PE; DEE…

2010-01-01T23:59:59.000Z

142

Treatment of wool scouring wastewater for grease removal  

Science Journals Connector (OSTI)

Most of the wool scouring wastewater treatment systems in Australia consist of open anaerobic and facultative ponds which require large open areas. Apart from being unsightly and emitting odours, the plants are usually located in environmentally sensitive areas thereby causing environmental problems. There is a great need to look at alternative treatment systems which are more efficient and more environmentally acceptable. This study set out to investigate ways of reducing the grease content of the wastewater so that the pretreated wastewater can be fed to some high rate anaerobic digester. Various combinations of additions of coagulants, flocculants as well as using sulphuric acid for pH adjustment of the wastewater were attempted for assessing the extent of grease and COD removals. The study was also conducted at temperatures of 20 to 45°C. It was found that up to 98% of grease and 79% of COD could be removed by just using sulphuric acid at a pH of between 2 and 3 and at a temperature of 20°C. This work was first done on a batch basis. The work was extended into a continuous laboratory scale mixer-settler assembly which produced comparable results to those obtained batchwise.

H.M. Ang; F. Himawan

1994-01-01T23:59:59.000Z

143

Biological treatment of a seafood processing wastewater  

SciTech Connect

The seafood industry in Tampa is a multi-million dollar-per-year industry which heavily impacts the environment with large volumes of wastewater containing high concentrations of suspended solids and nitrogen. A 10 liter per day, bench-scale, wastewater treatment facility was designed, constructed, and operated for approximately eight (8) months to collect treat ability data on a seafood-processing wastewater. The bench-scale reactor consisted of a single-sludge, extended aeration, modified Ludzack-Ettinger (MLE) process for biologically removing carbon, nitrogen, and phosphorus from the wastewater. Influent and effluent data collected on the system included: chemical oxygen demand (COD), total suspended solids (TSS), total Kjeldahl nitrogen (TKN), ammonia nitrogen, nitrite nitrogen, nitrate nitrogen, total nitrogen (TN), pH, total phosphorus (TP), dissolved oxygen (DO), alkalinity, and temperature. All analyses were performed in accordance with Standard Methods (1992). Typical influent characteristics were: 900--4,000 mg/L COD, 45--110 mg/L TKN, 150--2,000 mg/L TSS, and 40--80 mg/L TP. Solids residence time (SRT) served as the primary control parameter with average STR's of 4.5, 6.4, 8.5, and 30.9 days observed during the study. The following biokinetic constants were determined from the data: a yield coefficient (Y) of 0.49 mg TSS/mg COD and an endogenous decay coefficient (k{sub e}) of 0.11 days{sup {minus}1}.

Mines, R.O. Jr.; Robertson, R.R. II

1998-07-01T23:59:59.000Z

144

Electrodialysis Treatment of Tannery Wastewater  

Science Journals Connector (OSTI)

The industrial processing of hides and skins consumes large volumes of water and generates waste that is highly polluted and causes environmental degradation. The conventional treatment of these effluents is not ...

Kátia Fernanda Streit; Marco A. S. Rodrigues…

2014-01-01T23:59:59.000Z

145

Treatment of acid mine wastewaters  

SciTech Connect

Acid mine drainage often results from the oxidation sulfide minerals to form sulfuric acid. As a consequence, high concentrations of metals in the both the suspended and dissolved state result from the low pH water. This paper discusses several of the more common treatment methods for acid mine drainage including the use of chemical precipitation agents, pH correction agents, filtration methods, and biodegradation methods. Advanced treatment technologies are also briefly described and include microfiltration, reverse osmosis, ion exchange, and electrodialysis.

Hayward, D.; Barnard, R.

1993-06-01T23:59:59.000Z

146

WASTEWATER SYSTEMS Henrik Bechmann  

E-Print Network (OSTI)

MODELLING OF WASTEWATER SYSTEMS Henrik Bechmann Lyngby 1999 ATV Erhvervsforskerprojekt EF 623 IMM, N. K. (1998). Control of sewer systems and wastewater treatment plants using pollutant concentration., and Nielsen, M. K. (1999). Grey box modelling of first flush and incoming wastewater at a wastewater treatment

147

Radiological Risk Assessment for King County Wastewater Treatment Division  

SciTech Connect

Staff of the King County Wastewater Treatment Division (WTD) have concern about the aftermath of a radiological dispersion event (RDE) leading to the introduction of significant quantities of radioactive material into the combined sanitary and storm sewer system in King County, Washington. Radioactive material could come from the use of a radiological dispersion device (RDD). RDDs include "dirty bombs" that are not nuclear detonations but are explosives designed to spread radioactive material (National Council on Radiation Protection and Measurements (NCRP) 2001). Radioactive material also could come from deliberate introduction or dispersion of radioactive material into the environment, including waterways and water supply systems. This document develops plausible and/or likely scenarios, including the identification of likely radioactive materials and quantities of those radioactive materials to be involved. These include 60Co, 90Sr, 137Cs, 192Ir, 226Ra, plutonium, and 241Am. Two broad categories of scenarios are considered. The first category includes events that may be suspected from the outset, such as an explosion of a "dirty bomb" in downtown Seattle. The explosion would most likely be heard, but the type of explosion (e.g., sewer methane gas or RDD) may not be immediately known. Emergency first responders must be able to quickly detect the radioisotopes previously listed, assess the situation, and deploy a response to contain and mitigate (if possible) detrimental effects resulting from the incident. In such scenarios, advance notice of about an hour or two might be available before any contaminated wastewater reaches a treatment plant. The second category includes events that could go initially undetected by emergency personnel. Examples of such a scenario would be the inadvertent or surreptitious introduction of radioactive material into the sewer system. Intact rogue radioactive sources from industrial radiography devices, well-logging apparatus, or moisture density gages may get into wastewater and be carried to a treatment plant. Other scenarios might include a terrorist deliberately putting a dispersible radioactive material into wastewater. Alternatively, a botched terrorism preparation of an RDD may result in radioactive material entering wastewater without anyone's knowledge. Drinking water supplies may also be contaminated, with the result that some or most of the radioactivity ends up in wastewater.

Strom, Daniel J.

2005-08-05T23:59:59.000Z

148

Formation of aerobic granular sludge biofilms for sustainable wastewater treatment  

E-Print Network (OSTI)

ENAC/ Formation of aerobic granular sludge biofilms for sustainable wastewater treatment David G Research, Microbiology of Interfaces, Magdeburg (Germany) EDCE 2011 / From activated sludge flocs

149

On-Site Wastewater Treatment Systems: Constructed Wetland Media  

E-Print Network (OSTI)

This publication explains the functions, characteristics, choices, configurations and maintenance needs for constructed wetland media in on-site wastewater treatment systems....

Lesikar, Bruce J.; Weaver, Richard; Richter, Amanda; O'Neill, Courtney

2005-02-19T23:59:59.000Z

150

Hierarchical predictive control of integrated wastewater treatment systems  

Science Journals Connector (OSTI)

The paper proposes an approach to designing the control structure and algorithms for optimising control of integrated wastewater treatment plant-sewer systems (IWWTS) under a full range of disturbance inputs. The optimised control of IWWTS allows for significant cost savings, fulfilling the effluent discharge limits over a long period and maintaining the system in sustainable operation. Due to the specific features of a wastewater system a hierarchical control structure is applied. The functional decomposition leads to three control layers: supervisory, optimising and follow-up. A temporal decomposition that is applied in order to efficiently accommodate the system's multiple time scales leads to further decomposition of the optimising control layer into three control sublayers: slow, medium, and fast. An extended Kalman Filter is used to carry out an estimation of needed but not measured plant states in real time. The robustly feasible model predictive controller produces manipulated variable trajectories based on a dedicated grey box (GB) model of the biological processes and drawing its physical reality from the well known \\{ASM2d\\} model. The GB model parameters are dependant on the plant operating point and therefore are continuously estimated. As it is impossible to efficiently control the plant under all influent conditions that may occur by using one universal control strategy, different control strategies are designed. Recently developed mechanisms for soft switching between the MPC control strategies are applied in order to smooth the state and control transient processes during the switching. The methodologies and algorithms proposed in the paper are validated by simulation based on real data records from a wastewater system located in Kartuzy, northern Poland. The control system was implemented at the case-study site to generate in real time the control actions that were assessed by the plant operators and verified by simulation based on a calibrated plant model.

M.A. Brdys; M. Grochowski; T. Gminski; K. Konarczak; M. Drewa

2008-01-01T23:59:59.000Z

151

Electrocoagulation: A Technology for Water Recycle and Wastewater Treatment in Semiconductor Manufacturing  

E-Print Network (OSTI)

Electrocoagulation: A Technology for Water Recycle and Wastewater Treatment in Semiconductor of treating wastewater streams in the semiconductor manufacturing industry. Electrocoagulation involves wastewater is increasing greatly. The objective is that by using EC to treat wastewater streams, this water

Fay, Noah

152

On-Site Wastewater Treatment Systems: Trickling Filter  

E-Print Network (OSTI)

Soil absorption field Septic tank Clarifier/Dosing tank Trickling filter On-site wastewater treatment systems Trickling filter Bruce Lesikar and Russell Persyn Extension Agricultural Engineering Specialist, Extension Assistant-Water Conservation... municipal wastewater before cities began using activated sludge aeration systems. Now, homes and businesses use trickling filters in on-site wastewater treatment systems. Each trickling filter system has several components: 3 A septic tank, which removes...

Lesikar, Bruce J.

2000-02-04T23:59:59.000Z

153

On-Site Wastewater Treatment Systems: Mound System  

E-Print Network (OSTI)

oxygen demand (BOD 5 ), which is the amount of oxygen used by microorganisms to break down waste material. The maximum BOD 5 of pretreate waste- The On-Site Wastewater Treatment Systems series of publications is a result of collaborative efforts... Extension Service Texas Natural Resource Conservation Commission Texas Agricultural Experiment Station USDA Water Quality Demonstration Projects Texas On-Site Wastewater Association Consortium of Institutes for Decentralized Wastewater Treatment USDA Natural...

Lesikar, Bruce J.

2002-04-22T23:59:59.000Z

154

Photovoltaic Small-Scale Wastewater Treatment Project for Rural and New-Cultivated Areas in  

E-Print Network (OSTI)

Abstract—The problem of wastewater treatment in Egypt is a two-fold problem; the first part concerning the existing rural areas, the second one dealing with new industrial/domestic areas. In Egypt several agricultural projects have been initiated by the government and the private sector as well, in order to change its infrastructure. As a reliable energy source, photovoltaic pumping systems have contributed to supply water for local rural communities worldwide; they can also be implemented to solve the problem “wastewater environment pollution”. The solution of this problem can be categorised as recycle process. In addition, because of regional conditions past technologies are being reexamined to select a smallscale treatment system requiring low construction and maintenance costs. This paper gives the design guidelines of a Photovoltaic Small-Scale Wastewater Treatment Plant (PVSSWTP) based on technologies that can be transferred. Keywords—Renewable energy sources, Photovoltaic, small-scale projects, wastewater treatment. I.

Fadia M. A. Ghali

155

Successional Development of Sulfate-Reducing Bacterial Populations and Their Activities in a Wastewater Biofilm Growing under Microaerophilic Conditions  

Science Journals Connector (OSTI)

...in wastewater treatment systems, the...genus level in wastewater biofilms in relation...the biofilm. Mass balance of sulfide and...anoxic zones in wastewater treatment biofilms (36...wastewater treatment plant in Sapporo...

Tsukasa Ito; Satoshi Okabe; Hisashi Satoh; Yoshimasa Watanabe

2002-03-01T23:59:59.000Z

156

Flexible hybrid membrane treatment systems for tailored nutrient management: A new paradigm in urban wastewater treatment  

E-Print Network (OSTI)

in urban wastewater treatment D. Vuono a , J. Henkel a , J. Benecke a , T.Y. Cath a , T. Reid b , L: Sequencing batch reactor Membrane bioreactor Water reclamation Distributed wastewater treatment Tailored, decentralized, and satellite wastewater treatment systems into existing urban water infrastructure

157

Onsite Wastewater Treatment Systems: Spray Distribution System  

E-Print Network (OSTI)

Spray distribution systems for wastewater are much like lawn sprinkler systems, in that they spray treated wastewater over the surface of a yard. This publication explains how spray distribution systems work, what their design requirements are...

Lesikar, Bruce J.

2008-10-23T23:59:59.000Z

158

Onsite Wastewater Treatment Systems: Tablet Chlorination  

E-Print Network (OSTI)

Wastewater that is sprayed onto lawns must first be disinfected to prevent odors and remove disease-causing organisms. This publication explains how tablet chlorinators disinfect wastewater and gives tips on how to maintain them....

Lesikar, Bruce J.

2008-10-23T23:59:59.000Z

159

Analyses of Spatial Distributions of Sulfate-Reducing Bacteria and Their Activity in Aerobic Wastewater Biofilms  

Science Journals Connector (OSTI)

...aerobic wastewater treatment systems...their activity in wastewater biofilms is of...biofilms. Since mass balance of sulfide or...sulfur cycle in wastewater biofilm systems...municipal wastewater treatment plant in Sapporo...

Satoshi Okabe; Tsukasa Itoh; Hisashi Satoh; Yoshimasa Watanabe

1999-11-01T23:59:59.000Z

160

Waste-Water Treatment: The Tide Is Turning  

Science Journals Connector (OSTI)

...combine to form water. The resins...by waste-water treatment standards. In electrodialysis, an electric...human use. Electrodialysis and reverse...brackish waste water, and these...problem in sewage treatment. The cost...

Robert W. Holcomb

1970-07-31T23:59:59.000Z

Note: This page contains sample records for the topic "wastewater treatment plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

On-Site Wastewater Treatment Systems: Mound System  

E-Print Network (OSTI)

Septic tank Pump tank Distribution pipe Sand Gravel Geotextile fabric On-site wastewater treatment systems Mound system Bruce Lesikar and Vance Weynand Associate Professor and Extension Agricultural Engineering Specialist, Extension Assistant... The Texas A&M University System L-5414 4-02 Figure 1: A mound system for distributing treated wastewater to the soil. A mound system for wastewater is a soil absorption system placed above the natural surface of the ground. Mound systems are used...

Lesikar, B.; Waynard, V.

162

Onsite Wastewater Treatment Systems: Graywater Use and Water Quality  

E-Print Network (OSTI)

their homes in their landscapes. This reuse of graywater can reduce the amount of wastewater entering sewers or treatment systems, reduce the amount of fresh water used on landscapes and help preserve limited fresh water supplies. Onsite wastewater...-washing machines ? The code excludes water that has washed materials soiled with human waste, such as diapers, and water that has been in contact with toilet waste. This water, known as blackwater, includes flush water from toilets and urinals and wastewater...

Lesikar, Bruce J.; Mechell, Justin; Alexander, Rachel

2008-08-28T23:59:59.000Z

163

Local Board of Health Guide to On-Site Wastewater Treatment Systems  

E-Print Network (OSTI)

Local Board of Health Guide to On-Site Wastewater Treatment Systems ©2006 National Association Side of Cover and is Blank #12;Local Board of Health Guide to On-Site Wastewater Treatment Systems............................................................................................................. 9 WHAT IS WASTEWATER

164

Zero liquid discharge industrial wastewater treatment: Case studies from 1976-1996  

SciTech Connect

As wastewater discharge regulations become more stringent, power plants, manufacturing plants and other industrial sites are looking for ways to reduce makeup water requirements and to recycle and reuse as much wastewater as possible. In some cases, environmental regulations require zero liquid discharge, meaning all wastewater must either be retained on site or reduced to solids for disposal off site. Zero liquid discharge or {open_quotes}closed-loop{close_quotes} wastewater treatment systems using evaporators and other process equipment have been well-accepted in recent years. Often overlooked is the fact that zero discharge is not just the latest fashion--many commercial zero liquid discharge systems have been in operation since the mid-70`s. This paper will give specific examples of zero liquid discharge operations from 1974 to the present, showing how evaporation equipment and processes have changed to meet the requirements of industry and environmental regulations. 5 refs., 5 figs., 3 tabs.

Bostjancic, J.; Ludlum, R. [Ionics RCC, Bellevue, WA (United States)

1996-12-31T23:59:59.000Z

165

Structural redundancy of data from wastewater treatment systems. Determination of individual balance equations  

Science Journals Connector (OSTI)

Abstract Although data reconciliation is intensely applied in process engineering, almost none of its powerful methods are employed for validation of operational data from wastewater treatment plants. This is partly due to some prerequisites that are difficult to meet including steady state, known variances of process variables and absence of gross errors. However, an algorithm can be derived from the classical approaches to data reconciliation that allows to find a comprehensive set of equations describing redundancy in the data when measured and unmeasured variables (flows and concentrations) are defined. This is a precondition for methods of data validation based on individual mass balances such as CUSUM charts. The procedure can also be applied to verify the necessity of existing or additional measurements with respect to the improvement of the data's redundancy. Results are given for a large wastewater treatment plant. The introduction aims at establishing a link between methods known from data reconciliation in process engineering and their application in wastewater treatment.

A. Spindler

2014-01-01T23:59:59.000Z

166

STATUS REPORT: Onsite Wastewater Treatment Systems in California jointly presented by:  

E-Print Network (OSTI)

, “adequately managed decentralized (onsite) wastewater treatment systems can be a cost effective and long

California Wastewater

167

Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report  

E-Print Network (OSTI)

Embaby, and M. Rao (2006). Refinery Wastewater Treatment: Aand Assessment of Al Ruwais Refinery Wastewater." Journal ofThe Effects of Petroleum Refinery Wastewater on the Rate of

Lekov, Alex

2010-01-01T23:59:59.000Z

168

Water Treatment System Cleans Marcellus Shale Wastewater | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Treatment System Cleans Marcellus Shale Wastewater Water Treatment System Cleans Marcellus Shale Wastewater Water Treatment System Cleans Marcellus Shale Wastewater April 13, 2011 - 1:00pm Addthis Washington, DC - A water treatment system that can turn wastewater into clean water has been shown to reduce potential environmental impacts associated with producing natural gas from shale formations in the Appalachian basin. Altela Inc.'s AltelaRain® 4000 water desalination system was tested at BLX, Inc.'s Sleppy well site in Indiana County, Pa. as part of a National Energy Technology Laboratory (NETL)-sponsored demonstration. During nine continuous months of operation, the unit successfully treated 77 percent of the water stream onsite, providing distilled water as the product. The average treated water cost per barrel over the demonstration period was

169

Water Treatment System Cleans Marcellus Shale Wastewater | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Treatment System Cleans Marcellus Shale Wastewater Water Treatment System Cleans Marcellus Shale Wastewater Water Treatment System Cleans Marcellus Shale Wastewater April 13, 2011 - 1:00pm Addthis Washington, DC - A water treatment system that can turn wastewater into clean water has been shown to reduce potential environmental impacts associated with producing natural gas from shale formations in the Appalachian basin. Altela Inc.'s AltelaRain® 4000 water desalination system was tested at BLX, Inc.'s Sleppy well site in Indiana County, Pa. as part of a National Energy Technology Laboratory (NETL)-sponsored demonstration. During nine continuous months of operation, the unit successfully treated 77 percent of the water stream onsite, providing distilled water as the product. The average treated water cost per barrel over the demonstration period was

170

Wastewater treatment of phosphate ions by the electrodialysis method  

Science Journals Connector (OSTI)

The chemical composition of wastewater at the Turkmenabad chemical enterprise and the possibility of its treatment has been studied. The transfer of phosphate-ions through standard ion-permeable membranes was ...

Sh. Ch. Akyeva; L. K. Berkelieva…

2008-08-01T23:59:59.000Z

171

Chemically enhanced primary treatment of wastewater in Honduran Imhoff tanks  

E-Print Network (OSTI)

Imhoff tanks represent approximately 40% of the wastewater treatment infrastructure in Honduras. This thesis evaluates the usage of solid aluminum sulfate as a means to achieving national effluent regulations in Imhoff ...

Mikelonis, Anne M. (Anne Marie)

2008-01-01T23:59:59.000Z

172

On-Site Wastewater Treatment Systems: Selecting and Permitting  

E-Print Network (OSTI)

This publication explains factors to consider when choosing an on-site wastewater treatment system and lists the nine steps required to obtain a permit for one. It includes addresses and phone numbers of Texas Natural Resource Conservation...

Lesikar, Bruce J.

2005-04-30T23:59:59.000Z

173

Onsite Wastewater Treatment Systems: Homeowner's Guide to Evaluating Service Contracts  

E-Print Network (OSTI)

This guide helps homeowners who are seeking maintenance services for their onsite wastewater treatment systems (such as septic systems). Included are definitions of common terms used in service contracts, types of service contracts available...

Lesikar, Bruce J.; O'Neill, Courtney; Deal, Nancy; Loomis, George; Gustafson, David; Lindbo, David

2008-10-23T23:59:59.000Z

174

Tritiated wastewater treatment and disposal evaluation for 1994  

SciTech Connect

This report discusses and analyzes information and issues regarding tritium and tritium management. It was prepared in response to the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-26-05A for the evaluation of tritiated wastewater treatment and disposal. The key elements of the report are summarized as follows: Discharge of tritiated water is regulated worldwide. Differences exist in discharge limits and in regulatory philosophy from country to country and from state to state in the United States. Tritium from manmade sources is emitted into the atmosphere and discharged into the ground or directly to the oceans and to waterways that empty into the oceans. In 1989, reported worldwide emissions of tritium from nuclear power generating plants totaled almost 1,000,000 Curies (Ci).

Not Available

1994-08-01T23:59:59.000Z

175

Wastewater recycling in laundries—From pilot to large-scale plant  

Science Journals Connector (OSTI)

A new, innovative wastewater recycling process for industrial laundries has been developed through cooperation between Textil-Service Klingelmeyer (a medium-size laundry in Darmstadt, Germany) and the University of Applied Sciences in Karlsruhe, Germany. The project “Laundry Innovative Wastewater Recycling Technology—LIWATEC” was sponsored by the European Community in its LIFE-Environment programme. The purpose of the LIWATEC project was to design and start up a new, innovative, integrated process using membrane technology for wastewater reuse on a large scale in the Klingelmeyer laundry. The large scale plant was designed for wastewater treatment capacity of 200 m3/day. This integrated process has been successfully tested for 5 years in the form of two pilot plants at the laundry in Darmstadt and at the University of Karlsruhe (capacities: 10 m3/day and wastewater can be reused. Moreover, it is an easy-handling and cost-efficient wastewater recycling process that could be adapted to different types of laundries due to its modular structure.

Jan Hoinkis; Volker Panten

2008-01-01T23:59:59.000Z

176

Impact of approach used to determine removal levels of drugs of abuse during wastewater treatment  

Science Journals Connector (OSTI)

Abstract In this study the levels of 19 drugs of abuse were estimated throughout a wastewater treatment plant using polar organic chemical integrative samplers (POCIS), 24 h composite samples and grab samples. Overall removal efficiencies and removals in between each treatment unit were calculated using load data for each sampling technique as well as removals that take into account the hydraulic residence time distribution of the treatment plant (time-shifted mass balancing approach). Amphetamine-type stimulants, cocaine and its major metabolite, benzoylecgonine and opioid levels determined with 24 h composite samples were generally comparable to those obtained with POCIS and grab samples. Negative mass balances resulting from the estimation of overall removal efficiencies by POCIS, day-to-day mass balancing of 24 h composite and grab sample data did not occur when the hydraulic retention time (HRT) distributions of the plant were taken into account for calculation. Among the compounds investigated, cocaine exhibited the highest overall removal (90%) while codeine had the lowest with 13%, respectively. Sampling between the treatment units revealed that highest removal occurs during biological treatment as compared to primary or secondary clarification. Methylenedioxyamphetamine (MDA), fentanyl, dihydrocodeine and heroin were not detected in wastewater at any of the sampling locations at the treatment plant regardless of the sampling technique. The study demonstrates the benefits of applying the time-shifted mass balancing approach to the calculation of removals of drugs of abuse during wastewater treatment.

Angela Rodayan; Marius Majewsky; Viviane Yargeau

2014-01-01T23:59:59.000Z

177

On-Site Wastewater Treatment Systems: Evapotranspiration Bed  

E-Print Network (OSTI)

Two-compartment septic tank Loam soil Crushed stone Evapotranspiration bed Wick On-site wastewater treatment systems Evapotranspiration bed Bruce Lesikar Extension Agricultural Engineering Specialist The Texas A&M University System ET systems..., synthetic or concrete liner. A liner is required if the surrounding soil is very permeable, such as in sandy gravel or karst limestone. Unlined systems can be used in highly impermeable soils such as heavy clays. In unlined systems, wastewater is disposed...

Lesikar, Bruce J.

1999-09-01T23:59:59.000Z

178

Treatment of Organic-Contaminated Wastewater by Pervaporation  

E-Print Network (OSTI)

TREATMENT OF ORGANIC-CONTAMINATED WASTEWATER BY PERVAPORATION J.G. WIJMANS J. KASCHEMEKAT R.W. BAKER V.L. SIMMONS Research Director Design Engineer President Marketing Director Membrane Technology and Research, Inc., Menlo Park, CA ABSTRACT...-CONTAMINATED WASTEWATER BY PERVAPORATION J.G. WIJMANS Research Director J. KASCHEMEKAT R.W. BAKER V.L. SIMMONS Design Engineer President Marketing Director Membrane Technology and Research, Inc., Menlo Park, CA ABSTRACT The removal and recovery of organic contaminants...

Wijmans, J. G.; Kaschemekat, J.; Baker, R. W.; Simmons, V. L.

179

Onsite Wastewater Treatment Systems: Pump Tank  

E-Print Network (OSTI)

Pump tanks are concrete, fiberglass or polyethylene containers that collect wastewater to be dosed into the soil at intervals. This publication explains the design and maintenance of pump tanks, and it offers advice on what to do if a pump tank...

Lesikar, Bruce J.

2008-10-23T23:59:59.000Z

180

Innovative wastewater treatment using reversing anaerobic upflow system (RAUS)  

SciTech Connect

Anaerobic processes are widely popular in the treatment of a variety of industrial wastewaters since the development of such high rate treatment processes like upflow anaerobic sludge blanket (UASB), anaerobic filter, and the fluidized-bed process. In order to devise a low cost/high technology system so that it would provide an economical solution to environmentally sound pollution control, the Reversing Anaerobic Upflow System (RAUS) was developed. The system consists of two anaerobic reactors connected to each other. At the beginning, one reactor is fed upwards with wastewater while the other acts as a settling tank. After a set interval of time, the flow is reversed such that the second reactor is fed with wastewater and the first one acts as the settler. This particular feeding pattern had shown improved settling characteristics and granulation of methanogenic biomass from research carried out at the Hannover University with different wastewaters. The biological reaction vessels to which wastewater is introduced intermittently functions basically as a sludge blanket type reactor although the costly integrated settling devices present in a typical UASB system are avoided. The RAUS combines three principle reactor configurations: (1) conventional with sludge recycling; (2) fill and draw or sequential batch, inflow maintained constant during feeding; (3) upflow anaerobic sludge blanket. A pilot scale RAUS was operated for 400 days using distillery wastewater consisting of molasses slop and bottle washing water mixed in the ratio 1:1. This paper discusses the results of pilot scale experiments.

Basu, S.K. [Univ. of Manitoba, Winnipeg, Manitoba (Canada). Environmental Engineering Div.

1996-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "wastewater treatment plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

WASTEWATER SYSTEMS Henrik Bechmann  

E-Print Network (OSTI)

MODELLING OF WASTEWATER SYSTEMS Henrik Bechmann Lyngby 1999 ATV Erhvervsforskerprojekt EF 623 IMM., and Poulsen, N. K. (1998). Control of sewer systems and wastewater treatment plants using pollutant, N. K., and Nielsen, M. K. (1999). Grey box modelling of first flush and incoming wastewater

182

Automated Demand Response Opportunities in Wastewater Treatment Facilities  

SciTech Connect

Wastewater treatment is an energy intensive process which, together with water treatment, comprises about three percent of U.S. annual energy use. Yet, since wastewater treatment facilities are often peripheral to major electricity-using industries, they are frequently an overlooked area for automated demand response opportunities. Demand response is a set of actions taken to reduce electric loads when contingencies, such as emergencies or congestion, occur that threaten supply-demand balance, and/or market conditions occur that raise electric supply costs. Demand response programs are designed to improve the reliability of the electric grid and to lower the use of electricity during peak times to reduce the total system costs. Open automated demand response is a set of continuous, open communication signals and systems provided over the Internet to allow facilities to automate their demand response activities without the need for manual actions. Automated demand response strategies can be implemented as an enhanced use of upgraded equipment and facility control strategies installed as energy efficiency measures. Conversely, installation of controls to support automated demand response may result in improved energy efficiency through real-time access to operational data. This paper argues that the implementation of energy efficiency opportunities in wastewater treatment facilities creates a base for achieving successful demand reductions. This paper characterizes energy use and the state of demand response readiness in wastewater treatment facilities and outlines automated demand response opportunities.

Thompson, Lisa; Song, Katherine; Lekov, Alex; McKane, Aimee

2008-11-19T23:59:59.000Z

183

Determining the Viability of a Hybrid Experiential and Distance Learning Educational Model for Water Treatment Plant Operators in Kentucky.  

E-Print Network (OSTI)

?? Drinking water and wastewater industries are facing a nationwide workforce shortfall of qualified treatment plant operators due to factors including the en masse retirement… (more)

Fattic, Jana R.

2011-01-01T23:59:59.000Z

184

Dynamic estimation of specific growth rates of bacteria for a wastewater treatment process  

E-Print Network (OSTI)

Dynamic estimation of specific growth rates of bacteria for a wastewater treatment process S. Diop1 for specific growth rates for a wastewater treatment process. A 2-stage model of 6 dynamic states is assumed. Steyer, Dynamic model develop- ment and parameter identification for an anaerobic wastewater treatment

Paris-Sud XI, Université de

185

Harvesting Energy from Wastewater in a 2-Chamber  

E-Print Network (OSTI)

Harvesting Energy from Wastewater in a 2-Chamber Microbial Fuel Cell Sikandar Present day wastewater treatment plants utilize high amounts of energy and are costly to operate. These conventional wastewater treatment plants utilize aerobic bacteria. Organic material in wastewater contains energy that can

186

Mobilization of plasmid pHSV106 from Escherichia coli HB101 in a laboratory-scale waste treatment facility.  

Science Journals Connector (OSTI)

...approximating that of an actual wastewater treatment plant) did not prevent plas...proportionally) those of an actual wastewater treatment plant, which suggests that there...R-plasmid transfer in wastewater treatment plant. Appl. Environ. Microbiol...

P Mancini; S Fertels; D Nave; M A Gealt

1987-04-01T23:59:59.000Z

187

On-Site Wastewater Treatment Systems: Soil Particle Analysis Procedure  

E-Print Network (OSTI)

Soil is an important component of an on-site wastewater treatment system. This publication explains the composition of soils, the sizing of soil particles, and the ways soil particles are analyzed to determine whether a site is suitable for a...

Lesikar, Bruce J.

2005-08-18T23:59:59.000Z

188

Onsite Wastewater Treatment Systems: Responding to Power Outages and Floods  

E-Print Network (OSTI)

People and the environment can be harmed if a home's onsite wastewater treatment system does not work properly after a flood or power outage. This publication explains the steps to take after such an event to get the system back into service. 4 pp...

Lesikar, Bruce J.; Mechell, Justin; Alexander, Rachel

2008-10-23T23:59:59.000Z

189

Field's Point Wastewater Treatment Facility (Narragansett Bay Commission) |  

Open Energy Info (EERE)

Field's Point Wastewater Treatment Facility (Narragansett Bay Commission) Field's Point Wastewater Treatment Facility (Narragansett Bay Commission) Jump to: navigation, search Name Field's Point Wastewater Treatment Facility (Narragansett Bay Commission) Facility Field's Point Wastewater Treatment Facility (Narragansett Bay Commission) Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Gilbane Building Company Developer Narragansett Bay Commission Energy Purchaser Field's Point Location Providence RI Coordinates 41.79260859°, -71.3896966° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.79260859,"lon":-71.3896966,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

190

Concentrations of Triclosan in the City of Denton Wastewater Treatment Plant, Pecan Creek, and the Influent and Effluent of an Experimental Constructed Wetland.  

E-Print Network (OSTI)

??The Pecan Creek Waste Reclamation Plant in Denton, Texas, an activated sludge WWTP, was sampled monthly for ten months to determine seasonal and site variation… (more)

Waltman, Elise Lyn

2004-01-01T23:59:59.000Z

191

WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY  

E-Print Network (OSTI)

during oil shale retorting: retort water and gas condensate.commercial oil shale plant, retort water and gas condensateunique to an oil shale retort water, gas condensate, and

Fox, J.P.

2010-01-01T23:59:59.000Z

192

Anaerobic Migrating Blanket Reactor Treatment of Low-Strength Wastewater at  

E-Print Network (OSTI)

Anaerobic Migrating Blanket Reactor Treatment of Low-Strength Wastewater at Low Temperatures Largus anaerobic migrating blanket reactor (AMBR) was studied for the treatment of low- strength soluble wastewater milk substrate as a synthetic wastewater at low temperatures (15 and 20 °C). The concentration

Angenent, Lars T.

193

A nonlinear observer design for an activated sludge wastewater treatment process  

E-Print Network (OSTI)

A nonlinear observer design for an activated sludge wastewater treatment process B. Boulkrounea , M : Activated sludge, wastewater treatment process, Lyapunov function, Lips- chitz singular discrete the recent results of [2] and [5]. In the last decades, the modeling of the activated sludge wastewater

Paris-Sud XI, Université de

194

BIOENERGY AND BIOFUELS Domestic wastewater treatment using multi-electrode continuous  

E-Print Network (OSTI)

BIOENERGY AND BIOFUELS Domestic wastewater treatment using multi-electrode continuous flow MFCs Heidelberg 2012 Abstract Treatment of domestic wastewater using microbial fuel cells (MFCs) will require to large changes in the chemical oxygen demand (COD) concentration within the reactor. Domestic wastewater

195

Effectiveness of Mechanical Aerationin Floating Aquatic Macrophyte-Based Wastewater Treatment Systems  

E-Print Network (OSTI)

Effectiveness of Mechanical Aerationin Floating Aquatic Macrophyte-Based Wastewater Treatment to evaluate its effect on wastewater treatment effi- ciency andplantgrowth. Light aeration (0.003 and0.021Lnr2 tanks. Heavy aeration (1.03 and 3.53 L nr2 min-1 ) raised wastewater dissolved oxygen(DO) concentrations

Florida, University of

196

Optimization of low-cost phosphorus removal from wastewater using co-treatments with constructed  

E-Print Network (OSTI)

treatment residual; iron; lime sludge; municipal wastewater Introduction The US-EPA has identified for removing P from wastewater (US-EPA, 1993). However, questions of mechanisms, predictabilityOptimization of low-cost phosphorus removal from wastewater using co-treatments with constructed

Florida, University of

197

Ecology of the Microbial Community Removing Phosphate from Wastewater under Continuously Aerobic Conditions in a Sequencing Batch Reactor  

Science Journals Connector (OSTI)

...with synthetic wastewater eventually containing...the clarified plant effluent (Fig...Using synthetic wastewater. A typical profile...A carbon mass balance based on existing...phosphorus removal in wastewater treatment plants. Antonie Leeuwenhoek...

Johwan Ahn; Sarah Schroeder; Michael Beer; Simon McIlroy; Ronald C. Bayly; John W. May; George Vasiliadis; Robert J. Seviour

2007-02-09T23:59:59.000Z

198

TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Household Wastewater Treatment  

E-Print Network (OSTI)

. This publication covers the following topics: 1. Septic tanks/soil absorption systems 2. Quantity of wastewater 3. Quality of wastewater 4. Collection of wastewater 5. Treatment systems 6. Disposal system 7. Assistance with failing systems or new designs 8.... Evaluation table Septic Tanks/Soil Absorption Systems The most common form of on-site waste- water treatment is a septic tank/soil absorption system. In this system, wastewater flows from the household sewage lines into an under- ground septic tank...

Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.

1997-08-29T23:59:59.000Z

199

A mass balance method for assessing the potential of artificial wetlands for wastewater treatment  

Science Journals Connector (OSTI)

Artificial wetlands have been shown to have potential for treating wastewaters. An experimental artificial wetland is described together with a mass balance method for quantifying system performance, major nutrient storage components and nutrient removal mechanisms. The experimental systems were capable of a high level of performance. Percentage load removals for chemical oxygen demand, total nitrogen and total phosphorus were 86, 95 and 99%, respectively. Plant biomass was found to be the major nutrient storage compartment with plant nutrient uptake being the major removal mechanism. It was found that overall system performance could be described by a simple first order, steady state model. System design and hydrology were considered important factors in determining treatment performance. Designs must maximize wastewater-rootzone contact. The experimental systems used an upflow hydraulic format to achieve this design objective.

Peter F. Breen

1990-01-01T23:59:59.000Z

200

WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY  

E-Print Network (OSTI)

from ion exchange, reverse osmosis, filtration and otherStripping Ion Exchange Reverse Osmosis Chemical TreatmentElectrolytic Oxidation Reverse Osmosis tJl trafi 1 tration

Fox, J.P.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wastewater treatment plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

GRR/Section 18-HI-c - Wastewater Treatment | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 18-HI-c - Wastewater Treatment GRR/Section 18-HI-c - Wastewater Treatment < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-HI-c - Wastewater Treatment 18HIC - WastewaterTreatment (1).pdf Click to View Fullscreen Contact Agencies Hawaii Department of Health Clean Water Branch Regulations & Policies HRS 11-62 HRS 342D Triggers None specified Click "Edit With Form" above to add content 18HIC - WastewaterTreatment (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Wastewater Treatment Permit The Wastewater Branch administers the statewide engineering and financial functions relating to water pollution control,

202

Nitrous oxide emissions from wastewater treatment processes  

Science Journals Connector (OSTI)

...samples followed by GC analysis has been used in both laboratory scale reactors and full-scale plants...two laboratory scale reactors. Foley et al. [23...measurements. Combining the analyses of both the microsensor...significantly increases the reliability of data. Similar to...

2012-01-01T23:59:59.000Z

203

WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY  

E-Print Network (OSTI)

Waters from Green River Oil Shale," Chem. and Ind. , 1. ,Effluents from In-Situ oil Shale Processing," in Proceedingsin the Treatment of Oil Shale Retort Waters," in Proceedings

Fox, J.P.

2010-01-01T23:59:59.000Z

204

WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY  

E-Print Network (OSTI)

III, "Method of Breaking Shale Oil-Water Emulsion," U. S.and Biological Treatment of Shale Oil Retort Water, DraftPA (1979). H. H. Peters, Shale Oil Waste Water Recovery by

Fox, J.P.

2010-01-01T23:59:59.000Z

205

The performance of electrochemical peroxidation process for COD reduction and biodegradability improvement of the wastewater from a paper recycling plant  

Science Journals Connector (OSTI)

Abstract This study investigated pretreatment and biodegradability of wastewater from a paper recycling plant using the electrochemical peroxidation process in a bench scale reactor. The influence of wastewater pH, H2O2 concentration, current density, and reaction time was evaluated for the removal of COD from the wastewater. The COD of wastewater from paper recycling decreased from the initial level of 4300 mg/L in raw wastewater to 106 mg/L (95.7% removal) in wastewater treated by the electrochemical peroxidation process at optimum pH, H2O2 concentration, current densities of 4, 15 and 5 mA/cm2, and a reaction time of 30 min. The optimum ratio of H2O2 (mM) to Fe2+ (mM) was found to be 2. The biodegradability of wastewater increased from an initial level of 0.12 to 0.43 after treatment by the electrochemical peroxidation process under optimum experimental conditions at a reaction time of 30 min. Overall, the electrochemical peroxidation process proved to be an efficient and appropriate technique for COD reduction and enhancement of biodegradability of the industrial effluents containing high concentrations of recalcitrant organic compounds.

Gholamreza Moussavi; Mohammad Aghanejad

2014-01-01T23:59:59.000Z

206

Spatial Distribution of Total, Ammonia-Oxidizing, and Denitrifying Bacteria in Biological Wastewater Treatment Reactors for Bioregenerative Life Support  

Science Journals Connector (OSTI)

...bacteria perform recycling of various elements...fixed-film biological wastewater treatment reactors...The high recycling rate provided...distribution of wastewater throughout the...treating and recycling wastewater for consumption...

Yuko Sakano; Karen D. Pickering; Peter F. Strom; Lee J. Kerkhof

2002-05-01T23:59:59.000Z

207

Radiological Instrumentation Assessment for King County Wastewater Treatment Division  

SciTech Connect

The King County Wastewater Treatment Division (WTD) have concern about the aftermath of a radiological dispersion event (RDE) leading to the introduction of significant quantities of radioactive material into its combined sanitary and storm sewer system. Radioactive material could come from the use of a radiological dispersion device (RDD). RDDs include "dirty bombs" that are not nuclear detonations but are explosives designed to spread radioactive material. Radioactive material also could come from deliberate introduction or dispersion of radioactive material into the environment, including waterways and water supply systems. Volume 2 of PNNL-15163 assesses the radiological instrumentation needs for detection of radiological or nuclear terrorism, in support of decisions to treat contaminated wastewater or to bypass the West Point Treatment Plant (WPTP), and in support of radiation protection of the workforce, the public, and the infrastructure of the WPTP. Fixed radiation detection instrumentation should be deployed in a defense-in-depth system that provides 1) early warning of significant radioactive material on the way to the WPTP, including identification of the radionuclide(s) and estimates of the soluble concentrations, with a floating detector located in the wet well at the Interbay Pump Station and telemetered via the internet to all authorized locations; 2) monitoring at strategic locations within the plant, including 2a) the pipe beyond the hydraulic ram in the bar screen room; 2b) above the collection funnels in the fine grit facility; 2c) in the sampling tank in the raw sewage pump room; and 2d) downstream of the concentration facilities that produce 6% blended and concentrated biosolids. Engineering challenges exist for these applications. It is necessary to deploy both ultra-sensitive detectors to provide early warning and identification and detectors capable of functioning in high-dose rate environments that are likely under some scenarios, capable of functioning from 10 microrems per hour (background) up to 1000 rems per hour. Software supporting fixed spectroscopic detectors is needed to provide prompt, reliable, and simple interpretations of spectroscopic outputs that are of use to operators and decision-makers. Software to provide scientists and homeland security personnel with sufficient technical detail for identification, quantification, waste management decisions, and for the inevitable forensic and attribution needs must be developed. Computational modeling using MCNP software has demonstrated that useful detection capabilities can be deployed. In particular, any of the isotopes examined can be detected at levels between 0.01 and 0.1 ?Ci per gallon. General purpose instruments that can be used to determine the nature and extent of radioactive contamination and measure radiation levels for purposes of protecting personnel and members of the public should be available. One or more portable radioisotope identifiers (RIIDs) should be available to WTD personnel. Small, portable battery-powered personal radiation monitors should be widely available WTD personnel. The personal monitors can be used for personal and group radiation protection decisions, and to alert management to the need to get expert backup. All considerations of radiological instrumentation require considerations of training and periodic retraining of personnel, as well as periodic calibration and maintenance of instruments. Routine “innocent” alarms will occur due to medical radionuclides that are legally discharged into sanitary sewers on a daily basis.

Strom, Daniel J.; McConn, Ronald J.; Brodzinski, Ronald L.

2005-05-19T23:59:59.000Z

208

Waste Treatment Plant Overview  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Site, located in southeastern Washington state, Hanford Site, located in southeastern Washington state, was the largest of three defense production sites in the U.S. Over the span of 40 years, it was used to produce 64 metric tons of plutonium, helping end World War II and playing a major role in military defense efforts during the Cold War. As a result, 56 million gallons of radioactive and chemical wastes are now stored in 177 underground tanks on the Hanford Site. To address this challenge, the U.S. Department of Energy contracted Bechtel National, Inc., to design and build the world's largest radioactive waste treatment plant. The Waste Treatment and Immobilization Plant (WTP), also known as the "Vit Plant," will use vitrification to immobilize most of Hanford's dangerous tank waste.

209

A Hybrid Microbial Fuel Cell Membrane Bioreactor with a Conductive Ultrafiltration Membrane Biocathode for Wastewater Treatment  

E-Print Network (OSTI)

Biocathode for Wastewater Treatment Lilian Malaeb,,§ Krishna P. Katuri,,§ Bruce E. Logan, Husnul Maab, S. P-biocathode microbial fuel cell- membrane bioreactor (MFC-MBR) system was developed to achieve simultaneous wastewater and the membrane for wastewater filtration. The MFC-MBR used an air-biocathode, and it was shown to have good

210

A dynamic estimation scheme of specific growth rates of bacteria for an anaerobic wastewater treatment process  

E-Print Network (OSTI)

A dynamic estimation scheme of specific growth rates of bacteria for an anaerobic wastewater anal- ysis and estimation schemes for specific growth rates for an anaerobic wastewater treatment the organic and inorganic materials) of municipal or industrial wastewater often needs to be highly reduced

Paris-Sud XI, Université de

211

Microbial ecology of denitrification in biological wastewater treatment  

Science Journals Connector (OSTI)

Abstract Globally, denitrification is commonly employed in biological nitrogen removal processes to enhance water quality. However, substantial knowledge gaps remain concerning the overall community structure, population dynamics and metabolism of different organic carbon sources. This systematic review provides a summary of current findings pertaining to the microbial ecology of denitrification in biological wastewater treatment processes. DNA fingerprinting-based analysis has revealed a high level of microbial diversity in denitrification reactors and highlighted the impacts of carbon sources in determining overall denitrifying community composition. Stable isotope probing, fluorescence in situ hybridization, microarrays and meta-omics further link community structure with function by identifying the functional populations and their gene regulatory patterns at the transcriptional and translational levels. This review stresses the need to integrate microbial ecology information into conventional denitrification design and operation at full-scale. Some emerging questions, from physiological mechanisms to practical solutions, for example, eliminating nitrous oxide emissions and supplementing more sustainable carbon sources than methanol, are also discussed. A combination of high-throughput approaches is next in line for thorough assessment of wastewater denitrifying community structure and function. Though denitrification is used as an example here, this synergy between microbial ecology and process engineering is applicable to other biological wastewater treatment processes.

Huijie Lu; Kartik Chandran; David Stensel

2014-01-01T23:59:59.000Z

212

Decision Support for Redesigning Wastewater Treatment Technologies  

Science Journals Connector (OSTI)

Critical macroenvironmental factors, such as housing density, transportation infrastructure, and climate conditions were found to affect technology decisions regarding reactor volume, weight of outputs, energy consumption, atmospheric emissions, investment cost, and net revenue. ... It covers Social, Technological, Economic, Environmental, Political, Legal, Ethical, and Demographic factors that can influence the design of the treatment processes, costs, and end-product outputs of the proposed RRP (Table 5). ... However, the risks related to acids may be prohibitive of this method. ...

Jennifer R. McConville; Rahel Künzle; Ulrike Messmer; Kai M. Udert; Tove A. Larsen

2014-09-16T23:59:59.000Z

213

Land treatment of contaminated sludge with wastewater irrigation  

SciTech Connect

A large-scale field experiment was conducted to test the feasibility of land application of sludge from industrial and domestic wastewater treatment to determine the fate and environmental impact of the contaminants. The sludge contained 13 organic priority pollutants, 16 additional environmentally significant organic compounds, and high concentrations of several metals (zinc, copper, lead, nickel, and cadmium). Each compound was monitored as the irrigation water percolated through the soil and the groundwater over time. Most of the organic compounds diminished to non-detectable levels by the end of the study, and the metals proved harmless to the environment. The effectiveness of land application of sludge with wastewater irrigation was clearly demonstrated. 1 figure, 11 tables.

Demirjian, Y.A.; Westman, T.R.; Joshi, A.M.; Rop, D.J.; Buhl, R.V.; Clark, W.R.

1984-04-01T23:59:59.000Z

214

Characterization of metabolic performance of methanogenic granules treating brewery wastewater: role of sulfate-reducing bacteria.  

Science Journals Connector (OSTI)

...treating brewery wastewater containing...sugar beet wastewater at the sugar...the La Crosse treatment plant (26). The...influent brewery wastewater and effluent...min to reduce mass transfer resistance...analysis. Mass balance experiments...

W M Wu; R F Hickey; J G Zeikus

1991-12-01T23:59:59.000Z

215

Succession of Internal Sulfur Cycles and Sulfur-Oxidizing Bacterial Communities in Microaerophilic Wastewater Biofilms  

Science Journals Connector (OSTI)

...cycle that occurs in wastewater biofilms. One of...activity in developing wastewater biofilms was analyzed...In addition, the mass balance for SO4 2, S0, and...effluent from a domestic wastewater treatment plant (Sapporo, Japan...

Satoshi Okabe; Tsukasa Ito; Kenichi Sugita; Hisashi Satoh

2005-05-01T23:59:59.000Z

216

Chapter 14 - Industrial Wastewater Treatment, Recycling, and Reuse—Past, Present and Future  

Science Journals Connector (OSTI)

Abstract The concept of wastewater treatment is not new, but the current definitions of wastewaters and treatments have a relatively recent origin. Industrialization has played a major role in this area and has been the driving force for many treatment methodologies that are being practiced today. There is a better understanding of the importance of protecting the environment and enhancing overall sustainability today. This chapter considers the past and present states of industrial wastewater treatment. It also outlines future challenges and likely developments in industrial wastewater treatment, recycling, and reuse.

Vivek V. Ranade; Vinay M. Bhandari

2014-01-01T23:59:59.000Z

217

1.85 Water and Wastewater Treatment Engineering, Spring 2005  

E-Print Network (OSTI)

Theory and design of systems for treating industrial and municipal wastewater and potable water supplies. Methods for characterizing wastewater properties. Physical, chemical, and biological processes, including primary ...

Shanahan, Peter

218

ENVIRONMENTAL BIOTECHNOLOGY Electricity generation and treatment of paper recycling  

E-Print Network (OSTI)

ENVIRONMENTAL BIOTECHNOLOGY Electricity generation and treatment of paper recycling wastewater production and treatment of a paper recycling plant wastewater using microbial fuel cells. Treatment. Keywords Microbial fuel cell . Paper recycling wastewater. Cellulose . Solution conductivity. Power

219

Innovative Treatment Technologies for Natural Waters and Wastewaters  

SciTech Connect

The research described in this report focused on the development of novel membrane contactor processes (in particular, forward osmosis (FO), pressure retarded osmosis (PRO), and membrane distillation (MD)) in low energy desalination and wastewater treatment applications and in renewable energy generation. FO and MD are recently gaining national and international attention as viable, economic alternatives for removal of both established and emerging contaminants from natural and process waters; PRO is gaining worldwide attention as a viable source of renewable energy. The interrelationship of energy and water are at the core of this study. Energy and water are inextricably bound; energy usage and production must be considered when evaluating any water treatment process for practical application. Both FO and MD offer the potential for substantial energy and resource savings over conventional treatment processes and PRO offers the potential for renewable energy or energy offsets in desalination. Combination of these novel technologies with each other, with existing technologies (e.g., reverse osmosis (RO)), and with existing renewable energy sources (e.g., salinity gradient solar ponds) may enable much less expensive water production and also potable water production in remote or distributed locations. Two inter-related projects were carried out in this investigation. One focused on membrane bioreactors for wastewater treatment and PRO for renewable energy generation; the other focused on MD driven by a salinity gradient solar pond.

Childress, Amy E.

2011-07-01T23:59:59.000Z

220

Enhancing harvestable algal biomass production in wastewater treatment high rate algal ponds by recycling.  

E-Print Network (OSTI)

??High Rate Algal Ponds (HRAPs) are an efficient and cost-effective system for wastewater treatment and produce algal biomass which could be converted to biofuels. However,… (more)

Park, Byung Kwan

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wastewater treatment plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

A Framework for Determining and Establishing the Factors that affect Wastewater Treatment and Recycling.  

E-Print Network (OSTI)

??In this study an assessment of the factors that influence the degree to which a city or community would undertake wastewater treatment and use the… (more)

Mekala, Gayathri Devi

2009-01-01T23:59:59.000Z

222

Mass balance for wastewater nitrogen in the Central Arizona–Phoenix ecosystem  

Science Journals Connector (OSTI)

A complete nitrogen mass balance for all wastewater generated in the Central Arizona–Phoenix ecosystem was developed using data from the 18 largest wastewater treatment plants (99% of flow). Components included total N in raw wastewater, denitrification in wastewater treatment plants, biosolids production, and effluent (reuse, recharge, and discharge). Denitrification and biosolids production remove 81% of wastewater N. Nearly all biosolids are recycled to cotton fields within the ecosystem. Most effluent is recycled within the ecosystem. As the result of wastewater management practices developed to reuse wastewater, wastewater N is either deliberately volatilized or accumulates within the system; only 4% of the original wastewater N is exported via the Gila River.

Lisa Lauver; Lawrence A Baker

2000-01-01T23:59:59.000Z

223

Fate of Radionuclides in Wastewater Treatment Plants  

E-Print Network (OSTI)

consistent ones and nuclear accidents are the least frequentto the Fukushima nuclear accident. Journal of Environmentalto the Fukushima nuclear accident. Journal of Environmental

Shabani Samgh Abadi, Farzaneh

2013-01-01T23:59:59.000Z

224

Fate of Radionuclides in Wastewater Treatment Plants  

E-Print Network (OSTI)

Comments on the Presence of Chernobyl Derived Cs and Tc inRadiological Impact of the Chernobyl Debris Compared with42 5.3- CHERNOBYL…………………………………………………………… 43 v   5.4-

Shabani Samgh Abadi, Farzaneh

2013-01-01T23:59:59.000Z

225

Fate of Radionuclides in Wastewater Treatment Plants  

E-Print Network (OSTI)

nuclear programs including plutonium recovery and Idaho Falls facility mostly served navy and research

Shabani Samgh Abadi, Farzaneh

2013-01-01T23:59:59.000Z

226

Fate of Radionuclides in Wastewater Treatment Plants  

E-Print Network (OSTI)

Radioactive Plume from Fukushima: Is There a Correlation?France due to the Fukushima nuclear accident. Journal ofGreece due to the Fukushima nuclear accident. Journal of

Shabani Samgh Abadi, Farzaneh

2013-01-01T23:59:59.000Z

227

Operating experience with constructed wetlands for wastewater treatment  

SciTech Connect

Constructed wetlands are treating a variety of municipal, industrial, and runoff wastewaters. The growing interest in this technology is based on 20 years of research demonstrating the beneficial effects of wetlands on water quality, particularly their ability to assimilate carbonaceous and nitrogenous wastes. Constructed wetlands are an attractive option for applications where a land-intensive, natural' treatment technology is desired and where ancillary wildlife benefits will enhance a project's overall environmental balance sheet. This paper summarizes design and operating experience from constructed wetlands representing a variety of applications, including pilot systems in place at several US pulp mills.

Knight, R. (CH2M Hill, Gainesville, FL (United States))

1993-01-01T23:59:59.000Z

228

Method and apparatus for energy efficient self-aeration in chemical, biochemical, and wastewater treatment processes  

DOE Patents (OSTI)

The present invention is a pulse spilling self-aerator (PSSA) that has the potential to greatly lower the installation, operation, and maintenance cost associated with aerating and mixing aqueous solutions. Currently, large quantities of low-pressure air are required in aeration systems to support many biochemical production processes and wastewater treatment plants. Oxygen is traditionally supplied and mixed by a compressor or blower and a mechanical agitator. These systems have high-energy requirements and high installation and maintenance costs. The PSSA provides a mixing and aeration capability that can increase operational efficiency and reduce overall cost.

Gao, Johnway [Richland, WA; Skeen, Rodney S [Pendleton, OR

2002-05-28T23:59:59.000Z

229

Environmental impact of recycling nutrients in human excreta to agriculture compared with enhanced wastewater treatment  

Science Journals Connector (OSTI)

Abstract Human excreta are potential sources of plant nutrients, but are today usually considered a waste to be disposed of. The requirements on wastewater treatment plants (WWTPs) to remove nitrogen and phosphorus are increasing and to meet these requirements, more energy and chemicals are needed by WWTPs. Separating the nutrient-rich wastewater fractions at source and recycling them to agriculture as fertiliser is an alternative to removing them at the WWTP. This study used life cycle assessment methodology to compare the environmental impact of different scenarios for recycling the nutrients in the human excreta as fertiliser to arable land or removing them in an advanced WWTP. Three scenarios were assessed. In blackwater scenario, blackwater was source-separated and used as fertiliser. In urine scenario, the urine fraction was source-separated and used as fertiliser and the faecal water treated in an advanced WWTP. In NP scenario, chemical fertiliser was used as fertiliser and the toilet water treated in an advanced WWTP. The emissions from the WWTP were the same for all scenarios. This was fulfilled by the enhanced reduction in the WWTP fully removing the nutrients from the excreta that were not source-separated in the NP and urine scenarios. Recycling source-separated wastewater fractions as fertilisers in agriculture proved efficient for conserving energy and decreasing global warming potential (GWP). However, the blackwater and urine scenarios had a higher impact on potential eutrophication and potential acidification than the WWTP-chemical fertiliser scenario, due to large impacts by the ammonia emitted from storage and after spreading of the fertilisers. The cadmium input to the arable soil was very small with urine fertiliser. Source separation and recycling of excreta fractions as fertiliser thus has potential for saving energy and decreasing GWP emissions associated with wastewater management. However, for improved sustainability, the emissions from storage and after spreading of these fertilisers must decrease.

J. Spångberg; P. Tidåker; H. Jönsson

2014-01-01T23:59:59.000Z

230

Endocrine Active Chemicals, Pharmaceuticals, and Other Chemicals of Concern in Surface Water, Wastewater-  

E-Print Network (OSTI)

, Wastewater- Treatment Plant Effluent, and Bed Sediment, and Biological Characteristics in Selected Streams Chemicals, Pharmaceuticals, and Other Chemicals of Concern in Surface Water, Wastewater- Treatment Plant, and Data, 2009 #12;Front cover. Industrial wastewater-treatment plant outflow in Worthington, Minnesota

231

Independent Activity Report, Hanford Waste Treatment Plant -...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment Plant - February 2011 Independent Activity Report, Hanford Waste Treatment Plant - February 2011 February 2011 Hanford Waste Treatment Plant Construction Quality...

232

PhD thesis `Triclosan removal in wastewater treatment processes' Xijuan Chen Preface and acknowledgements  

E-Print Network (OSTI)

PhD thesis ­ `Triclosan removal in wastewater treatment processes' ­ Xijuan Chen 1 Preface scientific inputs in the triclosan ozonation study. I acknowledge my colleagues in xenobiotic group of #12;PhD thesis ­ `Triclosan removal in wastewater treatment processes' ­ Xijuan Chen 2 University Duisburg

Kolaei, Alireza Rezania

233

Risk of communicable disease infection associated with wastewater irrigation in agricultural settlements  

Science Journals Connector (OSTI)

...Strong wastewater treatment measures, including...AEROSOLS EMITTED BY SEWAGE TREATMENT PLANTS, SCIENCE 169 : 1218...MICROORGANISMS FROM WASTEWATER TREATMENT PROCESSES .1. SUMMARY...of the major water masses that affect this region...

E Katzenelson; I Buium; HI Shuval

1976-11-26T23:59:59.000Z

234

On-Site Wastewater Treatment Systems: Tablet Chlorination (Spanish)  

E-Print Network (OSTI)

Wastewater that is sprayed onto lawns must first be disinfected to prevent odors and remove disease-causing organisms. This publication explains how tablet chlorinators disinfect wastewater and gives tips on how to maintain them....

Weaver, Richard; Lesikar, Bruce J.; Enciso, Juan

2006-01-30T23:59:59.000Z

235

Automated Demand Response Opportunities in Wastewater Treatment Facilities  

E-Print Network (OSTI)

Interoperable Automated Demand Response Infrastructure,study of automated demand response in wastewater treatmentopportunities for demand response control strategies in

Thompson, Lisa

2008-01-01T23:59:59.000Z

236

Automated Demand Response Opportunities in Wastewater Treatment Facilities  

E-Print Network (OSTI)

05CH11231. References EPRI, Energy Audit Manual for Water/Research Institute, Energy Audit Manual for Water/Wastewater

Thompson, Lisa

2008-01-01T23:59:59.000Z

237

Opportunities for CHP at Wastewater Treatment Facilities: Market Analysis and Lessons from the Field, U.S. EPA, October 2011  

Energy.gov (U.S. Department of Energy (DOE))

Opportunities for Combined Heat and Power at Wastewater Treatment Facilities: Market Analysis and Lessons from the Field

238

Treatment of shale gas wastewater in the Marcellus : a comparative analysis.  

E-Print Network (OSTI)

??This analysis focused primarily on three main treatment methods which were re-use, recycle, and disposal wells. The re-use treatment option is when wastewater is mixed… (more)

Yisa, Junaid Ololade

2014-01-01T23:59:59.000Z

239

2005 Borchardt Conference: A Seminar on Advances in Water and Wastewater Treatment February 23-25, Ann Arbor, MI  

E-Print Network (OSTI)

-25, Ann Arbor, MI Conference Proceedings 1 Membrane Biofilm Reactors for Water and Wastewater Treatment and Wastewater Treatment February 23-25, Ann Arbor, MI Conference Proceedings 2 (sparging) to replenish oxygen: A Seminar on Advances in Water and Wastewater Treatment February 23-25, Ann Arbor, MI Conference Proceedings

Nerenberg, Robert

240

Recovering and recycling Hg from chlor-alkali plant wastewater sludge  

Science Journals Connector (OSTI)

Montana Tech of the University of Montana and Universal Dynamics of British Columbia have developed a hydrometallurgical process for recovering and recycling mercury from chlorine plant wastewater sludge material...

L. G. Twidwell; R. J. Thompson

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wastewater treatment plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Biosolids are the solids produced during municipal wastewater treatment. Composts are made from a variety of organic materials, including both urban and agriculture  

E-Print Network (OSTI)

ISSUE Biosolids are the solids produced during municipal wastewater treatment. Composts are made resources, restoring soils, and combating climate change. Biosolids are still viewed as harmful wastes County and a number of smaller treatment plants is applied to dryland wheat in Douglas County. More than

Collins, Gary S.

242

Valuation of a Municipal Wastewater Plant Expansion: An Application to a High Growth Resort Area in Canada  

E-Print Network (OSTI)

The municipal water and wastewater sector is considered to be the most capital intensive industrial sector. Naturally, any methodology that has the potential to improve capital allocation decision making, has the potential to make a positive financial contribution to this sector. Most managers are aware of the power of calculating the Net Present Value (NPV) of an investment decision using Discounted Cash Flows (DCF). The problem with DCF based NPV analysis is that the inherent value of future project options is not modeled. In this study, we consider a small resort-based municipality faced the question of how big to make their new wastewater treatment facility to meet the expanding demand of 10 % growth in the number of new residential connections to the wastewater treatment infrastructure. Since a significant number of new dwellings are second “weekend ” homes, the planners felt strongly that growth rates were tied to the strength of the market index. Here we set the model framework for considering optimal plant size based on correlation assumptions of municipal growth to the market index. The model takes on the form of an Asian option. The results show that the greater the (assumed) correlation, the smaller the required plant size. Penalty costs associated with not building a large enough plant are hedged in the market. This paper sets that basis for future analysis of staged plant expansion analysis.

Yuri Lawryshyn; Sebastian Jaimungal

243

Operation and Maintenance Manual for the Central Facilities Area Sewage Treatment Plant  

SciTech Connect

This Operation and Maintenance Manual lists operator and management responsibilities, permit standards, general operating procedures, maintenance requirements and monitoring methods for the Sewage Treatment Plant at the Central Facilities Area at the Idaho National Laboratory. The manual is required by the Municipal Wastewater Reuse Permit (LA-000141-03) the sewage treatment plant.

Norm Stanley

2011-02-01T23:59:59.000Z

244

Wastewater management in Kunming, China: a stakeholder  

E-Print Network (OSTI)

Wastewater management in Kunming, China: a stakeholder perspective on measures at the source EDI systems with central wastewater treatment plants were long considered a successful model that could the feasibility of introducing measures at the source for the different urban wastewater contributions in the city

Richner, Heinz

245

Treatment of Wastewater from Mineral Processing by using Algae.  

E-Print Network (OSTI)

??Nowadays, the utilisation of algae in industrial processes to produce useful compounds or to treat waste streams is of great interest. Industrial wastewaters such as… (more)

Sprock, Stefan

2013-01-01T23:59:59.000Z

246

Attached growth fungal system for corn wet milling wastewater treatment.  

E-Print Network (OSTI)

??High organic strength food-processing wastewaters are typically treated with conventional aerobic systems such as an activated sludge process that produces substantial quantities of low value… (more)

Jasti, Nagapadma

2006-01-01T23:59:59.000Z

247

Physical-chemical characterization of sludge and granular materials from a vertical flow constructed wetland for municipal wastewater treatment  

E-Print Network (OSTI)

constructed wetland for municipal wastewater treatment B. Kim1,2 , M. Gautier*1 , P. Michel2 and R. Gourdon1 1, Society of design and production engineering for wastewater purification, 5 Allée Alban Vistel, F-69110 Wetlands (VFCW) is well developed in France and other countries for the treatment of wastewaters from small

Boyer, Edmond

248

Decision Document for the Storm Water Outfalls/Industrial Wastewater Treatment Plant, Pesticide Rinse Area, Old Fire Fighting Training Pit, Illicit PCB Dump Site, and the Battery Acid Pit Fort Lewis, Washington  

SciTech Connect

PNNL conducted independent site evaluations for four sites at Fort Lewis, Washington, to determine their suitability for closure on behalf of the installation. These sites were recommended for "No Further Action" by previous invesitgators and included the Storm Water Outfalls/Industrial Waste Water Treatment Plant (IWTP), the Pesticide Rinse Area, the Old Fire Fighting Training Pit, and the Illicit PCB Dump Site.

Cantrell, Kirk J.; Liikala, Terry L.; Strenge, Dennis L.; Taira, Randal Y.

2000-12-11T23:59:59.000Z

249

Interrelated Effects of Aeration and Mixed Liquor Fractions on Membrane Fouling for Submerged Membrane Bioreactor Processes in Wastewater Treatment  

Science Journals Connector (OSTI)

Interrelated Effects of Aeration and Mixed Liquor Fractions on Membrane Fouling for Submerged Membrane Bioreactor Processes in Wastewater Treatment ... using hollow fibers was applied to wastewater treated by the activated-sludge process. ...

Fengshen Fan; Hongde Zhou

2007-02-21T23:59:59.000Z

250

Aqueous Waste Treatment Plant at Aldermaston  

SciTech Connect

For over half a century the Pangbourne Pipeline formed part of AWE's liquid waste management system. Since 1952 the 11.5 mile pipeline carried pre-treated wastewater from the Aldermaston site for safe dispersal in the River Thames. Such discharges were in strict compliance with the exacting conditions demanded by all regulatory authorities, latterly, those of the Environment Agency. In March 2005 AWE plc closed the Pangbourne Pipeline and ceased discharges of treated active aqueous waste to the River Thames via this route. The ability to effectively eliminate active liquid discharges to the environment is thanks to an extensive programme of waste minimization on the Aldermaston site, together with the construction of a new Waste Treatment Plant (WTP). Waste minimization measures have reduced the effluent arisings by over 70% in less than four years. The new WTP has been built using best available technology (evaporation followed by reverse osmosis) to remove trace levels of radioactivity from wastewater to exceptionally stringent standards. Active operation has confirmed early pilot scale trials, with the plant meeting throughput and decontamination performance targets, and final discharges being at or below limits of detection. The performance of the plant allows the treated waste to be discharged safely as normal industrial effluent from the AWE site. Although the project has had a challenging schedule, the project was completed on programme, to budget and with an exemplary safety record (over 280,000 hours in construction with no lost time events) largely due to a pro-active partnering approach between AWE plc and RWE NUKEM and its sub-contractors. (authors)

Keene, D. [RWE NUKEM, Ltd, 424 Harwell, Didcot, Oxfordshire, OX 110GJ (United Kingdom); Fowler, J.; Frier, S. [AWE plc, Aldermaston, Berkshire RG7 4PR (United Kingdom)

2006-07-01T23:59:59.000Z

251

Estimation of E. coli Concentrations from Failing On-Site Wastewater Treatment Facilities (OWTS) Using GIS  

E-Print Network (OSTI)

Failing Onsite Wastewater Treatment Systems (OWTSs) have been identified as a significant threat to water quality, discharging significant amounts of inadequately treated sewage effluents. When developing a Watershed Protection Plan (WPP), OWTS has...

Virani, Afreen Shiraz

2014-08-12T23:59:59.000Z

252

Hydrogen-Based Membrane Biofilm Reactor for Wastewater Treatment Bruce E. Rittmann, Robert Nerenberg  

E-Print Network (OSTI)

1 Hydrogen-Based Membrane Biofilm Reactor for Wastewater Treatment Bruce E. Rittmann, RobertCarty 2001). If soluble organic nitrogen can be held to a few tenths of a mg/L, the total N can

Nerenberg, Robert

253

Modeling of recycling oxic and anoxic treatment system for swine wastewater using neural networks  

Science Journals Connector (OSTI)

A recycling reactor system operated under sequential anoxic and oxic conditions for the treatment of swine wastewater has been developed, in which piggery slurry ... treated and then part of the effluent is recycled

Jung-Hye Choi; Jun-Il Sohn; Hyun-Sook Yang…

2000-10-01T23:59:59.000Z

254

Wastewater treatment and flow patterns in an onsite subsurface flow constructed wetland  

E-Print Network (OSTI)

Subsurface flow constructed wetlands (SFCWs) are becoming increasingly common as a secondary treatment of onsite domestic wastewater. Even though SFCWs are being used widely, sufficient data has not been collected to determine how parameters...

Stecher, Matthew C

2001-01-01T23:59:59.000Z

255

Obtaining process mass balances of pharmaceuticals and triclosan to determine their fate during wastewater treatment  

Science Journals Connector (OSTI)

Abstract To better understand pharmaceutical fate during wastewater treatment, analysis in both aqueous and particulate phases is needed. Reported herein is a multi-residue method for the determination of ten pharmaceutical drugs and the personal care product triclosan in wastewater matrices. Method quantitation limits ranged from 7.6 to 76.6 ng l? 1 for aqueous phases and from 7.0 to 96.7 ng g? 1 for particulate phases. The analytical method was applied to attain a complete process mass balance of a pilot-scale activated sludge plant (ASP) operated under controlled conditions. The mass balance (inclusive of aqueous and particulate concentrations at all sample points) was used to diagnose removal, revealing pharmaceuticals to be separable into three fate pathways: (a) biological degradation, (b) sorption onto activated sludge and (c) resistant to removal from the aqueous phase. These differences in fate behaviour explained a broad range of secondary removal observed (? 8 to 99%). The ASP was also simultaneously compared to a full-scale trickling filter (TF) works whilst receiving the same influent wastewater. Performance of the ASP and TF was similar, achieving total pharmaceutical removals of 253 and 249 ?g g? 1 biochemical oxygen demand (BOD) removed, respectively. This corresponded with reductions in total pharmaceutical load of 91 and 90% (ANOVA, p-value > 0.05). Interestingly, despite low suspended solid concentrations final effluents of both the ASP and TF contained significant concentrations of some chemicals in the particulate phase. Individually, triclosan and the antibiotics ofloxacin and ciprofloxacin were within the particulate phase of effluents at concentrations ranging from 26 to 296 ng l? 1.

Bruce Petrie; Ewan J. McAdam; John N. Lester; Elise Cartmell

2014-01-01T23:59:59.000Z

256

Multimedia sampling for dioxin at a strip mine reclaimed with sludge from bleached kraft wastewater treatment  

SciTech Connect

This paper reports that mead conducted a two-year dioxin testing program on strip-mined land being reclaimed with sludge from the wastewater treatment plant of its bleached kraft mill. Many different samples were analyzed for both 2,3,7,8-TCDD (or dioxin) and 2,3,7,8-TCDF (or furan). The study included biodiversity studies to determine the total environmental impact. The results indicate that the sludge is an excellent reclamation material that improves the biodiversity at the site. The tracer dioxin in the sludge does not exhibit any significant migration or bioavailability when used for reclaiming strip mines. These findings differ from assumptions sometimes used in assessing the environmental risks of dioxin.

Krouskop, D.J.; Ayers, K.C. (Metal Corp. (US)); Proctor, J.L. (Ohio Univ., Chillicothe, OH (US))

1991-04-01T23:59:59.000Z

257

On-Site Wastewater Treatment Systems: Alternative Collection Systems  

E-Print Network (OSTI)

Rural Texas communities have new options for wastewater management infrastructure that are cost effective but still protect human health and environmental quality. Such communities now can combine different kinds of systems in a new approach called...

Lesikar, Bruce J.

2000-08-30T23:59:59.000Z

258

On-Site Wastewater Treatment Systems: Leaching Chambers  

E-Print Network (OSTI)

Leaching chambers distribute treated wastewater into the soil. This publication lists the advantages and disadvantages of leaching chamber systems, explains how to maintain them and gives estimates of costs....

Lesikar, Bruce J.

2000-02-04T23:59:59.000Z

259

On-Site Wastewater Treatment Systems: Gravel-less Pipe  

E-Print Network (OSTI)

Gravel-less pipe systems distribute treated wastewater into the soil. This publication lists the advantages and disadvantages of gravel-less pipe systems, explains how to maintain them and gives estimates of costs....

Lesikar, Bruce J.

2000-04-10T23:59:59.000Z

260

Waste Treatment Plant - 12508  

SciTech Connect

The Waste Treatment Plant (WTP) will immobilize millions of gallons of Hanford's tank waste into solid glass using a proven technology called vitrification. The vitrification process will turn the waste into a stable glass form that is safe for long-term storage. Our discussion of the WTP will include a description of the ongoing design and construction of this large, complex, first-of-a-kind project. The concept for the operation of the WTP is to separate high-level and low-activity waste fractions, and immobilize those fractions in glass using vitrification. The WTP includes four major nuclear facilities and various support facilities. Waste from the Tank Farms is first pumped to the Pretreatment Facility at the WTP through an underground pipe-in-pipe system. When construction is complete, the Pretreatment Facility will be 12 stories high, 540 feet long and 215 feet wide, making it the largest of the four major nuclear facilities that compose the WTP. The total size of this facility will be more than 490,000 square feet. More than 8.2 million craft hours are required to construct this facility. Currently, the Pretreatment Facility is 51 percent complete. At the Pretreatment Facility the waste is pumped to the interior waste feed receipt vessels. Each of these four vessels is 55-feet tall and has a 375,000 gallon capacity, which makes them the largest vessels inside the Pretreatment Facility. These vessels contain a series of internal pulse-jet mixers to keep incoming waste properly mixed. The vessels are inside the black-cell areas, completely enclosed behind thick steel-laced, high strength concrete walls. The black cells are designed to be maintenance free with no moving parts. Once hot operations commence the black-cell area will be inaccessible. Surrounded by black cells, is the 'hot cell canyon'. The hot cell contains all the moving and replaceable components to remove solids and extract liquids. In this area, there is ultrafiltration equipment, cesium-ion exchange columns, evaporator boilers and recirculation pumps, and various mechanical process pumps for transferring process fluids. During the first phase of pretreatment, the waste will be concentrated using an evaporation process. Solids will be filtered out, and the remaining soluble, highly radioactive isotopes will be removed using an ion-exchange process. The high-level solids will be sent to the High-Level Waste (HLW) Vitrification Facility, and the low activity liquids will be sent to the Low-Activity Waste (LAW) Vitrification Facility for further processing. The high-level waste will be transferred via underground pipes to the HLW Facility from the Pretreatment Facility. The waste first arrives at the wet cell, which rests inside a black-cell area. The pretreated waste is transferred through shielded pipes into a series of melter preparation and feed vessels before reaching the melters. Liquids from various facility processes also return to the wet cell for interim storage before recycling back to the Pretreatment Facility. (authors)

Harp, Benton; Olds, Erik [US DOE (United States)

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "wastewater treatment plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Bingen wastewater treatment facility energy evaluation. A reconnaissance level technical assistance study for the city of Bingen  

SciTech Connect

In the fall of 1983, the city of Bingen was selected as a target community for the Local Government Technical Assistance (LGTA) Program. They requested the LGTA team to assist them in identifying cost-effective energy conservation opportunities at their wastewater treatment facility. A description of the wastewater treatment process, monthly energy cost and consumption data, and process in-flow data were collected and analyzed by the LGTA team. An onsite treatment facility evaluation was performed in March of 1984. The purpose of this report is to present the results of the LGTA energy inventory and to recommend directions for further study. The city of Bingen operates a small treatment plant which averages 9.6 million gallons per month (an average of 0.31 million gallons per day). The treatment process consists of passing wastewater through a comminutor, grit chamber, aeration basin, clarifier, and a chlorination contact chamber prior to releasing the treated water into the Columbia River. The solids portion of the waste stream is biologically treated by aerobic digesters before the sludge is trucked to a land disposal site. Annual electrical consumption at the facility averages about 80,000 kWh. As estimated by the LGTA equipment inventory, the largest electrical consuming process component is the operation of the brush aerators (approx.65% of the total process electrical consumption). An Energy Utilization Index (EUI) was determined on a bimonthly basis. Over the last 18 months, the EUI has averaged a very respectable 2.67 million Btus per million gallons of processed wastewater.

James, J.W.

1985-10-01T23:59:59.000Z

262

Waste Treatment and Immobilation Plant Pretreatment Facility...  

Office of Environmental Management (EM)

Treatment and Immobilation Plant Pretreatment Facility Waste Treatment and Immobilation Plant Pretreatment Facility Full Document and Summary Versions are available for download...

263

Reuse of Treated Internal or External Wastewaters in the Cooling Systems of Coal-Based Thermoelectric Power Plants  

SciTech Connect

This study evaluated the feasibility of using three impaired waters - secondary treated municipal wastewater, passively treated abandoned mine drainage (AMD), and effluent from ash sedimentation ponds at power plants - for use as makeup water in recirculating cooling water systems at thermoelectric power plants. The evaluation included assessment of water availability based on proximity and relevant regulations as well as feasibility of managing cooling water quality with traditional chemical management schemes. Options for chemical treatment to prevent corrosion, scaling, and biofouling were identified through review of current practices, and were tested at bench and pilot-scale. Secondary treated wastewater is the most widely available impaired water that can serve as a reliable source of cooling water makeup. There are no federal regulations specifically related to impaired water reuse but a number of states have introduced regulations with primary focus on water aerosol 'drift' emitted from cooling towers, which has the potential to contain elevated concentrations of chemicals and microorganisms and may pose health risk to the public. It was determined that corrosion, scaling, and biofouling can be controlled adequately in cooling systems using secondary treated municipal wastewater at 4-6 cycles of concentration. The high concentration of dissolved solids in treated AMD rendered difficulties in scaling inhibition and requires more comprehensive pretreatment and scaling controls. Addition of appropriate chemicals can adequately control corrosion, scaling and biological growth in ash transport water, which typically has the best water quality among the three waters evaluated in this study. The high TDS in the blowdown from pilot-scale testing units with both passively treated mine drainage and secondary treated municipal wastewater and the high sulfate concentration in the mine drainage blowdown water were identified as the main challenges for blowdown disposal. Membrane treatment (nanofiltration or reverse osmosis) can be employed to reduce TDS and sulfate concentrations to acceptable levels for reuse of the blowdown in the cooling systems as makeup water.

Radisav Vidic; David Dzombak; Ming-Kai Hsieh; Heng Li; Shih-Hsiang Chien; Yinghua Feng; Indranil Chowdhury; Jason Monnell

2009-06-30T23:59:59.000Z

264

Secondary Sewage Treatment Versus Ocean Outfalls: An Assessment  

Science Journals Connector (OSTI)

...the energy balance, the system...Secondary Sewage Treatment Versus Ocean...treatment of wastewater is unneeded...secondary sewage treatment plants are estimated...secondary sewage treatment biologically...organic matter in wastewater. This action...

Charles B. Officer; John H. Ryther

1977-09-09T23:59:59.000Z

265

Measurement and Treatment of Nuisance Odors at Wastewater Treatment Plants  

E-Print Network (OSTI)

Methylthiophene, Tetrahydrothiophene, 2,5-Dimethylthiophene,3-Methylthiophene Tetrahydrothiophene 2,5-Dimethylthiophene

Abraham, Samantha Margaret

2014-01-01T23:59:59.000Z

266

STATUS REPORT: Onsite Wastewater Treatment Systems in California jointly presented by:  

E-Print Network (OSTI)

The regulation of onsite wastewater treatment systems will be undergoing significant changes in California in the coming years. Recent legislation has mandated that the State Water Resources Control Board develop and adopt statewide regulations by January 2004. These will be the first statewide regulations governing the use of onsite wastewater treatment in California. There are approximately 1.2 million onsite wastewater treatment systems in California, serving more than 3.5 million people, or 10 % of the state’s population. Since 1990, ten percent of new housing starts use onsite systems and this trend should continue for the foreseeable future. Onsite/decentralized systems are an integral part of the infrastructure used to support continued growth and development in the state. In April 1997, EPA published its Response to Congress on Use of Decentralized Wastewater Treatment Systems which concluded that, overall, “adequately managed decentralized (onsite) wastewater treatment systems can be a cost effective and long-term option for meeting public health and water quality goals, particularly for small, suburban, and rural areas. ” Our dependence on onsite technologies has led to renewed interest in how they work. The performance of these systems is an important consideration in protecting the public health and water quality in the state. If onsite systems are recharging California’s

California Wastewater

267

Iron oxide red wastewater treatment and recycling of iron-containing sludge  

Science Journals Connector (OSTI)

Abstract The paper presents a wastewater treatment process and recycling of iron sludge from wastewater treatment for iron oxide red production. Results show that: (1) Sludge from wastewater treatment process under the operating parameters: 1.84 g/L of NaOH dosage, 10 mins of aeration with flow rate of 1 L/min and 150 mins of sediment time is potential for seed crystal preparation and excellent iron oxide red product can be obtained in the secondary oxidation under condition of 85 °C, 68 h of reaction time and 150 mL/min of airflow rate, (2) In practical engineering, the average removal rate of Fe2+ and SS and chroma of effluent is 99.75%, 86.7% and less than 40 times, respectively, and all items of product satisfy demands of industrial standards, (3) Compared with the original wastewater treatment, the new process can save the cost of wastewater treatment and earn extra 20.0 dollars for a ton of iron oxide red product and then both economic benefit and environmental protection can be realized by this process. It is proved that the novel method is reliable, economical and promising in iron oxide red industry and cleaner production of iron oxide red is feasible.

Zhenguo Chen; Xiaojun Wang; Qilong Ge; Guanchao Guo

2015-01-01T23:59:59.000Z

268

Feasibility study on production of biodegradable polymer and wastewater treatment using Aeromonas strains for materials recycling  

Science Journals Connector (OSTI)

Abstract With consideration of wastewater treatment and materials recycling for cradle-to-cradle (C2C) sustainable development, this treatability study analyzed the capability of poly 3-hydroxybutyrate (PHB) production in wastewater-laden media using indigenous dye-decolorizing Aeromonas hydrophila NIU01, KB23, Aeromonas salmonicida 741. Compared to paper-container, frozen food, wine manufacturing wastewater, wastewater generated from printing and dyeing industry was found to be more appropriate to efficiently produce PHB for materials recycling. Due to lack of sufficient essential inorganic nutrients provided for cell propagation, dye-decolorized wastewater with augmented MR media in different ratios was used to explore toxicity potency of mixed media and to present PHB-producing capability of cells. In particular, when MR media were completely replaced by decolorized culture broth, significant stimulating effect on PHA-production was shown (ca. 52.5% PHB content). This study clearly revealed the promising feasibility of simultaneous wastewater treatment and biopolymer production for cradle-to-cradle sustainable development.

Bor-Yann Chen; Tz-Jau Shiau; Jhao-Yin Hung; Yu-Hong Wei; Chi-Wei Lan

2014-01-01T23:59:59.000Z

269

Constructed Wetlands and Waste Stabilization Ponds for municipal wastewater treatment in France: comparison of  

E-Print Network (OSTI)

13 Constructed Wetlands and Waste Stabilization Ponds for municipal wastewater treatment in France In France, vertical flow constructed wetlands and waste stabilisation ponds are both extensive treatment processes well adapted to small rural communities mainly because they are easy to operate

Paris-Sud XI, Université de

270

Selective hydrolysis of wastewater sludge Part 1, September 2007  

E-Print Network (OSTI)

Report Selective hydrolysis of wastewater sludge Part 1, September 2007 Model calculations and cost "Selective hydrolysis of wastewater sludge" is supported by EnergiNet.DK under the PSO-F&U projects having National Laboratory, Rambøll, the Estate of Overgaard and SamRas. The wastewater treatment plant Esbjerg

271

Selective hydrolysis of wastewater sludge Part 1, December 2008  

E-Print Network (OSTI)

Report Selective hydrolysis of wastewater sludge Part 1, December 2008 Revised Model calculations and cost benefit analysis for Esbjerg Vest wastewater treatment plant, Denmark PSO-F&U project nr. 2006 This project "Selective hydrolysis of wastewater sludge" is supported by EnergiNet .DK under the PSO

272

Plants in constructed wetlands help to treat agricultural processing wastewater  

E-Print Network (OSTI)

Plants in constructed wetlands help to treat agriculturalhas been available to help guide that selection. We

Grismer, Mark E; Shepherd, Heather L

2011-01-01T23:59:59.000Z

273

Development of a Fatty Acid and RNA Stable Isotope Probing-Based Method for Tracking Protist Grazing on Bacteria in Wastewater  

Science Journals Connector (OSTI)

...which enables mass balances of the carbon...Treated wastewater will be of...wastewater treatment in such systems...municipal sewage plant (for details...bacteria in wastewater. | Removal...during wastewater treatment, is effected...which enables mass balances of the carbon...

Steffen Kuppardt; Antonis Chatzinotas; Matthias Kästner

2010-10-29T23:59:59.000Z

274

Anaerobic treatment of high-sulfate wastewater and substrate interactions with isopropanol  

SciTech Connect

Modified biological methane-potential tests were used to study the treatment of wastewater with a chemical oxygen demand (COD) concentration of 40,000 mg/L and a sulfate concentration of 5,000 mg/L. The effects of wastewater concentrations on biodegradation and substrate interactions between sulfate reducers and methanogens were studied. Isopropanol (IPA) degradation was studied since isopropyl acetate was the major organic component in the wastewater. Six sets of batch tests were done, including a series of tests with varying concentrations of wastewater; wastewater and glucose; glucose and sulfate; IPA; IPA and glucose; and IPA, glucose, and sulfate. Sulfur and electron balances were used to analyze data to determine the extent of biodegradation from both methanogenesis and sulfate reduction. IPA did not appear to be inhibitory to methanogenesis or sulfate reduction. In comparison to glucose, the presence of wastewater or isopropanol stimulated greater sulfate-reduction efficiency. Evidence for IPA degradation was observed, and IPA degradation was stimulated in the presence of sulfate. Continuous feed-reactor results corroborated batch-test observations.

Fox, P.; Ketha, S. [Arizona State Univ., Tempe, AZ (United States). Dept. of Civil and Environmental Engineering

1996-11-01T23:59:59.000Z

275

E-Print Network 3.0 - automated remote plant Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Page: << < 1 2 3 4 5 > >> 1 Energy-saving through remote control of a wastewater treatment plant Summary: Energy-saving through remote control of a wastewater treatment plant...

276

Waste minimization necessary for solving wastewater problems  

SciTech Connect

Developing and implementing waste minimization procedures to correct the wastewater treatment problem are not as simple as identifying the problem. People cannot solve today's problems with the same kind of thinking that caused the problems. Nonetheless, industry primarily is using traditional treatment technologies to reduce wastewater. most companies are upgrading their wastewater treatment plants and installing treatment equipment in process areas whenever technically and economically feasible. The solution to ensuring wastewater compliance is recycling, waste minimization and moving toward zero discharge. Treating wastewater to the best possible quality still creates residual waste that must be disposed. In addition, regulatory limits continue to increase. Although some facilities can close and have closed the loop in certain processes, industry is pursuing waste minimization and the goal of zero discharge, given existing technology and economics. This, companies must taken an innovative approach to reducing wastewater volume and toxicity at the source.

Melody, M.

1993-07-01T23:59:59.000Z

277

Wastewater treatment. (Latest citations from the EI Compendex*plus database). Published Search  

SciTech Connect

The bibliography contains citations concerning techniques and equipment for the treatment of industrial (except mining) effluent streams. Consideration is given to the removal, reclamation, and recycling of various trace metals, heavy-metals, hydrocarbons, and oily wastewaters to meet regulatory agency discharge or inplant reuse standards. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1995-12-01T23:59:59.000Z

278

Wastewater treatment. (Latest citations from the EI compendex*plus database). Published Search  

SciTech Connect

The bibliography contains citations concerning techniques and equipment for the treatment of industrial (except mining) effluent streams. Consideration is given to the removal, reclamation, and recycling of various trace metals, heavy-metals, hydrocarbons, and oily wastewaters to meet regulatory agency discharge or inplant reuse standards. (Contains 250 citations and includes a subject term index and title list.)

NONE

1995-01-01T23:59:59.000Z

279

Wastewater treatment. (Latest citations from the EI Compendex*plus database). Published Search  

SciTech Connect

The bibliography contains citations concerning techniques and equipment for the treatment of industrial (except mining) effluent streams. Consideration is given to the removal, reclamation, and recycling of various trace metals, heavy-metals, hydrocarbons, and oily wastewaters to meet regulatory agency discharge or inplant reuse standards. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1994-01-01T23:59:59.000Z

280

Author's personal copy Modelling and automation of water and wastewater treatment processes  

E-Print Network (OSTI)

and Jeppsson, 2006), including sewage systems and surrounding land use. From the methodological viewpoint on the applications of modelling and automation to water and wastewater treatment processes. The session, under sludge processes, to which unconventional and innovative control strategies were applied. But there were

Note: This page contains sample records for the topic "wastewater treatment plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Identification and Isolation of Anaerobic, Syntrophic Phthalate Isomer-Degrading Microbes from Methanogenic Sludges Treating Wastewater from Terephthalate Manufacturing  

Science Journals Connector (OSTI)

...Electron balance was calculated...Anaerobic pre-treatment of petrochemical...terephthalic acid wastewater. Water Sci...treatment of wastewater at low temperatures...Anaerobic treatment of a petrochemical wastewater from a terephthalic acid plant. Water Sci...Sunderland, Mass. 34 Tasaki...

Yan-Ling Qiu; Yuji Sekiguchi; Hiroyuki Imachi; Yoichi Kamagata; I-Cheng Tseng; Sheng-Shung Cheng; Akiyoshi Ohashi; Hideki Harada

2004-03-01T23:59:59.000Z

282

DECENTRALIZED WASTEWATER MANAGEMENT  

E-Print Network (OSTI)

1 DECENTRALIZED WASTEWATER MANAGEMENT: A GUIDEBOOK FOR GEORGIA COMMUNITIES Katie Sheehan wastewater treatment technologies. www.njunsystems.com Version 1.0, April 2013 #12; 2 DECENTRALIZED WASTEWATER MANAGEMENT: A GUIDEBOOK FOR GEORGIA COMMUNITIES PART ONE: BACKGROUND, ISSUES, AND PROGRAM

Rosemond, Amy Daum

283

Wastewater sludge management options for Honduras  

E-Print Network (OSTI)

Sludge management is a fundamental area of concern across wastewater treatment systems in Honduras. The lack of timely sludge removal has led to declining plant performance in many facilities throughout the country. In ...

Bhattacharya, Mahua, M. Eng. Massachusetts Institute of Technology.

2009-01-01T23:59:59.000Z

284

REMOVAL AND FATE OF SPECIFIC MICROBIAL PATHOGENS WITHIN ON-SITE WASTEWATER TREATMENT SYSTEMS  

E-Print Network (OSTI)

and retention of Salmonella spp., Cryptosporidium parvum oocysts, fecal coliforms, fecal streptococci and colimale-specific coliphages in a septic tank, aerobic treatment unit, sand filter and constructed wetland that are receiving domestic wastewater. 2.... An aerobic treatment unit was installed during the course of this project at a nearby community center. Sand filter/Subsurface Drip Application System The sand filter/subsurface drip application system was constructed at a two- bedroom residence...

Pillai, Suresh D.; Lesikar, Bruce A.

285

1.0 GAS TRANSFER An important process used in water and wastewater treatment. Also very important when  

E-Print Network (OSTI)

of H2S in septic sewers causing pipe corrosion. 2. CO2 Stripping of some ground waters, industrial1.0 GAS TRANSFER An important process used in water and wastewater treatment. Also very important wastewaters to the stream. Gas/Liquid Interface Gas Liquid Gas transfer to the liquid is absorption Gas

Stenstrom, Michael K.

286

Effects of Ionic Strength on Bacterial Adhesion and Stability of Flocs in a Wastewater Activated Sludge System  

Science Journals Connector (OSTI)

...interpreted as a balance of attrac...Flocs from a wastewater treatment plant (WWTP...during the treatments to be able...Sweden. The plant receives wastewater from approximately...at a large treatment plant. Water Sci...Cambridge, Mass. 23. Marshall...

Anna Zita; Malte Hermansson

1994-09-01T23:59:59.000Z

287

Utilization of municipal wastewater for cooling in thermoelectric power plants  

SciTech Connect

A process simulation model has been developed using Aspen Plus(R) with the OLI (OLI System, Inc.) water chemistry model to predict water quality in the recirculating cooling loop utilizing secondary- and tertiary-treated municipal wastewater as the source of makeup water. Simulation results were compared with pilot-scale experimental data on makeup water alkalinity, loop pH, and ammonia evaporation. The effects of various parameters including makeup water quality, salt formation, NH{sub 3} and CO{sub 2} evaporation mass transfer coefficients, heat load, and operating temperatures were investigated. The results indicate that, although the simulation model can capture the general trends in the loop pH, experimental data on the rates of salt precipitation in the system are needed for more accurate prediction of the loop pH. It was also found that stripping of ammonia and carbon dioxide in the cooling tower can influence the cooling loop pH significantly. The effects of the NH{sub 3} mass transfer coefficient on cooling loop pH appear to be more significant at lower values (e.g., k{sub NH3}< 4×10{sup -3} m/s) when the makeup water alkalinity is low (e.g., <90 mg/L as CaCO{sub 3}). The effect of the CO{sub 2} mass transfer coefficient was found to be significant only at lower alkalinity values (e.g., k{sub CO2}<4×10{{sup -6} m/s).

Safari, Iman; Walker, Michael E.; Hsieh, Ming-Kai; Dzombak, David A.; Liu, Wenshi; Vidic, Radisav D.; Miller, David C.; Abbasian, Javad

2013-09-01T23:59:59.000Z

288

Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report  

E-Print Network (OSTI)

best practices that could be applicable in improving the energy efficiencyEnergy efficiency measures that have been successfully implemented in municipal wastewater treatment facilities can serve as best practices

Lekov, Alex

2010-01-01T23:59:59.000Z

289

Analysis, anaerobic treatment and ozonation of wool scouring wastewater  

SciTech Connect

Wool scouring effluents (WSE) were analyzed by high-resolution gas chromatography-mass spectrometry (HRGC-MS), and then exposed to anaerobic biological treatment using laboratory scale fixed-bed filters. This resulted in a nearly 50% reduction in chemical oxygen demand (COD). Ozonation of the effluent from the biological step led to an even further decrease in total organic carbon (TOC). The fatty acid content of the WSE was affected by both biological treatment and ozonation. Finally, steroids in the WSE underwent reduction reactions when exposed to the anaerobic biological treatment.

Monteverdi, A.; Rindone, B.; Sorlini, C. (Univ. di Milano (Italy)); Andreoni, V. (Univ. di Torino (Italy)); Rozzi, A. (Inst. di Ingegneria Sanitaria del Politechnico di Milano (Italy))

1992-01-01T23:59:59.000Z

290

Wastewater treatment using flocculation, coagulation, and flotation. (Latest citations from the NTIS bibliographic database). Published Search  

SciTech Connect

The bibliography contains citations concerning the design, development, and evaluation of flocculation coagulation and flotation processes for the treatment of sewage and industrial wastes. Citations examine technology requirements and limitations, activated sludge and anaerobic processes, chlorination, runoff pollution control, wastewater recycling and reuse, and materials recovery.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1995-12-01T23:59:59.000Z

291

Wastewater treatment using flocculation, coagulation, and flotation. (Latest citations from the NTIS bibliographic database). Published Search  

SciTech Connect

The bibliography contains citations concerning the design, development, and evaluation of flocculation coagulation and flotation processes for the treatment of sewage and industrial wastes. Citations examine technology requirements and limitations, activated sludge and anaerobic processes, chlorination, runoff pollution control, wastewater recycling and reuse, and materials recovery.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1996-11-01T23:59:59.000Z

292

Onsite Wastewater Treatment Systems: Septic Tank/Soil Absorption Field  

E-Print Network (OSTI)

For septic tank and soil absorption systems to work properly, homeowners must choose the right kind of system for their household size and soil type, and they must maintain them regularly. This publication explains the treatment, design, operation...

Lesikar, Bruce J.

2008-10-23T23:59:59.000Z

293

Modeling Onsite Wastewater Treatment Systems in the Dickinson Bayou Watershed  

E-Print Network (OSTI)

Bayou watershed. HYDRUS was used to simulate conventional septic systems with soil absorption fields, aerobic treatment units (ATUs) with spray dispersal systems, and mound systems. Results found that the simulated conventional systems fail due to high...

Forbis-Stokes, Aaron

2012-10-19T23:59:59.000Z

294

Performance of a mixing entropy battery alternately flushed with wastewater effluent and  

E-Print Network (OSTI)

Performance of a mixing entropy battery alternately flushed with wastewater effluent and seawater. Coastal wastewater treatment plants discharge a continuous stream of low salinity effluent to the ocean cell, the net energy recovery was 0.11 kW h per m3 of wastewater effluent. When twelve cells were

Cui, Yi

295

BIO?REFINERIES: BIOPROCESS TECHNOLOGIES FOR WASTE?WATER TREATMENT, ENERGY AND PRODUCT VALORIZATION  

Science Journals Connector (OSTI)

Increasing pressure is being exerted on communities and nations to source energy from forms other than fossil fuels. Also potable water is becoming a scarce resource in many parts of the world and there remains a large divide in the demand and utilization of plant products derived from genetically modified organisms (GMOs) and non?GMOs. The most extensive user and manager of terrestrial ecosystems is agriculture which is also the de facto steward of natural resources. As stated by Miller (2008) no other industry or institution comes close to the comparative advantage held for this vital responsibility while simultaneously providing food fiber and other biology?based products including energy. Since modern commercial agriculture is transitioning from the production of bulk commodities to the provision of standardized products and specific?attribute raw materials for differentiated markets we can argue that processes such as mass cultivation of microalgae and the concept of bio?refineries be seen as part of a ‘new’ agronomy. EBRU is currently exploring the integration of bioprocess technologies using microalgae as biocatalysts to achieve waste?water treatment water polishing and endocrine disruptor (EDC) removal sustainable energy production and exploitation of the resultant biomass in agriculture as foliar fertilizer and seed coatings and for commercial extraction of bulk commodities such as bio?oils and lecithin. This presentation will address efforts to establish a fully operational solar?driven microalgae bio?refinery for use not only in waste remediation but to transform waste and biomass to energy fuels and other useful materials (valorisation) with particular focus on environmental quality and sustainability goals.

A. Keith Cowan

2010-01-01T23:59:59.000Z

296

Environmental Assessment for the High Explosives Wastewater Treatment Facility, Los Alamos National Laboratory, Los Alamos, New Mexico  

SciTech Connect

The Department of Energy (DOE) has identified a need to improve the management of wastewater resulting from high explosives (HE) research and development work at Los Alamos National Laboratory (LANL). LANL`s current methods off managing HE-contaminated wastewater cannot ensure that discharged HE wastewater would consistently meet the Environmental Protection Agency`s (EPA`s) standards for wastewater discharge. The DOE needs to enhance He wastewater management to e able to meet both present and future regulatory standards for wastewater discharge. The DOE also proposes to incorporate major pollution prevention and waste reduction features into LANL`s existing HE production facilities. Currently, wastewater from HE processing buildings at four Technical Areas (TAs) accumulates in sumps where particulate HE settles out and barium is precipitated. Wastewater is then released from the sumps to the environment at 15 permitted outfalls without treatment. The released water may contain suspended and dissolved contaminants, such as HE and solvents. This Environmental Assessment (EA) analyzes two alternatives, the Proposed Action and the Alternative Action, that would meet the purpose and need for agency action. Both alternatives would treat all HE process wastewater using sand filters to remove HE particulates and activated carbon to adsorb organic solvents and dissolved HE. Under either alternative, LANL would burn solvents and flash dried HE particulates and spent carbon following well-established procedures. Burning would produce secondary waste that would be stored, treated, and disposed of at TA-54, Area J. This report contains the Environmental Assessment, as well as the Finding of No Significant Impact and Floodplain Statement of Findings for the High Explosives Wastewater Treatment Facility.

NONE

1995-08-03T23:59:59.000Z

297

E-Print Network 3.0 - alternative wastewater treatment Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

Geosciences ; Environmental Sciences and Ecology 59 Sustainable Use of Resources Recycling of Sewage Treatment Plant Water in Concrete Summary: of knowledge of the use of...

298

Tritiated wastewater treatment and disposal evaluation for 1995  

SciTech Connect

A second annual summary and analysis of potential processes for the mitigation of tritium contained in process effluent, ground water and stored waste is presented. It was prepared to satisfy the Hanford Federal Facility and Consent Order (Tri-Party Agreement) Milestone M-26-05B. Technologies with directed potential for separation of tritium at present environmental levels are organized into two groups. The first group consists of four processes that have or are undergoing significant development. Of these four, the only active project is the development of membrane separation technology at the Pacific Northwest Laboratory (PNL). Although research is progressing, membrane separation does not present a near term option for the mitigation of tritium. A second grouping of five early stage projects gives an indication of the breadth of interest in low level tritium separation. If further developed, two of these technologies might prove to be candidates for a separation process. At the present, there continues to be no known commercially available process for the practical reduction of the tritium burden in process effluent. Material from last year`s report regarding the occurrence, regulation and management of tritium is updated and included in the appendices of this report. The use of the State Approved Land Disposal Site (SALDS) for disposal of tritiated effluent from the 200 Area Effluent Treatment Facility (ETF) begins in the fall of 1995. This is the most significant event impacting tritium in the environment at the Hanford Site this coming year.

Allen, W.L. [Westinghouse Hanford Co., Richland, WA (United States)

1995-08-01T23:59:59.000Z

299

Statistical Analysis Of Heavy Metals Concentration In Watermelon Plants Irrigated By Wastewater  

Science Journals Connector (OSTI)

Concentration of heavy metals in vegetables irrigated by urban wastewater is a cause of serious concern due to the potentials health problems of consuming contaminated produce. In this study it is tried to model the concentration of heavy metals (Cd Cr Cu Fe …) as a function of their concentration in watermelon roots and stems. Our study shows there is a good relationship between them for most of collected data. By measuring the concentration in root and stem of watermelon plant samples before harvesting the concentration of heavy metal in watermelon's fruit can be estimated by presented mathematical models. This study shows the concentrations of heavy metals in fruits roots and stems of watermelon plants are very high and in dangerous level when irrigated by municipal waste water.

M. J. Khanjani; A. A. Maghsoudi moud; V. R. Saffari; S. M. Hashamipor; M. Soltanizadeh

2008-01-01T23:59:59.000Z

300

Using Membrane Sets Incorporated into a Crossflow Electrofiltration/Electrodialysis Treatment Module to Treat CMP Wastewater and Simultaneously Generate Electrolytic Ionized Water.  

E-Print Network (OSTI)

??In this work, membrane set(s) had been incorporated into different crossflow electrofiltration (CEF) /electrodialysis (ED) treatment modules for treating various CMP wastewaters and simultaneously generating… (more)

Yang, Tsung-Yin

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wastewater treatment plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants  

Energy.gov (U.S. Department of Energy (DOE))

There are important issues to consider when selecting a CHP technology, such as size, emissions, location of maintenance personnel, and efficiency. This document summarizes the following CHP technologies: Reciprocating Engine, Microturbine, Combustion Turbines, Stirling Engine, and Fuel Cell.

302

Hanford ETR Tank Waste Treatment and Immobilization Plant - Hanford Tank  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ETR Tank Waste Treatment and Immobilization Plant - Hanford ETR Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - External Flowsheet Review Team (Technical) Report Hanford ETR Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - External Flowsheet Review Team (Technical) Report Full Document and Summary Versions are available for download Hanford ETR Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - External Flowsheet Review Team (Technical) Report Summary - Flowsheet for the Hanford Waste Treatment Plant More Documents & Publications Waste Treatment and Immobilation Plant HLW Waste Vitrification Facility

303

E-Print Network 3.0 - area effluent treatment Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Nature and Transformation of Dissolved Organic Matter in Summary: . As wastewater treatment plant effluent passes through treatment wetlands, the DOM undergoes...

304

Missouri Water Treatment Plant Upgraded | Department of Energy  

Energy Savers (EERE)

Missouri Water Treatment Plant Upgraded Missouri Water Treatment Plant Upgraded July 13, 2010 - 11:30am Addthis The high service pumps at the St. Peters Water Treatment Plant are...

305

K-1435 Wastewater Treatment System for the Toxic Substances Control Act Incinerator Wastewater at the East Tennessee Technology Park, Oak Ridge, TN  

SciTech Connect

This paper discusses the design and performance of a wastewater treatment system installed to support the operation of a hazardous waste incinerator. The Oak Ridge Toxic Substances Control Act Incinerator (TSCAI), located at the East Tennessee Technology Park (ETTP), is designed and permitted to treat Resource ConservatioN and Recovery Act (RCRA) wastes including characteristic and listed wastes and polychlorinated biphenyl (PCB)-contaminated mixed waste. the incinerator process generates acidic gases and particulates which consist of salts, metals, and radionuclides. These off-gases from the incinerator are treated with a wet off-gas scrubber system. The recirculated water is continuously purged (below down), resulting in a wastewater to be treated. Additional water sources are also collected on the site for treatment, including storm water that infiltrates into diked areas and fire water from the incinerator's suppression system. To meet regulatory requirements for discharge, a wastewater treatment system (WWTS) was designed, constructed, and operated to treat these water sources. The WWTS was designed to provide for periodic fluctuation of contaminant concentrations due to various feed streams to the incinverator. Blow down consists of total suspended solids (TSS) and total dissolved solids (TDS), encompassing metals, radionuclide contamination and trace organics. The system design flow rate range is 35 to 75 gallons per minute (gpm). The system is designed with redundancy to minimize time off-line and to reduce impacts to the TSCAI operations. A novel treatment system uses several unit operations, including chemical feed systems, two-stage chemical reaction treatment, microfiltration, sludge storage and dewatering, neutralization, granular activated carbon, effluent neutralization, and a complete programmable logic controller (PLC) and human-machine interface (HMI) control system. To meet the space requirements and to provide portability of the WWTS to other applications, the system was installed in three, over-the-road semi trailers, and interconnected with piping and power. Trailers were oriented on a small site footprint to facilitate ease of installation. A remote sump pump skid was provided to convey water from two holding sumps adjacent to the treatment process. An accumulation tank and pump were also provided to receive miscellaneous wastewaters for treatment if they meet the waste acceptance criteria. The paper includes details of the technology used in the design, the requirements for compliance, and the initial performance demonstration and jar testing results. The WWTS successfully allowed for highly efficient, high-volume treatment with compliant discharge to off-site surface water.

Swientoniewski M.D.

2008-02-24T23:59:59.000Z

306

Treatment of concentrated industrial wastewaters originating from oil shale and the like by electrolysis polyurethane foam interaction  

DOE Patents (OSTI)

Highly concentrated and toxic petroleum-based and synthetic fuels wastewaters such as oil shale retort water are treated in a unit treatment process by electrolysis in a reactor containing oleophilic, ionized, open-celled polyurethane foams and subjected to mixing and laminar flow conditions at an average detention time of six hours. Both the polyurethane foams and the foam regenerate solution are re-used. The treatment is a cost-effective process for waste-waters which are not treatable, or are not cost-effectively treatable, by conventional process series.

Tiernan, Joan E. (Novato, CA)

1990-01-01T23:59:59.000Z

307

Treatment of an agrochemical wastewater by integration of heterogeneous catalytic wet hydrogen peroxide oxidation and rotating biological contactors  

Science Journals Connector (OSTI)

Abstract The treatment of a non-biodegradable agrochemical wastewater has been studied by coupling of heterogeneous catalytic wet hydrogen peroxide oxidation (CWHPO) and rotating biological contactors (RBCs). The influence of the hydrogen peroxide dosage and the organic content of the wastewater (dilution degree) were studied. The CWHPO of the raw wastewater at 80 °C and using a moderate amount of oxidant (0.23 gH2O2/gTOC) reduced significantly its total organic carbon content and increased its biodegradability. Likewise, the iron leaching of the heterogeneous catalyst (Fe2O3/SBA-15) was less than 2 mg/L in the treated effluent. Under the best operating conditions, the resultant CWHPO effluent was successfully co-treated by rotating biological contactors (RBCs) using a simulated municipal wastewater with different percentages of the CWHPO effluent (2.5, 5 and 10% v/v). The \\{RBCs\\} showed high stability for the treatment of the highest percentage of the CWHPO effluent, achieving total organic carbon (TOC) and total nitrogen (TN) reductions of ca. 78% and 50%, respectively. The integration of both processes on a continuous mode has been successfully accomplished for the treatment of the as-received agrochemical wastewater.

M.I. Pariente; J.A. Siles; R. Molina; J.A. Botas; J.A. Melero; F. Martinez

2013-01-01T23:59:59.000Z

308

Independent Activity Report, Hanford Waste Treatment Plant - February 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Activity Report, Hanford Waste Treatment Plant - Activity Report, Hanford Waste Treatment Plant - February 2011 Independent Activity Report, Hanford Waste Treatment Plant - February 2011 February 2011 Hanford Waste Treatment Plant Construction Quality Assurance Review [ARPT-WTP-2011-002] The purpose of the visit was to perform a review of construction quality assurance at the Waste Treatment Plant (WTP) site activities concurrently with the Department of Energy (DOE) WTP staff. One focus area for this visit was piping and pipe support installations. Independent Activity Report, Hanford Waste Treatment Plant - February 2011 More Documents & Publications Independent Oversight Review, Waste Treatment and Immobilization Plant - August 2011 Independent Oversight Review, Waste Treatment and Immobilization Plant -

309

Waste Treatment and Immobilation Plant HLW Waste Vitrification...  

Office of Environmental Management (EM)

Waste Treatment and Immobilation Plant HLW Waste Vitrification Facility Waste Treatment and Immobilation Plant HLW Waste Vitrification Facility Full Document and Summary Versions...

310

Water/Wastewater Engineering Report (Storm Sewer/Infiltration Sanitary Sewage Separation-M1 Model)  

E-Print Network (OSTI)

In some cities, the municipal sewer system collects both storm water and sanitary sewage in the same pipes. During dry weather these sewers carry all the sanitary sewage to the wastewater treatment plant for treatment. However, when rainstorms...

Liu, Z.; Brumbelow, K.; Haberl, J. S.

2006-10-30T23:59:59.000Z

311

Introduction to Wastewater Bruce J. Lesikar  

E-Print Network (OSTI)

Introduction to Wastewater Treatment Bruce J. Lesikar Professor Texas AgriLife Extension Service Overview What is wastewater? Why are we concerned about wastewater? The big picture. Goals for wastewater treatment are evolving How do we implement our infrastructure? Wastewater Treatment Processes ­ The end

312

Application of a moving bed biofilm reactor for tertiary ammonia treatment in high temperature industrial wastewater  

E-Print Network (OSTI)

industrial wastewater Jennifer L. Shore a,b , William S. M'Coy b , Claudia K. Gunsch a , Marc A. Deshusses a 2012 Available online 17 February 2012 Keywords: Moving bed biofilm reactor Industrial wastewater and industrial wastewater. No biotreatment was observed at 45 °C, although effective nitrification was rapidly

313

Tomorrow`s energy today for cities and counties -- Alternative wastewater treatment: Advanced Integrated Pond systems  

SciTech Connect

This report provides a discussion of the design, construction, operation, and maintenance of the Advanced Integrated Pond System as an alternative for other more costly municipal waste water treatment plants.

Not Available

1993-10-01T23:59:59.000Z

314

Hanford ETR - Tank Waste Treatment and Immobilization Plant - Hanford Tank  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Tank Waste Treatment and Immobilization Plant - - Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - Estimate at Completion (Cost) Report Hanford ETR - Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - Estimate at Completion (Cost) Report This is a comprehensive review ofthe Hanford WTP estimate at completion - assessing the project scope, contract requirements, management execution plant, schedule, cost estimates, and risks. Hanford ETR - Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - Estimate at Completion (Cost) Report More Documents & Publications TBH-0042 - In the Matter of Curtis Hall

315

Wastewater treatment using flocculation, coagulation, and flotation. (Latest citations from the NTIS bibliographic database). NewSearch  

SciTech Connect

The bibliography contains citations concerning the design, development, and evaluation of flocculation coagulation and flotation processes for the treatment of sewage and industrial wastes. Citations examine technology requirements and limitations, activated sludge and anaerobic processes, chlorination, runoff pollution control, wastewater recycling and reuse, and materials recovery. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1994-10-01T23:59:59.000Z

316

Wastewater and water treatment: Anion exchange. (Latest citations from the Selected Water Resources Abstracts database). Published Search  

SciTech Connect

The bibliography contains citations concerning the theory and methods of anion exchange in the treatment of potable water and wastewaters. Citations discuss anion exchange resins and membranes, desalination techniques, and process evaluations. Methods for anion analysis using chromatographic techniques are also considered. (Contains a minimum of 74 citations and includes a subject term index and title list.)

Not Available

1993-09-01T23:59:59.000Z

317

Wastewater and water treatment: Anion exchange. (Latest citations from the Selected Water Resources Abstracts database). Published Search  

SciTech Connect

The bibliography contains citations concerning the theory and methods of anion exchange in the treatment of potable water and wastewaters. Citations discuss anion exchange resins and membranes, desalination techniques, and process evaluations. Methods for anion analysis using chromatographic techniques are also considered. (Contains a minimum of 74 citations and includes a subject term index and title list.)

Not Available

1994-01-01T23:59:59.000Z

318

Ph.D. viva voce examination of Mr. Vikrant Sarin ( 2005CHZ8243) Title : Wastewater treatment using membrane bioreactor  

E-Print Network (OSTI)

Ph.D. viva voce examination of Mr. Vikrant Sarin ( 2005CHZ8243) Title : Wastewater treatment using low/zero sludge production, high loading rate capability, rapid start up, modular and retrofit, sludge of membranes which is one of the major factors affecting the performance of MBR, thus, limiting the use

Kumar, M. Jagadesh

319

Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report  

E-Print Network (OSTI)

R. J. (1997). Wastewater Reduction and Recycling in Foodreclaiming and recycling wastewater, or subsidizing theis done through recycling the wastewater to reduce energy

Lekov, Alex

2010-01-01T23:59:59.000Z

320

Hanford Waste Treatment Plant Construction Quality Review  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ARPT-WTP-2011-002 ARPT-WTP-2011-002 Site: DOE Hanford Waste Treatment Plant Subject: Office of Independent Oversight's Office of Environment, Safety and Health Evaluations Activity Report for the Hanford Waste Treatment Plant Construction Quality Review Dates of Activity 02/14/2011 - 02/17/2011 Report Preparer Joseph Lenahan Activity Description/Purpose: The purpose of the visit was to perform a review of construction quality assurance at the Waste Treatment Plant (WTP) site activities concurrently with the Department of Energy (DOE) WTP staff. One focus area for this visit was piping and pipe support installations. The Office of Health, Safety and Security (HSS) attended several Bechtel National Incorporated (BNI) project meetings, reviewed the WTP project quality assurance program, reviewed DOE-WTP inspection reports completed by the DOE-WTP

Note: This page contains sample records for the topic "wastewater treatment plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

An evaluation of tannery industry wastewater treatment sludge gasification by artificial neural network modeling  

Science Journals Connector (OSTI)

Abstract This paper reports on the calorific value of synthetic gas (syngas) produced by gasification of dewatered sludge derived from treatment of tannery wastewater. Proximate and ultimate analyses of samples were performed. Thermochemical conversion alters the chemical structure of the waste. Dried air was used as a gasification agent at varying flow rates, which allowed the feedstock to be quickly converted into gas by means of different heterogeneous reactions. A lab-scale updraft fixed-bed steel reactor was used for thermochemical conversion of sludge samples. Artificial neural network (ANN) modeling techniques were used to observe variations in the syngas related to operational conditions. Modeled outputs showed that temporal changes of model predictions were in close accordance with real values. Correlation coefficients (r) showed that the ANN used in this study gave results with high sensitivity.

Atakan Ongen; H. Kurtulus Ozcan; Semiha Aray?c?

2013-01-01T23:59:59.000Z

322

Radioactive wastewater treatment using a mixture of TANNIX sorbent and VARION mixed bed ion exchange resin  

Science Journals Connector (OSTI)

A wastewater treatment system has been developed by using a mixture of ammonium-insoluble tannin (TANNIX, this is the trademark of an adsorbent made by Mitsubishi Nuclear Fuel Co. Ltd) and mixed (strong acid cation exchanger and strong base anion exchanger) ion exchange resin (MIX) for the selective separation of transuranium isotopes, including Pu, Am, Cm, and U, as well as fission and radioactive corrosion products from boric acid solution (pH ? 4.1). The equilibrium and fixed bed sorption experiments resulted in Kd values of 104â??105 ml/g, and decontamination factors of 1,000, with a breakthrough point between 1500 BV and 5000 BV of accumulated volume.

G. Patzay; P. Tilky; J. Schunk; T. Pinter; F. Feil; K. Hamaguchi; L. Weiser

2006-01-01T23:59:59.000Z

323

The production of biofuel and bioelectricity associated with wastewater treatment by green algae  

Science Journals Connector (OSTI)

Abstract This study describes algal biofuel production, bioelectricity generation and wastewater treatment using Leptolyngbya sp. JPMTW1 (KF977831). The experiments were conducted in an AMFC (Algal Microbial Fuel Cell) photobioreactor (single-chamber). The pH, EC (electrical conductivity), COD (chemical oxygen demand) and TDS (total dissolved solids) decreased from 8.01 to 7.0, 982 to 854 (mS/cm), 255 to 112 (mg/L) and 490–427 (mg/L), respectively, over course of 7 days. Biomass production, rate of biomass production, chlorophyll a, b and “total chlorophyll” content increased with increasing time and were observed to be 3300 mg/L, 471.42 mg/L/day, 0.981 mg/L, 0.173 mg/L and 1.156 mg/L after 7 days. Lipid production and rate of lipid production were 1068.383 mg/g dry wt. biomass and 152.62 mg/g dry biomass/day. FTIR (Fourier transform infrared) spectra revealed the presence of protein, lipid, \\{FAs\\} (fatty acids), triglycerides and ester functional groups. FAME (fatty acid methyl esters) profile revealed the presence of C16:0, C18:2n-6, C18:1 and C16:1. The generation of electric potential by Leptolyngbya sp. JPMTW1 increased significantly (p ? 0.05) from 0.0211 to 0.264 mV within 7 days. The maximum power density (0.008 mW/cm2) was obtained at cell potential at 12 mV. This study shows that simultaneous production of biofuel, bioelectricity and wastewater treatment is possible by Leptolyngbya sp. JPMTW1.

Jyoti Prakash Maity; Chia-Peng Hou; Dip Majumder; Jochen Bundschuh; Thomas R. Kulp; Chien-Yen Chen; Lu-Te Chuang; Ching-Nen Nathan Chen; Jiin-Shuh Jean; Tsui-Chu Yang; Chien-Cheng Chen

2014-01-01T23:59:59.000Z

324

How environmentally significant is water consumption during wastewater treatment?: Application of recent developments in LCA to WWT technologies used at 3 contrasted geographical locations  

Science Journals Connector (OSTI)

Abstract Environmental impact assessment models are readily available for the assessment of pollution-related impacts in life cycle assessment (LCA). These models have led to an increased focus on water pollution issues resulting in numerous LCA studies. Recently, there have been significant developments in methods assessing freshwater use. These improvements widen the scope for the assessment of wastewater treatment (WWT) technologies, now allowing us to apprehend, for the first time, a combination of operational (energy and chemicals use), qualitative (environmental pollution) and quantitative (water deprivation) issues in wastewater treatment. This enables us to address the following question: Is water consumption during wastewater treatment environmentally significant compared to other impacts? To answer this question, a standard life cycle inventory (LCI) was performed with a focus on consumptive water uses at plant level, where several WWT technologies were operating, in different climatic conditions. The impacts of water consumption were assessed by integrating regionalized characterization factors for water deprivation within an existing life cycle impact assessment (LCIA) method. Results at the midpoint level, show that water deprivation impacts are highly variable in relation to the chosen WWT technology (water volume used) and of WWTP location (local water scarcity). At the endpoint level, water deprivation impacts on ecosystem quality and on the resource damage categories are significant for WWT technologies with great water uses in water-scarce areas. Therefore, our study shows the consideration of water consumption-related impacts is essential and underlines the need for a greater understanding of the water consumption impacts caused by WWT systems. This knowledge will help water managers better mitigate local water deprivation impacts, especially in selecting WWT technologies suitable for arid and semi-arid areas.

Eva Risch; Philippe Loubet; Montserrat Núñez; Philippe Roux

2014-01-01T23:59:59.000Z

325

Applicability of a Septic Tank/Engineered Wetland Coupled System in the Treatment and Recycling of Wastewater from a Small Community  

Science Journals Connector (OSTI)

A septic tank (ST)/engineered wetland coupled system used to treat and recycle wastewater from a small community in Dar es...Phragmites (reeds) and the smaller-sized medium bed was downstream and was planted with...

Stephen E. Mbuligwe

2005-01-01T23:59:59.000Z

326

Assessing nutrient and pharmaceutical removal efficiency from wastewater using shallow wetland treatment mesocosms.  

E-Print Network (OSTI)

??Wastewaters from rural sewage lagoons in Manitoba contain pharmaceuticals that are potentially harmful to non-target organisms and reduce overall water quality when released. An option… (more)

Cardinal, Pascal

2013-01-01T23:59:59.000Z

327

Waste Treatment and Immobilation Plant Pretreatment Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 7 Technology Readiness Assessment for the Waste Treatment and Immobilization Plant (WTP) Pretreatment Facility L. Holton D. Alexander M. Johnson H. Sutter August 2007 Prepared by the U.S. Department of Energy Office of River Protection Richland, Washington, 99352 07-DESIGN-047 Technology Readiness Assessment for the Waste Treatment and Immobilization Plant (WTP) Pretreatment Facilities L. Holton D. Alexander M. Johnson H. Sutter August 2007 Prepared by the U.S. Department of Energy Office of River Protection under Contract DE-AC05-76RL01830 07-DESIGN-047 iii Summary The U.S. Department of Energy (DOE), Office of River Protection (ORP) and the DOE Office of Environmental Management (EM), Office of Project Recovery has completed a Technology Readiness

328

E-Print Network 3.0 - aquatic plant wastewater Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Sciences and Ecology 29 CAB International 2004. Wastewater Use in Irrigated Agriculture (eds C.A. Scott, N.I. Faruqui and L. Raschid-Sally) 1 Summary: , milk,...

329

E-Print Network 3.0 - arsenic pilot plant Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Sediments Jason Murnock, Master of Science Candidate, Summary: conflicting. The Erie wastewater treatment plant sludge incinerator flue gas contains arsenic but pilot tests......

330

Treatment of concentrated industrial wastewaters originating from oil shale and the like by electrolysis polyurethane foam interaction  

DOE Patents (OSTI)

Highly concentrated and toxic petroleum-based and synthetic fuels wastewaters such as oil shale retort water are treated in a unit treatment process by electrolysis in a reactor containing oleophilic, ionized, open-celled polyurethane foams and subjected to mixing and l BACKGROUND OF THE INVENTION The invention described herein arose in the course of, or under, Contract No. DE-AC03-76SF00098 between the U.S. Department of Energy and the University of California.

Tiernan, Joan E. (38 Clay Ct., Novato, CA 94947)

1991-01-01T23:59:59.000Z

331

Emerging chemical contaminants in water and wastewater  

Science Journals Connector (OSTI)

...contaminants in water and wastewater' compiled and edited by Michael...contaminants in water and wastewater Michael R. Templeton 1...activated sludge process in wastewater treatment, whereby the pollutants...the impact on agricultural recycling. Disinfection by-products...

2009-01-01T23:59:59.000Z

332

Mechanism of degradation of wool wax in the anaerobic treatment of woolscouring wastewater  

Science Journals Connector (OSTI)

Results of the anaerobic digestion of a woolscouring wastewater treatment and some considerations about the anaerobic degradation mechanisms of wool wax, are presented. A 57 live anaerobic baffled reactor (ABR) was operated with woolscouring effluent. When organic load varied from 3 to 5 kg COD/m3 d, COD and grease removal ranged from 40 to 55% and 50 to 65%, respectively. With centrifuged effluent, COD removal was 45% to 60%. A 300 m3 ABR was built and operated during two years based on the previous laboratory results. COD removal was between 45% to 18% with organic load of 3 to 10 kg COD/m3 d. With centrifuged effluent, COD efficiencies ranged between 72% and 47%. No inhibition by long chain fatty acids was observed. Considering the results of grease content determination and TLC analysis in both reactors, it could be assumed that wool wax is hydrolyzed forming sterols and free fatty acids and that free fatty acids are degraded while sterols are accumulated in the sludge.

Soledad Gutiérrez; Alberto Hernández; María Viñas

1999-01-01T23:59:59.000Z

333

EECBG Success Story: Missouri Water Treatment Plant Upgraded...  

Energy Savers (EERE)

Missouri Water Treatment Plant Upgraded EECBG Success Story: Missouri Water Treatment Plant Upgraded July 13, 2010 - 11:30am Addthis The high service pumps at the St. Peters Water...

334

Application of Radial Basis Function Neural Network in Modeling Wastewater Sludge Recycle System  

Science Journals Connector (OSTI)

Sludge recycle system is an important part of wastewater treatment plants(WWTP), which can ensure ... Neural Network model for prediction of the Sludge recycling flowrate, which ultimately affect the Sludge recycling

Long Luo; Liyou Zhou

2010-01-01T23:59:59.000Z

335

E-Print Network 3.0 - activated sludge treatment Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

on the activated sludge... the in this way with the operating conditions of the wastewater treatment plant. Images of activated sludge... Figure 9 shows the influences of...

336

E-Print Network 3.0 - aerox waste treatment Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

facilities that could be modified to generate hydrogen Fuel... from organic waste Wastewater treatment plants ... Source: DOE Office of Energy Efficiency and Renewable...

337

Occurrence and Implication of dissolved organic phosphorus (DOP) in tertiary wastewater Effluents Page 1 of 6  

E-Print Network (OSTI)

GU, APRIL Occurrence and Implication of dissolved organic phosphorus (DOP) in tertiary wastewater wastewater effluents L. Liu1 , D. S. Smith2 , M. Bracken3 , J.B. Neethling4 , H.D. Stensel5 and S. Murthy6 levels (e.g. TPwastewater treatment plants. A few previous studies (Benisch et al., 2007

Brody, James P.

338

Independent Oversight Review, Waste Treatment and Immobilization Plant -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Treatment and Immobilization Treatment and Immobilization Plant - November 2011 Independent Oversight Review, Waste Treatment and Immobilization Plant - November 2011 November 2011 Review of the Hanford Site Waste Treatment and Immobilization Plant Project Construction Quality The Office of Enforcement and Oversight (Independent Oversight) within the Office of Health, Safety and Security conducted an independent review of selected aspects of construction quality at the Hanford Waste Treatment and Immobilization Plant Project (WTP). The independent oversight review, which was performed September 12-15, 2011, was the latest in a series of ongoing quarterly assessments of construction quality at the WTP construction site. Independent Oversight Review, Waste Treatment and Immobilization Plant -

339

On-Site Wastewater Treatment Systems: Conventional Septic Tank/Drain Field (Spanish)  

E-Print Network (OSTI)

Conventional septic tanks have been the most commonly used technology for treating wastewater. This publication explains the advantages, disadvantages, maintenance steps and estimated costs of septic tank/drain field systems....

Lesikar, Bruce J.

1999-08-12T23:59:59.000Z

340

On-Site Wastewater Treatment Systems: Conventional Septic Tank/Drain Field  

E-Print Network (OSTI)

Conventional septic systems have traditionally been the most commonly used technology for treating wastewater. This publication explains the advantages and disadvantages of conventional septic tank/drain fields, as well as estimated costs...

Lesikar, Bruce J.

1999-09-06T23:59:59.000Z

Note: This page contains sample records for the topic "wastewater treatment plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

On-Site Wastewater Treatment Systems: Low-Pressure Dosing System  

E-Print Network (OSTI)

A low-pressure dosing system treats wastewater and then pumps it into the soil several times daily. This publication explains the advantages and disadvantages of low-pressure dosing systems as well as estimated costs and maintenance requirements....

Lesikar, Bruce J.

1999-09-06T23:59:59.000Z

342

Electricity generation and treatment of paper recycling wastewater using a microbial fuel cell  

Science Journals Connector (OSTI)

Increased interest in sustainable agriculture and bio-based industries requires that we find more energy-efficient methods for treating cellulose-containing wastewaters. We examined the effectiveness of simultane...

Liping Huang; Bruce E. Logan

2008-08-01T23:59:59.000Z

343

Experimental evaluation of anaerobic digestion for coffee wastewater treatment and its biomethane recovery potential  

Science Journals Connector (OSTI)

The objective of this study was to evaluate the performance of anaerobic digestion (AD) as an eco-friendly technology for coffee wastewater (CWW) management. First, we have characterized the CWW and found that...

A. Beyene; D. Yemane; T. Addis…

2014-10-01T23:59:59.000Z

344

BULKING SLUDGE TREATMENT BY MICROSCOPIC OBSERVATION AND MECHANICAL TREATMENT  

E-Print Network (OSTI)

for the operation of the biological stage of waste water treatment plants. If the threatening extensive growth of wastewater treatment plants often need a complex control for the optimal processing. The measurement status and for the regulation of biological parts in waste water treatment plants. Furthermore, e

345

Treatment of domestic wastewater for reuse with activated silica and magnesia  

E-Print Network (OSTI)

an incentive for reuse of wastewater. The Federal Water Pollution Control Act Amendments of 1972 includes a provision requiring grants made from authorized funds to include consideration of alternative technologies, and that recycling or elimination... an incentive for reuse of wastewater. The Federal Water Pollution Control Act Amendments of 1972 includes a provision requiring grants made from authorized funds to include consideration of alternative technologies, and that recycling or elimination...

Lindner, John Howard

2012-06-07T23:59:59.000Z

346

Waste Treatment and Immobilization Plant (WTP) Analytical Laboratory (LAB),  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Immobilization Plant (WTP) Analytical Immobilization Plant (WTP) Analytical Laboratory (LAB), Balance of Facilities (BOF) and Low-Activity Waste Vitrification Facilities (LAW) Waste Treatment and Immobilization Plant (WTP) Analytical Laboratory (LAB), Balance of Facilities (BOF) and Low-Activity Waste Vitrification Facilities (LAW) Full Document and Summary Versions are available for download Waste Treatment and Immobilization Plant (WTP) Analytical Laboratory (LAB), Balance of Facilities (BOF) and Low-Activity Waste Vitrification Facilities (LAW) Summary - WTP Analytical Lab, BOF and LAW Waste Vitrification Facilities More Documents & Publications Waste Treatment and Immobilation Plant HLW Waste Vitrification Facility Waste Treatment and Immobilation Plant Pretreatment Facility Compilation of TRA Summaries

347

Tools to support a model-based methodology for emission/immission and benefit/cost/risk analysis of wastewater systems that considers uncertainty  

Science Journals Connector (OSTI)

This paper presents a set of tools developed to support an innovative methodology to design and upgrade wastewater treatment systems in a probabilistic way. For the first step, data reconstruction, two different tools were developed, one for situations ... Keywords: Cost-benefit analysis, Grid computing, Modelling and simulation, Risk, Software tools, Wastewater treatment plant design

Lorenzo Benedetti; Davide Bixio; Filip Claeys; Peter A. Vanrolleghem

2008-08-01T23:59:59.000Z

348

Waste Treatment Plant and Tank Farm Program | Department of Energy  

Office of Environmental Management (EM)

Plant and Tank Farm Program Waste Treatment Plant and Tank Farm Program This photo shows the Pretreatment Facility control room building pad at the Office of River Protection at...

349

Solar Farm Going Strong at Water Treatment Plant in Pennsylvania |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Farm Going Strong at Water Treatment Plant in Pennsylvania Farm Going Strong at Water Treatment Plant in Pennsylvania Solar Farm Going Strong at Water Treatment Plant in Pennsylvania October 8, 2010 - 10:39am Addthis Aqua Pennsylvania, Inc. installed a 1 MW solar farm at its Ingram’s Mill Water Treatment Plant in East Bradford, Pa. The solar project is saving the water company $77,000 a year. | File photo Aqua Pennsylvania, Inc. installed a 1 MW solar farm at its Ingram's Mill Water Treatment Plant in East Bradford, Pa. The solar project is saving the water company $77,000 a year. | File photo Stephen Graff Former Writer & editor for Energy Empowers, EERE It takes a lot of energy to run a water treatment plant round-the-clock. And pumping 35 million gallons of water a day to hundreds of thousands businesses and residents can get expensive.

350

Iowa's first electrodialysis reversal water treatment plant  

Science Journals Connector (OSTI)

In 1979 the City of Washington was notified by the Iowa Department of Natural Resources (IDNR) that the City was in violation of the radium standard for drinking water. The City of Washington authorized an engineering study to determine the most cost-effective and practical way to remove radium and, at the same time, improve overall water quality. Several possible treatment alternatives were evaluated. It was finally decided to utilize electrodialysis reversal (EDR). Washington obtains its water from three deep wells ranging in capacity from 600–780 gpm. The untreated water withdrawn from the wells first passes through the EDR units. There are three EDR units, each able to produce 285 gpm of finished water. In the future, another EDR unit can be easily added to the other three units, since the new plant was built and plumbed for an additional EDR unit if water demand increased. The Jordan aquifer supply is adequate for current and future needs. The average daily water usage in 1993 was 818,000 gal/d. In order to meet peak flows, it is possible to bypass the EDR units with part of the untreated water and then blend treated and untreated water. The treated water meets IDNR standards of 5.0 pC/L. After the EDR units, the water flows through an aerator where odor-causing gases and carbon dioxide are removed. Aeration reduces the amount of caustic soda and chlorine used in the finished water. The hydrogen sulfide gas leaves the water as it passes through the aerator, and this loss of gas creates less chlorine demand. Total and free chlorine residuals are now detected in every water main of the town, whereas before, the residuals would not be detected in certain area of Washington. Phosphates have been cut back from 7 pounds per day to one pound per day. Better water quality is now being achieved with fewer chemicals added to the finished water. Washington's water treatment plant is the first municipal EDR plant in the State of Iowa and one of the largest municipal installations in the United States.

John Hays

2000-01-01T23:59:59.000Z

351

Independent Oversight Review, Waste Treatment and Immobilization Plant -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 2012 October 2012 Independent Oversight Review, Waste Treatment and Immobilization Plant - October 2012 October 2012 Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality The U. S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security, conducted an independent review of selected aspects of construction quality at the Hanford Site Waste Treatment and Immobilization Plant (WTP). The review, which was performed August 6-10, 2012, was the latest in a series of ongoing quarterly assessments of construction quality performed by Independent Oversight at the WTP construction site. Independent Oversight Review, Waste Treatment and Immobilization Plant -

352

Independent Oversight Review, Waste Treatment and Immobilization Plant -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 2013 March 2013 Independent Oversight Review, Waste Treatment and Immobilization Plant - March 2013 March 2013 Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality The U.S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security, conducted an independent review of selected aspects of construction quality at the Hanford Site Waste Treatment and Immobilization Plant (WTP). The review, which was performed November 26-30, 2012, was the latest in a series of ongoing quarterly assessments of construction quality performed by Independent Oversight at the WTP construction site. Independent Oversight Review, Waste Treatment and Immobilization Plant - March 2013

353

Independent Oversight Assessment, Waste Treatment and Immobilization Plant- January 2012  

Energy.gov (U.S. Department of Energy (DOE))

Assessment of the Nuclear Safety Culture and Management of Nuclear Safety Concerns at the Hanford Site Waste Treatment and Immobilization Plant

354

Independent Activity Report, Waste Treatment and Immobilization Plant- March 2013  

Energy.gov (U.S. Department of Energy (DOE))

Follow-up of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity Review [HIAR-WTP-2013-03-18

355

Wastewater Reuse  

Science Journals Connector (OSTI)

Wastewater reuse has a long history throughout the world. Indications of reuse of wastewater go back in time at least 5, ... :1–14, 1996; Vignesnaran and Sundaravadivel, Recycle and reuse of domestic wastewater, ...

Robert Maliva; Thomas Missimer

2012-01-01T23:59:59.000Z

356

Heavy metal pollution in farmland irrigated with river water near a steel plant—magnetic and geochemical signature  

Science Journals Connector (OSTI)

......et-al. 2011). Wastewater irrigation is...published on wastewater-irrigated soils...purposes without any treatment (Awofolu et-al...were found in wastewater-irrigated soils...near a steel plant in Loudi city...for measuring mass-specific susceptibility...field translation balance system (applied......

Chunxia Zhang; Erwin Appel; Qingqing Qiao

2013-01-01T23:59:59.000Z

357

The biodegradation of olive oil and the treatment of lipid-rich wool scouring wastewater under aerobic thermophilic conditions  

Science Journals Connector (OSTI)

The biodegradation of olive oil and the treatment of the lipid-rich wool scouring wastewater were studied under aerobic thermophilic (65°C) conditions using the newly isolated strain Bacillus thermoleovorans IHI-91. In a continuously operated laboratory-scale stirred-tank reactor olive oil was degraded to more than 90% at a residence time of 2 h with a maximum volumetric degradation rate of 900 mg l?1 h?1. A relatively high maximum biomass yield of 1.05 g dry cell weight per g olive oil consumed was measured and a maintenance coefficient of 0.04 g olive oil (g DCW)?1 h?1 was calculated from steady-state data. A severe growth inhibition was observed when the feed olive oil concentration was increased to more than 4 g l?1. Lipid removal from the highly loaded wool scouring wastewater (COD of 77000 mg l?1) was 20–30% at a residence time of 10–20 h while the COD removal was 15–20%. GC-MS analysis revealed that longchain fatty acids up to C18 were efficiently degraded while degradation of the predominant sterol-fraction of the wool grease was not detected. The high concentrations of volatile fatty acids (60 mM acetic acid, 13 mM propionic acid) present in the wastewater were completely removed even at residence times of 2 h. Compared with data from mesophilic processes the lipid degradation rates obtained under thermophilic conditions are extremely high.

P Becker; D Köster; M.N Popov; S Markossian; G Antranikian; H Märkl

1999-01-01T23:59:59.000Z

358

Assessment of sludge management options in a waste water treatment plant  

E-Print Network (OSTI)

This thesis is part of a larger project which began in response to a request by the Spanish water agengy, Cadagua, for advice on life cycle assessment (LCA) and environmental impacts of Cadagua operated wastewater treatment ...

Lim, Jong hyun, M. Eng. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

359

AEROBIC BIOTRANSFORMATION OF TOXIC ORGANICS IN WASTEWATER  

E-Print Network (OSTI)

#12;AEROBIC BIOTRANSFORMATION OF TOXIC ORGANICS IN WASTEWATER DOE FRAP 1997-15 Prepared for in both domestic and industrial wastewater. The release of these compounds during wastewater treatment to predict the mass of the VOCs in the wastewater treated by biotransformation and the mass stripped

360

Determining the ecological viability of constructed wetlands for the treatment of oil sands wastewater  

SciTech Connect

To determine the conditions for optimal degradation of naphthenic acids (C{sub n}H{sub 2n+z}O{sub 2}), the most toxic component of oil sands wastewater, the authors have monitored the mineralization of 2 representative naphthenic acids (NA), U-{sup 14}C-palmitic acid (linear, Z = 0) and 8-{sup 14}C-decahydro-2-naphthoic acid (bicyclic, Z = {minus}4) under varying conditions of temperature, phosphate and oxygen. The radiolabeled NA was added to biometer flasks containing wastewater {+-} amendments and evolved {sup 14}C-CO{sub 2} was trapped in a side arm and counted by LSC. The results indicate that low temperature (5 C) and anaerobiasis greatly inhibited NA degradation over the four week incubation period. Addition of phosphate (as buffered KP{sub i}) significantly increased {sup 14}C-CO{sub 2} production for both Z = 0 and Z = {minus}4 compounds; however, the subsequent high microbial growth rates also decreased PO{sub 2} which limited NA mineralization. Effluent toxicity was monitored at week 0 and week 4 using Microtox and fathead minnow tests. Although there was increased survival of fathead minnows in the phosphate-amended effluent, the IC{sub 20} values of the Microtox assay showed no improvement in either the phosphate-treated or untreated effluents. These results show that naphthenic acid analogues are readily degraded by indigenous microorganisms in oil sands wastewater and that phosphate addition accelerated the mineralization of these compounds if PO{sub 2} remained high.

Lai, J.; Kiehlmann, E.; Pinto, L.; Bendell-Young, L.; Moore, M. [Simon Fraser Univ., Burnaby, British Columbia (Canada); Nix, P. [EVS Environment Consultants, North Vancouver, British Columbia (Canada)

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "wastewater treatment plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Chapter 7 - Urban Wastewater Treatment for Recycling and Reuse in Industrial Applications: Indian Scenario  

Science Journals Connector (OSTI)

Abstract Urban wastewater management has become a challenge in many countries because infrastructure development and regulations have not kept pace with population growth and urbanization. This chapter focuses on urban wastewater management and the possible use of treated water for industrial applications in India. The figures on India’s annual urban population are rising and expected to reach about 600 million by 2030, making India more peri-urban than rural. It is realised that Indian industry has not taken a neutral stance on the required quality and quantity of water. The current national water share for Indian industry is only about 8%, which is far lower than in developed countries with respect to higher reuse and recycling applications. However, the water share of Indian industry will be growing along with the growing GDP. According to a recent Industry/Commerce & Government assessment, the water requirement for industrial use will increase from the current 30 billion m3 to-120 billion m3 by 2025. India is already an almost water-stressed country. The huge water demand of industry can be balanced by recycling and reusing urban wastewater, which would also provide an opportunity for the growth of Indian industry should this type of program be adopted. It would be possible to reuse 40–50% of secondary sewage for industrial and indirect potable use. If the sustainability of resources was maintained in light of increasing industrial water demand, the present reuse of less than 8% would be increased to 30–40% toward the projected water demand of 2030. Industrial water production from secondary sewage of urban and semi-urban areas can increase the water availability to Indian industrial sectors by establishing a joint municipal–industrial collaboration.

R. Saravanane; Vivek V. Ranade; Vinay M. Bhandari; A. Seshagiri Rao

2014-01-01T23:59:59.000Z

362

Summary - Flowsheet for the Hanford Waste Treatment Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment Plant Waste Treatment Plant ETR Report Date: March 2006 ETR-1 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Flowsheet for the Hanford Waste Treatment Plant (WTP) Why DOE-EM Did This Review The Hanford Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 53 million gallons of radioactive waste, separate it into high- and low-activity fractions, and produce canisters of high-level (HLW) glass (left) and containers of low-activity waste (LAW) glass (right). At the time of this review, the Plant was at approximately 70% design and 30% construction completion. The external review objective was to determine how well the WTP would meet its throughput capacities based on the current design,

363

Advancement of chitosan-based adsorbents for enhanced and selective adsorption performance in water/wastewater treatment: review  

Science Journals Connector (OSTI)

This paper gives an overview of the results obtained by various researchers in the treatment of various suspensions and solutions by using Chitosan as an adsorbent. Chitosan, a partially deacetylated polymer obtained from the alkaline deacetylation of chitin, extracted from shellfish has been reviewed for its application in water and wastewater. Chitosan exhibits a variety of physicochemical and biological properties resulting in numerous applications in various fields. The review provides a summary of recent information obtained using batch studies, deals with the various adsorption mechanisms involved also summarises the equilibrium and kinetic modelling. It is attempted to identify the gaps in the use of Chitosan as an adsorbent and to indicate future directions useful for research.

Madhukar V. Jadhav; Yogesh S. Mahajan

2011-01-01T23:59:59.000Z

364

Independent Oversight Assessment, Waste Treatment and Immobilization Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment and Waste Treatment and Immobilization Plant - January 2012 Independent Oversight Assessment, Waste Treatment and Immobilization Plant - January 2012 January 2012 Assessment of the Nuclear Safety Culture and Management of Nuclear Safety Concerns at the Hanford Site Waste Treatment and Immobilization Plant The U.S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security (HSS), conducted an independent assessment at the DOE Waste Treatment and Immobilization Plant (WTP) to evaluate the current status of the nuclear safety culture and the effectiveness of DOE and contractor management in addressing nuclear safety concerns at WTP. This assessment provides DOE management with a follow-up on the October 2010 HSS review of the WTP

365

Independent Activity Report, Waste Treatment and Immobilization Plant -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment and Immobilization Waste Treatment and Immobilization Plant - March 2013 Independent Activity Report, Waste Treatment and Immobilization Plant - March 2013 March 2013 Follow-up of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity Review [HIAR-WTP-2013-03-18] The Office of Health, Safety and Security (HSS) staff observed a limited portion of the restart of the Hazard Analysis (HA) for the Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) Melter Process (LMP) System. The primary purpose of this HSS field activity, on March 18-21, 2013, was to observe and understand the revised approach implemented by Bechtel National, Inc. (BNI), the contractor responsible for the design and construction of WTP for the U.S. Department of Energy (DOE) Office of

366

Independent Oversight Review, Waste Treatment and Immobilization Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment and Immobilization Waste Treatment and Immobilization Plant Project - October 2010 Independent Oversight Review, Waste Treatment and Immobilization Plant Project - October 2010 October 2010 Review of Nuclear Safety Culture at the Hanford Site Waste Treatment and Immobilization Plant Project The U.S. Department of Energy (DOE) Office of Health, Safety and Security (HSS) conducted an independent review of the nuclear safety culture at the Waste Treatment and Immobilization Plant (WTP) project at the Hanford Site during August and September 2010. The HSS team performed the review in response to a request in a July 30, 2010, memorandum from the Assistant Secretary for the DOE Headquarters Office of Environmental Management (EM), which referred to nuclear safety concerns raised by a contractor employee

367

'Bugs' used to treat FGD wastewater  

SciTech Connect

Tough regulation of heavy metals may justify a bioreactor approach in addition to chemical treatment of FGD wastewater. Two of Duke Energy' coal-fired plants, Belews Creek and Allen (in North Carolina) have installed new biological reactor systems to increase selenium removal to levels not achievable by existing scrubber waste water systems. The ABMet system removes nitrate and selenium in a single step. Progress Energy has installed the system at Roxboro and Mayo Stations, also in North Carolina. 1 fig., 2 photos.

Blankinship, S.

2009-09-15T23:59:59.000Z

368

Energy-efficient evaporators can cut operating costs for wastewater treatment, reuse  

SciTech Connect

High-efficiency evaporators can substantially lower the costs of recycling water, separating and reducing waste, and reclaiming industrial byproducts. Although capital costs run higher than conventional, stream-driven systems, energy efficient designs can allow users to recoup those costs over time and provide significant, ongoing utility savings. This is especially true in applications in which evaporation requirements are more than 75,000 pounds per hour, and steam costs exceed $3 per 1,000 pounds. In conventional, multistage evaporators, vapor resulting from wastewater evaporation is reused as a heating agent to effect further evaporation, but fresh steam must be added continuously to the system to maintain adequate temperature and pressure--two factors critical to evaporation. In contrast, three energy-efficient designs maintain temperature and pressure by recycling otherwise wasted resources, thereby greatly reducing or eliminating steam costs and other utility expenses.

Kersey, D. [Dedert Corp., Olympia Fields, IL (United States)

1996-05-01T23:59:59.000Z

369

Independent Oversight Review, Waste Treatment and Immobilization Plant- January 2013  

Energy.gov (U.S. Department of Energy (DOE))

Review of the Hanford Waste Treatment and Immobilization Plant Black-Cell and Hard-To-Reach Pipe Spools Procurement Process and the Office of River Protection Audit of That Process

370

JOINT OPTIMISATION OF SEWER SYSTEM AND TREATMENT PLANT CONTROL  

Science Journals Connector (OSTI)

Large cities in most of the cases are equipped with combined sewer systems discharging to waste water treatment plants. This is also the case for the City of Vienna. This city has just extended its Main Treatm...

HELMUT KROISS

2006-01-01T23:59:59.000Z

371

Hanford Waste Treatment Plant Support Task Order Modified | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment Plant Support Task Order Modified Waste Treatment Plant Support Task Order Modified Hanford Waste Treatment Plant Support Task Order Modified March 11, 2013 - 12:00pm Addthis Media Contact Lynette Chafin, 513-246-0461 Lynette.Chafin@emcbc.doe.gov Cincinnati - The Department of Energy (DOE) today awarded a modification to a task order to Aspen Resources Limited, Inc. of Boulder, Colorado for support of the Waste Treatment and Immobilization Plant (WTP) at the Hanford Site. The modification increased the value of the task order to $1.6 million from $833,499. The task order modification has a one-year performance period and two one-year option periods. The Task Order was awarded under an Indefinite Delivery/Indefinite Quantity (ID/IQ) master Contract. Aspen Resources Limited, Inc. is a small-disadvantaged business under the Small Business Administration's

372

West Point Treatment Plant Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Point Treatment Plant Biomass Facility Point Treatment Plant Biomass Facility Jump to: navigation, search Name West Point Treatment Plant Biomass Facility Facility West Point Treatment Plant Sector Biomass Facility Type Non-Fossil Waste Location King County, Washington Coordinates 47.5480339°, -121.9836029° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.5480339,"lon":-121.9836029,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

373

Independent Oversight Review, Waste Treatment and Immobilization Plant -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment and Immobilization Waste Treatment and Immobilization Plant - August 2012 Independent Oversight Review, Waste Treatment and Immobilization Plant - August 2012 August 2012 Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality The U. S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security, conducted independent reviews of selected aspects of construction quality at the Hanford Site Waste Treatment and Immobilization Project (WTP). The reviews for this report were performed on site during February 6-10, 2012 and April 30 - May 4, 2012, and were the latest in a series of ongoing quarterly assessments of construction quality performed by Independent Oversight at the WTP.

374

Independent Oversight Review, Waste Treatment and Immobilization Plant -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oversight Review, Waste Treatment and Immobilization Oversight Review, Waste Treatment and Immobilization Plant - August 2011 Independent Oversight Review, Waste Treatment and Immobilization Plant - August 2011 August 2011 Hanford Waste Treatment and Immobilization Plant Construction Quality The Office of Safety and Emergency Management Evaluations (Independent Oversight) within the Office of Health, Safety and Security (HSS) conducted an independent review of selected aspects of construction quality at the Hanford Waste Treatment and Immobilization Project (WTP). The review, which was performed May 9-12, 2011, was the latest in a series of ongoing quarterly assessments of construction quality performed by Independent Oversight at the WTP construction site. HSS determined that construction quality at WTP was adequate in the areas

375

Energy and air emission implications of a decentralized wastewater system  

NLE Websites -- All DOE Office Websites (Extended Search)

and air emission implications of a decentralized wastewater system and air emission implications of a decentralized wastewater system Title Energy and air emission implications of a decentralized wastewater system Publication Type Journal Article Year of Publication 2012 Authors Shehabi, Arman, Jennifer R. Stokes, and Arpad Horvath Journal Environmental Research Letters Volume 7 Issue 2 Abstract Both centralized and decentralized wastewater systems have distinct engineering, financial and societal benefits. This paper presents a framework for analyzing the environmental effects of decentralized wastewater systems and an evaluation of the environmental impacts associated with two currently operating systems in California, one centralized and one decentralized. A comparison of energy use, greenhouse gas emissions and criteria air pollutants from the systems shows that the scale economies of the centralized plant help lower the environmental burden to less than a fifth of that of the decentralized utility for the same volume treated. The energy and emission burdens of the decentralized plant are reduced when accounting for high-yield wastewater reuse if it supplants an energy-intensive water supply like a desalination one. The centralized facility also reduces greenhouse gases by flaring methane generated during the treatment process, while methane is directly emitted from the decentralized system. The results are compelling enough to indicate that the life-cycle environmental impacts of decentralized designs should be carefully evaluated as part of the design process.

376

Treatment of reactive dyes and textile finishing wastewater using Fenton's oxidation for reuse  

Science Journals Connector (OSTI)

Fenton's oxidation (FO) was used to decolourise and degrade some reactive dyes (Remazol Black 5, Remazol Red, Remazol Blue, Remazol Yellow) and raw textile finishing industry effluents (S1, S2, S3) containing mainly reactive dyes. The operational conditions for pH varied between 2.5 and 4.0 while temperature ranged from 30°C to 50°C. The concentrations of FeSO4 and H2O2 varied to a wide range (200â??600 mg/l of FeSO4, 300â??1000 mg/l of H2O2) depending on the type of the dyes and their mixture and textile additives used in the process. FO is highly effective for colour removal (>99%) for reactive dyes and (87â??94%) for textile finishing wastewater. It can be applied as a pretreatment and the remaining total dissolved solids (TDS) can be removed by an additional advanced process, e.g. membrane process.

Sureyya Meric; Giusy Lofrano; Vincenzo Belgiorno

2005-01-01T23:59:59.000Z

377

Fuel Cell Power Plants Biofuel Case Study- Tulare, CA  

Energy.gov (U.S. Department of Energy (DOE))

Success story about fuel cell power plants using wastewater treatment gas in Tulare, California. Presented by Frank Wolak, Fuel Cell Energy, at the NREL/DOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado.

378

Wastewater minimization in industrial applications: Challenges and solutions  

SciTech Connect

The impetus for waste minimization and water recycle in the metal processing industry comes from increasingly stringent environmental regulations and dwindling water supplies. Tougher discharge permits often dictate additional wastewater treatments, which can make water recycle and waste minimization an attractive option. The most challenging part in the design of a water recycle system is to minimize the capital and operating costs while meeting the water quality requirements of the process. Computer simulation of water recycle alternatives provides: (1) ``expected`` water chemistry, (2) steady-state mass and energy balance for the plant water system, (3) performance of the water treatments considered in the water recycle scheme, and (4) relative economics based on capital and operating costs. The computer simulation study recommends the best wastewater recycle scheme based on economics and technical merits. Benefits of a computer simulation study in the design of water recycle and wastewater minimization processes are illustrated by a case study in the metal processing industry.

Dave, B.B. [Nalco Chemical Co., Naperville, IL (United States)

1998-12-31T23:59:59.000Z

379

Independent Oversight Review, Waste Treatment and Immobilization Plant -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 Independent Oversight Review, Waste Treatment and Immobilization Plant - March 2012 March 2012 Review of the Hanford Site Waste Treatment and Immobilization Plant Project Construction Quality The U.S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security, conducted an independent review of selected aspects of construction quality at the Hanford Site Waste Treatment and Immobilization Plant (WTP). The review, which was performed November 14-17, 2011, was the latest in a series of ongoing quarterly assessments of construction quality performed by Independent Oversight at the WTP construction site. Independent Oversight determined that construction quality at WTP was adequate in the areas reviewed. BNI Engineering has developed appropriate

380

Independent Oversight Review, Waste Treatment and Immobilization Plant -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 2013 January 2013 Independent Oversight Review, Waste Treatment and Immobilization Plant - January 2013 January 2013 Review of the Hanford Waste Treatment and Immobilization Plant Black-Cell and Hard-To-Reach Pipe Spools Procurement Process and the Office of River Protection Audit of That Process The Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security (HSS), conducted a concurrent independent review with the U.S. Department of Energy (DOE) Office of River Protection (ORP) of selected aspects of the Bechtel National, Inc. (BNI) Hanford Site Waste Treatment and Immobilization Plant (WTP) procurement processes for WTP black-cell (BC) and hard-to-reach (HtR) pipe spools. The Independent Oversight review was performed by the HSS Office of Safety and

Note: This page contains sample records for the topic "wastewater treatment plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Independent Oversight Review, Waste Treatment and Immobilization Plant -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 2013 January 2013 Independent Oversight Review, Waste Treatment and Immobilization Plant - January 2013 January 2013 Review of the Hanford Waste Treatment and Immobilization Plant Black-Cell and Hard-To-Reach Pipe Spools Procurement Process and the Office of River Protection Audit of That Process The Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security (HSS), conducted a concurrent independent review with the U.S. Department of Energy (DOE) Office of River Protection (ORP) of selected aspects of the Bechtel National, Inc. (BNI) Hanford Site Waste Treatment and Immobilization Plant (WTP) procurement processes for WTP black-cell (BC) and hard-to-reach (HtR) pipe spools. The Independent Oversight review was performed by the HSS Office of Safety and

382

Independent Oversight Review, Waste Treatment and Immobilization Plant Project- October 2010  

Energy.gov (U.S. Department of Energy (DOE))

Review of Nuclear Safety Culture at the Hanford Site Waste Treatment and Immobilization Plant Project

383

Integrated plant for treatment of liquid radwaste  

SciTech Connect

In the early 1980`s, AECL Research, at its Chalk River Laboratories (CRL) site, built a Waste Treatment Centre for managing low-level radioactive aqueous liquid wastes. At present, two industrial liquid waste streams are being routinely treated. One stream originates from the central Decontamination Centre (DC), where reactor components, protective plastic clothing, and respirators are cleaned. The other Active Drain (AD) stream is produced from a large and diverse number of research laboratories and radioisotope production facilities. The two waste streams, totalling about 2500 m per year (0.66 million US gallons), are volume reduced by a combination of continuous crossflow microfiltration (MF), spiral wound reverse osmosis (SWRO), and tubular reverse osmosis (TRO) membrane technologies; two thin-film evaporators (TFE) are employed for (i) the final volume reduction step, and (ii) the subsequent solidification of evaporator bottom with bitumen for containment of the radioactivity.

Sen Gupta, S.K. [Chalk River Laboratories, Ontario (Canada)

1995-05-01T23:59:59.000Z

384

Desalination and Water Treatment www.deswater.com  

E-Print Network (OSTI)

.22 µm. Seawater, reverse osmosis (RO) concentrate collected from a wastewater reclamation plant for the treatment of saline water and wastewater such as thermal distillation and reverse osmosis [2,3]. MD has several advantages compared to conventional thermal distillation and reverse osmosis processes [3

385

Specific biogas production and role of packing medium in the treatment of rubber thread manufacturing industry wastewater  

Science Journals Connector (OSTI)

Wastewater from three rubber thread manufacturing industries collected from three different...4.../g?COD added when the organic loading rate was altered from 2.0 to 14.0?g?COD/l/d respectively. The biogas production

P. Agamuthu

1999-08-01T23:59:59.000Z

386

Technical Basis for Radiological Emergency Plan Annex for WTD Emergency Response Plan: West Point Treatment Plant  

SciTech Connect

Staff of the King County Wastewater Treatment Division (WTD) have concern about the aftermath of a radiological dispersion event (RDE) leading to the introduction of significant quantities of radioactive material into the combined sanitary and storm sewer system in King County, Washington. Radioactive material could come from the use of a radiological dispersion device (RDD). RDDs include "dirty bombs" that are not nuclear detonations but are explosives designed to spread radioactive material (National Council on Radiation Protection and Measurements (NCRP) 2001). Radioactive material also could come from deliberate introduction or dispersion of radioactive material into the environment, including waterways and water supply systems. This document, Volume 3 of PNNL-15163 is the technical basis for the Annex to the West Point Treatment Plant (WPTP) Emergency Response Plan related to responding to a radiological emergency at the WPTP. The plan primarily considers response to radioactive material that has been introduced in the other combined sanitary and storm sewer system from a radiological dispersion device, but is applicable to any accidental or deliberate introduction of materials into the system.

Hickey, Eva E.; Strom, Daniel J.

2005-08-01T23:59:59.000Z

387

TECHNICAL ARTICLES PLANTS USED IN CONSTRUCTED WETLANDS AND THEIR  

E-Print Network (OSTI)

TECHNICAL ARTICLES #12;2 PLANTS USED IN CONSTRUCTED WETLANDS AND THEIR FUNCTIONS Hans Brix Risskov, Denmark ABSTRACT Vegetation plays an important role in wastewater treatment wetlands. Plants treatment systems aesthetically pleasing. Wetland species of all growth forms have been used in treatment

Brix, Hans

388

Radiological Monitoring of Waste Treatment Plant  

SciTech Connect

Scheduled waste in West Malaysia is handled by Concession Company and is stored and then is incinerated. It is known that incineration process may result in naturally occurring radioactive materials (NORM) to be concentrated. In this study we have measured three samples consist of by-product from the operation process such as slag, filter cake and fly ash. Other various environmental media such as air, surface water, groundwater and soil within and around the plant have also been analysed for their radioactivity levels. The concentration of Ra-226, Ac-228 and K-40 in slag are 0.062 Bq/g, 0.016 Bq/g and 0.19 Bq/g respectively. The total activity (Ra{sub eq}) in slag is 99.5 Bq/kg. The concentration in fly ash is 0.032 Bq/g, 0.16 Bq/g and 0.34 Bq/g for Ra-226, Ac-228 and K-40 respectively resulting in Raeq of 287.0 Bq/kg. For filter cake, the concentration is 0.13 Bq/g, 0.031 Bq/g and 0.33 Bq/g for Ra-226, Ac-228 and K-40 respectively resulting in Raeq of 199.7 Bq/kg. The external radiation level ranges from 0.08 {mu}Sv/h (Administrative building) to 0.35 {mu}Sv/h (TENORM storage area). The concentration level of radon and thoron progeny varies from 0.0001 to 0.0016 WL and 0.0006 WL to 0.002 WL respectively. For soil samples, the activity ranges from 0.11 Bq/g to 0.29 Bq/g, 0.06 Bq/g to 0.18 Bq/g and 0.065 Bq/g to 0.38 Bq/g for Ra-226, Ac-228 and K-40 respectively. While activity in water, except for a trace of K-40, it is non-detectable.

Amin, Y. M. [Physics Dept, University of Malaya, 50603 Kuala Lumpur (Malaysia); Nik, H. W. [Asialab (Malaysia) Sdn Bhd, 14 Jalan Industri USJ 1, 47600 Subang Jaya (Malaysia)

2011-03-30T23:59:59.000Z

389

Hanford Waste Treatment and Immobilization Plant Construction Quality, August 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independent Review Report Independent Review Report Waste Treatment and Immobilization Plant Construction Quality May 2011 August 2011 Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose ................................................................................................................................................. 1 2.0 Background .......................................................................................................................................... 1 3.0 Scope .................................................................................................................................................... 1 4.0 Results .................................................................................................................................................. 2

390

Independent Oversight Review, Waste Treatment and Immobilization Plant -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 2012 August 2012 Independent Oversight Review, Waste Treatment and Immobilization Plant - August 2012 August 2012 Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality The U. S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security, conducted independent reviews of selected aspects of construction quality at the Hanford Site Waste Treatment and Immobilization Project (WTP). The reviews for this report were performed on site during February 6-10, 2012 and April 30 - May 4, 2012, and were the latest in a series of ongoing quarterly assessments of construction quality performed by Independent Oversight at the WTP. Independent Oversight determined that construction quality at WTP is

391

Biodegradation of triclosan as a representative of Pharmaceuticals and Personal Care Products (PPCPs) in the wastewater environment.  

E-Print Network (OSTI)

??Mechanisms involved in triclosan removal in conventional wastewater treatment processes include sorption and biodegradation. Achieving efficient biodegradation of triclosan through wastewater treatment processes is critical… (more)

Qiu, Xiaoxia

2012-01-01T23:59:59.000Z

392

Treatment of municipal wastewater reverse osmosis concentrate using UVC-LED/H2O2 with and without coagulation pre-treatment  

Science Journals Connector (OSTI)

Abstract The potential of a prototype batch reactor using ultraviolet light emitting diodes (UVC-LEDs) which emit at 255 nm in conjunction with H2O2 for the treatment of a highly saline (electrical conductivity ?22 mS/cm; DOC 32–37.5 mg/L) municipal wastewater reverse osmosis concentrate was investigated. Mineralization of organic content (measured as DOC) was low (22%) due to the low fluence rate (0.14 mW/cm2), however, a large reduction in colour (94%) and A254 (75%) occurred after delivering a UV fluence of 48 × 103 mJ/cm2 at the original pH of 8.3. Fairly similar results were obtained at pH 7, but the reduction of DOC increased at lower pH with 38% and 36% achieved at pH 4 and 5, respectively. Similar trends were observed for colour and A254 reduction. These results, in conjunction with excitation–emission matrix spectra, biological dissolved organic carbon (BDOC) assay and apparent molecular size distribution, demonstrated that the prototype system led to the breakdown of the chromophore bonds and thus changes in the molecular structure, and degradation of high molecular weight (MW) compounds to low MW compounds. Coagulation (1.5 and 3 mmol L?1 Al3+ at pH 5) led to a significant reduction of DOC (34–38%), colour (50–66%) and A254 (47–54%), and subsequent UVC/H2O2 treatment led to further reduction in these parameters. For a target DOC reduction of 15 mg/L, the EE/O was 15 kWh/m3 when coagulation was used as pre-treatment to the UVC/H2O2 treatment (UV fluence 36 × 103 mJ/cm2) and it reduced to less than half after biological treatment (as BDOC assay). This study demonstrated the potential of UV-LEDs as an alternative UV source for degrading the organic matter in ROC using advanced oxidation.

M. Umar; F.A. Roddick; L. Fan; O. Autin; B. Jefferson

2015-01-01T23:59:59.000Z

393

Experimental and theoretical analysis of a nondispersive solvent extraction pilot plant for the removal of Cr(VI) from a galvanic process wastewaters  

SciTech Connect

The scale-up of a chemical process from the results obtained in a laboratory scale involves a high degree of uncertainty. Experimental tests in pilot plants are therefore necessary in order to decrease that uncertainty. When the processes are not simple, these experimental tests should be supplemented by simulation studies which are a highly useful tool in the analysis of a chemical plant. A nondispersive solvent extraction (NDSX) plant includes two processes, extraction and stripping, coupled by an organic phase. Because of this fact, the variables of the system are interrelated, making the prediction of the behavior of the whole system difficult. Because of this complexity, in this work, the behavior of a NDSX pilot plant has been experimentally and theoretically analyzed. The removal and recovery of chromium(VI) from wastewaters of a galvanic process have been used as a case study for the simulation and experimental analysis of the NDSX process. The mathematical model consists of nonlinear partial differential equations which are solved using the process simulator gPROMS. Once the suitability of the proposed model and parameters for the description of removal and concentration of Cr(VI) in the NDSX pilot plant was checked, the simulation was used to perform a sensitivity analysis to operating variables such as flow rates, volumes, total carrier concentration, and initial complex species concentration. The theoretically predicted behavior was checked with some experimental results, and a satisfactory performance of the pilot plant was achieved.

Alonso, A.I.; Galan, B.; Gonzalez, M.; Ortiz, I. [Univ. de Cantabria, Santander (Spain). Dept. Quimica] [Univ. de Cantabria, Santander (Spain). Dept. Quimica

1999-04-01T23:59:59.000Z

394

E-Print Network 3.0 - area industrial wastewater Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Sciences and Ecology 3 Harvesting Energy from Wastewater Treatment Summary: Biogas: - 60% H2 - 40% CO2 12;H2 from industrial wastewaters such as food processing...

395

Treatment of effluents from wool dyeing process by photo-Fenton at solar pilot plant  

Science Journals Connector (OSTI)

Abstract The decolourization and mineralization of simulated wastewaters from wool dyeing tanks were investigated by Fenton and photo-Fenton processes. Yellow, red and blue dyebaths with azo-type and anthraquinone dyes and additives were selected as colored effluents. Photo-Fenton reaction was much more efficient than the respective dark reaction under identical experimental conditions. The effect of H2O2 and Fe(II) dosage and fractional or initial addition of these reagents on the photo-mineralization processes were studied and the optimal conditions found. Experiments at a pilot plant based on compound parabolic collectors (CPCs) confirmed that, under optimal conditions, 100% of color removal was obtained requiring low accumulated energy. No toxic effects on marine bacteria Vibrio fischeri were observed at the end of photo-Fenton treatment for all studied effluents. High concentrations of sodium acetate are used as additive in the wool dying process. HPLC and TOC analysis of the effluents after photo-Fenton process confirmed that the remaining organic carbon is due to the presence of acetates. The obtained results showed the feasibility of photo-Fenton process to achieve suitable water qualities for internal reuse.

M.J. Hernández-Rodríguez; C. Fernández-Rodríguez; J.M. Doña-Rodríguez; O.M. González-Díaz; D. Zerbani; J. Pérez Peña

2014-01-01T23:59:59.000Z

396

California Food Processing Industry Wastewater Demonstration Project: Phase I Final Report  

SciTech Connect

Wastewater treatment is an energy-intensive process and electricity demand is especially high during the utilities summer peak electricity demand periods. This makes wastewater treatment facilities prime candidates for demand response programs. However, wastewater treatment is often peripheral to food processing operations and its demand response opportunities have often been overlooked. Phase I of this wastewater demonstration project monitored wastewater energy and environmental data at Bell-Carter Foods, Inc., California's largest olive processing plant. For this monitoring activity the project team used Green Energy Management System (GEMS) automated enterprise energy management (EEM) technologies. This report presents results from data collected by GEMS from September 15, 2008 through November 30, 2008, during the olive harvest season. This project established and tested a methodology for (1) gathering baseline energy and environmental data at an industrial food-processing plant and (2) using the data to analyze energy efficiency, demand response, daily peak load management, and environmental management opportunities at the plant. The Phase I goals were to demonstrate the measurement and interrelationship of electricity demand, electricity usage, and water quality metrics and to estimate the associated CO{sub 2} emissions.

Lewis, Glen; Atkinson, Barbara; Rhyne, Ivin

2009-09-09T23:59:59.000Z

397

Waste Treatment and Immobilation Plant HLW Waste Vitrification Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 6 Technology Readiness Assessment for the Waste Treatment and Immobilization Plant (WTP) HLW Waste Vitrification Facility L. Holton D. Alexander C. Babel H. Sutter J. Young August 2007 Prepared by the U.S. Department of Energy Office of River Protection Richland, Washington, 99352 07-DESIGN-046 Technology Readiness Assessment for the Waste Treatment and Immobilization Plant (WTP) HLW Waste Vitrification Facility L. Holton D. Alexander C. Babel H. Sutter J. Young August 2007 Prepared by the U.S. Department of Energy Office of River Protection under Contract DE-AC05-76RL01830 07-DESIGN-046 iii Summary The U.S. Department of Energy (DOE), Office of River Protection (ORP) and the DOE Office of Environmental and Radioactive Waste Management (EM), Office of Project Recovery have completed a

398

Record of Decision; Southeast Regional Wastewater Treatment Plant Facilities Improvements Project and Geyesers Effluent Pipeline Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

60 60 Federal Register / Vol. 60, No. 198 / Friday, October 13, 1995 / Notices The Department is publishing in the Federal Register the Petition for Waiver in its entirely. The Petition contains no confidential information. The Department is soliciting comments, data, and information respecting the Petition. Sincerely, Christine A. Ervin, Assistant Secretary, Energy Efficiency and Renewable Energy. August 8, 1995. Assistant Secretary, Conservation & Renewable Energy, United States Department of Energy, 1000 Independence Avenue, SW., Washington, D.C. Subject: Petition for Waiver and Application for Interim Waiver. Dear Assistant Secretary: This is a Petition for Waiver and Application for Interim Waiver submitted pursuant to Title 10 CFR 430.27, as amended 14 November 1986.

399

In Situ Characterization ofNitrospira-Like Nitrite-Oxidizing Bacteria Active in Wastewater Treatment Plants  

Science Journals Connector (OSTI)

...calculated by the plotting software based on a sigmoidal curve fit model. Error bars indicate 1 standard...of cell aggregates, organic polymers, and cavities may also apply...Rath H.-P. Koops J. Flood R. Amann In situ analysis...

Holger Daims; Jeppe L. Nielsen; Per H. Nielsen; Karl-Heinz Schleifer; Michael Wagner

2001-11-01T23:59:59.000Z

400

Hanford Waste Treatment Plant Sets Massive Protective Shield door in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment Plant Sets Massive Protective Shield door Waste Treatment Plant Sets Massive Protective Shield door in Pretreatment Facility Hanford Waste Treatment Plant Sets Massive Protective Shield door in Pretreatment Facility January 12, 2011 - 12:00pm Addthis The carbon steel doors come together to form an upside-down L-shape. The 102-ton door was set on top of the 85-ton door that was installed at the end of December. The carbon steel doors come together to form an upside-down L-shape. The 102-ton door was set on top of the 85-ton door that was installed at the end of December. The 102-ton shield door measures 52 feet wide and 15 feet tall The 102-ton shield door measures 52 feet wide and 15 feet tall The carbon steel doors come together to form an upside-down L-shape. The 102-ton door was set on top of the 85-ton door that was installed at the end of December.

Note: This page contains sample records for the topic "wastewater treatment plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Polishing of synthetic electroplating wastewater in microcosm upflow constructed wetlands: Effect of operating conditions  

E-Print Network (OSTI)

Polishing of synthetic electroplating wastewater in microcosm upflow constructed wetlands: Effect of polishing electroplating wastewater in subsurface vertical flow constructed wetland. Electroplating wastewater treatment or polishing in constructed wetlands (CWs) was studied to a very limited degree. Four

Paris-Sud XI, Université de

402

The Attainable Set for a Nonlinear Control Model of Wastewater Biotreatment  

E-Print Network (OSTI)

The Attainable Set for a Nonlinear Control Model of Wastewater Biotreatment Ellina Grigorieva;Biotreatment of Wastewater Treatment of wastewater is needed to eliminate pathogens and reduce organic matter

Grigorieva, Ellina V.

403

Emerging contaminants in wastewater and river water: Risks for human water security and aquatic ecosystem sustainability?  

E-Print Network (OSTI)

Emerging contaminants in wastewater and river water: Risks for human water security and aquatic and Environmental Science (BRGM), Orléans, France ; 2 National Research Institute for Rural Engineering, Water systems. Since degradation rates in conventional sewage treatment plants (STP) are rather low, ECs enter

Paris-Sud XI, Université de

404

Wastewater Discharge, Nutrient Loading, and Dissolved Oxygen Dynamics in a Shallow Texas Bay  

E-Print Network (OSTI)

In Oso Bay, a wastewater treatment plant acts as a source of eutrophication and may have measureable impact on the health of the bay. The objectives of this study were to create a model for modeling dissolved oxygen concentrations over time...

Schroer, Lee Allen

2014-05-07T23:59:59.000Z

405

NETL: Water-Energy Interface - Power Plant Water Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Use of Treated Municipal Wastewater as Power Plant Cooling System Makeup Water: Tertiary Treatment versus Expanded Chemical Regimen for Recirculating Water Quality Management Use of Treated Municipal Wastewater as Power Plant Cooling System Makeup Water: Tertiary Treatment versus Expanded Chemical Regimen for Recirculating Water Quality Management Carnegie Mellon University, in a joint effort with the University of Pittsburgh, is conducting a study of the use of treated municipal wastewater as cooling system makeup for coal fired power plants. This project builds upon a study sponsored by the U.S. Department of Energy entitled, "Reuse of Treated Internal or External Wastewaters in the Cooling Systems of Coal-Based Thermoelectric Power Plants," which showed that treated municipal wastewater is the most common and widespread source in the United States. Data analysis revealed that 81 percent of power plants proposed for construction by the Energy Information Administration (EIA) would have sufficient cooling water supply from one to two publicly owned treatment works (POTW) within a 10-mile radius, while 97 percent of the proposed power plants would be able to meet their cooling water needs with one to two POTWs within 25 miles of these plants. Thus, municipal wastewater will be the impaired water source most likely to be locally available in sufficient and reliable quantities for power plants. Results of initial studies indicate that it is feasible to use secondary treated municipal wastewater as cooling system makeup. The biodegradable organic matter, ammonia-nitrogen, and phosphorus in the treated wastewater pose challenges with respect to enhanced biofouling, corrosion, and scaling, although current research is demonstrating that these problems can be controlled through aggressive chemical management. It is currently unclear whether tertiary treatment of municipal waste water prior to its re-use can be a cost-effective option to aggressive chemical management of the bulk cooling water volume.

406

Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant and Tank Farm – January 2014  

Energy.gov (U.S. Department of Energy (DOE))

Hanford Waste Treatment and Immobilization Plant Engineering Activities and Tank Farm Operations [HIAR-HANFORD-2014-01-13

407

Integration of algae cultivation as biodiesel production feedstock with municipal wastewater treatment: Strains screening and significance evaluation of environmental factors  

Science Journals Connector (OSTI)

The objectives of this study are to find the robust strains for the centrate cultivation system and to evaluate the effect of environmental factors including light intensity, light–dark cycle, and exogenous CO2 concentration on biomass accumulation, wastewater nutrient removal and biodiesel production. The results showed that all 14 algae strains from the genus of Chlorella, Haematococcus, Scenedesmus, Chlamydomonas, and Chloroccum were able to grow on centrate. The highest net biomass accumulation (2.01 g/L) was observed with Chlorella kessleri followed by Chlorella protothecoides (1.31 g/L), and both of them were proved to be capable of mixotrophic growth when cultivated on centrate. Environmental factors had significant effect on algal biomass accumulation, wastewater nutrients removal and biodiesel production. Higher light intensity and exogenous CO2 concentration with longer lighting period promote biomass accumulation, biodiesel production, as well as the removal of chemical oxygen demand and nitrogen, while, lower exogenous CO2 concentration promotes phosphorus removal.

Yecong Li; Wenguang Zhou; Bing Hu; Min Min; Paul Chen; Roger R. Ruan

2011-01-01T23:59:59.000Z

408

Opportunities for Open Automated Demand Response in Wastewater Treatment Facilities in California - Phase II Report. San Luis Rey Wastewater Treatment Plant Case Study  

E-Print Network (OSTI)

your Power. (2008). "Demand Response Programs." RetrievedTool Berkeley, CA, Demand Response Research Center.2008). "What is Demand Response?" Retrieved 10/10/2008, from

Thompson, Lisa

2010-01-01T23:59:59.000Z

409

Quantification and characterization of dissolved organic nitrogen in wastewater effluents by electrodialysis treatment followed by size-exclusion chromatography with nitrogen detection  

Science Journals Connector (OSTI)

Abstract Dissolved organic nitrogen (DON) can act as a precursor of nitrogenous disinfection byproducts during oxidative water treatment. Quantification and characterization of DON are still challenging for waters with high concentrations of dissolved inorganic nitrogen (DIN, including ammonia, nitrate and nitrite) relative to total dissolved nitrogen (TDN) due to the cumulative analytical errors of independently measured nitrogen species (i.e., DON = TDN ?  NO 2 ?  ?  NO 3 ?  ?  NH 4 + /NH3) and interference of DIN species to TDN quantification. In this study, a novel electrodialysis (ED)-based treatment for selective DIN removal was developed and optimized with respect to type of ion-exchange membrane, sample pH, and ED duration. The optimized ED method was then coupled with size-exclusion chromatography with organic carbon, UV, and nitrogen detection (SEC-OCD-ND) for advanced DON analysis in wastewater effluents. Among the tested ion-exchange membranes, the PC-AR anion- and CMT cation-exchange membranes showed the lowest DOC loss (1–7%) during ED treatment of a wastewater effluent at ambient pH (8.0). A good correlation was found between the decrease of the DIN/TDN ratio and conductivity. Therefore, conductivity has been adopted as a convenient way to determine the optimal duration of the ED treatment. In the pH range of 7.0–8.3, ED treatment of various wastewater effluents with the PC-AR/CMT membranes showed that the relative residual conductivity could be reduced to less than 0.50 (DIN removal >90%; DIN/TDN ratio ?0.60) with lower DOC losses (6%) than the previous dialysis and nanofiltration methods (DOC loss >10%). In addition, the ED method is shorter (0.5 h) than the previous methods (>1–24 h). The relative residual conductivity was further reduced to ?0.20 (DIN removal >95%; DIN/TDN ratio ?0.35) by increasing the ED duration to 0.7 h (DOC loss = 8%) for analysis by SEC-OCD-ND, which provided new information on distribution and ratio of organic carbon and nitrogen in different molecular weight fractions of effluent organic matter.

Kangmin Chon; Yunho Lee; Jacqueline Traber; Urs von Gunten

2013-01-01T23:59:59.000Z

410

Sampling and Analysis Plan - Waste Treatment Plant Seismic Boreholes Project  

SciTech Connect

This sampling and analysis plan (SAP) describes planned data collection activities for four entry boreholes through the sediment overlying the basalt, up to three new deep rotary boreholes through the basalt and sedimentary interbeds, and one corehole through the basalt and sedimentary interbeds at the Waste Treatment Plant (WTP) site. The SAP will be used in concert with the quality assurance plan for the project to guide the procedure development and data collection activities needed to support borehole drilling, geophysical measurements, and sampling. This SAP identifies the American Society of Testing Materials standards, Hanford Site procedures, and other guidance to be followed for data collection activities.

Reidel, Steve P.

2006-05-26T23:59:59.000Z

411

Printing ink and paper recycling sources of TMDD in wastewater and rivers  

Science Journals Connector (OSTI)

Abstract 2,4,7,9-Tetramethyl-5-decyne-4,7-diol (TMDD) is a non-ionic surfactant which is preferentially used as defoamer in paints and printing ink and for the treatment of surfaces. Effluents of wastewater treatment plants (WWTPs) have been identified as the domination point sources for TMDD in rivers since the removal rate of the compound in the \\{WWTPs\\} is in general less than 70%. However, the dominating entry pathways of TMDD into the sewage were unknown so far. In this study effluents from both, municipal \\{WWTPs\\} with and without treatment of indirect industrial dischargers and from industrial \\{WWTPs\\} with direct discharge of wastewater into receiving rivers were analyzed for the first time to identify the proportions of TMDD coming from domestic wastewater and from various industrial sources. Moreover, rivers were samples before and after the influent of sewage water from WWTPs. The TMDD concentrations in the water samples were measured using solid phase extraction (SPE) followed by gas chromatography/mass spectrometry (GC/MS). High TMDD concentrations were found in rivers (up to 63.5 ?g/L), and in effluents of \\{WWTPs\\} (up to 310 ?g/L) affected by wastewater from paper recycling industry and factories producing paint and printing ink. Concentrations of TMDD revealed to be far higher in wastewater from factories processing recycled paper (up to 113 ?g/L) compared to wastewater from factories not processing recycled paper (0.066 ?g/L). The results indicate that the use of recycling paper in the paper production process is the dominating reason for increased TMDD concentrations in wastewaters and receiving rivers due to the wash out of TMDD from the paper impregnated with printing ink. Very high TMDD concentrations (up to 3300 ?g/L) were also detected in wastewater from a printing ink factory and a paint factory.

Arlen A. Guedez; Wilhelm Püttmann

2014-01-01T23:59:59.000Z

412

ED-WAVE: an Educational Software for Training on Wastewater Technologies  

E-Print Network (OSTI)

ED-WAVE: an Educational Software for Training on Wastewater Technologies Using Virtual Application database and case base reasoning in the field of wastewater treatment and water reclamation. ED-WAVE aims education; wastewater technolo- gies; wastewater treatment animations INTRODUCTION SUSTAINABILITY

Gutierrez, Diego

413

Hanford ETR - Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - Estimate at Completion (Cost) Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Comprehensive Review of the Hanford Tank Waste Treatment and Immobilization Plant Estimate at Completion Assessment Conducted by an Independent Team of External Experts March 2006 Comprehensive Review of the Hanford Waste Treatment Plant Estimate at Completion Page i of vi Executive Summary Following an August 2005 corporate commitment to the Secretary of Energy, Bechtel National, Inc. chartered a team of industry experts to review the technical, cost, and schedule aspects of the Waste Treatment and Immobilization Plant (WTP) project. This summary reflects the observations and recommendations of the EAC Review Team (ERT), comprised of six senior industry consultants, six retired Bechtel employees, one current Bechtel employee, three employees of Bechtel's competitors, and

414

Engineered nanoparticles in wastewater and wastewater sludge - Evidence and impacts  

SciTech Connect

Nanotechnology has widespread application in agricultural, environmental and industrial sectors ranging from fabrication of molecular assemblies to microbial array chips. Despite the booming application of nanotechnology, there have been serious implications which are coming into light in the recent years within different environmental compartments, namely air, water and soil and its likely impact on the human health. Health and environmental effects of common metals and materials are well-known, however, when the metals and materials take the form of nanoparticles - consequential hazards based on shape and size are yet to be explored. The nanoparticles released from different nanomaterials used in our household and industrial commodities find their way through waste disposal routes into the wastewater treatment facilities and end up in wastewater sludge. Further escape of these nanoparticles into the effluent will contaminate the aquatic and soil environment. Hence, an understanding of the presence, behavior and impact of these nanoparticles in wastewater and wastewater sludge is necessary and timely. Despite the lack of sufficient literature, the present review attempts to link various compartmentalization aspects of the nanoparticles, their physical properties and toxicity in wastewater and wastewater sludge through simile drawn from other environmental streams.

Brar, Satinder K., E-mail: satinder.brar@ete.inrs.c [INRS-ETE, Universite du Quebec, 490, Rue de la Couronne, Quebec, G1K 9A9 (Canada); Verma, Mausam [Department of Biological Engineering, Sexton Campus, Dalhousie University, Halifax, Nova Scotia, Canada B3J 2X4 (Canada); Tyagi, R.D. [INRS-ETE, Universite du Quebec, 490, Rue de la Couronne, Quebec, G1K 9A9 (Canada); Surampalli, R.Y. [US Environmental Protection Agency, P.O. Box 17-2141, Kansas City, KS 66117 (United States)

2010-03-15T23:59:59.000Z

415

Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant – March 31 – April 10, 2014  

Energy.gov (U.S. Department of Energy (DOE))

Observation of the Hanford Waste Treatment and Immobilization Plant Low Activity Waste Facility Hazards Analysis Activities [IAR-WTP-2014-03-31

416

Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant- June 2013  

Energy.gov (U.S. Department of Energy (DOE))

Hanford Waste Treatment and Immobilization Plant Low Activity Waste Melter Off-gas Process System Hazards Analysis Activity Observation [HIAR-WTP-2013-05-13

417

Voluntary Protection Program Onsite Review, Waste Treatment Plant Hanford Site- June 2010  

Energy.gov (U.S. Department of Energy (DOE))

Evaluation to determine whether the Waste Treatment Plant Hanford Site is continuing to perform at a level deserving DOE-VPP Star recognition.

418

Voluntary Protection Program Onsite Review, Waste Treatment Plant Construction Project- June 2010  

Energy.gov (U.S. Department of Energy (DOE))

Evaluation to determine whether Waste Treatment Plant Construction Project is continuing to perform at a level deserving DOE-VPP Star recognition.

419

Enterprise Assessments Operational Awareness Record, Waste Treatment and Immobilization Plant – December 2014  

Energy.gov (U.S. Department of Energy (DOE))

Operational Awareness Record for the Waste Treatment and Immobilization Plant Low Activity Waste Facility Reagents Systems Hazards Analysis Activity Observation (EA-WTP-LAW-2014-06-02)

420

Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant – October 2013  

Energy.gov (U.S. Department of Energy (DOE))

Observation of Waste Treatment and Immobilization Plant Low Activity Waste Melter and Melter Off-gas Process System Hazards Analysis Activities [HIAR-WTP-2013-10-21

Note: This page contains sample records for the topic "wastewater treatment plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant – February 2014  

Energy.gov (U.S. Department of Energy (DOE))

Hanford Waste Treatment and Immobilization Plant Low Activity Waste Facility Off-gas Systems Hazards Analysis Activities [HIAR-WTP-2014-01-27

422

Voluntary Protection Program Onsite Review, Bechtel National Inc., Waste Treatment Plant Construction Site – November 2013  

Energy.gov (U.S. Department of Energy (DOE))

Evaluation to determine whether Bechtel National Inc., Waste Treatment Plant Construction Site is performing at a level deserving DOE-VPP Star recognition.

423

Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant – July 2013  

Energy.gov (U.S. Department of Energy (DOE))

Operational Awareness of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity [HIAR-WTP-2013-07-31

424

Management of NORM-containing processing residuals from hydrocarbons extraction and treatment plants  

Science Journals Connector (OSTI)

......quantity of waste produced...1995, integrated and corrected...model for treatment, storage...and Display System (READY...extraction and treatment plants. | Eni...Industrial Waste 0 Radioisotopes...prevention & control Industry......

F. Devecchi; G. Colombo; R. Fresca Fantoni; S. De Zolt; F. Trotti; C. Zampieri

2009-12-01T23:59:59.000Z

425

Wastewater management utilizing land application for the Boston Harbor-Eastern Massachusetts Metropolitan Area. Technical data. Volume 5  

SciTech Connect

The U.S. Army Corps of Engineers, NED, in cooperation with several agencies under the administration of the Technical Subcommittee on Boston Harbor, is directing a segment of the Wastewater Management Study for Eastern Massachusetts which proposed the utilization of land application methods to further treat and make use of conventionally treated wastewaters. The entire wastewater management study for Eastern Massachusetts consisted of five alternatives. Four of the conceptual alternatives are being prepared under the direction of the Metropolitan District Commission (MDC). The land application alternative is labeled Concept 5 and provides land application treatment for effluents from five of the regional waste treatment plant locations described in Concept 4. The report presented herein constitutes the land-oriented treatment system known as Concept 5.

NONE

1995-06-01T23:59:59.000Z

426

Water treatment facilities (excluding wastewater facilities). (Latest citations from the Selected Water Resources Abstracts database). Published Search  

SciTech Connect

The bibliography contains citations concerning the design, construction, costs, and operation of water treatment facilities. Facilities covered include those that provide drinking water, domestic water, and water for industrial use. Types of water treatment covered include reverse osmosis, chlorination, filtration, and ozonization. Waste water treatment facilities are excluded from this bibliography. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1993-07-01T23:59:59.000Z

427

Sampling and Analysis Plan Waste Treatment Plant Seismic Boreholes Project.  

SciTech Connect

This sampling and analysis plan (SAP) describes planned data collection activities for four entry boreholes through the sediment overlying the Saddle Mountains Basalt, up to three new deep rotary boreholes through the Saddle Mountains Basalt and sedimentary interbeds, and one corehole through the Saddle Mountains Basalt and sedimentary interbeds at the Waste Treatment Plant (WTP) site. The SAP will be used in concert with the quality assurance plan for the project to guide the procedure development and data collection activities needed to support borehole drilling, geophysical measurements, and sampling. This SAP identifies the American Society of Testing Materials standards, Hanford Site procedures, and other guidance to be followed for data collection activities. Revision 3 incorporates all interim change notices (ICN) that were issued to Revision 2 prior to completion of sampling and analysis activities for the WTP Seismic Boreholes Project. This revision also incorporates changes to the exact number of samples submitted for dynamic testing as directed by the U.S. Army Corps of Engineers. Revision 3 represents the final version of the SAP.

Brouns, Thomas M.

2007-07-15T23:59:59.000Z

428

California Food Processing Industry Wastewater Demonstration Project: Phase I Final Report  

E-Print Network (OSTI)

Energy Efficiency and Automated Demand Response in Wastewater Treatment Facilities in California: Phase I Report, summarizes the status and potential

Lewis, Glen

2010-01-01T23:59:59.000Z

429

Environmental Solutions, A Summary of Contributions for CY04: Battelle Contributions to the Waste Treatment Plant  

SciTech Connect

In support of the Waste Treatment Plant (WTP), Battelle conducted tests on mixing specific wastes within the plant, removing troublesome materials from the waste before treatment, and determining if the final waste forms met the established criteria. In addition, several Battelle experts filled full-time positions in WTP's Research and Testing and Process and Operations departments.

Beeman, Gordon H.

2005-03-08T23:59:59.000Z

430

Solid-Liquid Separation of Animal Manure and Wastewater  

E-Print Network (OSTI)

Solid-liquid separation is an alternative treatment for animal manure and process-generated wastewater. This publication explains the techniques, equipment, performance and economics of separators....

Mukhtar, Saqib; Sweeten, John M.; Auvermann, Brent W.

1999-10-19T23:59:59.000Z

431

Unique process combination decontaminates mixed wastewater at Rocky Flats  

SciTech Connect

This paper describes the Sitewide Water Treatment Facility (SWTF) used to process environmental remediation wastewaters found at the Rocky Flats Environmental Technology Site.

Kelso, William J.; Cirillo, J. Russ

1999-08-01T23:59:59.000Z

432

Field Demonstration of the Performance of Wastewater Treatment Solution (WTS®) to Reduce Phosphorus and other Substances from Dairy Lagoon Effluent  

E-Print Network (OSTI)

.1 gal/100 head-day (based on 600 heads). To mimic the repeatability of lagoon treatment, two large tanks were filled with untreated flushed manure to assess the treatment effect on flushed manure from free-stall. Tank 1 (T1) was treated manually on a...

Mukthar, Saqib; Rahman, Shafiqur; Gregory, Lucas

433

03/0924 1 st INTERNATIONAL SEMINAR ON THE USE OF AQUATIC MACROPKYTES FOR WASTEWATER  

E-Print Network (OSTI)

Filters (RBF). "Rustic" and rather simple wastewater treatment systems for such small communities in rural03/0924 1 st INTERNATIONAL SEMINAR ON THE USE OF AQUATIC MACROPKYTES FOR WASTEWATER TREATMENT IN CONSTRUCTED WETLANDS £-10 CONSTRUCTED WETLANDS FOR WASTEWATER TREATMENT : THE FRENCH EXPERIENCE Catherine

Paris-Sud XI, Université de

434

Designing a wastewater and storm water management system for a new sealed lead acid battery facility  

SciTech Connect

Design of a new lead acid battery manufacturing facility requires careful planning to ensure compliance with wastewater, storm water, air quality and hazardous waste regulations. A case history is presented describing the planning approach to development of a wastewater and storm water management system for an SLA (sealed lead acid) battery plant in Columbus, Georgia. Several pollution prevention concepts were utilized in the design of the wastewater management system, which resulted in an 80% reduction in wastewater volume, and at the same time ensured compliance with the mass-based federal categorical effluent limits. Storm water management features were focused on eliminating any outdoor areas of industrial activity by avoiding outdoor storage areas to the extent possible, containment of remaining areas, and stringent air emission control concepts. Federal effluent guidelines for the battery manufacturing point source category as well as federal regulations governing the industrial storm water discharge permitting program were the key factors in motivating the design concepts utilized. Areas affected by the design concepts included facility layout, HVAC system design, process recovery systems, chemical storage and containment, and wastewater treatment technology. The facility has been in compliance with all applicable environmental regulations since startup in August, 1992 and has been awarded the 1995 Matsushita Electric Corporation`s President`s Award for Environmental Excellence.

Nichols, C.P.; Langan, M.M.

1996-12-31T23:59:59.000Z

435

Review of Nuclear Safety Culture at the Hanford Site Waste Treatment and Immobilization Plant Project, October 2010  

Energy.gov (U.S. Department of Energy (DOE))

Review of Nuclear Safety Culture at the Hanford Site Waste Treatment and Immobilization Plant Project, October 2010

436

NETL: Water-Energy Interface - Power Plant Water Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Fate of As, Se, Hg in a Passive Integrated System for Treatment of Fossil Plant Wastewater - Tennessee Valley Authority (TVA) Fate of As, Se, Hg in a Passive Integrated System for Treatment of Fossil Plant Wastewater - Tennessee Valley Authority (TVA) TVA, in cooperation with EPRI and the American Electric Power (AEP), is installing a demonstration passive treatment system at the Paradise Fossil Plant near Drakesboro, Kentucky, to treat ammonia in the flue gas desulfurization (FGD) effluent stream. The passive system is used to convert ammonia in the wastewater to nitrate in an aerobic component, followed by denitrification in anaerobic wetlands. In addition to NH 4, the wastewater stream also contains other hazardous pollutants captured from flue gas emissions, including arsenic (As), selenium (Se), and mercury (Hg). Biogeochemical reactions could affect the retention and speciation of As, Se, and Hg in the wastewater as it moves through the treatment system. A more thorough understanding of these transformations is needed. For this project, an extraction trench component is being used for removal of As, Se, and Hg. This extraction trench is integrated into the passive system components described above, which is installed and operated by TVA with support from EPRI.

437

Wastewater effects on montmorillonite suspensions and hydraulic properties of sandy soils  

SciTech Connect

Recycled wastewater effluent is an important source of irrigation water in arid and semiarid regions. In these regions, however, irrigation water quality is one of the main factors limiting plant growth. Wastewater effluents generally contain high concentrations of suspended and dissolved solids, both organic and inorganic. Inorganic dissolved solids are only minimally removed from the effluent during conventional sewage treatment. As a result, most of the salts added during domestic and industrial usage remain in the irrigation water and may eventually reach the soil. A number of researchers have reported reduced hydraulic conductivity for soils to which treated wastewater has been applied. In this research, the influence of dissolved organic matter (DOM) contained in reclaimed wastewater effluents on the flocculation of montmorillonite and on the hydraulic properties of soils was studied. Flocculation values (FVs) for Na-montmorillonite increased with increasing concentrations of DOM at all pH levels analyzed. Maximum FV levels were exhibited for Na-montmorillonite at the highest DOM concentrations. The effect of DOM on FV can be explained by the mechanisms of edge-charge reversal and mutual flocculation. The hydraulic conductivity (HC) of a sandy soil was determined in the laboratory by leaching columns with an electrolyte solution chemically similar to that of the wastewater effluent (but without DOM). In columns treated with wastewater effluent, the HC exhibited a sharp decrease to only 20% of its initial value. The adverse effect of DOM on HC was evident for this soil despite a relatively low exchangeable sodium percentage (ESP). The reduction in HC is likely to be the result of decreases soil pore-size, which reflects two processes: (1) retention of part of the DOM during water percolation; and (2) a change in pore-size distribution due to swelling and dispersion of clay particles. The latter may result from a higher percentage of adsorbed sodium combined with the presence of humic substances from the wastewater effluent.

Tarchitzky, J.; Golobati, Y.; Keren, R.; Chen, Y.

1999-06-01T23:59:59.000Z

438

Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant – November 2013  

Energy.gov (U.S. Department of Energy (DOE))

Catholic University of America Vitreous State Laboratory Tour and Discussion of Experiments Conducted in Support of Hanford Site Waste Treatment and Immobilization Plant Select Systems Design [HIAR-VSL-2013-11-18

439

Independent Activity Report, Office of River Protection Waste Treatment Plant and Tank Farms- February 2013  

Energy.gov (U.S. Department of Energy (DOE))

Site Familiarization and Introduction of New Office of Safety and Emergency Management Evaluations Site Lead for the Office of River Protection Waste Treatment Plant and Tank Farms [HIAR-HANFORD-2013-02-25

440

Enterprise Assessments Operational Awareness Record, Waste Treatment and Immobilization Plant – December 2014  

Energy.gov (U.S. Department of Energy (DOE))

Operational Awareness Record for the Observation of Waste Treatment and Immobilization Plant High Level Waste Facility Radioactive Liquid Waste Disposal System Hazards Analysis Activities (EA-WTP-HLW-2014-08-18(a))

Note: This page contains sample records for the topic "wastewater treatment plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Enterprise Assessments Operational Awareness Record, Waste Treatment and Immobilization Plant – December 2014  

Energy.gov (U.S. Department of Energy (DOE))

Operational Awareness Record for the Waste Treatment and Immobilization Plant Low Activity Waste Facility Waste Handling Systems Hazard Analysis Activities Observation (EA-WTP-LAW-2014-08-18(b))

442

Phylogenetic Analysis of Bacterial Communities in Mesophilic and Thermophilic Bioreactors Treating Pharmaceutical Wastewater  

Science Journals Connector (OSTI)

...a full-scale industrial wastewater treatment facility consisting...AND METHODS Study site. The wastewater treatment facility consists...exceeding 45C without cell recycling, due to poor bacterial flocculation...oxygen demand of the untreated wastewater has historically varied between...

Timothy M. LaPara; Cindy H. Nakatsu; Lisa Pantea; James E. Alleman

2000-09-01T23:59:59.000Z

443

Analysis of Ammonia Loss Mechanisms in Microbial Fuel Cells Treating Animal Wastewater  

E-Print Network (OSTI)

ARTICLE Analysis of Ammonia Loss Mechanisms in Microbial Fuel Cells Treating Animal Wastewater Jung.interscience.wiley.com). DOI 10.1002/bit.21687 ABSTRACT: Ammonia losses during swine wastewater treatment were examined using manure; electricity; power generation Introduction Wastewater treatment using microbial fuel cells (MFCs

444

Wastewater Effluent Polishing Systems of Anaerobic Baffled Reactor Treating Black-water from Households  

E-Print Network (OSTI)

Wastewater Effluent Polishing Systems of Anaerobic Baffled Reactor Treating Black-water from of different integrated low-cost wastewater treatment systems, comprising one ABR as first treatment step filter and a vertical flow constructed wetland. A mixture of septage and domestic wastewater was used

Richner, Heinz

445

Journal of Membrane Science 257 (2005) 111119 Membrane contactor processes for wastewater reclamation in space  

E-Print Network (OSTI)

Journal of Membrane Science 257 (2005) 111­119 Membrane contactor processes for wastewater for treatment of metabolic wastewater Tzahi Y. Cath, Dean Adams, Amy E. Childress University of Nevada of an innovative dual membrane contactor process for treatment of combined hygiene and metabolic wastewater

446

Waste Treatment Technology Process Development Plan For Hanford Waste Treatment Plant Low Activity Waste Recycle  

SciTech Connect

The purpose of this Process Development Plan is to summarize the objectives and plans for the technology development activities for an alternative path for disposition of the recycle stream that will be generated in the Hanford Waste Treatment Plant Low Activity Waste (LAW) vitrification facility (LAW Recycle). This plan covers the first phase of the development activities. The baseline plan for disposition of this stream is to recycle it to the WTP Pretreatment Facility, where it will be concentrated by evaporation and returned to the LAW vitrification facility. Because this stream contains components that are volatile at melter temperatures and are also problematic for the glass waste form, they accumulate in the Recycle stream, exacerbating their impact on the number of LAW glass containers. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and reducing the halides in the Recycle is a key component of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, this stream does not have a proven disposition path, and resolving this gap becomes vitally important. This task seeks to examine the impact of potential future disposition of this stream in the Hanford tank farms, and to develop a process that will remove radionuclides from this stream and allow its diversion to another disposition path, greatly decreasing the LAW vitrification mission duration and quantity of glass waste. The origin of this LAW Recycle stream will be from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover or precipitates of scrubbed components (e.g. carbonates). The soluble components are mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet, and will not be available until the WTP begins operation, causing uncertainty in its composition, particularly the radionuclide content. This plan will provide an estimate of the likely composition and the basis for it, assess likely treatment technologies, identify potential disposition paths, establish target treatment limits, and recommend the testing needed to show feasibility. Two primary disposition options are proposed for investigation, one is concentration for storage in the tank farms, and the other is treatment prior to disposition in the Effluent Treatment Facility. One of the radionuclides that is volatile and expected to be in high concentration in this LAW Recycle stream is Technetium-99 ({sup 99}Tc), a long-lived radionuclide with a half-life of 210,000 years. Technetium will not be removed from the aqueous waste in the Hanford Waste Treatment and Immobilization Plant (WTP), and will primarily end up immobilized in the LAW glass, which will be disposed in the Integrated Disposal Facility (IDF). Because {sup 99}Tc has a very long half-life and is highly mobile, it is the largest dose contributor to the Performance Assessment (PA) of the IDF. Other radionuclides that are also expected to be in appreciable concentration in the LAW Recycle are {sup 129}I, {sup 90}Sr, {sup 137}Cs, and {sup 241}Am. The concentrations of these radionuclides in this stream will be much lower than in the LAW, but they will still be higher than limits for some of the other disposition pathways currently available. Although the baseline process will recycle this stream to the Pretreatment Facility, if the LAW facility begins operation first, this stream will not have a disposition path internal to WTP. One potential solution is to return the stream to the tank farms where it can be evaporated in the 242-A evaporator, or perhaps deploy an auxiliary evaporator to concentrate it prior to return to the tank farms. In either case, testing is needed to evaluat

McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.

2013-08-29T23:59:59.000Z

447

The application of PHREEQCi, a geochemical computer program, to aid in the management of a wastewater treatment wetland  

E-Print Network (OSTI)

-Volatile Compounds Pol chlorinated Bi hen ls 1. 5-25. 9 128-1190 ND-0. 2 ND 2. 9-5. 0 1170-1800 0. 5-3. 1 ND-0. 1 1. 0-17. 1 0. 3-1, 6 42-366 2-4 2860-6340 ND-241 ND-0. 9 ND-0. 1 0. 088-2. 155 0. 03-0. 07 37. 88-174. 84 ND ND-0. 02 ND-1. 31 ND... to Enhance Treatment Capability at the TMPA Site. . Step 1 . . Step 2. . Step 3 . . Page nl IV V I I IX 4 4 10 10 13 18 18 20 26 26 28 29 29 32 32 33 33 36 43 43 44 55 59 59 59 62 62 64 64 CONCLUSIONS . . PHREEQCI...

Mitzman, Stephanie

1999-01-01T23:59:59.000Z

448

Recycling of domestic wastewater treated by vertical-flow wetlands for irrigating Chillies and Sweet Peppers  

Science Journals Connector (OSTI)

Abstract Due to water scarcity in many arid countries, there is considerable interest in recycling various wastewater streams such as treated urban wastewater for irrigation in the agricultural sector. The aim was therefore to assess if domestic wastewater treated by different wetlands can be successfully recycled to water commercially grown crops. The objectives were to assess variables and boundary conditions impacting on the growth of two different types of peppers fed by domestic wastewater pre-treated by diverse mature constructed treatment wetlands. The growth of both Sweet Pepper (California Wonder; cultivar of Capsicum annuum Linnaeus Grossum Group) and Chilli (De Cayenne; C. annuum (Linnaeus) Longum Group ‘De Cayenne’) fed with different treated and untreated wastewater types were assessed. A few plants suffered from either a shortage and/or excess of some nutrients and trace minerals. The overall growth development of Sweet Peppers was poor due to the high concentrations of nutrients and trace minerals. In contrast, Chilies did reasonably well, but the growth of foliage was excessive and the harvest was delayed. High yields were associated with tap water and an organic growth medium, and a wetland with a high aggregate size, leaving sufficient space for biomass. Low fruit numbers correlated well with inorganic growth media and irrigation water contaminated by hydrocarbons. Findings indicate that nutrient concentrations supplied to the Chillies by a combination of compost and treated waste water are usually too high to produce a good harvest. However, as the compost is depleted of nutrients after about eight months, the harvest increased for pots that received pre-treated wastewater. The project contributes to ecological sanitation understanding by closing the loop in the food and water chain. Findings will lead to a better understanding of the effects of different wetland treatment processes on the recycling potential of their outflow waters.

S.A.A.A.N. Almuktar; M. Scholz; R.H.K. Al-Isawi; A. Sani

2015-01-01T23:59:59.000Z

449

SUSTAINABLE SEWAGE TREATMENT AND RE-USE IN DEVELOPING COUNTRIES  

E-Print Network (OSTI)

technological knowledge and empirical Know-How of wastewater treatment processes and their implementation; also

Walid Abdel-halim; Dirk Weichgrebe; K. -h. Rosenwinkel; Johan Verink

450

Occurrence of pharmaceutically active and non-steroidal estrogenic compounds in three different wastewater recycling schemes in Australia  

Science Journals Connector (OSTI)

The discovery that natural and synthetic chemicals, in the form of excreted hormones and pharmaceuticals, as well as a vast array of compounds with domestic and industrial applications, can enter the environment via wastewater treatment plants and cause a wide variety of environmental and health problems even at very low concentrations, suggests the need for improvement of water recycling. Three Australian wastewater recycling schemes, two of which employ reverse osmosis (RO) technology, the other applying ozonation and biological activated carbon filtration, have been studied for their ability to remove trace organic contaminants including 11 pharmaceutically active compounds and two non-steroidal estrogenic compounds. Contaminant concentrations were determined using a sensitive analytical method comprising solid phase extraction, derivatization and GC with MS using selected ion monitoring. In raw wastewater, concentrations of analgesics and non-steroidal anti-inflammatory medications were comparable to those found in wastewaters around the world. Remarkably, removal efficiencies for the three schemes were superior to literature values and RO was responsible for the greatest proportion of contaminant removal. The ability of RO membranes to concentrate many of the compounds was demonstrated and highlights the need for continued research into monitoring wastewater treatment, concentrate disposal, improved water recycling schemes and ultimately, safer water and a cleaner environment.

Jawad H. Al-Rifai; Candace L. Gabelish; Andrea I. Schäfer

2007-01-01T23:59:59.000Z

451

Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality, August 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment and Waste Treatment and Immobilization Plant Construction Quality May 2011 August 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy i Table of Contents 1.0 Purpose ................................................................................................................................................. 1 2.0 Background .......................................................................................................................................... 1 3.0 Scope .................................................................................................................................................... 1

452

Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality, August 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

Hanford Site Waste Treatment and Hanford Site Waste Treatment and Immobilization Plant Construction Quality May 2011 August 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy i Table of Contents 1.0 Purpose ................................................................................................................................................. 1 2.0 Background .......................................................................................................................................... 1 3.0 Scope .................................................................................................................................................... 1

453

Review of the Hanford Site Waste Treatment and Immobilization Plant Project Construction Quality, November 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Site Waste Treatment and Hanford Site Waste Treatment and Immobilization Plant Project Construction Quality May 2011 November 2011 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose ................................................................................................................................................. 1 2.0 Background .......................................................................................................................................... 1 3.0 Scope .................................................................................................................................................... 1

454

Review of the Hanford Site Waste Treatment and Immobilization Plant Project Construction Quality, November 2011  

NLE Websites -- All DOE Office Websites (Extended Search)

Hanford Site Waste Treatment and Hanford Site Waste Treatment and Immobilization Plant Project Construction Quality May 2011 November 2011 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose ................................................................................................................................................. 1 2.0 Background .......................................................................................................................................... 1 3.0 Scope .................................................................................................................................................... 1

455

Chemical Dust Treatment of Cottonseed for Planting Purposes.  

E-Print Network (OSTI)

... nelilltccl Cottonseecl. Year 1930 1931 1934 ' 1935 Av. ---- 1934 1935 Av. - Fuzzy See -- Acid Delinted Se .L~,.,L.L,,,,J Delinted S W s No. plants in 50 ft. of row Acre yield of lint -# 315 197 269 -- 2 60 Untreated 46 ... 370... 366 232 285 294 Treated 100 ... 458 586 ----- 38 1 ----- 229 578 404 -- 92 300 302 231 -- Untreated ... $24 588 65 6 422 554 488 ---- ... ... ... ... t' Acre yield of M lint -# 2 ... ... ... ----- Av. Treated...

Smith, H. P. (Harris Pearson)

1936-01-01T23:59:59.000Z

456

Organic removal from domestic wastewater by activated alumina adsorption  

E-Print Network (OSTI)

of the major groups of pollutants in wastewaters. Adsorption by granular activated carbon, a non-polar adsorbent, is now the primary treatment process for removal of residual organics from biologically treated wastewater. The ability of activated alumina..., which is a polar adsorbent, to remove total organic carbon (TOC) and some trace organics from domestic wastewater has been evaluated. Batch adsorption experiments were used to investigate the effect of pH and total dissolved solids on activated...

Yang, Pe-Der

2012-06-07T23:59:59.000Z

457

Modelling the fate of polybrominated diphenyl ethers (PBDEs) during the municipal sewage treatment process  

Science Journals Connector (OSTI)

Sewage treatment plants (STPs) are an important source to the environment for many chemicals of concern (COCs). Polybrominated diphenyl ethers (PBDEs) are one such group of COCs of present day concern for which studies on fate and transport during the ... Keywords: chemical fate and transport, mass balance model, polybrominated diphenyl ethers, risk assessment, sewage treatment, water and wastewater management

Kerry N. McPhedran; Rajesh Seth

2007-08-01T23:59:59.000Z

458

Land disposal of water treatment plant sludge -- A feasibility analysis  

SciTech Connect

In this study, the following alternative disposal methods for the Buffalo Pound Water Treatment Sludge were evaluated: landfilling, discharge into sanitary sewers, long-term lagooning, use in manufacturing, co-composting, alum recovery and land application. Land application was chosen at the best disposal alternative. Preliminary design resulted in a 1% dry alum sludge loading rate (25 tonnes/ha), requiring 35 ha over a nine-year period and a phosphorus fertilizer supplement of about 50kg/ha.

Viraraghavan, T.; Multon, L.M.; Wasylenchuk, E.J.

1998-07-01T23:59:59.000Z

459

Photolysis and digestion as polishing steps for the removal of antibiotics from municipal wastewater treatment plant effluent and biosolids.  

E-Print Network (OSTI)

??The degradation of five pharmaceuticals and personal care products, tetracycline, triclosan, tylosin, sulfamethoxazole, and trimethoprim was examined. The photolysis of these compounds was studied in… (more)

Ryan, Christopher Charles

2009-01-01T23:59:59.000Z

460

Eutrophication and Bacterial Pathogens as Risk Factors for Avian Botulism Outbreaks in Wetlands Receiving Effluents from Urban Wastewater Treatment Plants  

Science Journals Connector (OSTI)

...pathogens in sediment, water, aquatic invertebrates, fly pools, and bird feces...to guarantee the conservation of water birds. Published...conflicts between water resources development and wetland conservation in the La Mancha...

Ibone Anza; Dolors Vidal; Celia Laguna; Sandra Díaz-Sánchez; Sergio Sánchez; Álvaro Chicote; Máximo Florín; Rafael Mateo

2014-05-02T23:59:59.000Z

Note: This page contains sample records for the topic "wastewater treatment plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Use of bioassays to assess the water quality of wastewater treatment plants for the occurrence of estrogens and androgens  

E-Print Network (OSTI)

exposed to reconstituted reverse osmosis water (Control) andprocesses included reverse osmosis, filtration/chlorinationbeen treated with reverse osmosis. Our results also suggest

Schlenk, Daniel

2005-01-01T23:59:59.000Z

462

An assessment of the concentrations of pharmaceutical compounds in wastewater treatment plants on the island of Gran Canaria (Spain)  

Science Journals Connector (OSTI)

The relative standard deviations obtained in method were below 11%, while the detection and quantification limits were in the range of 0.3 – 97.4 ng·L-1 and 1.1 – 324.7 ng·L-1..., respectively. The water samples ...

Rayco Guedes-Alonso; Cristina Afonso-Olivares; Sarah Montesdeoca-Esponda…

2013-01-01T23:59:59.000Z

463

Destruction and formation of PCDD/Fs in a fluidised bed combustor co-incinerating automotive shredder residue with refuse derived fuel and wastewater treatment sludge  

Science Journals Connector (OSTI)

During an eight day trial automotive shredder residue (ASR) was added to the usual waste feed of a Fluidized Bed Combustor (FBC) for waste-to-energy conversion; the input waste mix consisted of 25% ASR, 25% refuse-derived fuel (RDF) and 50% wastewater treatment (WWT) sludge. All inputs and outputs were sampled and the concentration of the 17 PCDD/Fs with TEF-values was determined in order to obtain “PCDD/F fingerprints”. The ASR contained approximately 9000 ng PCDD/Fs/kgDW, six times more than the RDF and 10 times more than the WWT sludge. The fingerprint of ASR and RDF was dominated by HpCDD and OCDD, which accounted for 90% of the total PDDD/F content, whereas the WWT sludge contained relatively more HpCDFs and OCDF (together 70%). The flue gas cleaning residue (FGCR) and fly and boiler ash contained approximately 30,000 and 2500 ng PCDD/Fs/kgDW, respectively. The fingerprints of these outputs were also dominated by HpCDFs and OCDF. The bottom ash contained only OCDD and OCDF, in total 8 ng PCDD/Fs/kgDW. From the comparison of the bottom ash fingerprints with the fingerprints of the other output fractions and of the inputs, it could be concluded that the PCDD/Fs in the waste were destroyed and new PCDD/Fs were formed in the post combustion process by de novo synthesis. During the ASR-co-incineration, the PCDD/F congener concentrations in the fly and boiler ash, FGCR and flue gas were 1.25–10 times higher compared to the same output fractions generated during incineration of the usual waste mix (70% RDF and 30% WWT sludge). The concentration of the higher chlorinated PCDD/Fs increased most. As these congeners have the lowest TEF-factors, the total PCDD/F output, expressed in kg TEQ/year, of the FBC did not increase significantly when ASR was co-incinerated. Due to the relatively high copper levels in the ASR, the copper concentrations in the \\{FBCs\\} outputs increased. As copper catalysis the de novo syntheses, this could explain the increase in PCDD/F concentrations in these outputs.

J. Van Caneghem; I. Vermeulen; C. Block; A. Van Brecht; P. Van Royen; M. Jaspers; G. Wauters; C. Vandecasteele

2012-01-01T23:59:59.000Z

464

The Department of Energy's $12.2 Billion Waste Treatment and Immobilization Plant - Quality Assurance Issues  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Department of Energy's $12.2 Billion The Department of Energy's $12.2 Billion Waste Treatment and Immobilization Plant - Quality Assurance Issues - Black Cell Vessels DOE/IG-0863 April 2012 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 April 25, 2012 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Audit Report on "The Department of Energy's $12.2 Billion Waste Treatment and Immobilization Plant - Quality Assurance Issues - Black Cell Vessels" INTRODUCTION The Office of Inspector General received allegations concerning aspects of the quality assurance program at the Department of Energy's $12.2 billion Waste Treatment and Immobilization Plant

465

DNFSB Recommendation 2010-2, Pulse Jet Mixing at the Waste Treatment and Immobilization Plant WTP  

NLE Websites -- All DOE Office Websites (Extended Search)

DNFSB Rec. 2010-2, Rev.0, Nov.10, 2011 DNFSB Rec. 2010-2, Rev.0, Nov.10, 2011 i Department of Energy Plan to Address Waste Treatment and Immobilization Plant Vessel Mixing Issues Revision 0 Implementation Plan for Defense Nuclear Safety Board Recommendation 2010-2 November 10, 2011 DNFSB Rec. 2010-2, Rev.0, Nov.10, 2011 ii EXECUTIVE SUMMARY On December 17, 2010, the Defense Nuclear Facilities Safety Board (DNFSB) issued Recommendation 2010-2, Pulse Jet Mixing at the Waste Treatment and Immobilization Plant. The recommendation addressed the need for the U.S. Department of Energy (DOE) to ensure that the Hanford Waste Treatment and Immobilization Plant (WTP), in conjunction with the Hanford tank farm waste feed delivery system, will operate safely and effectively during a

466

BEHAVIOR CANOLA (BRASSICA NAPUS) FOLLOWING A SEWAGE SLUDGE TREATMENT  

E-Print Network (OSTI)

. INTRODUCTION In Tunisia, the amount of sludge produced by wastewater treatment stations is constantly waste water treatment stations, in other words, most of it is wastewater from domestic sources. The second type is obtained from the treatment of industrial wastewater or partly from industrial wastewater

Boyer, Edmond

467

Hanford Waste Treatment Plant places first complex piping module in Pretreatment Facility  

Energy.gov (U.S. Department of Energy (DOE))

Crews at the Hanford Waste Treatment Plant, also known as the "Vit Plant," placed a 19-ton piping module inside the Pretreatment Facility. The module was lifted over 98-foot-tall walls and lowered into a space that provided less than two inches of clearance on each side and just a few feet on each end. It was set 56 feet above the ground.

468

Electrodialysis Treatment of Refinery Wastewater  

Science Journals Connector (OSTI)

Water is fundamental in the oil refining process,...3 water being consumed per m3 of oil processed. Water is used in the oil refining process ... general. Industries are having difficulties in obtaining water due...

Mara de Barros Machado; Vânia M. J. Santiago

2014-01-01T23:59:59.000Z

469

Gas treatment and by-products recovery of Thailand`s first coke plant  

SciTech Connect

Coke is needed in the blast furnace as the main fuel and chemical reactant and the main product of a coke plant. The second main product of the coke plant is coke oven gas. During treatment of the coke oven gas some coal chemicals like tar, ammonia, sulphur and benzole can be recovered as by-products. Since the market prices for these by-products are rather low and often erratic it does not in most cases justify the investment to recover these products. This is the reason why modern gas treatment plants only remove those impurities from the crude gas which must be removed for technical and environmental reasons. The cleaned gas, however, is a very valuable product as it replaces natural gas in steel work furnaces and can be used by other consumers. The surplus can be combusted in the boiler of a power plant. A good example for an optimal plant layout is the new coke oven facility of Thai Special Steel Industry (TSSI) in Rayong. The paper describes the TSSI`s coke oven gas treatment plant.

Diemer, P.E.; Seyfferth, W. [Krupp Uhde GmbH, Dortmund (Germany)

1997-12-31T23:59:59.000Z

470

Detection of Wastewater Plumes from the 15 N Isotopic Composition of  

E-Print Network (OSTI)

Detection of Wastewater Plumes from the 15 N Isotopic Composition of Groundwater, Algae that a main source of nutrient loading is due to wastewater contamination of groundwater within the watershed via septic systems and wastewater treatment facilities. 5 Mya arenaria were collected at each

Vallino, Joseph J.

471

Design and study of a risk management criterion for an unstable anaerobic wastewater  

E-Print Network (OSTI)

Design and study of a risk management criterion for an unstable anaerobic wastewater treatment an unstable biological process used for wastewater treat- ment. This anaerobic digestion ecosystem can have popular bioprocess (Angelidaki et al., 2003) that treats wastewater and at the same time produces energy

Bernard, Olivier

472

wastewater_sink_disposal_guidance.docx Revision Date: 10/26/2012 Page 1 of 3  

E-Print Network (OSTI)

wastewater_sink_disposal_guidance.docx Revision Date: 10/26/2012 Page 1 of 3 LABORATORY & BUILDING limitations and prohibitions established by the local wastewater treatment authority, the Massachusetts Water for wastewater disposal purposes is strictly prohibited. Hazardous Wastes: Hazardous wastes are prohibited from

Heller, Eric

473

RECOMMENDED GUIDELINES FOR WASTEWATER CHARACTERIZATION  

E-Print Network (OSTI)

#12;RECOMMENDED GUIDELINES FOR WASTEWATER CHARACTERIZATION IN THE FRASER RIVER BASIN VOLUME II Ont. June 1993 Amended April 1994 #12;GUIDELINES FOR WASTEWATER CHARACTERIZATION PREFACE Ltd., Calgary, Alberta. #12;GUIDELINES FOR WASTEWATER CHARACTERIZATION EXECUTIVE SUMMARY The Fraser

474

Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality, October 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site Site Waste Treatment and Immobilization Plant Construction Quality May 2011 October 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose................................................................................................................................................. 1 2.0 Background .......................................................................................................................................... 1 3.0 Scope.................................................................................................................................................... 1 4.0 Methodology ........................................................................................................................................

475

Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality, May 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Site Hanford Site Waste Treatment and Immobilization Plant Construction Quality May 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose................................................................................................................................................ 1 2.0 Scope................................................................................................................................................... 1 3.0 Background ......................................................................................................................................... 1 4.0 Methodology ....................................................................................................................................... 2

476

Independent Oversight Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality, December 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment and Immobilization Plant Construction Quality December 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose ................................................................................................................................................. 1 2.0 Scope .................................................................................................................................................... 1 3.0 Background .......................................................................................................................................... 1

477

Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality, October 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Site Waste Treatment and Immobilization Plant Construction Quality May 2011 October 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose................................................................................................................................................. 1 2.0 Background .......................................................................................................................................... 1 3.0 Scope.................................................................................................................................................... 1 4.0 Methodology ........................................................................................................................................

478

Review of the Hanford Site Waste Treatment and Immobilization Plant Project Construction Quality, March 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Site Hanford Site Waste Treatment and Immobilization Plant Project Construction Quality May 2011 March 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose ................................................................................................................................................. 1 2.0 Background .......................................................................................................................................... 1 3.0 Scope .................................................................................................................................................... 1

479

Report: EM Tank Waste Subcommittee Full Report for Waste Treatment Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. DEPARTMENT OF ENERGY U.S. DEPARTMENT OF ENERGY 1000 INDEPENDENCE AVENUE SW WASHINGTON DC 20585 September 30, 2010 Dr. Inés R. Triay Assistant Secretary for Environmental Management 1000 Independence Avenue SW Washington, DC 20585 Dear Dr. Triay: As discussed during our September 15th public meeting, enclosed please find the Environmental Management Advisory Board EM Tank Waste Subcommittee Report for Waste Treatment Plant; Report Number EMAB EM-TWS WTP-001, September 30, 2010, in accordance with the Work Plan directive dated May 10, 2010. This report covers the work plan observations and recommendations concerning the Waste Treatment and Immobilization Plant at Hanford (WTP). The charge is summarized below. Charge 1: Verification of closure of Waste Treatment and Immobilization

480

Characterisation and Evaluation of Wastes for Treatment in the Batch Pyrolysis Plant in Studsvik, Sweden - 13586  

SciTech Connect

The new batch pyrolysis plant in Studsvik is built primarily for treatment of uranium containing dry active waste, 'DAW'. Several other waste types have been identified that are considered or assumed suitable for treatment in the pyrolysis plant because of the possibility to carefully control the atmosphere and temperature of the thermal treatment. These waste types must be characterised and an evaluation must be made with a BAT perspective. Studsvik have performed or plan to perform lab scale pyrolysis tests on a number of different waste types. These include: - Pyrophoric materials (uranium shavings), - Uranium chemicals that must be oxidised prior to being deposited in repository, - Sludges and oil soaks (this category includes NORM-materials), - Ion exchange resins (both 'free' and solidified/stabilised), - Bitumen solidified waste. Methodology and assessment criteria for various waste types, together with results obtained for the lab scale tests that have been performed, are described. (authors)

Lindberg, Maria; Oesterberg, Carl; Vernersson, Thomas [Studsvik Nuclear AB, Studsvik Nuclear AB, 611 82 Nykoeping (Sweden)] [Studsvik Nuclear AB, Studsvik Nuclear AB, 611 82 Nykoeping (Sweden)

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "wastewater treatment plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Decentralized wastewater management  

SciTech Connect

Decentralized wastewater management systems maintain both the solid and liquid fractions of the wastewater near their point of origin. In the future, as long-term strategies are developed to optimize the use of water resources and to protect the environment, it is clear that decentralized systems will become an important element of those strategies.

Tchobanoglous, G.

1998-07-01T23:59:59.000Z

482

Presence and Distribution of Organic Wastewater Compounds in Wastewater,  

E-Print Network (OSTI)

Presence and Distribution of Organic Wastewater Compounds in Wastewater, Surface, Ground.W., Meyer, M.T., and Zaugg, S.D., 2004, Presence and distri- bution of organic wastewater compounds in wastewater, surface, ground, and drinking waters, Minnesota, 2000-02: U.S. Geological Survey Scientific

483

E-Print Network 3.0 - aerobic wastewater biofilms Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Membrane... biofilm reactor Introduction One of the major challenges in wastewater treatment is achieving effective... et al. 2004). Nitrifying bacteria grow in the deep,...

484

Membrane Based intensification of ammonia removal from wastewater  

E-Print Network (OSTI)

The aim of this research was to study a novel membrane based oxygen intensification system to enhance a biological wastewater treatment process for ammonia removal. Specifically, this work is concerned with the biological nitrification process which...

Almutairi, Azel

2011-12-31T23:59:59.000Z

485

Small Community Wastewater Cluster Systems  

E-Print Network (OSTI)

Small Community Wastewater Cluster Systems Don Jones, Jacqui Bauer, Richard Wise, and Alan Dunn* ID-265 #12;Small Community Wastewater Cluster Systems ID-265 2 It is the policy of the Purdue University Community Wastewater Cluster Systems ID-265 3 Small Community Wastewater Cluster Systems Table of Contents

Holland, Jeffrey

486

Pathogenic Escherichia coli Found in Sewage Treatment Plants and Environmental Waters  

Science Journals Connector (OSTI)

...Escobar-Paramo, P , et al. 2006. Identification of forces shaping the commensal Escherichia coli genetic...Spellman, FR . 1999. Spellman's standard handbook for wastewater operators-fundamental level, vol. 1 . Technomic Publishing Company...

E. M. Anastasi; B. Matthews; H. M. Stratton; M. Katouli

2012-06-01T23:59:59.000Z

487

Prevalence and Persistence of Escherichia coli Strains with Uropathogenic Virulence Characteristics in Sewage Treatment Plants  

Science Journals Connector (OSTI)

...and E. Denamur. 2006. Identification of forces shaping the commensal Escherichia coli genetic...Spellman, F. R. 1999. Spellmans standard handbook for wastewater operators: fundamental level, vol. 1. Technomic Publishing Company...

E. M. Anastasi; B. Matthews; A. Gundogdu; T. L. Vollmerhausen; N. L. Ramos; H. Stratton; W. Ahmed; M. Katouli

2010-07-09T23:59:59.000Z

488

IMPACT OF HEAVY METALS IN SEWAGE SLUDGE ON SOIL AND PLANTS (COLZA and WHEAT)  

E-Print Network (OSTI)

IMPACT OF HEAVY METALS IN SEWAGE SLUDGE ON SOIL AND PLANTS (COLZA and WHEAT) Najla LASSOUED1@emse.fr Abstract We are testing the impact of heavy metals in sludge from urban and industrial wastewater treatment> Cu> Ni> Co> Cd The contents of heavy metals in the sludge is made very high and exceed European

Paris-Sud XI, Université de

489

Carbon Capture and Water Emissions Treatment System (CCWESTRS) at Fossil-Fueled Electric Generating Plants  

SciTech Connect

The Tennessee Valley Authority (TVA), the Electric Power Research Institute (EPRI), and the Department of Energy-National Energy Technologies Laboratory (DOE-NETL) are evaluating and demonstrating integration of terrestrial carbon sequestration techniques at a coal-fired electric power plant through the use of Flue Gas Desulfurization (FGD) system gypsum as a soil amendment and mulch, and coal fly ash pond process water for periodic irrigation. From January to March 2002, the Project Team initiated the construction of a 40 ha Carbon Capture and Water Emissions Treatment System (CCWESTRS) near TVA's Paradise Fossil Plant on marginally reclaimed surface coal mine lands in Kentucky. The CCWESTRS is growing commercial grade trees and cover crops and is expected to sequester 1.5-2.0 MT/ha carbon per year over a 20-year period. The concept could be used to meet a portion of the timber industry's needs while simultaneously sequestering carbon in lands which would otherwise remain non-productive. The CCWESTRS includes a constructed wetland to enhance the ability to sequester carbon and to remove any nutrients and metals present in the coal fly ash process water runoff. The CCWESTRS project is a cooperative effort between TVA, EPRI, and DOE-NETL, with a total budget of $1,574,000. The proposed demonstration project began in October 2000 and has continued through December 2005. Additional funding is being sought in order to extend the project. The primary goal of the project is to determine if integrating power plant processes with carbon sequestration techniques will enhance carbon sequestration cost-effectively. This goal is consistent with DOE objectives to provide economically competitive and environmentally safe options to offset projected growth in U.S. baseline emissions of greenhouse gases after 2010, achieve the long-term goal of $10/ton of avoided net costs for carbon sequestration, and provide half of the required reductions in global greenhouse gases by 2025. Other potential benefits of the demonstration include developing a passive technology for water treatment for trace metal and nutrient release reductions, using power plant by-products to improve coal mine land reclamation and carbon sequestration, developing wildlife habitat and green-space around production facilities, generating Total Maximum Daily Load (TMDL) credits for the use of process water, and producing wood products for use by the lumber and pulp and paper industry. Project activities conducted during the five year project period include: Assessing tree cultivation and other techniques used to sequester carbon; Project site assessment; Greenhouse studies to determine optimum plant species and by-product application; Designing, constructing, operating, monitoring, and evaluating the CCWESTRS system; and Reporting (ongoing). The ability of the system to sequester carbon will be the primary measure of effectiveness, measured by accessing survival and growth response of plants within the CCWESTRS. In addition, costs associated with design, construction, and monitoring will be evaluated and compared to projected benefits of other carbon sequestration technologies. The test plan involves the application of three levels each of two types of power plant by-products--three levels of FGD gypsum mulch, and three levels of ash pond irrigation water. This design produces nine treatment levels which are being tested with two species of hardwood trees (sweet gum and sycamore). The project is examining the effectiveness of applications of 0, 8-cm, and 15-cm thick gypsum mulch layers and 0, 13 cm, and 25 cm of coal fly ash water for irrigation. Each treatment combination is being replicated three times, resulting in a total of 54 treatment plots (3 FGD gypsum levels X 3 irrigation water levels x 2 tree species x 3 replicates). Survival and growth response of plant species in terms of sequestering carbon in plant material and soil will be the primary measure of effectiveness of each treatment. Additionally, the ability of the site soils and unsaturated zone subsurface m

P. Alan Mays; Bert R. Bock; Gregory A. Brodie; L. Suzanne Fisher; J. Devereux Joslin; Donald L. Kachelman; Jimmy J. Maddox; N. S. Nicholas; Larry E. Shelton; Nick Taylor; Mark H. Wolfe; Dennis H. Yankee; John Goodrich-Mahoney

2005-08-30T23:59:59.000Z

490

Use advanced methods to treat wastewater  

SciTech Connect

Common sense guidelines offer plausible, progressive techniques to treat wastewater. Because current and pending local, state and federal regulations are ratcheting lower effluent discharge limits, familiar treatment methods, such as biological, don't meet new restrictions. Now operating facilities must combine traditional methods with advanced remedial options such as thermal, physical, electro and chemical treatments. these new techniques remove organics, metals, nonhazardous dissolved salts, etc., but carry higher operating and installation costs. Due to tighter effluent restrictions and pending zero-discharge initiatives, managers of operating facilities must know and understand the complexity, composition and contaminant concentration of their wastewaters. No one-size-fits-all solution exists. However, guidelines can simplify decision making and help operators nominate the most effective and economical strategy to handle their waste situation. The paper describes the common treatment and the importance of alternatives, then describes biological, electro, physical, thermal, and chemical treatments.

Davis, M. (Litwin Engineers and Constructors, Inc., Houston, TX (United States))

1994-08-01T23:59:59.000Z

491

Wastewater reclamation and reuse  

Science Journals Connector (OSTI)

Municipal wastewater reclamation and reuse has been practiced for ... are emphasized with several examples of successful water recycling on a worldwide basis given. The discussion ... This is to be distinguishedf...

R. D. Heaton

1981-01-01T23:59:59.000Z

492

Designing Sustainable Wastewater Systems: Generating Design Alternatives Chamberlain, B., Zarei, A., Taheri, H., Poole, D., Carenini, G. and berg, G.  

E-Print Network (OSTI)

alternative wastewater treatment systems, and 3) a preference-elicitation method for guiding decision of a rural wastewater system for use in developing regions. Figure 1 depicts a simplified version of oneDesigning Sustainable Wastewater Systems: Generating Design Alternatives Chamberlain, B., Zarei, A

Carenini, Giuseppe

493

Performances evaluation of phosphorus removal by apatite in constructed wetlands treating domestic wastewater: Column and pilot experiments  

E-Print Network (OSTI)

wastewater: Column and pilot experiments Najatte Harouiyaa , Stéphanie Prost-Bouclea , Catherine Morlayb.MARTIN@suez-env.com) Abstract In constructed wetlands (CWs) treating domestic wastewater, good treatment performances to improve P removal from wastewater with a low specific filter surface per people equivalent (p. e

Paris-Sud XI, Université de

494

Wastewater heat recovery apparatus  

DOE Patents (OSTI)

A heat recovery system is described with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature. 6 figs.

Kronberg, J.W.

1992-09-01T23:59:59.000Z

495

Wastewater heat recovery apparatus  

DOE Patents (OSTI)

A heat recovery system with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature.

Kronberg, James W. (108 Independent Blvd., Aiken, SC 29801)

1992-01-01T23:59:59.000Z

496

A feasibility study of municipal wastewater desalination using electrodialysis reversal to provide recycled water for horticultural irrigation  

Science Journals Connector (OSTI)

Abstract A membrane desalination system based on electrodialysis reversal (EDR) has been evaluated for its capacity to remove salt from treated municipal wastewater to provide a source of recycled water for horticultural applications. Economic and technical feasibility was determined using data collected from a pilot scale plant, from which the following parameters were calculated: salt removal, water recovery and overall process economics. The pilot plant consisted of a pre-treatment multimedia filtration unit (MMF) and an EDR system with a capacity of approximately 144 kL/day. Treated effluent from a wastewater treatment plant (WWTP) was used as feed water for the desalination pilot plant. Water quality guidelines for horticulture specify an upper limit for total dissolved solids (TDS) of 375 mg/L. The EDR process reduced the TDS from 1104 mg/L to 328 mg/L. Additionally, the process reduced the conductivity of recycled water by 72%, including the removal of 84% calcium, 76% chloride, 59% fluoride, 64% alkalinity and 60% phosphate, demonstrating that the EDR treated water is a viable alternative supply. The power consumption of the EDR plant was found to be 0.6 kW h/kL and the media filtration 0.4 kW/kL. The total operating cost was estimated to be 18 cents/kL to deliver 82% water recovery.

Nigel B. Goodman; Russell J. Taylor; Zongli Xie; Yesim Gozukara; Allan Clements

2013-01-01T23:59:59.000Z

497

Variations in AOC and microbial diversity in an advanced water treatment plant  

Science Journals Connector (OSTI)

Summary The objective of this study was to evaluate the variations in assimilable organic carbon (AOC) and microbial diversities in an advanced water treatment plant. The efficiency of biofiltration on AOC removal using anthracite and granular activated carbon (GAC) as the media was also evaluated through a pilot-scale column experiment. Effects of hydrological factors (seasonal effects and river flow) on AOC concentrations in raw water samples and hydraulic retention time (HRT) of biofiltration on AOC treatment were also evaluated. Results show that AOC concentrations in raw water and clear water of the plant were about 138 and 27 ?g acetate-C/L, respectively. Higher AOC concentrations were observed in wet seasons probably due to the resuspension of organic-contained sediments and discharges of non-point source (NPS) pollutants from the upper catchment. This reveals that seasonal effect played an important role in the variations in influent AOC concentrations. Approximately 82% and 70% of AOC removal efficiencies were observed in GAC and anthracite columns, respectively. Results from column experiment reveal that the applied treatment processes in the plant and biofiltration system were able to remove AOC effectively. Microbial colonization on GAC and anthracite were detected via the observation of scanning electron microscopic (SEM) images. Results of polymerase chain reaction (PCR), denaturing gradi