Powered by Deep Web Technologies
Note: This page contains sample records for the topic "wastewater treatment plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Treated wastewater discharged from municipal wastewater treatment plants (WWTPs) contains  

E-Print Network [OSTI]

Treated wastewater discharged from municipal wastewater treatment plants (WWTPs) contains to provide rapid, field-ready, inexpen- sive testing of these chemicals in wastewater is also needed estrogenic chemicals, and 2) develop sensor technology for the rapid measure- ment in wastewater of two key

Fay, Noah

2

CHP and Bioenergy for Landfills and Wastewater Treatment Plants...  

Broader source: Energy.gov (indexed) [DOE]

for Landfills and Wastewater Treatment Plants: Market Opportunities CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities This document explores...

3

ADAPTIVE MODEL BASED CONTROL FOR WASTEWATER TREATMENT PLANTS  

E-Print Network [OSTI]

ADAPTIVE MODEL BASED CONTROL FOR WASTEWATER TREATMENT PLANTS Arie de Niet1 , Maartje van de Vrugt2.j.boucherie@utwente.nl Abstract In biological wastewater treatment, nitrogen and phosphorous are removed by activated sludge considerably to the increase of energy-efficiency in wastewater treatment. To this end, we introduce

Boucherie, Richard J.

4

Life-cycle assessment of wastewater treatment plants  

E-Print Network [OSTI]

This thesis presents a general model for the carbon footprints analysis of wastewater treatment plants (WWTPs), using a life cycle assessment (LCA) approach. In previous research, the issue of global warming is often related ...

Dong, Bo, M. Eng. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

5

Measurement and Treatment of Nuisance Odors at Wastewater Treatment Plants  

E-Print Network [OSTI]

the ability of existing treatment technologies at Plant 1 toof existing treatment technologies at both OCSD plantsof existing treatment technologies at both OCSD plants

Abraham, Samantha Margaret

2014-01-01T23:59:59.000Z

6

EIS-0224: Southeast Regional Wastewater Treatment Plant Facilities Improvements  

Broader source: Energy.gov [DOE]

"This EIS analyzes the Lake County Sanitation District joint venture with the geothermal industry, specifically the Northern California Power Agency, Calpine Corporation (Calpine), and Pacific Gas and Electric Company, to develop a plan for disposal of secondary-treated effluent from the Southeast Regional Wastewater Treatment Plant near the City of Clearlake, California, in the Southeast Geysers Geothermal Steam Field."

7

Fate of Radionuclides in Wastewater Treatment Plants  

E-Print Network [OSTI]

due to the Fukushima nuclear plant accident. Journal of21 3. NUCLEAR POWER PLANTS……………………………………………….. 23 3.1-25 3.2- WASTES FROM NUCLEAR POWER PLANTS………………………… 28 4.

Shabani Samgh Abadi, Farzaneh

2013-01-01T23:59:59.000Z

8

Real-time fault detection and isolation in biological wastewater treatment plants  

E-Print Network [OSTI]

Real-time fault detection and isolation in biological wastewater treatment plants F. Baggiani and S@dsi.unifi.it Automatic fault detection is becoming increasingly important in wastewater treatment plant operation, given automation controllers, wastewater treatment INTRODUCTION Real-time monitoring is an increasingly important

9

Evaluation of biological treatment for the degradation of petroleum hydrocarbons in a wastewater treatment plant  

E-Print Network [OSTI]

present. An evaluation of the performance of the biological treatment of petroleum hydrocarbon by the hydrocarbon degrading microbes at the Brayton Fire School??s 4 million gallon per day (MGD) wastewater treatment plant was the main research objective...

Basu, Pradipta Ranjan

2005-08-29T23:59:59.000Z

10

Developer Installed Treatment Plants  

E-Print Network [OSTI]

-installed treatment plants. These treatment plants are more commonly known as package wastewater treatment plants. 1

unknown authors

2008-01-01T23:59:59.000Z

11

ACCEPTED BY WATER ENVIRONMENT RESEARCH ODOR AND VOC REMOVAL FROM WASTEWATER TREATMENT PLANT  

E-Print Network [OSTI]

ACCEPTED BY WATER ENVIRONMENT RESEARCH _______ ODOR AND VOC REMOVAL FROM WASTEWATER TREATMENT PLANT of biofilters for sequential removal of H2S and VOCs from wastewater treatment plant waste air. The biofilter volatile organic compounds (VOCs) and toxic air pollutants emitted from wastewater and solids handling

12

MIC on stainless steels in wastewater treatment plants  

SciTech Connect (OSTI)

Field tests of stainless steels were carried out at five wastewater treatment plants for one year. Three stainless steel grades i.e. AISI 304 (UNS S30400), AISI 316 (UNS S31600) and duplex 2205 (UNS S31803) were tested in the final settling tank in the plants. The time dependence of the open circuit potential (OCP) was measured for all coupons. Ennoblement of the OCP, similar to that reported from investigations in seawater, was found in one of the plants. Waters from three of the exposure sites, containing dispersed deposits from exposed coupons, were chemically analyzed. Pitting corrosion was observed after the field test on steel grade AISI 304 in three of the five plants, and on AISI 316 in one plant. No corrosion was found on 2205 in any of the plants. Laboratory measurements of the OCP were carried out for AISI 304, AISI 316 and 2205 in water collected from one of the plants. Cathodic polarization curves were determined as well in wastewater from the same plant. The cathodic reaction rate increased at the highest OCP. Simulation of the ennoblement was carried out by potentiostatic polarization in a 600 ppm chloride solution. The current response indicated corrosion on AISI 304 welded material and on AISI 304, AISI 316 in crevice assemblies after a long period of induction time.

Iversen, A. [Avesta Sheffield AB (Sweden)

1999-11-01T23:59:59.000Z

13

Accepted Manuscript High occurrence of Hepatitis E virus in samples from wastewater treatment plants in  

E-Print Network [OSTI]

Accepted Manuscript High occurrence of Hepatitis E virus in samples from wastewater treatment-Bianchi, D., Oppliger, A., High occurrence of Hepatitis E virus in samples from wastewater treatment plants MANUSCRIPT Highlights Hepatitis E virus (HEV) was searched in raw and treated wastewater in Switzerland

Alvarez, Nadir

14

Removal of nitrogen and phosphorus from reject water of municipal wastewater treatment plant.  

E-Print Network [OSTI]

??Reject water, the liquid fraction produced after dewatering of anaerobically digested activated sludge on a municipal wastewater treatment plant (MWWTP), contains from 750 to 1500… (more)

Guo, Chenghong

2011-01-01T23:59:59.000Z

15

Improved wastewater treatment at Wheeling-Pittsburgh Steel Corporations`s Steubenville East Coke Plant  

SciTech Connect (OSTI)

Wheeling-Pittsburgh Steel Corporation recently improved its wastewater treatment at it`s by-products coke plant. This has led to greatly improved effluent quality. Excess ammonia liquor, along with wastewater from the light oil recovery plant, desulfurization facility, and coal pile runoff, must be treated prior to being discharged into the Ohio River. This is accomplished using a biological wastewater treatment plant to remove 99.99% of the organic contaminants and ammonia. Biologically treated, clarified wastewater is now polished in the newly constructed tertiary treatment plant.

Goshe, A.J.; Nodianos, M.J. [Wheeling-Pittsburgh Steel Corp., Follansbee, WV (United States)

1995-12-01T23:59:59.000Z

16

Reducing the Anaerobic Digestion Model N1 for its application to an industrial wastewater treatment plant  

E-Print Network [OSTI]

the Anaerobic Digestion Model N°1 for its application to an industrial wastewater treatment plant treating winery effluent wastewater Carlos García-Diéguez 1 , Olivier Bernard 2 , Enrique Roca 1, * 1 USC ­ PRODES for winery effluent wastewater. A new reduced stoichiometric matrix was identified and the kinetic parameters

Boyer, Edmond

17

Lagrangian Sampling of Wastewater Treatment Plant Effluent in Boulder Creek, Colorado, and Fourmile Creek,  

E-Print Network [OSTI]

Lagrangian Sampling of Wastewater Treatment Plant Effluent in Boulder Creek, Colorado, and Fourmile of wastewater treatment plant effluent in Boulder Creek, Colorado, and Fourmile Creek, Iowa, during the summer........................................................................................................................................................... 5 Field Measurements, Nutrients, Carbon, Major Ions, Trace Elements, and Biological Components

18

Wastewater treatment and energy : an analysis on the feasibility of using renewable energy to power wastewater treatment plants in Singapore  

E-Print Network [OSTI]

Wastewater treatment is a very energy intensive industry. Singapore has a state-of-the-art wastewater treatment system that uses a number of sustainable techniques that greatly improve its overall efficiency. The centralized ...

Foley, Kevin John

2010-01-01T23:59:59.000Z

19

Optimization of a biological wastewater treatment process at a petrochemical plant using process simulation  

SciTech Connect (OSTI)

A research study was conducted on the activated sludge process treating the wastewater from a petrochemical manufacturing facility in Ontario, Canada. The objective of the study was to improve the level of understanding of the process and to evaluate the use of model-based simulation tools as an aid in the optimization of the wastewater treatment facility. Models such as the IAWQ Activated Sludge Model No. 1 (ASM1) have previously been developed and applied to assist in designing new systems and to assist in the optimization of existing systems for the treatment of municipal wastewaters, However, due to significant differences between the characteristics of the petrochemical plant wastewater and municipal wastewaters, this study required the development of a mechanistic model specifically to describe the behavior of the activated sludge treatment of the petrochemical wastewater. This paper outlines the development of the mechanistic model and gives examples of how plant performance issues were investigated through process simulation.

Jones, R.M.; Dold, P.L.; Baker, A.J.; Briggs, T.

1996-12-31T23:59:59.000Z

20

Aeration control in a full-scale activated sludge wastewater treatment plant: impact on performances, energy consumption  

E-Print Network [OSTI]

for stratospheric ozone [1]. In biological wastewater treatment, microbial processes such as hydroxylamine oxidationAeration control in a full-scale activated sludge wastewater treatment plant: impact strategy on energy consumption and nitrous oxide (N2O) emission in a full-scale wastewater treatment plant

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "wastewater treatment plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Water/Wastewater Treatment Plant Field Device Wiring Method Decision Analysis  

E-Print Network [OSTI]

The choice of field device wiring method for water and wastewater treatment plant design is extremely complex and contains many variables. The choice not only affects short-term startup and equipment costs, but also long-term operations...

Dicus, Scott C.

2011-12-16T23:59:59.000Z

22

The Energy-Water Nexus: State and Local Roles in Efficiency & Water and Wastewater Treatment Plants  

Broader source: Energy.gov [DOE]

This presentation, given through the DOE's Technical Assitance Program (TAP), provides information on the Energy-Water Nexus: State and Local Roles in Efficiency & Water and Wastewater Treatment Plants.

23

In situ investigation of tubular microbial fuel cells deployed in an aeration tank at a municipal wastewater treatment plant  

E-Print Network [OSTI]

wastewater treatment plant Fei Zhang a , Zheng Ge a , Julien Grimaud b , Jim Hurst b , Zhen He a: Microbial fuel cells Wastewater treatment Organic removal Aeration Activated sludge a b s t r a c of wastewater quality, and other operating conditions. Unlike prior lab stud- ies by others, the results

24

Onsite Wastewater Treatment Systems: Aerobic Treatment Unit  

E-Print Network [OSTI]

wastewater treatment systems use. They remove 85 to 98 percent of the organic matter and solids from the wastewater, producing effluent as clean as that from munici- pal wastewater treatment plants, and cleaner than that from conventional septic tanks.... Onsite wastewater treatment systems Single-compartment trash tank Chlorinator Aerobic treatment unit Spray heads Pump tank Bruce Lesikar Professor and Extension Agricultural Engineer The Texas A&M System Aerobic treatment units, which are certified...

Lesikar, Bruce J.

2008-10-31T23:59:59.000Z

25

Demonstration of membrane aeration panels: City of Geneva Wastewater Treatment Plant. Final report  

SciTech Connect (OSTI)

This report describes the design, construction, and testing of membrane aeration panels at the Marsh Creek wastewater treatment plant (WWTP) in Geneva, NY. The operators at the Geneva plant have undertaken a long-term program to upgrade wastewater treatment processes and lower operating costs. The aging mechanical surface aerators at the Marsh Creek treatment plant were replaced by a state-of-the-art membrane panel system. This fine-bubble diffused air system offers higher oxygen transfer efficiency than surface aerators or other types of fine-bubble diffused-air systems. The project had four objectives: to decrease the amount of electricity used at the plant for aeration; to enable the plant`s existing aeration basins to accommodate higher organic loads and/or nitrify the wastewater should the need arise; to provide an even distribution of dissolved oxygen within the aeration basins to enhance biological wastewater treatment activity; and to provide technical data to assess the performance of the membrane panel system versus other forms of wastewater aeration.

NONE

1995-01-01T23:59:59.000Z

26

Simultaneous wastewater treatment and biological electricity generation  

E-Print Network [OSTI]

Simultaneous wastewater treatment and biological electricity generation B.E. Logan Department accomplishing wastewater treatment in processes based on microbial fuel cell technologies. When bacteria oxidize.4 ÂŁ 106 L of wastewater, a wastewater treatment plant has the potential to become a 2.3 MW power plant

27

A multilevel coordinated control strategy for energy conservation in wastewater treatment plants  

E-Print Network [OSTI]

A multilevel coordinated control strategy for energy conservation in wastewater treatment plants and energy conservation. To achieve these goals automatic control must be applied. This paper describes on the basis of energy conservation, provided that the effluent quality meets the environmental standards

28

Modeling and analysis of pumps in a wastewater treatment plant: A data-mining approach  

E-Print Network [OSTI]

Modeling and analysis of pumps in a wastewater treatment plant: A data-mining approach Andrew Available online 28 April 2013 Keywords: Data mining Pump modeling Multi-layer perceptron neural network Time series Pump scheduling and controlling Energy consumption a b s t r a c t A data-mining approach

Kusiak, Andrew

29

CHP and Bioenergy Systems for Landfills and Wastewater Treatment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems for Landfills and Wastewater Treatment Plants CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants There are important issues to consider when selecting...

30

STATE ESTIMATION FOR WASTEWATER TREATMENT PROCESSES  

E-Print Network [OSTI]

CHAPTER 1 STATE ESTIMATION FOR WASTEWATER TREATMENT PROCESSES O. Bernard1 , B. Chachuat2 , and J sensors (also called observers) for wastewater treatment plants (WWTPs). We give an overview in "Wastewater Quality Monitoring and Wastewater Quality Monitoring and Treatment, Philippe Quevauviller (Ed

Paris-Sud XI, Université de

31

Feasibility study for alternate fuels production: unconventional natural gas from wastewater treatment plants. Volume II, Appendix D. Final report  

SciTech Connect (OSTI)

Data are presented from a study performed to determined the feasibility of recovering methane from sewage at a typical biological secondary wastewater treatment plant. Three tasks are involved: optimization of digester gas; digester gas scrubbing; and application to the East Bay Municipal Utility District water pollution control plant. Results indicate that excess digester gas can be used economically at the wastewater treatment plant and that distribution and scrubbing can be complex and costly. (DMC) 193 references, 93 figures, 26 tables.

Overly, P.; Tawiah, K.

1981-12-01T23:59:59.000Z

32

Thermal sludge dryer demonstration: Bird Island Wastewater Treatment Plant, Buffalo, NY. Final report  

SciTech Connect (OSTI)

The Buffalo Sewer Authority (BSA), in cooperation with the New York State Energy Research and Development Authority (Energy Authority), commissioned a demonstration of a full scale indirect disk-type sludge dryer at the Bird Island Wastewater Treatment Plant (BIWWTP). The purpose of the project was to determine the effects of the sludge dryer on the sludge incineration process at the facility. Sludge incineration is traditionally the most expensive, energy-intensive unit process involving solids handling at wastewater treatment plants; costs for incineration at the BIWWTP have averaged $2.4 million per year. In the conventional method of processing solids, a series of volume reduction measures, which usually includes thickening, digestion, and mechanical dewatering, is employed prior to incineration. Usually, a high level of moisture is still present within sewage sludge following mechanical dewatering. The sludge dryer system thermally dewaters wastewater sludge to approximately 26%, (and as high as 38%) dry solids content prior to incineration. The thermal dewatering system at the BIWWTP has demonstrated that it meets its design requirements. It has the potential to provide significant energy and other cost savings by allowing the BSA to change from an operation employing two incinerators to a single incinerator mode. While the long-term reliability of the thermal dewatering system has yet to be established, this project has demonstrated that installation of such a system in an existing treatment plant can provide the owner with significant operating cost savings.

NONE

1995-01-01T23:59:59.000Z

33

Opportunities for Automated Demand Response in Wastewater Treatment  

E-Print Network [OSTI]

LBNL-6056E Opportunities for Automated Demand Response in Wastewater Treatment Facilities Figure 1: Simplified diagram of major processes at a typical wastewater treatment plant #12;Results

34

2010 Annual Wastewater Reuse Report for the Idaho National Laboratory Site's Central Facilities Area Sewage Treatment Plant  

SciTech Connect (OSTI)

This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2009, through October 31, 2010. The report contains the following information: • Site description • Facility and system description • Permit required monitoring data and loading rates • Status of special compliance conditions • Discussion of the facility’s environmental impacts. During the 2010 permit year, approximately 2.2 million gallons of treated wastewater was land-applied to the irrigation area at Central Facilities Area Sewage Treatment plant.

Mike lewis

2011-02-01T23:59:59.000Z

35

2011 Annual Wastewater Reuse Report for the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant  

SciTech Connect (OSTI)

This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (LA-000141-03), for the wastewater land application site at Idaho National Laboratory Site's Central Facilities Area Sewage Treatment Plant from November 1, 2010, through October 31, 2011. The report contains the following information: (1) Site description; (2) Facility and system description; (3) Permit required monitoring data and loading rates; (4) Status of special compliance conditions and activities; and (5) Discussion of the facility's environmental impacts. During the 2011 permit year, approximately 1.22 million gallons of treated wastewater was land-applied to the irrigation area at Central Facilities Area Sewage Treatment plant.

Michael G. Lewis

2012-02-01T23:59:59.000Z

36

2012 Annual Wastewater Reuse Report for the Idaho National Laboratory Site's Central facilities Area Sewage Treatment Plant  

SciTech Connect (OSTI)

This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2011, through October 31, 2012. The report contains the following information: • Site description • Facility and system description • Permit required monitoring data and loading rates • Status of compliance conditions and activities • Discussion of the facility’s environmental impacts. During the 2012 permit year, no wastewater was land-applied to the irrigation area of the Central Facilities Area Sewage Treatment Plant.

Mike Lewis

2013-02-01T23:59:59.000Z

37

STATE ESTIMATION FOR WASTEWATER TREATMENT PROCESSES  

E-Print Network [OSTI]

CHAPTER 1 STATE ESTIMATION FOR WASTEWATER TREATMENT PROCESSES O. Bernard1 , B. Chachuat2 , and J sensors (also called observers) for wastewater treatment plants (WWTPs). We give an overview model description (e.g., the 1 #12;2 STATE ESTIMATION FOR WASTEWATER TREATMENT PROCESSES extended Kalman

Bernard, Olivier

38

Proceedings ASCE EWRI World Water and Environmental Resources Congress 2005 May 15-19, 2005 Modeling and evaluating temperature dynamics in wastewater treatment plants  

E-Print Network [OSTI]

Modeling and evaluating temperature dynamics in wastewater treatment plants Scott A. Wells1 , Dmitriy into receiving waters, there is much interest in providing a model of temperature dynamics in wastewater using detailed temperature data from a Washington County, Oregon, USA wastewater treatment facility

Wells, Scott A.

39

2013 Annual Wastewater Reuse Report for the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant  

SciTech Connect (OSTI)

This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2012, through October 31, 2013. The report contains, as applicable, the following information: • Site description • Facility and system description • Permit required monitoring data and loading rates • Status of compliance conditions and activities • Discussion of the facility’s environmental impacts. During the 2013 permit year, no wastewater was land-applied to the irrigation area of the Central Facilities Area Sewage Treatment Plant and therefore, no effluent flow volumes or samples were collected from wastewater sampling point WW-014102. However, soil samples were collected in October from soil monitoring unit SU-014101.

Mike Lewis

2014-02-01T23:59:59.000Z

40

Making wastewater environmentally sustainable: Innovative technology offers new possibilities for wastewater treatment  

E-Print Network [OSTI]

Story by Katie Heinrich 16 tx H2O Summer 2013 Making wastewater environmentally sustainable Innovative technology o#30;ers new possibilities for wastewater treatment Municipal wastewater treatment plants may soon become more sustainable... in their treatment of wastewater by pursuing new electron beam (e-beam) technology being researched at a Texas A&M AgriLife Research center in College Station. To help these plants in their move to increased sustainability in wastewater treatment, the National...

Heinrich, Katie

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wastewater treatment plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Regional factors governing performance and sustainability of wastewater treatment plants in Honduras : Lake Yojoa Subwatershed  

E-Print Network [OSTI]

Lake Yojoa, the largest natural lake in Honduras, is currently experiencing eutrophication from overloading of nutrients, in part due to inadequate wastewater treatment throughout the Lake Yojoa Subwatershed. Some efforts ...

Walker, Kent B. (Kent Bramwell)

2011-01-01T23:59:59.000Z

42

Applications of Energy Efficiency Technologies in Wastewater Treatment Facilities  

E-Print Network [OSTI]

"Depending on the level and type of treatment, municipal wastewater treatment (WWT) can be an energy intensive process, constituting a major cost for the municipal governments. According to a 1993 study wastewater treatment plants consume close to 1...

Chow, S.; Werner, L.; Wu, Y. Y.; Ganji, A. R.

43

Harvesting Energy from Wastewater Treatment  

E-Print Network [OSTI]

Harvesting Energy from Wastewater Treatment Bruce Logan Penn State University #12;Energy Costs? 5-7% of electricity used in USA is for water &wastewater #12;Global Energy & Health Issues 1 Billion people lack #12;Energy content of Wastewaters · Electricity "lost" to water and wastewater treatment= 0.6 quad

44

Influence of wastewater-treatment effluent on  

E-Print Network [OSTI]

Influence of wastewater- treatment effluent on concentrations and fluxes of solutes in the Bush of treated effluents from wastewater-treatment plants (WWTPs) will increasingly affect the chemical biological processes associated with very low flow conditions, such as denitrification and sulfate reduction

45

Analytical support for a new, low-level radioactive wastewater treatment plant  

SciTech Connect (OSTI)

The Savannah River Site (SRS) located in Aiken, SC, is operated by Westinghouse Savannah River Company under contract with the US Department of Energy. The mission of SRS is to manufacture radioisotopes for use in national defense and space exploration. The F/H Effluent Treatment Facility (ETF) is a wastewater treatment plant supporting SRS for low-level radioactive process waste streams. In order to comply with the Federal Resource Conservation and Recovery Act, the facility had to become operational by November 8, 1988. The F/H ETF employs pH adjustment, microfiltration, organic removal, reverse osmosis, evaporation, and ion exchange to remove contaminants prior to discharge to the environment via a state-permitted outfall. Concentrated contaminants removed by these processes are diverted to other facilities for further processing. The ETF is supported by a 24 hr/day facility laboratory for process control and characterization of influent feed, treated effluent water, and concentrated waste. Permit compliance analyses reported to the state of SC are performed by an offsite certified contract laboratory. The support laboratory is efficiently organized to provide: metal analyses by ICP-AES, alpha/beta/gamma activity counting, process ions by Ion Selective Electrode (ISE), oil and grease analyses by IR technique, mercury via cold vapor AA, conductivity, turbidity, and pH. All instrumentation is contained in hoods for radioactive sample handling.

Jones, V.D.; Marsh, J.H.; Ingram, L.M.; Melton, W.L.; Magonigal, E.J.

1990-01-01T23:59:59.000Z

46

WASTEWATER TREATMENT OVER SAND COLUMNS  

E-Print Network [OSTI]

93/0096 WASTEWATER TREATMENT OVER SAND COLUMNS TREATMENT YIELDS, LOCALISATION OF THE BIOMASS Domestic wastewater treatment by infiltration-percolation is a process that becomming common in France, a greater depth for desinfection purposes. KEYWORDS Wastewater treatment, Infiltration-percolation. Sand

Paris-Sud XI, Université de

47

Harvesting Energy from Wastewater Treatment  

E-Print Network [OSTI]

Harvesting Energy from Wastewater Treatment Bruce Logan Penn State University #12;Energy Costs? 5-7% of electricity used in USA is for water &wastewater #12;Global Energy & Health IssuesGlobal Energy & Health content of WastewatersEnergy content of Wastewaters ·· ElectricityElectricity ""lostlost"" to water

48

Biologically induced concrete deterioration in a wastewater treatment plant assessed by combining microstructural analysis with thermodynamic modeling  

SciTech Connect (OSTI)

In the nitrification basins of wastewater treatment plants, deterioration of the concrete surface can occur due to acid attack caused by a nitrifying biofilm covering the concrete. To identify the mechanism of deterioration, concrete cubes of different composition were suspended in an aerated nitrification basin of a wastewater treatment plant for two years and analyzed afterwards. The microstructural investigation reveals that not only dissolution of hydrates takes place, but that calcite precipitation close to the surface occurs leading to the formation of a dense layer. The degree of deterioration of the different cubes correlates with the CaO content of the different cements used. Cements which contain a high fraction of CaO form more calcite offering a better protection against the acid attack. The presence of slag, which lowers the amount CaO in the cement, leads to a faster deterioration of the concrete than observed for samples produced with pure OPC.

Leemann, A., E-mail: andreas.leemann@empa.c [Empa, Duebendorf (Switzerland); Lothenbach, B.; Hoffmann, C. [Empa, Duebendorf (Switzerland)

2010-08-15T23:59:59.000Z

49

A methodology to estimate greenhouse gases emissions in Life Cycle Inventories of wastewater treatment plants  

SciTech Connect (OSTI)

The main objective of this paper is to present the Direct Emissions Estimation Model (DEEM), a model for the estimation of CO{sub 2} and N{sub 2}O emissions from a wastewater treatment plant (WWTP). This model is consistent with non-specific but widely used models such as AS/AD and ASM no. 1 and presents the benefits of simplicity and application over a common WWTP simulation platform, BioWin Registered-Sign , making it suitable for Life Cycle Assessment and Carbon Footprint studies. Its application in a Spanish WWTP indicates direct N{sub 2}O emissions to be 8 times larger than those associated with electricity use and thus relevant for LCA. CO{sub 2} emissions can be of similar importance to electricity-associated ones provided that 20% of them are of non-biogenic origin. - Highlights: Black-Right-Pointing-Pointer A model has been developed for the estimation of GHG emissions in WWTP. Black-Right-Pointing-Pointer Model was consistent with both ASM no. 1 and AS/AD. Black-Right-Pointing-Pointer N{sub 2}O emissions are 8 times more relevant than the one associated with electricity. Black-Right-Pointing-Pointer CO{sub 2} emissions are as important as electricity if 20% of it is non-biogenic.

Rodriguez-Garcia, G., E-mail: gonzalo.rodriguez.garcia@usc.es [Department of Chemical Engineering, University of Santiago de Compostela, Rua Lope Gomez de Marzoa, S/N, 15782, Santiago de Compostela (Spain); Hospido, A., E-mail: almudena.hospido@usc.es [Department of Chemical Engineering, University of Santiago de Compostela, Rua Lope Gomez de Marzoa, S/N, 15782, Santiago de Compostela (Spain); Bagley, D.M., E-mail: bagley@uwyo.edu [Department of Chemical and Petroleum Engineering, University of Wyoming, 82072 Laramie, WY (United States); Moreira, M.T., E-mail: maite.moreira@usc.es [Department of Chemical Engineering, University of Santiago de Compostela, Rua Lope Gomez de Marzoa, S/N, 15782, Santiago de Compostela (Spain); Feijoo, G., E-mail: gumersindo.feijoo@usc.es [Department of Chemical Engineering, University of Santiago de Compostela, Rua Lope Gomez de Marzoa, S/N, 15782, Santiago de Compostela (Spain)

2012-11-15T23:59:59.000Z

50

EA-1190: Wastewater Treatment Capability Upgrade, Amarillo, Texas  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts for the proposed upgrade of the U.S. Department of Energy Pantex Plant Wastewater Treatment Plant in Amarillo, Texas.

51

The carbon footprint analysis of wastewater treatment plants and nitrous oxide emissions from full-scale biological nitrogen removal processes in Spain  

E-Print Network [OSTI]

This thesis presents a general model for the carbon footprint analysis of advanced wastewater treatment plants (WWTPs) with biological nitrogen removal processes, using a life cycle assessment (LCA) approach. Literature ...

Xu, Xin, S.M. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

52

^--'^ Poster session : 4st confrence on Small Wastewater Treatment Plants. Stratford-upon-Avon, April 18-21, 1999 f . Contact e-mail : catherine.boutin@cemagref.fr  

E-Print Network [OSTI]

^--'^ Poster session : 4st conférence on Small Wastewater Treatment Plants. Stratford a large number of communities with less than 2 000 inhabitants. The adjustment of wastewater treatment is to describe the five wastewater treatment Systems called "attached-growth cultures on fine média". A high

Paris-Sud XI, Université de

53

EECBG Success Story: Saving Energy at 24/7 Wastewater Treatment Plant |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct,Final9:Department of Energy at 24/7 Wastewater Treatment

54

Fuzzy predictive control for nitrogen removal in biological wastewater treatment  

E-Print Network [OSTI]

Fuzzy predictive control for nitrogen removal in biological wastewater treatment S. Marsili wastewater is too low, full denitrification is difficult to obtain and an additional source of organic carbon predictive control; wastewater treatment plant Introduction The problem of improving the nitrogen removal

55

Optimized Control Structure for a Wastewater Treatment Benchmark  

E-Print Network [OSTI]

Optimized Control Structure for a Wastewater Treatment Benchmark Michela Mulas , Antonio Carlos wastewater treat- ment, give rise to both technical and economical challenges since most of the existing structure design the efficiency of a wastewater treatment plant can be improved, minimizing operational

Skogestad, Sigurd

56

Feasibility of geothermal heat use in the San Bernardino Municipal Wastewater Treatment Plant. Final report, September 1980-June 1981  

SciTech Connect (OSTI)

A system was developed for utilizing nearby low temperature geothermal energy to heat two high-rate primary anaerobic digesters at the San Bernardino Wastewater Treatment Plant. The geothermal fluid would replace the methane currently burned to fuel the digesters. A summary of the work accomplished on the feasibility study is presented. The design and operation of the facility are examined and potentially viable applications selected for additional study. Results of these investigations and system descriptions and equipment specifications for utilizing geothermal energy in the selected processes are presented. The economic analyses conducted on the six engineering design cases are discussed. The environmental setting of the project and an analysis of the environmental impacts that will result from construction and operation of the geothermal heating system are discussed. A Resource Development Plan describes the steps that the San Bernardino Municipal Water Department could follow in order to utilize the resource. A preliminary well program and rough cost estimates for the production and injection wells also are included. The Water Department is provided with a program and schedule for implementing a geothermal system to serve the wastewater treatment plant. Regulatory, financial, and legal issues that will impact the project are presented in the Appendix. An outline of a Public Awareness Program is included.

Racine, W.C.; Larson, T.C.; Stewart, C.A.; Wessel, H.B.

1981-06-01T23:59:59.000Z

57

Field's Point Wastewater Treatment Facility (Narragansett Bay...  

Open Energy Info (EERE)

Field's Point Wastewater Treatment Facility (Narragansett Bay Commission) Jump to: navigation, search Name Field's Point Wastewater Treatment Facility (Narragansett Bay Commission)...

58

Optimizing a Modular Expansion of a Wastewater Treatment Plant Using Option Theory and Moment Matching Approximation Abstract  

E-Print Network [OSTI]

We consider a municipality faced with the question of how big to make their new wastewater treatment facility to meet the demand of 10 % expected growth in the number of new connections. Previously, we developed a real options framework for determining optimal plant size and showed that the model takes on the form of an Asian option. Furthermore, it was shown that if the connection rate growths are closely correlated with the market growth, then the penalty costs associated with having insufficient capacity to treat the wastewater can be effectively hedged, significantly reducing overall expected costs. In this study, we introduce an approximate analytical solution and optimize the plant size of a staged / modular expansion. Based on the given construction cost estimates, we show that a staged expansion has a minimal (expected) savings when connection growth rates are closely correlated to the market growth rates. However, as the correlation decreases to zero, or, alternatively, no attempt is made to hedge the penalty costs, a staged expansion has an expected savings of 20%.

Yuri Lawryshyn; Sebastian Jaimungal

59

Fate of As, Se, and Hg in a Passive Integrated System for Treatment of Fossil Plant Wastewater  

SciTech Connect (OSTI)

TVA is collaborating with EPRI and DOE to demonstrate a passive treatment system for removing SCR-derived ammonia and trace elements from a coal-fired power plant wastewater stream. The components of the integrated system consist of trickling filters for ammonia oxidation, reaction cells containing zero-valent iron (ZVI) for trace contaminant removal, a settling basin for storage of iron hydroxide floc, and anaerobic vertical-flow wetlands for biological denitrification. The passive integrated treatment system will treat up to 0.25 million gallons per day (gpd) of flue gas desulfurization (FGD) pond effluent, with a configuration requiring only gravity flow to obviate the need for pumps. The design of the system will enable a comparative evaluation of two parallel treatment trains, with and without the ZVI extraction trench and settling/oxidation basin components. One of the main objectives is to gain a better understanding of the chemical transformations that species of trace elements such as arsenic, selenium, and mercury undergo as they are treated in passive treatment system components with differing environmental conditions. This progress report details the design criteria for the passive integrated system for treating fossil power plant wastewater as well as performance results from the first several months of operation. Engineering work on the project has been completed, and construction took place during the summer of 2005. Monitoring of the passive treatment system was initiated in October 2005 and continued until May 18 2006. The results to date indicate that the treatment system is effective in reducing levels of nitrogen compounds and trace metals. Concentrations of both ammonia and trace metals were lower than expected in the influent FGD water, and additions to increase these concentrations will be done in the future to further test the removal efficiency of the treatment system. In May 2006, the wetland cells were drained of FGD water, refilled with less toxic ash pond water, and replanted due to low survival rates from the first planting the previous summer. The goals of the TVA-EPRI-DOE collaboration include building a better understanding of the chemical transformations that trace elements such as arsenic, selenium, and mercury undergo as they are treated in a passive treatment system, and to evaluate the performance of a large-scale replicated passive treatment system to provide additional design criteria and economic factors.

Terry Yost; Paul Pier; Gregory Brodie

2007-12-31T23:59:59.000Z

60

Environmental Assessment and Finding of No Significant Impact: Wastewater Treatment Capability Upgrade, Project NO. 96-D-122 Pantex Plant Amarillo, Texas  

SciTech Connect (OSTI)

This Environmental Assessment (EA) addresses the U.S. Department of Energy (DOE) proposed action regarding an upgrade of the Pantex Plant Wastewater Treatment Facility (WWTF). Potential environmental consequences associated with the proposed action and alternative actions are provided. DOE proposes to design, build, and operate a new WWTF, consistent with the requirements of Title 30 of the Texas Administrative Code (TAC), Chapter 317, ''Design Criteria for Sewage Systems,'' capable of supporting current and future wastewater treatment requirements of the Plant. Wastewater treatment at Pantex must provide sufficient operational flexibility to meet Pantex Plant's anticipated future needs, including potential Plant mission changes, alternative effluent uses, and wastewater discharge permit requirements. Treated wastewater effluent and non-regulated water maybe used for irrigation on DOE-owned agricultural land. Five factors support the need for DOE action: (1) The current WWTF operation has the potential for inconsistent permit compliance. (2) The existing WWTF lies completely within the 100-year floodplain. (3) The Pantex Plant mission has the potential to change, requiring infrastructure changes to the facility. (4) The life expectancy of the existing facility would be nearing its end by the time a new facility is constructed. (5) The treated wastewater effluent and non-regulated water would have a beneficial agricultural use through irrigation. Evaluation during the internal scoping led to the conclusion that the following factors are present and of concern at the proposed action site on Pantex Plant: (1) Periodic wastewater effluent permit exceedances; (2) Wetlands protection and floodplain management; (3) Capability of the existing facility to meet anticipated future needs of Pantex (4) Existing facility design life; and (5) Use of treated wastewater effluent and non-regulated water for irrigation. Evaluation during the internal scoping led to the conclusion that the following conditions are not present, nor of concern at the proposed site on Pantex Plant, and no further analysis was conducted: (1) State or national parks, forests, or other conservation areas; (2) Wild and scenic rivers; (3) Natural resources, such as timber, range, soils, minerals; (4) Properties of historic, archeological, or architectural significance; (5) Native American concerns; (6) Minority and low-income populations; and (7) Prime or unique farmland. In this document, DOE describes the proposed action and a reasonable range of alternatives to the proposed action, including the ''No-Action'' alternative. The proposed action cited in the ''U.S. Department of Energy Application for a Texas Pollutant Discharge Elimination System Permit Modifying Permit to Dispose of Waste, No. 02296,'' December 1998, included the construction of a new wastewater treatment facility, a new irrigation storage pond, and the conversion of the current wastewater treatment facility into an irrigation storage pond. Although a permit modification application has been filed, if a decision on this EA necessitates it, an amendment to the permit application would be made. The permit application would be required for any of the alternatives and the filing does not preclude or predetermine selection of an alternative considered by this EA. This permit change would allow Pantex to land-dispose treated wastewater by irrigating agricultural land. This construction for the proposed action would include designing two new lagoons for wastewater treatment. One of the lagoons could function as a facultative lagoon for treatment of wastewater. The second lagoon would serve as an irrigation storage impoundment (storage pond), with the alternative use as a facultative lagoon if the first lagoon is out of service for any reason. The new facultative lagoon and irrigation water storage pond would be sited outside of the 100-year flood plain. The existing WWTF lagoon would be used as a storage pond for treated wastewater effluent for irrigation water, as needed. The two new lagoons would be li

N /A

1999-05-27T23:59:59.000Z

Note: This page contains sample records for the topic "wastewater treatment plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

EECBG Success Story: Saving Energy at 24/7 Wastewater Treatment...  

Energy Savers [EERE]

Saving Energy at 247 Wastewater Treatment Plant EECBG Success Story: Saving Energy at 247 Wastewater Treatment Plant July 29, 2010 - 4:11pm Addthis In the city of Longview,...

62

Combustion testing and heat recovery study: Frank E. Van Lare Wastewater Treatment Plant, Monroe County. Final report  

SciTech Connect (OSTI)

The objectives of the study were to record and analyze sludge management operations data and sludge incinerator combustion data; ascertain instrumentation and control needs; calculate heat balances for the incineration system; and determine the feasibility of different waste-heat recovery technologies for the Frank E. Van Lare (FEV) Wastewater Treatment Plant. As an integral part of this study, current and pending federal and state regulations were evaluated to establish their impact on furnace operation and subsequent heat recovery. Of significance is the effect of the recently promulgated Federal 40 CFR Part 503 regulations on the FEV facility. Part 503 regulations were signed into law in November 1992, and, with some exceptions, affected facilities must be in compliance by February 19, 1994. Those facilities requiring modifications or upgrades to their incineration or air pollution control equipment to meet Part 503 regulations must be in compliance by February 19, 1995.

NONE

1995-01-01T23:59:59.000Z

63

Use of Treated Municipal Wastewater as Power Plant Cooling System Makeup Water: Tertiary Treatment versus Expanded Chemical Regimen for Recirculating Water Quality Management  

SciTech Connect (OSTI)

Treated municipal wastewater is a common, widely available alternative source of cooling water for thermoelectric power plants across the U.S. However, the biodegradable organic matter, ammonia-nitrogen, carbonate and phosphates in the treated wastewater pose challenges with respect to enhanced biofouling, corrosion, and scaling, respectively. The overall objective of this study was to evaluate the benefits and life cycle costs of implementing tertiary treatment of secondary treated municipal wastewater prior to use in recirculating cooling systems. The study comprised bench- and pilot-scale experimental studies with three different tertiary treated municipal wastewaters, and life cycle costing and environmental analyses of various tertiary treatment schemes. Sustainability factors and metrics for reuse of treated wastewater in power plant cooling systems were also evaluated. The three tertiary treated wastewaters studied were: secondary treated municipal wastewater subjected to acid addition for pH control (MWW_pH); secondary treated municipal wastewater subjected to nitrification and sand filtration (MWW_NF); and secondary treated municipal wastewater subjected nitrification, sand filtration, and GAC adsorption (MWW_NFG). Tertiary treatment was determined to be essential to achieve appropriate corrosion, scaling, and biofouling control for use of secondary treated municipal wastewater in power plant cooling systems. The ability to control scaling, in particular, was found to be significantly enhanced with tertiary treated wastewater compared to secondary treated wastewater. MWW_pH treated water (adjustment to pH 7.8) was effective in reducing scale formation, but increased corrosion and the amount of biocide required to achieve appropriate biofouling control. Corrosion could be adequately controlled with tolytriazole addition (4-5 ppm TTA), however, which was the case for all of the tertiary treated waters. For MWW_NF treated water, the removal of ammonia by nitrification helped to reduce the corrosivity and biocide demand. Also, the lower pH and alkalinity resulting from nitrification reduced the scaling to an acceptable level, without the addition of anti-scalant chemicals. Additional GAC adsorption treatment, MWW_NFG, yielded no net benefit. Removal of organic matter resulted in pitting corrosion in copper and cupronickel alloys. Negligible improvement was observed in scaling control and biofouling control. For all of the tertiary treatments, biofouling control was achievable, and most effectively with pre-formed monochloramine (2-3 ppm) in comparison with NaOCl and ClO2. Life cycle cost (LCC) analyses were performed for the tertiary treatment systems studied experimentally and for several other treatment options. A public domain conceptual costing tool (LC3 model) was developed for this purpose. MWW_SF (lime softening and sand filtration) and MWW_NF were the most cost-effective treatment options among the tertiary treatment alternatives considered because of the higher effluent quality with moderate infrastructure costs and the relatively low doses of conditioning chemicals required. Life cycle inventory (LCI) analysis along with integration of external costs of emissions with direct costs was performed to evaluate relative emissions to the environment and external costs associated with construction and operation of tertiary treatment alternatives. Integrated LCI and LCC analysis indicated that three-tiered treatment alternatives such as MWW_NSF and MWW_NFG, with regular chemical addition for treatment and conditioning and/or regeneration, tend to increase the impact costs and in turn the overall costs of tertiary treatment. River water supply and MWW_F alternatives with a single step of tertiary treatment were associated with lower impact costs, but the contribution of impact costs to overall annual costs was higher than all other treatment alternatives. MWW_NF and MWW_SF alternatives exhibited moderate external impact costs with moderate infrastructure and chemical conditioner dosing, which makes them (especially

David Dzombak; Radisav Vidic; Amy Landis

2012-06-30T23:59:59.000Z

64

WASTEWATER CHARACTERIZATION OF' FISH PROCESSING PLANT EFFLUENTS  

E-Print Network [OSTI]

#12;WASTEWATER CHARACTERIZATION OF' FISH PROCESSING PLANT EFFLUENTS TECHNICAL REPORT SERIES FREMP in Publication Data Main entry under title Wastewater characterization of fish processing plant effluents (Canada)); DOE FRAP 1993-39. TD899.F5W37 1994 363.73'942'0971133 C94-960159-4 #12;WASTEWATER

65

To appear in Proceedings of ECSCW99 Dynamics in Wastewater Treatment  

E-Print Network [OSTI]

To appear in Proceedings of ECSCW99 Dynamics in Wastewater Treatment: A Framework for Understanding on the study of unskilled work in a Danish wastewater treatment plant, the problem of formalisation of work at the expense of the other tend to fail. Wastewater treatment plants are highly-distributed technical settings

Bertelsen, Olav W.

66

Pilot Scale Study of Excess Sludge Production Reduction in Wastewater Treatment by Ozone  

E-Print Network [OSTI]

Pilot Scale Study of Excess Sludge Production Reduction in Wastewater Treatment by Ozone Yuan Ma-scale reactors were operated at the LaPrairie Wastewater Treatment plant (one control and one ozonated

Barthelat, Francois

67

Imprinted Polymers in Wastewater Treatment  

SciTech Connect (OSTI)

In wastewater treatment, a method that specifically recognizes a variety of impurities in a flexible manner would be useful for treatment facilities with varying needs. Current purification techniques (i.e. bacteria, oxidation, reduction, precipitation and filtration) are nonspecific and difficult to control in complex mixtures. Heavy metal removal is particularly important in improving the efficiency of wastewater treatment, as they inhibit or even destroy the bacteria used for filtration. Imprinting polymerization is a technique that allows for the efficient removal of specific compounds and has been used in purification of enantiomers. It has potential to be applied in wastewater systems with the impurities acting as the template for the imprinting polymerization. The polymer with the bound impurities intact can then be removed via precipitation. After removal of the impurity the polymer can be reused. Data for the imprinting polymerization of polyacrylates and polyacrylamides for several metal complexes will be presented. Imprinting polymerization in combination with emulsion polymerization to improve the removal of hydrophobic contaminants will be described. Removal efficiencies will be presented and compared with conventional wastewater treatment methods.

Eastman, Christopher; Goodrich, Scott; Gartner, Isabelle; Mueller, Anja

2004-03-31T23:59:59.000Z

68

On-Site Wastewater Treatment Systems: Evapotranspiration Bed  

E-Print Network [OSTI]

Evapotranspiration (ET) beds treat wastewater in the soil by evaporation and by transpiration from plants growing there. This publication explains the treatment, design, operation and maintenance of ET beds....

Lesikar, Bruce J.

1999-09-01T23:59:59.000Z

69

Onsite Wastewater Treatment Systems: Graywater Safety  

E-Print Network [OSTI]

irrigation and decr,ease the amount of wastewater entering sewers or onsite wastewater treatment systems. Onsite wastewater treatment systems However, homeowners who irrigate their lawns with graywater need to understand the risks and safety issues.... Residential wastewater can be classified as either blackwater (sew- age containing fecal matter or food wastes) or graywater. If graywater is collected separately from blackwater, it can be dispersed as irrigation water with less treatment than...

Melton, Rebecca; Lesikar, Bruce J.

2008-10-23T23:59:59.000Z

70

Onsite Wastewater Treatment Systems: Ultraviolet Light Disinfection  

E-Print Network [OSTI]

Some onsite wastewater treatment systems include a disinfection component. This publication explains how homeowners can disinfect wastewater with ultraviolet light, what the components of such a system are, what factors affect the performance of a...

Lesikar, Bruce J.

2008-10-02T23:59:59.000Z

71

Plant species as a significant factor in wastewater treatment in constructed wetlands  

E-Print Network [OSTI]

) in microcosms fed rural septic influent. The water parameters studied were water usage, ammonium-nitrogen, phosphorus, coliforms, suspended solids, BOD, pH, and turbidity. The BOD for all plants was reduced below the standard levels but none were significantly...

Varvel, Tracey W

2013-02-22T23:59:59.000Z

72

Economic Analysis of Wastewater Treatment Alternatives in Rural Texas Communities.  

E-Print Network [OSTI]

)C \\245.7 73 ).l'la\\ J :--7:...---_- r----'??-=--=--::------. I UElRAH ! MAY 16 1985 Texas A&M University Economic Analysis of J. Wastewater Treatment Alternatives IN RURAL TEXAS COMMUNITIES B-1491 January 1985 The Texas Agricultural..., Gary Lightsey, and Charles Hart from the Farmers Home Administration in Temple, Texas, also deserve a special vote of thanks. They provided an orientation to the economics of treatment plant investment. ECONOMIC ANALYSIS OF WASTEWATER TREATMENT...

Victurine, Raymond F.; Goodwin, H.L. Jr; Lacewell, Ronald D.

1985-01-01T23:59:59.000Z

73

A consistent modelling methodology for secondary settling tanks in wastewater treatment  

E-Print Network [OSTI]

A consistent modelling methodology for secondary settling tanks in wastewater treatment Stefan on a consistent modelling methodology (CMM) of complex real processes in wastewater treatment by utilizing both as a case since this is one of the most complex processes in a wastewater treatment plant and the simulation

BĂĽrger, Raimund

74

A consistent modelling methodology for secondary settling tanks in wastewater treatment  

E-Print Network [OSTI]

A consistent modelling methodology for secondary settling tanks in wastewater treatment Raimund Bu in wastewater treatment by combining classical concepts with results from applied mathematics, and partly was chosen as a case since this is one of the most complex processes in a wastewater treatment plant

BĂĽrger, Raimund

75

Impact of Onsite Wastewater Treatment Systems on Nitrogen and Baseflow in Urban Watersheds of Metropolitan Atlanta  

E-Print Network [OSTI]

Impact of Onsite Wastewater Treatment Systems on Nitrogen and Baseflow in Urban Watersheds 2401, Miller Plant Sciences Building Onsite wastewater treatment systems (OWTS) are widely used Septic Wastewater-Treatment Systems on Base Flow in Selected Watersheds in Gwinnett County, Georgia

Arnold, Jonathan

76

Models for Optimization of Energy Consumption of Pumps in a Wastewater Processing Plant  

E-Print Network [OSTI]

Models for Optimization of Energy Consumption of Pumps in a Wastewater Processing Plant Zijun Zhang in the wastewater preliminary treatment process is discussed. Data- mining algorithms are utilized to develop pump performance models based on industrial data collected at a municipal wastewater processing plant

Kusiak, Andrew

77

Energy Efficiency Strategies for Municipal Wastewater Treatment Facilities  

SciTech Connect (OSTI)

Water and wastewater systems are significant energy consumers with an estimated 3%-4% of total U.S. electricity consumption used for the movement and treatment of water and wastewater. Water-energy issues are of growing importance in the context of water shortages, higher energy and material costs, and a changing climate. In this economic environment, it is in the best interest for utilities to find efficiencies, both in water and energy use. Performing energy audits at water and wastewater treatment facilities is one way community energy managers can identify opportunities to save money, energy, and water. In this paper the importance of energy use in wastewater facilities is illustrated by a case study of a process energy audit performed for Crested Butte, Colorado's wastewater treatment plant. The energy audit identified opportunities for significant energy savings by looking at power intensive unit processes such as influent pumping, aeration, ultraviolet disinfection, and solids handling. This case study presents best practices that can be readily adopted by facility managers in their pursuit of energy and financial savings in water and wastewater treatment. This paper is intended to improve community energy managers understanding of the role that the water and wastewater sector plays in a community's total energy consumption. The energy efficiency strategies described provide information on energy savings opportunities, which can be used as a basis for discussing energy management goals with water and wastewater treatment facility managers.

Daw, J.; Hallett, K.; DeWolfe, J.; Venner, I.

2012-01-01T23:59:59.000Z

78

Onsite Wastewater Treatment Systems: Liquid Chlorination  

E-Print Network [OSTI]

This publication explains the process, components, legal requirements, factors affecting performance, and maintenance needs of liquid chlorination systems for onsite wastewater treatment....

Weaver, Richard; Lesikar, Bruce J.; Richter, Amanda; O'Neill, Courtney

2008-10-23T23:59:59.000Z

79

Opportunities for Automated Demand Response in Wastewater Treatment Facilities in California - Southeast Water Pollution Control Plant Case Study  

SciTech Connect (OSTI)

This report details a study into the demand response potential of a large wastewater treatment facility in San Francisco. Previous research had identified wastewater treatment facilities as good candidates for demand response and automated demand response, and this study was conducted to investigate facility attributes that are conducive to demand response or which hinder its implementation. One years' worth of operational data were collected from the facility's control system, submetered process equipment, utility electricity demand records, and governmental weather stations. These data were analyzed to determine factors which affected facility power demand and demand response capabilities The average baseline demand at the Southeast facility was approximately 4 MW. During the rainy season (October-March) the facility treated 40% more wastewater than the dry season, but demand only increased by 4%. Submetering of the facility's lift pumps and centrifuges predicted load shifts capabilities of 154 kW and 86 kW, respectively, with large lift pump shifts in the rainy season. Analysis of demand data during maintenance events confirmed the magnitude of these possible load shifts, and indicated other areas of the facility with demand response potential. Load sheds were seen to be possible by shutting down a portion of the facility's aeration trains (average shed of 132 kW). Load shifts were seen to be possible by shifting operation of centrifuges, the gravity belt thickener, lift pumps, and external pump stations These load shifts were made possible by the storage capabilities of the facility and of the city's sewer system. Large load reductions (an average of 2,065 kW) were seen from operating the cogeneration unit, but normal practice is continuous operation, precluding its use for demand response. The study also identified potential demand response opportunities that warrant further study: modulating variable-demand aeration loads, shifting operation of sludge-processing equipment besides centrifuges, and utilizing schedulable self-generation.

Olsen, Daniel; Goli, Sasank; Faulkner, David; McKane, Aimee

2012-12-20T23:59:59.000Z

80

Wastewater and Wastewater Treatment Systems (Oklahoma)  

Broader source: Energy.gov [DOE]

The Oklahoma Department of Environmental Quality administers regulations for waste water and waste water treatment systems. Construction of a municipal treatment work, non-industrial waste water...

Note: This page contains sample records for the topic "wastewater treatment plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Onsite Wastewater Treatment Systems: Constructed Wetlands  

E-Print Network [OSTI]

Two-compartment septic tank Soil absorption field Constructed wetland Onsite wastewater treatment systems Constructed wetlands Natural wetlands generally have visible water in the system. However, for those at homes, the water flows beneath... the media surface, which limits contact between residents and wastewater. The constructed wetland waste- water treatment system has three main components that work together to purify wastewater: ? A septic tank, which is an en- closed watertight...

Lesikar, Bruce J.

2008-10-23T23:59:59.000Z

82

Ceramic membrane treatment of petrochemical wastewater  

SciTech Connect (OSTI)

Ceramic alumina microfiltration membranes were evaluated for treatment of 3 aqueous streams containing heavy metals, oils, and solids at petrochemical manufacturing facilities. To the best of the author's knowledge, this is the first reported use of ceramic alumina membranes for process water and wastewater treatment in a US petrochemical plant. In a pilot test at a vinyl chloride monomer (VCM) plant, precipitated heavy metal solids were filtered with the membranes. On another stream at that site, the ceramic membrane pilot system successfully treated emulsions of 1,2-dichloroethane (EDC), water, and solids. Membrane filtration of a linear alkyl benzene (LAB) oily wastewater stream produced water with less than 5 ppmw oil and grease, after pretreatment with HCl and ferric chloride. A preliminary financial analysis shows that the installed system cost for a ceramic membrane unit is comparable to other membrane technologies, while operating costs are anticipated to be lower. Specific process conditions that are particularly amenable to treatment by ceramic membrane microfiltration are also given in the paper. 10 refs., 11 figs., 7 tabs.

Lahiere, R.J. (Vista Chemical Co., Houston, TX (United States)); Goodboy, K.P.

1993-05-01T23:59:59.000Z

83

CONTROL OF AN IDEAL ACTIVATED SLUDGE PROCESS IN WASTEWATER TREATMENT VIA AN ODE-PDE MODEL  

E-Print Network [OSTI]

CONTROL OF AN IDEAL ACTIVATED SLUDGE PROCESS IN WASTEWATER TREATMENT VIA AN ODE-PDE MODEL STEFAN treatment plants, consists basically of a biological reactor followed by a sedi- mentation tank, which has. 1. Introduction The need for efficient wastewater treatment plants in terms of low effluent con

Diehl, Stefan

84

EPA ENERGY STAR Webcast: Benchmarking Water/Wastewater Treatment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Benchmarking WaterWastewater Treatment Facilities in Portfolio Manager EPA ENERGY STAR Webcast: Benchmarking WaterWastewater Treatment Facilities in Portfolio Manager November...

85

On-Site Wastewater Treatment Systems: Graywater  

E-Print Network [OSTI]

-6176 3-08 Figure 1: A diagram of separate blackwater and graywater plumbing systems. W ith water reuse gaining popularity, people increasingly consider graywater from their residences as a resource to be separated from the wastewater stream... and reused in their landscapes. Such reuse of graywater reduces the amount of wastewater entering sewers or onsite wastewater treatment systems, reduces demands to use potable water for other residential uses like irrigation and helps preserve limited...

Melton, Rebecca; Lesikar, Bruce J.; Smith, David; O'Neill, Courtney

2008-04-03T23:59:59.000Z

86

Utilization of municipal wastewater for cooling in thermoelectric power plants: Evaluation of the combined cost of makeup water treatment and increased condenser fouling  

SciTech Connect (OSTI)

A methodology is presented to calculate the total combined cost (TCC) of water sourcing, water treatment and condenser fouling in the recirculating cooling systems of thermoelectric power plants. The methodology is employed to evaluate the economic viability of using treated municipal wastewater (MWW) to replace the use of freshwater as makeup water to power plant cooling systems. Cost analyses are presented for a reference power plant and five different tertiary treatment scenarios to reduce the scaling tendencies of MWW. Results indicate that a 550 MW sub-critical coal fired power plant with a makeup water requirement of 29.3 ML/day has a TCC of $3.0 - 3.2 million/yr associated with the use of treated MWW for cooling. (All costs USD 2009). This translates to a freshwater conservation cost of $0.29/kL, which is considerably lower than that of dry air cooling technology, $1.5/kL, as well as the 2020 conservation cost target set by the U.S. Department of Energy, $0.74/kL. Results also show that if the available price of freshwater exceeds that of secondarytreated MWW by more than $0.13-0.14/kL, it can be economically advantageous to purchase secondary MWW and treat it for utilization in the recirculating cooling system of a thermoelectric power plant.

Walker, Michael E.; Theregowda, Ranjani B.; Safari, Iman; Abbasian, Javad; Arastoopour, Hamid; Dzombak, David A.; Hsieh, Ming-Kai; Miller, David C.

2013-10-01T23:59:59.000Z

87

Onsite Wastewater Treatment Systems: Sand Filters  

E-Print Network [OSTI]

Sand filters are beds of granular material, or sand, drained from underneath so that pretreated wastewater can be treated, collected and distributed to a land application system. This publication explains the treatment, design, operation...

Lesikar, Bruce J.

2008-10-23T23:59:59.000Z

88

Onsite Wastewater Treatment Systems: Understanding and Maintaining your Septic System  

E-Print Network [OSTI]

Understanding and maintaining your septic system L-5491 9-08 Figure 1: Components of an on-site wastewater treatment system. Onsite wastewater treatment systems Well 1. Wastewater source 2. Collection and storage 3. Pretreatment Groundwater 4.... Final treatment and dispersal P roper operation and maintenance of your wastewater treatment system is critical for its performance. Taking proper care of your system also: components; and final treatment and dispersal components. Wastewater source...

Lesikar, Bruce J.; Mechell, Justin; Alexander, Rachel

2008-10-23T23:59:59.000Z

89

Wastewater reclamation and reuse in a petrochemical plant  

SciTech Connect (OSTI)

A large petrochemical plant located in a water-limited area is a major water user. The plant is facing a critical water problem because of several factors: (1) the raw water total dissolved solids (TDS) content has been increasing, (2) water rationing, which limits plant production, occurs during drought periods, (3) the plant is planning for a major expansion that requires major additional water supply, and (4) there is persistent community pressure for wastewater discharge reduction. A water resource management and planning study was conducted for this plant to resolve the water problem. This chapter describes the results of the study and the design of a pilot plant program for the testing of a wastewater treatment and recycling system.

Wong, J.M. [Brown and Caldwell, Pleasant Hill, CA (United States)

1996-11-01T23:59:59.000Z

90

APPLIED ISSUES Effects of stream restoration and wastewater treatment  

E-Print Network [OSTI]

APPLIED ISSUES Effects of stream restoration and wastewater treatment plant effluent on fish.S.A. Three site types were examined on each stream; two urban (restored and unrestored) and a forested site was not significant. 3. Restored stream sites had significantly higher fish richness and a trend towards greater

Hershey, Anne

91

Determination of Baselines for Evaluation and Promotion of Energy Efficiency in Wastewater Treatment Facilities  

E-Print Network [OSTI]

Wastewater treatment plants are one of the largest energy consumers managed by the public sector. As plants expand in the future to accommodate population growth, energy requirements will substantially increase. Thus, implementation of energy...

Chow, S. A.; Ganji, A. R.; Fok, S.

92

Treatment of Wood Preserving Wastewater  

E-Print Network [OSTI]

The wastewater produced by the wood preserving industry presents a difficult problem to treat economically. A review of the literature indicates the size of the industry has limited the pursuit of an orderly and economic solution. Atmospheric...

Reynolds, T. D.; Shack, P. A.

93

Computing the Resilience of a Wastewater Treatment Bioreactor Nabil Mabrouk  

E-Print Network [OSTI]

Computing the Resilience of a Wastewater Treatment Bioreactor Nabil Mabrouk Laboratory guillaume.deffuant@cemagref.fr Abstract--Biological wastewater treatment reactor are de- signed to reduce the pollutant content of a wastewater to an acceptable level often fixed by wastewater discharge regula- tions

Paris-Sud XI, Université de

94

Production of Electricity during Wastewater Treatment Using a  

E-Print Network [OSTI]

Production of Electricity during Wastewater Treatment Using a Single Chamber Microbial Fuel Cell H wastewater, while at the same time accomplishing biological wastewater treatment (removal of chemical oxygen of the wastewater. Power output was proportional to the hydraulic retention time over a range of 3-33 h

95

Introduction Wetlands are increasingly used for wastewater  

E-Print Network [OSTI]

Introduction Wetlands are increasingly used for wastewater treatment Plant community changes and related nutrient retention within an aridland constructed wastewater treatment wetland How does plant community composition change in an aridland constructed wastewater treatment wetland and how do those

Hall, Sharon J.

96

Applications of nanotechnology in water and wastewater treatment  

E-Print Network [OSTI]

Applications of nanotechnology in water and wastewater treatment Xiaolei Qu, Pedro J.J. Alvarez and wastewater treatment Water reuse Sorption Membrane processes Photocatalysis Disinfection Microbial control. Nanotechnology holds great potential in advancing water and wastewater treatment to improve treatment efficiency

Alvarez, Pedro J.

97

Plants in constructed wetlands help to treat agricultural processing wastewater  

E-Print Network [OSTI]

Evaluation of constructed wetland treatment performance forof a con- structed wetland for treatment of winery effluent.constructed wetlands for process wastewater treatment at two

Grismer, Mark E; Shepherd, Heather L

2011-01-01T23:59:59.000Z

98

Modeling Onsite Wastewater Treatment Systems in the Dickinson Bayou Watershed  

E-Print Network [OSTI]

Onsite wastewater treatment systems (OWTSs) are a commonly used means of wastewater treatment in the Dickinson Bayou watershed which is located between Houston and Galveston. The Dickinson Bayou is classified as "impaired" by the Texas Commission...

Forbis-Stokes, Aaron

2012-10-19T23:59:59.000Z

99

On-Site Wastewater Treatment Systems: Selecting and Permitting (Spanish)  

E-Print Network [OSTI]

This publication explains how to select and obtain a permit for an on-site wastewater treatment system in Texas....

Lesikar, Bruce J.

2005-04-30T23:59:59.000Z

100

Most modern wastewater treatment systems rely on microbial processes to remove contaminants. This makes wastewater  

E-Print Network [OSTI]

Most modern wastewater treatment systems rely on microbial processes to remove contaminants. This makes wastewater treatment one of the largest biotechnology industries in the world. In New Zealand alone, about 1.5 billion litres of treated domestic wastewater is discharged each day

Auckland, University of

Note: This page contains sample records for the topic "wastewater treatment plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

ENVIRONMENTAL BIOTECHNOLOGY Brewery wastewater treatment using air-cathode  

E-Print Network [OSTI]

. 1994; Parawira et al. 2005). Biological treatment processes are particularly effective for wastewaterENVIRONMENTAL BIOTECHNOLOGY Brewery wastewater treatment using air-cathode microbial fuel cells wastewater treatment using microbial fuel cells (MFCs) will require a better understanding of how operational

102

EPA ENERGY STAR Webcast: Benchmarking Water/Wastewater Treatment Facilities in Portfolio Manager  

Broader source: Energy.gov [DOE]

Learn how to track the progress of energy efficiency efforts and compare the energy use of wastewater treatment plants to other peer facilities across the country. Attendees will learn how to...

103

Modeling of Immobilized Cell Columns for Bioconversion and Wastewater Treatment  

E-Print Network [OSTI]

Modeling of Immobilized Cell Columns for Bioconversion and Wastewater Treatment Tingyue Gu* and Mei used in bioconversions to produce biological products as well as in wastewater treatment such as solvent removal from wastewater streams. In this work, a rate model is proposed to simulate this kind

Gu, Tingyue

104

WASTEWATER SYSTEMS Henrik Bechmann  

E-Print Network [OSTI]

MODELLING OF WASTEWATER SYSTEMS Henrik Bechmann Lyngby 1999 ATV Erhvervsforskerprojekt EF 623 IMM, N. K. (1998). Control of sewer systems and wastewater treatment plants using pollutant concentration., and Nielsen, M. K. (1999). Grey box modelling of first flush and incoming wastewater at a wastewater treatment

105

Radiological Risk Assessment for King County Wastewater Treatment Division  

SciTech Connect (OSTI)

Staff of the King County Wastewater Treatment Division (WTD) have concern about the aftermath of a radiological dispersion event (RDE) leading to the introduction of significant quantities of radioactive material into the combined sanitary and storm sewer system in King County, Washington. Radioactive material could come from the use of a radiological dispersion device (RDD). RDDs include "dirty bombs" that are not nuclear detonations but are explosives designed to spread radioactive material (National Council on Radiation Protection and Measurements (NCRP) 2001). Radioactive material also could come from deliberate introduction or dispersion of radioactive material into the environment, including waterways and water supply systems. This document develops plausible and/or likely scenarios, including the identification of likely radioactive materials and quantities of those radioactive materials to be involved. These include 60Co, 90Sr, 137Cs, 192Ir, 226Ra, plutonium, and 241Am. Two broad categories of scenarios are considered. The first category includes events that may be suspected from the outset, such as an explosion of a "dirty bomb" in downtown Seattle. The explosion would most likely be heard, but the type of explosion (e.g., sewer methane gas or RDD) may not be immediately known. Emergency first responders must be able to quickly detect the radioisotopes previously listed, assess the situation, and deploy a response to contain and mitigate (if possible) detrimental effects resulting from the incident. In such scenarios, advance notice of about an hour or two might be available before any contaminated wastewater reaches a treatment plant. The second category includes events that could go initially undetected by emergency personnel. Examples of such a scenario would be the inadvertent or surreptitious introduction of radioactive material into the sewer system. Intact rogue radioactive sources from industrial radiography devices, well-logging apparatus, or moisture density gages may get into wastewater and be carried to a treatment plant. Other scenarios might include a terrorist deliberately putting a dispersible radioactive material into wastewater. Alternatively, a botched terrorism preparation of an RDD may result in radioactive material entering wastewater without anyone's knowledge. Drinking water supplies may also be contaminated, with the result that some or most of the radioactivity ends up in wastewater.

Strom, Daniel J.

2005-08-05T23:59:59.000Z

106

Channel Design to Increase Wastewater Treatment Wetland Capacity and Connectivity in Stockton, CA  

E-Print Network [OSTI]

Control Facility. Treatment Wetland System Startup PeriodDesign to Increase Wastewater Treatment Wetland Capacity andof wastewater treatment wetlands at the Stockton Regional

Cubbison, Erin O.

2006-01-01T23:59:59.000Z

107

On-Site Wastewater Treatment Systems: Constructed Wetland Media  

E-Print Network [OSTI]

This publication explains the functions, characteristics, choices, configurations and maintenance needs for constructed wetland media in on-site wastewater treatment systems....

Lesikar, Bruce J.; Weaver, Richard; Richter, Amanda; O'Neill, Courtney

2005-02-19T23:59:59.000Z

108

Formation of aerobic granular sludge biofilms for sustainable wastewater treatment  

E-Print Network [OSTI]

ENAC/ Formation of aerobic granular sludge biofilms for sustainable wastewater treatment David G Research, Microbiology of Interfaces, Magdeburg (Germany) EDCE 2011 / From activated sludge flocs

109

Ph.D. viva voce examination of Mr. Vikrant Sarin ( 2005CHZ8243) Title : Wastewater treatment using membrane bioreactor  

E-Print Network [OSTI]

Ph.D. viva voce examination of Mr. Vikrant Sarin ( 2005CHZ8243) Title : Wastewater treatment using membrane bioreactor Abstract Membrane Bioreactor combines membranes with biological processes for treatment involves using MBR Pilot Plant for studying the treat ability of Municipal Wastewater and Industrial

Kumar, M. Jagadesh

110

On-Site Wastewater Treatment Systems: Trickling Filter  

E-Print Network [OSTI]

Soil absorption field Septic tank Clarifier/Dosing tank Trickling filter On-site wastewater treatment systems Trickling filter Bruce Lesikar and Russell Persyn Extension Agricultural Engineering Specialist, Extension Assistant-Water Conservation... municipal wastewater before cities began using activated sludge aeration systems. Now, homes and businesses use trickling filters in on-site wastewater treatment systems. Each trickling filter system has several components: 3 A septic tank, which removes...

Lesikar, Bruce J.

2000-02-04T23:59:59.000Z

111

Author's personal copy Effectiveness of domestic wastewater treatment using microbial fuel cells  

E-Print Network [OSTI]

2009 Elsevier Ltd. All rights reserved. 1. Introduction Conventional biological wastewater treatmentAuthor's personal copy Effectiveness of domestic wastewater treatment using microbial fuel cells 2009 Available online 5 September 2009 Keywords: Domestic wastewater treatment Energy recovery

112

Waste Treatment Plant Overview  

Office of Environmental Management (EM)

contracted Bechtel National, Inc., to design and build the world's largest radioactive waste treatment plant. The Waste Treatment and Immobilization Plant (WTP), also known as the...

113

Photovoltaic Small-Scale Wastewater Treatment Project for Rural and New-Cultivated Areas in  

E-Print Network [OSTI]

Abstract—The problem of wastewater treatment in Egypt is a two-fold problem; the first part concerning the existing rural areas, the second one dealing with new industrial/domestic areas. In Egypt several agricultural projects have been initiated by the government and the private sector as well, in order to change its infrastructure. As a reliable energy source, photovoltaic pumping systems have contributed to supply water for local rural communities worldwide; they can also be implemented to solve the problem “wastewater environment pollution”. The solution of this problem can be categorised as recycle process. In addition, because of regional conditions past technologies are being reexamined to select a smallscale treatment system requiring low construction and maintenance costs. This paper gives the design guidelines of a Photovoltaic Small-Scale Wastewater Treatment Plant (PVSSWTP) based on technologies that can be transferred. Keywords—Renewable energy sources, Photovoltaic, small-scale projects, wastewater treatment. I.

Fadia M. A. Ghali

114

Flexible hybrid membrane treatment systems for tailored nutrient management: A new paradigm in urban wastewater treatment  

E-Print Network [OSTI]

in urban wastewater treatment D. Vuono a , J. Henkel a , J. Benecke a , T.Y. Cath a , T. Reid b , L: Sequencing batch reactor Membrane bioreactor Water reclamation Distributed wastewater treatment Tailored, decentralized, and satellite wastewater treatment systems into existing urban water infrastructure

115

Onsite Wastewater Treatment Systems: Spray Distribution System  

E-Print Network [OSTI]

Spray distribution systems for wastewater are much like lawn sprinkler systems, in that they spray treated wastewater over the surface of a yard. This publication explains how spray distribution systems work, what their design requirements are...

Lesikar, Bruce J.

2008-10-23T23:59:59.000Z

116

Onsite Wastewater Treatment Systems: Tablet Chlorination  

E-Print Network [OSTI]

Wastewater that is sprayed onto lawns must first be disinfected to prevent odors and remove disease-causing organisms. This publication explains how tablet chlorinators disinfect wastewater and gives tips on how to maintain them....

Lesikar, Bruce J.

2008-10-23T23:59:59.000Z

117

E-Print Network 3.0 - acidic wastewater treatment Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

wastewater treatment Search Powered by Explorit Topic List Advanced Search Sample search results for: acidic wastewater treatment Page: << < 1 2 3 4 5 > >> 1 Ozone: Science &...

118

E-Print Network 3.0 - alternative wastewater treatment Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

wastewater treatment Search Powered by Explorit Topic List Advanced Search Sample search results for: alternative wastewater treatment Page: << < 1 2 3 4 5 > >> 1 CAB International...

119

E-Print Network 3.0 - advanced wastewater treatment Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

wastewater treatment Search Powered by Explorit Topic List Advanced Search Sample search results for: advanced wastewater treatment Page: << < 1 2 3 4 5 > >> 1 NCCR North-South...

120

E-Print Network 3.0 - australian wastewater treatment Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

wastewater treatment Search Powered by Explorit Topic List Advanced Search Sample search results for: australian wastewater treatment Page: << < 1 2 3 4 5 > >> 1 Advanced Nitrogen...

Note: This page contains sample records for the topic "wastewater treatment plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

E-Print Network 3.0 - anaerobic wastewater treatment Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

wastewater treatment Search Powered by Explorit Topic List Advanced Search Sample search results for: anaerobic wastewater treatment Page: << < 1 2 3 4 5 > >> 1 Impact of EPS on...

122

On-Site Wastewater Treatment Systems: Mound System  

E-Print Network [OSTI]

Septic tank Pump tank Distribution pipe Sand Gravel Geotextile fabric On-site wastewater treatment systems Mound system Bruce Lesikar and Vance Weynand Associate Professor and Extension Agricultural Engineering Specialist, Extension Assistant... The Texas A&M University System L-5414 4-02 Figure 1: A mound system for distributing treated wastewater to the soil. A mound system for wastewater is a soil absorption system placed above the natural surface of the ground. Mound systems are used...

Lesikar, B.; Waynard, V.

123

Onsite Wastewater Treatment Systems: Graywater Use and Water Quality  

E-Print Network [OSTI]

their homes in their landscapes. This reuse of graywater can reduce the amount of wastewater entering sewers or treatment systems, reduce the amount of fresh water used on landscapes and help preserve limited fresh water supplies. Onsite wastewater...-washing machines ? The code excludes water that has washed materials soiled with human waste, such as diapers, and water that has been in contact with toilet waste. This water, known as blackwater, includes flush water from toilets and urinals and wastewater...

Lesikar, Bruce J.; Mechell, Justin; Alexander, Rachel

2008-08-28T23:59:59.000Z

124

Local Board of Health Guide to On-Site Wastewater Treatment Systems  

E-Print Network [OSTI]

Local Board of Health Guide to On-Site Wastewater Treatment Systems ©2006 National Association Side of Cover and is Blank #12;Local Board of Health Guide to On-Site Wastewater Treatment Systems............................................................................................................. 9 WHAT IS WASTEWATER

125

STATUS REPORT: Onsite Wastewater Treatment Systems in California jointly presented by:  

E-Print Network [OSTI]

, “adequately managed decentralized (onsite) wastewater treatment systems can be a cost effective and long

California Wastewater

126

On-Site Wastewater Treatment Systems: Selecting and Permitting  

E-Print Network [OSTI]

This publication explains factors to consider when choosing an on-site wastewater treatment system and lists the nine steps required to obtain a permit for one. It includes addresses and phone numbers of Texas Natural Resource Conservation...

Lesikar, Bruce J.

2005-04-30T23:59:59.000Z

127

Onsite Wastewater Treatment Systems: Homeowner's Guide to Evaluating Service Contracts  

E-Print Network [OSTI]

This guide helps homeowners who are seeking maintenance services for their onsite wastewater treatment systems (such as septic systems). Included are definitions of common terms used in service contracts, types of service contracts available...

Lesikar, Bruce J.; O'Neill, Courtney; Deal, Nancy; Loomis, George; Gustafson, David; Lindbo, David

2008-10-23T23:59:59.000Z

128

Chemically enhanced primary treatment of wastewater in Honduran Imhoff tanks  

E-Print Network [OSTI]

Imhoff tanks represent approximately 40% of the wastewater treatment infrastructure in Honduras. This thesis evaluates the usage of solid aluminum sulfate as a means to achieving national effluent regulations in Imhoff ...

Mikelonis, Anne M. (Anne Marie)

2008-01-01T23:59:59.000Z

129

Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report  

E-Print Network [OSTI]

Embaby, and M. Rao (2006). Refinery Wastewater Treatment: Aand Assessment of Al Ruwais Refinery Wastewater." Journal ofThe Effects of Petroleum Refinery Wastewater on the Rate of

Lekov, Alex

2010-01-01T23:59:59.000Z

130

Tritiated wastewater treatment and disposal evaluation for 1994  

SciTech Connect (OSTI)

This report discusses and analyzes information and issues regarding tritium and tritium management. It was prepared in response to the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-26-05A for the evaluation of tritiated wastewater treatment and disposal. The key elements of the report are summarized as follows: Discharge of tritiated water is regulated worldwide. Differences exist in discharge limits and in regulatory philosophy from country to country and from state to state in the United States. Tritium from manmade sources is emitted into the atmosphere and discharged into the ground or directly to the oceans and to waterways that empty into the oceans. In 1989, reported worldwide emissions of tritium from nuclear power generating plants totaled almost 1,000,000 Curies (Ci).

Not Available

1994-08-01T23:59:59.000Z

131

Treatment of Organic-Contaminated Wastewater by Pervaporation  

E-Print Network [OSTI]

TREATMENT OF ORGANIC-CONTAMINATED WASTEWATER BY PERVAPORATION J.G. WIJMANS J. KASCHEMEKAT R.W. BAKER V.L. SIMMONS Research Director Design Engineer President Marketing Director Membrane Technology and Research, Inc., Menlo Park, CA ABSTRACT...-CONTAMINATED WASTEWATER BY PERVAPORATION J.G. WIJMANS Research Director J. KASCHEMEKAT R.W. BAKER V.L. SIMMONS Design Engineer President Marketing Director Membrane Technology and Research, Inc., Menlo Park, CA ABSTRACT The removal and recovery of organic contaminants...

Wijmans, J. G.; Kaschemekat, J.; Baker, R. W.; Simmons, V. L.

132

Onsite Wastewater Treatment Systems: Pump Tank  

E-Print Network [OSTI]

Pump tanks are concrete, fiberglass or polyethylene containers that collect wastewater to be dosed into the soil at intervals. This publication explains the design and maintenance of pump tanks, and it offers advice on what to do if a pump tank...

Lesikar, Bruce J.

2008-10-23T23:59:59.000Z

133

WASTEWATER SYSTEMS Henrik Bechmann  

E-Print Network [OSTI]

MODELLING OF WASTEWATER SYSTEMS Henrik Bechmann Lyngby 1999 ATV Erhvervsforskerprojekt EF 623 IMM., and Poulsen, N. K. (1998). Control of sewer systems and wastewater treatment plants using pollutant, N. K., and Nielsen, M. K. (1999). Grey box modelling of first flush and incoming wastewater

134

Designed ecosystem services: application of ecological principles in wastewater treatment engineering  

E-Print Network [OSTI]

treatment processes around the world. (a) Sewage stabilization ponds in Brazil. (b) Complex lagoon and stabilization pond treatment system in France. (c) Anaerobic digesters in England. (d) Trickling bio-filter bed (viewed from the side) in Canada. (e...) Conventional wastewater treatment plant digestion in the US, including primary treatment, secondary treatment, secondary clarifiers, and solids. (a) C ou rte sy of TP Cu rti s (b) C ou rte sy of Ec os ite ® (a) (b) (c) (d) (e) DW Graham and VH Smith...

Graham, David W.; Smith, Val H.

2004-01-01T23:59:59.000Z

135

Designed ecosystem services: application of ecological principles in wastewater treatment engineering  

E-Print Network [OSTI]

treatment processes around the world. (a) Sewage stabilization ponds in Brazil. (b) Complex lagoon and stabilization pond treatment system in France. (c) Anaerobic digesters in England. (d) Trickling bio-filter bed (viewed from the side) in Canada. (e...) Conventional wastewater treatment plant digestion in the US, including primary treatment, secondary treatment, secondary clarifiers, and solids. (a) C ou rte sy of TP Cu rti s (b) C ou rte sy of Ec os ite ® (a) (b) (c) (d) (e) DW Graham and VH Smith...

Graham, David W.; Smith, Val H.

2004-05-01T23:59:59.000Z

136

Automated Demand Response Opportunities in Wastewater Treatment Facilities  

SciTech Connect (OSTI)

Wastewater treatment is an energy intensive process which, together with water treatment, comprises about three percent of U.S. annual energy use. Yet, since wastewater treatment facilities are often peripheral to major electricity-using industries, they are frequently an overlooked area for automated demand response opportunities. Demand response is a set of actions taken to reduce electric loads when contingencies, such as emergencies or congestion, occur that threaten supply-demand balance, and/or market conditions occur that raise electric supply costs. Demand response programs are designed to improve the reliability of the electric grid and to lower the use of electricity during peak times to reduce the total system costs. Open automated demand response is a set of continuous, open communication signals and systems provided over the Internet to allow facilities to automate their demand response activities without the need for manual actions. Automated demand response strategies can be implemented as an enhanced use of upgraded equipment and facility control strategies installed as energy efficiency measures. Conversely, installation of controls to support automated demand response may result in improved energy efficiency through real-time access to operational data. This paper argues that the implementation of energy efficiency opportunities in wastewater treatment facilities creates a base for achieving successful demand reductions. This paper characterizes energy use and the state of demand response readiness in wastewater treatment facilities and outlines automated demand response opportunities.

Thompson, Lisa; Song, Katherine; Lekov, Alex; McKane, Aimee

2008-11-19T23:59:59.000Z

137

E-Print Network 3.0 - aquatic plant wastewater Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

wastewater Search Powered by Explorit Topic List Advanced Search Sample search results for: aquatic plant wastewater Page: << < 1 2 3 4 5 > >> 1 1S P R I N G 2 0 1 0 The Magazine...

138

Dynamic estimation of specific growth rates of bacteria for a wastewater treatment process  

E-Print Network [OSTI]

Dynamic estimation of specific growth rates of bacteria for a wastewater treatment process S. Diop1 for specific growth rates for a wastewater treatment process. A 2-stage model of 6 dynamic states is assumed. Steyer, Dynamic model develop- ment and parameter identification for an anaerobic wastewater treatment

Paris-Sud XI, Université de

139

Determining the Viability of a Hybrid Experiential and Distance Learning Educational Model for Water Treatment Plant Operators in Kentucky.  

E-Print Network [OSTI]

?? Drinking water and wastewater industries are facing a nationwide workforce shortfall of qualified treatment plant operators due to factors including the en masse retirement… (more)

Fattic, Jana R.

2011-01-01T23:59:59.000Z

140

On-Site Wastewater Treatment Systems: Soil Particle Analysis Procedure  

E-Print Network [OSTI]

Soil is an important component of an on-site wastewater treatment system. This publication explains the composition of soils, the sizing of soil particles, and the ways soil particles are analyzed to determine whether a site is suitable for a...

Lesikar, Bruce J.

2005-08-18T23:59:59.000Z

Note: This page contains sample records for the topic "wastewater treatment plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Onsite Wastewater Treatment Systems: Responding to Power Outages and Floods  

E-Print Network [OSTI]

People and the environment can be harmed if a home's onsite wastewater treatment system does not work properly after a flood or power outage. This publication explains the steps to take after such an event to get the system back into service. 4 pp...

Lesikar, Bruce J.; Mechell, Justin; Alexander, Rachel

2008-10-23T23:59:59.000Z

142

Harvesting Energy from Wastewater in a 2-Chamber  

E-Print Network [OSTI]

Harvesting Energy from Wastewater in a 2-Chamber Microbial Fuel Cell Sikandar Present day wastewater treatment plants utilize high amounts of energy and are costly to operate. These conventional wastewater treatment plants utilize aerobic bacteria. Organic material in wastewater contains energy that can

143

Anaerobic Migrating Blanket Reactor Treatment of Low-Strength Wastewater at  

E-Print Network [OSTI]

Anaerobic Migrating Blanket Reactor Treatment of Low-Strength Wastewater at Low Temperatures Largus anaerobic migrating blanket reactor (AMBR) was studied for the treatment of low- strength soluble wastewater milk substrate as a synthetic wastewater at low temperatures (15 and 20 °C). The concentration

Angenent, Lars T.

144

A nonlinear observer design for an activated sludge wastewater treatment process  

E-Print Network [OSTI]

A nonlinear observer design for an activated sludge wastewater treatment process B. Boulkrounea , M : Activated sludge, wastewater treatment process, Lyapunov function, Lips- chitz singular discrete the recent results of [2] and [5]. In the last decades, the modeling of the activated sludge wastewater

Paris-Sud XI, Université de

145

BIOENERGY AND BIOFUELS Domestic wastewater treatment using multi-electrode continuous  

E-Print Network [OSTI]

BIOENERGY AND BIOFUELS Domestic wastewater treatment using multi-electrode continuous flow MFCs Heidelberg 2012 Abstract Treatment of domestic wastewater using microbial fuel cells (MFCs) will require to large changes in the chemical oxygen demand (COD) concentration within the reactor. Domestic wastewater

146

Effectiveness of Mechanical Aerationin Floating Aquatic Macrophyte-Based Wastewater Treatment Systems  

E-Print Network [OSTI]

Effectiveness of Mechanical Aerationin Floating Aquatic Macrophyte-Based Wastewater Treatment to evaluate its effect on wastewater treatment effi- ciency andplantgrowth. Light aeration (0.003 and0.021Lnr2 tanks. Heavy aeration (1.03 and 3.53 L nr2 min-1 ) raised wastewater dissolved oxygen(DO) concentrations

Florida, University of

147

Optimization of low-cost phosphorus removal from wastewater using co-treatments with constructed  

E-Print Network [OSTI]

treatment residual; iron; lime sludge; municipal wastewater Introduction The US-EPA has identified for removing P from wastewater (US-EPA, 1993). However, questions of mechanisms, predictabilityOptimization of low-cost phosphorus removal from wastewater using co-treatments with constructed

Florida, University of

148

WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY  

E-Print Network [OSTI]

from ion exchange, reverse osmosis, filtration and otherStripping Ion Exchange Reverse Osmosis Chemical TreatmentElectrolytic Oxidation Reverse Osmosis tJl trafi 1 tration

Fox, J.P.

2010-01-01T23:59:59.000Z

149

TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Household Wastewater Treatment  

E-Print Network [OSTI]

. This publication covers the following topics: 1. Septic tanks/soil absorption systems 2. Quantity of wastewater 3. Quality of wastewater 4. Collection of wastewater 5. Treatment systems 6. Disposal system 7. Assistance with failing systems or new designs 8.... Evaluation table Septic Tanks/Soil Absorption Systems The most common form of on-site waste- water treatment is a septic tank/soil absorption system. In this system, wastewater flows from the household sewage lines into an under- ground septic tank...

Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.

1997-08-29T23:59:59.000Z

150

WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY  

E-Print Network [OSTI]

III, "Method of Breaking Shale Oil-Water Emulsion," U. S.and Biological Treatment of Shale Oil Retort Water, DraftPA (1979). H. H. Peters, Shale Oil Waste Water Recovery by

Fox, J.P.

2010-01-01T23:59:59.000Z

151

WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY  

E-Print Network [OSTI]

Waters from Green River Oil Shale," Chem. and Ind. , 1. ,Effluents from In-Situ oil Shale Processing," in Proceedingsin the Treatment of Oil Shale Retort Waters," in Proceedings

Fox, J.P.

2010-01-01T23:59:59.000Z

152

Radiological Instrumentation Assessment for King County Wastewater Treatment Division  

SciTech Connect (OSTI)

The King County Wastewater Treatment Division (WTD) have concern about the aftermath of a radiological dispersion event (RDE) leading to the introduction of significant quantities of radioactive material into its combined sanitary and storm sewer system. Radioactive material could come from the use of a radiological dispersion device (RDD). RDDs include "dirty bombs" that are not nuclear detonations but are explosives designed to spread radioactive material. Radioactive material also could come from deliberate introduction or dispersion of radioactive material into the environment, including waterways and water supply systems. Volume 2 of PNNL-15163 assesses the radiological instrumentation needs for detection of radiological or nuclear terrorism, in support of decisions to treat contaminated wastewater or to bypass the West Point Treatment Plant (WPTP), and in support of radiation protection of the workforce, the public, and the infrastructure of the WPTP. Fixed radiation detection instrumentation should be deployed in a defense-in-depth system that provides 1) early warning of significant radioactive material on the way to the WPTP, including identification of the radionuclide(s) and estimates of the soluble concentrations, with a floating detector located in the wet well at the Interbay Pump Station and telemetered via the internet to all authorized locations; 2) monitoring at strategic locations within the plant, including 2a) the pipe beyond the hydraulic ram in the bar screen room; 2b) above the collection funnels in the fine grit facility; 2c) in the sampling tank in the raw sewage pump room; and 2d) downstream of the concentration facilities that produce 6% blended and concentrated biosolids. Engineering challenges exist for these applications. It is necessary to deploy both ultra-sensitive detectors to provide early warning and identification and detectors capable of functioning in high-dose rate environments that are likely under some scenarios, capable of functioning from 10 microrems per hour (background) up to 1000 rems per hour. Software supporting fixed spectroscopic detectors is needed to provide prompt, reliable, and simple interpretations of spectroscopic outputs that are of use to operators and decision-makers. Software to provide scientists and homeland security personnel with sufficient technical detail for identification, quantification, waste management decisions, and for the inevitable forensic and attribution needs must be developed. Computational modeling using MCNP software has demonstrated that useful detection capabilities can be deployed. In particular, any of the isotopes examined can be detected at levels between 0.01 and 0.1 ?Ci per gallon. General purpose instruments that can be used to determine the nature and extent of radioactive contamination and measure radiation levels for purposes of protecting personnel and members of the public should be available. One or more portable radioisotope identifiers (RIIDs) should be available to WTD personnel. Small, portable battery-powered personal radiation monitors should be widely available WTD personnel. The personal monitors can be used for personal and group radiation protection decisions, and to alert management to the need to get expert backup. All considerations of radiological instrumentation require considerations of training and periodic retraining of personnel, as well as periodic calibration and maintenance of instruments. Routine “innocent” alarms will occur due to medical radionuclides that are legally discharged into sanitary sewers on a daily basis.

Strom, Daniel J.; McConn, Ronald J.; Brodzinski, Ronald L.

2005-05-19T23:59:59.000Z

153

Desulphurization and simultaneous treatment of wastewater from blast furnace by pulsed corona discharge  

SciTech Connect (OSTI)

Laboratory tests were conducted for removal of SO{sub 2} from simulated flue gas and simultaneous treatment of wastewater from blast furnace by pulsed corona discharge. Tests were conducted for the flue gas flow from 12 to 18 Nm{sup 3}/h, the simulated gas temperature from 80 to 120 {sup o}C, the inlet flux of wastewater from 33 to 57 L/h, applied voltage from 0 to 27 kV, and SO{sub 2} initial concentration was about 1,430 mg/m{sup 3}. Results showed that wastewater from blast furnace has an excellent ability of desulphurization (about 90%) and pulsed corona discharge can enhance the desulphurization efficiency. Meanwhile, it was observed that the SO{sub 2} removal ratio decreased along with increased cycle index, while it increased as the flux of flue gas was reduced, and increased when the flux of wastewater from blast furnace was increased. In addition, results demonstrated that the content of sulfate radical produced in wastewater increase with an increment of applied pulsed voltage, cycle index, or the flux of flue gas. Furthermore, the results indicated that the higher the inlet content of cyanide the better removal effect of it, and the removal rate can reach 99.9% with a residence time of 2.1 s in the pulsed corona zone during the desulphurization process when the inlet content was higher, whereas there was almost no removal effect when the inlet content was lower. This research may attain the objective of waste control, and can provide a new way to remove SO{sub 2} from flue gas and simultaneously degrade wastewater from blast furnace for integrated steel plants.

Li, S.L.; Feng, Q.B.; Li, L.; Xie, C.L.; Zhen, L.P. [Huazhong University of Science and Technology, Wuhan (China)

2009-03-15T23:59:59.000Z

154

Passive treatment of wastewater and contaminated groundwater  

DOE Patents [OSTI]

A bioremediation system using inorganic oxide-reducing microbial consortia for the treatment of, inter alia coal mine and coal yard runoff uses a containment vessel for contaminated water and a second, floating phase for nutrients. Biodegradable oils are preferred nutrients.

Phifer, Mark A. (N. Augusta, SC); Sappington, Frank C. (Dahlonega, GA); Millings, Margaret R. (N. Augusta, SC); Turick, Charles E. (Aiken, SC); McKinsey, Pamela C. (Aiken, SC)

2007-11-06T23:59:59.000Z

155

Passive treatment of wastewater and contaminated groundwater  

DOE Patents [OSTI]

A bioremediation system using inorganic oxide-reducing microbial consortia for the treatment of, inter alia coal mine and coal yard runoff uses a containment vessel for contaminated water and a second, floating phase for nutrients. Biodegradable oils are preferred nutrients.

Phifer, Mark A.; Sappington, Frank C.; Millings, Margaret R.; Turick, Charles E.; McKinsey, Pamela C.

2006-12-12T23:59:59.000Z

156

A Hybrid Microbial Fuel Cell Membrane Bioreactor with a Conductive Ultrafiltration Membrane Biocathode for Wastewater Treatment  

E-Print Network [OSTI]

Biocathode for Wastewater Treatment Lilian Malaeb,,§ Krishna P. Katuri,,§ Bruce E. Logan, Husnul Maab, S. P-biocathode microbial fuel cell- membrane bioreactor (MFC-MBR) system was developed to achieve simultaneous wastewater and the membrane for wastewater filtration. The MFC-MBR used an air-biocathode, and it was shown to have good

157

A dynamic estimation scheme of specific growth rates of bacteria for an anaerobic wastewater treatment process  

E-Print Network [OSTI]

A dynamic estimation scheme of specific growth rates of bacteria for an anaerobic wastewater anal- ysis and estimation schemes for specific growth rates for an anaerobic wastewater treatment the organic and inorganic materials) of municipal or industrial wastewater often needs to be highly reduced

Paris-Sud XI, Université de

158

Land treatment of contaminated sludge with wastewater irrigation  

SciTech Connect (OSTI)

A large-scale field experiment was conducted to test the feasibility of land application of sludge from industrial and domestic wastewater treatment to determine the fate and environmental impact of the contaminants. The sludge contained 13 organic priority pollutants, 16 additional environmentally significant organic compounds, and high concentrations of several metals (zinc, copper, lead, nickel, and cadmium). Each compound was monitored as the irrigation water percolated through the soil and the groundwater over time. Most of the organic compounds diminished to non-detectable levels by the end of the study, and the metals proved harmless to the environment. The effectiveness of land application of sludge with wastewater irrigation was clearly demonstrated. 1 figure, 11 tables.

Demirjian, Y.A.; Westman, T.R.; Joshi, A.M.; Rop, D.J.; Buhl, R.V.; Clark, W.R.

1984-04-01T23:59:59.000Z

159

Sandusky Wastewater Treatment | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton Abbey WindSamsungFarmsTreatment Jump to:

160

1.85 Water and Wastewater Treatment Engineering, Spring 2005  

E-Print Network [OSTI]

Theory and design of systems for treating industrial and municipal wastewater and potable water supplies. Methods for characterizing wastewater properties. Physical, chemical, and biological processes, including primary ...

Shanahan, Peter

Note: This page contains sample records for the topic "wastewater treatment plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Innovative Treatment Technologies for Natural Waters and Wastewaters  

SciTech Connect (OSTI)

The research described in this report focused on the development of novel membrane contactor processes (in particular, forward osmosis (FO), pressure retarded osmosis (PRO), and membrane distillation (MD)) in low energy desalination and wastewater treatment applications and in renewable energy generation. FO and MD are recently gaining national and international attention as viable, economic alternatives for removal of both established and emerging contaminants from natural and process waters; PRO is gaining worldwide attention as a viable source of renewable energy. The interrelationship of energy and water are at the core of this study. Energy and water are inextricably bound; energy usage and production must be considered when evaluating any water treatment process for practical application. Both FO and MD offer the potential for substantial energy and resource savings over conventional treatment processes and PRO offers the potential for renewable energy or energy offsets in desalination. Combination of these novel technologies with each other, with existing technologies (e.g., reverse osmosis (RO)), and with existing renewable energy sources (e.g., salinity gradient solar ponds) may enable much less expensive water production and also potable water production in remote or distributed locations. Two inter-related projects were carried out in this investigation. One focused on membrane bioreactors for wastewater treatment and PRO for renewable energy generation; the other focused on MD driven by a salinity gradient solar pond.

Childress, Amy E.

2011-07-01T23:59:59.000Z

162

Energy from vascular plant wastewater treatment systems  

SciTech Connect (OSTI)

Water hyacinth (Eichhornia crassipes) duckweed (Spirodela sp. and Lemna sp.), water pennywort (Hydrocotyle ranunculoides), and kudzu (Pueraria lobata) were anaerobically fermented using an anaerobic filter technique that reduced the total digestion time from 90 d to an average of 23 d and produced 0.14 to 0.22 m/sup 3/ CH/sub 4//kg (dry weight) (2.3 to 3.6 ft/sup 3//lb) from mature filters for the 3 aquatic species. Kudzu required an average digestion time of 33 d and produced an average of 0.21 m/sup 3/ CH/sub 4//kg (dry weight) (3.4 ft/sup 3//lb). The anaerobic filter provided a large surface area for the anaerobic bacteria to establish and maintain an optimal balance of facultative, acid-forming, and methane-producing bacteria. Consequently the efficiency of the process was greatly improved over prior batch fermentations.

Wolverton, B.C.; McDonald, R.C.

1981-04-01T23:59:59.000Z

163

Fate of Radionuclides in Wastewater Treatment Plants  

E-Print Network [OSTI]

Comments on the Presence of Chernobyl Derived Cs and Tc inRadiological Impact of the Chernobyl Debris Compared with42 5.3- CHERNOBYL…………………………………………………………… 43 v   5.4-

Shabani Samgh Abadi, Farzaneh

2013-01-01T23:59:59.000Z

164

Fate of Radionuclides in Wastewater Treatment Plants  

E-Print Network [OSTI]

40 5.1- WINDSCALE……………………………………………………………… 40 5.2- THREE MILEin Windscale Accident………………………………………………………………………………… 41discussed briefly. 5.1- Windscale (UK, 1957) The Windscale

Shabani Samgh Abadi, Farzaneh

2013-01-01T23:59:59.000Z

165

Fate of Radionuclides in Wastewater Treatment Plants  

E-Print Network [OSTI]

can be mined in Niger, Kazakhstan, Uzbekistan and Gabon, 4)can be found in China, Kazakhstan, Russian Federation andCanada, Australia and Kazakhstan. During the period between

Shabani Samgh Abadi, Farzaneh

2013-01-01T23:59:59.000Z

166

Fate of Radionuclides in Wastewater Treatment Plants  

E-Print Network [OSTI]

consistent ones and nuclear accidents are the least frequentto the Fukushima nuclear accident. Journal of Environmentalto the Fukushima nuclear accident. Journal of Environmental

Shabani Samgh Abadi, Farzaneh

2013-01-01T23:59:59.000Z

167

Fate of Radionuclides in Wastewater Treatment Plants  

E-Print Network [OSTI]

were measured by gamma-spectrometry. Also the partition oftreatment process. In gamma-spectrometry of sludge, the

Shabani Samgh Abadi, Farzaneh

2013-01-01T23:59:59.000Z

168

Fate of Radionuclides in Wastewater Treatment Plants  

E-Print Network [OSTI]

acid cation resins and reverse osmosis which can remove upby evaporation or reverse osmosis is also a possibility. The

Shabani Samgh Abadi, Farzaneh

2013-01-01T23:59:59.000Z

169

Fate of Radionuclides in Wastewater Treatment Plants  

E-Print Network [OSTI]

Used Radionuclides in Sewage Sludge. Water, Air, and Soilin Ground Level Air and Sewage Sludge. Water, Air, and SoilMeans of Measurements on Sewage Sludge. Water, Air, and Soil

Shabani Samgh Abadi, Farzaneh

2013-01-01T23:59:59.000Z

170

Fate of Radionuclides in Wastewater Treatment Plants  

E-Print Network [OSTI]

tests. Atmospheric nuclear weapon tests introduced largethrough 1980 from nuclear weapon tests, mostly in megatonFROM WEAPONS TESTS The primary use of nuclear energy after

Shabani Samgh Abadi, Farzaneh

2013-01-01T23:59:59.000Z

171

Fate of Radionuclides in Wastewater Treatment Plants  

E-Print Network [OSTI]

Radioactive Plume from Fukushima: Is There a Correlation?France due to the Fukushima nuclear accident. Journal ofGreece due to the Fukushima nuclear accident. Journal of

Shabani Samgh Abadi, Farzaneh

2013-01-01T23:59:59.000Z

172

Method and apparatus for energy efficient self-aeration in chemical, biochemical, and wastewater treatment processes  

DOE Patents [OSTI]

The present invention is a pulse spilling self-aerator (PSSA) that has the potential to greatly lower the installation, operation, and maintenance cost associated with aerating and mixing aqueous solutions. Currently, large quantities of low-pressure air are required in aeration systems to support many biochemical production processes and wastewater treatment plants. Oxygen is traditionally supplied and mixed by a compressor or blower and a mechanical agitator. These systems have high-energy requirements and high installation and maintenance costs. The PSSA provides a mixing and aeration capability that can increase operational efficiency and reduce overall cost.

Gao, Johnway [Richland, WA; Skeen, Rodney S [Pendleton, OR

2002-05-28T23:59:59.000Z

173

Endocrine Active Chemicals, Pharmaceuticals, and Other Chemicals of Concern in Surface Water, Wastewater-  

E-Print Network [OSTI]

, Wastewater- Treatment Plant Effluent, and Bed Sediment, and Biological Characteristics in Selected Streams Chemicals, Pharmaceuticals, and Other Chemicals of Concern in Surface Water, Wastewater- Treatment Plant, and Data, 2009 #12;Front cover. Industrial wastewater-treatment plant outflow in Worthington, Minnesota

174

Wastewater treatment in the oil-shale industry  

SciTech Connect (OSTI)

Because of the stringent state and federal standards governing the discharge of wastes into local waters and the limited water supplies in this area, an oil shale industry will probably reuse process effluents to the maximum extent possible and evaporate the residuals. Therefore, discharge of effluents into surface and ground waters may not be necessary. This paper reviews the subject of wastewater treatment for an oil shale industry and identifies key issues and research priorities that must be resolved before a large-scale commercial industry can be developed. It focuses on treatment of the waters unique to an oil shale industry: retort water, gas condensate, and mine water. Each presents a unique set of challenges.

Fox, J.P.; Phillips, T.E.

1980-08-01T23:59:59.000Z

175

Automated Demand Response Opportunities in Wastewater Treatment Facilities  

E-Print Network [OSTI]

05CH11231. References EPRI, Energy Audit Manual for Water/Research Institute, Energy Audit Manual for Water/Wastewater

Thompson, Lisa

2008-01-01T23:59:59.000Z

176

Automated Demand Response Opportunities in Wastewater Treatment Facilities  

E-Print Network [OSTI]

Interoperable Automated Demand Response Infrastructure,study of automated demand response in wastewater treatmentopportunities for demand response control strategies in

Thompson, Lisa

2008-01-01T23:59:59.000Z

177

An investigation of the reaction kinetics of photocatalytic wastewater treatment using suspended titanium dioxide catalyst  

E-Print Network [OSTI]

The goal of wastewater treatment is to remove compounds that may be harmful to the natural ecosystem or to humans. Although traditional treatment is fairly effective in meeting water quality standards, current technologies ...

Hotz, William Joseph, Jr

2014-01-01T23:59:59.000Z

178

2005 Borchardt Conference: A Seminar on Advances in Water and Wastewater Treatment February 23-25, Ann Arbor, MI  

E-Print Network [OSTI]

-25, Ann Arbor, MI Conference Proceedings 1 Membrane Biofilm Reactors for Water and Wastewater Treatment and Wastewater Treatment February 23-25, Ann Arbor, MI Conference Proceedings 2 (sparging) to replenish oxygen: A Seminar on Advances in Water and Wastewater Treatment February 23-25, Ann Arbor, MI Conference Proceedings

Nerenberg, Robert

179

Valuation of a Municipal Wastewater Plant Expansion: An Application to a High Growth Resort Area in Canada  

E-Print Network [OSTI]

The municipal water and wastewater sector is considered to be the most capital intensive industrial sector. Naturally, any methodology that has the potential to improve capital allocation decision making, has the potential to make a positive financial contribution to this sector. Most managers are aware of the power of calculating the Net Present Value (NPV) of an investment decision using Discounted Cash Flows (DCF). The problem with DCF based NPV analysis is that the inherent value of future project options is not modeled. In this study, we consider a small resort-based municipality faced the question of how big to make their new wastewater treatment facility to meet the expanding demand of 10 % growth in the number of new residential connections to the wastewater treatment infrastructure. Since a significant number of new dwellings are second “weekend ” homes, the planners felt strongly that growth rates were tied to the strength of the market index. Here we set the model framework for considering optimal plant size based on correlation assumptions of municipal growth to the market index. The model takes on the form of an Asian option. The results show that the greater the (assumed) correlation, the smaller the required plant size. Penalty costs associated with not building a large enough plant are hedged in the market. This paper sets that basis for future analysis of staged plant expansion analysis.

Yuri Lawryshyn; Sebastian Jaimungal

180

Operation and Maintenance Manual for the Central Facilities Area Sewage Treatment Plant  

SciTech Connect (OSTI)

This Operation and Maintenance Manual lists operator and management responsibilities, permit standards, general operating procedures, maintenance requirements and monitoring methods for the Sewage Treatment Plant at the Central Facilities Area at the Idaho National Laboratory. The manual is required by the Municipal Wastewater Reuse Permit (LA-000141-03) the sewage treatment plant.

Norm Stanley

2011-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "wastewater treatment plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Plants in constructed wetlands help to treat agricultural processing wastewater  

E-Print Network [OSTI]

constructed wetlands help to treat agricultural processingacross the western to treat winery process wastewater Uniteddocumented relative to treat- discharged downstream. ment

Grismer, Mark E; Shepherd, Heather L

2011-01-01T23:59:59.000Z

182

Wastewater management in Kunming, China: a stakeholder  

E-Print Network [OSTI]

Wastewater management in Kunming, China: a stakeholder perspective on measures at the source EDI systems with central wastewater treatment plants were long considered a successful model that could the feasibility of introducing measures at the source for the different urban wastewater contributions in the city

Richner, Heinz

183

Process Design of Wastewater Treatment for the NREL Cellulosic Ethanol Model  

SciTech Connect (OSTI)

This report describes a preliminary process design for treating the wastewater from NREL's cellulosic ethanol production process to quality levels required for recycle. In this report Brown and Caldwell report on three main tasks: 1) characterization of the effluent from NREL's ammonia-conditioned hydrolyzate fermentation process; 2) development of the wastewater treatment process design; and 3) development of a capital and operational cost estimate for the treatment concept option. This wastewater treatment design was incorporated into NREL's cellulosic ethanol process design update published in May 2011 (NREL/TP-5100-47764).

Steinwinder, T.; Gill, E.; Gerhardt, M.

2011-09-01T23:59:59.000Z

184

Physical-chemical characterization of sludge and granular materials from a vertical flow constructed wetland for municipal wastewater treatment  

E-Print Network [OSTI]

constructed wetland for municipal wastewater treatment B. Kim1,2 , M. Gautier*1 , P. Michel2 and R. Gourdon1 1, Society of design and production engineering for wastewater purification, 5 Allée Alban Vistel, F-69110 Wetlands (VFCW) is well developed in France and other countries for the treatment of wastewaters from small

Boyer, Edmond

185

ON RELIABLE AND UNRELIABLE NUMERICAL METHODS FOR THE SIMULATION OF SECONDARY SETTLING TANKS IN WASTEWATER  

E-Print Network [OSTI]

of wastewater treatment plants (WWTPs). In modelling the activated sludge process, biological reactors have IN WASTEWATER TREATMENT RAIMUND B¨URGERA, , STEFAN DIEHLB , SEBASTIAN FAR°ASB , AND INGMAR NOPENSC Abstract wastewater treatment plants (WWTPs) for the purification of industrial and domestic sewage is the activated

Bürger, Raimund

186

Estimation of E. coli Concentrations from Failing On-Site Wastewater Treatment Facilities (OWTS) Using GIS  

E-Print Network [OSTI]

Failing Onsite Wastewater Treatment Systems (OWTSs) have been identified as a significant threat to water quality, discharging significant amounts of inadequately treated sewage effluents. When developing a Watershed Protection Plan (WPP), OWTS has...

Virani, Afreen Shiraz

2014-08-12T23:59:59.000Z

187

Hydrogen-Based Membrane Biofilm Reactor for Wastewater Treatment Bruce E. Rittmann, Robert Nerenberg  

E-Print Network [OSTI]

1 Hydrogen-Based Membrane Biofilm Reactor for Wastewater Treatment Bruce E. Rittmann, RobertCarty 2001). If soluble organic nitrogen can be held to a few tenths of a mg/L, the total N can

Nerenberg, Robert

188

Wastewater treatment and flow patterns in an onsite subsurface flow constructed wetland  

E-Print Network [OSTI]

Subsurface flow constructed wetlands (SFCWs) are becoming increasingly common as a secondary treatment of onsite domestic wastewater. Even though SFCWs are being used widely, sufficient data has not been collected to determine how parameters...

Stecher, Matthew C

2001-01-01T23:59:59.000Z

189

Aqueous Waste Treatment Plant at Aldermaston  

SciTech Connect (OSTI)

For over half a century the Pangbourne Pipeline formed part of AWE's liquid waste management system. Since 1952 the 11.5 mile pipeline carried pre-treated wastewater from the Aldermaston site for safe dispersal in the River Thames. Such discharges were in strict compliance with the exacting conditions demanded by all regulatory authorities, latterly, those of the Environment Agency. In March 2005 AWE plc closed the Pangbourne Pipeline and ceased discharges of treated active aqueous waste to the River Thames via this route. The ability to effectively eliminate active liquid discharges to the environment is thanks to an extensive programme of waste minimization on the Aldermaston site, together with the construction of a new Waste Treatment Plant (WTP). Waste minimization measures have reduced the effluent arisings by over 70% in less than four years. The new WTP has been built using best available technology (evaporation followed by reverse osmosis) to remove trace levels of radioactivity from wastewater to exceptionally stringent standards. Active operation has confirmed early pilot scale trials, with the plant meeting throughput and decontamination performance targets, and final discharges being at or below limits of detection. The performance of the plant allows the treated waste to be discharged safely as normal industrial effluent from the AWE site. Although the project has had a challenging schedule, the project was completed on programme, to budget and with an exemplary safety record (over 280,000 hours in construction with no lost time events) largely due to a pro-active partnering approach between AWE plc and RWE NUKEM and its sub-contractors. (authors)

Keene, D. [RWE NUKEM, Ltd, 424 Harwell, Didcot, Oxfordshire, OX 110GJ (United Kingdom); Fowler, J.; Frier, S. [AWE plc, Aldermaston, Berkshire RG7 4PR (United Kingdom)

2006-07-01T23:59:59.000Z

190

On-Site Wastewater Treatment Systems: Alternative Collection Systems  

E-Print Network [OSTI]

Rural Texas communities have new options for wastewater management infrastructure that are cost effective but still protect human health and environmental quality. Such communities now can combine different kinds of systems in a new approach called...

Lesikar, Bruce J.

2000-08-30T23:59:59.000Z

191

On-Site Wastewater Treatment Systems: Subsurface Drip Distribution (Spanish)  

E-Print Network [OSTI]

A subsurface drip system distributes wastewater to the lawn through a system of tubing installed below the ground surface. This publication explains the advantages, disadvantages, maintenance steps and estimated costs of subsurface drip distribution...

Lesikar, Bruce J.; Enciso, Juan

1999-08-12T23:59:59.000Z

192

On-Site Wastewater Treatment Systems: Subsurface Drip Distribution  

E-Print Network [OSTI]

A subsurface drip system distributes wastewater to the lawn through a system of tubing installed below the ground. This publication explains the advantages and disadvantages of subsurface drip distribution systems, as well as estimated costs...

Lesikar, Bruce J.

1999-09-06T23:59:59.000Z

193

On-Site Wastewater Treatment Systems: Mound System  

E-Print Network [OSTI]

A mound system is a soil absorption system placed above the natural surface of the ground. The system distributes treated wastewater into the soil. This publication discusses the design and maintenance of mound systems....

Lesikar, Bruce J.

2002-04-22T23:59:59.000Z

194

On-Site Wastewater Treatment Systems: Spray Distribution (Spanish)  

E-Print Network [OSTI]

Spray distribution systems for wastewater treated on site are much like lawn irrigation systems. This publication explains the advantages, disadvantages, maintenance steps and estimated costs of spray distribution systems....

Lesikar, Bruce J.; Enciso, Juan

1999-08-12T23:59:59.000Z

195

On-Site Wastewater Treatment Systems: Leaching Chambers  

E-Print Network [OSTI]

Leaching chambers distribute treated wastewater into the soil. This publication lists the advantages and disadvantages of leaching chamber systems, explains how to maintain them and gives estimates of costs....

Lesikar, Bruce J.

2000-02-04T23:59:59.000Z

196

On-Site Wastewater Treatment Systems: Spray Distribution  

E-Print Network [OSTI]

A spray distribution system is very similar to a lawn irrigation system. Spray heads are used to distribute treated wastewater to the surface of the yard. This publication explains the advantages and disadvantages of spray distribution systems...

Lesikar, Bruce J.

1999-09-06T23:59:59.000Z

197

On-Site Wastewater Treatment Systems: Gravel-less Pipe  

E-Print Network [OSTI]

Gravel-less pipe systems distribute treated wastewater into the soil. This publication lists the advantages and disadvantages of gravel-less pipe systems, explains how to maintain them and gives estimates of costs....

Lesikar, Bruce J.

2000-04-10T23:59:59.000Z

198

Waste Treatment Plant - 12508  

SciTech Connect (OSTI)

The Waste Treatment Plant (WTP) will immobilize millions of gallons of Hanford's tank waste into solid glass using a proven technology called vitrification. The vitrification process will turn the waste into a stable glass form that is safe for long-term storage. Our discussion of the WTP will include a description of the ongoing design and construction of this large, complex, first-of-a-kind project. The concept for the operation of the WTP is to separate high-level and low-activity waste fractions, and immobilize those fractions in glass using vitrification. The WTP includes four major nuclear facilities and various support facilities. Waste from the Tank Farms is first pumped to the Pretreatment Facility at the WTP through an underground pipe-in-pipe system. When construction is complete, the Pretreatment Facility will be 12 stories high, 540 feet long and 215 feet wide, making it the largest of the four major nuclear facilities that compose the WTP. The total size of this facility will be more than 490,000 square feet. More than 8.2 million craft hours are required to construct this facility. Currently, the Pretreatment Facility is 51 percent complete. At the Pretreatment Facility the waste is pumped to the interior waste feed receipt vessels. Each of these four vessels is 55-feet tall and has a 375,000 gallon capacity, which makes them the largest vessels inside the Pretreatment Facility. These vessels contain a series of internal pulse-jet mixers to keep incoming waste properly mixed. The vessels are inside the black-cell areas, completely enclosed behind thick steel-laced, high strength concrete walls. The black cells are designed to be maintenance free with no moving parts. Once hot operations commence the black-cell area will be inaccessible. Surrounded by black cells, is the 'hot cell canyon'. The hot cell contains all the moving and replaceable components to remove solids and extract liquids. In this area, there is ultrafiltration equipment, cesium-ion exchange columns, evaporator boilers and recirculation pumps, and various mechanical process pumps for transferring process fluids. During the first phase of pretreatment, the waste will be concentrated using an evaporation process. Solids will be filtered out, and the remaining soluble, highly radioactive isotopes will be removed using an ion-exchange process. The high-level solids will be sent to the High-Level Waste (HLW) Vitrification Facility, and the low activity liquids will be sent to the Low-Activity Waste (LAW) Vitrification Facility for further processing. The high-level waste will be transferred via underground pipes to the HLW Facility from the Pretreatment Facility. The waste first arrives at the wet cell, which rests inside a black-cell area. The pretreated waste is transferred through shielded pipes into a series of melter preparation and feed vessels before reaching the melters. Liquids from various facility processes also return to the wet cell for interim storage before recycling back to the Pretreatment Facility. (authors)

Harp, Benton; Olds, Erik [US DOE (United States)

2012-07-01T23:59:59.000Z

199

Biofiltration vs. conventional activated sludge plants: what about priority and emerging1 pollutants removal?2  

E-Print Network [OSTI]

performances of two complete wastewater treatment plants (WWTP) for all priority19 substances listed solids elimination and possible coagulant impact on soluble compounds. For biological27 treatments; biofiltration; conventional activated sludge; physico-chemical lamellar settling;42 wastewater treatment plant

Paris-Sud XI, Université de

200

Reuse of Treated Internal or External Wastewaters in the Cooling Systems of Coal-Based Thermoelectric Power Plants  

SciTech Connect (OSTI)

This study evaluated the feasibility of using three impaired waters - secondary treated municipal wastewater, passively treated abandoned mine drainage (AMD), and effluent from ash sedimentation ponds at power plants - for use as makeup water in recirculating cooling water systems at thermoelectric power plants. The evaluation included assessment of water availability based on proximity and relevant regulations as well as feasibility of managing cooling water quality with traditional chemical management schemes. Options for chemical treatment to prevent corrosion, scaling, and biofouling were identified through review of current practices, and were tested at bench and pilot-scale. Secondary treated wastewater is the most widely available impaired water that can serve as a reliable source of cooling water makeup. There are no federal regulations specifically related to impaired water reuse but a number of states have introduced regulations with primary focus on water aerosol 'drift' emitted from cooling towers, which has the potential to contain elevated concentrations of chemicals and microorganisms and may pose health risk to the public. It was determined that corrosion, scaling, and biofouling can be controlled adequately in cooling systems using secondary treated municipal wastewater at 4-6 cycles of concentration. The high concentration of dissolved solids in treated AMD rendered difficulties in scaling inhibition and requires more comprehensive pretreatment and scaling controls. Addition of appropriate chemicals can adequately control corrosion, scaling and biological growth in ash transport water, which typically has the best water quality among the three waters evaluated in this study. The high TDS in the blowdown from pilot-scale testing units with both passively treated mine drainage and secondary treated municipal wastewater and the high sulfate concentration in the mine drainage blowdown water were identified as the main challenges for blowdown disposal. Membrane treatment (nanofiltration or reverse osmosis) can be employed to reduce TDS and sulfate concentrations to acceptable levels for reuse of the blowdown in the cooling systems as makeup water.

Radisav Vidic; David Dzombak; Ming-Kai Hsieh; Heng Li; Shih-Hsiang Chien; Yinghua Feng; Indranil Chowdhury; Jason Monnell

2009-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "wastewater treatment plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

STATUS REPORT: Onsite Wastewater Treatment Systems in California jointly presented by:  

E-Print Network [OSTI]

The regulation of onsite wastewater treatment systems will be undergoing significant changes in California in the coming years. Recent legislation has mandated that the State Water Resources Control Board develop and adopt statewide regulations by January 2004. These will be the first statewide regulations governing the use of onsite wastewater treatment in California. There are approximately 1.2 million onsite wastewater treatment systems in California, serving more than 3.5 million people, or 10 % of the state’s population. Since 1990, ten percent of new housing starts use onsite systems and this trend should continue for the foreseeable future. Onsite/decentralized systems are an integral part of the infrastructure used to support continued growth and development in the state. In April 1997, EPA published its Response to Congress on Use of Decentralized Wastewater Treatment Systems which concluded that, overall, “adequately managed decentralized (onsite) wastewater treatment systems can be a cost effective and long-term option for meeting public health and water quality goals, particularly for small, suburban, and rural areas. ” Our dependence on onsite technologies has led to renewed interest in how they work. The performance of these systems is an important consideration in protecting the public health and water quality in the state. If onsite systems are recharging California’s

California Wastewater

202

Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report  

E-Print Network [OSTI]

biological operations. Tertiary treatment processes wastewaterwastewater treatment system, called the Living Machine, uses natural non-chemical biologicalbiological (Wilkinson 2000). Each type generally refers to a certain point in the wastewater treatment

Lekov, Alex

2010-01-01T23:59:59.000Z

203

Constructed Wetlands and Waste Stabilization Ponds for municipal wastewater treatment in France: comparison of  

E-Print Network [OSTI]

13 Constructed Wetlands and Waste Stabilization Ponds for municipal wastewater treatment in France In France, vertical flow constructed wetlands and waste stabilisation ponds are both extensive treatment processes well adapted to small rural communities mainly because they are easy to operate

Paris-Sud XI, Université de

204

Selective hydrolysis of wastewater sludge Part 1, September 2007  

E-Print Network [OSTI]

Report Selective hydrolysis of wastewater sludge Part 1, September 2007 Model calculations and cost "Selective hydrolysis of wastewater sludge" is supported by EnergiNet.DK under the PSO-F&U projects having National Laboratory, Rambøll, the Estate of Overgaard and SamRas. The wastewater treatment plant Esbjerg

205

Selective hydrolysis of wastewater sludge Part 1, December 2008  

E-Print Network [OSTI]

Report Selective hydrolysis of wastewater sludge Part 1, December 2008 Revised Model calculations and cost benefit analysis for Esbjerg Vest wastewater treatment plant, Denmark PSO-F&U project nr. 2006 This project "Selective hydrolysis of wastewater sludge" is supported by EnergiNet .DK under the PSO

206

Water/Wastewater Engineering Report (High Efficiency Pump/Motor Replacement - M2 Model)  

E-Print Network [OSTI]

Pumping water or wastewater is the largest use of electricity for a municipal water supply or wastewater treatment plant. Increasing the overall efficiency of the pumping system can achieve significant energy savings. Overall pump system...

Liu, Z.; Brumbelow, K.; Haberl, J. S.

2006-10-30T23:59:59.000Z

207

Electrocoagulation: A Technology for Water Recycle and Wastewater Treatment in Semiconductor Manufacturing  

E-Print Network [OSTI]

Manufacturing Devin Whipple James C. Baygents & James Farrell, Associate Professors Department of Chemical of treating wastewater streams in the semiconductor manufacturing industry. Electrocoagulation involves in particular has the possibility of immediate application at one of Intel's plants. In addition, these both

Fay, Noah

208

Plants in constructed wetlands help to treat agricultural processing wastewater  

E-Print Network [OSTI]

Plants in constructed wetlands help to treat agriculturalhas been available to help guide that selection. We

Grismer, Mark E; Shepherd, Heather L

2011-01-01T23:59:59.000Z

209

Anaerobic treatment of high-sulfate wastewater and substrate interactions with isopropanol  

SciTech Connect (OSTI)

Modified biological methane-potential tests were used to study the treatment of wastewater with a chemical oxygen demand (COD) concentration of 40,000 mg/L and a sulfate concentration of 5,000 mg/L. The effects of wastewater concentrations on biodegradation and substrate interactions between sulfate reducers and methanogens were studied. Isopropanol (IPA) degradation was studied since isopropyl acetate was the major organic component in the wastewater. Six sets of batch tests were done, including a series of tests with varying concentrations of wastewater; wastewater and glucose; glucose and sulfate; IPA; IPA and glucose; and IPA, glucose, and sulfate. Sulfur and electron balances were used to analyze data to determine the extent of biodegradation from both methanogenesis and sulfate reduction. IPA did not appear to be inhibitory to methanogenesis or sulfate reduction. In comparison to glucose, the presence of wastewater or isopropanol stimulated greater sulfate-reduction efficiency. Evidence for IPA degradation was observed, and IPA degradation was stimulated in the presence of sulfate. Continuous feed-reactor results corroborated batch-test observations.

Fox, P.; Ketha, S. [Arizona State Univ., Tempe, AZ (United States). Dept. of Civil and Environmental Engineering

1996-11-01T23:59:59.000Z

210

Study of the treatability of wastewater from a coal-gasification plant. Final report, July 15, 1978-July 14, 1980  

SciTech Connect (OSTI)

This study focused on the coal gasification facility serving the Holston Army Ammunition Plant in Kingsport, Tennessee. Objectives were to characterize the wastewater produced by the gasification facility, and to evaluate technology for treating the waste in preparation for dischage to the environment. Most wastewater was recycled for scrubbing and cooling the product gas, with the excess requiring disposal found to be an average of only 1170 gallons per day (53 gallons per ton of coal, as received, and 366 gallons per million cubic feet of product gas). Analysis indicated that the waste was warm, high in alkaline material, especially ammonia, high in organic material, especially phenols, and also contaminated with other substances. Sulfides and thiocyanates were especially high in concentration. It was found that pretreatment could be accomplished by stripping (air injection) at high pH, removal of grease and oil (by pH suppression and light aeration) and neutralizatin. Equations were developed to describe the first two steps. Biological treatment through activated sludge was found to be successful, but effected only a moderate degree of treatment, and was troubled with frequent process upset. Attempts to improve treatment efficiency and stability are described. The data indicated the need to study aerated waste stabilization ponds as an alternative to activated sludge. Biological reaction kinetics were studied for activated sludge. Evaluation of the application of granular activated carbon suggested that this could be an effective practical tertiary treatment.

Iglar, A. F.

1980-01-01T23:59:59.000Z

211

E-Print Network 3.0 - automated remote plant Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Page: << < 1 2 3 4 5 > >> 1 Energy-saving through remote control of a wastewater treatment plant Summary: Energy-saving through remote control of a wastewater treatment plant...

212

UBC Social Ecological Economic Development Studies (SEEDS) Student Report An Investigation into the Use of Solar Aquatic Wastewater Treatment in The new UBC  

E-Print Network [OSTI]

into the Use of Solar Aquatic Wastewater Treatment in The new UBC Farm Center Building: A Triple Bottom Line Investigation into the Use of Solar Aquatic Wastewater Treatment in The new UBC Farm Center Building: A Triple usage. The Farm would like to employ an onsite wastewater treatment facility that captures rainwater

213

Author's personal copy Modelling and automation of water and wastewater treatment processes  

E-Print Network [OSTI]

and Jeppsson, 2006), including sewage systems and surrounding land use. From the methodological viewpoint on the applications of modelling and automation to water and wastewater treatment processes. The session, under sludge processes, to which unconventional and innovative control strategies were applied. But there were

214

Forward osmosis treatment of drilling mud and fracturing wastewater from oil and gas operations  

E-Print Network [OSTI]

Forward osmosis treatment of drilling mud and fracturing wastewater from oil and gas operations fracturing of wells during oil and gas (O&G) exploration consumes large volumes of fresh water and generates fracturing of oil and gas (O&G) wells are becoming of greater concern in the United States and around

215

DECENTRALIZED WASTEWATER MANAGEMENT  

E-Print Network [OSTI]

1 DECENTRALIZED WASTEWATER MANAGEMENT: A GUIDEBOOK FOR GEORGIA COMMUNITIES Katie Sheehan wastewater treatment technologies. www.njunsystems.com Version 1.0, April 2013 #12; 2 DECENTRALIZED WASTEWATER MANAGEMENT: A GUIDEBOOK FOR GEORGIA COMMUNITIES PART ONE: BACKGROUND, ISSUES, AND PROGRAM

Rosemond, Amy Daum

216

Wastewater sludge management options for Honduras  

E-Print Network [OSTI]

Sludge management is a fundamental area of concern across wastewater treatment systems in Honduras. The lack of timely sludge removal has led to declining plant performance in many facilities throughout the country. In ...

Bhattacharya, Mahua, M. Eng. Massachusetts Institute of Technology.

2009-01-01T23:59:59.000Z

217

Utilization of municipal wastewater for cooling in thermoelectric power plants  

SciTech Connect (OSTI)

A process simulation model has been developed using Aspen Plus(R) with the OLI (OLI System, Inc.) water chemistry model to predict water quality in the recirculating cooling loop utilizing secondary- and tertiary-treated municipal wastewater as the source of makeup water. Simulation results were compared with pilot-scale experimental data on makeup water alkalinity, loop pH, and ammonia evaporation. The effects of various parameters including makeup water quality, salt formation, NH{sub 3} and CO{sub 2} evaporation mass transfer coefficients, heat load, and operating temperatures were investigated. The results indicate that, although the simulation model can capture the general trends in the loop pH, experimental data on the rates of salt precipitation in the system are needed for more accurate prediction of the loop pH. It was also found that stripping of ammonia and carbon dioxide in the cooling tower can influence the cooling loop pH significantly. The effects of the NH{sub 3} mass transfer coefficient on cooling loop pH appear to be more significant at lower values (e.g., k{sub NH3}< 4×10{sup -3} m/s) when the makeup water alkalinity is low (e.g., <90 mg/L as CaCO{sub 3}). The effect of the CO{sub 2} mass transfer coefficient was found to be significant only at lower alkalinity values (e.g., k{sub CO2}<4×10{{sup -6} m/s).

Safari, Iman; Walker, Michael E.; Hsieh, Ming-Kai; Dzombak, David A.; Liu, Wenshi; Vidic, Radisav D.; Miller, David C.; Abbasian, Javad

2013-09-01T23:59:59.000Z

218

Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report  

E-Print Network [OSTI]

best practices that could be applicable in improving the energy efficiencyEnergy efficiency measures that have been successfully implemented in municipal wastewater treatment facilities can serve as best practices

Lekov, Alex

2010-01-01T23:59:59.000Z

219

Wastewater treatment by aerobic granular biofilmWastewater treatment by aerobic granular biofilmaste ate t eat e t by ae ob c g a u a b o Aeration pulses to improve N eliminationAeration pulses to improve N-eliminationAeration pulses to improve N eliminat  

E-Print Network [OSTI]

Wastewater treatment by aerobic granular biofilmWastewater treatment by aerobic granular wastewater treatment p p denitrification Nitrification is the oxidation from ammonium (NH +) first activated sludge for biological N-elimination is a two step process: aerobic nitrification and anoxicp g g g

220

Onsite Wastewater Treatment Systems: Septic Tank/Soil Absorption Field  

E-Print Network [OSTI]

For septic tank and soil absorption systems to work properly, homeowners must choose the right kind of system for their household size and soil type, and they must maintain them regularly. This publication explains the treatment, design, operation...

Lesikar, Bruce J.

2008-10-23T23:59:59.000Z

Note: This page contains sample records for the topic "wastewater treatment plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Performance of a mixing entropy battery alternately flushed with wastewater effluent and  

E-Print Network [OSTI]

Performance of a mixing entropy battery alternately flushed with wastewater effluent and seawater. Coastal wastewater treatment plants discharge a continuous stream of low salinity effluent to the ocean cell, the net energy recovery was 0.11 kW h per m3 of wastewater effluent. When twelve cells were

Cui, Yi

222

Waste Treatment and Immobilation Plant Pretreatment Facility  

Office of Environmental Management (EM)

7-DESIGN-047 Technology Readiness Assessment for the Waste Treatment and Immobilization Plant (WTP) Pretreatment Facility L. Holton D. Alexander M. Johnson H. Sutter August 2007...

223

Hanford Waste Treatment Plant Construction Quality Review  

Broader source: Energy.gov (indexed) [DOE]

Safety and Health Evaluations Activity Report for the Hanford Waste Treatment Plant Construction Quality Review Dates of Activity 02142011 - 02172011 Report Preparer Joseph...

224

Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report  

SciTech Connect (OSTI)

This report summarizes the Lawrence Berkeley National Laboratory?s research to date in characterizing energy efficiency and automated demand response opportunities for wastewater treatment facilities in California. The report describes the characteristics of wastewater treatment facilities, the nature of the wastewater stream, energy use and demand, as well as details of the wastewater treatment process. It also discusses control systems and energy efficiency and automated demand response opportunities. In addition, several energy efficiency and load management case studies are provided for wastewater treatment facilities.This study shows that wastewater treatment facilities can be excellent candidates for open automated demand response and that facilities which have implemented energy efficiency measures and have centralized control systems are well-suited to shift or shed electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. Control technologies installed for energy efficiency and load management purposes can often be adapted for automated demand response at little additional cost. These improved controls may prepare facilities to be more receptive to open automated demand response due to both increased confidence in the opportunities for controlling energy cost/use and access to the real-time data.

Lekov, Alex; Thompson, Lisa; McKane, Aimee; Song, Katherine; Piette, Mary Ann

2009-04-01T23:59:59.000Z

225

Recycled Water Reuse Permit Renewal Application for the Central Facilities Area Sewage Treatment Plant  

SciTech Connect (OSTI)

This renewal application for a Recycled Water Reuse Permit is being submitted in accordance with the Idaho Administrative Procedures Act 58.01.17 “Recycled Water Rules” and the Municipal Wastewater Reuse Permit LA-000141-03 for continuing the operation of the Central Facilities Area Sewage Treatment Plant located at the Idaho National Laboratory. The permit expires March 16, 2015. The permit requires a renewal application to be submitted six months prior to the expiration date of the existing permit. For the Central Facilities Area Sewage Treatment Plant, the renewal application must be submitted by September 16, 2014. The information in this application is consistent with the Idaho Department of Environmental Quality’s Guidance for Reclamation and Reuse of Municipal and Industrial Wastewater and discussions with Idaho Department of Environmental Quality personnel.

Mike Lewis

2014-09-01T23:59:59.000Z

226

CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartment of Energy BuildingsBuriedJuneDepartment of Energy

227

CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartment of Energy BuildingsBuriedJuneDepartment of

228

2009 EVALUATION OF TRITIUM REMOVAL AND MITIGATION TECHNOLOGIES FOR WASTEWATER TREATMENT  

SciTech Connect (OSTI)

Since 1995, a state-approved land disposal site (SALDS) has received tritium contaminated effluents from the Hanford Site Effluent Treatment Facility (ETF). Tritium in this effluent is mitigated by storage in slow moving groundwater to allow extended time for decay before the water reaches the site boundary. By this method, tritium in the SALDS is isolated from the general environment and human contact until it has decayed to acceptable levels. This report contains the 2009 update evaluation of alternative tritium mitigation techniques to control tritium in liquid effluents and groundwater at the Hanford site. A thorough literature review was completed and updated information is provided on state-of-the-art technologies for control of tritium in wastewaters. This report was prepared to satisfy the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-026-07B (Ecology, EPA, and DOE 2007). Tritium separation and isolation technologies are evaluated periodically to determine their feasibility for implementation to control Hanford site liquid effluents and groundwaters to meet the Us. Code of Federal Regulations (CFR), Title 40 CFR 141.16, drinking water maximum contaminant level (MCL) for tritium of 20,000 pOll and/or DOE Order 5400.5 as low as reasonably achievable (ALARA) policy. Since the 2004 evaluation, there have been a number of developments related to tritium separation and control with potential application in mitigating tritium contaminated wastewater. These are primarily focused in the areas of: (1) tritium recycling at a commercial facility in Cardiff, UK using integrated tritium separation technologies (water distillation, palladium membrane reactor, liquid phase catalytic exchange, thermal diffusion), (2) development and demonstration of Combined Electrolysis Catalytic Exchange (CECE) using hydrogen/water exchange to separate tritium from water, (3) evaporation of tritium contaminated water for dispersion in the atmosphere, and (4) use of barriers to minimize the transport of tritium in groundwater. Continuing development efforts for tritium separations processes are primarily to support the International Thermonuclear Experimental Reactor (ITER) program, the nuclear power industry, and the production of radiochemicals. While these applications are significantly different than the Hanford application, the technology could potentially be adapted for Hanford wastewater treatment. Separations based processes to reduce tritium levels below the drinking water MCL have not been demonstrated for the scale and conditions required for treating Hanford wastewater. In addition, available cost information indicates treatment costs for such processes will be substantially higher than for discharge to SALDS or other typical pump and treat projects at Hanford. Actual mitigation projects for groundwater with very low tritium contamination similar to that found at Hanford have focused mainly on controlling migration and on evaporation for dispersion in the atmosphere.

LUECK KJ; GENESSE DJ; STEGEN GE

2009-02-26T23:59:59.000Z

229

E-Print Network 3.0 - area effluent treatment Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Nature and Transformation of Dissolved Organic Matter in Summary: . As wastewater treatment plant effluent passes through treatment wetlands, the DOM undergoes...

230

K-1435 Wastewater Treatment System for the Toxic Substances Control Act Incinerator Wastewater at the East Tennessee Technology Park, Oak Ridge, TN  

SciTech Connect (OSTI)

This paper discusses the design and performance of a wastewater treatment system installed to support the operation of a hazardous waste incinerator. The Oak Ridge Toxic Substances Control Act Incinerator (TSCAI), located at the East Tennessee Technology Park (ETTP), is designed and permitted to treat Resource ConservatioN and Recovery Act (RCRA) wastes including characteristic and listed wastes and polychlorinated biphenyl (PCB)-contaminated mixed waste. the incinerator process generates acidic gases and particulates which consist of salts, metals, and radionuclides. These off-gases from the incinerator are treated with a wet off-gas scrubber system. The recirculated water is continuously purged (below down), resulting in a wastewater to be treated. Additional water sources are also collected on the site for treatment, including storm water that infiltrates into diked areas and fire water from the incinerator's suppression system. To meet regulatory requirements for discharge, a wastewater treatment system (WWTS) was designed, constructed, and operated to treat these water sources. The WWTS was designed to provide for periodic fluctuation of contaminant concentrations due to various feed streams to the incinverator. Blow down consists of total suspended solids (TSS) and total dissolved solids (TDS), encompassing metals, radionuclide contamination and trace organics. The system design flow rate range is 35 to 75 gallons per minute (gpm). The system is designed with redundancy to minimize time off-line and to reduce impacts to the TSCAI operations. A novel treatment system uses several unit operations, including chemical feed systems, two-stage chemical reaction treatment, microfiltration, sludge storage and dewatering, neutralization, granular activated carbon, effluent neutralization, and a complete programmable logic controller (PLC) and human-machine interface (HMI) control system. To meet the space requirements and to provide portability of the WWTS to other applications, the system was installed in three, over-the-road semi trailers, and interconnected with piping and power. Trailers were oriented on a small site footprint to facilitate ease of installation. A remote sump pump skid was provided to convey water from two holding sumps adjacent to the treatment process. An accumulation tank and pump were also provided to receive miscellaneous wastewaters for treatment if they meet the waste acceptance criteria. The paper includes details of the technology used in the design, the requirements for compliance, and the initial performance demonstration and jar testing results. The WWTS successfully allowed for highly efficient, high-volume treatment with compliant discharge to off-site surface water.

Swientoniewski M.D.

2008-02-24T23:59:59.000Z

231

Treatment of concentrated industrial wastewaters originating from oil shale and the like by electrolysis polyurethane foam interaction  

DOE Patents [OSTI]

Highly concentrated and toxic petroleum-based and synthetic fuels wastewaters such as oil shale retort water are treated in a unit treatment process by electrolysis in a reactor containing oleophilic, ionized, open-celled polyurethane foams and subjected to mixing and laminar flow conditions at an average detention time of six hours. Both the polyurethane foams and the foam regenerate solution are re-used. The treatment is a cost-effective process for waste-waters which are not treatable, or are not cost-effectively treatable, by conventional process series.

Tiernan, Joan E. (Novato, CA)

1990-01-01T23:59:59.000Z

232

UBC Social Ecological Economic Development Studies (SEEDS) Student Report An Investigation into the Applicability of the CIRS Solar Aquatic Wastewater Treatment  

E-Print Network [OSTI]

into the Applicability of the CIRS Solar Aquatic Wastewater Treatment System at UBC Farm Noah Joy Peter Lillos Steven Lam An Investigation into the Applicability of the CIRS Solar Aquatic Wastewater Treatment System at UBC Farm Authors of a project/report. #12;ii ABSTRACT The UBC Farm is currently looking for a sustainable solution to treat

233

Resource recovery and epidemiology of anaerobic wastewater treatment process in a controlled ecological life support system. Final report  

SciTech Connect (OSTI)

The results of work accomplished under two different areas: (1) Resource Recovery of an Anaerobic Wastewater Treatment process, and (2) Epidemiological Study of an Anaerobic Wastewater Treatment Process are documented. The first part of the work was to set up and test three anaerobic digesters and then run these three digesters with a NASA-simulated wastewater. The second part of the work was to use a multi-drug resistant strain of Salmonella choleraesuis as the indicator bacteria for the epidemiological study. Details of these two parts can be found in two master`s theses and are described in Sections 3 and 4 of this report. Several important results condensed from these two parts are summarized in Section 2.

Li, K.; Hunt, M.D.

1995-02-01T23:59:59.000Z

234

Introduction to Wastewater Bruce J. Lesikar  

E-Print Network [OSTI]

Introduction to Wastewater Treatment Bruce J. Lesikar Professor Texas AgriLife Extension Service Overview What is wastewater? Why are we concerned about wastewater? The big picture. Goals for wastewater treatment are evolving How do we implement our infrastructure? Wastewater Treatment Processes ­ The end

235

Application of a moving bed biofilm reactor for tertiary ammonia treatment in high temperature industrial wastewater  

E-Print Network [OSTI]

industrial wastewater Jennifer L. Shore a,b , William S. M'Coy b , Claudia K. Gunsch a , Marc A. Deshusses a 2012 Available online 17 February 2012 Keywords: Moving bed biofilm reactor Industrial wastewater and industrial wastewater. No biotreatment was observed at 45 °C, although effective nitrification was rapidly

236

Wastewater treatment, energy recovery and desalination using a forward osmosis membrane in an air-cathode microbial osmotic fuel cell  

E-Print Network [OSTI]

dissolved solids (similar to seawater) by reverse osmosis (RO) is 1.06 kW h/m3 [2]. The most efficient sea water reverse osmosis (SWRO) systems have reached energy demands as low as 1.8 kW h/m3 [3], excludingWastewater treatment, energy recovery and desalination using a forward osmosis membrane in an air

237

The sweet spot of forward osmosis: Treatment of produced water, drilling wastewater, and other complex and difficult liquid streams  

E-Print Network [OSTI]

, and especially oil and gas (O&G) exploration and production wastewaters. High salt concentrations, decentralized generated during exploration and production (E&P) (e.g., drilling muds, hydraulic fracturing flowback water processes, have identified its sweet spot: treatment and desalination of complex industrial streams

238

1.0 GAS TRANSFER An important process used in water and wastewater treatment. Also very important when  

E-Print Network [OSTI]

1.0 GAS TRANSFER An important process used in water and wastewater treatment. Also very important = CL (CL + HcVG) (6) where CL = liquid phase concentration, VL = liquid volume, CG = gas phase concentration, VG = gas volume, Hc = dimensionless Henry's law coefficient and M = mass of gas. Now use two

Stenstrom, Michael K.

239

Mobile water treatment plant special study  

SciTech Connect (OSTI)

Characterization of the level and extent of groundwater contamination in the vicinity of Title I mill sites began during the surface remedial action stage (Phase 1) of the Uranium Mill Tailings Remedial Action (UMTRA) Project. Some of the contamination in the aquifer(s) at the abandoned sites is attributable to milling activities during the years the mills were in operation. To begin implementation of Phase 11 groundwater remediation, the US Department of Energy (DOE) requested that (1) the Technical Assistance Contractor (TAC) conduct a study to provide for the design of a mobile water treatment plant to treat groundwater extracted during site characterization studies at completed Phase I UMTRA sites, and (2) the results of the TAC investigations be documented in a special study report. This special study develops the design criteria for a water treatment plant that can be readily transported from one UMTRA site to another and operated as a complete treatment system. The 1991 study provides the basis for selecting a mobile water treatment system to meet the operating requirements recommended in this special study. The scope of work includes the following: Determining contaminants, flows, and loadings. Setting effluent quality criteria. Sizing water treatment unit(s). Evaluating non-monetary aspects of alternate treatment processes. Comparing costs of alternate treatment processes. Recommending the mobile water treatment plant design criteria.

Not Available

1992-12-01T23:59:59.000Z

240

Removal of indicator bacteria from municipal wastewater in an experimental two-stage vertical flow constructed  

E-Print Network [OSTI]

reasons for wastewater treatment. Constructed wetland systems remove pathogens by factors such as natural that constructed wetlands are generally chosen as a solution for autonomous wastewater treatment and that commonly constructed wetland system C.A. Arias*, A. Cabello*, H. Brix* and N.-H. Johansen** * Department of Plant

Brix, Hans

Note: This page contains sample records for the topic "wastewater treatment plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

XRF and leaching characterization of waste glasses derived from wastewater treatment sludges  

SciTech Connect (OSTI)

Purpose of this study was to investigate use of XRF (x-ray fluorescence spectrometry) as a near real-time method to determine melter glass compositions. A range of glasses derived from wastewater treatment sludges associated with DOE sites was prepared. They were analyzed by XRF and wet chemistry digestion with atomic absorption/inductively coupled emission spectrometry. Results indicated good correlation between these two methods. A rapid sample preparation and analysis technique was developed and demonstrated by acquiring a sample from a pilot-scale simulated waste glass melter and analyzing it by XRF within one hour. From the results, XRF shows excellent potential as a process control tool for waste glass vitrification. Glasses prepared for this study were further analyzed for durability by toxicity characteristic leaching procedure and product consistency test and results are presented.

Ragsdale, R.G., Jr

1994-12-01T23:59:59.000Z

242

Assessing nutrient and pharmaceutical removal efficiency from wastewater using shallow wetland treatment mesocosms.  

E-Print Network [OSTI]

??Wastewaters from rural sewage lagoons in Manitoba contain pharmaceuticals that are potentially harmful to non-target organisms and reduce overall water quality when released. An option… (more)

Cardinal, Pascal

2013-01-01T23:59:59.000Z

243

Analysis and Characterization of Halogenated Transformation Products of Pharmaceuticals and Personal Care Products in Wastewater Effluent  

E-Print Network [OSTI]

and biological treatments for wastewater decontamination- Atreatment involves biological degradation of organic wastewaterBiological effects of transformation products. The extent of attenuation of PPCPs through wastewater treatment

Bulloch, Daryl Neil

2013-01-01T23:59:59.000Z

244

FULL-SCALE TREATMENT WETLANDS FOR METAL REMOVAL FROM INDUSTRIAL WASTEWATER  

SciTech Connect (OSTI)

The A-01 NPDES outfall at the Savannah River Site receives process wastewater discharges and stormwater runoff from the Savannah River National Laboratory. Routine monitoring indicated that copper concentrations were regularly higher than discharge permit limit, and water routinely failed toxicity tests. These conditions necessitated treatment of nearly one million gallons of water per day plus storm runoff. Washington Savannah River Company personnel explored options to bring process and runoff waters into compliance with the permit conditions, including source reduction, engineering solutions, and biological solutions. A conceptual design for a constructed wetland treatment system (WTS) was developed and the full-scale system was constructed and began operation in 2000. The overall objective of our research is to better understand the mechanisms of operation of the A-01 WTS in order to provide better input to design of future systems. The system is a vegetated surface flow wetland with a hydraulic retention time of approximately 48 hours. Copper, mercury, and lead removal efficiencies are very high, all in excess of 80% removal from water passing through the wetland system. Zinc removal is 60%, and nickel is generally unaffected. Dissolved organic carbon in the water column is increased by the system and reduces toxicity of the effluent. Concentrations of metals in the A-01 WTS sediments generally decrease with depth and along the flow path through the wetland. Sequential extraction results indicate that most metals are tightly bound to wetland sediments.

Nelson, E; John Gladden, J

2007-03-22T23:59:59.000Z

245

Treatment of concentrated industrial wastewaters originating from oil shale and the like by electrolysis polyurethane foam interaction  

DOE Patents [OSTI]

Highly concentrated and toxic petroleum-based and synthetic fuels wastewaters such as oil shale retort water are treated in a unit treatment process by electrolysis in a reactor containing oleophilic, ionized, open-celled polyurethane foams and subjected to mixing and l BACKGROUND OF THE INVENTION The invention described herein arose in the course of, or under, Contract No. DE-AC03-76SF00098 between the U.S. Department of Energy and the University of California.

Tiernan, Joan E. (38 Clay Ct., Novato, CA 94947)

1991-01-01T23:59:59.000Z

246

E-Print Network 3.0 - arsenic pilot plant Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sediments Jason Murnock, Master of Science Candidate, Summary: conflicting. The Erie wastewater treatment plant sludge incinerator flue gas contains arsenic but pilot tests......

247

Solar Farm Going Strong at Water Treatment Plant in Pennsylvania...  

Broader source: Energy.gov (indexed) [DOE]

Solar Farm Going Strong at Water Treatment Plant in Pennsylvania Solar Farm Going Strong at Water Treatment Plant in Pennsylvania October 8, 2010 - 10:39am Addthis Aqua...

248

Occurrence and Implication of dissolved organic phosphorus (DOP) in tertiary wastewater Effluents Page 1 of 6  

E-Print Network [OSTI]

GU, APRIL Occurrence and Implication of dissolved organic phosphorus (DOP) in tertiary wastewater wastewater effluents L. Liu1 , D. S. Smith2 , M. Bracken3 , J.B. Neethling4 , H.D. Stensel5 and S. Murthy6 levels (e.g. TPwastewater treatment plants. A few previous studies (Benisch et al., 2007

Brody, James P.

249

BULKING SLUDGE TREATMENT BY MICROSCOPIC OBSERVATION AND MECHANICAL TREATMENT  

E-Print Network [OSTI]

for the operation of the biological stage of waste water treatment plants. If the threatening extensive growth of wastewater treatment plants often need a complex control for the optimal processing. The measurement status and for the regulation of biological parts in waste water treatment plants. Furthermore, e

250

Adsorption of Estrone on nanofiltration and reverse osmosis membranes in water and wastewater treatment   

E-Print Network [OSTI]

Adsorption of the trace contaminant estrone, a natural hormone and commonly abundant in surface waters and in treated as well as untreated wastewaters, to eight commercial nanofiltration (NF) and reverse osmosis (RO) ...

Nghiem, D.L.; Schäfer, Andrea; Waite, T.D.

2002-01-01T23:59:59.000Z

251

On-Site Wastewater Treatment Systems: Conventional Septic Tank/Drain Field (Spanish)  

E-Print Network [OSTI]

Conventional septic tanks have been the most commonly used technology for treating wastewater. This publication explains the advantages, disadvantages, maintenance steps and estimated costs of septic tank/drain field systems....

Lesikar, Bruce J.

1999-08-12T23:59:59.000Z

252

On-Site Wastewater Treatment Systems: Conventional Septic Tank/Drain Field  

E-Print Network [OSTI]

Conventional septic systems have traditionally been the most commonly used technology for treating wastewater. This publication explains the advantages and disadvantages of conventional septic tank/drain fields, as well as estimated costs...

Lesikar, Bruce J.

1999-09-06T23:59:59.000Z

253

On-Site Wastewater Treatment Systems: Low-Pressure Dosing System  

E-Print Network [OSTI]

A low-pressure dosing system treats wastewater and then pumps it into the soil several times daily. This publication explains the advantages and disadvantages of low-pressure dosing systems as well as estimated costs and maintenance requirements....

Lesikar, Bruce J.

1999-09-06T23:59:59.000Z

254

Upflow anaerobic sludge blanket reactors for treatment of wastewater from the brewery industry  

E-Print Network [OSTI]

Anaerobic digestion can be utilized to convert industrial wastewater into clean water and energy. The goal of this project was to set up lab-scale anaerobic digesters to collect data that will be used to develop and validate ...

Scampini, Amanda C

2010-01-01T23:59:59.000Z

255

On-Site Wastewater Treatment Systems: Low-Pressure Dosing System (Spanish)  

E-Print Network [OSTI]

A low-pressure dosing system treats wastewater and then pumps it into the soil several times daily. This publication explains the advantages, disadvantages, maintenance steps and estimated costs of low-pressure dosing systems....

Lesikar, Bruce J.

1999-08-12T23:59:59.000Z

256

Treatment of domestic wastewater for reuse with activated silica and magnesia  

E-Print Network [OSTI]

which are of concern in treat- ment for potable purposes are organics and trace inorganics. This research project was conducted in an attempt to determine if organic oxides such as activated silica and magnesia in various combinations with alum... in Wastewater Toxic Inorganics in Wastewater Existing Technology Coagulation and Flocculation Lime Coagulation . . ~ Alum Coagulation . ~ ~ ~ ~ Activated Silica Magnesia 5 6 8 9 10 13 14 15 16 III EXPERIMENTAL PLAN Was tewater ~ ~ ~ ~ ~ Jar...

Lindner, John Howard

1985-01-01T23:59:59.000Z

257

Municipal Wastewater Characteristics of Sylhet City, Bangladesh  

E-Print Network [OSTI]

biological treatment of the sewage. According to the Metcalf & Eddy (1995), a standard reference for wastewater treatment

Alam, Raquibul; Ahmed, Mushtaq; Chowdhury, Md. Aktarul Islam; Nath, Suman Kanti

2006-01-01T23:59:59.000Z

258

Optimiziing the laboratory monitoring of biological wastewater-purification systems  

SciTech Connect (OSTI)

Optimization of the laboratory monitoring of biochemical wastewater-treatment systems at coke plants is considered, for the example of OAO Koks. By adopting a methodological approach to determine the necessary data from chemical analysis, it is possible to reduce the time, labor, and materials required for monitoring, without impairing the purification process or compromising the plant's environmental policies.

S.V. Gerasimov [OAO Koks, Kemerovo (Russian Federation)

2009-05-15T23:59:59.000Z

259

Waste Treatment and Immobilation Plant HLW Waste Vitrification...  

Office of Environmental Management (EM)

6 Technology Readiness Assessment for the Waste Treatment and Immobilization Plant (WTP) HLW Waste Vitrification Facility L. Holton D. Alexander C. Babel H. Sutter J. Young August...

260

Voluntary Protection Program Onsite Review, Waste Treatment Plant...  

Office of Environmental Management (EM)

Construction Project - June 2010 Voluntary Protection Program Onsite Review, Waste Treatment Plant Construction Project - June 2010 June 2010 Evaluation to determine whether Waste...

Note: This page contains sample records for the topic "wastewater treatment plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Assessment of sludge management options in a waste water treatment plant  

E-Print Network [OSTI]

This thesis is part of a larger project which began in response to a request by the Spanish water agengy, Cadagua, for advice on life cycle assessment (LCA) and environmental impacts of Cadagua operated wastewater treatment ...

Lim, Jong hyun, M. Eng. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

262

AEROBIC BIOTRANSFORMATION OF TOXIC ORGANICS IN WASTEWATER  

E-Print Network [OSTI]

#12;AEROBIC BIOTRANSFORMATION OF TOXIC ORGANICS IN WASTEWATER DOE FRAP 1997-15 Prepared for in both domestic and industrial wastewater. The release of these compounds during wastewater treatment to predict the mass of the VOCs in the wastewater treated by biotransformation and the mass stripped

263

Determining the ecological viability of constructed wetlands for the treatment of oil sands wastewater  

SciTech Connect (OSTI)

To determine the conditions for optimal degradation of naphthenic acids (C{sub n}H{sub 2n+z}O{sub 2}), the most toxic component of oil sands wastewater, the authors have monitored the mineralization of 2 representative naphthenic acids (NA), U-{sup 14}C-palmitic acid (linear, Z = 0) and 8-{sup 14}C-decahydro-2-naphthoic acid (bicyclic, Z = {minus}4) under varying conditions of temperature, phosphate and oxygen. The radiolabeled NA was added to biometer flasks containing wastewater {+-} amendments and evolved {sup 14}C-CO{sub 2} was trapped in a side arm and counted by LSC. The results indicate that low temperature (5 C) and anaerobiasis greatly inhibited NA degradation over the four week incubation period. Addition of phosphate (as buffered KP{sub i}) significantly increased {sup 14}C-CO{sub 2} production for both Z = 0 and Z = {minus}4 compounds; however, the subsequent high microbial growth rates also decreased PO{sub 2} which limited NA mineralization. Effluent toxicity was monitored at week 0 and week 4 using Microtox and fathead minnow tests. Although there was increased survival of fathead minnows in the phosphate-amended effluent, the IC{sub 20} values of the Microtox assay showed no improvement in either the phosphate-treated or untreated effluents. These results show that naphthenic acid analogues are readily degraded by indigenous microorganisms in oil sands wastewater and that phosphate addition accelerated the mineralization of these compounds if PO{sub 2} remained high.

Lai, J.; Kiehlmann, E.; Pinto, L.; Bendell-Young, L.; Moore, M. [Simon Fraser Univ., Burnaby, British Columbia (Canada); Nix, P. [EVS Environment Consultants, North Vancouver, British Columbia (Canada)

1995-12-31T23:59:59.000Z

264

The treatment of wood preserving wastes with activated carbon  

E-Print Network [OSTI]

requirement and treatment schemes should be based on these combined requirements. Current treatment schemes employed in the wood preserving industry combine physical, chemical, and biological processes and operations in treating wastewaters. Jones, et al...-five of the plants performed secondary treatment on-site of which 32 used biological methods. Only 6 per- cent discharged their wastewaters directly to the environment without any form of treatment and approximately 40 percent of the plants planned to change...

Pence, Robert Fuller

1978-01-01T23:59:59.000Z

265

Biosolids are the solids produced during municipal wastewater treatment. Composts are made from a variety of organic materials, including both urban and agriculture  

E-Print Network [OSTI]

ISSUE Biosolids are the solids produced during municipal wastewater treatment. Composts are made and compost users need information on the product's proper use, safety, and benefits. Furthermore, biosolids and compost producers need up-to-date information on making and marketing their products, as well

Collins, Gary S.

266

Electric Power Generation from Municipal, Food, and Animal Wastewaters Using Microbial Fuel Cells  

E-Print Network [OSTI]

) technology can replace activated sludge processes for secondary wastewater treatment. We will discuss sustainable technology is attractive. Keywords: Microbial fuel cells, Wastewater treatment, Economical cell technology to wastewater treatment. Motivations of their work were based on the economic

Angenent, Lars T.

267

Cyanide treatment options in coke plants  

SciTech Connect (OSTI)

The paper discusses the formation of cyanides in coke oven gas and describes and compares waste processing options. These include desulfurization by aqueous ammonia solution, desulfurization using potash solution, desulfurization in oxide boxes, decomposition of NH{sub 3} and HCN for gas scrubbing. Waste water treatment methods include chemical oxidation, precipitation, ion exchange, reverse osmosis, and biological treatment. It is concluded that biological treatment is the most economical process, safe in operation and requires a minimum of manpower.

Minak, H.P.; Lepke, P. [Krupp Uhde GmbH, Dortmund (Germany)

1997-12-31T23:59:59.000Z

268

Independent Activity Report, Hanford Waste Treatment Plant -...  

Broader source: Energy.gov (indexed) [DOE]

with the Department of Energy (DOE) WTP staff. One focus area for this visit was piping and pipe support installations. Independent Activity Report, Hanford Waste Treatment...

269

Rules Establishing Minimum Standards Relating to Location, Design, Construction, and Maintenance of Onsite Wastewater Treatment Systems (Rhode Island)  

Broader source: Energy.gov [DOE]

The purpose of these rules is to protect public health and the environment by establishing minimum standards for the proper location, design, construction and maintenance of onsite wastewater...

270

Removal of phenols and aromatic amines from wastewater by a combination treatment with tyrosinase and a coagulant  

SciTech Connect (OSTI)

Removal of phenols and aromatic amines from industrial wastewater by tyrosinase was investigated. A color change from colorless to dark brown was observed, but no precipitate was formed. Colored products were found to be easily removed by a combination treatment with tyrosinase and a cationic polymer coagulant containing amino group, such as hexamethylenediamine-epichlorohidrin polycondensate, polyethleneimine, or chitosan. The first two coagulants, synthetic polymers, were more effective than chitosan, a polymer produced in crustacean shells. Phenols and aromatic amines are not precipitated by any kind of coagulants, but their enzymatic reaction products are easily precipitated by a cationic polymer coagulant. These results indicate that the combination of tyrosinase and a cationic polymer coagulant is effective in removing carcinogenic phenols and aromatic amines from an aqueous solution. Immobilization of tyrosinase on magnetite gave a good retention of activity (80%) and storage stability i.e., only 5% loss after 15 days of storage at ambient temperature. In the treatment of immobilized tyrosinase, colored enzymatic reaction products were removed by less coagulant compared with soluble tyrosinase.

Wada, Shinji; Ichikawa, Hiroyasu; Tatsumi, Kenji (National Inst. for Resources and Environment, Ibaraki (Japan))

1995-02-20T23:59:59.000Z

271

Desalination and Water Treatment www.deswater.com  

E-Print Network [OSTI]

.22 µm. Seawater, reverse osmosis (RO) concentrate collected from a wastewater reclamation plant for the treatment of saline water and wastewater such as thermal distillation and reverse osmosis [2,3]. MD has several advantages compared to conventional thermal distillation and reverse osmosis processes [3

272

Selection of Native Wetland Plants for Water Treatment of Urban Runoff  

E-Print Network [OSTI]

UC Davis KEYWORDS: Wetlands, Water Treatment, Urban Runoff,of Native Wetland Plants for Water Treatment of UrbanValley Wetlands Biomass Response to Heavy Metal Treatment

Rejmankova, Eliska; Bayer, David E

1995-01-01T23:59:59.000Z

273

Technical Basis for Radiological Emergency Plan Annex for WTD Emergency Response Plan: West Point Treatment Plant  

SciTech Connect (OSTI)

Staff of the King County Wastewater Treatment Division (WTD) have concern about the aftermath of a radiological dispersion event (RDE) leading to the introduction of significant quantities of radioactive material into the combined sanitary and storm sewer system in King County, Washington. Radioactive material could come from the use of a radiological dispersion device (RDD). RDDs include "dirty bombs" that are not nuclear detonations but are explosives designed to spread radioactive material (National Council on Radiation Protection and Measurements (NCRP) 2001). Radioactive material also could come from deliberate introduction or dispersion of radioactive material into the environment, including waterways and water supply systems. This document, Volume 3 of PNNL-15163 is the technical basis for the Annex to the West Point Treatment Plant (WPTP) Emergency Response Plan related to responding to a radiological emergency at the WPTP. The plan primarily considers response to radioactive material that has been introduced in the other combined sanitary and storm sewer system from a radiological dispersion device, but is applicable to any accidental or deliberate introduction of materials into the system.

Hickey, Eva E.; Strom, Daniel J.

2005-08-01T23:59:59.000Z

274

TECHNICAL ARTICLES PLANTS USED IN CONSTRUCTED WETLANDS AND THEIR  

E-Print Network [OSTI]

TECHNICAL ARTICLES #12;2 PLANTS USED IN CONSTRUCTED WETLANDS AND THEIR FUNCTIONS Hans Brix Risskov, Denmark ABSTRACT Vegetation plays an important role in wastewater treatment wetlands. Plants treatment systems aesthetically pleasing. Wetland species of all growth forms have been used in treatment

Brix, Hans

275

Radiological Monitoring of Waste Treatment Plant  

SciTech Connect (OSTI)

Scheduled waste in West Malaysia is handled by Concession Company and is stored and then is incinerated. It is known that incineration process may result in naturally occurring radioactive materials (NORM) to be concentrated. In this study we have measured three samples consist of by-product from the operation process such as slag, filter cake and fly ash. Other various environmental media such as air, surface water, groundwater and soil within and around the plant have also been analysed for their radioactivity levels. The concentration of Ra-226, Ac-228 and K-40 in slag are 0.062 Bq/g, 0.016 Bq/g and 0.19 Bq/g respectively. The total activity (Ra{sub eq}) in slag is 99.5 Bq/kg. The concentration in fly ash is 0.032 Bq/g, 0.16 Bq/g and 0.34 Bq/g for Ra-226, Ac-228 and K-40 respectively resulting in Raeq of 287.0 Bq/kg. For filter cake, the concentration is 0.13 Bq/g, 0.031 Bq/g and 0.33 Bq/g for Ra-226, Ac-228 and K-40 respectively resulting in Raeq of 199.7 Bq/kg. The external radiation level ranges from 0.08 {mu}Sv/h (Administrative building) to 0.35 {mu}Sv/h (TENORM storage area). The concentration level of radon and thoron progeny varies from 0.0001 to 0.0016 WL and 0.0006 WL to 0.002 WL respectively. For soil samples, the activity ranges from 0.11 Bq/g to 0.29 Bq/g, 0.06 Bq/g to 0.18 Bq/g and 0.065 Bq/g to 0.38 Bq/g for Ra-226, Ac-228 and K-40 respectively. While activity in water, except for a trace of K-40, it is non-detectable.

Amin, Y. M. [Physics Dept, University of Malaya, 50603 Kuala Lumpur (Malaysia); Nik, H. W. [Asialab (Malaysia) Sdn Bhd, 14 Jalan Industri USJ 1, 47600 Subang Jaya (Malaysia)

2011-03-30T23:59:59.000Z

276

The effect of chemical composition on the PCT durability of mixed waste glasses from wastewater treatment sludges  

SciTech Connect (OSTI)

An experimental program has been designed to examine the chemical durability of glass compositions derived from the vitrification of simulated wastewater treatment sludges. These sludges represent the majority of low-level mixed wastes currently in need of treatment by the US DOE. The major oxides in these model glasses included SiO{sub 2}, Al{sub 2}O{sub 3}, B{sub 2}O{sub 3}, Na{sub 2}O, CaO and Fe{sub 2}O{sub 3}. In addition, three minor oxides, BaO, NiO, and PbO, were added as hazardous metals. The major oxides were each varied at two levels resulting in 32 experimental glasses. The chemical durability was measured by the 7-Day Product Consistency Test (PCT). The normalized sodium release rates (NRR{sub Na}) of these glasses ranged from 0.01 to 4.99 g/m{sup 2}. The molar ratio of the glass-former to glass-modifier (F/M) was found to have the greatest effect on PCT durability. Glass-formers included SiO{sub 2}, Al{sub 2}O{sub 3}, and B{sub 2}O{sub 3}, while Na{sub 2}O, CaO, BaO, NiO, and PbO were glass-modifiers. As this ratio increased from 0.75 to 2.0, NRR{sub Na} was found to decrease between one and two orders of magnitude. Another important effect on NRR{sub Na} was the Na{sub 2}O/CaO ratio. As this ratio increased from 0.5 to 2.0, NRR{sub Na} increased up to two orders of magnitude for the glasses with the low F/M ratio but almost no effect was observed for the glasses with the high F/M ratio. Increasing the iron oxide content from 2 to 18 mole% was found to decrease NRR{sub Na} one order of magnitude for the glasses with low F/M but iron had little effect on the glasses with the high F/M ratio. The durability also increased when 10 mole percent Al{sub 2}O{sub 3} was included in low iron oxide glasses but no effect was observed with the high iron glasses. The addition of B{sub 2}O{sub 3} had little effect on durability. The effects of other composition parameters on durability are discussed as well.

Resce, J.L.; Ragsdale, R.G.; Overcamp, T.J. [Clemson Univ., SC (United States); Bickford, D.F.; Cicero, C.A. [Savannah River Technology Center, Aiken, SC (United States)

1995-01-25T23:59:59.000Z

277

E-Print Network 3.0 - area industrial wastewater Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sciences and Ecology 3 Harvesting Energy from Wastewater Treatment Summary: Biogas: - 60% H2 - 40% CO2 12;H2 from industrial wastewaters such as food processing...

278

Using CO2 & Algae to Treat Wastewater and  

E-Print Network [OSTI]

Using CO2 & Algae to Treat Wastewater and Produce Biofuel Feedstock Tryg Lundquist Cal Poly State School, UCSB March 23, 2007 #12;CO2 and Wastewater Treatment · WW Treatment Technologies · Scale Actinastrum sp. #12;Major Wastewater Treatment Technologies in U.S. Activated Sludge 6,800 Facilities 25

Keller, Arturo A.

279

California Food Processing Industry Wastewater Demonstration Project: Phase I Final Report  

SciTech Connect (OSTI)

Wastewater treatment is an energy-intensive process and electricity demand is especially high during the utilities summer peak electricity demand periods. This makes wastewater treatment facilities prime candidates for demand response programs. However, wastewater treatment is often peripheral to food processing operations and its demand response opportunities have often been overlooked. Phase I of this wastewater demonstration project monitored wastewater energy and environmental data at Bell-Carter Foods, Inc., California's largest olive processing plant. For this monitoring activity the project team used Green Energy Management System (GEMS) automated enterprise energy management (EEM) technologies. This report presents results from data collected by GEMS from September 15, 2008 through November 30, 2008, during the olive harvest season. This project established and tested a methodology for (1) gathering baseline energy and environmental data at an industrial food-processing plant and (2) using the data to analyze energy efficiency, demand response, daily peak load management, and environmental management opportunities at the plant. The Phase I goals were to demonstrate the measurement and interrelationship of electricity demand, electricity usage, and water quality metrics and to estimate the associated CO{sub 2} emissions.

Lewis, Glen; Atkinson, Barbara; Rhyne, Ivin

2009-09-09T23:59:59.000Z

280

Factor water treatment up-front in IPP plant design  

SciTech Connect (OSTI)

This article describes how independent power producers profit from drawing on the expertise of a water-treatment supplier at the inception of a project. Concepts presented here apply to other major subsystems. The nature of independent power project development, both domestic and international, has resulted in many innovative approaches to client service. The highly competitive, fast-track nature of project development requires that financial pro forma plans remain fluid, with periodic updates made as the project races from conceptual design through financial closing. Suppliers are continually called upon to provide insight and expertise to facilitate the project. Their expertise is also sought by organizations considering the purchase of an existing independent power producer (IPP) facility. Many foundation steps'' occur during early commercial development. Among these are: response to a request for proposals, power slates agreements, feasibility studies, site qualification, contract negotiation, host development, and steam sales agreements. As the project moves forward, development of comprehensive design and equipment specifications, equipment selection, and financial analysis are required. One aspect frequently overlooked because of the multitude of business and technical issues involved is the water supply. With public water supplies often inaccessible, it may be necessary to make use of a poor-quality source--such as effluent from publicly owned treatment works (POTWs), acid mine drainage, host-facility process discharge, landfill leachate, and produced water from oil fields. Even if surface water or groundwater is available, the quality and often the quantity may be unknown, or there may be no provisions for discharge of wastewater.

Levine, J.

1994-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "wastewater treatment plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Perceived Risk and the Siting of a Controversial Wastewater Treatment Plant in Central Texas  

E-Print Network [OSTI]

.1 Resources ..................................................................................................... 25 4.1.1 Power .................................................................................................... 25 4.1.2 Money....1.1 The Role of Power ................................................................................ 59 6.1.2 The Role of Money .............................................................................. 65 6.1.3 The Role of Social Influence...

Kultgen, Pat Morrison

2013-08-16T23:59:59.000Z

282

Natural and synthetic estrogens in wastewater treatment plant effuent and the coastal ocean  

E-Print Network [OSTI]

Steroidal estrogens are potent endocrine disrupting chemicals that are naturally excreted by vertebrates (e.g., humans and fish) and can enter natural waters through the discharge of treated and raw sewage. Because estrogens ...

Griffith, David R. (David Richmond)

2013-01-01T23:59:59.000Z

283

ITP Industrial Distributed Energy: CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department ofIOWA1999) | Department2009 | UCEnergy

284

ITP Industrial Distributed Energy: CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department ofIOWA1999) | Department2009 | UCEnergyfor

285

Saving Energy at 24/7 Wastewater Treatment Plant | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN7 RoadmapProgram| Department ofat Thisas a Renter this

286

Polishing of synthetic electroplating wastewater in microcosm upflow constructed wetlands: Effect of operating conditions  

E-Print Network [OSTI]

Polishing of synthetic electroplating wastewater in microcosm upflow constructed wetlands: Effect of polishing electroplating wastewater in subsurface vertical flow constructed wetland. Electroplating wastewater treatment or polishing in constructed wetlands (CWs) was studied to a very limited degree. Four

Paris-Sud XI, Université de

287

The Attainable Set for a Nonlinear Control Model of Wastewater Biotreatment  

E-Print Network [OSTI]

The Attainable Set for a Nonlinear Control Model of Wastewater Biotreatment Ellina Grigorieva;Biotreatment of Wastewater Treatment of wastewater is needed to eliminate pathogens and reduce organic matter

Grigorieva, Ellina V.

288

Wastewater Discharge, Nutrient Loading, and Dissolved Oxygen Dynamics in a Shallow Texas Bay  

E-Print Network [OSTI]

In Oso Bay, a wastewater treatment plant acts as a source of eutrophication and may have measureable impact on the health of the bay. The objectives of this study were to create a model for modeling dissolved oxygen concentrations over time...

Schroer, Lee Allen

2014-05-07T23:59:59.000Z

289

Emerging contaminants in wastewater and river water: Risks for human water security and aquatic ecosystem sustainability?  

E-Print Network [OSTI]

Emerging contaminants in wastewater and river water: Risks for human water security and aquatic and Environmental Science (BRGM), Orléans, France ; 2 National Research Institute for Rural Engineering, Water systems. Since degradation rates in conventional sewage treatment plants (STP) are rather low, ECs enter

Paris-Sud XI, Université de

290

Combined process for 2,4-Dichlorophenoxyacetic acid treatment Coupling of an electrochemical system with a biological treatment.  

E-Print Network [OSTI]

system with a biological treatment. Jean-Marie Fontmorina,b *, Florence Fourcadea,b Florence Genestec-made electrochemical flow cell was used for the pre-treatment and a biological treatment was then carried out using activated sludge supplied by a local wastewater treatment plant. 2,4-D was used as a target compound

Paris-Sud XI, Université de

291

TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Milking Center Wastewater Treatment  

E-Print Network [OSTI]

be affected by manure, milk solids, ammonia, phosphorus, and detergents. Wastewater from the dairy milking center is made up of waste from the milking parlor (manure, feed solids, hoof dirt, bulk tank rinse water and detergent used in cleaning), and should... topics: 1. Combining wastes 2. Application methods 3. Slow surface infiltration Combining Wastes When milking center wastes are combined with manure a common disposal system can be used for both types of waste. A liquid manure storage facility, properly...

Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.

1997-08-29T23:59:59.000Z

292

Opportunities for Open Automated Demand Response in Wastewater Treatment Facilities in California - Phase II Report. San Luis Rey Wastewater Treatment Plant Case Study  

E-Print Network [OSTI]

your Power. (2008). "Demand Response Programs." RetrievedTool Berkeley, CA, Demand Response Research Center.2008). "What is Demand Response?" Retrieved 10/10/2008, from

Thompson, Lisa

2010-01-01T23:59:59.000Z

293

Rules Governing Water and Wastewater Operator Certification (Tennessee)  

Broader source: Energy.gov [DOE]

The Rules Governing Water and Wastewater Operator Certification are applicable to all projects that will require a water treatment site. Everyone who plans to operate a wastewater or water...

294

Sampling and Analysis Plan - Waste Treatment Plant Seismic Boreholes Project  

SciTech Connect (OSTI)

This sampling and analysis plan (SAP) describes planned data collection activities for four entry boreholes through the sediment overlying the basalt, up to three new deep rotary boreholes through the basalt and sedimentary interbeds, and one corehole through the basalt and sedimentary interbeds at the Waste Treatment Plant (WTP) site. The SAP will be used in concert with the quality assurance plan for the project to guide the procedure development and data collection activities needed to support borehole drilling, geophysical measurements, and sampling. This SAP identifies the American Society of Testing Materials standards, Hanford Site procedures, and other guidance to be followed for data collection activities.

Reidel, Steve P.

2006-05-26T23:59:59.000Z

295

ED-WAVE: an Educational Software for Training on Wastewater Technologies  

E-Print Network [OSTI]

ED-WAVE: an Educational Software for Training on Wastewater Technologies Using Virtual Application database and case base reasoning in the field of wastewater treatment and water reclamation. ED-WAVE aims education; wastewater technolo- gies; wastewater treatment animations INTRODUCTION SUSTAINABILITY

Gutierrez, Diego

296

Macrophyte Decomposition Rates in the Tres Rios Constructed Treatment Wetland: Preliminary Results!  

E-Print Network [OSTI]

Macrophyte Decomposition Rates in the Tres Rios Constructed Treatment Wetland: Preliminary Results wetland. Plant Ecology 200:69-82. Literature Cited! Figure 1A: Aerial photo of the treatment flow cell, such as those associated with municipal wastewater treatment.! Constructed treatment wetlands perform important

Hall, Sharon J.

297

High-tech waste treatment plant to open in Ho Chi Min City (20-07-2005)  

E-Print Network [OSTI]

providing capital for the plant construction," Tuan said. #12;Every day, HCM City, which has a population incinerated. But incineration destroys natural resources, adds to climate change and causes pollution from air Energy company also uses deep-well technology to keep its disposal of industrial wastewater inside its

Columbia University

298

Modeling Offgas Systems for the Hanford Waste Treatment Plant  

SciTech Connect (OSTI)

To augment steady-state design calculations, dynamic models of three offgas systems that will be used in the Waste Treatment Plant now under construction at the Hanford Site were developed using Aspen Custom Modeler{trademark}. The offgas systems modeled were those for the High Level Waste (HLW) melters, Low Activity Waste (LAW) melters and HLW Pulse Jet Ventilation (PJV) system. The models do not include offgas chemistry but only consider the two major species in the offgas stream which are air and water vapor. This is sufficient to perform material and energy balance calculations that accurately show the dynamic behavior of gas pressure, temperature, humidity and flow throughout the systems. The models are structured to perform pressure drop calculations across the various unit operations using a combination of standard engineering calculations and empirical data based correlations for specific pieces of equipment. The models include process controllers, gas ducting, control valves, exhaust fans and the offgas treatment equipment. The models were successfully used to analyze a large number of operating scenarios including both normal and off-normal conditions.

Smith, Frank G., III

2005-09-02T23:59:59.000Z

299

Voluntary Protection Program Onsite Review, Waste Treatment Plant Hanford Site- June 2010  

Broader source: Energy.gov [DOE]

Evaluation to determine whether the Waste Treatment Plant Hanford Site is continuing to perform at a level deserving DOE-VPP Star recognition.

300

Voluntary Protection Program Onsite Review, Waste Treatment Plant Construction Project- June 2010  

Broader source: Energy.gov [DOE]

Evaluation to determine whether Waste Treatment Plant Construction Project is continuing to perform at a level deserving DOE-VPP Star recognition.

Note: This page contains sample records for the topic "wastewater treatment plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Voluntary Protection Program Onsite Review, Bechtel National Inc., Waste Treatment Plant Construction Site – November 2013  

Broader source: Energy.gov [DOE]

Evaluation to determine whether Bechtel National Inc., Waste Treatment Plant Construction Site is performing at a level deserving DOE-VPP Star recognition.

302

Wastewater management utilizing land application for the Boston Harbor-Eastern Massachusetts Metropolitan Area. Technical data. Volume 5  

SciTech Connect (OSTI)

The U.S. Army Corps of Engineers, NED, in cooperation with several agencies under the administration of the Technical Subcommittee on Boston Harbor, is directing a segment of the Wastewater Management Study for Eastern Massachusetts which proposed the utilization of land application methods to further treat and make use of conventionally treated wastewaters. The entire wastewater management study for Eastern Massachusetts consisted of five alternatives. Four of the conceptual alternatives are being prepared under the direction of the Metropolitan District Commission (MDC). The land application alternative is labeled Concept 5 and provides land application treatment for effluents from five of the regional waste treatment plant locations described in Concept 4. The report presented herein constitutes the land-oriented treatment system known as Concept 5.

NONE

1995-06-01T23:59:59.000Z

303

Examination of microbial fuel cell start-up times with domestic wastewater and additional amendments  

E-Print Network [OSTI]

biological process used for wastewater treatment is desirable to avoid discharge of untreated wastewaterExamination of microbial fuel cell start-up times with domestic wastewater and additional Available online 30 April 2011 Keywords: Microbial fuel cell Domestic wastewater Startup time Substrate a b

304

Organic removal from domestic wastewater by activated alumina adsorption  

E-Print Network [OSTI]

of the major groups of pollutants in wastewaters. Adsorption by granular activated carbon, a non-polar adsorbent, is now the primary treatment process for removal of residual organics from biologically treated wastewater. The ability of activated alumina... to human health if they exist in the water supply at relatively high concentrations. A wide variety of treatment processes are available to remove organic matter from wastewater. Biological treatment is the most cost effective method for removing oxygen...

Yang, Pe-Der

1982-01-01T23:59:59.000Z

305

Sampling and Analysis Plan Waste Treatment Plant Seismic Boreholes Project.  

SciTech Connect (OSTI)

This sampling and analysis plan (SAP) describes planned data collection activities for four entry boreholes through the sediment overlying the Saddle Mountains Basalt, up to three new deep rotary boreholes through the Saddle Mountains Basalt and sedimentary interbeds, and one corehole through the Saddle Mountains Basalt and sedimentary interbeds at the Waste Treatment Plant (WTP) site. The SAP will be used in concert with the quality assurance plan for the project to guide the procedure development and data collection activities needed to support borehole drilling, geophysical measurements, and sampling. This SAP identifies the American Society of Testing Materials standards, Hanford Site procedures, and other guidance to be followed for data collection activities. Revision 3 incorporates all interim change notices (ICN) that were issued to Revision 2 prior to completion of sampling and analysis activities for the WTP Seismic Boreholes Project. This revision also incorporates changes to the exact number of samples submitted for dynamic testing as directed by the U.S. Army Corps of Engineers. Revision 3 represents the final version of the SAP.

Brouns, Thomas M.

2007-07-15T23:59:59.000Z

306

California Food Processing Industry Wastewater Demonstration Project: Phase I Final Report  

E-Print Network [OSTI]

Energy Efficiency and Automated Demand Response in Wastewater Treatment Facilities in California: Phase I Report, summarizes the status and potential

Lewis, Glen

2010-01-01T23:59:59.000Z

307

Environmental Solutions, A Summary of Contributions for CY04: Battelle Contributions to the Waste Treatment Plant  

SciTech Connect (OSTI)

In support of the Waste Treatment Plant (WTP), Battelle conducted tests on mixing specific wastes within the plant, removing troublesome materials from the waste before treatment, and determining if the final waste forms met the established criteria. In addition, several Battelle experts filled full-time positions in WTP's Research and Testing and Process and Operations departments.

Beeman, Gordon H.

2005-03-08T23:59:59.000Z

308

Solid-Liquid Separation of Animal Manure and Wastewater  

E-Print Network [OSTI]

Solid-liquid separation is an alternative treatment for animal manure and process-generated wastewater. This publication explains the techniques, equipment, performance and economics of separators....

Mukhtar, Saqib; Sweeten, John M.; Auvermann, Brent W.

1999-10-19T23:59:59.000Z

309

Field Demonstration of the Performance of Wastewater Treatment Solution (WTS®) to Reduce Phosphorus and other Substances from Dairy Lagoon Effluent  

E-Print Network [OSTI]

.1 gal/100 head-day (based on 600 heads). To mimic the repeatability of lagoon treatment, two large tanks were filled with untreated flushed manure to assess the treatment effect on flushed manure from free-stall. Tank 1 (T1) was treated manually on a...

Mukthar, Saqib; Rahman, Shafiqur; Gregory, Lucas

310

03/0924 1 st INTERNATIONAL SEMINAR ON THE USE OF AQUATIC MACROPKYTES FOR WASTEWATER  

E-Print Network [OSTI]

Filters (RBF). "Rustic" and rather simple wastewater treatment systems for such small communities in rural03/0924 1 st INTERNATIONAL SEMINAR ON THE USE OF AQUATIC MACROPKYTES FOR WASTEWATER TREATMENT IN CONSTRUCTED WETLANDS ÂŁ-10 CONSTRUCTED WETLANDS FOR WASTEWATER TREATMENT : THE FRENCH EXPERIENCE Catherine

Paris-Sud XI, Université de

311

A Property-Based Optimization of Direct Recycle Networks and Wastewater  

E-Print Network [OSTI]

A Property-Based Optimization of Direct Recycle Networks and Wastewater Treatment Processes Jose a mathematical programming approach to optimize direct recycle-reuse networks together with wastewater treatment of wastewater treatment units. In addition to composition-based constraints, the formulation also incorporates

Grossmann, Ignacio E.

312

Geology of the Waste Treatment Plant Seismic Boreholes  

SciTech Connect (OSTI)

In 2006, DOE-ORP initiated the Seismic Boreholes Project (SBP) to emplace boreholes at the Waste Treatment Plant (WTP) site in order to obtain direct Vs measurements and other physical property measurements in Columbia River basalt and interbedded sediments of the Ellensburg Formation. The goal was to reduce the uncertainty in the response spectra and seismic design basis, and potentially recover design margin for the WTP. The characterization effort within the deep boreholes included 1) downhole measurements of the velocity properties of the suprabasalt, basalt, and sedimentary interbed sequences, 2) downhole measurements of the density of the subsurface basalt and sediments, and 3) confirmation of the geometry of the contact between the various basalt and interbedded sediments through examination of retrieved core from the corehole and data collected through geophysical logging of each borehole. This report describes the results of the geologic studies from three mud-rotary boreholes and one cored borehole at the WTP. All four boreholes penetrated the entire Saddle Mountains Basalt and the upper part of the Wanapum Basalt where thick sedimentary interbeds occur between the lava flows. The basalt flows penetrated in Saddle Mountains Basalt included the Umatilla Member, Esquatzel Member, Pomona Member and the Elephant Mountain Member. The underlying Priest Rapids Member of the Wanapum Basalt was also penetrated. The Ellensburg Formation sediments consist of the Mabton Interbed, the Cold Creek Interbed, the Selah Interbed and the Rattlesnake Ridge Interbed; the Byron Interbed occurs between two flows of the Priest Rapids Member. The Mabton Interbed marks the contact between the Wanapum and Saddle Mountains Basalts. The thicknesses of the basalts and interbedded sediments were within expected limits. However, a small reverse fault was found in the Pomona Member flow top. This fault has three periods of movement and less than 15 feet of repeated section. Most of the movement on the fault appears to have occurred before the youngest lava flow, the 10.5 million year old Elephant Mountain Member was emplaced above the Pomona Member.

Barnett, D. BRENT; Bjornstad, Bruce N.; Fecht, Karl R.; Lanigan, David C.; Reidel, Steve; Rust, Colleen F.

2007-02-28T23:59:59.000Z

313

Geology of the Waste Treatment Plant Seismic Boreholes  

SciTech Connect (OSTI)

In 2006, the U.S. Department of Energy initiated the Seismic Boreholes Project (SBP) to emplace boreholes at the Waste Treatment Plant (WTP) site in order to obtain direct shear wave velocity (Vs) measurements and other physical property measurements in Columbia River basalt and interbedded sediments of the Ellensburg Formation. The goal was to reduce the uncertainty in the response spectra and seismic design basis, and potentially recover design margin for the WTP. The characterization effort within the deep boreholes included 1) downhole measurements of the velocity properties of the suprabasalt, basalt, and sedimentary interbed sequences, 2) downhole measurements of the density of the subsurface basalt and sediments, and 3) geologic studies to confirm the geometry of the contact between the various basalt and interbedded sediments through examination of retrieved core from the core hole and data collected through geophysical logging of each borehole. This report describes the results of the geologic studies from three mud-rotary boreholes and one cored borehole at the WTP. All four boreholes penetrated the entire Saddle Mountains Basalt and the upper part of the Wanapum Basalt where thick sedimentary interbeds occur between the lava flows. The basalt flows penetrated in Saddle Mountains Basalt included the Umatilla Member, Esquatzel Member, Pomona Member, and the Elephant Mountain Member. The underlying Priest Rapids Member of the Wanapum Basalt also was penetrated. The Ellensburg Formation sediments consist of the Mabton Interbed, the Cold Creek Interbed, the Selah Interbed, and the Rattlesnake Ridge Interbed; the Byron Interbed occurs between two flows of the Priest Rapids Member. The Mabton Interbed marks the contact between the Wanapum and Saddle Mountains Basalts. The thicknesses of the basalts and interbedded sediments were within expected limits. However, a small reverse fault was found in the Pomona Member flow top. This fault has three periods of movement and less than 15 ft of repeated section. Most of the movement on the fault appears to have occurred before the youngest lava flow, the 10.5-million-year-old Elephant Mountain Member, was emplaced above the Pomona Member.

Barnett, D. Brent; Fecht, Karl R.; Reidel, Stephen P.; Bjornstad, Bruce N.; Lanigan, David C.; Rust, Colleen F.

2007-05-11T23:59:59.000Z

314

Site-Specific Seismic Site Response Model for the Waste Treatment Plant, Hanford, Washington  

SciTech Connect (OSTI)

This interim report documents the collection of site-specific geologic and geophysical data characterizing the Waste Treatment Plant site and the modeling of the site-specific structure response to earthquake ground motions.

Rohay, Alan C.; Reidel, Steve P.

2005-02-24T23:59:59.000Z

315

Treatability studies on different refinery wastewater samples using high-throughput microbial electrolysis cells (MECs)  

E-Print Network [OSTI]

Treatability studies on different refinery wastewater samples using high-throughput microbial, University Park, PA 16802, USA h i g h l i g h t s Refinery wastewaters were tested as fuels in MECs effective for treatment or pre-treatment of some refinery wastewaters. The best way to start up MECs

316

Analysis of Ammonia Loss Mechanisms in Microbial Fuel Cells Treating Animal Wastewater  

E-Print Network [OSTI]

ARTICLE Analysis of Ammonia Loss Mechanisms in Microbial Fuel Cells Treating Animal Wastewater Jung.interscience.wiley.com). DOI 10.1002/bit.21687 ABSTRACT: Ammonia losses during swine wastewater treatment were examined using manure; electricity; power generation Introduction Wastewater treatment using microbial fuel cells (MFCs

317

Wastewater Effluent Polishing Systems of Anaerobic Baffled Reactor Treating Black-water from Households  

E-Print Network [OSTI]

Wastewater Effluent Polishing Systems of Anaerobic Baffled Reactor Treating Black-water from of different integrated low-cost wastewater treatment systems, comprising one ABR as first treatment step filter and a vertical flow constructed wetland. A mixture of septage and domestic wastewater was used

Richner, Heinz

318

Journal of Membrane Science 257 (2005) 111119 Membrane contactor processes for wastewater reclamation in space  

E-Print Network [OSTI]

Journal of Membrane Science 257 (2005) 111­119 Membrane contactor processes for wastewater for treatment of metabolic wastewater Tzahi Y. Cath, Dean Adams, Amy E. Childress University of Nevada of an innovative dual membrane contactor process for treatment of combined hygiene and metabolic wastewater

319

Surfactants containing radioactive run-offs: Ozone treatment, influence on nuclear power plants water waste special treatment  

SciTech Connect (OSTI)

The authors discuss the problems encountered in the efficiency of radioactive waste treatment in nuclear power plants in Kursk. The ozonization of aqueous solutions of surfactants was carried out in the laboratory`s ozonization system. The surfactants which are discharged to the ion exchangers deteriorate resins, clog up the ion exchangers, and decrease filtration velocity. Therefore, this investigation focused on finding a method to increase the efficiency of this treatment process.

Prokudina, S.A.; Grachok, M.A. [Belarussian State Economic Univ., Minsk (Belarus)

1993-12-31T23:59:59.000Z

320

Waste Treatment Technology Process Development Plan For Hanford Waste Treatment Plant Low Activity Waste Recycle  

SciTech Connect (OSTI)

The purpose of this Process Development Plan is to summarize the objectives and plans for the technology development activities for an alternative path for disposition of the recycle stream that will be generated in the Hanford Waste Treatment Plant Low Activity Waste (LAW) vitrification facility (LAW Recycle). This plan covers the first phase of the development activities. The baseline plan for disposition of this stream is to recycle it to the WTP Pretreatment Facility, where it will be concentrated by evaporation and returned to the LAW vitrification facility. Because this stream contains components that are volatile at melter temperatures and are also problematic for the glass waste form, they accumulate in the Recycle stream, exacerbating their impact on the number of LAW glass containers. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and reducing the halides in the Recycle is a key component of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, this stream does not have a proven disposition path, and resolving this gap becomes vitally important. This task seeks to examine the impact of potential future disposition of this stream in the Hanford tank farms, and to develop a process that will remove radionuclides from this stream and allow its diversion to another disposition path, greatly decreasing the LAW vitrification mission duration and quantity of glass waste. The origin of this LAW Recycle stream will be from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover or precipitates of scrubbed components (e.g. carbonates). The soluble components are mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet, and will not be available until the WTP begins operation, causing uncertainty in its composition, particularly the radionuclide content. This plan will provide an estimate of the likely composition and the basis for it, assess likely treatment technologies, identify potential disposition paths, establish target treatment limits, and recommend the testing needed to show feasibility. Two primary disposition options are proposed for investigation, one is concentration for storage in the tank farms, and the other is treatment prior to disposition in the Effluent Treatment Facility. One of the radionuclides that is volatile and expected to be in high concentration in this LAW Recycle stream is Technetium-99 ({sup 99}Tc), a long-lived radionuclide with a half-life of 210,000 years. Technetium will not be removed from the aqueous waste in the Hanford Waste Treatment and Immobilization Plant (WTP), and will primarily end up immobilized in the LAW glass, which will be disposed in the Integrated Disposal Facility (IDF). Because {sup 99}Tc has a very long half-life and is highly mobile, it is the largest dose contributor to the Performance Assessment (PA) of the IDF. Other radionuclides that are also expected to be in appreciable concentration in the LAW Recycle are {sup 129}I, {sup 90}Sr, {sup 137}Cs, and {sup 241}Am. The concentrations of these radionuclides in this stream will be much lower than in the LAW, but they will still be higher than limits for some of the other disposition pathways currently available. Although the baseline process will recycle this stream to the Pretreatment Facility, if the LAW facility begins operation first, this stream will not have a disposition path internal to WTP. One potential solution is to return the stream to the tank farms where it can be evaporated in the 242-A evaporator, or perhaps deploy an auxiliary evaporator to concentrate it prior to return to the tank farms. In either case, testing is needed to evaluat

McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.

2013-08-29T23:59:59.000Z

Note: This page contains sample records for the topic "wastewater treatment plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

The application of PHREEQCi, a geochemical computer program, to aid in the management of a wastewater treatment wetland  

E-Print Network [OSTI]

-Volatile Compounds Pol chlorinated Bi hen ls 1. 5-25. 9 128-1190 ND-0. 2 ND 2. 9-5. 0 1170-1800 0. 5-3. 1 ND-0. 1 1. 0-17. 1 0. 3-1, 6 42-366 2-4 2860-6340 ND-241 ND-0. 9 ND-0. 1 0. 088-2. 155 0. 03-0. 07 37. 88-174. 84 ND ND-0. 02 ND-1. 31 ND... to Enhance Treatment Capability at the TMPA Site. . Step 1 . . Step 2. . Step 3 . . Page nl IV V I I IX 4 4 10 10 13 18 18 20 26 26 28 29 29 32 32 33 33 36 43 43 44 55 59 59 59 62 62 64 64 CONCLUSIONS . . PHREEQCI...

Mitzman, Stephanie

1999-01-01T23:59:59.000Z

322

Mutagenic potential of plants grown on a soil amended with mutagenic municipal sewage sludge  

E-Print Network [OSTI]

and industrial firms contributing to this system, The sludge from the Houston, Texas, Sims Bayou treatment plant was aerobically digested, chemically precipitated with ferric chloride (FeC13) and flash dried in a C. E. Raymond cage mill flash dryer... the edible crop by flaking off of dried sludge or washing off with precipitation and allows for plant regrowth and pathogen die off. CHEMICALS Chemicals entering a wastewater treatment plant will become constituents of sewage sludge unless volatilized...

Fiedler, Daniel Alain

1988-01-01T23:59:59.000Z

323

Wastewater Discharge Program (Maine)  

Broader source: Energy.gov [DOE]

The wastewater discharge regulations require that a license be obtained for the discharge of wastewater to a stream, river, wetland, or lake of the state, or to the ocean. Typical discharges...

324

SUSTAINABLE SEWAGE TREATMENT AND RE-USE IN DEVELOPING COUNTRIES  

E-Print Network [OSTI]

technological knowledge and empirical Know-How of wastewater treatment processes and their implementation; also

Walid Abdel-halim; Dirk Weichgrebe; K. -h. Rosenwinkel; Johan Verink

325

Chemical Dust Treatment of Cottonseed for Planting Purposes.  

E-Print Network [OSTI]

... nelilltccl Cottonseecl. Year 1930 1931 1934 ' 1935 Av. ---- 1934 1935 Av. - Fuzzy See -- Acid Delinted Se .L~,.,L.L,,,,J Delinted S W s No. plants in 50 ft. of row Acre yield of lint -# 315 197 269 -- 2 60 Untreated 46 ... 370... 366 232 285 294 Treated 100 ... 458 586 ----- 38 1 ----- 229 578 404 -- 92 300 302 231 -- Untreated ... $24 588 65 6 422 554 488 ---- ... ... ... ... t' Acre yield of M lint -# 2 ... ... ... ----- Av. Treated...

Smith, H. P. (Harris Pearson)

1936-01-01T23:59:59.000Z

326

Biomass, Leaf Area, and Resource Availability of Kudzu Dominated Plant Communities Following Herbicide Treatment  

SciTech Connect (OSTI)

Kudzu is an exotic vine that threatens the forests of the southern U.S. Five herbicides were tested with regard to their efficacy in controlling kudzu, community recover was monitored, and interactions with planted pines were studied. The sites selected were old farm sites dominated by kudzu.These were burned following herbicide treatment. The herbicides included triclopyr, clopyralid, metsulfuron, tebuthiuron, and picloram plus 2,4-D. Pine seedlings were planted the following year. Regression equations were developed for predicting biomass and leaf area. Four distinct plant communities resulted from the treatments. The untreated check continued to be kudzu dominated. Blackberry dominated the clopyradid treatment. Metsulfron, trychlopyr and picloram treated sites resulted in herbaceous dominated communities. The tebuthiuron treatment maintained all vegetation low.

L.T. Rader

2001-10-01T23:59:59.000Z

327

EECBG Success Story: Missouri Water Treatment Plant Upgraded | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct,Final9: DraftPlant,Community'IntoEnergy System |of Energy

328

Water Pinch Success Story at Solutia's Krummrich Plant  

E-Print Network [OSTI]

. The 1995 fresh water intake and wastewater effluent for the site were approximately 2400 gpm and 2000 gpm, respectively. The effluent from the plant was treated off-site by two publicly-owned treatment works (POTWs). The total annual cost to Solutia...

Kumana, J. D.

329

Land disposal of water treatment plant sludge -- A feasibility analysis  

SciTech Connect (OSTI)

In this study, the following alternative disposal methods for the Buffalo Pound Water Treatment Sludge were evaluated: landfilling, discharge into sanitary sewers, long-term lagooning, use in manufacturing, co-composting, alum recovery and land application. Land application was chosen at the best disposal alternative. Preliminary design resulted in a 1% dry alum sludge loading rate (25 tonnes/ha), requiring 35 ha over a nine-year period and a phosphorus fertilizer supplement of about 50kg/ha.

Viraraghavan, T.; Multon, L.M.; Wasylenchuk, E.J.

1998-07-01T23:59:59.000Z

330

Mobile water treatment plant special study. Uranium Mill Tailings Remedial Action Project  

SciTech Connect (OSTI)

Characterization of the level and extent of groundwater contamination in the vicinity of Title I mill sites began during the surface remedial action stage (Phase 1) of the Uranium Mill Tailings Remedial Action (UMTRA) Project. Some of the contamination in the aquifer(s) at the abandoned sites is attributable to milling activities during the years the mills were in operation. To begin implementation of Phase 11 groundwater remediation, the US Department of Energy (DOE) requested that (1) the Technical Assistance Contractor (TAC) conduct a study to provide for the design of a mobile water treatment plant to treat groundwater extracted during site characterization studies at completed Phase I UMTRA sites, and (2) the results of the TAC investigations be documented in a special study report. This special study develops the design criteria for a water treatment plant that can be readily transported from one UMTRA site to another and operated as a complete treatment system. The 1991 study provides the basis for selecting a mobile water treatment system to meet the operating requirements recommended in this special study. The scope of work includes the following: Determining contaminants, flows, and loadings. Setting effluent quality criteria. Sizing water treatment unit(s). Evaluating non-monetary aspects of alternate treatment processes. Comparing costs of alternate treatment processes. Recommending the mobile water treatment plant design criteria.

Not Available

1992-12-01T23:59:59.000Z

331

West Point Treatment Plant Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name:Perrine, Florida: EnergyPoint Treatment

332

BEHAVIOR CANOLA (BRASSICA NAPUS) FOLLOWING A SEWAGE SLUDGE TREATMENT  

E-Print Network [OSTI]

. INTRODUCTION In Tunisia, the amount of sludge produced by wastewater treatment stations is constantly waste water treatment stations, in other words, most of it is wastewater from domestic sources. The second type is obtained from the treatment of industrial wastewater or partly from industrial wastewater

Boyer, Edmond

333

Hanford Waste Treatment Plant places first complex piping module in Pretreatment Facility  

Broader source: Energy.gov [DOE]

Crews at the Hanford Waste Treatment Plant, also known as the "Vit Plant," placed a 19-ton piping module inside the Pretreatment Facility. The module was lifted over 98-foot-tall walls and lowered into a space that provided less than two inches of clearance on each side and just a few feet on each end. It was set 56 feet above the ground.

334

Gas treatment and by-products recovery of Thailand`s first coke plant  

SciTech Connect (OSTI)

Coke is needed in the blast furnace as the main fuel and chemical reactant and the main product of a coke plant. The second main product of the coke plant is coke oven gas. During treatment of the coke oven gas some coal chemicals like tar, ammonia, sulphur and benzole can be recovered as by-products. Since the market prices for these by-products are rather low and often erratic it does not in most cases justify the investment to recover these products. This is the reason why modern gas treatment plants only remove those impurities from the crude gas which must be removed for technical and environmental reasons. The cleaned gas, however, is a very valuable product as it replaces natural gas in steel work furnaces and can be used by other consumers. The surplus can be combusted in the boiler of a power plant. A good example for an optimal plant layout is the new coke oven facility of Thai Special Steel Industry (TSSI) in Rayong. The paper describes the TSSI`s coke oven gas treatment plant.

Diemer, P.E.; Seyfferth, W. [Krupp Uhde GmbH, Dortmund (Germany)

1997-12-31T23:59:59.000Z

335

Biologically Inspired Photocatalytically Active Membranes for Water Treatment  

E-Print Network [OSTI]

wastewater treatment systems include treatment of the influent by a series of stages: pretreatment, primary sedimentation, biological

Kinsinger, Nichola

2013-01-01T23:59:59.000Z

336

Detection of Wastewater Plumes from the 15 N Isotopic Composition of  

E-Print Network [OSTI]

Detection of Wastewater Plumes from the 15 N Isotopic Composition of Groundwater, Algae that a main source of nutrient loading is due to wastewater contamination of groundwater within the watershed via septic systems and wastewater treatment facilities. 5 Mya arenaria were collected at each

Vallino, Joseph J.

337

Impacts of Shale Gas Wastewater Disposal on Water Quality in Western Pennsylvania  

E-Print Network [OSTI]

Impacts of Shale Gas Wastewater Disposal on Water Quality in Western Pennsylvania Nathaniel R. In Pennsylvania, oil and gas wastewater is sometimes treated at brine treatment facilities and discharged to local bioaccumulation in localized areas of shale gas wastewater disposal. INTRODUCTION The safe disposal of large

Jackson, Robert B.

338

Design and study of a risk management criterion for an unstable anaerobic wastewater  

E-Print Network [OSTI]

Design and study of a risk management criterion for an unstable anaerobic wastewater treatment an unstable biological process used for wastewater treat- ment. This anaerobic digestion ecosystem can have popular bioprocess (Angelidaki et al., 2003) that treats wastewater and at the same time produces energy

Bernard, Olivier

339

wastewater_sink_disposal_guidance.docx Revision Date: 10/26/2012 Page 1 of 3  

E-Print Network [OSTI]

wastewater_sink_disposal_guidance.docx Revision Date: 10/26/2012 Page 1 of 3 LABORATORY & BUILDING limitations and prohibitions established by the local wastewater treatment authority, the Massachusetts Water for wastewater disposal purposes is strictly prohibited. Hazardous Wastes: Hazardous wastes are prohibited from

Heller, Eric

340

RECOMMENDED GUIDELINES FOR WASTEWATER CHARACTERIZATION  

E-Print Network [OSTI]

#12;RECOMMENDED GUIDELINES FOR WASTEWATER CHARACTERIZATION IN THE FRASER RIVER BASIN VOLUME II Ont. June 1993 Amended April 1994 #12;GUIDELINES FOR WASTEWATER CHARACTERIZATION PREFACE Ltd., Calgary, Alberta. #12;GUIDELINES FOR WASTEWATER CHARACTERIZATION EXECUTIVE SUMMARY The Fraser

Note: This page contains sample records for the topic "wastewater treatment plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Borehole Summary Report for Core Hole C4998 – Waste Treatment Plant Seismic Boreholes Project  

SciTech Connect (OSTI)

Seismic borehole C4998 was cored through the upper portion of the Columbia River Basalt Group and Ellensburg Formation to provide detailed lithologic information and intact rock samples that represent the geology at the Waste Treatment Plant. This report describes the drilling of borehole C4998 and documents the geologic data collected during the drilling of the cored portion of the borehole.

Barnett, D. BRENT; Garcia, Benjamin J.

2006-12-15T23:59:59.000Z

342

Modeling Hydrogen Generation Rates in the Hanford Waste Treatment and Immobilization Plant  

SciTech Connect (OSTI)

This presentation describes a project in which Hanford Site and Environmental Management Science Program investigators addressed issues concerning hydrogen generation rates in the Hanford waste treatment and immobilization plant. The hydrogen generation rates of radioactive wastes must be estimated to provide for safe operations. While an existing model satisfactorily predicts rates for quiescent wastes in Hanford underground storage tanks, pretreatment operations will alter the conditions and chemical composition of these wastes. Review of the treatment process flowsheet identified specific issues requiring study to ascertain whether the model would provide conservative values for waste streams in the plant. These include effects of adding hydroxide ion, alpha radiolysis, saturation with air (oxygen) from pulse-jet mixing, treatment with potassium permanganate, organic compounds from degraded ion exchange resins and addition of glass-former chemicals. The effects were systematically investigated through literature review, technical analyses and experimental work.

Camaioni, Donald M.; Bryan, Samuel A.; Hallen, Richard T.; Sherwood, David J.; Stock, Leon M.

2004-03-29T23:59:59.000Z

343

Characterisation and Evaluation of Wastes for Treatment in the Batch Pyrolysis Plant in Studsvik, Sweden - 13586  

SciTech Connect (OSTI)

The new batch pyrolysis plant in Studsvik is built primarily for treatment of uranium containing dry active waste, 'DAW'. Several other waste types have been identified that are considered or assumed suitable for treatment in the pyrolysis plant because of the possibility to carefully control the atmosphere and temperature of the thermal treatment. These waste types must be characterised and an evaluation must be made with a BAT perspective. Studsvik have performed or plan to perform lab scale pyrolysis tests on a number of different waste types. These include: - Pyrophoric materials (uranium shavings), - Uranium chemicals that must be oxidised prior to being deposited in repository, - Sludges and oil soaks (this category includes NORM-materials), - Ion exchange resins (both 'free' and solidified/stabilised), - Bitumen solidified waste. Methodology and assessment criteria for various waste types, together with results obtained for the lab scale tests that have been performed, are described. (authors)

Lindberg, Maria; Oesterberg, Carl; Vernersson, Thomas [Studsvik Nuclear AB, Studsvik Nuclear AB, 611 82 Nykoeping (Sweden)] [Studsvik Nuclear AB, Studsvik Nuclear AB, 611 82 Nykoeping (Sweden)

2013-07-01T23:59:59.000Z

344

Presence and Distribution of Organic Wastewater Compounds in Wastewater,  

E-Print Network [OSTI]

Presence and Distribution of Organic Wastewater Compounds in Wastewater, Surface, Ground.W., Meyer, M.T., and Zaugg, S.D., 2004, Presence and distri- bution of organic wastewater compounds in wastewater, surface, ground, and drinking waters, Minnesota, 2000-02: U.S. Geological Survey Scientific

345

Effects of different site preparation treatments on species diversity, composition and plant traits in Pinus halepensis woodlands.  

E-Print Network [OSTI]

drought, its edaphic plasticity, and its ability to colonize land after agricultural abandonment1 Effects of different site preparation treatments on species diversity, composition and plant, yet studies on the effects of silvicultural treatments on plant diversity are scarce. Our experiment

Paris-Sud XI, Université de

346

E-Print Network 3.0 - aerobic wastewater biofilms Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Membrane... biofilm reactor Introduction One of the major challenges in wastewater treatment is achieving effective... et al. 2004). Nitrifying bacteria grow in the deep,...

347

SLUDGE TREATMENT PROJECT PHASE 1 SLUDGE STORAGE OPTIONS ASSESSMENT OF T PLANT VERSUS ALTERNATE STORAGE FACILITY  

SciTech Connect (OSTI)

The CH2M HILL Plateau Remediation Company (CHPRC) has recommended to the U.S. Department of Energy (DOE) a two phase approach for removal and storage (Phase 1) and treatment and packaging for offsite shipment (Phase 2) of the sludge currently stored within the 105-K West Basin. This two phased strategy enables early removal of sludge from the 105-K West Basin by 2015, allowing remediation of historical unplanned releases of waste and closure of the 100-K Area. In Phase 1, the sludge currently stored in the Engineered Containers and Settler Tanks within the 105-K West Basin will be transferred into sludge transport and storage containers (STSCs). The STSCs will be transported to an interim storage facility. In Phase 2, sludge will be processed (treated) to meet shipping and disposal requirements and the sludge will be packaged for final disposal at a geologic repository. The purpose of this study is to evaluate two alternatives for interim Phase 1 storage of K Basin sludge. The cost, schedule, and risks for sludge storage at a newly-constructed Alternate Storage Facility (ASF) are compared to those at T Plant, which has been used previously for sludge storage. Based on the results of the assessment, T Plant is recommended for Phase 1 interim storage of sludge. Key elements that support this recommendation are the following: (1) T Plant has a proven process for storing sludge; (2) T Plant storage can be implemented at a lower incremental cost than the ASF; and (3) T Plant storage has a more favorable schedule profile, which provides more float, than the ASF. Underpinning the recommendation of T Plant for sludge storage is the assumption that T Plant has a durable, extended mission independent of the K Basin sludge interim storage mission. If this assumption cannot be validated and the operating costs of T Plant are borne by the Sludge Treatment Project, the conclusions and recommendations of this study would change. The following decision-making strategy, which is dependent on the confidence that DOE has in the long term mission for T Plant, is proposed: (1) If the confidence level in a durable, extended T Plant mission independent of sludge storage is high, then the Sludge Treatment Project (STP) would continue to implement the path forward previously described in the Alternatives Report (HNF-39744). Risks to the sludge project can be minimized through the establishment of an Interface Control Document (ICD) defining agreed upon responsibilities for both the STP and T Plant Operations regarding the transfer and storage of sludge and ensuring that the T Plant upgrade and operational schedule is well integrated with the sludge storage activities. (2) If the confidence level in a durable, extended T Plant mission independent of sludge storage is uncertain, then the ASF conceptual design should be pursued on a parallel path with preparation of T Plant for sludge storage until those uncertainties are resolved. (3) Finally, if the confidence level in a durable, extended T Plant mission independent of sludge storage is low, then the ASF design should be selected to provide independence from the T Plant mission risk.

RUTHERFORD WW; GEUTHER WJ; STRANKMAN MR; CONRAD EA; RHOADARMER DD; BLACK DM; POTTMEYER JA

2009-04-29T23:59:59.000Z

348

Membrane Based intensification of ammonia removal from wastewater  

E-Print Network [OSTI]

The aim of this research was to study a novel membrane based oxygen intensification system to enhance a biological wastewater treatment process for ammonia removal. Specifically, this work is concerned with the biological nitrification process which...

Almutairi, Azel

2011-12-31T23:59:59.000Z

349

Food service establishment wastewater characterization and management practice evaluation  

E-Print Network [OSTI]

Food service establishments that use onsite wastewater treatment systems are experiencing hydraulic and organic overloading of pretreatment systems and/or drain fields. Design guidelines for these systems are typically provided in State regulations...

Garza, Octavio Armando

2006-04-12T23:59:59.000Z

350

Project C-018H, 242-A Evaporator/PUREX Plant Process Condensate Treatment Facility, functional design criteria. Revision 3  

SciTech Connect (OSTI)

This document provides the Functional Design Criteria (FDC) for Project C-018H, the 242-A Evaporator and Plutonium-Uranium Extraction (PUREX) Plant Condensate Treatment Facility (Also referred to as the 200 Area Effluent Treatment Facility [ETF]). The project will provide the facilities to treat and dispose of the 242-A Evaporator process condensate (PC), the Plutonium-Uranium Extraction (PUREX) Plant process condensate (PDD), and the PUREX Plant ammonia scrubber distillate (ASD).

Sullivan, N.

1995-05-02T23:59:59.000Z

351

Small Community Wastewater Cluster Systems  

E-Print Network [OSTI]

Small Community Wastewater Cluster Systems Don Jones, Jacqui Bauer, Richard Wise, and Alan Dunn* ID-265 #12;Small Community Wastewater Cluster Systems ID-265 2 It is the policy of the Purdue University Community Wastewater Cluster Systems ID-265 3 Small Community Wastewater Cluster Systems Table of Contents

Holland, Jeffrey

352

Advanced oxidation treatment of high strength bilge and aqueous petroleum waste  

SciTech Connect (OSTI)

The Craney Island Fuel Depot is the largest US Navy fuel terminal in the continental US. Services provided at this facility include fuel storage (current capacity is 1.5 million barrels), fuel reclamation (recovery of oil from oily wastewater), and physical/chemical treatment for the removal of residual oil from bilge water and from aqueous petroleum waste. Current wastewater treatment consists of storage/equalization, oil/water separation, dissolved air flotation, sand filtration, and carbon adsorption. The Navy initiated this study to comply with the State requirement that its existing physical/chemical oily wastewater treatment plant be upgraded to remove soluble organics and produce an effluent which would meet acute toxicity limits. The pilot tests conducted during the study included several variations of chemical and biological wastewater treatment processes. While biological treatment alone was capable of meeting the proposed BOD limit of 26 mg/L, the study showed that the effluent of the biological process contained a high concentration of refractory (nonbiodegradable) organics and could not consistently meet the proposed limits for COD and TOC when treating high-strength wastewater. Additional tests were conducted with advanced oxidation processes (AOPs). AOPs were evaluated for use as independent treatment processes as well as polishing processes following biological treatment. The AOP processes used for this study included combinations of ozone (O{sub 3}) ultraviolet radiation (UV), and hydrogen peroxide (H{sub 2}O{sub 2}).

Hulsey, R.A.; Kobylinski, E.A. [Black and Veatch, Kansas City, MO (United States); Leach, B. [EEC, Inc., Virginia Beach, VA (United States); Pearce, L. [TRITECH, Greensboro, NC (United States)

1996-11-01T23:59:59.000Z

353

IMPACT OF HEAVY METALS IN SEWAGE SLUDGE ON SOIL AND PLANTS (COLZA and WHEAT)  

E-Print Network [OSTI]

IMPACT OF HEAVY METALS IN SEWAGE SLUDGE ON SOIL AND PLANTS (COLZA and WHEAT) Najla LASSOUED1@emse.fr Abstract We are testing the impact of heavy metals in sludge from urban and industrial wastewater treatment> Cu> Ni> Co> Cd The contents of heavy metals in the sludge is made very high and exceed European

Paris-Sud XI, Université de

354

Carbon Capture and Water Emissions Treatment System (CCWESTRS) at Fossil-Fueled Electric Generating Plants  

SciTech Connect (OSTI)

The Tennessee Valley Authority (TVA), the Electric Power Research Institute (EPRI), and the Department of Energy-National Energy Technologies Laboratory (DOE-NETL) are evaluating and demonstrating integration of terrestrial carbon sequestration techniques at a coal-fired electric power plant through the use of Flue Gas Desulfurization (FGD) system gypsum as a soil amendment and mulch, and coal fly ash pond process water for periodic irrigation. From January to March 2002, the Project Team initiated the construction of a 40 ha Carbon Capture and Water Emissions Treatment System (CCWESTRS) near TVA's Paradise Fossil Plant on marginally reclaimed surface coal mine lands in Kentucky. The CCWESTRS is growing commercial grade trees and cover crops and is expected to sequester 1.5-2.0 MT/ha carbon per year over a 20-year period. The concept could be used to meet a portion of the timber industry's needs while simultaneously sequestering carbon in lands which would otherwise remain non-productive. The CCWESTRS includes a constructed wetland to enhance the ability to sequester carbon and to remove any nutrients and metals present in the coal fly ash process water runoff. The CCWESTRS project is a cooperative effort between TVA, EPRI, and DOE-NETL, with a total budget of $1,574,000. The proposed demonstration project began in October 2000 and has continued through December 2005. Additional funding is being sought in order to extend the project. The primary goal of the project is to determine if integrating power plant processes with carbon sequestration techniques will enhance carbon sequestration cost-effectively. This goal is consistent with DOE objectives to provide economically competitive and environmentally safe options to offset projected growth in U.S. baseline emissions of greenhouse gases after 2010, achieve the long-term goal of $10/ton of avoided net costs for carbon sequestration, and provide half of the required reductions in global greenhouse gases by 2025. Other potential benefits of the demonstration include developing a passive technology for water treatment for trace metal and nutrient release reductions, using power plant by-products to improve coal mine land reclamation and carbon sequestration, developing wildlife habitat and green-space around production facilities, generating Total Maximum Daily Load (TMDL) credits for the use of process water, and producing wood products for use by the lumber and pulp and paper industry. Project activities conducted during the five year project period include: Assessing tree cultivation and other techniques used to sequester carbon; Project site assessment; Greenhouse studies to determine optimum plant species and by-product application; Designing, constructing, operating, monitoring, and evaluating the CCWESTRS system; and Reporting (ongoing). The ability of the system to sequester carbon will be the primary measure of effectiveness, measured by accessing survival and growth response of plants within the CCWESTRS. In addition, costs associated with design, construction, and monitoring will be evaluated and compared to projected benefits of other carbon sequestration technologies. The test plan involves the application of three levels each of two types of power plant by-products--three levels of FGD gypsum mulch, and three levels of ash pond irrigation water. This design produces nine treatment levels which are being tested with two species of hardwood trees (sweet gum and sycamore). The project is examining the effectiveness of applications of 0, 8-cm, and 15-cm thick gypsum mulch layers and 0, 13 cm, and 25 cm of coal fly ash water for irrigation. Each treatment combination is being replicated three times, resulting in a total of 54 treatment plots (3 FGD gypsum levels X 3 irrigation water levels x 2 tree species x 3 replicates). Survival and growth response of plant species in terms of sequestering carbon in plant material and soil will be the primary measure of effectiveness of each treatment. Additionally, the ability of the site soils and unsaturated zone subsurface m

P. Alan Mays; Bert R. Bock; Gregory A. Brodie; L. Suzanne Fisher; J. Devereux Joslin; Donald L. Kachelman; Jimmy J. Maddox; N. S. Nicholas; Larry E. Shelton; Nick Taylor; Mark H. Wolfe; Dennis H. Yankee; John Goodrich-Mahoney

2005-08-30T23:59:59.000Z

355

Wastewater Reclamation/Wetlands  

E-Print Network [OSTI]

, Towns, and Entities NTMWD Water Supply Sources History of NTMWD ? 1956 - First Delivery of Treated Water ? 1970s - Expanded to Wastewater Service ? 1980s - Expanded to Solid Waste Service WATER PLANNING Regional Water Planning...

Hickey, D.

2011-01-01T23:59:59.000Z

356

Designing Sustainable Wastewater Systems: Generating Design Alternatives Chamberlain, B., Zarei, A., Taheri, H., Poole, D., Carenini, G. and berg, G.  

E-Print Network [OSTI]

alternative wastewater treatment systems, and 3) a preference-elicitation method for guiding decision of a rural wastewater system for use in developing regions. Figure 1 depicts a simplified version of oneDesigning Sustainable Wastewater Systems: Generating Design Alternatives Chamberlain, B., Zarei, A

Carenini, Giuseppe

357

Performances evaluation of phosphorus removal by apatite in constructed wetlands treating domestic wastewater: Column and pilot experiments  

E-Print Network [OSTI]

wastewater: Column and pilot experiments Najatte Harouiyaa , Stéphanie Prost-Bouclea , Catherine Morlayb.MARTIN@suez-env.com) Abstract In constructed wetlands (CWs) treating domestic wastewater, good treatment performances to improve P removal from wastewater with a low specific filter surface per people equivalent (p. e

Paris-Sud XI, Université de

358

Wastewater heat recovery apparatus  

DOE Patents [OSTI]

A heat recovery system is described with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature. 6 figs.

Kronberg, J.W.

1992-09-01T23:59:59.000Z

359

Wastewater heat recovery apparatus  

DOE Patents [OSTI]

A heat recovery system with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature.

Kronberg, James W. (108 Independent Blvd., Aiken, SC 29801)

1992-01-01T23:59:59.000Z

360

Economic analysis of municipal wastewater utilization for thermoelectric power production  

SciTech Connect (OSTI)

The thermoelectric power industry in the U.S. uses a large amount of freshwater. The large water demand is increasingly a problem, especially for new power plant development, as availability of freshwater for new uses diminishes in the United States. Reusing non-traditional water sources, such as treated municipal wastewater, provides one option to mitigate freshwater usage in the thermoelectric power industry. The amount of freshwater withdrawal that can be displaced with non-traditional water sources at a particular location requires evaluation of the water management and treatment requirements, considering the quality and abundance of the non-traditional water sources. This paper presents the development of an integrated costing model to assess the impact of degraded water treatment, as well as the implications of increased tube scaling in the main condenser. The model developed herein is used to perform case studies of various treatment, condenser cleaning and condenser configurations to provide insight into the ramifications of degraded water use in the cooling loops of thermoelectric power plants. Further, this paper lays the groundwork for the integration of relationships between degraded water quality, scaling characteristics and volatile emission within a recirculating cooling loop model.

Safari, I.; Walker, M.; Abbasian, J.; Arastoopour, H.; Hsieh, M-K.; Theregowda, R.; Dzombak, D.; Miller, D.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wastewater treatment plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

16 IDA JournAl | Fourth QuArter 2010 www.IDADesAl.org Treatment Innovations  

E-Print Network [OSTI]

to overcoming the osmotic pressure of seawater, which also limits maximum system recovery. There are only a few the SWRO feed stream, thereby reducing the required ap- plied pressure and potentially increasing recovery solution and with secondary and tertiary effluent from a domestic wastewater treatment plant as feed

362

Coke oven gas treatment and by-product plant of Magnitogorsk Integrated Iron and Steel Works  

SciTech Connect (OSTI)

Magnitogorsk Integrated Iron and Steel Works, Russia, decided to erect a new coke oven gas treatment and by-product plant to replace the existing obsolete units and to improve the environmental conditions of the area. The paper deals with the technological concept and the design requirements. Commissioning is scheduled at the beginning of 1996. The paper describes H{sub 2}S and NH{sub 3} removal, sulfur recovery and ammonia destruction, primary gas cooling and electrostatic tar precipitation, and the distributed control system that will be installed.

Egorov, V.N.; Anikin, G.J. [Magnitogorsk Integrated Iron and Steel Works, (Russian Federation); Gross, M. [Krupp Koppers GmbH, Essen (Germany)

1995-12-01T23:59:59.000Z

363

Borehole Summary Report for Waste Treatment Plant Seismic Borehole C4996  

SciTech Connect (OSTI)

This report presents the field-generated borehole log, lithologic summary, and the record of samples collected during the recent drilling and sampling of the basalt interval of borehole C4996 at the Waste Treatment Plant (WTP) on the Hanford Site. Borehole C4996 was one of four exploratory borings, one core hole and three boreholes, drilled to investigate and acquire detailed stratigraphic and down-hole seismic data. This data will be used to define potential seismic impacts and refine design specifications for the Hanford Site WTP.

Adams , S. C.; Ahlquist, Stephen T.; Fetters, Jeffree R.; Garcia, Ben; Rust, Colleen F.

2007-01-28T23:59:59.000Z

364

The effect of mean cell residence time on the adsorbability of dissolved organic compounds found in petrochemical wastewaters  

E-Print Network [OSTI]

, each with a different mean cell residence time, biologically treated the waste- water. Follow1ng biolog1cal treatment, the wastewater was subjected to activated carbon adsorption treatment. The Freundlich isotherm, non-adsorbable organic compound... residence time on adsorbability is the same for petrochemical wastewater as it is for municipal wastewater. The purpose of this thesis is to determine if the mean cell residence time in a biological treatment process can af'feet the ad- sorbability...

Johnson, Timothy Loring

1979-01-01T23:59:59.000Z

365

Doctoral Defense "Sustainable Wastewater Management  

E-Print Network [OSTI]

Doctoral Defense "Sustainable Wastewater Management: Modeling and Decision Strategies for Unused Medications and Wastewater Solids" Sherri Cook Date: May 22, 2014 Time: 11:00 AM Location: 2355 GGB Chair to help decision-makers evaluate new practices for sustainable wastewater management. To this end

Kamat, Vineet R.

366

Cesium Removal at Fukushima Nuclear Plant - 13215  

SciTech Connect (OSTI)

The Great East Japan Earthquake that took place on March 11, 2011 created a number of technical challenges at the Fukushima Daiichi Nuclear Plant. One of the primary challenges involved the treatment of highly contaminated radioactive wastewater. Avantech Inc. developed a unique patent pending treatment system that addressed the numerous technical issues in an efficient and safe manner. Our paper will address the development of the process from concept through detailed design, identify the lessons learned, and provide the updated results of the project. Specific design and operational parameters/benefits discussed in the paper include: - Selection of equipment to address radionuclide issues; - Unique method of solving the additional technical issues associated with Hydrogen Generation and Residual Heat; - Operational results, including chemistry, offsite discharges and waste generation. Results show that the customized process has enabled the utility to recycle the wastewater for cooling and reuse. This technology had a direct benefit to nuclear facilities worldwide. (authors)

Braun, James L.; Barker, Tracy A. [Avantech Incorporated, 95A Sunbelt Blvd Columbia, SC 29203 (United States)] [Avantech Incorporated, 95A Sunbelt Blvd Columbia, SC 29203 (United States)

2013-07-01T23:59:59.000Z

367

Cs-137 in the Savannah River and the Beaufort-Jasper and Port Wentworth water-treatment plants  

SciTech Connect (OSTI)

Cesium-137 concentration measurements made in 1965 are reported for the Savannah River above and below the Savannah River Plant (SRP) and for the Beaufort-Jasper and Port Wentworth water treatment plants down river. These concentrations, measured when four SRP reactors (C, K, L, and P) were operating, were used to estimate Cs-137 reduction ratios for transport in the Savannah River and across each water treatment plant. In 1965 there was a 48% reduction in the Cs-137 concentration in the Savannah River between Highway 301 and the water treatment plant inlet points. Measured Cs-137 values in the finished water from Port Wentworth and the Beaufort-Jasper water treatment plants showed an 80% and 98% reduction in concentration level, respectively, when compared to Cs-137 concentration at Highway 301. The lower Cs-137 concentration (0.04 pCi/l) in the Beaufort-Jasper finished water is attributed to dilution in the canal from inflow of surface water (40%) and sediment cleanup processes that take place in the open portions of the canal (about 17 to 18 miles). Using the 1965 data, maximum Cs-137 concentrations expected in finished water in the Beaufort-Jasper and Port Wentworth water treatment plants following L-Reactor startup were recalculated. The recalculated values are 0.01 and 0.09 pCi/l for Beaufort-Jasper and Port Wentworth, respectively, compared to the 1.05 pCi/l value in the Environmental Assessment.

Hayes, D.W.; Boni, A.L.

1983-01-10T23:59:59.000Z

368

Waste Treatment Plant Support Program: Summaries of Reports Produced During Fiscal Years 1999-2010  

SciTech Connect (OSTI)

The Waste Treatment Plant (WTP) being built on the U.S. Department of Energy (DOE) Hanford Site will be the largest chemical processing plant in the United States. Bechtel National Inc. (BNI) is the designer and constructor for the WTP. The Pacific Northwest National Laboratory (PNNL) has provided significant research and testing support to the WTP. This report provides a summary of reports developed initially under PNNL’s “1831” use agreement and later PNNL’s “1830” prime contract with DOE in support of the WTP. In March 2001, PNNL under its “1831” use agreement entered into a contract with BNI to support their research and testing activities. However, PNNL support to the WTP predates BNI involvement. Prior to March 2001, PNNL supported British Nuclear Fuels Ltd. in its role as overall designer and constructor. In February 2007, execution of PNNL’s support to the WTP was moved under its “1830” prime contract with DOE. Documents numbered “PNWD-XXXX” were issued under PNNL’s “1831” use agreement. Documents numbered “PNNL-XXXX” were issued under PNNL’s “1830” prime contract with DOE. The documents are sorted by fiscal year and categorized as follows: ? Characterization ? HLW (High Level Waste) ? Material Characterization ? Pretreatment ? Simulant Development ? Vitrification ? Waste Form Qualification. This report is intended to provide a compendium of reports issued by PNWD/PNNL in support of the Waste Treatment Plant. Copies of all reports can be obtained by clicking on http://www.pnl.gov/rpp-wtp/ and downloading the .pdf file(s) to your computer.

Beeman, Gordon H.

2010-08-12T23:59:59.000Z

369

Storing carbon dioxide in saline formations : analyzing extracted water treatment and use for power plant cooling.  

SciTech Connect (OSTI)

In an effort to address the potential to scale up of carbon dioxide (CO{sub 2}) capture and sequestration in the United States saline formations, an assessment model is being developed using a national database and modeling tool. This tool builds upon the existing NatCarb database as well as supplemental geological information to address scale up potential for carbon dioxide storage within these formations. The focus of the assessment model is to specifically address the question, 'Where are opportunities to couple CO{sub 2} storage and extracted water use for existing and expanding power plants, and what are the economic impacts of these systems relative to traditional power systems?' Initial findings indicate that approximately less than 20% of all the existing complete saline formation well data points meet the working criteria for combined CO{sub 2} storage and extracted water treatment systems. The initial results of the analysis indicate that less than 20% of all the existing complete saline formation well data may meet the working depth, salinity and formation intersecting criteria. These results were taken from examining updated NatCarb data. This finding, while just an initial result, suggests that the combined use of saline formations for CO{sub 2} storage and extracted water use may be limited by the selection criteria chosen. A second preliminary finding of the analysis suggests that some of the necessary data required for this analysis is not present in all of the NatCarb records. This type of analysis represents the beginning of the larger, in depth study for all existing coal and natural gas power plants and saline formations in the U.S. for the purpose of potential CO{sub 2} storage and water reuse for supplemental cooling. Additionally, this allows for potential policy insight when understanding the difficult nature of combined potential institutional (regulatory) and physical (engineered geological sequestration and extracted water system) constraints across the United States. Finally, a representative scenario for a 1,800 MW subcritical coal fired power plant (amongst other types including supercritical coal, integrated gasification combined cycle, natural gas turbine and natural gas combined cycle) can look to existing and new carbon capture, transportation, compression and sequestration technologies along with a suite of extracting and treating technologies for water to assess the system's overall physical and economic viability. Thus, this particular plant, with 90% capture, will reduce the net emissions of CO{sub 2} (original less the amount of energy and hence CO{sub 2} emissions required to power the carbon capture water treatment systems) less than 90%, and its water demands will increase by approximately 50%. These systems may increase the plant's LCOE by approximately 50% or more. This representative example suggests that scaling up these CO{sub 2} capture and sequestration technologies to many plants throughout the country could increase the water demands substantially at the regional, and possibly national level. These scenarios for all power plants and saline formations throughout U.S. can incorporate new information as it becomes available for potential new plant build out planning.

Dwyer, Brian P.; Heath, Jason E.; Borns, David James; Dewers, Thomas A.; Kobos, Peter Holmes; Roach, Jesse D.; McNemar, Andrea; Krumhansl, James Lee; Klise, Geoffrey T.

2010-10-01T23:59:59.000Z

370

Uniformity of wastewater dispersal using subsurface drip emitters  

E-Print Network [OSTI]

An on-site wastewater treatment project site with two separate drip fields produced data on emitter flow rates and uniformity after 6 years of operation. The site served a two-bedroom residence in Weslaco, Texas, with treatment through a septic...

Persyn, Russell Alan

2000-01-01T23:59:59.000Z

371

Hanford ETR- Tank Waste Treatment and Immobilization Plant- Hanford Tank Waste Treatment and Immobilization Plant Technical Review- Estimate at Completion (Cost) Report  

Broader source: Energy.gov [DOE]

This is a comprehensive review ofthe Hanford WTP estimate at completion - assessing the project scope, contract requirements, management execution plant, schedule, cost estimates, and risks.

372

Borehole Summary Report for Waste Treatment Plant Seismic Borehole C4993  

SciTech Connect (OSTI)

A core hole (C4998) and three boreholes (C4993, C4996, and C4997) were drilled to acquire stratigraphic and downhole seismic data to model potential seismic impacts and to refine design specifications and seismic criteria for the Waste Treatment Plant (WTP) under construction on the Hanford Site. Borehole C4993 was completed through the Saddle Mountains Basalt, the upper portion of the Wanapum Basalt, and associated sedimentary interbeds, to provide a continuous record of the rock penetrated by all four holes and to provide access to the subsurface for geophysical measure¬ment. Presented and compiled in this report are field-generated records for the deep mud rotary borehole C4993 at the WTP site. Material for C4993 includes borehole logs, lithologic summary, and record of rock chip samples collected during drilling through the months of August through early October. The borehole summary report also includes documentation of the mud rotary drilling, borehole logging, and sample collection.

Rust, Colleen F.; Barnett, D. BRENT; Bowles, Nathan A.; Horner, Jake A.

2007-02-28T23:59:59.000Z

373

EXPERIMENTAL PLANTS FOR VERY SMALL COMMUNITIES : CHOICE AND DESIGN CRITERIA FOR FIVE DIFFERENT PROCESSES  

E-Print Network [OSTI]

treatment ; INTRODUCTION For a long time, the CEMAGREF has taken a great interest wastewater treatment treatment series for very small communities (about 100 p.e.) are : - seepage - wastewater stabilization, published in "2nd international specialized conference on design and operation of small wastewater treatment

Boyer, Edmond

374

One System Integrated Project Team Progress in Coordinating Hanford Tank Farms and the Waste Treatment Plant  

SciTech Connect (OSTI)

The One System Integrated Project Team (IPT) was formed at the Hanford Site in late 2011 as a way to improve coordination and itegration between the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and the Tank Operations Contractor (TOC) on interfaces between the two projects, and to eliminate duplication and exploit opportunities for synergy. The IPT is composed of jointly staffed groups that work on technical issues of mutal interest, front-end design and project definition, nuclear safety, plant engineering system integration, commissioning, planning and scheduling, and environmental, safety, health and quality (ESH&Q) areas. In the past year important progress has been made in a number of areas as the organization has matured and additional opportunities have been identified. Areas covered in this paper include: Support for development of the Office of Envirnmental Management (EM) framework document to progress the Office of River Protection's (ORP) River Protection Project (RPP) mission; Stewardship of the RPP flowsheet; Collaboration with Savannah River Site (SRS), Savannah River National Laboratory (SRNL), and Pacific Northwest National Laboratory (PNNL); Operations programs integration; and, Further development of the waste acceptance criteria.

Skwarek, Raymond J. [Washington River Protection Systems, Richland, WA (United States); Harp, Ben J. [USDOE Office of River Protection, Richland, WA (United States); Duncan, Garth M. [Bechtel National, Inc. (United States)

2013-12-18T23:59:59.000Z

375

Purdue AgronomyPurdue AgronomyCrop, Soil, and EnvironmEntal SCiEnCES Wastewater Biological Oxygen Demand in Septic Systems  

E-Print Network [OSTI]

, commonly called a biomat. This biomat is where the bulk of biological wastewater treatment occursPurdue AgronomyPurdue AgronomyCrop, Soil, and EnvironmEntal SCiEnCES Wastewater Biological Oxygen to surface or groundwater it can result in low dissolved oxygen #12; Wastewater Biological Oxygen Demand

Holland, Jeffrey

376

SOME TCD LICENSEES 2011-12 27. Waste-Water Distribution Device  

E-Print Network [OSTI]

Development Stage: Licensed Company Contact: Molloy Precast In rural areas wastewater from houses is treatedSOME TCD LICENSEES 2011-12 27. Waste-Water Distribution Device Researcher: Laurence Gill and disposed on-site through a process of septic tank treatment followed by discharge to the subsoil. An even

O'Mahony, Donal E.

377

ORIGINAL RESEARCH PAPER Removal of selenite from wastewater using microbial fuel  

E-Print Network [OSTI]

generation Á Microbial fuel cell Á Selenium removal Á Wastewater treatment Introduction Selenium (SeORIGINAL RESEARCH PAPER Removal of selenite from wastewater using microbial fuel cells Tunc Catal Ć; Lenz T. Catal Á H. Liu (&) Department of Biological and Ecological Engineering, Oregon State University

Tullos, Desiree

378

Hanford Tank Waste Treatment and Immobilization Plant (WTP) Waste Feed Qualification Program Development Approach - 13114  

SciTech Connect (OSTI)

The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is a nuclear waste treatment facility being designed and constructed for the U.S. Department of Energy by Bechtel National, Inc. and subcontractor URS Corporation (under contract DE-AC27-01RV14136 [1]) to process and vitrify radioactive waste that is currently stored in underground tanks at the Hanford Site. A wide range of planning is in progress to prepare for safe start-up, commissioning, and operation. The waste feed qualification program is being developed to protect the WTP design, safety basis, and technical basis by assuring acceptance requirements can be met before the transfer of waste. The WTP Project has partnered with Savannah River National Laboratory to develop the waste feed qualification program. The results of waste feed qualification activities will be implemented using a batch processing methodology, and will establish an acceptable range of operator controllable parameters needed to treat the staged waste. Waste feed qualification program development is being implemented in three separate phases. Phase 1 required identification of analytical methods and gaps. This activity has been completed, and provides the foundation for a technically defensible approach for waste feed qualification. Phase 2 of the program development is in progress. The activities in this phase include the closure of analytical methodology gaps identified during Phase 1, design and fabrication of laboratory-scale test apparatus, and determination of the waste feed qualification sample volume. Phase 3 will demonstrate waste feed qualification testing in support of Cold Commissioning. (authors)

Markillie, Jeffrey R.; Arakali, Aruna V.; Benson, Peter A.; Halverson, Thomas G. [Hanford Tank Waste Treatment and Immobilization Plant Project, Richland, WA 99354 (United States)] [Hanford Tank Waste Treatment and Immobilization Plant Project, Richland, WA 99354 (United States); Adamson, Duane J.; Herman, Connie C.; Peeler, David K. [Savannah River National Laboratory, Aiken, SC 29808 (United States)] [Savannah River National Laboratory, Aiken, SC 29808 (United States)

2013-07-01T23:59:59.000Z

379

Recent Improvements In Interface Management For Hanfords Waste Treatment And Immobilization Plant - 13263  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE), Office of River Protection (ORP) is responsible for management and completion of the River Protection Project (RPP) mission, which comprises both the Hanford Site tank farms operations and the Waste Treatment and Immobilization Plant (WTP). The RPP mission is to store, retrieve and treat Hanford's tank waste; store and dispose of treated wastes; and close the tank farm waste management areas and treatment facilities by 2047. The WTP is currently being designed and constructed by Bechtel National Inc. (BNI) for DOE-ORP. BNI relies on a number oftechnical services from other Hanford contractors for WTP's construction and commissioning. These same services will be required of the future WTP operations contractor. The WTP interface management process has recently been improved through changes in organization and technical issue management documented in an Interface Management Plan. Ten of the thirteen active WTP Interface Control Documents (ICDs) have been revised in 2012 using the improved process with the remaining three in progress. The value of the process improvements is reflected by the ability to issue these documents on schedule.

Arm, Stuart T. [Washington River Protection Solutions, Richland, WA (United States); Pell, Michael J. [Bechtel National, Inc., Richland, WA (United States); Van Meighem, Jeffery S. [Washington River Protection Solutions, Richland, WA (United States); Duncan, Garth M. [Bechtel National, Inc., Richland, WA (United States); Harrington, Christopher C. [Department of Energy, Office of River Protection, Richland, Washington (United States)

2012-11-20T23:59:59.000Z

380

Integrating farming and wastewater management.  

E-Print Network [OSTI]

??Source separating wastewater systems are often motivated by their integration with farming. It is thus important to scrutinise the critical factors associated with such integration.… (more)

Tidĺker, Pernilla

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wastewater treatment plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Recent Improvements in Interface Management for Hanford's Waste Treatment and Immobilization Plant - 13263  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE), Office of River Protection (ORP) is responsible for management and completion of the River Protection Project (RPP) mission, which includes the Hanford Site tank farms operations and the Waste Treatment and Immobilization Plant (WTP). The RPP mission is to store, retrieve and treat Hanford's tank waste; store and dispose of treated wastes; and close the tank farm waste management areas and treatment facilities by 2047. The WTP is currently being designed and constructed by Bechtel National Inc. (BNI) for DOE-ORP. BNI relies on a number of technical services from other Hanford contractors for WTP's construction and commissioning. These same services will be required of the future WTP operations contractor. Partly in response to a DNFSB recommendation, the WTP interface management process managing these technical services has recently been improved through changes in organization and issue management. The changes are documented in an Interface Management Plan. The organizational improvement is embodied in the One System Integrated Project Team that was formed by integrating WTP and tank farms staff representing interfacing functional areas into a single organization. A number of improvements were made to the issue management process but most notable was the formal appointment of technical, regulatory and safety subject matter experts to ensure accurate identification of issues and open items. Ten of the thirteen active WTP Interface Control Documents have been revised in 2012 using the improved process with the remaining three in progress. The value of the process improvements is reflected by the ability to issue these documents on schedule and accurately identify technical, regulatory and safety issues and open items. (authors)

Arm, Stuart T.; Van Meighem, Jeffery S. [Washington River Protection Solutions, P.O. Box 850, Richland, Washington, 99352 (United States)] [Washington River Protection Solutions, P.O. Box 850, Richland, Washington, 99352 (United States); Duncan, Garth M.; Pell, Michael J. [Bechtel National Inc., 2435 Stevens Center Place, Richland, Washington, 99352 (United States)] [Bechtel National Inc., 2435 Stevens Center Place, Richland, Washington, 99352 (United States); Harrington, Christopher C. [Department of Energy - Office of River Protection, 2440 Stevens Center Place, Richland, Washington, 99352 (United States)] [Department of Energy - Office of River Protection, 2440 Stevens Center Place, Richland, Washington, 99352 (United States)

2013-07-01T23:59:59.000Z

382

Processing needs and methodology for wastewaters from the conversion of coal, oil shale, and biomass to synfuels  

SciTech Connect (OSTI)

The workshop identifies needs to be met by processing technology for wastewaters, and evaluates the suitability, approximate costs, and problems associated with current technology. Participation was confined to DOE Environmental Control Technology contractors to pull together and integrate past wastewater-related activities, to assess the status of synfuel wastewater treatability and process options, and to abet technology transfer. Particular attention was paid to probable or possible environmental restrictions which cannot be economically met by present technology. Primary emphasis was focussed upon process-condensate waters from coal-conversion and shale-retorting processes. Due to limited data base and time, the workshop did not deal with transients, upsets, trade-offs and system optimization, or with solids disposal. The report is divided into sections that, respectively, survey the water usage and effluent situation (II); identify the probable and possible water-treatment goals anticipated at the time when large-scale plants will be constructed (III); assess the capabilities, costs and shortcomings of present technology (IV); explore particularly severe environmental-control problems (V); give overall conclusions from the Workshop and recommendations for future research and study (VI); and, finally, present Status Reports of current work from participants in the Workshop (VII).

Not Available

1980-05-01T23:59:59.000Z

383

A view of treatment process of melted nuclear fuel on a severe accident plant using a molten salt system  

SciTech Connect (OSTI)

At severe accident such as Fukushima Daiichi Nuclear Power Plant Accident, the nuclear fuels in the reactor would melt and form debris which contains stable UO2-ZrO2 mixture corium and parts of vessel such as zircaloy and iron component. The requirements for solution of issues are below; -) the reasonable treatment process of the debris should be simple and in-situ in Fukushima Daiichi power plant, -) the desirable treatment process is to take out UO{sub 2} and PuO{sub 2} or metallic U and TRU metal, and dispose other fission products as high level radioactive waste; and -) the candidate of treatment process should generate the smallest secondary waste. Pyro-process has advantages to treat the debris because of the high solubility of the debris and its total process feasibility. Toshiba proposes a new pyro-process in molten salts using electrolysing Zr before debris fuel being treated.

Fujita, R.; Takahashi, Y.; Nakamura, H.; Mizuguchi, K. [Power and Industrial Research and Development Center, Toshiba Corporation Power Systems Company, 4-1 Ukishima-cho, Kawasaki-ku, Kawasaki 210-0862 (Japan); Oomori, T. [Chemical System Design and Engineering Department, Toshiba Corporation Power Systems Company, 8 Shinsugita-cho, Isogo-ku, Yokohama 235-8523 (Japan)

2013-07-01T23:59:59.000Z

384

E-Print Network 3.0 - anodic surface treatment Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

electricity... required for wastewater treatment processes; therefore, the bioenergy-producing process has advantages over Source: Collection: Renewable Energy ; Energy...

385

Portable wastewater flow meter  

DOE Patents [OSTI]

A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under fill pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

Hunter, Robert M. (320 S. Wilson Ave., Bozeman, MT 59715)

1999-02-02T23:59:59.000Z

386

Portable wastewater flow meter  

DOE Patents [OSTI]

A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under full pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

Hunter, Robert M. (320 S. Wilson Ave., Bozeman, MT 59715)

1990-01-01T23:59:59.000Z

387

The effect of solids retention time on tertiary ozonation and carbon adsorption of petrochemical wastewaters  

E-Print Network [OSTI]

. Biological treatment of wastewater has been used since the turn of the century, and while its application has grown in complexity since that time, the fundamental biological reaction mechanisms have remained unchanged. Most important... organic carbon from the wastewater by conversion into microbial cells, or some other desirable form. Biological waste treatment is usually intended for the removal of organic matter, but certain other contaminants are also removed, For example...

Buys, Ronald Earl

1980-01-01T23:59:59.000Z

388

Wastewater plant takes plunge into demand response  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Commission and the Bonneville Power Administration, the Eugene-Springfield Water Pollution Control Facility in Eugene, Ore., was put through a series of demand response tests....

389

Scaled Testing to Evaluate Pulse Jet Mixer Performance in Waste Treatment Plant Mixing Vessels  

SciTech Connect (OSTI)

The Waste Treatment and Immobilization Plant (WTP) at Hanford is being designed and built to pre-treat and vitrify the waste in Hanford’s 177 underground waste storage tanks. Numerous process vessels will hold waste at various stages in the WTP. These vessels have pulse jet mixer (PJM) systems. A test program was developed to evaluate the adequacy of mixing system designs in the solids-containing vessels in the WTP. The program focused mainly on non-cohesive solids behavior. Specifically, the program addressed the effectiveness of the mixing systems to suspend settled solids off the vessel bottom, and distribute the solids vertically. Experiments were conducted at three scales using various particulate simulants. A range of solids loadings and operational parameters were evaluated, including jet velocity, pulse volume, and duty cycle. In place of actual PJMs, the tests used direct injection from tubes with suction at the top of the tank fluid. This gave better control over the discharge duration and duty cycle and simplified the facility requirements. The mixing system configurations represented in testing varied from 4 to 12 PJMs with various jet nozzle sizes. In this way the results collected could be applied to the broad range of WTP vessels with varying geometrical configurations and planned operating conditions. Data for “just-suspended velocity”, solids cloud height, and solids concentration vertical profile were collected, analyzed, and correlated. The correlations were successfully benchmarked against previous large-scale test results, then applied to the WTP vessels using reasonable assumptions of anticipated waste properties to evaluate adequacy of the existing mixing system designs.

Fort, James A.; Meyer, Perry A.; Bamberger, Judith A.; Enderlin, Carl W.; Scott, Paul A.; Minette, Michael J.; Gauglitz, Phillip A.

2010-03-07T23:59:59.000Z

390

Updated Site Response Analyses for the Waste Treatment Plant, DOE Hanford, Site, Washington.  

SciTech Connect (OSTI)

This document describes the calculations performed to develop updated relative amplification functions for the Waste Treatment and Immobilization Plant (WTP) facility at the DOE Hanford Site, Washington State. The original 2,000-year return period design spectra for the WTP were based on the results of a probabilistic seismic hazard analysis (PSHA) performed for the DOE Hanford Site by Geomatrix (1996). Geomatrix (1996) performed the PSHA using empirical soil-site ground motion models based primarily on recordings from California. As part of that study, site response analyses were performed to evaluate ground motions at the Hanford sites and California deep soil sites. As described in Appendix A of Geomatrix (1996), characteristic site profiles and dynamic soil properties representative of conditions at various Hanford sites and California deep soil strong motion recording stations were defined. Relative site responses of the Hanford profiles and California profiles were then compared. Based on the results of those site response analyses, it was concluded that ground motions at the Hanford sites underlain by deep soil deposits are similar in character to those on California deep soil sites and it was judged appropriate to use empirical deep soil site attenuation relationships based primarily on California ground motion data to develop design spectra for the Hanford sites. In a subsequent analysis, Geomatrix (2003) updated the site response analyses of Geomatrix (1996, Appendix A) to incorporate randomization of the California and Hanford profiles. The results of that analysis also led to the conclusion that the response of the Hanford profiles was similar to the response of deep soil sites in California.

Youngs, Robert R.

2007-06-29T23:59:59.000Z

391

Modeling the effects of low flow augmentation by discharge from a wastewater treatment plant on dissolved oxygen concentration in Leon Creek, San Antonio, Texas  

E-Print Network [OSTI]

A GIS-based hydrological/water quality model called Non Point Source Model (NPSM) was used to simulate various physical, chemical and biological processes taking place in the Leon Creek Watershed, near San Antonio, Texas. The model was then used...

Gholkar, Tejal A

2000-01-01T23:59:59.000Z

392

Modeling the Effects of Low Flow Augmentation by Discharge from a Wastewater Treatment Plant on Dissolved Oxygen Concentration in Leon Creek, San Antonio, Texas.  

E-Print Network [OSTI]

A GIS-based hydrological/water quality model called Non Point Source Model (NPSM) was used to simulate various physical, chemical and biological processes taking place in the Leon Creek Watershed, near San Antonio, Texas. The model was then used...

Matlock, Dr. Marty D.; Hann, Dr. Roy W. Jr.; Gholkar, Tejal A.

393

PLUTONIUM FINISHING PLANT (PFP) 241-Z LIQUID WASTE TREATMENT FACILITY DEACTIVATION AND DEMOLITION  

SciTech Connect (OSTI)

Fluor Hanford, Inc. (FH) is proud to submit the Plutonium Finishing Plant (PFP) 241-Z liquid Waste Treatment Facility Deactivation and Demolition (D&D) Project for consideration by the Project Management Institute as Project of the Year for 2008. The decommissioning of the 241-Z Facility presented numerous challenges, many of which were unique with in the Department of Energy (DOE) Complex. The majority of the project budget and schedule was allocated for cleaning out five below-grade tank vaults. These highly contaminated, confined spaces also presented significant industrial safety hazards that presented some of the most hazardous work environments on the Hanford Site. The 241-Z D&D Project encompassed diverse tasks: cleaning out and stabilizing five below-grade tank vaults (also called cells), manually size-reducing and removing over three tons of process piping from the vaults, permanently isolating service utilities, removing a large contaminated chemical supply tank, stabilizing and removing plutonium-contaminated ventilation ducts, demolishing three structures to grade, and installing an environmental barrier on the demolition site . All of this work was performed safely, on schedule, and under budget. During the deactivation phase of the project between November 2005 and February 2007, workers entered the highly contaminated confined-space tank vaults 428 times. Each entry (or 'dive') involved an average of three workers, thus equaling approximately 1,300 individual confined -space entries. Over the course of the entire deactivation and demolition period, there were no recordable injuries and only one minor reportable skin contamination. The 241-Z D&D Project was decommissioned under the provisions of the 'Hanford Federal Facility Agreement and Consent Order' (the Tri-Party Agreement or TPA), the 'Resource Conservation and Recovery Act of 1976' (RCRA), and the 'Comprehensive Environmental Response, Compensation, and Liability Act of 1980' (CERCLA). The project completed TPA Milestone M-083-032 to 'Complete those activities required by the 241-Z Treatment and Storage Unit's RCRA Closure Plan' four years and seven months ahead of this legally enforceable milestone. In addition, the project completed TPA Milestone M-083-042 to 'Complete transition and dismantlement of the 241-2 Waste Treatment Facility' four years and four months ahead of schedule. The project used an innovative approach in developing the project-specific RCRA closure plan to assure clear integration between the 241-Z RCRA closure activities and ongoing and future CERCLA actions at PFP. This approach provided a regulatory mechanism within the RCRA closure plan to place segments of the closure that were not practical to address at this time into future actions under CERCLA. Lessons learned from th is approach can be applied to other closure projects within the DOE Complex to control scope creep and mitigate risk. A paper on this topic, entitled 'Integration of the 241-Z Building D and D Under CERCLA with RCRA Closure at the PFP', was presented at the 2007 Waste Management Conference in Tucson, Arizona. In addition, techniques developed by the 241-Z D&D Project to control airborne contamination, clean the interior of the waste tanks, don and doff protective equipment, size-reduce plutonium-contaminated process piping, and mitigate thermal stress for the workers can be applied to other cleanup activities. The project-management team developed a strategy utilizing early characterization, targeted cleanup, and close coordination with PFP Criticality Engineering to significantly streamline the waste- handling costs associated with the project . The project schedule was structured to support an early transition to a criticality 'incredible' status for the 241-Z Facility. The cleanup work was sequenced and coordinated with project-specific criticality analysis to allow the fissile material waste being generated to be managed in a bulk fashion, instead of individual waste packages. This approach negated the need for real-time assay of individ

JOHNSTON GA

2008-01-15T23:59:59.000Z

394

METHODS FOR DETERMINING AGITATOR MIXING REQUIREMENTS FOR A MIXING & SAMPLING FACILITY TO FEED WTP (WASTE TREATMENT PLANT)  

SciTech Connect (OSTI)

The following report is a summary of work conducted to evaluate the ability of existing correlative techniques and alternative methods to accurately estimate impeller speed and power requirements for mechanical mixers proposed for use in a mixing and sampling facility (MSF). The proposed facility would accept high level waste sludges from Hanford double-shell tanks and feed uniformly mixed high level waste to the Waste Treatment Plant. Numerous methods are evaluated and discussed, and resulting recommendations provided.

GRIFFIN PW

2009-08-27T23:59:59.000Z

395

WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY  

E-Print Network [OSTI]

III, "Method of Breaking Shale Oil-Water Emulsion," U. S.Waters from Green River Oil Shale," Chem. and Ind. , 1. ,Effluents from In-Situ oil Shale Processing," in Proceedings

Fox, J.P.

2010-01-01T23:59:59.000Z

396

Quantitative Analyses of Anaerobic Wastewater Treatment Processes  

E-Print Network [OSTI]

-knit community of bacteria cooperate to form a stable, self- regulating fermentation that transforms organic-chain fatty acids); fermentation of aminoacids and sugars; anaero- bic oxidation of long-chain fatty acids and alcohols; anaerobic oxidation of intermediary products such as volatile fatty acids; conversion of acetate

Timmer, Jens

397

WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY  

E-Print Network [OSTI]

is in intimate contact with oil and shale during In in-situin contact with the oil and shale. These methods and othersWaters from Green River Oil Shale," Chem. and Ind. , 1. ,

Fox, J.P.

2010-01-01T23:59:59.000Z

398

Onsite Wastewater Treatment Systems: Operation and Maintenance  

E-Print Network [OSTI]

To prevent health hazards to people and pollution in the environment, septic tank systems must be operated and maintained properly. This publication explains how septic systems work and how to keep them running properly....

Lesikar, Bruce J.

2008-10-23T23:59:59.000Z

399

Use of magnetic nanoparticles for wastewater treatment  

E-Print Network [OSTI]

Contamination of marine sediments and water environments by urban runoffs, industrial and domestic effluents and oil spills is proving to be of critical concern as they affect aquatic organisms and can quickly disperse to ...

Parekh, Asha, 1942-

2013-01-01T23:59:59.000Z

400

Fischer-Tropsch Wastewater Utilization  

DOE Patents [OSTI]

The present invention is generally directed to handling the wastewater, or condensate, from a hydrocarbon synthesis reactor. More particularly, the present invention provides a process wherein the wastewater of a hydrocarbon synthesis reactor, such as a Fischer-Tropsch reactor, is sent to a gasifier and subsequently reacted with steam and oxygen at high temperatures and pressures so as to produce synthesis gas. The wastewater may also be recycled back to a slurry preparation stage, where solid combustible organic materials are pulverized and mixed with process water and the wastewater to form a slurry, after which the slurry fed to a gasifier where it is reacted with steam and oxygen at high temperatures and pressures so as to produce synthesis gas.

Shah, Lalit S. (Sugar Land, TX)

2003-03-18T23:59:59.000Z

Note: This page contains sample records for the topic "wastewater treatment plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Chernobyl NPP: Completion of LRW Treatment Plant and LRW Management on Site - 12568  

SciTech Connect (OSTI)

Since a beginning of ChNPP operation, and after a tragedy in 1986, a few thousands m3 of LRW have been collected in a storage tanks. In 2004 ChNPP started the new project on creation of LRW treatment plant (LRWTP) financed from EBRD fund. But it was stopped in 2008 because of financial and contract problems. In 2010 SIA RADON jointly with Ukrainian partners has won a tender on completion of LRWTP, in particular I and C system. The purpose of LRTP is to process liquid rad-wastes from SSE 'Chernobyl NPP' site and those liquids stored in the LRWS and SLRWS tanks as well as the would-be wastes after ChNPP Power Units 1, 2 and 3 decommissioning. The LRTP design lifetime - 20 years. Currently, the LRTP is getting ready to perform the following activities: 1. retrieval of waste from tanks stored at ChNPP LWS using waste retrieval system with existing equipment involved; 2. transfer of retrieved waste into LRTP reception tanks with partial use of existing transfer pipelines; 3. laboratory chemical and radiochemical analysis of reception tanks contest to define the full spectrum of characteristics before processing, to acknowledge the necessity of preliminary processing and to select end product recipe; 4. preliminary processing of the waste to meet the requirements for further stages of the process; 5. shrinkage (concentrating) of preliminary processed waste; 6. solidification of preliminary processed waste with concrete to make a solid-state (end product) and load of concrete compound into 200-l drums; 7. curing of end product drums in LRTP curing hall; 8. radiologic monitoring of end product drums and their loading into special overpacks; 9. overpack radiological monitoring; 10. send for disposal (ICSRM Lot 3); The current technical decisions allow to control and return to ChNPP of process media and supporting systems outputs until they satisfy the following quality norms: salt content: < 100 g/l; pH: 1 - 11; anionic surface-active agent: < 25 mg/l; oil dissipated in the liquid: < 2 mg/l; overall gamma-activity: < 3,7 x10{sup 5} Bq/l. (authors)

Fedorov, Denis; Adamovich, Dmitry [SIA 'RADON', Moscow (Russian Federation); Klimenko, I.; Taranenko, L. [IVL Engineering, Kiev (Ukraine)

2012-07-01T23:59:59.000Z

402

Wastewater Renovation in Buried and Recirculating Sand Filters A.J. Gold,* B.E. Lamb,G.W.Loomis, J.R. Boyd, V.J. Cabelli, and C.G. McKiel  

E-Print Network [OSTI]

Wastewater Renovation in Buried and Recirculating Sand Filters A.J. Gold,* B.E. Lamb,G.W.Loomis, JF phagewereassociatedwithlowereffluent pHfor bothsandfilters. ON-SITEDISPOSALof household wastewater is a potential threat to public conditions mayimpede wastewater treatment (Kristiansen, 1981a; Pell and Nyberg, 1989a) or where

Gold, Art

403

Laboratory Evaporation Testing Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant  

SciTech Connect (OSTI)

The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream, LAW Off-Gas Condensate, from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of canistered glass waste forms. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to be within acceptable concentration ranges in the LAW glass. Diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the impact of potential future disposition of this stream in the Hanford tank farms, and investigates auxiliary evaporation to enable another disposition path. Unless an auxiliary evaporator is used, returning the stream to the tank farms would require evaporation in the 242-A evaporator. This stream is expected to be unusual because it will be very high in corrosive species that are volatile in the melter (chloride, fluoride, sulfur), will have high ammonia, and will contain carryover particulates of glass-former chemicals. These species have potential to cause corrosion of tanks and equipment, precipitation of solids, release of ammonia gas vapors, and scale in the tank farm evaporator. Routing this stream to the tank farms does not permanently divert it from recycling into the WTP, only temporarily stores it prior to reprocessing. Testing is normally performed to demonstrate acceptable conditions and limits for these compounds in wastes sent to the tank farms. The primary parameter of this phase of the test program was measuring the formation of solids during evaporation in order to assess the compatibility of the stream with the evaporator and transfer and storage equipment. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW facility melter offgas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet, and, thus, the composition will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. This report discusses results of evaporation testing of the simulant. Two conditions were tested, one with the simulant at near neutral pH, and a second at alkaline pH. The neutral pH test is comparable to the conditions in the Hanford Effluent Treatment Facility (ETF) evaporator, although that evaporator operates at near atmospheric pressure and tests were done under vacuum. For the alkaline test, the target pH was based on the tank farm corrosion control program requirements, and the test protocol and equipment was comparable to that used for routine evaluation of feed compatibility studies for the 242-A evaporator. One of the

Adamson, Duane J.; Nash, Charles A.; McCabe, Daniel J.; Crawford, Charles L.; Wilmarth, William R.

2014-01-27T23:59:59.000Z

404

Plant reestablishment after soil disturbance: Effects of soils, treatment, and time  

SciTech Connect (OSTI)

The Pacific Northwest Laboratory examined plant growth and establishment on 16 sites where severe land disturbance had taken place. The purpose of the study was to evaluate the relative effectiveness of the different methods in term of their effects on establishment of native and alien plants. Disturbances ranged from 1 to 50 years in age. Revegetation using native plants had been attempted at 14 of the sites; the remainder were abandoned without any further management. Revegetation efforts variously included seeding, fertilizer application, mulching with various organic sources, compost application, application of Warden silt loam topsoil over sand and gravel soils, and moderate irrigation.

Brandt, C.A.; Alford, K.; McIlveny, G.; Tijerina, A.

1993-11-01T23:59:59.000Z

405

Summary Report of Geophysical Logging For The Seismic Boreholes Project at the Hanford Site Waste Treatment Plant.  

SciTech Connect (OSTI)

During the period of June through October 2006, three deep boreholes and one corehole were drilled beneath the site of the Waste Treatment Plant (WTP) at the U.S. Department of Energy (DOE) Hanford Site near Richland, Washington. The boreholes were drilled to provide information on ground-motion attenuation in the basalt and interbedded sediments underlying the WTP site. This report describes the geophysical logging of the deep boreholes that was conducted in support of the Seismic Boreholes Project, defined below. The detailed drilling and geological descriptions of the boreholes and seismic data collected and analysis of that data are reported elsewhere.

Gardner, Martin G.; Price, Randall K.

2007-02-01T23:59:59.000Z

406

CDC Looks at Links Between Wastewater  

E-Print Network [OSTI]

CDC Looks at Links Between Wastewater and Disease NESC STAFF WRITER Caigan McKenzie Drinking water in food safety, onsite wastewater systems, drinking water safety, recreational water safety, vector con about the public health issues involved in onsite wastewater," Gelting said. "We didn't have much

407

An Exploration of Mercury Soils Treatment Technologies for the Y-12 Plant - 13217  

SciTech Connect (OSTI)

There are a number of areas at the Y-12 National Security Complex (Y-12) that have been contaminated with mercury due to historical mercury use and storage. Remediation of these areas is expected to generate large volumes of waste that are Resource Conservation and Recovery Act (RCRA) characteristically hazardous. These soils will require treatment to meet RCRA Land Disposal Restrictions (LDR) prior to disposal. URS - CH2M Oak Ridge LLC (UCOR) performed a feasibility assessment to evaluate on-site and off-site options for the treatment and disposal of mercury-contaminated soil from the Y-12 Site. The focus of the feasibility assessment was on treatment for disposal at the Environmental Management Waste Management Facility (EMWMF) located on the Oak Ridge Reservation. A two-phase approach was used in the evaluation process of treatment technologies. Phase 1 involved the selection of three vendors to perform treatability studies using their stabilization treatment technology on actual Y-12 soil. Phase II involved a team of waste management specialists performing an in-depth literature review of all available treatment technologies for treating mercury contaminated soil using the following evaluation criteria: effectiveness, feasibility of implementation, and cost. The result of the treatability study and the literature review revealed several viable on-site and off-site treatment options. This paper presents the methodology used by the team in the evaluation of technologies especially as related to EMWMF waste acceptance criteria, the results of the physical treatability studies, and a regulatory analysis for obtaining regulator approval for the treatment/disposal at the EMWMF. (authors)

Wrapp, John [UCOR, P.O. Box 4699, Oak Ridge, TN 37831 (United States)] [UCOR, P.O. Box 4699, Oak Ridge, TN 37831 (United States); Julius, Jonathon [DOE Oak Ridge (United States)] [DOE Oak Ridge (United States); Browning, Debbie [Strata-G, LLC, 2027 Castaic Lane, Knoxville, TN, 37932 (United States)] [Strata-G, LLC, 2027 Castaic Lane, Knoxville, TN, 37932 (United States); Kane, Michael [RSI, P.O. Box 4699, Oak Ridge, TN 37831 (United States)] [RSI, P.O. Box 4699, Oak Ridge, TN 37831 (United States); Whaley, Katherine [RSI, P.O. Box 4699, Oak Ridge, TN 37831 (United States)] [RSI, P.O. Box 4699, Oak Ridge, TN 37831 (United States); Estes, Chuck [EnergySolutions, P.O. Box 4699, Oak Ridge, TN 37831 (United States)] [EnergySolutions, P.O. Box 4699, Oak Ridge, TN 37831 (United States); Witzeman, John [RSI, P.O. Box 4699, Oak Ridge, TN, 37831 (United States)] [RSI, P.O. Box 4699, Oak Ridge, TN, 37831 (United States)

2013-07-01T23:59:59.000Z

408

difference between plants receiving different treatments. Furthermore, if any difference is detected, one cannot say for sure whether the difference is due to the water gradient or due  

E-Print Network [OSTI]

difference between plants receiving different treatments. Furthermore, if any difference is detected, one cannot say for sure whether the difference is due to the water gradient or due to the differences between treatment. Obviously, any conclusions reached from analyzing the data will be meaningless

Oyet, Alwell

409

Reciprocating Constructed Wetlands for Treating Industrial, Municipal, and Agricultural Wastewater  

E-Print Network [OSTI]

For many rural communities, treating domestic wastewater efficiently and cost-effectively is a challenging task. Environmental issues, financing of construction costs, and the bottom-line cost to the consumer complicate this effort. Increasingly stringent discharge standards have resulted in a growing number of permit violations from small, “conventional ” treatment systems. Many rural communities have discovered that their existing systems (e.g., facultative lagoons) provided excellent service in the past but have become obsolete due to new discharge standards. These communities simply cannot afford to own and operate the highly sophisticated tertiary treatment facilities these new regulations require. As a result, funding agencies have looked more favorably to “regional” solutions that can achieve consistent, high-quality discharge. In most cases, the regional solution is a centralized treatment facility to which surrounding communities pump their sewage. In many instances, communities must pump extremely long distances to reach the regional treatment facility. This means that communities, and, therefore, funding agencies, are putting most of their money into pumps and piping instead of treatment. What small rural communities need is a decentralized wastewater treatment system that is inexpensive to construct, simple to operate, and achieves consistently high levels of discharge quality, even with small flows. Having such a system would allow a paradigm shift whereby funding agencies could support decentralized treatment and regional management of numerous decentralized treatment systems.

Go~tiscs~!d P S I; Chuck Donnell; H. Alton Pnvette; Leslie L. Behrends

410

Enterprise Assessments Review, Hanford Waste Treatment and Immobilization Plant - January 2015  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department oftoTheseClickDepartmentImmobilization PlantReviewReview

411

On-Site Wastewater Treatment Systems: Aerobic Treatment Unit (Spanish)  

E-Print Network [OSTI]

. Las personas que hagan la instalaci?n deben excavar un s?lo pozo con fondo nivelado, lo que reduce el tiempo de preparaci?n para la instalaci?n. El tanque de fibra de vidrio es lo suficientemente liviano como para que lo cargue una excavadora al lugar...

Lesikar, Bruce J.; Enciso, Juan

2000-08-29T23:59:59.000Z

412

Integrated CHP/Advanced Reciprocating Internal Combustion Engine...  

Broader source: Energy.gov (indexed) [DOE]

With Landfill Gas, October 2002 CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants CHP and Bioenergy for Landfills and Wastewater Treatment Plants:...

413

Characterization of the Installed Costs of Prime Movers Using...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants CHP and Bioenergy for Landfills and Wastewater Treatment Plants:...

414

Energy Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

makers here at the Department of Energy. July 29, 2010 Saving Energy at 247 Wastewater Treatment Plant When the wastewater treatment plant uses more electricity than any...

415

HIRICH et al. Wastewater reuse in the Mediterranean region: Case  

E-Print Network [OSTI]

HIRICH et al. Wastewater reuse in the Mediterranean region: Case of Morocco Abdelaziz HIRICH expedient. The extended reuse of reclaimed (treated) wastewater could contribute considerably Water Resources Management (IWRM) approach, focusing on the component wastewater reuse for irrigation

Paris-Sud XI, Université de

416

FAILURE ANALYSIS: WASTEWATER DRUM BULGING  

SciTech Connect (OSTI)

A 55 gallon wastewater drum lid was found to be bulged during storage in a remote area. Drum samples were obtained for analysis. The interior surface of these samples revealed blistering and holes in the epoxy phenolic drum liner and corrosion of the carbon steel drum. It is suspected that osmotic pressure drove permeation of the water through the epoxy phenolic coating which was weakened from exposure to low pH water. The coating failed at locations throughout the drum interior. Subsequent corrosion of the carbon steel released hydrogen which pressurized the drum causing deformation of the drum lid. Additional samples from other wastewater drums on the same pallet were also evaluated and limited corrosion was visible on the interior surfaces. It is suspected that, with time, the corrosion would have advanced to cause pressurization of these sealed drums.

Vormelker, P

2008-09-15T23:59:59.000Z

417

Wastewater Construction and Operation Permits (Iowa)  

Broader source: Energy.gov [DOE]

These regulations describe permit requirements for the construction and operation of facilities treating wastewater, and provide separation distances from other water sources.

418

Electrochemical treatment of human waste coupled with molecular hydrogen production  

E-Print Network [OSTI]

in a hydrogen fuel cell. Herein, we report on the efficacy of a laboratory-scale wastewater electrolysis cell an electrolysis cell for on-site wastewater treatment coupled with molecular hydrogen production for useElectrochemical treatment of human waste coupled with molecular hydrogen production Kangwoo Cho

Heaton, Thomas H.

419

File:CDPHE Industrial Individual Wastewater Discharge Permit...  

Open Energy Info (EERE)

Industrial Individual Wastewater Discharge Permit Application.pdf Jump to: navigation, search File File history File usage Metadata File:CDPHE Industrial Individual Wastewater...

420

Iowa Water and Wastewater Operators Seek SEP Certification in...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Iowa Water and Wastewater Operators Seek SEP Certification in New Pilot Program Iowa Water and Wastewater Operators Seek SEP Certification in New Pilot Program September 18, 2014 -...

Note: This page contains sample records for the topic "wastewater treatment plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

One System Integrated Project Team: Retrieval and Delivery of Hanford Tank Wastes for Vitrification in the Waste Treatment Plant - 13234  

SciTech Connect (OSTI)

The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety-conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enable the earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the tank wastes and for building and operating the WTP. The tank wastes are the result of Hanford's nearly fifty (50) years of plutonium production. In the intervening years, waste characteristics have been increasingly better understood. However, waste characteristics that are uncertain and will remain as such represent a significant technical challenge in terms of retrieval, transport, and treatment, as well as for design and construction of WTP. What also is clear is that the longer the waste remains in the tanks, the greater the risk to the environment and the people of the Pacific Northwest. The goal of both projects - tank operations and waste treatment - is to diminish the risks posed by the waste in the tanks at the earliest possible date. About two hundred (200) WTP and TOC employees comprise the IPT. Individual work groups within One System include Technical, Project Integration and Controls, Front-End Design and Project Definition, Commissioning, Nuclear Safety and Engineering Systems Integration, and Environmental Safety and Health and Quality Assurance (ESH and QA). Additional functions and team members will be added as the WTP approaches the operational phase. The team has undertaken several initiatives since its formation to collaborate on issues: (1) alternate scenarios for delivery of wastes from the tank farms to WTP; (2) improvements in managing Interface Control Documents; (3) coordination on various technical issues, including the Defense Nuclear Facilities Nuclear Safety Board's Recommendation 2010-2; (4) deployment of the SmartPlant{sup R} Foundation-Configuration Management System; and (5) preparation of the joint contract deliverable of the Operational Readiness Support Plan. (authors)

Harp, Benton J. [U.S. Department of Energy, Office of River Protection, Post Office Box 550, Richland, Washington 99352 (United States)] [U.S. Department of Energy, Office of River Protection, Post Office Box 550, Richland, Washington 99352 (United States); Kacich, Richard M. [Bechtel National, Inc., 2435 Stevens Center Place, Richland, Washington 99354 (United States)] [Bechtel National, Inc., 2435 Stevens Center Place, Richland, Washington 99354 (United States); Skwarek, Raymond J. [Washington River Protection Solutions LLC, Post Office Box 850, Richland, Washington 99352 (United States)] [Washington River Protection Solutions LLC, Post Office Box 850, Richland, Washington 99352 (United States)

2013-07-01T23:59:59.000Z

422

One System Integrated Project Team: Retrieval And Delivery Of The Hanford Tank Wastes For Vitrification In The Waste Treatment Plant  

SciTech Connect (OSTI)

The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enable the earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the tank wastes and for building and operating the WTP. The tank wastes are the result of Hanford's nearly fifty (50) years of plutonium production. In the intervening years, waste characteristics have been increasingly better understood. However, waste characteristics that are uncertain and will remain as such represent a significant technical challenge in terms of retrieval, transport, and treatment, as well as for design and construction ofWTP. What also is clear is that the longer the waste remains in the tanks, the greater the risk to the environment and the people of the Pacific Northwest. The goal of both projects - tank operations and waste treatment - is to diminish the risks posed by the waste in the tanks at the earliest possible date. About two hundred (200) WTP and TOC employees comprise the IPT. Individual work groups within One System include Technical, Project Integration & Controls, Front-End Design & Project Definition, Commissioning, Nuclear Safety & Engineering Systems Integration, and Environmental Safety and Health and Quality Assurance (ESH&QA). Additional functions and team members will be added as the WTP approaches the operational phase. The team has undertaken several initiatives since its formation to collaborate on issues: (1) alternate scenarios for delivery of wastes from the tank farms to WTP; (2) improvements in managing Interface Control Documents; (3) coordination on various technical issues, including the Defense Nuclear Facilities Nuclear Safety Board's Recommendation 2010-2; (4) deployment of the SmartPlant? Foundation-configuration Management System; and (5) preparation of the joint contract deliverable of the Operational Readiness Support Plan.

Harp, Benton J. [Department of Energy, Office of River Protection, Richland, Washington (United States); Kacich, Richard M. [Bechtel National, Inc., Richland, WA (United States); Skwarek, Raymond J. [Washington River Protection Solutions LLC, Richland, WA (United States)

2012-12-20T23:59:59.000Z

423

Evaluation of improved techniques for the removal of fission products from process wastewater and groundwater: FY 1996 status  

SciTech Connect (OSTI)

This report describes laboratory results acquired in the course of evaluating new sorbents for the treatment of radiologically contaminated groundwater and process wastewater. During FY 1996, the evaluation of resorcinol-formaldehyde (R-F) resin for the removal of cesium and strontium from wastewaters was completed. Additionally, strontium sorption on sodium nonatitanate powder was characterized in a series of multicomponent batch studies. Both of these materials were evaluated in reference to a baseline sorbent, natural chabazite zeolite.

Bostick, D.T. [Oak Ridge National Lab., TN (United States); Guo, B. [Oak Ridge Research Inst., TN (United States)

1997-07-01T23:59:59.000Z

424

30 May 2012 Version Emergency Power Facility Assessment Tool (EPFAT)  

E-Print Network [OSTI]

, such as water treatment plants, hospitals, wastewater treatment plants and shelters. The U.S. Army Corps

US Army Corps of Engineers

425

E-Print Network 3.0 - a-01 wetland treatment Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engineering... Design; CEE 751: Biological Unit Operations; CEE 771: Wastewater Treatment in Small Rural Communities Source: Marchand, Eric A. - Department of Civil and...

426

E-Print Network 3.0 - alkaline sludge treatment Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sciences Cooperative Extension Land Application of Sewage Summary: . These wastewater treatment solids are commonly referred to as sewage sludge. "Sewage sludge" or...

427

E-Print Network 3.0 - anaerobic treatment process Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engineering Summary: .R. Hall (1992) Towards a useful dynamic model of the anaerobic wastewater treatment process: a practical... .M. and E.R. Hall (1989) Assessment of dynamic...

428

E-Print Network 3.0 - advanced treatment technology Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Opportunity Background Biological Nitrogen Removal... (BNR) is an important part of wastewater treatment and consists of two separate biological ... Source: Murdoch University,...

429

Aerosol Formation from High-Pressure Sprays for Supporting the Safety Analysis for the Hanford Waste Treatment and Immobilization Plant  

SciTech Connect (OSTI)

The Waste Treatment and Immobilization Plant (WTP) at Hanford is being designed and built to pretreat and vitrify waste currently stored in underground tanks at Hanford. One of the postulated events in the hazard analysis for the WTP is a breach in process piping that produces a pressurized spray with small droplets that can be transported into ventilation systems. Literature correlations are currently used for estimating the generation rate and size distribution of aerosol droplets in postulated spray releases. These correlations, however, are based on results obtained from small engineered nozzles using Newtonian liquids that do not contain slurry particles and thus do not accurately represent the fluids and breaches in the WTP. A test program was developed to measure the generation rate of droplets suspended in a test chamber and droplet size distribution from a range of prototypic sprays. A novel test method was developed to allow measurement of sprays from small to very large breaches and also includes the effect of aerosol generation from splatter when the spray impacts on walls. Results show that the aerosol generation rate increases with increasing the orifice area, though with a weaker dependence on orifice area than the currently-used correlation. A comparison of water sprays to slurry sprays with 8 to 20 wt% gibbsite or boehmite particles shows that the presence of slurry particles depresses the release fraction compared to water for droplets above 10 ?m and increases the release fraction below this droplet size.

Gauglitz, Phillip A.; Mahoney, Lenna A.; Schonewill, Philip P.; Bontha, Jagannadha R.; Blanchard, Jeremy; Kurath, Dean E.; Daniel, Richard C.; Song, Chen

2013-03-05T23:59:59.000Z

430

Implementation of Recommendations from the One System Comparative Evaluation of the Hanford Tank Farms and Waste Treatment Plant Safety Bases  

SciTech Connect (OSTI)

A Comparative Evaluation was conducted for One System Integrated Project Team to compare the safety bases for the Hanford Waste Treatment and Immobilization Plant Project (WTP) and Tank Operations Contract (TOC) (i.e., Tank Farms) by an Expert Review Team. The evaluation had an overarching purpose to facilitate effective integration between WTP and TOC safety bases. It was to provide One System management with an objective evaluation of identified differences in safety basis process requirements, guidance, direction, procedures, and products (including safety controls, key safety basis inputs and assumptions, and consequence calculation methodologies) between WTP and TOC. The evaluation identified 25 recommendations (Opportunities for Integration). The resolution of these recommendations resulted in 16 implementation plans. The completion of these implementation plans will help ensure consistent safety bases for WTP and TOC along with consistent safety basis processes. procedures, and analyses. and should increase the likelihood of a successful startup of the WTP. This early integration will result in long-term cost savings and significant operational improvements. In addition, the implementation plans lead to the development of eight new safety analysis methodologies that can be used at other U.S. Department of Energy (US DOE) complex sites where URS Corporation is involved.

Garrett, Richard L. [Washington River Protection Systems, Richland, WA (United States); Niemi, Belinda J. [Washington River Protection Systems, Richland, WA (United States); Paik, Ingle K. [Washington River Protection Systems, Richland, WA (United States); Buczek, Jeffrey A. [AREVA Federal Services LLC (United States); Lietzow, J. [URS Professional Services (United States); McCoy, F. [AREVA Federal Services LLC (United States); Beranek, F. [URS Professional Services (United States); Gupta, M. [URS Professional Services (United States)

2013-11-07T23:59:59.000Z

431

Overview of Pulse Jet Mixer/Hybrid Mixing System Development to Support the Hanford Waste Treatment Plant  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Office of River Protection's Waste Treatment Plant (WTP) will process and treat radioactive waste that is stored in underground tanks at the Hanford Site. Pulse jet mixer (PJM) technology was selected for mixing the contents of many of the process vessels. Several of the tanks are expected to contain concentrated slurries that exhibit a non-Newtonian rheology and the understanding required to apply this technology to mobilize the non-Newtonian slurries was not mature. Consequently, an experimental testing effort was undertaken to investigate PJM performance in several scaled versions of WTP vessels and to develop mixing system configurations that met WTP requirements. This effort evolved into a large, multifaceted test program involving many different test facilities. Elements of the test program included theoretical analysis, development and characterization of simulants, development of instrumentation and measurement techniques, hundreds of tests at various scales in numerous test stands, and data analysis and application. This program provided the technical basis for the selection of pulse jet mixers along with air spargers and steady jets generated by recirculation pumps to provide mixing systems for several of the vessels with non-Newtonian slurries. This paper provides an overview of the testing program and a summary of the key technical results that formed the technical basis of the final mixing system configurations to be used in the WTP.

Kurath, Dean E.; Meyer, Perry A.; Stewart, Charles W.; Barnes, Steven M.

2006-03-02T23:59:59.000Z

432

Removal of phenols from wastewater by soluble and immobilized tyrosinase  

SciTech Connect (OSTI)

An enzymatic method for removal of phenols from industrial wastewater was investigated. Phenols in an aqueous solution were removed after treatment with mushroom tyrosinase. The reduction order of substituted phenols is catechol > p-cresol > p-chlorophenol > phenol > p-methoxyphenol. In the treatment of tyrosinase alone, no precipitate was formed but a color change from colorless to dark-brown was observed. The colored products were removed by chitin and chitosan which are available abundantly as shellfish waste. In addition, the reduction rate of phenols was observed to be accelerated in the presence of chitosan. Tyrosinase, immobilized by using amino groups in the enzyme on cation exchange resins, can be used repeatedly. By treatment with immobilized tyrosinase, 100% of phenol was removed after 2 h, and the activity was reduced very little even after 10 repeat treatments.

Wada, Shinji; Ichikawa, Hiroyasu; Tatsumi, Kenji (National Inst. for Resources and Environment, Ibaraki (Japan))

1993-09-20T23:59:59.000Z

433

LABORATORY OPTIMIZATION TESTS OF TECHNETIUM DECONTAMINATION OF HANFORD WASTE TREATMENT PLANT LOW ACTIVITY WASTE OFF-GAS CONDENSATE SIMULANT  

SciTech Connect (OSTI)

The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also compatible with longterm tank storage and immobilization methods. For this new application, testing is needed to demonstrate acceptable treatment sorbents and precipitating agents and measure decontamination factors for additional radionuclides in this unique waste stream. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet and will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. One of the radionuclides that is volatile and expected to be in greatest abundance in this LAW Off-Gas Condensate stream is Technetium-99 ({sup 99}Tc). Technetium will not be removed from the aqueous waste in the Hanford WTP, and will primarily end up immobilized in the LAW glass by repeated recycle of the off-gas condensate into the LAW melter. Other radionuclides that are low but are also expected to be in measurable concentration in the LAW Off-Gas Condensate are {sup 129}I, {sup 90}Sr, {sup 137}Cs, {sup 241}Pu, and {sup 241}Am. These are present due to their partial volatility and some entrainment in the off-gas system. This report discusses results of optimized {sup 99}Tc decontamination testing of the simulant. Testing examined use of inorganic reducing agents for {sup 99}Tc. Testing focused on minimizing the quantity of sorbents/reactants added, and minimizing mixing time to reach the decontamination targets in this simulant formulation. Stannous chloride and ferrous sulfate were tested as reducing agents to determine the minimum needed to convert soluble pertechnetate to the insoluble technetium dioxide. The reducing agents were tried with and without sorbents.

Taylor-Pashow, K.; Nash, C.; McCabe, D.

2014-09-29T23:59:59.000Z

434

Optimal Siting of Regional Fecal Sludge Treatment Facilities: St. Elizabeth, Jamaica  

E-Print Network [OSTI]

for rural wastewater treatment. However, there are serious environmental and human health effects associ for wastewater treatment. Fecal sludge FS is defined as the sludge of variable consistency collected from onOptimal Siting of Regional Fecal Sludge Treatment Facilities: St. Elizabeth, Jamaica Ana Martha

Vogel, Richard M.

435

Enhancing phosphorus removal in constructed wetlands with ochre from mine drainage treatment  

E-Print Network [OSTI]

Enhancing phosphorus removal in constructed wetlands with ochre from mine drainage treatment K in a wastewater constructed wetland (175 m2 area) in Berwickshire, UK. The hydraulic and treatment performance wetlands are widely used for tertiary wastewater treatment but, although effective for nitrogen removal

Heal, Kate

436

Energy and Air Emission Implications of a Decentralized Wastewater System  

E-Print Network [OSTI]

Opportunities for Combined Heat and Power at WastewaterProtection Agency Combined Heat and Power Partnership,

Shehabi, Arman

2013-01-01T23:59:59.000Z

437

Safe use of wastewater in agriculture and aquaculture  

E-Print Network [OSTI]

Safe use of wastewater in agriculture and aquaculture Agriculture and aquaculture in Vietnam often use wastewater, particularly in urban or peri-urban areas. Wastewater provides both moisture and nutrients for crops and fish, and its use generates employment for poor communities. But using wastewater

Richner, Heinz

438

What is the Onsite Wastewater Training In 1993 the URI Cooperative Extension Water Quality  

E-Print Network [OSTI]

Denitrification systems Biofilters (peat, foam, and textile) Composting toilets Conventional systems Innovative&A) and conventional onsite wastewater treatment technologies that are installed above ground to facilitate hands: Conventional system Trickling filters Pressure dosed systems Extended aeration systems Sand filtration systems

Rhode Island, University of

439

LIQUID NATURAL GAS (LNG): AN ALTERNATIVE FUEL FROM LANDFILL GAS (LFG) AND WASTEWATER DIGESTER GAS  

SciTech Connect (OSTI)

This Research and Development Subcontract sought to find economic, technical and policy links between methane recovery at landfill and wastewater treatment sites in New York and Maryland, and ways to use that methane as an alternative fuel--compressed natural gas (CNG) or liquid natural gas (LNG) -- in centrally fueled Alternative Fueled Vehicles (AFVs).

VANDOR,D.

1999-03-01T23:59:59.000Z

440

Activated-sludge process: Waste treatment. January 1985-July 1989 (Citations from the Biobusiness data base). Report for January 1985-July 1989  

SciTech Connect (OSTI)

This bibliography contains citations concerning the use of the activated sludge process in waste and waste-water treatment. Biochemistry of the activated sludge process, the effects of various pollutants on process activity, effects of environmental variables such as oxygen and water levels, nutrient requirements of microorganisms employed in activated-sludge processes, and the application of the process to specific wastes such as pharmaceuticals, halocarbons, metallic wastes, dairy wastes, coke-plant waste waters, and petrochemical effluents are among the topics discussed. Operating experiences at large plants are included. (Contains 154 citations fully indexed and including a title list.)

Not Available

1989-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "wastewater treatment plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Improved Management of the Technical Interfaces Between the Hanford Tank Farm Operator and the Hanford Waste Treatment Plant - 13383  

SciTech Connect (OSTI)

The Department of Energy (DOE) is constructing the Waste Treatment and Immobilization Plant (WTP) at the Hanford site in Washington to treat and immobilize approximately 114 million gallons of high level radioactive waste (after all retrievals are accomplished). In order for the WTP to be designed and operated successfully, close coordination between the WTP engineering, procurement, and construction contractor, Bechtel National, Inc. and the tank farms operating contractor (TOC), Washington River Protection Solutions, LLC, is necessary. To develop optimal solutions for DOE and for the treatment of the waste, it is important to deal with the fact that two different prime contractors, with somewhat differing contracts, are tasked with retrieving and delivering the waste and for treating and immobilizing that waste. The WTP and the TOC have over the years cooperated to manage the technical interface. To manage what is becoming a much more complicated interface as the WTP design progresses and new technical issues have been identified, an organizational change was made by WTP and TOC in November of 2011. This organizational change created a co-located integrated project team (IPT) to deal with mutual and interface issues. The Technical Organization within the One System IPT includes employees from both TOC and WTP. This team has worked on a variety of technical issues of mutual interest and concern. Technical issues currently being addressed include: - The waste acceptance criteria; - Waste feed delivery and the associated data quality objectives (DQO); - Evaluation of the effects of performing a riser cut on a single shell tank on WTP operations; - The disposition of secondary waste from both TOC and WTP; - The close coordination of the TOC double shell tank mixing and sampling program and the Large Scale Integrated Test (LSIT) program for pulse jet mixers at WTP along with the associated responses to the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2010-2; - Development of a set of alternatives to the current baseline that involve aspects of direct feed, feed conditioning, and design changes. The One System Technical Organization has served WTP, TOC, and DOE well in managing and resolving issues at the interface. This paper describes the organizational structure used to improve the interface and several examples of technical interface issues that have been successfully addressed by the new organization. (authors)

Duncan, Garth M. [Bechtel National Inc., 2435 Stevens Center Place, Richland, Washington, 99352 (United States)] [Bechtel National Inc., 2435 Stevens Center Place, Richland, Washington, 99352 (United States); Saunders, Scott A. [Washington River Protection Solutions, P.O. Box 850, Richland, Washington, 99352 (United States)] [Washington River Protection Solutions, P.O. Box 850, Richland, Washington, 99352 (United States)

2013-07-01T23:59:59.000Z

442

TECHNICAL REPORTS Constructed treatment wetlands are a relatively low-cost  

E-Print Network [OSTI]

TECHNICAL REPORTS 1904 Constructed treatment wetlands are a relatively low significantly affect the biogeochemistry of treatment wetlands and needs further investigation. Soil Biogeochemical Characteristics Influenced by Alum Application in a Municipal WastewaterTreatmentWetland Lynette M

Florida, University of

443

EIS-0224: Record of Decision  

Broader source: Energy.gov [DOE]

Southeast Regional Wastewater Treatment Plant Facilities Improvements Project and Geysers Effluent Pipeline Project

444

The Basics of Agricultural Erosion and Sedimentation Requirements  

E-Print Network [OSTI]

Protection, Critical Area Planting, Fencing, Wastewater Treatment Strip, Constructed Wetland, Use Exclusion

Guiltinan, Mark

445

Downhole Measurements of Shear- and Compression-Wave Velocities in Boreholes C4993, C4996, C4997 and C4998 at the Waste Treatment Plant DOE Hanford Site.  

SciTech Connect (OSTI)

This report describes the procedures and the results of a series of downhole measurements of shear- and compression-wave velocities performed as part of the Seismic Boreholes Project at the site of the Waste Treatment Plant (WTP). The measurements were made in several stages from October 2006 through early February 2007. Although some fieldwork was carried out in conjunction with the University of Texas at Austin (UT), all data acquired by UT personnel are reported separately by that organization.

Redpath, Bruce B.

2007-04-27T23:59:59.000Z

446

Optimization of wastewater stabilization ponds in Honduras  

E-Print Network [OSTI]

During the academic year of 2008-2009, three Master of Engineering students from the Department of Civil and Environmental Engineering at the Massachusetts Institute of Technology (MIT) conducted a study of wastewater ...

Kullen, Lisa

2009-01-01T23:59:59.000Z

447

Laboratory Scoping Tests Of Decontamination Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant  

SciTech Connect (OSTI)

The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task seeks to examine the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also compatible with longterm tank storage and immobilization methods. For this new application, testing is needed to demonstrate acceptable treatment sorbents and precipitating agents and measure decontamination factors for additional radionuclides in this unique waste stream. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet and will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. One of the radionuclides that is volatile and expected to be in high concentration in this LAW Off-Gas Condensate stream is Technetium-99 ({sup 99}Tc). Technetium will not be removed from the aqueous waste in the Hanford WTP, and will primarily end up immobilized in the LAW glass by repeated recycle of the off-gas condensate into the LAW melter. Other radionuclides that are also expected to be in appreciable concentration in the LAW Off-Gas Condensate are {sup 129}I, {sup 90}Sr, {sup 137}Cs, and {sup 241}Am. This report discusses results of preliminary radionuclide decontamination testing of the simulant. Testing examined use of Monosodium Titanate (MST) to remove {sup 90}Sr and actinides, inorganic reducing agents for {sup 99}Tc, and zeolites for {sup 137}Cs. Test results indicate that excellent removal of {sup 99}Tc was achieved using Sn(II)Cl{sub 2} as a reductant, coupled with sorption onto hydroxyapatite, even in the presence of air and at room temperature. This process was very effective at neutral pH, with a Decontamination Factor (DF) >577 in two hours. It was less effective at alkaline pH. Conversely, removal of the cesium was more effective at alka

Taylor-Pashow, Kathryn M.; Nash, Charles A.; Crawford, Charles L.; McCabe, Daniel J.; Wilmarth, William R.

2014-01-21T23:59:59.000Z

448

EA-0845-FONSI-1994.pdf  

Broader source: Energy.gov (indexed) [DOE]

which constitute less than 0.2 %ofthewastewater treated at the City of Idaho Falls Wastewater Treatment not adversely impact Wastewater Treatment Plant. This minor increase in...

449

Wastewater heat recovery method and apparatus  

DOE Patents [OSTI]

This invention is comprised of a heat recovery system with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature.

Kronberg, J.W.

1991-01-01T23:59:59.000Z

450

Waste Treatment And Immobilization Plant U. S. Department Of Energy Office Of River Protection Submerged Bed Scrubber Condensate Disposition Project - Abstract # 13460  

SciTech Connect (OSTI)

The Hanford Waste Treatment and Immobilization Plant (WTP) will generate an off-gas treatment system secondary liquid waste stream [submerged bed scrubber (SBS) condensate], which is currently planned for recycle back to the WTP Low Activity Waste (LAW) melter. This SBS condensate waste stream is high in Tc-99, which is not efficiently captured in the vitrified glass matrix. A pre-conceptual engineering study was prepared in fiscal year 2012 to evaluate alternate flow paths for melter off-gas secondary liquid waste generated by the WTP LAW facility. This study evaluated alternatives for direct off-site disposal of this SBS without pre-treatment, which mitigates potential issues associated with recycling.

Yanochko, Ronald M [Washington River Protection Solutions, Richland, WA (United States); Corcoran, Connie [AEM Consulting, LLC, Richland, WA (United States)

2012-11-15T23:59:59.000Z

451

Nonlinear Adaptive Control for Bioreactors with Unknown Kinetics  

E-Print Network [OSTI]

, unknown kinetics, wastewater treatment. 1 Introduction Biological processes have become widely used on a real life wastewater treatment plant. Key words: Nonlinear adaptive control, continuous bioprocesses a pollutant (wastewater treatment...). There- fore, bioreactors require advanced regulation procedures

Bernard, Olivier

452

Integrated Photo-Bioelectrochemical System for Contaminants Removal and Bioenergy Production  

E-Print Network [OSTI]

cycling. INTRODUCTION Municipal wastewater treatment plants play a critical role in environmental represents an important, electricity-demanding step in most municipal wastewater treatment facilities fuel cells (MFCs)3 with algal bioreactors4 for wastewater treatment and bioenergy production. MFCs

Berges, John A.

453

On-Site Sewage Treatment Alternatives  

E-Print Network [OSTI]

-site Wastewater Treatment and Disposal Options, VCE publication 448-403, and Individual Homeowner & Small Community Wastewa- ter Treatment & Disposal Options, VCE publication 448-406. Figure 1. Many ruralOn-Site Sewage Treatment Alternatives C. Zipper,Extension specialist and associate professor

Liskiewicz, Maciej

454

Optimisation of sanitary landfill leachate treatment in a sequencing batch reactor  

E-Print Network [OSTI]

- strength wastewater characterized by a low BOD/TKN ratio. Therefore, biological nitrogen removal can been demonstrated to be feasible for biological leachate treatment (EPA 1995). Nitrogen removal from), have been reported for wastewater treatment monitoring and control. In the present study a lab

455

Development Of A Macro-Batch Qualification Strategy For The Hanford Tank Waste Treatment And Immobilization Plant  

SciTech Connect (OSTI)

The Savannah River National Laboratory (SRNL) has evaluated the existing waste feed qualification strategy for the Hanford Tank Waste Treatment and Immobilization Plant (WTP) based on experience from the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) waste qualification program. The current waste qualification programs for each of the sites are discussed in the report to provide a baseline for comparison. Recommendations on strategies are then provided that could be implemented at Hanford based on the successful Macrobatch qualification strategy utilized at SRS to reduce the risk of processing upsets or the production of a staged waste campaign that does not meet the processing requirements of the WTP. Considerations included the baseline WTP process, as well as options involving Direct High Level Waste (HLW) and Low Activity Waste (LAW) processing, and the potential use of a Tank Waste Characterization and Staging Facility (TWCSF). The main objectives of the Hanford waste feed qualification program are to demonstrate compliance with the Waste Acceptance Criteria (WAC), determine waste processability, and demonstrate unit operations at a laboratory scale. Risks to acceptability and successful implementation of this program, as compared to the DWPF Macro-Batch qualification strategy, include: Limitations of mixing/blending capability of the Hanford Tank Farm; The complexity of unit operations (i.e., multiple chemical and mechanical separations processes) involved in the WTP pretreatment qualification process; The need to account for effects of blending of LAW and HLW streams, as well as a recycle stream, within the PT unit operations; and The reliance on only a single set of unit operations demonstrations with the radioactive qualification sample. This later limitation is further complicated because of the 180-day completion requirement for all of the necessary waste feed qualification steps. The primary recommendations/changes include the following: Collection and characterization of samples for relevant process analytes from the tanks to be blended during the staging process; Initiation of qualification activities earlier in the staging process to optimize the campaign composition through evaluation from both a processing and glass composition perspective; Definition of the parameters that are important for processing in the WTP facilities (unit operations) across the anticipated range of wastes and as they relate to qualification-scale equipment; Performance of limited testing with simulants ahead of the waste feed qualification sample demonstration as needed to determine the available processing window for that campaign; and Demonstration of sufficient mixing in the staging tank to show that the waste qualification sample chemical and physical properties are representative of the transfers to be made to WTP. Potential flowcharts for derivatives of the Hanford waste feed qualification process are also provided in this report. While these recommendations are an extension of the existing WTP waste qualification program, they are more in line with the processes currently performed for SRS. The implementation of these processes at SRS has been shown to offer flexibility for processing, having identified potential processing issues ahead of the qualification or facility processing, and having provided opportunity to optimize waste loading and throughput in the DWPF.

Herman, Connie C.

2013-09-30T23:59:59.000Z

456

Gypsum and Polyacrylamide Soil Amendments Used With High Sodium Wastewater  

E-Print Network [OSTI]

Using wastewater for irrigation of crops represents an attractive alternative to disposal. Typically, municipal wastewaters are high in sodium, and the resulting high sodium absorption ratio (SAR) alters the soil structure making it more impermeable...

Gardiner, Duane

457

Shaping the Future of Water and Wastewater Services  

E-Print Network [OSTI]

Shaping the Future of Water and Wastewater Services Jim Conlin Acting GM Long Term Asset Strategy works · 1400 Service reservoirs · >600 Pumping stations · 47,000kms Water pipes Wastewater Assets at an individual or a group of assets #12;Vision AM Strategy Wastewater Pan Scotland Strategy Bathing Waters

Painter, Kevin

458

Removal of Natural Steroid Hormones from Wastewater Using  

E-Print Network [OSTI]

Removal of Natural Steroid Hormones from Wastewater Using Membrane Contactor Processes J O S H U water resources and increased interest in wastewater reclamation for potable reuse. This interest has in the study of wastewater reuse in advanced life support systems (e.g., space missions) because

459

August 6, 2009 Wastewater Produces Electricity and Desalinates Water  

E-Print Network [OSTI]

August 6, 2009 Wastewater Produces Electricity and Desalinates Water University Park, Pa. -- A process that cleans wastewater and generates electricity can also remove 90 percent of salt from brackish organic material from wastewater," said Bruce Logan, Kappe Professor of Environmental Engineering, Penn

460

Original article Impact of spreading olive mill wastewater on soil  

E-Print Network [OSTI]

Original article Impact of spreading olive mill wastewater on soil characteristics: laboratory 2001) Abstract ­ A dynamic of soil pollution with olive mill wastewater (OMW) was investigated process forms an olive mill wastewater (OMW). The amount of this waste depends on the process used for oil

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "wastewater treatment plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Treated Wastewater Effluent Reduces Sperm Motility Along an Osmolality Gradient  

E-Print Network [OSTI]

Treated Wastewater Effluent Reduces Sperm Motility Along an Osmolality Gradient H. L. Schoenfuss Ă? 2008 Ă? Springer Science+Business Media, LLC 2008 Abstract Many toxic effects of treated wastewater environment of treated wastewater effluent frequently differs consider- ably from that of its receiving waters

Julius, Matthew L.

462

Modeling Urban Storm-Water Quality Treatment: Model Development and Application to a Surface Sand Filter  

E-Print Network [OSTI]

water impacts has led us to the develop- ment of different storm-water treatment strategies. Previous knowledge regarding traditional water treatment systems drink- ing and wastewater and the evaluation

463

Independent Oversight Assessment, Waste Treatment and Immobilization...  

Office of Environmental Management (EM)

Waste Treatment and Immobilization Plant - January 2012 Independent Oversight Assessment, Waste Treatment and Immobilization Plant - January 2012 January 2012 Assessment of the...

464

Independent Oversight Review, Waste Treatment and Immobilization...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Waste Treatment and Immobilization Plant - December 2012 December 2012 Review of the Hanford Site Waste Treatment and Immobilization Plant Low Activity Waste Melter Process...

465

APPLICATIONS OF LAYERED DOUBLE HYDROXIDES IN REMOVING OXYANIONS FROM OIL REFINING AND COAL MINING WASTEWATER  

SciTech Connect (OSTI)

Western Research Institute (WRI), in conjunction with the U.S. Department of Energy (DOE), conducted a study of using the layered double hydroxides (LDH) as filter material to remove microorganisms, large biological molecules, certain anions and toxic oxyanions from various waste streams, including wastewater from refineries. Results demonstrate that LDH has a high adsorbing capability to those compounds with negative surface charge. Constituents studied include model bacteria, viruses, arsenic, selenium, vanadium, diesel range hydrocarbons, methyl tert-butyl ether (MTBE), mixed petroleum constituents, humic materials and anions. This project also attempted to modify the physical structure of LDH for the application as a filtration material. Flow characterizations of the modified LDH materials were also investigated. Results to date indicate that LDH is a cost-effective new material to be used for wastewater treatment, especially for the treatment of anions and oxyanions.

Song Jin; Paul Fallgren

2006-03-01T23:59:59.000Z

466

Catalytic hydrodechlorination of industrial wastewater containing chlorinated hydrocarbons in a trickle bed reactor  

E-Print Network [OSTI]

reaction has long been applied in chemical synthesis and liquid organic waste decomposition, very little attention is devoted to direct treatment of chlorinated hydrocarbons in wastewater (aqueous) or contannnated groundwater with hydrogen. The main..., Trichlorobenzene m Benzene Catal sts Group VIII Metals (Pt, Pd, Rh, Ru, Os, Ir, Ni) Rare earth oxide of the Lanthanide series and metal of the Platinum u Supported Palladium catalyst Tem efature 80 - 2750C 400 - 600'C 170 C Pressure atm...

Leong, Chee Kong

1996-01-01T23:59:59.000Z

467

Wastewater recycling and heat reclamation at the Red Lion Central Laundry, Portland, Oregon  

SciTech Connect (OSTI)

This report discusses water, energy, and cost savings that can be achieved in a commercial laundry through the use of a wastewater recycling and heat recovery system. Cost savings are achieved through reductions in water use, reduction in sewage charges, reductions in water heating energy, and potential reductions in water treatment chemicals. This report provides an economic analysis of the impact of capital investment, daily consumption, and local utility rates on the payback period.

Garlick, T.F.; Halverson, M.A.; Ledbetter, M.R.

1996-09-01T23:59:59.000Z

468

Solidification of low-volume power plant sludges. Final report  

SciTech Connect (OSTI)

A literature review was conducted to obtain information on the status of hazardous waste solidification technology and application of this technology to low-volume power plant waste sludges. Because of scarcity of sludge composition data, anticipated major components were identified primarily by chemical reactions that are known to occur during treatment of specific wastewaters. Chemical and physical properties of these sludges were critically analyzed for compatibility with several types of commercially available solidification processes. The study pointed out the need for additional information on the nature of these sludges, especially leaching characteristics and the presence of substances that will interfere with solidification processes. Laboratory studies were recommended for evaluation of solidification process which have the greatest potential for converting hazardous low-volume sludges to non-hazardous waste forms.

Bell, N.E.; Halverson, M.A.; Mercer, B.M.

1981-12-01T23:59:59.000Z

469

E-Print Network 3.0 - activated sewage sludge Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

University Collection: Geosciences ; Environmental Sciences and Ecology 66 Advanced Wastewater Treatment Processes Summary: Treatment Plant Conventional Activated Sludge Process...

470

E-Print Network 3.0 - area etf effluent Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

vegetated polishing marshs (40%); effluent from polishing marshes... . As wastewater treatment plant effluent passes through treatment wetlands, the DOM undergoes...

471

E-Print Network 3.0 - activated sludge microorganisms Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Computer Science, Texas Woman's University Collection: Mathematics 8 Advanced Wastewater Treatment Processes Summary: Treatment Plant Conventional Activated Sludge Process...

472

Waste Treatment and Immobilization Plant U. S. Department of Energy Office of River Protection Submerged Bed Scrubber Condensate Disposition Project - 13460  

SciTech Connect (OSTI)

The Hanford Waste Treatment and Immobilization Plant (WTP) will generate an off-gas treatment system secondary liquid waste stream [submerged bed scrubber (SBS) condensate], which is currently planned for recycle back to the WTP Low Activity Waste (LAW) melter. This SBS condensate waste stream is high in Tc-99, which is not efficiently captured in the vitrified glass matrix [1]. A pre-conceptual engineering study was prepared in fiscal year 2012 to evaluate alternate flow paths for melter off-gas secondary liquid waste generated by the WTP LAW facility [2]. This study evaluated alternatives for direct off-site disposal of this SBS without pre-treatment, which mitigates potential issues associated with recycling. This study [2] concluded that SBS direct disposal is a viable option to the WTP baseline. The results show: - Off-site transportation and disposal of the SBS condensate is achievable and cost effective. - Reduction of approximately 4,325 vitrified WTP Low Activity Waste canisters could be realized. - Positive WTP operational impacts; minimal WTP construction impacts are realized. - Reduction of mass flow from the LAW Facility to the Pretreatment Facility by 66%. - Improved Double Shell Tank (DST) space management is a benefit. (authors)

Yanochko, Ronald M. [Washington River Protection Solutions, P.O. Box 850, Richland, Washington 99352 (United States)] [Washington River Protection Solutions, P.O. Box 850, Richland, Washington 99352 (United States); Corcoran, Connie [AEM Consulting, LLC, 1201 Jadwin Avenue, Richland, Washington 99352 (United States)] [AEM Consulting, LLC, 1201 Jadwin Avenue, Richland, Washington 99352 (United States)

2013-07-01T23:59:59.000Z

473

RECOVERY OF LACTIC ACID FROM AMERICAN CRYSTAL SUGAR COMPANY WASTEWATER  

SciTech Connect (OSTI)

This project has shown that the recovery of several valuable lactic acid products is both technically feasible and economically viable. One of the original objectives of this project was to recover lactic acid. However, the presence of a variety of indigenous bacteria in the wastewater stream and technical issues related to recovery and purification have resulted in the production of lactic acid esters. These esters could by hydrolyzed to lactic acid, but only with unacceptable product losses that would be economically prohibitive. The developed process is projected to produce approximately 200,000 lb per day of lactate esters from wastewater at a single factory at costs that compete with conventional solvents. The lactate esters are good solvents for polymers and resins and could replace acetone, methyl ethyl ketone, MIBK, and other polar solvents used in the polymer industry. Because of their low volatility and viscosity-lowering properties, they will be especially useful for inks for jet printers, alkyl resins, and high-solid paints. Owing to their efficiency in dissolving salts and flux as well as oils and sealants, lactate esters can be used in cleaning circuit boards and machine and engine parts. Unlike conventional solvents, lactate esters exhibit low toxicity, are biodegradable, and are not hazardous air pollutants. Another application for lactate esters is in the production of plasticizers. Severe health problems have been attributed to widely used phthalate ester plasticizers. The U.S. Department of Agriculture showed that replacement of these with inexpensive lactate esters is feasible, owing to their superior polymer compatibility properties. A very large market is projected for polymers prepared from lactic acid. These are called polylactides and are a type of polyester. Thermoplastics of this type have a variety of uses, including moldings, fibers, films, and packaging of both manufactured goods and food products. Polylactides form tough, orientable, self-supporting thin films and have, therefore, been used for adhesives, safety glass, and finishes. If the bacterial culture produces the L-lactic acid enanatiomer form exclusively, the L-lactide prepared from this form can be used for making polymers with good fiber-forming properties. We have not currently achieved the exclusive production of L-lactate in our efforts. However, markets in films and structural shapes are available for polymers and copolymers prepared from the mixed D,L-lactide forms that result from processing the D,L-lactic acid obtained from fermentation such as that occurring naturally in sugar beet wastewater. These materials are slowly biodegraded to harmless compounds in the environment, and they burn with a clean blue flame when incinerated. These materials represent excellent opportunities for utilization of the D,L-lactic mixture produced from natural fermentation of the ACS flume water. Esters can be converted into a lactide, and the alcohol released from the ester can be recycled with no net consumption of the alcohol. Lactide intermediates could be produced locally and shipped to polymer producers elsewhere. The polymer and copolymer markets are extremely large, and the role of lactides in these markets is continuously expanding. The overall process can be readily integrated into existing factory wastewater operations. There are several environmental benefits that would be realized at the factories with incorporation of the lactate recovery process. The process reduces the organic loading to the existing wastewater treatment system that should result in enhanced operability with respect to both solids handling and treated-water quality. A higher-quality treated water will also help reduce odor levels from holding ponds. Several water reuse opportunities are probable, depending on the quality of treated water from the FT process.

Daniel J. Stepan; Edwin S. Olson; Richard E. Shockey; Bradley G. Stevens; John R. Gallagher

2001-04-30T23:59:59.000Z

474

Manganese Based Oxidative Technologies For Water/Wastewater Treatment  

E-Print Network [OSTI]

radical production within catalytic ozonation systems. Thus their catalyst effectiveness was determined by measuring R_(ct), ozone exposure, hydroxyl radical production, and ozone decomposition. The effect of catalyst type, catalyst dosage, pre...

Desai, Ishan

2013-08-27T23:59:59.000Z

475

On-Site Wastewater Treatment Systems: Evapotranspiration Bed (Spanish)  

E-Print Network [OSTI]

Fosa s?ptica de dos compartimentos Suelo arcilloso Piedra quebrada Cama de evapotranspiraci?n Mecha de absorci?n Sistemas individuales para el tratamiento de aguas negras Cama de evapotranspiraci?n Bruce Lesikar y Juan Enciso Promotores... Especialistas en Ingenier?a Agr?cola El Sistema Universitario Texas A&M L-5228S 4-02 Figure 1: Un sistema de lecho de evapotranspiraci?n. U na cama de evapotranspiraci?n (ET) trata las aguas negras usando la evapotranspiraci?n, la p?rdida de agua del suelo por...

Lesikar, Bruce J.; Enciso, Juan

2002-04-18T23:59:59.000Z

476

On-Site Wastewater Treatment Systems: Leaching Chambers (Spanish)  

E-Print Network [OSTI]

Fosa s?ptica de dos compartimientos C?mara de percolaci?n Campo de absorci?n L-5342S 8-00 Figura 1: Los sistemas de c?mara de percolaci?n pueden tener campos de drenaje m?s peque?os que los de sistemas convencionales. Sistemas individuales para el... tratamiento de aguas negras C?maras de percolaci?n Bruce Lesikar, Juan Enciso y Russell Persyn Promotores Especialistas de Ingenier?a Agr?cola, Promotor Adjunto de Conservaci?n del Agua El Sistema Universitario Texas A&M Un sistema de c?mara de percola- ci...

Lesikar, Bruce J.; Enciso, Juan

2000-10-13T23:59:59.000Z

477

On-Site Wastewater Treatment Systems: Spray Distribution System (Spanish)  

E-Print Network [OSTI]

.035 0.035 0.041 0.041 0.109 0.109 0.086 0.086 0.064 0.064 0.045 0.045 Debido al riesgo del contacto humano con las aguas negras, los sistemas de rociado deben tratar las aguas negras a un nivel de calidad muy alto antes de rociarlas a los jardines. Este... sistema debe tratar las aguas negras hasta alcanzar un ?efluente de segunda calidad?. Esto quiere decir que debe eliminar del 85 al 98 por ciento de los s?lidos o la materia org?nica. Tambi?n debe desinfectar las aguas negras para eliminar los pat...

Lesikar, Bruce J.; Enciso, Juan

2002-04-18T23:59:59.000Z

478

On-Site Wastewater Treatment Systems: Sand Filters (Spanish)  

E-Print Network [OSTI]

Arena filtrante Fosa s?ptica de dos compartimientos con c?mara de bombeo Descarga al campo de absorci?n L-5229S 8-00 Figura 1: Un sistema de filtro de arena. Sistemas individuales para el tratamiento de aguas negras Filtro de arena Bruce Lesikar y... Juan Enciso Promotores Especialistas de Ingenier?a Agr?cola El Sistema Universitario Texas A&M L a filtraci?n por arena es una de las tecnolog?as de tratamiento de aguas negras m?s antiguas que se conoce. Si se dise?a, construye, opera y mantiene...

Lesikar, Bruce J.; Enciso, Juan

2000-10-13T23:59:59.000Z

479

On-Site Wastewater Treatment Systems: Tablet Chlorination (Spanish)  

E-Print Network [OSTI]

L-5344S 01-06 Figura 1: La manera m?s com?n de desinfectar los sistemas individuales es la cloraci?n con pastilla. Sistemas individuales para el tratamiento de aguas negras Cloraci?n con pastilla Richard Weaver, Bruce Lesikar y Juan Enciso Profesor... de Microbiolog?a del Medio Ambiente y del Suelo, Promotores Especialistas de Ingenier?a Agr?cola El Sistema Universitario Texas A&M L as aguas negras rociadas al c?sped deben desinfectarse primero para evitar malos olores y eliminar microorganismos...

Weaver, Richard; Lesikar, Bruce J.; Enciso, Juan

2006-01-30T23:59:59.000Z

480

On-Site Wastewater Treatment Systems: Mound Systems (Spanish)  

E-Print Network [OSTI]

Tanque s?ptico Tanque bomba Tela geotextil Tubo de distribuci?n Arena Grava L-5414S 4-02 Figure 1: Un sistema de mont?culo para distribuir aguas negras tratadas al suelo. U n sistema de mont?culo para el tratamiento de aguas negras es un sistema de... campo de absorci?n colocado encima de la superficie natural del suelo. Los sistemas de mont?culo se utilizan para distribuir las aguas negras en lugares donde hay muy poca tierra antes de llegar a las aguas subterr?neas, suelos impermeables o lechos de...

Lesikar, Bruce J.

2002-04-18T23:59:59.000Z

Note: This page contains sample records for the topic "wastewater treatment plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

On-Site Wastewater Treatment Systems: Pump Tank (Spanish)  

E-Print Network [OSTI]

Sistema de tratamiento de aguas negras Tanque bomba Sistema de distribuci?n por rociado L-5346S 8-00 Figura 1: Un tanque bomba recolecta las aguas negras tratadas y las dosifica en intervalos al suelo. Sistemas individuales para el tratamiento de... aguas negras Tanque bomba Bruce Lesikar y Juan Enciso Promotores Especialistas de Ingenier?a Agr?cola El Sistema Universitario Texas A&M L os tanques bomba son contendores de hormig?n, fibra de vidrio o polietileno que recolectan las aguas negras que ser...

Lesikar, Bruce J.; Enciso, Juan

2000-08-29T23:59:59.000Z

482

On-Site Wastewater Treatment Systems: Trickling Filter (Spanish)  

E-Print Network [OSTI]

Campo de absorci?n Tanque s?ptico Tanque de dosificaci?n/Clarificador Filtro percolador Sistemas individuales para el tratamiento de aguas negras Filtro percolador Bruce Lesikar y Juan Enciso Promotores Especialistas en Inenier?a Agr?cola El Sistema... Universitario Texas A&M L-5345S 4-02 Figura 1: Los filtros percoladores son tecnolog?a sencilla para tratar las aguas negras. U n filtro percolador es una cama de grava o un medio pl?stico sobre el cual se roc?an las aguas negras pretratadas. En este sistema de...

Lesikar, Bruce J.; Enciso, Juan

2002-04-18T23:59:59.000Z

483

Microbial fuel cell treatment of fuel process wastewater  

DOE Patents [OSTI]

The present invention is directed to a method for cleansing fuel processing effluent containing carbonaceous compounds and inorganic salts, the method comprising contacting the fuel processing effluent with an anode of a microbial fuel ell, the anode containing microbes thereon which oxidatively degrade one or more of the carbonaceous compounds while producing electrical energy from the oxidative degradation, and directing the produced electrical energy to drive an electrosorption mechanism that operates to reduce the concentration of one or more inorganic salts in the fuel processing effluent, wherein the anode is in electrical communication with a cathode of the microbial fuel cell. The invention is also directed to an apparatus for practicing the method.

Borole, Abhijeet P; Tsouris, Constantino

2013-12-03T23:59:59.000Z

484

On-Site Wastewater Treatment Systems: Constructed Wetlands (Spanish)  

E-Print Network [OSTI]

la grava, las aguas negras salen del humedal a trav?s de un pozo colector que controla el nivel de agua. El pozo colector permite ajustar el nivel de agua, porque el nivel de agua del humedal debe estar m?s abajo que la superficie del medio para.... Tal vez tenga que ajustar el nivel del agua del humedal de modo que est? por debajo de la superficie del medio. Cuando el nivel del agua est? muy cerca de la superficie de la grava, el humedal tiene un mal olor. Si baja la tuber?a de desag?e en el pozo...

Lesikar, Bruce J.; Enciso, Juan

2002-04-18T23:59:59.000Z

485

On-Site Wastewater Treatment Systems: Operation and Maintenance (Spanish)  

E-Print Network [OSTI]

adicional a las aguas negras antes de enviarlas al suelo. Si las aguas negras no se tratan adecuadamente antes de que lleguen al agua subterr?nea, el pozo de agua de su casa podr?a contaminarse. Existe una excepci?n a la regla de que todas las aguas negras...

Lesikar, Bruce J.; Enciso, Juan

2000-08-15T23:59:59.000Z

486

On-Site Wastewater Treatment Systems: Alternative Collection Systems (Spanish)  

E-Print Network [OSTI]

: Mapa base de la comunidad rural hipot?tica de la EPA (adaptado de la EPA, 1997). Representa 10 casas rurales con sistemas individuales que funcionans debidamente Rio Direcci?n del flujo del agua subterr?nea (Todas las casas tienen un terreno de un...

Lesikar, Bruce J.; Enciso, Juan

2002-04-22T23:59:59.000Z

487

Opportunities for CHP at Wastewater Treatment Facilities: Market Analysis  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDiesel Engines |OpenEnergy 8Operations U.S.forand

488

Water Treatment System Cleans Marcellus Shale Wastewater | Department of  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012NuclearBradleyBudget Water Power Program1 Water

489

Wastewater treatment in Las Vegas, Santa Barbara, Honduras  

E-Print Network [OSTI]

The Municipality of Las Vegas, Honduras is located immediately to the west of Lake Yojoa, the largest inland lake in Honduras. Beginning in 2005, the Massachusetts Institute of Technology (MIT) began working with stakeholders ...

Hodge, Matthew M

2008-01-01T23:59:59.000Z

490

Opportunities for Combined Heat and Power at Wastewater Treatment...  

Broader source: Energy.gov (indexed) [DOE]

option for WWTFs that have, or are planning to install, anaerobic digesters. The biogas flow from the digester can be used as fuel to generate electricity and heat in a CHP...

491

Opportunities for CHP at Wastewater Treatment Facilities: Market...  

Broader source: Energy.gov (indexed) [DOE]

2008 EPA CHP Partnership Update Biomass Program Perspectives on Anaerobic Digestion and Fuel Cell Integration at Biorefineries Biogas Technologies and Integration with Fuel Cells...

492

Enhanced Renewable Methane Production System Benefits Wastewater Treatment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia NanoparticlesSmartAffects the Future Energy Mix Click

493

Treatment of Fuel Process Wastewater Using Fuel Cells - Energy Innovation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2TopoPortal Hydrogen and Fuel Cell Hydrogen and Fuel

494

Field's Point Wastewater Treatment Facility (Narragansett Bay Commission) |  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 NoSanEnergy InformationInformationOpen Energy

495

Polycyclic aromatic hydrocarbons in San Francisco Estuary sediments  

E-Print Network [OSTI]

. The estuary receives stormwater and wastewater effluents from 40 municipal wastewater treatment plants, 30 urbanized and rural areas surrounding the Delta. Temporal trend analysis showed a statistically significant

496

EnvironmentalHealth Dedicated to the advancement of the environmental health professional Volume 70, No. 7 March 2008  

E-Print Network [OSTI]

Technology to Improve Drinking Water Quality Using Natural Treatment Methods in Rural Tanzania in Escherichia coli Isolated in Wastewater and Sludge from Poultry Slaughterhouse Wastewater Plants

497

E-Print Network 3.0 - ammonia removal vpcar Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and simple amines early in the sewage treabnentprocess. Removal of ammonia from wastewater include... THE ALLOWABLE AMMONIA CONCENTRATIONS IN WASTEWATER TREATMENT PLANT...

498

Electrochimica Acta 55 (2010) 33983403 Contents lists available at ScienceDirect  

E-Print Network [OSTI]

to the energy needed for treatment of the wastewater [2] and various wastewaters in the US holds 17 GW of power wastewater, ocean sediments, and animal wastes, may afford a powerful approach for electricity production to wastewater treatment could alter a wastewater treatment plant from an energy consumer to an energy producer

499

Assessment of Waste Treatment Plant Lab C3V (LB-S1) Stack Sampling Probe Location for Compliance with ANSI/HPS N13.1-1999  

SciTech Connect (OSTI)

This report documents a series of tests used to assess the proposed air sampling location in the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Lab C3V (LB-S1) exhaust stack with respect to the applicable criteria regarding the placement of an air sampling probe. Federal regulations require that an air sampling probe be located in the exhaust stack in accordance with the criteria of American National Standards Institute/Health Physics Society (ANSI/HPS) N13.1-1999, Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stack and Ducts of Nuclear Facilities. These criteria address the capability of the sampling probe to extract a sample that represents the effluent stream.

Glissmeyer, John A.; Geeting, John GH

2013-02-01T23:59:59.000Z

500

Water protection in coke-plant design  

SciTech Connect (OSTI)

Wastewater generation, water consumption, and water management at coke plants are considered. Measures to create runoff-free water-supply and sewer systems are discussed. Filters for water purification, corrosion inhibitors, and biocides are described. An integrated single-phase technology for the removal of phenols, thiocyanides, and ammoniacal nitrogen is outlined.

G.I. Alekseev [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z