Powered by Deep Web Technologies
Note: This page contains sample records for the topic "waste-to-energy msw landfill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

CCA-Treated wood disposed in landfills and life-cycle trade-offs with waste-to-energy and MSW landfill disposal  

E-Print Network (OSTI)

Environmental Protection Agency (US EPA) regulations, it produces energy and does not emit fossil carbonCCA-Treated wood disposed in landfills and life-cycle trade-offs with waste-to-energy and MSW in waste-to-energy (WTE) facilities. In other countries, the predominant disposal option for wood

Florida, University of

2

Optimizing Organic Waste to Energy Operations  

Science Conference Proceedings (OSTI)

A waste-to-energy firm that recycles organic waste with energy recovery performs two environmentally beneficial functions: it diverts waste from landfills and it produces renewable energy. At the same time, the waste-to-energy firm serves and collects ... Keywords: environment, operating strategy, organic waste to energy, regulation, sustainability

Bar?? Ata; Deishin Lee; Mustafa H. Tongarlak

2012-04-01T23:59:59.000Z

3

Waste-to-Energy Evaluation: U.S. Virgin Islands  

SciTech Connect

This NREL technical report evaluates the environmental impact and fundamental economics of waste-to-energy (WTE) technology based on available data from commercially operating WTE facilities in the United States. In particular, it considers life-cycle impacts of WTE as compared to landfill disposal and various forms of electrical generation, as well as WTE impacts on source reduction or recycling programs. In addition, it evaluates the economics and potential environmental impact of WTE in the U.S. Virgin Islands (USVI) based on existing USVI waste stream characterization data, recycling challenges unique to the USVI, and the results of cost and environmental modeling of four municipal solid waste (MSW) management options, including landfill, refuse-derived fuel (RDF) production, recycling, and gassification plus RDF.

Davis, J.; Hasse, S.; Warren, A.

2011-08-01T23:59:59.000Z

4

Landfill Methane Project Development Handbook | Open Energy Information  

Open Energy Info (EERE)

Landfill Methane Project Development Handbook Landfill Methane Project Development Handbook Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Landfill Methane Project Development Handbook Agency/Company /Organization: United States Environmental Protection Agency Sector: Climate, Energy Focus Area: Biomass, - Landfill Gas Phase: Determine Baseline, Evaluate Options, Get Feedback Resource Type: Guide/manual User Interface: Website Website: www.epa.gov/lmop/publications-tools/handbook.html Cost: Free References: Project Development Handbook[1] The handbook describes the process of implementing a waste-to-energy landfill gas project. Overview "Approximately 250 million tons of solid waste was generated in the United States in 2008 with 54 percent deposited in municipal solid waste (MSW)

5

Waste Not, Want Not: Analyzing the Economic and Environmental Viability of Waste-to-Energy (WTE) Technology for Site-Specific Optimization of Renewable Energy Options  

Science Conference Proceedings (OSTI)

Waste-to-energy (WTE) technology burns municipal solid waste (MSW) in an environmentally safe combustion system to generate electricity, provide district heat, and reduce the need for landfill disposal. While this technology has gained acceptance in Europe, it has yet to be commonly recognized as an option in the United States. Section 1 of this report provides an overview of WTE as a renewable energy technology and describes a high-level model developed to assess the feasibility of WTE at a site. Section 2 reviews results from previous life cycle assessment (LCA) studies of WTE, and then uses an LCA inventory tool to perform a screening-level analysis of cost, net energy production, greenhouse gas (GHG) emissions, and conventional air pollution impacts of WTE for residual MSW in Boulder, Colorado. Section 3 of this report describes the federal regulations that govern the permitting, monitoring, and operating practices of MSW combustors and provides emissions limits for WTE projects.

Funk, K.; Milford, J.; Simpkins, T.

2013-02-01T23:59:59.000Z

6

Waste to Energy Time Activities  

E-Print Network (OSTI)

SEMINAR Waste to Energy Time Activities 9:30-9:40 Brief introduction of participants 9:40-10:10 Presentation of Dr. Kalogirou, "Waste to Energy: An Integral Part of Worldwide Sustainable Waste Management" 10. Sofia Bethanis, "Production of synthetic aggregates for use in structural concrete from waste to energy

Columbia University

7

Evaluation of the impact of RCRA amendments on waste-to-energy activities by using a system simulation computer code  

DOE Green Energy (OSTI)

The primary methodology that is used for disposal of municipal solid waste is the use of land fills; 80--85% of the municipal solid waste (MSW) produced in the country currently is land filled. The two other disposal alternatives used are recycling and incineration. Waste-to-energy technology (WTE) which incinerates MSW to produce electricity and/or steam is attractive in other cases since it reduces landfill volume, reduces the consumption of fossil and other fuels, and produces a revenue stream from the sale of the electricity or steam. The gaseous effluents from landfills can also be used to fuel power plants. Recycling and material separation programs can have a substantial impact on the throughput and heating value of MSW collected and thus impact WTE plant economics; the magnitude of the impact will depend upon a number of factors such as what materials and what fraction are separated and recycled, the design of the WTE plant itself (its operating window); the contractual arrangements relative to maintaining throughput (ability to adjust catchment area), limitations on adjusting tipping fees, etc. Mandated increased recycling and landfill gaseous effluent control -- could alter substantially the economics and competitive position of the MSW-WTE industry. The objectives of this study are: (1) to simulate typical WTE plants fired with a national average waste stream, (2) to evaluate the parametric effects of waste component recycling on the performance of the typical WTE plants, and (3) to assess the impact of RCRA recycling amendments on the performance of the typical WTE plants and on the potential methane generation of typical landfills. The relevant technical issues, technical approach, results and conclusions are presented.

Chang, S.L.; Petrick, M.; Stodolsky, F.; Freckmann, A.B.

1994-09-01T23:59:59.000Z

8

The environmental comparison of landfilling vs. incineration of MSW accounting for waste diversion  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Residential waste diversion initiatives are more successful with organic waste. Black-Right-Pointing-Pointer Using a incineration to manage part of the waste is better environmentally. Black-Right-Pointing-Pointer Incineration leads to more power plant emission offsets. Black-Right-Pointing-Pointer Landfilling all of the waste would be preferred financially. - Abstract: This study evaluates the environmental performance and discounted costs of the incineration and landfilling of municipal solid waste that is ready for the final disposal while accounting for existing waste diversion initiatives, using the life cycle assessment (LCA) methodology. Parameters such as changing waste generation quantities, diversion rates and waste composition were also considered. Two scenarios were assessed in this study on how to treat the waste that remains after diversion. The first scenario is the status quo, where the entire residual waste was landfilled whereas in the second scenario approximately 50% of the residual waste was incinerated while the remainder is landfilled. Electricity was produced in each scenario. Data from the City of Toronto was used to undertake this study. Results showed that the waste diversion initiatives were more effective in reducing the organic portion of the waste, in turn, reducing the net electricity production of the landfill while increasing the net electricity production of the incinerator. Therefore, the scenario that incorporated incineration performed better environmentally and contributed overall to a significant reduction in greenhouse gas emissions because of the displacement of power plant emissions; however, at a noticeably higher cost. Although landfilling proves to be the better financial option, it is for the shorter term. The landfill option would require the need of a replacement landfill much sooner. The financial and environmental effects of this expenditure have yet to be considered.

Assamoi, Bernadette [Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5 (Canada); Lawryshyn, Yuri, E-mail: yuri.lawryshyn@utoronto.ca [Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5 (Canada)

2012-05-15T23:59:59.000Z

9

CEWEP -Confederation of European Waste-to-Energy Plants Boulevard Clovis 12A  

E-Print Network (OSTI)

follow at a distance, are energy from Landfill Gas (LFG) extraction, co-incineration of SRF (Solid; BEP ­ Biomass Energy Plants; LFG ­ Landfill Gas; WtE ­ Waste-to-Energy 1 Excluding agricultural policy would be even more ambitious, replacing landfilling). Both the supply of renewable electricity

10

Waste to Energy Technologies | Open Energy Information  

Open Energy Info (EERE)

Waste to Energy Technologies Jump to: navigation, search Name Waste to Energy Technologies Place Madrid, Spain Zip 28023 Sector Biomass Product Turn key WtEbiomass plant supplier...

11

An integrated analytical framework for quantifying the LCOE of waste-to-energy facilities for a range of greenhouse gas emissions policy and technical factors  

SciTech Connect

This study presents a novel integrated method for considering the economics of waste-to-energy (WTE) facilities with priced greenhouse gas (GHG) emissions based upon technical and economic characteristics of the WTE facility, MSW stream, landfill alternative, and GHG emissions policy. The study demonstrates use of the formulation for six different policy scenarios and explores sensitivity of the results to ranges of certain technical parameters as found in existing literature. The study shows that details of the GHG emissions regulations have large impact on the levelized cost of energy (LCOE) of WTE and that GHG regulations can either increase or decrease the LCOE of WTE depending on policy choices regarding biogenic fractions from combusted waste and emissions from landfills. Important policy considerations are the fraction of the carbon emissions that are priced (i.e. all emissions versus only non-biogenic emissions), whether emissions credits are allowed due to reducing fugitive landfill gas emissions, whether biogenic carbon sequestration in landfills is credited against landfill emissions, and the effectiveness of the landfill gas recovery system where waste would otherwise have been buried. The default landfill gas recovery system effectiveness assumed by much of the industry yields GHG offsets that are very close to the direct non-biogenic GHG emissions from a WTE facility, meaning that small changes in the recovery effectiveness cause relatively larger changes in the emissions factor of the WTE facility. Finally, the economics of WTE are dependent on the MSW stream composition, with paper and wood being advantageous, metal and glass being disadvantageous, and plastics, food, and yard waste being either advantageous or disadvantageous depending upon the avoided tipping fee and the GHG emissions price.

Townsend, Aaron K., E-mail: aarontownsend@utexas.edu [Department of Mechanical Engineering, University of Texas at Austin, 1 University Station C2200, Austin, TX 78712 (United States); Webber, Michael E. [Department of Mechanical Engineering, University of Texas at Austin, 1 University Station C2200, Austin, TX 78712 (United States)

2012-07-15T23:59:59.000Z

12

Waste to Energy Power Production at DOE and DOD Sites  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste to Energy Power Production Waste to Energy Power Production at DOE and DOD Sites January 13, 2011 Overview - Federal Agency Innovations DOE: S avannah River S ite * Biomass Heat and Power US AF: Hill Air Force Base * Landfill Gas to Energy Generation Ameresco independent DOES avannah River S ite DOES avannah River S ite (DOE-S R) * Georgia / S outh Carolina border * 300+ sq miles extending into 3 counties * Began operations in 1950s Challenges faced by DOE-S R * Aging Infrastructure Ameresco independent * Coal and fuel oil power plants * Increased / new clean air requirements * New energy efficiency / sustainability requirements Business Case Analysis S ite need for both steam and power Repair, renovate, or replace Mandates and desire for renewable energy solution Appropriated funds not available

13

AUSTRIA SHOWCASE WASTE-to-ENERGY  

E-Print Network (OSTI)

1 AUSTRIA SHOWCASE WASTE-to-ENERGY in AUSTRIA AECC Aberdeen Exhibition & Conference Center (M.I.T.) #12;2 Table of Content · Development of waste management in Austria · Status-Quo of waste management in EU countries · Separated collection: Recycling and Waste-to-Energy · Development of emission

Hone, James

14

Plastic Products Weights in MSW by Category, 2005  

U.S. Energy Information Administration (EIA)

Plastic Products Weights in Municipal Solid Waste (MSW) by Category, 2005 (Thousand Tons) ... with energy recovery, discards to landfill, and other disposal.

15

EA-1862: Oneida Seven Generation Corporation Waste-To-Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

62: Oneida Seven Generation Corporation Waste-To-Energy System, Ashwaubenon, Wisconsin EA-1862: Oneida Seven Generation Corporation Waste-To-Energy System, Ashwaubenon, Wisconsin...

16

Waste To Energy -Strategies and Payoffs  

E-Print Network (OSTI)

Many industrial firms are taking a hard look at converting waste to energy. The opportunities for positive significant operational impact are not without large capital outlays. Past experiences indicate that an understanding of the basic alternatives, strategies, and typical economic performance can go a long way in directing corporate efforts, and in engineering an economically viable project. This paper addresses boiler-and engine-based systems, their performance and operating advantages and disadvantages, and the economic performance of each of the major hardware alternatives. This formulation and decision process for actual waste to energy projects is examined with sample energy and economic examples. These results should assist the energy manager in deciding between waste-fired cogeneration or conversion of the powerhouse to alternative fuels.

Gilbert, J. S.

1982-01-01T23:59:59.000Z

17

The Conversion of Waste to Energy  

E-Print Network (OSTI)

Almost every industrial operation produces some combustible waste, but conversion of this to useful energy is often more difficult than with other energy recovery projects and requires careful attention to design, operating and maintaining the facilities. Each application requires a careful approach tailored to the installation, but some general design and economic principles do exist. Several waste to energy projects will be discussed to illustrate these principles.

John, T.; Cheek, L.

1980-01-01T23:59:59.000Z

18

Energy Recovery Council (ERC) Wast to Energy (WTE) | Open Energy  

Open Energy Info (EERE)

Energy Recovery Council (ERC) Wast to Energy (WTE) Energy Recovery Council (ERC) Wast to Energy (WTE) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Recovery Council (ERC) Wast to Energy (WTE) Agency/Company /Organization: Energy Recovery Council (ERC) Sector: Energy Focus Area: Biomass, - Waste to Energy Phase: Create a Vision Resource Type: Dataset, Publications, Guide/manual User Interface: Website Website: www.wte.org/ Cost: Free The Energy Recovery Council is a national trade organization representing the waste-to-energy industry and communities that own waste-to-energy facilities. Overview The Energy Recovery Council is a national trade organization representing the waste-to-energy industry and communities that own waste-to-energy facilities. The website includes information on waste-to-energy basics

19

T:\\013.ffentlichkeitsarbeit\\05.Vortrge\\32.NAWTEC 11 Florida 2003\\A_Ways to Improve the Efficiency of Waste to Energy Plants.doc Ways to Improve the Efficiency of Waste to Energy Plants  

E-Print Network (OSTI)

@mvr-hh.de Abstract Up to now the emissions of waste-to-energy plants have been of major concern for the operators. There is also legislation in the pipeline restricting landfilling of untreated waste. In view of the discussions in mind the recovery rate of reusable materials from the incineration of waste or flue gas treatment

Columbia University

20

Waste-to-Energy Biomass Digester with Decreased Water Consumption  

Waste-to-Energy Biomass Digester with Decreased Water Consumption Contact Information: Jeremy Nelson Phone: 970.491.7100 Email: ...

Note: This page contains sample records for the topic "waste-to-energy msw landfill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Waste-to-Energy Biomass Digester with Decreased Water ...  

Waste-to-Energy Biomass Digester with Decreased Water Consumption Contact Information: Jeremy Nelson Phone: 970.491.7100 Email: ...

22

MSW Biogenic | OpenEI  

Open Energy Info (EERE)

MSW Biogenic MSW Biogenic Dataset Summary Description Provides annual consumption (in quadrillion Btu) of renewable energy by energy use sector (residential, commercial, industrial, transportation and electricity) and by energy source (e.g. solar, biofuel) for 2004 through 2008. Original sources for data are cited on spreadsheet. Also available from: www.eia.gov/cneaf/solar.renewables/page/trends/table1_2.xls Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords annual energy consumption biodiesel Biofuels biomass energy use by sector ethanol geothermal Hydroelectric Conventional Landfill Gas MSW Biogenic Other Biomass renewable energy Solar Thermal/PV Waste wind Wood and Derived Fuels Data application/vnd.ms-excel icon RE Consumption by Energy Use Sector, Excel file (xls, 32.8 KiB)

23

Waste-to-energy compendium. Final report  

DOE Green Energy (OSTI)

A survey is made of 35 waste-to-energy recovery projects throughout the US. Included are nine refuse-derived fuel (RDF) production facilities, six RDF user facilities, two combined RDF production-user facilities, and 18 mass burning facilities with energy recovery. Only those facilities that are fully operational or those in advanced stages of startup and shakedown are surveyed. Information is provided on processing capacities, operation and maintenance problems, equipment specifications, capital and operating costs, and the current status of each facility. In addition, process flow schematics are provided for each of the nine RDF production plants and both RDF production-user plants. Unless otherwise indicated, the data in this report have been updated to October or November, 1980.

Not Available

1981-04-01T23:59:59.000Z

24

Global Waste to Energy Conversion Company GWECC | Open Energy Information  

Open Energy Info (EERE)

Waste to Energy Conversion Company GWECC Waste to Energy Conversion Company GWECC Jump to: navigation, search Name Global Waste to Energy Conversion Company (GWECC) Place Washington, DC Product GWECC is a global alternative energy company headquartered in Washington DC, USA. References Global Waste to Energy Conversion Company (GWECC)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Global Waste to Energy Conversion Company (GWECC) is a company located in Washington, DC . References ↑ "Global Waste to Energy Conversion Company (GWECC)" Retrieved from "http://en.openei.org/w/index.php?title=Global_Waste_to_Energy_Conversion_Company_GWECC&oldid=345924" Categories: Clean Energy Organizations

25

Landfill gas emission prediction using Voronoi diagrams and importance sampling  

Science Conference Proceedings (OSTI)

Municipal solid waste (MSW) landfills are among the nation's largest emitters of methane, a key greenhouse gas, and there is considerable interest in quantifying the surficial methane emissions from landfills. There are limitations in obtaining accurate ... Keywords: Air dispersion modeling, Delaunay tessellation, Kriging, Least squares, MSW landfill, Voronoi diagram

K. R. Mackie; C. D. Cooper

2009-10-01T23:59:59.000Z

26

An Overview of Hot Corrosion in Waste to Energy Boiler ...  

Science Conference Proceedings (OSTI)

Presentation Title, An Overview of Hot Corrosion in Waste to Energy Boiler ... boiler designers, and boiler tube manufacturers since quite a few number of boiler...

27

Waste-to-Energy Biomass Digester with Decreased Water Consumption  

Waste-to-Energy Biomass Digester with Decreased Water Consumption ... Able to digest multiple types of waste, including bovine, equine, and poultry manure

28

NREL: Technology Deployment - Biopower and Waste-to-Energy Solutions  

NLE Websites -- All DOE Office Websites (Extended Search)

Opportunities, and Options for Advancing Bioenergy Waste-to-Energy Evaluation: U.S. Virgin Islands See all our publications Printable Version Technology Deployment Home...

29

Aerobic landfill bioreactor  

DOE Patents (OSTI)

The present invention includes a system of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

Hudgins, Mark P (Aiken, SC); Bessette, Bernard J (Aiken, SC); March, John C (Winterville, GA); McComb, Scott T. (Andersonville, SC)

2002-01-01T23:59:59.000Z

30

Aerobic landfill bioreactor  

DOE Patents (OSTI)

The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

Hudgins, Mark P (Aiken, SC); Bessette, Bernard J (Aiken, SC); March, John (Winterville, GA); McComb, Scott T. (Andersonville, SC)

2000-01-01T23:59:59.000Z

31

Kent County Waste to Energy Facility Biomass Facility | Open Energy  

Open Energy Info (EERE)

Kent County Waste to Energy Facility Biomass Facility Kent County Waste to Energy Facility Biomass Facility Jump to: navigation, search Name Kent County Waste to Energy Facility Biomass Facility Facility Kent County Waste to Energy Facility Sector Biomass Facility Type Municipal Solid Waste Location Kent County, Michigan Coordinates 43.0097027°, -85.520024° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0097027,"lon":-85.520024,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

32

EA-1860: Richland Renewable Energy Waste-to-Energy Project, Richland...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0: Richland Renewable Energy Waste-to-Energy Project, Richland, Wisconsin EA-1860: Richland Renewable Energy Waste-to-Energy Project, Richland, Wisconsin Summary This EA evaluates...

33

EA-0952: The Louisiana State University Waste-to Energy Incinerator...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2: The Louisiana State University Waste-to Energy Incinerator, Baton Rouge, Louisiana EA-0952: The Louisiana State University Waste-to Energy Incinerator, Baton Rouge, Louisiana...

34

Waste-to-Energy and Fuel Cell Technologies Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste-to-Energy and Fuel Cell Waste-to-Energy and Fuel Cell T h l i O i Innovation for Our Energy Future Technologies Overview Presented to: DOD-DOE Waste-to- Energy Workshop Energy Workshop Dr. Robert J. Remick J 13 2011 January 13, 2011 Capital Hilton Hotel Washington, DC NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Global Approach for Using Biogas Innovation for Our Energy Future Anaerobic Digestion of Organic Wastes is a Good Source of Methane. Organic waste + methanogenic bacteria → methane (CH 4 ) Issues: High levels of contamination Time varying output of gas quantity and quality Innovation for Our Energy Future Photo courtesy of Dos Rios Water Recycling Center, San Antonio, TX

35

Waste-to-Energy Evaluation: U.S. Virgin Islands  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste-to-Energy Evaluation: Waste-to-Energy Evaluation: U.S. Virgin Islands Jerry Davis, Scott Haase, and Adam Warren Technical Report NREL/TP-7A20-52308 August 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Waste-to-Energy Evaluation: U.S. Virgin Islands Jerry Davis, Scott Haase, and Adam Warren Prepared under Task No(s). IDVI.0000 and IDVI.0032 Technical Report NREL/TP-7A20-52308 August 2011 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

36

Waste to Energy and Absorption Chiller: A Case Study  

E-Print Network (OSTI)

All measured performance characteristics corresponded well to manufacturer's specifications or were within the expected range for this type of incinerator. The simplified economic analysis showed a payback of period 4.5 years. An optimized payback calculation based on a set of possible improvements to the waste-to-energy system showed a payback period of 3.8 years.

Wolpert, J.

1990-01-01T23:59:59.000Z

37

Proceedings of the 17th Annual North American Waste-to-Energy Conference May 18-20, 2009, Chantilly, Virginia, USA  

E-Print Network (OSTI)

with 100ml/min of purge gas at 825o C). Two main steps of thermal degradation have been observed. The first the optimal operating regime for MSW gasification, a series of tests covering a range of temperatures (280) was landfilled and more than 31 million tons (12.4% of total) of materials were combusted with energy recovery[1

Columbia University

38

Integrated assessment of a new Waste-to-Energy facility in Central Greece in the context of regional perspectives  

Science Conference Proceedings (OSTI)

The main aim of this study is the integrated assessment of a proposed Waste-to-Energy facility that could contribute in the Municipal Solid Waste Management system of the Region of Central Greece. In the context of this paper alternative transfer schemes for supplying the candidate facility were assessed considering local conditions and economical criteria. A mixed-integer linear programming model was applied for the determination of optimum locations of Transfer Stations for an efficient supplying chain between the waste producers and the Waste-to-Energy facility. Moreover different Regional Waste Management Scenarios were assessed against multiple criteria, via the Multi Criteria Decision Making method ELECTRE III. The chosen criteria were total cost, Biodegradable Municipal Waste diversion from landfill, energy recovery and Greenhouse Gas emissions and the analysis demonstrated that a Waste Management Scenario based on a Waste-to-Energy plant with an adjacent landfill for disposal of the residues would be the best performing option for the Region, depending however on the priorities of the decision makers. In addition the study demonstrated that efficient planning is necessary and the case of three sanitary landfills operating in parallel with the WtE plant in the study area should be avoided. Moreover alternative cases of energy recovery of the candidate Waste-to-Energy facility were evaluated against the requirements of the new European Commission Directive on waste in order for the facility to be recognized as recovery operation. The latter issue is of high significance and the decision makers in European Union countries should take it into account from now on, in order to plan and implement facilities that recover energy efficiently. Finally a sensitivity check was performed in order to evaluate the effects of increased recycling rate, on the calorific value of treated Municipal Solid Waste and the gate fee of the candidate plant and found that increased recycling efforts would not diminish the potential for incineration with energy recovery from waste and neither would have adverse impacts on the gate fee of the Waste-to-Energy plant. In general, the study highlighted the need for efficient planning in solid waste management, by taking into account multiple criteria and parameters and utilizing relevant tools and methodologies into this context.

Perkoulidis, G. [Laboratory of Heat Transfer and Environmental Engineering, Department of Mechanical Engineering, Aristotle University of Thessaloniki, Box 483, GR-54124 Thessaloniki (Greece); Papageorgiou, A., E-mail: giou6@yahoo.g [Laboratory of Heat Transfer and Environmental Engineering, Department of Mechanical Engineering, Aristotle University of Thessaloniki, Box 483, GR-54124 Thessaloniki (Greece); Karagiannidis, A. [Laboratory of Heat Transfer and Environmental Engineering, Department of Mechanical Engineering, Aristotle University of Thessaloniki, Box 483, GR-54124 Thessaloniki (Greece); Kalogirou, S. [Waste to Energy Research and Technology Council (Greece)

2010-07-15T23:59:59.000Z

39

9th Annual North American Waste to Energy Conference A CANADIAN PERSPECTIVE ON WASTE-TO-ENERGY  

E-Print Network (OSTI)

-TO-ENERGY Ninth Annual North American Waste-To-Energy Conference May 6-9, 2001 Miami, Florida Rob C. Rivers, CET on a real time basis, via remote modem from the Region's and MacViro offices. · Providing for monthly area for the waste prior to being loaded into the incinerator. The storage area has a capacity

Columbia University

40

Waste-to-Energy Evaluation: U.S. Virgin Islands  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste-to-Energy Evaluation: U.S. Virgin Islands Jerry Davis, Scott Haase, and Adam Warren Technical Report NREL/TP-7A20-52308 August 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Waste-to-Energy Evaluation: U.S. Virgin Islands Jerry Davis, Scott Haase, and Adam Warren Prepared under Task No(s). IDVI.0000 and IDVI.0032 Technical Report NREL/TP-7A20-52308 August 2011 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

Note: This page contains sample records for the topic "waste-to-energy msw landfill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Waste-to-Energy using Fuel Cells Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste-to-Energy using Fuel Cells Workshop Capital Hilton Hotel, Washington DC January 13th, 2011 8:30 am to 5:00 pm Agenda 8:30 am Welcome, introductions and meeting logistics Pete Devlin, Department of Energy (DOE) Fuel Cell Technologies Program Overall Purpose * To identify DOD-DOE waste-to-energy and fuel cells opportunities * To identify challenges and determine actions to address them * To determine specific ways fuel cell and related technologies can help meet Executive Order 13514 requirements * To identify the next steps for collaboration Background Materials Provided * DOD-DOE MOU - http://www.energy.gov/news/documents/Enhance-Energy-Security-MOU.pdf * Executive Order 13514 - http://edocket.access.gpo.gov/2009/pdf/E9-24518.pdf

42

Renewable Energy 32 (2007) 12431257 Methane generation in landfills  

E-Print Network (OSTI)

2006 Abstract Methane gas is a by-product of landfilling municipal solid wastes (MSW). Most tonnes of methane annually, 70% of which is used to generate heat and/or electricity. The landfill gas. All rights reserved. Keywords: Landfill gas; Renewable energy; Municipal solid waste; Biogas; Methane

Columbia University

43

Fuel Cell Technologies Office: Waste-to-Energy using Fuel Cells...  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste-to-Energy using Fuel Cells Workshop to someone by E-mail Share Fuel Cell Technologies Office: Waste-to-Energy using Fuel Cells Workshop on Facebook Tweet about Fuel Cell...

44

Fuel Cell Technologies Office: Waste-to-Energy using Fuel Cells...  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste-to-Energy using Fuel Cells Webinar to someone by E-mail Share Fuel Cell Technologies Office: Waste-to-Energy using Fuel Cells Webinar on Facebook Tweet about Fuel Cell...

45

COST-BENEFIT ANALYSIS OF A WASTE TO ENERGY PLANT FOR MONTEVIDEO; AND WASTE TO  

E-Print Network (OSTI)

1 COST-BENEFIT ANALYSIS OF A WASTE TO ENERGY PLANT FOR MONTEVIDEO; AND WASTE TO ENERGY IN SMALL-benefit analysis by the author of a waste to energy (WTE) plant in Montevideo, Uruguay; the second part Engineering Center of Columbia University investigated the waste management system of Montevideo, Uruguay

Columbia University

46

MSW to hydrogen  

DOE Green Energy (OSTI)

LLNL and Texaco are cooperatively developing a physical and chemical treatment method for the preparation and conversion of municipal solid waste (MSW) to hydrogen by gasification and purification. The laboratory focus will be on pretreatment of MSW waste in order to prepare a slurry of suitable viscosity and heating value to allow efficient and economical gasification and hydrogen production. Initial pretreatment approaches include (1) hydrothermal processing at saturated conditions around 300 C with or without chemical/pH modification and (2) mild dry pyrolysis with subsequent incorporation into an appropriate slurry. Initial experiments will be performed with newspaper, a major constituent of MSW, prior to actual work with progressively more representative MSW samples. Overall system modeling with special attention to energy efficiency and waste water handling of the pretreatment process will provide overall guidance to critical scale-up parameters. Incorporation of additional feed stock elements (e.g., heavy oil) will be evaluated subject to the heating value, viscosity, and economics of the MSW optimal slurry for hydrogen production. Ultimate scale-up of the optimized process will provide sufficient material for demonstration in the Texaco pilot facility; additional long term objectives include more detailed economic analysis of the process as a function of technical parameters and development of a measure/control system to ensure slagging ash for variable MSW feed stocks. Details of the overall project plan and initial experimental and modeling results are presented.

Pasternak, A.D.; Richardson, J.H.; Rogers, R.S.; Thorsness, C.B.; Wallman, H. [Lawrence Livermore National Lab., CA (United States); Richter, G.N.; Wolfenbarger, J.K. [Texaco Inc., Montebello, CA (United States). Montebello Research Lab.

1994-04-19T23:59:59.000Z

47

Proceedings of the 1st Installation Waste to Energy Workshop  

E-Print Network (OSTI)

Approved for public release; distribution is unlimited. Prepared for U.S. Army Corps of Engineers Washington, DC 20314-1000ERDC/CERL TR-08-11 ii Abstract: This first-ever waste to energy (WTE) workshop gathered Army environmental and energy subject matter experts to explore WTE at the installation and forward operating level. Historically, the Army environmental community has focused on solid waste disposal and the energy community on energy efficiency and power delivery, with no orchestrated integration of the two. The Energy Branch of the U.S. Army Engineer Research and Development Center, Construction Engineering Research Laboratory has been investigating WTE opportunities, and has found little Army analysis on WTE system providers many claims. The goals of this workshop were to share information, spread visibility on

Franklin H. Holcomb; Ren S. Parker; Thomas J. Hartranft; Kurt Preston; Harold R. Sanborn; Philip J. Darcy; Franklin H. Holcomb; Ren S. Parker; Thomas J. Hartranft; Kurt Preston; Harold R. Sanborn; Philip J. Darcy

2008-01-01T23:59:59.000Z

48

Turning waste into energy beats landfilling  

E-Print Network (OSTI)

Turning waste into energy beats landfilling By Christopher Hume The Hamilton Spectator (Nov 16 it in Europe, "waste-to-energy," this is a technology that is needed. Objections to it are based on information lots, perhaps $300 million. But what Miller and others fail to understand is that energy-to-waste

Columbia University

49

Waste-to-Energy Research and Technology Council (WTERT) | Open Energy  

Open Energy Info (EERE)

Waste-to-Energy Research and Technology Council (WTERT) Waste-to-Energy Research and Technology Council (WTERT) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Wast-to-Energy Research and Technology Council (WTERT) Agency/Company /Organization: Wast-to-Energy Research and Technology Council (WTERT) Sector: Energy, Land, Climate Focus Area: Biomass, - Waste to Energy, Greenhouse Gas Phase: Create a Vision Resource Type: Dataset, Maps, Presentation, Publications, Guide/manual, Training materials, Case studies/examples User Interface: Website Website: www.seas.columbia.edu/earth/wtert Cost: Free The Waste-to-Energy Research and Technology Council (WTERT) brings together engineers, scientists and managers from universities and industry. The mission of WTERT is to identify and advance the best available

50

Prefeasibility Study for a Waste-to-EnergyApplication in Gauteng Province, South Africa.  

E-Print Network (OSTI)

?? Waste-to-Energy concept becomes increasingly popular from the perspectives of the waste management and alternative energy. South Africa, which is a country heavily dependent on (more)

Subasinghe, Gayan

2013-01-01T23:59:59.000Z

51

11th North American Waste to Energy Conference Copyright C 2003 by ASME  

E-Print Network (OSTI)

11th North American Waste to Energy Conference Copyright C 2003 by ASME NAWTEC11-1688 Innovative in central Florida, Pinellas County has continuously sought to reduce potable water usage at its facilities. BACKGROUND The PCRRF is a mass bum waste-to-energy plant serving the densely populated Pinellas County

Columbia University

52

Proceedings of NAWTEC 16 North American Waste-to-Energy Conference 16  

E-Print Network (OSTI)

types and usage levels, facility energy consumption data) to account for emission reductions resulting1 Proceedings of NAWTEC 16 North American Waste-to-Energy Conference 16 May 19 -21, 2008 their carbon footprint. In an article published in the proceedings for the National Waste-to-Energy Conference

Columbia University

53

Proceedings of NAWTEC16 16th Annual North American Waste-to-Energy Conference  

E-Print Network (OSTI)

of the energy generated is optimized. HISTORY WTE's were constructed and began operations under regulatedProceedings of NAWTEC16 16th Annual North American Waste-to-Energy Conference May 19-21, 2008, Philadelphia, Pennsylvania, USA NAWTEC16-1913 OPTIONS AND STRATEGIES FOR WASTE TO ENERGY FACILITY ENERGY SALES

Columbia University

54

Ris-R-Report Energy Systems Analysis of Waste to Energy  

E-Print Network (OSTI)

Risø-R-Report Energy Systems Analysis of Waste to Energy Technologies by use of EnergyPLAN Marie Münster Risø-R-1667(EN) April 2009 #12;Author: Marie Münster Title: Energy Systems Analysis of Waste to Energy Technologies by use of EnergyPLAN Division: Systems Analysis Division Risø-R-1667(EN) April 2009

55

Waste-to-Energy Research and Technology Council (WTERT) | Open Energy  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Waste-to-Energy Research and Technology Council (WTERT) (Redirected from Wast-to-Energy Research and Technology Council (WTERT)) Jump to: navigation, search Tool Summary Name: Wast-to-Energy Research and Technology Council (WTERT) Agency/Company /Organization: Wast-to-Energy Research and Technology Council (WTERT) Sector: Energy, Land, Climate Focus Area: Biomass, - Waste to Energy, Greenhouse Gas Phase: Create a Vision Resource Type: Dataset, Maps, Presentation, Publications, Guide/manual, Training materials, Case studies/examples User Interface: Website

56

Waste-to-Energy and Fuel Cell T h l i O i  

E-Print Network (OSTI)

. Compressor Station PSA Cleanup System #12;Landfill Gas Contaminants vs Fuel Cell Specs. Contaminant Landfill: High levels of contamination Time varying output of gas quantity and quality Innovation for Our Energy-scale Food Processing · LandfillsLandfills · Dairy and Pig Farms (~200 W/Cow) · Pulp and Paper Mills

57

MacArthur Waste to Energy Facility Biomass Facility | Open Energy  

Open Energy Info (EERE)

MacArthur Waste to Energy Facility Biomass Facility MacArthur Waste to Energy Facility Biomass Facility Jump to: navigation, search Name MacArthur Waste to Energy Facility Biomass Facility Facility MacArthur Waste to Energy Facility Sector Biomass Facility Type Municipal Solid Waste Location Suffolk County, New York Coordinates 40.9848784°, -72.6151169° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.9848784,"lon":-72.6151169,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

58

EA-0952: The Louisiana State University Waste-to Energy Incinerator, Baton  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2: The Louisiana State University Waste-to Energy 2: The Louisiana State University Waste-to Energy Incinerator, Baton Rouge, Louisiana EA-0952: The Louisiana State University Waste-to Energy Incinerator, Baton Rouge, Louisiana SUMMARY This EA evaluates the environmental impacts of the proposal for incinerating combustible, non-recyclable office wastes from Louisiana State University (LSU) administrative/academic areas and combustible, non-renderable biological and potentially infectious wastes from the School of Veterinary Medicine and Student Health Center, both part of the LSU campus complex in Baton Rouge, Louisiana. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD October 24, 1994 EA-0952: Finding of No Significant Impact The Louisiana State University Waste-to Energy Incinerator

59

Fuel Cell Technologies Office: Waste-to-Energy using Fuel Cells...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Defense (DOD) held a webinar on July 13, 2011, in Washington, DC, to discuss waste-to-energy for fuel cell applications. Presentations DOD-DOE MOU WTE Using Fuel Cells...

60

Fuel Cell Technologies Office: Waste-to-Energy using Fuel Cells...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Defense (DOD) held a workshop on January 13, 2011, in Washington, DC, to discuss waste-to-energy and fuel cell use. Workshop objectives were to (1) identify DOD-DOE...

Note: This page contains sample records for the topic "waste-to-energy msw landfill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Proceedings of NAWTEC 17 Annual North American Waste-to-Energy Conference  

E-Print Network (OSTI)

, there are about 20 large scale fluidized bed incinerators of co-firing MSW with coal that have been commercially co-firing MSW with coal in China. J. Hazard. Mater. A135, 47­51. Zhang, H.J., Ni, Y.W., Chen, J

Columbia University

62

9th Annual North American Waste to Energy Conference Jack A. Ristau  

E-Print Network (OSTI)

made by U.S. waste-to-energy companies in the last three decades. U.S. companies have made U.S. waste-ta energy plants the least costly and most efficient plants in the world. U.S. waste-to-energy companies may or medicated? An understanding of how a global economy impacts the marketing of U.S. waste-ta-energy services

Columbia University

63

Incineration, Waste-to-energy and Catalytic Gasification: the Past, Present and Future of Medical Waste Management  

E-Print Network (OSTI)

- 1 - Incineration, Waste-to-energy and Catalytic Gasification: the Past, Present and Future Determination 19 Discussion of M.W. Disposal/Use Options Incineration 25 Waste-to-Energy 28 Gasification 29 Waste-to-Energy Ash Research 31 Dioxins 35 Discussion of Gasification/Catalytic Alternative 36 GCMS

Columbia University

64

BSW and MSW Student Handbook 2011-2012 Page 1 BSW and MSW  

E-Print Network (OSTI)

BSW and MSW Student Handbook 2011-2012 Page 1 2011-2012 BSW and MSW Student Handbook www-4720 #12;BSW and MSW Student Handbook 2011-2012 Page 2 #12;BSW and MSW Student Handbook 2011-2012 Page 3................................................................. 9 The BSW and MSW Student Handbook............... 11 Accreditationand

Peterson, Blake R.

65

Ris DTU 09-06-08 Waste-to-energy technologies in TIMES models  

E-Print Network (OSTI)

-to-energy technologies in the Pan-European NEEDS- TIMES model Waste incineration for electricity and heat, landfill gas legislation on waste Directives · Waste Framework Directive, 1975 (75/442/EEC) · Directive on the landfill be accepted as recovery) Avoid · Landfill #12;Risø DTU 09-06-08 4 European waste model Econometric model

66

EA-1862: Oneida Seven Generation Corporation Waste-To-Energy System,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

62: Oneida Seven Generation Corporation Waste-To-Energy 62: Oneida Seven Generation Corporation Waste-To-Energy System, Ashwaubenon, Wisconsin EA-1862: Oneida Seven Generation Corporation Waste-To-Energy System, Ashwaubenon, Wisconsin Summary This EA evaluates the environmental impacts of a proposal by Oneida's Energy Recovery Project to construct and operate a solid waste-to-electricity power plant on vacant property within the Bayport Industrial Center in the City of Green Bay, Brown County, Wisconsin. This energy recovery process would involve bringing municipal solid waste into the plant for sizing (shredding), sorting (removing recyclable material), and conveying into one of three pyrolytic gasification systems. Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download

67

15th North American Waste to Energy Conference May 21-23, 2007, Miami, Florida USA  

E-Print Network (OSTI)

15th North American Waste to Energy Conference May 21-23, 2007, Miami, Florida USA NAWTEC15 Technology Officer, Von Roil inova Alfred Sigg, Head of Research & Development, Von Roil inova Abstract: Von further treatment. In instances where extremely high contaminant loadings are expected (usually due

Columbia University

68

12th North American Waste to Energy Conference May 17-19, 2004, Savannah, Georgia USA  

E-Print Network (OSTI)

the generation of electrical energy from those fractions of wastes that cannot be economically reused or recycled-established computational fluid dynamic codes (CFD). Previously, there has not been available a validated, comprehensive12th North American Waste to Energy Conference May 17-19, 2004, Savannah, Georgia USA NAWTEC12

Columbia University

69

10/12/2009 www.wtert.gr 1 Waste-to-Energy Research and Technology Council  

E-Print Network (OSTI)

management Conservation of the precious Greek land for future usage Empowerment of the energy balance10/12/2009 www.wtert.gr 1 Waste-to-Energy Research and Technology Council SYNERGIA Dr. Efstratios MANAGEMENT IN GREECE & POTENTIAL FOR WASTE - TO - ENERGY ISWA Beacon Conference - Strategic Waste Management

Columbia University

70

11th North American Waste to Energy Conference Copyright 2003 by ASME  

E-Print Network (OSTI)

equipment, as well as validate Phase I cost estimates for pelletization. Further gasification tests-3154 GASIFICATION I COGENERATION USING MSW RESIDUALS AND BIOMASS ABSTRACT Jim Schubert, P. Eng. General Supervisor estimated at 50,000 tonnes per year. Objective and Approach The City of Edmonton, in partnership

Columbia University

71

9th Annual North American Waste to Energy Conference NEW FGD DEVELOPMENTS IN EUROPE  

E-Print Network (OSTI)

in the exhaust flue gases from the MSW incinerators consist of nitric oxide (NO) and nitrogen dioxide (N02) which/fabric filter system to reduce nitrogen oxide, mercury and dioxin levels to meet the most recent Ontario combustion. The flue gases that exit the secondary chamber enter the heat recovery boilers where high

Columbia University

72

The Current and Future Marketplace for Waste-To-Energy Cogeneration Facilities in the United States  

E-Print Network (OSTI)

The emerging waste-to-energy marketplace within the United States is one with considerable opportunity and risk. The solid waste management crisis is resulting in record construction levels for waste-to-energy facilities due to the fact that few viable alternatives exist for waste disposal. However, opposition to the construction of such plants and cost overruns on new and existing facilities is having an impact on the market. While approximately 135 plants were operating at the end of 1987, it is believed that 425 plants and projects will be in existence by the end of 1996. Representing a total capacity of 260,000 tons per day, by 1996 over 36% of all municipal solid waste generated in the United States will be incinerated by waste-to-energy facilities. A considerable challenge faces all suppliers of products and services to the marketplace. Increasing opposition and escalating costs for such plants will place greater emphasis upon proper planning, design flexibility, and pollution control. Like any emerging industry, this business will evolve from its current unpredictable levels to a more mature and stable market opportunity for suppliers of products and services.

Jacobs, S.

1988-09-01T23:59:59.000Z

73

Report of the DOD-DOE Workshop on Converting Waste to Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

plants (WWTPs) and landfills, food waste (such as spent cooking oil from mess halls), compost heaps, plastic waste, and paper waste (office paper and cardboard). DOD may also be...

74

Proceedings of NAWTEC17 17th Annual North American Waste-to-Energy Conference  

E-Print Network (OSTI)

Luxembourg 0.29 673a 21 US 226 730 56 Japan 52.4 412 7 a Estimate Table 2 shows the increase in the amount 11.48 Luxembourg 591 673a 13.87 US 736 730 -1.0 Japan 407 412 1.0 a Estimated for the year based received' MSW followed by a range of waste manipulation processes gasification and pyrolysis ­ flexible

Columbia University

75

Best Practices for Siting Solar Photovoltaics on Municipal Solid Waste Landfills. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites  

DOE Green Energy (OSTI)

The Environmental Protection Agency and the National Renewable Energy Laboratory developed this best practices document to address common technical challenges for siting solar photovoltaics (PV) on municipal solid waste (MSW) landfills. The purpose of this document is to promote the use of MSW landfills for solar energy systems. Closed landfills and portions of active landfills with closed cells represent thousands of acres of property that may be suitable for siting solar photovoltaics (PV). These closed landfills may be suitable for near-term construction, making these sites strong candidate to take advantage of the 30% Federal Business Energy Investment Tax Credit. It was prepared in response to the increasing interest in siting renewable energy on landfills from solar developers; landfill owners; and federal, state, and local governments. It contains examples of solar PV projects on landfills and technical considerations and best practices that were gathered from examining the implementation of several of these projects.

Kiatreungwattana, K.; Mosey, G.; Jones-Johnson, S.; Dufficy, C.; Bourg, J.; Conroy, A.; Keenan, M.; Michaud, W.; Brown, K.

2013-04-01T23:59:59.000Z

76

The potential for use of waste-to-energy facility ash: Executive summary. Final report  

DOE Green Energy (OSTI)

This executive summary presents an overview of the investigations, findings, conclusions, and recommendations of the Long Island Regional Planning Board (LIRPB) study of the Potential for Beneficial Use of Waste-to-Energy Facility Ash. The full report consists of the following volumes: Executive Summary; Volume 1: Long Island Ash Management Status; Volume 2: Sampling and Testing Procedures; Volume 3: Environmental Properties; Volume 4: Engineering Properties; Volume 5: Environmental Assessment; Volume 6: Engineering and Economic Evaluation; and Volume 7: Legal and Institutional Issues. Volumes one through seven are briefly summarized in this executive summary with the exception of Volume 2 of the report, which serves as the documentation of the sampling conditions and testing methods used in measuring chemical and physical properties of the ash tested. The study investigated the feasibility of the use of incinerator ash as a substitute for natural aggregate in construction applications.

Koppelman, L.E.; Tanenbaum, E.G. [Long Island Regional Planning Board, Hauppauge, NY (United States)

1994-05-01T23:59:59.000Z

77

MSW GASIFICATION UNDERSTANDING THE CHALLENGES Stephen Goff  

E-Print Network (OSTI)

MSW GASIFICATION ­ UNDERSTANDING THE CHALLENGES Stephen Goff Jeffrey Hahn Hanwei Zhang Shashank evaluating emerging gasification technologies and is committed to identifying and developing the most high reliability. This corrosion and fouling will also exist in gasification processes

Columbia University

78

15th North American Waste to Energy Conference May May 21-23, 2007, Miami, Florida USA  

E-Print Network (OSTI)

% of· cooling towers at any time, even with normal water treatment programs in place. This could pose a risk to employees and others working near cooling towers, and it could pose a risk to neighboring for waste-to-energy facility cooling towers. While a corporate policy for managing the risk due to Legiolle

Columbia University

79

Digital Gas Joins Asian Waste-to-Energy Consortium: To Eliminate Coal as a Power Plant Fuel  

E-Print Network (OSTI)

Digital Gas Joins Asian Waste-to-Energy Consortium: To Eliminate Coal as a Power Plant Fuel Digital upside in view of the power generation growth potential in Asia and the environmental friendly, cost's energy and farming centers in North America as an alternative to coal-fired power plants and a solution

Columbia University

80

16th North American Waste to Energy Conference-May 2008 CO2 Enhanced Steam Gasification of Biomass Fuels  

E-Print Network (OSTI)

16th North American Waste to Energy Conference-May 2008 CO2 Enhanced Steam Gasification of Biomass of the decomposition of various biomass feedstocks and their conversion to gaseous fuels such as hydrogen. The steam temperatures: above 500o C for the herbaceous and non-wood samples and above 650o C for the wood biomass fuels

Note: This page contains sample records for the topic "waste-to-energy msw landfill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Impact of Flow Control and Tax Reform on Ownership and Growth in the U.S. Waste-to-Energy Industry  

Reports and Publications (EIA)

This article analyzes two key issues that could be influencing growth and ownership (both public and private) in the Waste To Energy (WTE) industry.

Information Center

1994-09-01T23:59:59.000Z

82

Landfill Gas | Open Energy Information  

Open Energy Info (EERE)

Landfill Gas Jump to: navigation, search TODO: Add description List of Landfill Gas Incentives Retrieved from "http:en.openei.orgwindex.php?titleLandfillGas&oldid267173"...

83

Retrofit of waste-to-energy facilities equipped with electrostatic precipitators. Volume I: Report  

Science Conference Proceedings (OSTI)

To help lower the cost of compliance for waste-to-energy facilities, a retrofit technology using water spray temperature reduction combined with dry acid gas control reagent and powdered activated carbon [PAC] injection was tested in November, 1995 as part of an American Society of Mechanical Engineers' [ASME] Center for Research and Technology Development [CRTD] effort supported in part by the Department of Energy's National Renewable Energy Laboratory [NREL] and directed by the ASME Research Committee on Industrial and Municipal Waste. 2,000 mg/dsm{sup 3} @ 7% O{sub 2} (150 lb/hr) of trona (a natural sodium sesquicarbonate ore) injected through a rapid dispersion lance successfully controlled more than 50 percent of the acid gases. This should let facilities under 250 TPD meet the small plant guidelines for acid gas control. Various levels of PAC were injected along with the trona. 300 mg/dsm{sup 3} 7% O{sub 2} of PAC provides a comfortable margin between the emissions limitations achieved and both large and small plant regulatory guidelines for tetra- through octachlorinated dibenzo-p-dioxins and dibenzofurans [PCDD/F] and mercury when the ESP is operated below 350 F. Bi-fluid nozzles were used to spray finely atomized water between the economizer outlet and ESP inlet to maintain temperatures in the desired 300-350 F range. Particulate and metals emissions limitations were met by this 400 ft{sup 2}/1,000 acft{sup 2} specific collector area [SCA], 3-field ESP. Both the water sprays and PAC improved ESP performance. The demonstration was successful. With dry PAC, acid gas reagent injection, and temperature reduction, MWC emissions guidelines for facilities smaller than 250 TPD can be reliably met. Everything except the large facilities SO{sub 2} and HCl guideline emissions limitations was achieved. Better acid gas control should be achievable with more reagent addition if the ESP is efficient enough to avoid violating particulate limits.

Rigo, H.G. [Rigo & Rigo Associates, Inc., Berea, OH (US); Chandler, A.J. [A.J. Chandler & Associates, Ltd., Toronto, Ontario (Canada)

1996-04-01T23:59:59.000Z

84

Concept design and optimization of MSW management system  

Science Conference Proceedings (OSTI)

The maximum recovery of recyclables from municipal solid waste (MSW) using material recovery facility (MRF) technologies is determined. Two waste streams at Spangdahlem AB, Germany are analyzed; stationary container wastes and commingled recyclables. Three schemes are considered, one for each waste stream, and one for both. Multi-criteria decision making is the methodology. The criteria are recovery and annual benefit minus cost (B-C). Recovery is determined using the recovery factor transfer function of Diaz et al. (1982). Each technology, or unit operation, in a sequence is independent because particle size distribution of each waste component is considered. B-C is based on revenue from sold recyclables, tipping fees saved by not landfilling separated waste, and manual labor and amortized equipment costs. Six unit operations are considered: eddy current separator (ECS), magnet, air classifier, screen, manual sort, and shredder. Sequences one to six operations long are considered. Three heuristics eliminate 42,179 of 55,986 potential sequences as infeasible. The result is domination by a MRF to process both wastes and a tradeoff between 35.7% recovery of the total at an annual B-C of $0.95 million and recovery of 35.6% at an annual B-C of $1.02 million. Hand sort recovers the most, and is economical.

Palmer, J.R.

1999-03-01T23:59:59.000Z

85

Oxygen-enriched coincineration of MSW and sewage sludge: Final report  

Science Conference Proceedings (OSTI)

Federal regulations banning ocean dumping of sewage sludge coupled with stricter regulations on the disposal of sewage sludge in landfills have forced municipalities, especially those in the northeast United States, to consider alternate methods for disposal of this solid waste. Coincineration of municipal solid waste (MSW) and sludge has proven to be economically attractive for both Europe and Japan, but has not yet proven to be a viable sludge disposal technology in the United States because of a history of operational problems in existing facilities. The most prevalent problem in coincinerating MSW and a dewatered sewage sludge (15 to 25% solids) is incomplete sludge combustion. Incomplete sludge combustion is primarily a function of sludge particle size, occurring when the surface of the sludge particle dries and hardens, while the inner mass is unaffected. This phenomenon is commonly referred to in the industry as the {open_quotes}hamburger effect.{close_quotes} In an effort to promote technology development in this area, Air Products and Chemicals, Inc. teamed with the US Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL) to evaluate a new process being developed for the disposal of a dewatered sewage sludge, {open_quotes}Oxygen-Enriched Coincineration of MSW and Sewage Sludge.{close_quotes} This report provides a comprehensive summary of the pilot demonstration test program for oxygen-enriched coincineration of MSW and sewage sludge. This report describes the pilot test facility, instrumentation, and methods of data collection and data analyses; describes how the tests were executed; and discusses the test results. Recommendations for the future development of this technology in the current marketplace are also provided.

Not Available

1994-01-01T23:59:59.000Z

86

BEE 4760. Solid Waste Engineering Spring Semester 2010  

E-Print Network (OSTI)

chemistry, energy balance, environmental impacts & controls Sanitary Landfills: planning & operation, gas characterization and reduction; collection and transport systems; waste-to-energy combustion; sanitary landfills) management. 2. An ability to plan and design MSW disposal facilities ­ landfills and incineration. 3

Walter, M.Todd

87

BEE 476. Solid Waste Engineering Spring Semester 2007  

E-Print Network (OSTI)

chemistry, energy balance, environmental impacts & controls Sanitary Landfills: planning & operation, gas characterization and reduction; collection and transport systems; waste-to-energy combustion; sanitary landfills) management. 2. An ability to plan and design MSW disposal facilities ­ landfills and incineration. 3

Walter, M.Todd

88

BEE 476. Solid Waste Engineering Spring Semester 2008  

E-Print Network (OSTI)

chemistry, energy balance, environmental impacts & controls Sanitary Landfills: planning & operation, gas characterization and reduction; collection and transport systems; waste-to-energy combustion; sanitary landfills) management. 2. An ability to plan and design MSW disposal facilities ­ landfills and incineration. 3

Walter, M.Todd

89

Evaluation of methane emissions from Palermo municipal landfill: Comparison between field measurements and models  

Science Conference Proceedings (OSTI)

Methane (CH{sub 4}) diffuse emissions from Municipal Solid Waste (MSW) landfills represent one of the most important anthropogenic sources of greenhouse gas. CH{sub 4} is produced by anaerobic biodegradation of organic matter in landfilled MSW and constitutes a major component of landfill gas (LFG). Gas recovery is a suitable method to effectively control CH{sub 4} emissions from landfill sites and the quantification of CH{sub 4} emissions represents a good tool to evaluate the effectiveness of a gas recovery system in reducing LFG emissions. In particular, LFG emissions can indirectly be evaluated from mass balance equations between LFG production, recovery and oxidation in the landfill, as well as by a direct approach based on LFG emission measurements from the landfill surface. However, up to now few direct measurements of landfill CH{sub 4} diffuse emissions have been reported in the technical literature. In the present study, both modeling and direct emission measuring methodologies have been applied to the case study of Bellolampo landfill located in Palermo, Italy. The main aim of the present study was to evaluate CH{sub 4} diffuse emissions, based on direct measurements carried out with the flux accumulation chamber (static, non-stationary) method, as well as to obtain the CH{sub 4} contoured flux map of the landfill. Such emissions were compared with the estimate achieved by means of CH{sub 4} mass balance equations. The results showed that the emissions obtained by applying the flux chamber method are in good agreement with the ones derived by the application of the mass balance equation, and that the evaluated contoured flux maps represent a reliable tool to locate areas with abnormal emissions in order to optimize the gas recovery system efficiency.

Di Bella, Gaetano, E-mail: dibella@idra.unipa.it [Dipartimento di Ingegneria Civile, Ambientale e Aerospaziale, Universita di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Di Trapani, Daniele, E-mail: ditrapani@idra.unipa.it [Dipartimento di Ingegneria Civile, Ambientale e Aerospaziale, Universita di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Viviani, Gaspare, E-mail: gviv@idra.unipa.it [Dipartimento di Ingegneria Civile, Ambientale e Aerospaziale, Universita di Palermo, Viale delle Scienze, 90128 Palermo (Italy)

2011-08-15T23:59:59.000Z

90

Bioreactor Landfill Research and Demonstration Project Northern Oaks Landfill, Harrison, MI  

SciTech Connect

A bioreactor landfill cell with 1.2-acre footprint was constructed, filled, operated, and monitored at Northern Oaks Recycling and Disposal Facility (NORDF) at Harrison, MI. With a filled volume of 74,239 cubic yards, the cell contained approximately 35,317 tons of municipal solid waste (MSW) and 20,777 tons of cover soil. It was laid on the slope of an existing cell but separated by a geosynthetic membrane liner. After the cell reached a design height of 60 feet, it was covered with a geosynthetic membrane cap. A three-dimensional monitoring system to collect data at 48 different locations was designed and installed during the construction phase of the bioreactor cell. Each location had a cluster of monitoring devices consisting of a probe to monitor moisture and temperature, a leachate collection basin, and a gas sampling port. An increase in moisture content of the MSW in the bioreactor cell was achieved by pumping leachate collected on-site from various other cells, as well as recirculation of leachate from the bioreactor landfill cell itself. Three types of leachate injection systems were evaluated in this bioreactor cell for their efficacy to distribute pumped leachate uniformly: a leachate injection pipe buried in a 6-ft wide horizontal stone mound, a 15-ft wide geocomposite drainage layer, and a 60-ft wide geocomposite drainage layer. All leachate injection systems were installed on top of the compacted waste surface. The distribution of water and resulting MSW moisture content throughout the bioreactor cell was found to be similar for the three designs. Water coming into and leaving the cell (leachate pumped in, precipitation, snow, evaporation, and collected leachate) was monitored in order to carry out a water balance. Using a leachate injection rate of 26 30 gal/yard3, the average moisture content increased from 25% to 35% (wet based) over the period of this study. One of the key aspects of this bioreactor landfill study was to evaluate bioreactor start up and performance in locations with colder climate. For lifts filled during the summer months, methane generation started within three months after completion of the lift. For lifts filled in winter months, very little methane production occurred even eight months after filling. The temperature data indicated that subzero or slightly above zero (oC) temperatures persisted for unusually long periods (more than six months) in the lifts filled during winter months. This was likely due to the high thermal insulation capability of the MSW and the low level of biological activity during start up. This observation indicates that bioreactor landfills located in cold climate and filled during winter months may require mechanisms to increase temperature and initiate biodegradation. Thus, besides moisture, temperature may be the next important factor controlling the biological decomposition in anaerobic bioreactor landfills. Spatial and temporal characterization of leachate samples indicated the presence of low levels of commonly used volatile organic compounds (including acetone, methyl ethyl ketone, methyl isobutyl ketone, and toluene) and metals (including arsenic, chromium, and zinc). Changes and leachate and gaseous sample characteristics correlated with enhanced biological activity and increase in temperature. Continued monitoring of this bioreactor landfill cell is expected to yield critical data needed for start up, design, and operation of this emerging process.

Zhao, Xiando; Voice, Thomas; and Hashsham, Syed A.

2006-08-29T23:59:59.000Z

91

European waste-to-energy systems: case study of Geneva-Cheneviers (Switzerland)  

DOE Green Energy (OSTI)

The City of Geneva, population 159,000 is the administrative center of the Canton of Geneva, population 340,000. The Canton owns a number of facilities for the treatment of waste. Geneva's chief waste treatment facility is the Cheneviers Incinerator. Two Von Roll integrated boiler incinerator furnaces have a rated capacity of 200 metric tons (220 short tons) per day each. Superheated steam at 360/sup 0/C and 32.4 bars (32 atm) powers a 6200 kW turbo-generator unit. The electricity is sold to the cantonal grid. Total incinerable waste in the Canton of Geneva has varied from 120,000 to 130,000 metric tons (132,000 to 144,000 short tons) annually during the last five years. For the last two years, total per capita tonnage have been declining. Per capita incinerable waste was 363 kilograms (800 lbs) in the year 1975, of which 257 kilograms (606 lbs) were household waste. Eighty-seven thousand, five hundred metric tons (96,386 short tons) of this waste was burned in the Cheneviers Incinerator in 1975. The remainder was landfilled, due to the lack of capacity at the incinerators. The system which began operating in 1966, cost approximately 40 million Swiss Francs ($9.3 million; 1965 or $23 million; 1976). Three-quarters of this sum was for land, buildings, construction, and equipment. A large station and dock for the transfer of waste accounted for the remainder. The Von Roll design ofthis plant is now out of date. Extensive modifications were made to correct corrosion problems in the furnace.

None

1977-05-01T23:59:59.000Z

92

Long-term affected energy production of waste to energy technologies identified by use of energy system analysis  

Science Conference Proceedings (OSTI)

Affected energy production is often decisive for the outcome of consequential life-cycle assessments when comparing the potential environmental impact of products or services. Affected energy production is however difficult to determine. In this article the future long-term affected energy production is identified by use of energy system analysis. The focus is on different uses of waste for energy production. The Waste-to-Energy technologies analysed include co-combustion of coal and waste, anaerobic digestion and thermal gasification. The analysis is based on optimization of both investments and production of electricity, district heating and bio-fuel in a future possible energy system in 2025 in the countries of the Northern European electricity market (Denmark, Norway, Sweden, Finland and Germany). Scenarios with different CO{sub 2} quota costs are analysed. It is demonstrated that the waste incineration continues to treat the largest amount of waste. Investments in new waste incineration capacity may, however, be superseded by investments in new Waste-to-Energy technologies, particularly those utilising sorted fractions such as organic waste and refuse derived fuel. The changed use of waste proves to always affect a combination of technologies. What is affected varies among the different Waste-to-Energy technologies and is furthermore dependent on the CO{sub 2} quota costs and on the geographical scope. The necessity for investments in flexibility measures varies with the different technologies such as storage of heat and waste as well as expansion of district heating networks. Finally, inflexible technologies such as nuclear power plants are shown to be affected.

Muenster, M., E-mail: maem@risoe.dtu.d [Risoe National Laboratory for Sustainable Energy, Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde (Denmark); Meibom, P. [Risoe National Laboratory for Sustainable Energy, Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde (Denmark)

2010-12-15T23:59:59.000Z

93

Proceedings of the 17th Annual North American Waste-to-Energy Conference May 18-20, 2009, Chantilly, Virginia, USA  

E-Print Network (OSTI)

.; Mondragon, F., CO2 strong chemisorption as an estimate of coal char gasification reactivity. Fuel 1999, 78 WASTE (MSW) GASIFICATION UNDER VARIOUS PRESSURES AND CO2 CONCENTRATION ATMOSPHERES Eilhann Kwon, Kelly J, New York, NY 10027 ABSTRACT The Municipal Solid Waste (MSW) gasification process is a promising

Columbia University

94

Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 2: A Techno-economic Evaluation of the Production of Mixed Alcohols  

DOE Green Energy (OSTI)

Biomass is a renewable energy resource that can be converted into liquid fuel suitable for transportation applications and thus help meet the Energy Independence and Security Act renewable energy goals (U.S. Congress 2007). However, biomass is not always available in sufficient quantity at a price compatible with fuels production. Municipal solid waste (MSW) on the other hand is readily available in large quantities in some communities and is considered a partially renewable feedstock. Furthermore, MSW may be available for little or no cost. This report provides a techno-economic analysis of the production of mixed alcohols from MSW and compares it to the costs for a wood based plant. In this analysis, MSW is processed into refuse derived fuel (RDF) and then gasified in a plant co-located with a landfill. The resulting syngas is then catalytically converted to mixed alcohols. At a scale of 2000 metric tons per day of RDF, and using current technology, the minimum ethanol selling price at a 10% rate of return is approximately $1.85/gallon ethanol (early 2008 $). However, favorable economics are dependent upon the toxicity characteristics of the waste streams and that a market exists for the by-product scrap metal recovered from the RDF process.

Jones, Susanne B.; Zhu, Yunhua; Valkenburg, Corinne

2009-05-01T23:59:59.000Z

96

Retrofit of waste-to-energy facilities equipped with electrostatic precipitators. Volume II: Field and laboratory reports, Part 2 of 2  

DOE Green Energy (OSTI)

Volume II (part 2 of 2) of ''Retrofit of Waste-to-energy Facilities Equipped with Electrostatic Precipitators'' contains the field and laboratory reports, including: (1) field reports, (2) analytic laboratory reports, (3) chain of custody forms, and (4) TCLP laboratory reports.

Rigo, H.G. [Rigo & Rigo Associates, Inc., Berea, OH (US); Chandler, A.J. [A.J. Chandler & Associates, Ltd., Toronto, Ontario (Canada)

1996-04-01T23:59:59.000Z

97

Retrofit of waste-to-energy facilities equipped with electrostatic precipitators. Volume II: Field and Laboratory Reports, Part 1 of 2  

DOE Green Energy (OSTI)

Volume II (part 1 of 2) of ''Retrofit of Waste-to-energy Facilities Equipped with Electrostatic Precipitators'' contains the documentation and raw data, including: (1) field reports, (2) analytic laboratory reports, (3) chain of custody forms, and (4) TCLP laboratory reports.

Rigo, H.G. [Rigo & Rigo Associates, Inc., Berea, OH (US); Chandler, A.J. [A.J. Chandler & Associates, Ltd., Toronto, Ontario (Canada)

1996-04-01T23:59:59.000Z

98

Des Plaines Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Des Plaines Landfill Biomass Facility Jump to: navigation, search Name Des Plaines Landfill Biomass Facility Facility Des Plaines Landfill Sector Biomass Facility Type Landfill Gas...

99

Rodefeld Landfill Ga Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Rodefeld Landfill Ga Biomass Facility Jump to: navigation, search Name Rodefeld Landfill Ga Biomass Facility Facility Rodefeld Landfill Ga Sector Biomass Facility Type Landfill Gas...

100

Nitrogen management in landfill leachate: Application of SHARON, ANAMMOX and combined SHARON-ANAMMOX process  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Significant research on ammonia removal from leachate by SHARON and ANAMMOX process. Black-Right-Pointing-Pointer Operational parameters, microbiology, biochemistry and application of the process. Black-Right-Pointing-Pointer SHARON-ANAMMOX process for leachate a new research and this paper gives wide facts. Black-Right-Pointing-Pointer Cost-effective process, alternative to existing technologies for leachate treatment. Black-Right-Pointing-Pointer Address the issues and operational conditions for application in leachate treatment. - Abstract: In today's context of waste management, landfilling of Municipal Solid Waste (MSW) is considered to be one of the standard practices worldwide. Leachate generated from municipal landfills has become a great threat to the surroundings as it contains high concentration of organics, ammonia and other toxic pollutants. Emphasis has to be placed on the removal of ammonia nitrogen in particular, derived from the nitrogen content of the MSW and it is a long term pollution problem in landfills which determines when the landfill can be considered stable. Several biological processes are available for the removal of ammonia but novel processes such as the Single Reactor System for High Activity Ammonia Removal over Nitrite (SHARON) and Anaerobic Ammonium Oxidation (ANAMMOX) process have great potential and several advantages over conventional processes. The combined SHARON-ANAMMOX process for municipal landfill leachate treatment is a new, innovative and significant approach that requires more research to identify and solve critical issues. This review addresses the operational parameters, microbiology, biochemistry and application of both the processes to remove ammonia from leachate.

Sri Shalini, S., E-mail: srishalini10@gmail.com [Centre for Environmental Studies, Anna University, Chennai (India); Joseph, Kurian, E-mail: kuttiani@gmail.com [Centre for Environmental Studies, Anna University, Chennai (India)

2012-12-15T23:59:59.000Z

Note: This page contains sample records for the topic "waste-to-energy msw landfill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Proceedings of the 17th Annual North American Waste-to-Energy Conference May 18-20, 2009, Chantilly, Virginia, USA  

E-Print Network (OSTI)

by an estimated 30%. However, the capital, operating and maintenance costs of the shredding equipment should realized through the pre-processing of MSW by means of modern shredding equipment are evaluated both take place at the WTS, thus increasing density and decreasing transportation costs

Columbia University

102

Energy potential of modern landfills  

DOE Green Energy (OSTI)

Methane produced by refuse decomposition in a sanitary landfill can be recovered for commercial use. Landfill methane is currently under-utilized, with commercial recovery at only a small percentage of US landfills. New federal regulations mandating control of landfill gas migration and atmospheric emissions are providing impetus to methane recovery schemes as a means of recovering costs for increased environmental control. The benefits of landfill methane recovery include utilization of an inexpensive renewable energy resource, removal of explosive gas mixtures from the subsurface, and mitigation of observed historic increases in atmospheric methane. Increased commercial interest in landfill methane recovery is dependent on the final form of Clean Air Act amendments pertaining to gaseous emissions from landfills; market shifts in natural gas prices; financial incentives for development of renewable energy resources; and support for applied research and development to develop techniques for increased control of the gas generation process in situ. This paper will discuss the controls on methane generation in landfills. In addition, it will address how landfill regulations affect landfill design and site management practices which, in turn, influence decomposition rates. Finally, future trends in landfilling, and their relationship to gas production, will be examined. 19 refs., 2 figs., 3 tabs.

Bogner, J.E.

1990-01-01T23:59:59.000Z

103

Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 1: Availability of Feedstock and Technology  

DOE Green Energy (OSTI)

This report investigated the potential of using municipal solid waste (MSW) to make synthesis gas (syngas) suitable for production of liquid fuels. Issues examined include: MSW physical and chemical properties affecting its suitability as a gasifier feedstock and for liquid fuels synthesis expected process scale required for favorable economics the availability of MSW in quantities sufficient to meet process scale requirements the state-of-the-art of MSW gasification technology.

Valkenburg, Corinne; Walton, Christie W.; Thompson, Becky L.; Gerber, Mark A.; Jones, Susanne B.; Stevens, Don J.

2008-12-01T23:59:59.000Z

104

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network (OSTI)

USA ICEF2006-1578 LANDFILL GAS FUELED HCCI DEMONSTRATIONengine that runs on landfill gas. The project team led bygas and simulated landfill gas as a fuel source. This

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

105

U. S. landfill gas research  

DOE Green Energy (OSTI)

This paper surveys US landfill gas RandD programs and presents some technical details of work being conducted at Argonne National Laboratory (Argonne, Illinois) through the support of the US Department of Energy. The two projects at Argonne include (1) a study of bidirectional gas movement through landfill cover materials and (2) development of standardized techniques to assay gas production from landfilled refuse (including qualitative microbiology of refuse assays).

Bogner, J.; Vogt, M.; Piorkowski, R.; Rose, C.; Hsu, M.

1988-01-01T23:59:59.000Z

106

Landfill Cover Revegetation at the Rocky Flats Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Landfill Cover Revegetation at the Rocky Flats Environmental Technology Site Landfill Cover Revegetation at the Rocky Flats Environmental Technology Site Landfill Cover...

107

HMDC Kingsland Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

HMDC Kingsland Landfill Biomass Facility Jump to: navigation, search Name HMDC Kingsland Landfill Biomass Facility Facility HMDC Kingsland Landfill Sector Biomass Facility Type...

108

Winnebago County Landfill Gas Biomass Facility | Open Energy...  

Open Energy Info (EERE)

Winnebago County Landfill Gas Biomass Facility Jump to: navigation, search Name Winnebago County Landfill Gas Biomass Facility Facility Winnebago County Landfill Gas Sector Biomass...

109

Penrose Landfill Gas Conversion LLC | Open Energy Information  

Open Energy Info (EERE)

Penrose Landfill Gas Conversion LLC Jump to: navigation, search Name Penrose Landfill Gas Conversion LLC Place Los Angeles, California Product Owner of landfill gas plant....

110

Landfill Gas Sequestration in Kansas  

NLE Websites -- All DOE Office Websites (Extended Search)

Road Road P.O. Box 880 Morgantown, WV 26505-0880 304-285-4132 Heino.beckert@netl.doe.gov David newell Principal Investigator Kansas Geological Survey 1930 Constant Avenue Lawrence, KS 66045 785-864-2183 dnewall@kgs.uk.edu LandfiLL Gas sequestration in Kansas Background Municipal solid waste landfills are the largest source of anthropogenic methane emissions in the United States, accounting for about 34 percent of these emissions in 2004. Most methane (CH 4 ) generated in landfills and open dumps by anaerobic decomposition of the organic material in solid-waste-disposal landfills is either vented to the atmosphere or converted to carbon dioxide (CO 2 ) by flaring. The gas consists of about 50 percent methane (CH 4 ), the primary component of natural gas, about 50 percent carbon dioxide (CO

111

GIGO: Spreadsheet-based simulation for MSW systems  

SciTech Connect

GIGO, a spreadsheet-based model of municipal solid waste (MSW) management systems is described. The model is intended for general system-level simulation consisting of linked detailed facility, process and cost models that can also be used independently to simulate components of a solid-waste-management system. The model requires no special programming skills beyond knowledge of the use of a common spreadsheet. The model is flexible, easy to use and modify, and is in the public domain. Model formulation and implementation are described.

Anex, R.P.; Lund, J.R.; Tchobanoglous, G. [Univ. of California, Davis, CA (United States). Dept. of Civil and Environmental Engineering; Lawver, R.A. [California Integrated Waste Management Board, Sacramento, CA (United States)

1996-04-01T23:59:59.000Z

112

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network (OSTI)

operations with natural gas: Fuel composition implications,of Natural gas testing LANDFILL GAS COMPOSITION Tapping into

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

113

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network (OSTI)

Simulated Landfill Gas Intake Diagram STEADY STATE OPERATIONlandfill gas. Expanding the understanding of HCCI mode of engine operation

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

114

Capture and Utilisation of Landfill Gas  

E-Print Network (OSTI)

Biomass Capture and Utilisation of Landfill Gas What is the potential for additional utilisation of landfill gas in the USA and around the world? By Nickolas Themelis and Priscilla Ulloa, Columbia University. In his 2003 review of energy recovery from landfill gas, Willumsen1 reported that as of 2001, there were

Columbia University

115

Landfill Gas | OpenEI  

Open Energy Info (EERE)

Landfill Gas Landfill Gas Dataset Summary Description The UK Department of Energy and Climate Change (DECC) publishes annual renewable energy generation and capacity by region (9 regions in England, plus Wales, Scotland and Northern Ireland). Data available 2003 to 2009. Data is included in the DECC Energy Trends: September 2010 Report (available: http://www.decc.gov.uk/assets/decc/Statistics/publications/trends/558-tr...) Source UK Department of Energy and Climate Change (DECC) Date Released September 30th, 2010 (4 years ago) Date Updated Unknown Keywords Energy Generation Hydro Landfill Gas Other Biofuels Renewable Energy Consumption Sewage Gas wind Data application/zip icon 2 Excel files, 1 for generation, 1 for capacity (zip, 24.9 KiB) Quality Metrics Level of Review Peer Reviewed

116

future science group 133ISSN 1758-300410.4155/CMT.12.11 2012 Future Science Ltd Municipal solid waste (MSW) is a ubiquitous byprod-  

E-Print Network (OSTI)

- monly known as waste-to-energy (WTE). This method reduces the land requirement for waste disposal of waste-to-energy in reducing GHG emissions Munish K Chandel1 , Gabriel Kwok2 , Robert B Jackson*1 or electricity (waste-to-energy [WTE]) could reduce net GHG emissions in the USA compared with combusting methane

Jackson, Robert B.

117

EA-1707: Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste Landfill, Hanford Site, Richland, Washington  

Energy.gov (U.S. Department of Energy (DOE))

This EA evaluates the potential environmental impacts of closing the Nonradioactive Dangerous Waste Landfill and the Solid Waste Landfill. The Washington State Department of Ecology is a cooperating agency in preparing this EA.

118

Landfill Gas-to-Electricity Demonstration Project  

DOE Green Energy (OSTI)

Medium Btu methane gas is a naturally occurring byproduct of anaerobic digestion of landfilled municipal solid waste. The energy potential of landfill gas in New York State is estimated to be 61 trillion Btu's per year or the equivalent of 10% of the natural gas used annually in the state. The 18-month Landfill Gas-to-Electricity Demonstration Project conducted at the Fresh Kills Landfill in Staten Island, New York conclusively demonstrated that landfill gas is an acceptable fuel for producing electricity using an internal combustion engine/generator set. Landfill gas proved to be a reliable and consistent fuel source during a six-month field test program. Engine exhaust emissions were determined to be comparable to that of natural gas and no unusually high corrosion rates on standard pipeline material were found.

Not Available

1982-10-01T23:59:59.000Z

119

Municipal Solid WasteMunicipal Solid Waste Landfills In CitiesLandfills In Cities  

E-Print Network (OSTI)

trench c) Liner Deployment d) Seaming Double Hot wedge Fillet Extrusion Seam properties ­ ASTM D6392 e-wise construction of landfill #12;Daily cell, cover, lift & phase of a landfill #12;Operational Points Provisions (contd) Check for compatibilities of different wastes. Divide landfill into cells. Non

Columbia University

120

Turbines produce energy from L. A. landfill  

Science Conference Proceedings (OSTI)

This article describes one of the Nation's most sophisticated resource recovery projects which began operating in February at the Puente Hills Landfill Methane Energy Station as part of the County Sanitation Districts of Los Angeles County. The project is currently generating 2.8 megawatts of power which would serve the electrical needs of approximately 5600 homes. Future plans for the landfill energy project include generating enough electricity for more than 50,000 homes. Unlike other methane recovery projects that use diesel or gasoline power reciprocating engines, the Puente Hills Landfill Methane Energy Station drives its electrical generators with gas turbines. This is a first for power generation at a landfill site.

Carry, C.W.; Stahl, J.F.; Maguin, S.R.; Friess, P.L.

1984-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste-to-energy msw landfill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Mixed Waste Landfill Integrated Demonstration; Technology summary  

SciTech Connect

The mission of the Mixed Waste Landfill Integrated Demonstration (MWLID) is to demonstrate, in contaminated sites, new technologies for clean-up of chemical and mixed waste landfills that are representative of many sites throughout the DOE Complex and the nation. When implemented, these new technologies promise to characterize and remediate the contaminated landfill sites across the country that resulted from past waste disposal practices. Characterization and remediation technologies are aimed at making clean-up less expensive, safer, and more effective than current techniques. This will be done by emphasizing in-situ technologies. Most important, MWLID`s success will be shared with other Federal, state, and local governments, and private companies that face the important task of waste site remediation. MWLID will demonstrate technologies at two existing landfills. Sandia National Laboratories` Chemical Waste Landfill received hazardous (chemical) waste from the Laboratory from 1962 to 1985, and the Mixed-Waste Landfill received hazardous and radioactive wastes (mixed wastes) over a twenty-nine year period (1959-1988) from various Sandia nuclear research programs. Both landfills are now closed. Originally, however, the sites were selected because of Albuquerque`s and climate and the thick layer of alluvial deposits that overlay groundwater approximately 480 feet below the landfills. This thick layer of ``dry`` soils, gravel, and clays promised to be a natural barrier between the landfills and groundwater.

NONE

1994-02-01T23:59:59.000Z

122

Federal Energy Management Program: Landfill Gas Resources and Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Landfill Gas Landfill Gas Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Landfill Gas Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Landfill Gas Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Landfill Gas Resources and Technologies on Google Bookmark Federal Energy Management Program: Landfill Gas Resources and Technologies on Delicious Rank Federal Energy Management Program: Landfill Gas Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Landfill Gas Resources and Technologies on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies

123

Appendix B Landfill Inspection Forms and Survey Data  

Office of Legacy Management (LM)

Appendix B Landfill Inspection Forms and Survey Data This page intentionally left blank This page intentionally left blank Original Landfill January 2011 Monthly Inspection -...

124

Community Renewable Energy Success Stories: Landfill Gas-to-Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Stories: Landfill Gas-to-Energy Projects Webinar (text version) Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects Webinar (text version) Below is the text...

125

Briefing: DOE EM ITR Landfill Assessment Project Lessons Learned...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ITR Landfill Assessment Project Lessons Learned Briefing: DOE EM ITR Landfill Assessment Project Lessons Learned By: Craig H. Benson, PhD, PE Where: EM SSAB Teleconference: 1...

126

DOE EM Landfill Workshop and Path Forward - July 2009  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Teleconference: 2. DOE EM Landfill Workshop & Path Forward Office of Groundwater and Soil Remediation US Department of Energy July 2009 Slides prepared by CRESP DOE EM Landfill...

127

Briefing: DOE EM Landfill Workshop & Path Forward | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Landfill Workshop & Path Forward Briefing: DOE EM Landfill Workshop & Path Forward By: Office of Groundwater and Soil Remediation Where: SSAB Teleconference 2 Subject: DOE EM...

128

Westchester Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Landfill Biomass Facility Landfill Biomass Facility Jump to: navigation, search Name Westchester Landfill Biomass Facility Facility Westchester Landfill Sector Biomass Facility Type Landfill Gas Location Cook County, Illinois Coordinates 41.7376587°, -87.697554° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7376587,"lon":-87.697554,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

129

Kiefer Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Kiefer Landfill Biomass Facility Kiefer Landfill Biomass Facility Jump to: navigation, search Name Kiefer Landfill Biomass Facility Facility Kiefer Landfill Sector Biomass Facility Type Landfill Gas Location Sacramento County, California Coordinates 38.47467°, -121.3541631° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.47467,"lon":-121.3541631,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

130

Milliken Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Milliken Landfill Biomass Facility Milliken Landfill Biomass Facility Jump to: navigation, search Name Milliken Landfill Biomass Facility Facility Milliken Landfill Sector Biomass Facility Type Landfill Gas Location San Bernardino County, California Coordinates 34.9592083°, -116.419389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9592083,"lon":-116.419389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

131

Colton Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Colton Landfill Biomass Facility Colton Landfill Biomass Facility Jump to: navigation, search Name Colton Landfill Biomass Facility Facility Colton Landfill Sector Biomass Facility Type Landfill Gas Location San Bernardino County, California Coordinates 34.9592083°, -116.419389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9592083,"lon":-116.419389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

132

Girvin Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Girvin Landfill Biomass Facility Girvin Landfill Biomass Facility Jump to: navigation, search Name Girvin Landfill Biomass Facility Facility Girvin Landfill Sector Biomass Facility Type Landfill Gas Location Duval County, Florida Coordinates 30.3500511°, -81.6035062° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.3500511,"lon":-81.6035062,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

133

Acme Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Landfill Biomass Facility Landfill Biomass Facility Jump to: navigation, search Name Acme Landfill Biomass Facility Facility Acme Landfill Sector Biomass Facility Type Landfill Gas Location Contra Costa County, California Coordinates 37.8534093°, -121.9017954° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.8534093,"lon":-121.9017954,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

134

BKK Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

BKK Landfill Biomass Facility BKK Landfill Biomass Facility Jump to: navigation, search Name BKK Landfill Biomass Facility Facility BKK Landfill Sector Biomass Facility Type Landfill Gas Location Los Angeles County, California Coordinates 34.3871821°, -118.1122679° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.3871821,"lon":-118.1122679,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

135

Dane County Landfill | Open Energy Information  

Open Energy Info (EERE)

Dane County Landfill Dane County Landfill Jump to: navigation, search Name Dane County Landfill Facility Dane County Landfill #2 Rodefeld Sector Biomass Facility Type Landfill Gas Location Dane County, Wisconsin Coordinates 43.0186073°, -89.5497632° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0186073,"lon":-89.5497632,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

136

Forecast and Control Methods of Landfill Emission Gas to Atmosphere  

Science Conference Proceedings (OSTI)

The main component of landfill gas is CH4, its release is a potential hazard to the environment. To understand the gas law and landfill gas production are the prerequisite for effective control of landfill gas. This paper selects three kinds of typical ... Keywords: Landfill gas, German model, IPCC model, Marticorena dynamic model

Wang Qi; Yang Meihua; Wang Jie

2011-02-01T23:59:59.000Z

137

Capturing, Purifying, and Liquefying Landfill Gas for Transportation Fuel  

E-Print Network (OSTI)

Capturing, Purifying, and Liquefying Landfill Gas for Transportation Fuel TRANSPORTATION ENERGY alternative fuel, and purified landfill gas could provide a renewable domestic source of it. Landfills from landfills and use it in natural gas applications such as fueling motor vehicles. Project

138

Industrial Solid Waste Landfill Facilities (Ohio) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Solid Waste Landfill Facilities (Ohio) Industrial Solid Waste Landfill Facilities (Ohio) Industrial Solid Waste Landfill Facilities (Ohio) < Back Eligibility Agricultural Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Utility Program Info State Ohio Program Type Environmental Regulations Provider Ohio Environmental Protection Agency This chapter of the law establishes that the Ohio Environmental Protection Agency provides rules and guidelines for landfills, including those that treat waste to generate electricity. The law provides information for permitting, installing, maintaining, monitoring, and closing landfills. There are no special provisions or exemptions for landfills used to generate electricity. However, the law does apply to landfills that do

139

A Study on the Integrated MSW Management Technologies of Work Zone in the Hydropower Station of Yangtze Basin  

Science Conference Proceedings (OSTI)

As the hydropower exploitation of Yangtze basin in China is booming, thousands of workers work and live in the construction encampment, which results in more and more serious MSW pollution. In order to control environment pollution and protect the health ... Keywords: Municipal Solid Waste (MSW), Yangtze Basin, Integrated Waste Management, Pollution Control, Work Zone of Hydropower Station, Analytic Hierarchy Process (AHP)

Han Zhiyong; Liu Dan; Li Qibin; Xie Guangwu; Lang Jian; Zhang Luliang

2011-02-01T23:59:59.000Z

140

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network (OSTI)

Journal of Engineering for Gas Turbines and Power, 121:569-operations with natural gas: Fuel composition implications,USA ICEF2006-1578 LANDFILL GAS FUELED HCCI DEMONSTRATION

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste-to-energy msw landfill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Understanding landfill gas generation and migration  

DOE Green Energy (OSTI)

Landfill gas research in the US Department of Energy (DOE) from Municipal Waste (EMW) Program is focusing on two major areas of investigation: (1) Landfill gas migration processes; and (2) Landfill gas generation. With regard to gas migration, a field investigation is examining bidirectional gas movement through landfill cover materials by processes of pressure and diffusional flow. The overall purpose of the study is to quantify gas loss from the landfill reservoir by natural venting and air influx due to pumping on recovery wells. Two field sites--a humid site with clay cover and a semiarid site with sand cover--have been instrumented to examine vertical gas movement through cover materials. Results from the humid site indicate that: (1) concentrations of methane, carbon dioxide, oxygen and nitrogen in soil gas vary seasonally with soil moisture; (2) based on average methane gradients in soil gas and a simple diffusion model, up to 10E5 g methane m/sup /minus /2/ yr/sup /minus/1/ are vented through the cover materials at the humid site (area of 17 ht); and (3) during prolonged wet weather, pressure gradients of more than 2 kPa may develop between the cover materials and top of refuse, indicating that pressure flow is periodically an important mechanism for gas transport. The second project is addressing landfill gas generation. The major goal is to develop simple assay techniques to examine the gas production potential of landfilled refuse. Refuse samples extracted from various depths in a landfill are being leached by three different methods to separate microbial mass and substrate. The leachates are being subjected to Biochemical Methane Production (BMP) assays with periodic qualitative examination of microbial populations using fluorescence microscopy of live cultures and scanning electron microscopy (SEM).

Bogner, J.; Rose, C.; Vogt, M.; Gartman, D.

1988-01-01T23:59:59.000Z

142

Landfill Gas Resources and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Landfill Gas Resources and Technologies Landfill Gas Resources and Technologies Landfill Gas Resources and Technologies October 7, 2013 - 9:27am Addthis Photo of a bulldozer on top of a large trash mound in a landfill with a cloudy sky in the backdrop. Methane and other gases produced from landfill decomposition can be leveraged for energy. This page provides a brief overview of landfill gas energy resources and technologies supplemented by specific information to apply landfill gas energy within the Federal sector. Overview Landfill gases are a viable energy resource created during waste decomposition. Landfills are present in most communities. These resources can be tapped to generate heat and electricity. As organic waste decomposes, bio-gas is produced made up of roughly half methane, half carbon dioxide, and small amounts of non-methane organic

143

Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Landfills Convert Landfills Convert Biogas Into Renewable Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Google Bookmark Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Delicious Rank Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Digg Find More places to share Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on AddThis.com... May 25, 2013 Landfills Convert Biogas Into Renewable Natural Gas

144

Passive drainage and biofiltration of landfill gas: Australian field trial  

SciTech Connect

In Australia a significant number of landfill waste disposal sites do not incorporate measures for the collection and treatment of landfill gas. This includes many old/former landfill sites, rural landfill sites, non-putrescible solid waste and inert waste landfill sites, where landfill gas generation is low and it is not commercially viable to extract and beneficially utilize the landfill gas. Previous research has demonstrated that biofiltration has the potential to degrade methane in landfill gas, however, the microbial processes can be affected by many local conditions and factors including moisture content, temperature, nutrient supply, including the availability of oxygen and methane, and the movement of gas (oxygen and methane) to/from the micro-organisms. A field scale trial is being undertaken at a landfill site in Sydney, Australia, to investigate passive drainage and biofiltration of landfill gas as a means of managing landfill gas emissions at low to moderate gas generation landfill sites. The design and construction of the trial is described and the experimental results will provide in-depth knowledge on the application of passive gas drainage and landfill gas biofiltration under Sydney (Australian) conditions, including the performance of recycled materials for the management of landfill gas emissions.

Dever, S.A. [School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052 (Australia) and GHD Pty. Ltd., 10 Bond Street, Sydney, NSW 2000 (Australia)]. E-mail: stuart_dever@ghd.com.au; Swarbrick, G.E. [School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052 (Australia)]. E-mail: g.swarbrick@unsw.edu.au; Stuetz, R.M. [School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052 (Australia)]. E-mail: r.stuetz@unsw.edu.au

2007-07-01T23:59:59.000Z

145

NATURAL GAS REBURNING TECHNOLOGY FOR NOx REDUCTION FROM MSW COMBUSTION SYSTEMS  

E-Print Network (OSTI)

NATURAL GAS REBURNING TECHNOLOGY FOR NOx REDUCTION FROM MSW COMBUSTION SYSTEMS ABSTRACf CRAIG A series, injection of up to 15% (HHV basis) natural gas reduced NOx by 50-70% while maintain ing, Illinois DAVID G. LINZ Gas Research Institute Chicago, Illinois ducing NOx emISSIons from municipal solid

Columbia University

146

NATURAL GAS REBURNING TECHNOLOGY FOR NOx REDUCTION FROM MSW COMBUSTION SYSTEMS  

E-Print Network (OSTI)

NATURAL GAS REBURNING TECHNOLOGY FOR NOx REDUCTION FROM MSW COMBUSTION SYSTEMS Discussion by CRAIG's increased turbulent mixing is on the CO profile and what the incremental NOx reduction experienced was from that this alone would contribute to a significant reduction in the NO", generated. The authors are careful

Columbia University

147

Investigations of natural attenuation in groundwater near a landfill and implications for landfill post-closure  

E-Print Network (OSTI)

-closure phase. During the post-closure phase, landfill operators need to convince environmental authorities treatment of residual greenhouse gas emissions (e.g. Scheutz et al., 2009). From an operator's perspective to be a source of cost. Therefore during the post-closure phase, landfill operators need to convince

Paris-Sud XI, Université de

148

Photovoltaics on Landfills in Puerto Rico  

Science Conference Proceedings (OSTI)

The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Commonwealth of Puerto Rico for a feasibility study of m0treAlables on several brownfield sites. The EPA defines a brownfield as 'a property, the expansion, redevelopment, or reuse of which may be complicated by the presence or potential presence of a hazardous substance, pollutant, or contaminant.' All of the brownfields in this study are landfill sites. Citizens of Puerto Rico, city planners, and site managers are interested in redevelopment uses for landfills in Puerto Rico, which are particularly well suited for solar photovoltaic (PV) installation. The purpose of this report is to assess the landfills with the highest potential for possible solar PV installation and estimate cost, performance, and site impacts of three different PV options: crystalline silicon (fixed-tilt), crystalline silicon (single-axis tracking), and thin film (fixed-tilt). Each option represents a standalone system that can be sized to use an entire available site area. In addition, the report outlines financing options that could assist in the implementation of a system. The feasibility of PV systems installed on landfills is highly impacted by the available area for an array, solar resource, operating status, landfill cap status, distance to transmission lines, and distance to major roads. All of the landfills in Puerto Rico were screened according to these criteria in order to determine the sites with the greatest potential. Eight landfills were chosen for site visits based on the screening criteria and location. Because of time constraints and the fact that Puerto Rico is a relatively large island, the eight landfills for this visit were all located in the eastern half of the island. The findings from this report can be applied to landfills in the western half of the island. The economics of a potential PV system on landfills in Puerto Rico depend greatly on the cost of electricity. Currently, PREPA has an average electric rate of $0.119/kWh. Based on past electric rate increases in Puerto Rico and other islands in the Caribbean, this rate could increase to $0.15/kWh or higher in a relatively short amount of time. In the coming years, increasing electrical rates and increased necessity for clean power will continue to improve the feasibility of implementing solar PV systems at these sites.

Salasovich, J.; Mosey, G.

2011-01-01T23:59:59.000Z

149

LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL  

SciTech Connect

''Conventional'' waste landfills emit methane, a potent greenhouse gas, in quantities such that landfill methane is a major factor in global climate change. Controlled landfilling is a novel approach to manage landfills for rapid completion of total gas generation, maximizing gas capture and minimizing emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated and brought to much earlier completion by improving conditions for biological processes (principally moisture levels) in the landfill. Gas recovery efficiency approaches 100% through use of surface membrane cover over porous gas recovery layers operated at slight vacuum. A field demonstration project's results at the Yolo County Central Landfill near Davis, California are, to date, highly encouraging. Two major controlled landfilling benefits would be the reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role in reduction of US greenhouse gas emissions.

Don Augenstein

1999-01-11T23:59:59.000Z

150

Using landfill gas for energy: Projects that pay  

Science Conference Proceedings (OSTI)

Pending Environmental Protection Agency regulations will require 500 to 700 landfills to control gas emissions resulting from decomposing garbage. Conversion of landfill gas to energy not only meets regulations, but also creates energy and revenue for local governments.

NONE

1995-02-01T23:59:59.000Z

151

Wasting Time : a leisure infrastructure for mega-landfill  

E-Print Network (OSTI)

Landfills are consolidating into fewer, taller, and more massive singular objects in the exurban landscape.This thesis looks at one instance in Virginia, the first regional landfill in the state to accept trash from New ...

Nguyen, Elizabeth M. (Elizabeth Margaret)

2007-01-01T23:59:59.000Z

152

Mill Seat Landfill Bioreactor Renewable Green Power (NY)  

Science Conference Proceedings (OSTI)

The project was implemented at the Mill Seat landfill located in the Town of Bergen, Monroe County, New York. The landfill was previously equipped with a landfill gas collection system to collect methane gas produced by the bioreactor landfill and transport it to a central location for end use. A landfill gas to energy facility was also previously constructed at the site, which utilized generator engines, designed to be powered with landfill methane gas, to produce electricity, to be utilized on site and to be sold to the utility grid. The landfill gas generation rate at the site had exceeded the capacity of the existing generators, and the excess landfill gas was therefore being burned at a candlestick flare for destruction. The funded project consisted of the procurement and installation of two (2) additional 800 KW Caterpillar 3516 generator engines, generator sets, switchgear and ancillary equipment.

Barton & Loguidice, P.C.

2010-01-07T23:59:59.000Z

153

Soil gas investigations at the Sanitary Landfill  

SciTech Connect

A soil gas survey was performed at the 740-G Sanitary Landfill of Savannah River Plant during December, 1990. The survey monitored the presence and distribution of the C[sub 1]C[sub 4] hydrocarbons; the C[sub 5]-C[sub 10] normal paraffins; the aromatic hydrocarbons, BTXE; selected chlorinated hydrocarbons; and mercury. Significant levels of several of these contaminants were found associated with the burial site. In the northern area of the Landfill, methane concentrations ranged up to 63% of the soil gas and were consistently high on the western side of the access road. To the east of the access road in the northern and southern area high concentrations of methane were encountered but were not consistently high. Methane, the species found in highest concentration in the landfill, was generated in the landfill as the result of biological oxidation of cellulose and other organics to carbon dioxide followed by reduction of the carbon dioxide to methane. Distributions of other species are the result of burials in the landfill of solvents or other materials.

Wyatt, D.E.; Pirkle, R.J.; Masdea, D.J.

1992-07-01T23:59:59.000Z

154

Soil gas investigations at the Sanitary Landfill  

SciTech Connect

A soil gas survey was performed at the 740-G Sanitary Landfill of Savannah River Plant during December, 1990. The survey monitored the presence and distribution of the C{sub 1}C{sub 4} hydrocarbons; the C{sub 5}-C{sub 10} normal paraffins; the aromatic hydrocarbons, BTXE; selected chlorinated hydrocarbons; and mercury. Significant levels of several of these contaminants were found associated with the burial site. In the northern area of the Landfill, methane concentrations ranged up to 63% of the soil gas and were consistently high on the western side of the access road. To the east of the access road in the northern and southern area high concentrations of methane were encountered but were not consistently high. Methane, the species found in highest concentration in the landfill, was generated in the landfill as the result of biological oxidation of cellulose and other organics to carbon dioxide followed by reduction of the carbon dioxide to methane. Distributions of other species are the result of burials in the landfill of solvents or other materials.

Wyatt, D.E.; Pirkle, R.J.; Masdea, D.J.

1992-07-01T23:59:59.000Z

155

Agencies plan continued DOE landfill remediation  

NLE Websites -- All DOE Office Websites (Extended Search)

Agencies plan continued DOE landfill remediation Agencies plan continued DOE landfill remediation The U.S. Department of Energy (DOE), Idaho Department of Environmental Quality and U.S. Environmental Protection Agency have released a planning document that specifies how DOE will continue to remediate a landfill containing hazardous and transuranic waste at DOE's Idaho Site located in eastern Idaho. The Phase 1 Remedial Design/Remedial Action Work Plan for Operable Unit 7-13/14 document was issued after the September 2008 Record of Decision (ROD) and implements the retrieval of targeted waste at the Subsurface Disposal Area (SDA) within the Radioactive Waste Management Complex (RWMC). The SDA began receiving waste in 1952 and contains radioactive and chemical waste in approximately 35 acres of disposal pits, trenches and soil vaults.

156

US EPA record of decision review for landfills: Sanitary landfill (740-G), Savannah River Site  

Science Conference Proceedings (OSTI)

This report presents the results of a review of the US Environmental Protection Agency (EPA) Record of Decision System (RODS) database search conducted to identify Superfund landfill sites where a Record of Decision (ROD) has been prepared by EPA, the States or the US Army Corps of Engineers describing the selected remedy at the site. ROD abstracts from the database were reviewed to identify site information including site type, contaminants of concern, components of the selected remedy, and cleanup goals. Only RODs from landfill sites were evaluated so that the results of the analysis can be used to support the remedy selection process for the Sanitary Landfill at the Savannah River Site (SRS).

Not Available

1993-06-01T23:59:59.000Z

157

Landfill stabilization focus area: Technology summary  

SciTech Connect

Landfills within the DOE Complex as of 1990 are estimated to contain 3 million cubic meters of buried waste. The DOE facilities where the waste is predominantly located are at Hanford, the Savannah River Site (SRS), the Idaho National Engineering Laboratory (INEL), the Los Alamos National Laboratory (LANL), the Oak Ridge Reservation (ORR), the Nevada Test Site (NTS), and the Rocky Flats Plant (RFP). Landfills include buried waste, whether on pads or in trenches, sumps, ponds, pits, cribs, heaps and piles, auger holes, caissons, and sanitary landfills. Approximately half of all DOE buried waste was disposed of before 1970. Disposal regulations at that time permitted the commingling of various types of waste (i.e., transuranic, low-level radioactive, hazardous). As a result, much of the buried waste throughout the DOE Complex is presently believed to be contaminated with both hazardous and radioactive materials. DOE buried waste typically includes transuranic-contaminated radioactive waste (TRU), low-level radioactive waste (LLW), hazardous waste per 40 CFR 26 1, greater-than-class-C waste per CFR 61 55 (GTCC), mixed TRU waste, and mixed LLW. The mission of the Landfill Stabilization Focus Area is to develop, demonstrate, and deliver safer,more cost-effective and efficient technologies which satisfy DOE site needs for the remediation and management of landfills. The LSFA is structured into five technology areas to meet the landfill remediation and management needs across the DOE complex. These technology areas are: assessment, retrieval, treatment, containment, and stabilization. Technical tasks in each of these areas are reviewed.

NONE

1995-06-01T23:59:59.000Z

158

Anaerobic treatment of sludge from a nitrification-denitrification landfill leachate plant  

Science Conference Proceedings (OSTI)

The viability of anaerobic digestion of sludge from a MSW landfill leachate treatment plant, with COD values ranging between 15,000 and 19,400 mg O{sub 2} dm{sup -3}, in an upflow anaerobic sludge blanket reactor was studied. The reactor employed had a useful capacity of 9 l, operating at mesophilic temperature. Start-up of the reactor was carried out in different steps, beginning with diluted sludge and progressively increasing the amount of sludge fed into the reactor. The study was carried out over a period of 7 months. Different amounts of methanol were added to the feed, ranging between 6.75 and 1 cm{sup 3} dm{sup -3} of feed in order to favour the growth of methanogenic flora. The achieved biodegradation of the sludge using an upflow anaerobic sludge blanket Reactor was very high for an HRT of 9 days, obtaining decreases in COD of 84-87% by the end of the process. Purging of the digested sludge represented {approx}16% of the volume of the treated sludge.

Maranon, E. [Chemical and Environmental Engineering Department, Higher Polytechnic School of Engineering, University of Oviedo, Campus of Viesques, 33204 Gijon (Spain)]. E-mail: emara@uniovi.es; Castrillon, L. [Chemical and Environmental Engineering Department, Higher Polytechnic School of Engineering, University of Oviedo, Campus of Viesques, 33204 Gijon (Spain); Fernandez, Y. [Chemical and Environmental Engineering Department, Higher Polytechnic School of Engineering, University of Oviedo, Campus of Viesques, 33204 Gijon (Spain); Fernandez, E. [COGERSA, 33697 Serin, Gijon (Spain)

2006-07-01T23:59:59.000Z

159

Methane Gas Utilization Project from Landfill at Ellery (NY)  

DOE Green Energy (OSTI)

Landfill Gas to Electric Energy Generation and Transmission at Chautauqua County Landfill, Town of Ellery, New York. The goal of this project was to create a practical method with which the energy, of the landfill gas produced by the decomposing waste at the Chautauqua County Landfill, could be utilized. This goal was accomplished with the construction of a landfill gas to electric energy plant (originally 6.4MW and now 9.6MW) and the construction of an inter-connection power-line, from the power-plant to the nearest (5.5 miles) power-grid point.

Pantelis K. Panteli

2012-01-10T23:59:59.000Z

160

Bioreactor Landfill Research and Demonstration Project Northern Oaks Landfill, Harrison, MI  

DOE Green Energy (OSTI)

gaseous sample characteristics correlated with enhanced biological activity and increase in temperature. Continued monitoring of this bioreactor landfill cell is expected to yield critical data needed for start up, design, and operation of this emerging process.

Zhao, Xiando; Voice, Thomas; and Hashsham, Syed A.

2006-08-29T23:59:59.000Z

Note: This page contains sample records for the topic "waste-to-energy msw landfill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Franklin County Sanitary Landfill - Landfill Gas (LFG) to Liquefied Natural Gas (LNG) - Project  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

FRANKLIN COUNTY SANITARY FRANKLIN COUNTY SANITARY LANDFILL - LANDFILL GAS (LFG) TO LIQUEFIED NATURAL GAS (LNG) - PROJECT January/February 2005 Prepared for: National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 Table of Contents Page BACKGROUND AND INTRODUCTION .......................................................................................1 SUMMARY OF EFFORT PERFORMED ......................................................................................2 Task 2B.1 - Literature Search and Contacts Made...................................................................2 Task 2B.2 - LFG Resource/Resource Collection System - Project Phase One.......................3 Conclusion.................................................................................................................................5

162

Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Natural Gas Renewable Natural Gas From Landfill Powers Refuse Vehicles to someone by E-mail Share Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Facebook Tweet about Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Twitter Bookmark Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Google Bookmark Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Delicious Rank Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Digg Find More places to share Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on AddThis.com... April 13, 2013

163

Landfill gas recovery: a technology status report  

DOE Green Energy (OSTI)

Landfill gas, which consists mainly of methane and carbon dioxide, can be recovered and used as a fuel. Processing will upgrade it to a high-Btu gas of pipeline quality. There are more than a dozen commercial landfill-gas recovery facilities in the US at present, all at relatively large sites. The amount of gas produced by a given site is a function of size, composition, and age of the landfill. Various techniques can be used to enhance gas production and yield, including controlled addition of moisture and nutrients; bacterial seeding and pH control also appear useful. Several computer models have been developed to examine the effects of various parameters on gas production and yield; these can aid in predicting optimum gas recovery and in maintaining the proper chemical balance within the producing portion of the landfill. Economically, a site's viability depends on its location and potential users, current competing energy costs, and legislation governing the site's operation. Legal problems of site operation can occur because of environmental and safety issues, as well as from questions of gas ownership, liability, and public utility commission considerations. Currently, R and D is under way to improve present recovery techniques and to develop new technologies and concepts. Cost comparisons and potential environmental impacts are being examined. Additional research is needed in the areas of gas enhancement, decompositional analysis, computer modeling, gas characterization, instrumentation, and engineering cost analysis. 77 references, 11 figures, 23 tables.

Zimmermann, R.E.; Lytwynyshyn, G.R.; Wilkey, M.L.

1983-08-01T23:59:59.000Z

164

Balancing Cost and Risk: The Treatment of Renewable Energy in Western Utility Resource Plans  

E-Print Network (OSTI)

thermal, solar PV, and landfill gas, while PGE initiallywave energy, solar, landfill gas, and MSW, but excluded each

Bolinger, Mark; Wiser, Ryan

2005-01-01T23:59:59.000Z

165

On mobilization of lead and arsenic in groundwater in response to CO2 leakage from deep geological storage  

E-Print Network (OSTI)

Evaluation and mitigation of landfill gas impacts on cadmiummunicipal solid waste (MSW) landfill gas on the release of

Zheng, L.

2010-01-01T23:59:59.000Z

166

FEASIBILITY ANALYSIS OF WASTE-TO-ENERGY  

E-Print Network (OSTI)

oxygen protection. Several journal articles and conference proceedings provide design details regarding of the cabling and fault-detection circuitry. Power scavenging concepts may also be considered for low photolithography combined with hydrofluoric acid wet chemical etching, chlorine-based plasma etching or CFB4

Columbia University

167

Waste-to-Energy Design Proposal for  

E-Print Network (OSTI)

of various arsenicals has led to extensive contamination of groundwater in the US (Smith et al., 1998). High transformations of arsenic and iron in water treatment sludge during aging and TCLP extraction. Environ. Sci

Columbia University

168

Neural network prediction model for the methane fraction in biogas from field-scale landfill bioreactors  

Science Conference Proceedings (OSTI)

In this study we present a neural network model for predicting the methane fraction in landfill gas originating from field-scale landfill bioreactors. Landfill bioreactors were constructed at the Odayeri Sanitary Landfill, Istanbul, Turkey, and operated ... Keywords: Anaerobic digestion, Landfill gas, Leachate, Methane fraction, Modeling, Neural network

Bestamin Ozkaya; Ahmet Demir; M. Sinan Bilgili

2007-06-01T23:59:59.000Z

169

DOE - Office of Legacy Management -- Shpack Landfill - MA 06  

Office of Legacy Management (LM)

Shpack Landfill - MA 06 Shpack Landfill - MA 06 FUSRAP Considered Sites Shpack Landfill, NY Alternate Name(s): Attleboro, MA Metals and Controls Site Norton Landfill area MA.06-2 MA.06-3 Location: 68 Union Road, Norton, Massachusetts MA.06-2 Historical Operations: No AEC activities were conducted on site. Contamination was suspected from disposal of materials containing uranium and zirconium ash. MA.06-2 MA.06-3 Eligibility Determination: Eligible MA.06-1 Radiological Survey(s): Assessment Surveys MA.06-4 MA.06-5 MA.06-6 Site Status: Cleanup in progress by U.S. Army Corps of Engineers. MA.06-7 MA.06-8 USACE Website Long-term Care Requirements: To be determined upon completion. Also see Documents Related to Shpack Landfill, NY MA.06-1 - DOE Memorandum; Meyers to Hart; Subject: Shpack Landfill,

170

Greenhouse gas emissions from MSW incineration in China: Impacts of waste characteristics and energy recovery  

Science Conference Proceedings (OSTI)

Determination of the amount of greenhouse gas (GHG) emitted during municipal solid waste incineration (MSWI) is complex because both contributions and savings of GHGs exist in the process. To identify the critical factors influencing GHG emissions from MSWI in China, a GHG accounting model was established and applied to six Chinese cities located in different regions. The results showed that MSWI in most of the cities was the source of GHGs, with emissions of 25-207 kg CO{sub 2}-eq t{sup -1} rw. Within all process stages, the emission of fossil CO{sub 2} from the combustion of MSW was the main contributor (111-254 kg CO{sub 2}-eq t{sup -1} rw), while the substitution of electricity reduced the GHG emissions by 150-247 kg CO{sub 2}-eq t{sup -1} rw. By affecting the fossil carbon content and the lower heating value of the waste, the contents of plastic and food waste in the MSW were the critical factors influencing GHG emissions of MSWI. Decreasing food waste content in MSW by half will significantly reduce the GHG emissions from MSWI, and such a reduction will convert MSWI in Urumqi and Tianjin from GHG sources to GHG sinks. Comparison of the GHG emissions in the six Chinese cities with those in European countries revealed that higher energy recovery efficiency in Europe induced much greater reductions in GHG emissions. Recovering the excess heat after generation of electricity would be a good measure to convert MSWI in all the six cities evaluated herein into sinks of GHGs.

Yang Na [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Zhang Hua, E-mail: zhanghua_tj@tongji.edu.cn [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Chen Miao; Shao Liming [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); He Pinjing, E-mail: xhpjk@tongji.edu.cn [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China)

2012-12-15T23:59:59.000Z

171

Feasibility study: utilization of landfill gas for a vehicle fuel system, Rossman's landfill, Clackamas County, Oregon  

SciTech Connect

In 1978, a landfill operator in Oregon became interested in the technical and economic feasibility of recovering the methane generated in the landfill for the refueling of vehicles. DOE awarded a grant for a site-specific feasibility study of this concept. This study investigated the expected methane yield and the development of a conceptual gas-gathering system; gas processing, compressing, and storage systems; and methane-fueled vehicle systems. Cost estimates were made for each area of study. The results of the study are presented. Reasoning that gasoline prices will continue to rise and that approximately 18,000 vehicles in the US have been converted to operate on methane, a project is proposed to use this landfill as a demonstration site to produce and process methane and to fuel a fleet (50 to 400) vehicles with the gas produced in order to obtain performance and economic data on the systems used from gas collection through vehicle operation. (LCL)

Not Available

1981-01-01T23:59:59.000Z

172

Modeling Analysis of Biosparging at the Sanitary Landfill  

Science Conference Proceedings (OSTI)

This report presents the results of a groundwater modeling study that evaluates the performance of the biosparging system at the Sanitary Landfill.

Jackson, D.

1998-11-25T23:59:59.000Z

173

Mill Seat Landfill Bioreactor Renewable Green Power (NY)  

DOE Green Energy (OSTI)

for end use. A landfill gas to energy facility was also previously constructed at the site, which utilized generator engines, designed to be powered with landfill methane gas, to produce electricity, to be utilized on site and to be sold to the utility grid. The landfill gas generation rate at the site had exceeded the capacity of the existing generators, and the excess landfill gas was therefore being burned at a candlestick flare for destruction. The funded project consisted of the procurement and installation of two (2) additional 800 KW Caterpillar 3516 generator engines, generator sets, switchgear and ancillary equipment.

Barton & Loguidice, P.C.

2010-01-07T23:59:59.000Z

174

Texas Mandate Landfill Gas Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Texas Mandate Landfill Gas Biomass Facility Jump to: navigation, search Name Texas Mandate...

175

Manhattan Project truck unearthed at landfill cleanup site  

NLE Websites -- All DOE Office Websites (Extended Search)

Phonebook Calendar Video Newsroom News Releases News Releases - 2011 April Manhattan project truck Manhattan Project truck unearthed at landfill cleanup site A LANL...

176

UNFCCC-Consolidated baseline and monitoring methodology for landfill...  

Open Energy Info (EERE)

Facebook icon Twitter icon UNFCCC-Consolidated baseline and monitoring methodology for landfill gas project activities Jump to: navigation, search Tool Summary LAUNCH TOOL Name:...

177

Case study: City of Industry landfill gas recovery operation  

DOE Green Energy (OSTI)

Development of civic, recreation, and conservation facilities throughout a 150-acre site which had been used for waste disposal from 1951 to 1970 is described. The history of the landfill site, the geology of the site, and a test well program to assess the feasibility of recoverying landfill gas economically from the site are discussed. Based on results of the test well program, the City of Industry authorized the design and installation of a full-scale landfill gas recovery system. Design, construction, and operation of the system are described. The landfill gas system provides fuel for use in boilers to meet space heating and hot water demands for site development (MCW)

None

1981-11-01T23:59:59.000Z

178

Hanford Landfill Reaches 15 Million Tons Disposed - Waste Disposal...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Million Tons Disposed - Waste Disposal Mark Shows Success Cleaning Up River Corridor Hanford Landfill Reaches 15 Million Tons Disposed - Waste Disposal Mark Shows Success...

179

Heavy metals and toxic organic pollutants in MSW-composts: Research results on phytoavailability, bioavailability, fate, etc  

Science Conference Proceedings (OSTI)

The paper is a review and interpretation of research which has been conducted to determine the fate, transport, and potential effects of heavy metals and toxic organic compounds in Municipal Solid Waste (MSW)-composts and sewage sludges. Evaluation of research findings identified a number of pathways by which these contaminants can be transferred from MSW-compost or compost-amended soils to humans, livestock, or wildlife. The pathways consider direct ingestion of compost or compost-amended soil by livestock and children, plant uptake by food or feed crops, and exposure to dust, vapor, and water to which metals and organics have migrated.

Ryan, J.A.; Chaney, R.L.

1994-01-01T23:59:59.000Z

180

Estimation of residual MSW heating value as a function of waste component recycling  

Science Conference Proceedings (OSTI)

Recycling of packaging wastes may be compatible with incineration within integrated waste management systems. To study this, a mathematical model is presented to calculate the fraction composition of residual municipal solid waste (MSW) only as a function of the MSW fraction composition at source and recycling fractions of the different waste materials. The application of the model to the Lisbon region yielded results showing that the residual waste fraction composition depends both on the packaging wastes fraction at source and on the ratio between that fraction and the fraction of the same material, packaging and non-packaging, at source. This behaviour determines the variation of the residual waste LHV. For 100% of paper packaging recycling, LHV reduces 4.2% whereas this reduction is of 14.4% for 100% of packaging plastics recycling. For 100% of food waste recovery, LHV increases 36.8% due to the moisture fraction reduction of the residual waste. Additionally the results evidence that the negative impact of recycling paper and plastic packaging on the LHV may be compensated by recycling food waste and glass and metal packaging. This makes packaging materials recycling and food waste recovery compatible strategies with incineration within integrated waste management systems.

Magrinho, Alexandre [Mechanical Engineering Department, Escola Superior de Tecnologia de Setubal, Campus IPS, Estefanilha, Setubal (Portugal); Semiao, Viriato [Mechanical Engineering Department, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon (Portugal)], E-mail: ViriatoSemiao@ist.utl.pt

2008-12-15T23:59:59.000Z

Note: This page contains sample records for the topic "waste-to-energy msw landfill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Comparison of models for predicting landfill methane recovery. Final report  

DOE Green Energy (OSTI)

Landfill methane models are tools used to project methane generation over time from a mass of landfilled waste. These models are used for sizing landfill gas (LFG) collection systems, evaluations and projections of LFG energy uses, and regulatory purposes. The objective of this project was to select various landfill methane models and to provide a comparison of model outputs to actual long-term gas recovery data from a number of well managed and suitable landfills. Another objective was to use these data to develop better estimates of confidence limits that can be assigned to model projections. This project assessed trial model forms against field data from available landfills where methane extraction was maximized, waste filling history was well-documented, and other pertinent site information was of superior quality. Data were obtained from 18 US landfills. Four landfill methane models were compared: a zero-order, a simple first order, a modified first order, and a multi-phase first order model. Models were adjusted for best fit to field data to yield parameter combinations based on the minimized residual errors between predicted and experienced methane recovery. The models were optimized in this way using two data treatments: absolute value of the differences (arithmetic error minimization) and absolute value of the natural log of the ratios (logarithmic error minimization).

Vogt, W.G. [SCS Engineers, Reston, VA (United States); Augenstein, D. [Institute for Environmental Management, Palo Alto, CA (United States)

1997-03-01T23:59:59.000Z

182

Supercritical water oxidation of landfill leachate  

Science Conference Proceedings (OSTI)

Highlights: > Thermal analysis of NH{sub 3} in supercritical water oxidation reaction. > Research on the catalytic reaction of landfill leachate by using response surface method. > Kinetic research of supercritical water oxidation of NH{sub 3} with and without MnO{sub 2} catalyst. - Abstract: In this paper, ammonia as an important ingredient in landfill leachate was mainly studied. Based on Peng-Robinson formulations and Gibbs free energy minimization method, the estimation of equilibrium composition and thermodynamic analysis for supercritical water oxidation of ammonia (SCWO) was made. As equilibrium is reached, ammonia could be totally oxidized in SCW. N{sub 2} is the main product, and the formation of NO{sub 2} and NO could be neglected. The investigation on SCWO of landfill leachate was conducted in a batch reactor at temperature of 380-500 deg. C, reaction time of 50-300 s and pressure of 25 MPa. The effect of reaction parameters such as oxidant equivalent ratio, reaction time and temperature were investigated. The results showed that COD and NH{sub 3} conversion improved as temperature, reaction time and oxygen excess increased. Compared to organics, NH{sub 3} is a refractory compound in supercritical water. The conversion of COD and NH{sub 3} were higher in the presence of MnO{sub 2} than that without catalyst. The interaction between reaction temperature and time was analyzed by using response surface method (RSM) and the results showed that its influence on the NH{sub 3} conversion was relatively insignificant in the case without catalyst. A global power-law rate expression was regressed from experimental data to estimate the reaction rate of NH{sub 3}. The activation energy with and without catalyst for NH{sub 3} oxidation were 107.07 {+-} 8.57 kJ/mol and 83.22 {+-} 15.62 kJ/mol, respectively.

Wang Shuzhong, E-mail: s_z_wang@yahoo.cn [School of Energy and Power Engineering of Xi' an Jiao Tong University, Xi'an 710049 (China); Guo Yang [School of Energy and Power Engineering of Xi' an Jiao Tong University, Xi'an 710049 (China); Chen Chongming [Hebei Electric Power Research Institute, Shijizhuang, Hebei 050021 (China); Zhang Jie; Gong Yanmeng; Wang Yuzhen [School of Energy and Power Engineering of Xi' an Jiao Tong University, Xi'an 710049 (China)

2011-09-15T23:59:59.000Z

183

LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL  

Science Conference Proceedings (OSTI)

Controlled landfilling is an approach to manage solid waste landfills, so as to rapidly complete methane generation, while maximizing gas capture and minimizing the usual emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated to more rapid and earlier completion to full potential by improving conditions (principally moisture, but also temperature) to optimize biological processes occurring within the landfill. Gas is contained through use of surface membrane cover. Gas is captured via porous layers, under the cover, operated at slight vacuum. A field demonstration project has been ongoing under NETL sponsorship for the past several years near Davis, CA. Results have been extremely encouraging. Two major benefits of the technology are reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times, more predictably, than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role both in reduction of US greenhouse gas emissions and in US renewable energy. The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with conventional landfills. This is the highest methane recovery rate per unit waste, and thus progress toward stabilization, documented anywhere for such a large waste mass. This high recovery rate is attributed to moisture, and elevated temperature attained inexpensively during startup. Economic analyses performed under Phase I of this NETL contract indicate ''greenhouse cost effectiveness'' to be excellent. Other benefits include substantial waste volume loss (over 30%) which translates to extended landfill life. Other environmental benefits include rapidly improved quality and stabilization (lowered pollutant levels) in liquid leachate which drains from the waste.

Don Augenstein; Ramin Yazdani; Rick Moore; Michelle Byars; Jeff Kieffer; Professor Morton Barlaz; Rinav Mehta

2000-02-26T23:59:59.000Z

184

Sandia National Laboratories: No More Green Waste in the Landfill  

NLE Websites -- All DOE Office Websites (Extended Search)

No More Green Waste in the Landfill No More Green Waste in the Landfill June 09, 2011 Dump Truck Image On the heels of Sandia National Laboratories' successful food waste composting program, Pollution Prevention (P2) has teamed with the Facilities' Grounds and Roads team and the Solid Waste Transfer Facility to implement green waste composting. Previously, branches and logs were being diverted and mulched by Kirtland Air Force Base at their Construction & Demolition Landfill that is on base and utilized under contract by Sandia. The mulch is available to the Air Force and Sandia for landscaping uses. However, grass clippings, leaves, and other green waste were being disposed in the landfill. In an initiative to save time and trips by small trucks with trailers to the landfill carrying organic debris, two 30 cubic yard rolloffs were

185

Ocean County Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

County Landfill Biomass Facility County Landfill Biomass Facility Jump to: navigation, search Name Ocean County Landfill Biomass Facility Facility Ocean County Landfill Sector Biomass Facility Type Landfill Gas Location Ocean County, New Jersey Coordinates 39.9652553°, -74.3118212° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.9652553,"lon":-74.3118212,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

186

Cuyahoga Regional Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Landfill Biomass Facility Landfill Biomass Facility Jump to: navigation, search Name Cuyahoga Regional Landfill Biomass Facility Facility Cuyahoga Regional Landfill Sector Biomass Facility Type Landfill Gas Location Cuyahoga County, Ohio Coordinates 41.7048247°, -81.7787021° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7048247,"lon":-81.7787021,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

187

Miramar Landfill Metro Biosolids Center Biomass Facility | Open Energy  

Open Energy Info (EERE)

Miramar Landfill Metro Biosolids Center Biomass Facility Miramar Landfill Metro Biosolids Center Biomass Facility Jump to: navigation, search Name Miramar Landfill Metro Biosolids Center Biomass Facility Facility Miramar Landfill Metro Biosolids Center Sector Biomass Facility Type Landfill Gas Location San Diego County, California Coordinates 33.0933809°, -116.6081653° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.0933809,"lon":-116.6081653,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

188

Mid Valley Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Landfill Biomass Facility Landfill Biomass Facility Jump to: navigation, search Name Mid Valley Landfill Biomass Facility Facility Mid Valley Landfill Sector Biomass Facility Type Landfill Gas Location San Bernardino County, California Coordinates 34.9592083°, -116.419389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9592083,"lon":-116.419389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

189

Woodland Landfill Gas Recovery Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Landfill Gas Recovery Biomass Facility Landfill Gas Recovery Biomass Facility Jump to: navigation, search Name Woodland Landfill Gas Recovery Biomass Facility Facility Woodland Landfill Gas Recovery Sector Biomass Facility Type Landfill Gas Location Kane County, Illinois Coordinates 41.987884°, -88.4016041° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.987884,"lon":-88.4016041,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

190

Blackburn Landfill Co-Generation Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Blackburn Landfill Co-Generation Biomass Facility Blackburn Landfill Co-Generation Biomass Facility Jump to: navigation, search Name Blackburn Landfill Co-Generation Biomass Facility Facility Blackburn Landfill Co-Generation Sector Biomass Facility Type Landfill Gas Location Catawba County, North Carolina Coordinates 35.6840748°, -81.2518833° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.6840748,"lon":-81.2518833,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

191

Lopez Landfill Gas Utilization Project Biomass Facility | Open Energy  

Open Energy Info (EERE)

Lopez Landfill Gas Utilization Project Biomass Facility Lopez Landfill Gas Utilization Project Biomass Facility Jump to: navigation, search Name Lopez Landfill Gas Utilization Project Biomass Facility Facility Lopez Landfill Gas Utilization Project Sector Biomass Facility Type Landfill Gas Location Los Angeles County, California Coordinates 34.3871821°, -118.1122679° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.3871821,"lon":-118.1122679,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

192

UNFCCC-Consolidated baseline and monitoring methodology for landfill gas  

Open Energy Info (EERE)

UNFCCC-Consolidated baseline and monitoring methodology for landfill gas UNFCCC-Consolidated baseline and monitoring methodology for landfill gas project activities Jump to: navigation, search Tool Summary LAUNCH TOOL Name: UNFCCC-Consolidated baseline and monitoring methodology for landfill gas project activities Agency/Company /Organization: United Nations Framework Convention on Climate Change (UNFCCC) Sector: Climate, Energy Focus Area: Renewable Energy, Non-renewable Energy, - Landfill Gas Topics: Baseline projection, GHG inventory Resource Type: Guide/manual Website: cdm.unfccc.int/public_inputs/meth/acm0001/index.html Cost: Free Language: English References: UNFCCC-Consolidated baseline and monitoring methodology for landfill gas project activities[1] This article is a stub. You can help OpenEI by expanding it. References

193

I 95 Landfill Phase II Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Landfill Phase II Biomass Facility Landfill Phase II Biomass Facility Jump to: navigation, search Name I 95 Landfill Phase II Biomass Facility Facility I 95 Landfill Phase II Sector Biomass Facility Type Landfill Gas Location Fairfax County, Virginia Coordinates 38.9085472°, -77.2405153° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.9085472,"lon":-77.2405153,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

194

Balefill Landfill Gas Utilization Proj Biomass Facility | Open Energy  

Open Energy Info (EERE)

Balefill Landfill Gas Utilization Proj Biomass Facility Balefill Landfill Gas Utilization Proj Biomass Facility Jump to: navigation, search Name Balefill Landfill Gas Utilization Proj Biomass Facility Facility Balefill Landfill Gas Utilization Proj Sector Biomass Facility Type Landfill Gas Location Bergen County, New Jersey Coordinates 40.9262762°, -74.07701° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.9262762,"lon":-74.07701,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

195

Prima Desheha Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Prima Desheha Landfill Biomass Facility Prima Desheha Landfill Biomass Facility Jump to: navigation, search Name Prima Desheha Landfill Biomass Facility Facility Prima Desheha Landfill Sector Biomass Facility Type Landfill Gas Location Orange County, California Coordinates 33.7174708°, -117.8311428° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.7174708,"lon":-117.8311428,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

196

Olinda Landfill Gas Recovery Plant Biomass Facility | Open Energy  

Open Energy Info (EERE)

Olinda Landfill Gas Recovery Plant Biomass Facility Olinda Landfill Gas Recovery Plant Biomass Facility Jump to: navigation, search Name Olinda Landfill Gas Recovery Plant Biomass Facility Facility Olinda Landfill Gas Recovery Plant Sector Biomass Facility Type Landfill Gas Location Orange County, California Coordinates 33.7174708°, -117.8311428° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.7174708,"lon":-117.8311428,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

197

Four Hills Nashua Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Four Hills Nashua Landfill Biomass Facility Four Hills Nashua Landfill Biomass Facility Jump to: navigation, search Name Four Hills Nashua Landfill Biomass Facility Facility Four Hills Nashua Landfill Sector Biomass Facility Type Landfill Gas Location Hillsborough County, New Hampshire Coordinates 42.8334794°, -71.6673352° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.8334794,"lon":-71.6673352,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

198

Spadra Landfill Gas to Energy Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Spadra Landfill Gas to Energy Biomass Facility Spadra Landfill Gas to Energy Biomass Facility Jump to: navigation, search Name Spadra Landfill Gas to Energy Biomass Facility Facility Spadra Landfill Gas to Energy Sector Biomass Facility Type Landfill Gas Location Los Angeles County, California Coordinates 34.3871821°, -118.1122679° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.3871821,"lon":-118.1122679,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

199

Hartford Landfill Gas Utilization Proj Biomass Facility | Open Energy  

Open Energy Info (EERE)

Hartford Landfill Gas Utilization Proj Biomass Facility Hartford Landfill Gas Utilization Proj Biomass Facility Jump to: navigation, search Name Hartford Landfill Gas Utilization Proj Biomass Facility Facility Hartford Landfill Gas Utilization Proj Sector Biomass Facility Type Landfill Gas Location Hartford County, Connecticut Coordinates 41.7924343°, -72.8042797° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7924343,"lon":-72.8042797,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

200

DOE - Office of Legacy Management -- Pfohl Brothers Landfill - NY 66  

Office of Legacy Management (LM)

Pfohl Brothers Landfill - NY 66 Pfohl Brothers Landfill - NY 66 FUSRAP Considered Sites Site: Pfohl Brothers Landfill (NY.66 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Five-Year Review Report Pfohl Brothers Landfill Superfund Site Erie County Town of Cheektowaga, New York EPA REGION 2 Congressional District(s): 30 Erie Cheektowaga NPL LISTING HISTORY Documents Related to Pfohl Brothers Landfill Historical documents may contain links which are no longer valid or to outside sources. LM can not attest to the accuracy of information provided by these links. Please see the Leaving LM Website page for more details.

Note: This page contains sample records for the topic "waste-to-energy msw landfill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Planning document for the Advanced Landfill Cover Demonstration  

SciTech Connect

The Department of Energy and Department of Defense are faced with the closure of thousands of decommissioned radioactive, hazardous, and mixed waste landfills as a part of ongoing Environmental Restoration activities. Regulations on the closure of hazardous and radioactive waste landfills require the construction of a ``low-permeability`` cover over the unit to limit the migration of liquids into the underlying waste. These landfills must be maintained and monitored for 30 years to ensure that hazardous materials are not migrating from the landfill. This test plan is intended as an initial road map for planning, designing, constructing, evaluating, and documenting the Advanced Landfill Cover Demonstration (ALCD). It describes the goals/ objectives, scope, tasks, responsibilities, technical approach, and deliverables for the demonstration.

Hakonson, T.E. [Colorado State Univ., Fort Collins, CO (United States). Center for Ecological Risk Assessment & Management; Bostick, K.V. [Los Alamos National Lab., NM (United States). Environmental Science Group

1994-10-01T23:59:59.000Z

202

Pearl Hollow Landfil Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Pearl Hollow Landfil Biomass Facility Pearl Hollow Landfil Biomass Facility Jump to: navigation, search Name Pearl Hollow Landfil Biomass Facility Facility Pearl Hollow Landfil Sector Biomass Facility Type Landfill Gas Location Hardin County, Kentucky Coordinates 37.6565708°, -86.0121573° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.6565708,"lon":-86.0121573,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

203

Illinois Turning Landfill Trash into Future Cash | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Turning Landfill Trash into Future Cash Turning Landfill Trash into Future Cash Illinois Turning Landfill Trash into Future Cash September 28, 2010 - 5:35pm Addthis Illinois Turning Landfill Trash into Future Cash Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs Will County, Illinois officials yesterday formally broke ground on a new $7 million project (that includes $1 million of Energy Efficiency Conservation Block Grant funds) to turn methane gas from the Prairie View Landfill into electricity in a partnership with Waste Management. Will County will receive revenue from the sale of the gas created from decomposing garbage which will be harnessed and converted to generate 4.8 megawatts of green electrical power and used to power up to 8,000 homes. The future revenue generated from the sale of the gas and the sale of the

204

Sardinia 2007, Eleventh International Waste Management and Landfill Symposium Potential for Reducing Global Methane Emissions  

E-Print Network (OSTI)

landfills, we developed reference projections of waste generation, recycling and landfill-gas captureSardinia 2007, Eleventh International Waste Management and Landfill Symposium 1 Potential for Reducing Global Methane Emissions From Landfills, 2000-2030 E. MATTHEWS1 , N. J. THEMELIS2 1 NASA Goddard

Columbia University

205

Bidirectional gas movement through landfill cover materials, Volume 1: Instrumentation and preliminary site investigations at Mallard North Landfill, Dupage County, Illinois  

DOE Green Energy (OSTI)

Since the first commercial landfill gas recovery system was installed in 1975 at the Palos Verdes Landfill in southern California (Zimmerman et al., 1983), there have been few systematic research efforts aimed at understanding gas dynamics in the landfill and, in particular, gas exchange between the landfill and the atmosphere through the cover materials. To maximize the amount of landfill gas available to a recovery system, the impact of processes by which gas is vented or consumed in near-surface zones must be minimized. This report describes a project undertaken to monitor the flow of gas in a landfill. Data from the observations are presented. 32 refs., 12 figs., 3 tabs.

Bogner, J.; Brubaker, K.; Tome, C.; Vogt, M.; Gartman, D.

1988-02-01T23:59:59.000Z

206

By-product disposal from MSW incinerator flue gas cleaning systems  

Science Conference Proceedings (OSTI)

Waste incineration has been found to be an effective method of achieving significant volume reduction of Municipal Solid Waste (MSW) while at the same time allowing for energy recovery in the form of steam or electricity. Concern over potential air pollution from incinerators in the form of acid gases, heavy metals and dioxins has led to the application of Spray Dryer Absorption (SDA) flue gas cleaning systems to control these emissions. SDA has demonstrated high efficiencies in converting these air pollutants into a dry by-product for disposal. This has, in turn, led to concerns over potential secondary pollution from the disposal of these by-products. This paper presents a description of the SDA process and reviews disposal options for the SDA product. Product characteristics are given and results of leaching studies are presented. Comparisons between EPA's and TEP and TCLP procedures are presented. Results of dioxin measurements from the by-product are given.

Donnelly, J.R. (Joy Manufacturing Co., Los Angeles, CA (US)); Jons, E. (A/S Niro Atomizer, Copenhagen (DK))

1987-01-01T23:59:59.000Z

207

9th Annual North American Waste to Energy Conference WASTE TO ENERGY PLANT  

E-Print Network (OSTI)

alternatives to use of gaseous chlorine for cooling tower treatment. SOLUTION: Our water treatment consultant the effectiveness of the treatment and liability concerns. Because we run our COOling towers at a pH of B.O-B.5 for the ash ram extractors for cooling, and to the fly ash pug mill. We also realized that our high sewer

Columbia University

208

Waste-to-Energy Projects at ArmyWaste to Energy Projects at Army Installations  

E-Print Network (OSTI)

13 JAN 201113 JAN 2011 US Army Corps of Engineers BUILDING STRONG® Distribution Statement A -- Approved for public release; distribution is unlimited. #12;Outline Background Intro to ERDC Army natural gas and steam by Oct 2016 [EISA 2007] Electricity use for federal government from renewable

209

Appendix B Landfill Inspection Forms and Survey Data  

Office of Legacy Management (LM)

B B Landfill Inspection Forms and Survey Data This page intentionally left blank This page intentionally left blank Original Landfill January 2012 Monthly Inspection-Attachment 1 The monthly inspection of the OLF was completed on January 30. The Rocky Flats Site only received .15 inches of precipitation during the month of January. The cover was dry at the time of the inspection. The slump in the East Perimeter Channel (EPC) remained unchanged. Berm locations that were re-graded during the OLF Maintenance 2011 Project remained in good condition. Vegetation on the landfill cover including the seep areas remains dormant. OLF Cover Lower OLF Cover Facing East Upper OLF Cover Facing East

210

US EPA Landfill Methane Outreach Program | Open Energy Information  

Open Energy Info (EERE)

Landfill Methane Outreach Program Landfill Methane Outreach Program Jump to: navigation, search Name US EPA Landfill Methane Outreach Program Agency/Company /Organization United States Environmental Protection Agency Sector Energy, Land Focus Area Biomass Topics Policies/deployment programs, Resource assessment, Background analysis Resource Type Software/modeling tools, Workshop Website http://www.epa.gov/lmop/intern Country China, Ecuador, Mexico, Philippines, Thailand, Ukraine, Belize, Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua, Panama Eastern Asia, South America, Central America, South-Eastern Asia, South-Eastern Asia, Eastern Europe, Central America, Central America, Central America, Central America, Central America, Central America, Central America References LMOP[1]

211

Feasibility study for utilization of landfill gas at the Royalton Road Landfill, Broadview Heights, Ohio. Final report  

DOE Green Energy (OSTI)

The technical viability of landfill gas recovery has been previously demonstrated at numerous sites. However, the economics of a full scale utilization system are dependent on proper market conditions, appropriate technologies, landfill gas quantity and quality, and public/purchaser acceptance. The specific objectives of this feasibility study were to determine: The available markets which might purchase landfill gas or landfill gas derived energy products; An extraction system concept design and to perform an on-site pumping test program; The landfill gas utilization technologies most appropriate for the site; Any adverse environmental, health, safety, or socioeconomic impacts associated with the various proposed technologies; The optimum project economics, based on markets and processes examined. Findings and recommendations were presented which review the feasibility of a landfill gas utilization facility on the Royalton Road Landfill. The three identified utilization alternatives are indeed technically feasible. However, current market considerations indicate that installation of a full scale system is not economically advisable at this time. This final report encompasses work performed by SCS Engineers from late 1980 to the present. Monitoring data from several extraction and monitoring wells is presented, including pumping rates and gas quality and quantity analysis. The Market Analysis Data Form, local climatological data, and barometric pressure data are included in the appendix section. 33 figures, 25 tables.

None

1983-09-01T23:59:59.000Z

212

Understanding natural and induced gas migration through landfill cover materials: the basis for improved landfill gas recovery  

DOE Green Energy (OSTI)

Vertical pressure and concentration gradients in landfill cover materials are being examined at the Mallard North Landfill in Dupage County, IL. The goal of this project is to understand venting of landfill gas and intrusion of atmospheric gases into the landfill in response to changing meteorological conditions (particularly barometric pressure and precipitation) and pumping rates at recovery wells. Nests of probes for directly measuring soil gas pressures have been installed in areas of fractured and unfractured silty clay till cover materials. The probes are at three depths: shallow (0.6 m), intermediate (1.2 m), and deep (in the top of the refuse). Preliminary results from fall 1985 suggest that soil gas pressures respond quickly to changes in barometric pressure but that concentrations of methane, carbon dioxide, nitrogen, and oxygen respond more slowly to changing soil moisture conditions. An important near-surface process that limits the total amount of methane available to a gas recovery system is the activity of methanotrophs (methane-oxidizing bacteria) in oxygenated cover materials. The results of this project will be used to quantify landfill mass balance relations, improve existing predictive models for landfill gas recovery systems, and improve landfill cover design for sites where gas recovery is anticipated.

Bogner, J.E.

1986-01-01T23:59:59.000Z

213

Feasibility study of landfill gas recovery at seven landfill sites, Adams County/Commerce City, Colorado. Final report  

DOE Green Energy (OSTI)

This report documents the findings of a major landfill gas recovery study conducted in Adams County, Colorado. The study was performed during the period from August 1979 through September 1980. The study was broad in scope, involving a technical, economic, and institutional feasibility analysis of recovering landfill-generated methane gas from seven sanitary landfills in southwestern Adams County. The study included: field extraction testing at the seven sistes; detailed legislative research and activity; a market survey, including preliminary negotiations; and preliminary design and cost estimates for gas recovery systems at all seven sites.

Not Available

1984-07-01T23:59:59.000Z

214

Development of computer simulations for landfill methane recovery  

DOE Green Energy (OSTI)

Two- and three-dimensional finite-difference computer programs simulating methane recovery systems in landfills have been developed. These computer programs model multicomponent combined pressure and diffusional flow in porous media. Each program and the processes it models are described in this report. Examples of the capabilities of each program are also presented. The two-dimensional program was used to simulate methane recovery systems in a cylindrically shaped landfill. The effects of various pump locations, geometries, and extraction rates were determined. The three-dimensional program was used to model the Puente Hills landfill, a field test site in southern California. The biochemical and microbiological details of methane generation in landfills are also given. Effects of environmental factors, such as moisture, oxygen, temperature, and nutrients on methane generation are discussed and an analytical representation of the gas generation rate is developed.

Massmann, J.W.; Moore, C.A.; Sykes, R.M.

1981-12-01T23:59:59.000Z

215

An overview of the Mixed Waste Landfill Integrated Demonstration  

SciTech Connect

The Mixed Waste Landfill Integrated Demonstration (MWLID) focuses on ``in-situ`` characterization, monitoring, remediation, and containment of landfills in and environments that contain hazardous and mixed waste. The MWLID mission is to assess, demonstrate, and transfer technologies and systems that lead to faster, better, cheaper, and safer cleanup. Most important, the demonstrated technologies will be evaluated against the baseline of conventional technologies. Key goals of the MWLID are routine use of these technologies by Environmental Restoration Groups throughout the DOE complex and commercialization of these technologies to the private sector. The MWLID is demonstrating technologies at hazardous waste landfills located at Sandia National Laboratories and on Kirtland Air Force Base. These landfills have been selected because they are representative of many sites throughout the Southwest and in other and climates.

Williams, C.V.; Burford, T.D.; Betsill, J.D.

1994-07-01T23:59:59.000Z

216

Briefing: Summary and Recommendations of EM Landfill Workshop...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the summary and recommendations of the EM Landfill Workshop help in October 2008. By: Craig H. Bendson, PhD, PE; William H. Albright, PhD; David P. Ray, PE; and John Smegal...

217

EA-1707: Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

07: Closure of Nonradioactive Dangerous Waste Landfill and 07: Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste Landfill, Hanford Site, Richland, Washington EA-1707: Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste Landfill, Hanford Site, Richland, Washington Summary This EA evaluates the potential environmental impacts of closing the Nonradioactive Dangerous Waste Landfill and the Solid Waste Landfill. The Washington State Department of Ecology is a cooperating agency in preparing this EA. Public Comment Opportunities None available at this time. Documents Available for Download August 26, 2011 EA-1707: Revised Draft Environmental Assessment Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste Landfill, Hanford Site, Richland, Washington May 13, 2010 EA-1707: Draft Environmental Assessment

218

A finite element simulation of biological conversion processes in landfills  

Science Conference Proceedings (OSTI)

Landfills are the most common way of waste disposal worldwide. Biological processes convert the organic material into an environmentally harmful landfill gas, which has an impact on the greenhouse effect. After the depositing of waste has been stopped, current conversion processes continue and emissions last for several decades and even up to 100 years and longer. A good prediction of these processes is of high importance for landfill operators as well as for authorities, but suitable models for a realistic description of landfill processes are rather poor. In order to take the strong coupled conversion processes into account, a constitutive three-dimensional model based on the multiphase Theory of Porous Media (TPM) has been developed at the University of Duisburg-Essen. The theoretical formulations are implemented in the finite element code FEAP. With the presented calculation concept we are able to simulate the coupled processes that occur in an actual landfill. The model's theoretical background and the results of the simulations as well as the meantime successfully performed simulation of a real landfill body will be shown in the following.

Robeck, M., E-mail: markus.robeck@uni-due.de [Department of Water and Waste Management, Building Sciences, University of Duisburg-Essen, Universitaetsstrasse 15, 45141 Essen (Germany); Ricken, T. [Institute of Mechanics/Computational Mechanics, Building Sciences, University of Duisburg-Essen, Universitaetsstrasse 15, 45141 Essen (Germany); Widmann, R. [Department of Water and Waste Management, Building Sciences, University of Duisburg-Essen, Universitaetsstrasse 15, 45141 Essen (Germany)

2011-04-15T23:59:59.000Z

219

Albany Interim Landfill gas extraction and mobile power system: Using landfill gas to produce electricity. Final report  

DOE Green Energy (OSTI)

The Albany Interim Landfill Gas Extraction and Mobile Power System project served three research objectives: (1) determination of the general efficiency and radius of influence of horizontally placed landfill gas extraction conduits; (2) determination of cost and effectiveness of a hydrogen sulfide gas scrubber utilizing Enviro-Scrub{trademark} liquid reagent; and (3) construction and evaluation of a dual-fuel (landfill gas/diesel) 100 kW mobile power station. The horizontal gas extraction system was very successful; overall, gas recovery was high and the practical radius of influence of individual extractors was about 50 feet. The hydrogen sulfide scrubber was effective and its use appears feasible at typical hydrogen sulfide concentrations and gas flows. The dual-fuel mobile power station performed dependably and was able to deliver smooth power output under varying load and landfill gas fuel conditions.

NONE

1997-06-01T23:59:59.000Z

220

Analysis of the SN1987A two-stage explosion hypothesis with account for the MSW neutrino flavour conversion  

E-Print Network (OSTI)

Detection of 5 events by the Liquid Scintillation Detector (LSD) on February, 23, 1987 was interpreted in the literature as the detection of neutrinos from the first stage of the two-stage supernova collapse. We pose rigid constraints on the properties of the first stage of the collapse, taking into account neutrino flavour conversion due to the MSW-effect and general properties of supernova neutrino emission. The constraints depend on the unknown neutrino mass hierarchy and mixing angle \\theta_{13}.

Oleg Lychkovskiy

2007-07-17T23:59:59.000Z

Note: This page contains sample records for the topic "waste-to-energy msw landfill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Thermodynamic analysis on heavy metals partitioning impacted by moisture during the MSW incineration  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer Partitioning of HMs affected by moisture was investigated by thermodynamic analysis. Black-Right-Pointing-Pointer Increase in moisture and in temperature was opposite impact on HMs contribution. Black-Right-Pointing-Pointer The extent of temperature decreased by increase in moisture determines the impact. - Abstract: A thermodynamic calculation was carried out to predict the behavior and speciation of heavy metals (HMs), Pb, Zn, Cu, and Cd, during municipal solid waste (MSW) incineration with the different moisture levels. The calculation was based on the minimization of the total Gibbs free energy of the multi-components and multi-phases closed system reaching chemical equilibrium. The calculation also indicated the reaction directions and tendencies of HMs components. The impacts of chlorine additives (No PVC, 1%PVC, and 5%PVC) and moisture on the behavior of HMs were investigated at different temperature levels in the system (750 Degree-Sign C, 950 Degree-Sign C, and 1150 Degree-Sign C). Furthermore, because the incineration temperature falls down with the increase in moisture in waste, the co-influence of moisture and temperature in combusting MSW on the HMs was also studied with the given chlorine (as 1%PVC + 0.5%NaCl). The results showed that in the non-chlorine system, the impact of the moisture on Pb, Zn, and Cu was not significant, and the ratio of compound transformation was less than 10%, except the Cd compounds at 950 Degree-Sign C and 1150 Degree-Sign C. In the system with low chlorine (as 1%PVC) at constant temperature, the chlorides of HMs (Cd, Pb, Zn, and Cu) transferred to oxides, and when the content of chlorine rose up (as 5%PVC), the ratio of the chlorides of HMs (Cd, Pb, Zn, and Cu) transferring to oxides fell down noticeably. When the moisture varied together with the temperature, the Zn and Cu compounds transferred from chlorides to oxides with increase in moisture as well as decrease in temperature. At the temperature of 700-1000 Degree-Sign C, the impact of temperature on Pb and Cd was little and the moisture was the main factor; while at the temperature of 1000-1200 Degree-Sign C, the impact of increase in moisture and decrease in temperature on Pb and Cd was almost equal and reversed.

Zhang Yanguo; Li Qinghai; Jia Jinyan [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Meng Aihong, E-mail: mengah@tsinghua.edu.cn [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Department of Environmental Science and Technology, Tsinghua University, Beijing 100084 (China)

2012-12-15T23:59:59.000Z

222

Landfill gas generation and migration: Review of current research II  

DOE Green Energy (OSTI)

With regard to gas migration, a field investigation is examining bidirectional gas movement through landfill cover materials by processes of pressure and diffusional flow. The overall purpose of the study is to quantify gas loss from the landfill reservoir by natural venting and air influx due to pumping on recovery wells. Two field sites--a humid site, with vegetated clay cover and a semiarid site with unvegetated sandy silt cover--have been instrumented to examine vertical gas movement through cover materials. Results from the past year's work at the semiarid site indicates that rates of CH/sub 4/ flux out of the landfill surface may be as high as 2 /times/ 10/sup /minus/6/ g cm/sup /minus/2/ sec/sup /minus/1/ (6.3 /times/ 10/sup 2/ Kg m/sup /minus/1/ yr/sup /minus/1/) during dry soil conditions. Such high rates represent both the loss of an energy resource and a significance factor in global warming trends since atmospheric CH/sub 4/ contributes to the greenhouse effect. An independent estimate has suggested that 8--15% of global atmospheric CH/sub 4/ is attributable to landfill sources. The second project is addressing landfill gas generation. The major goal is to develop simple assay techniques to examine the gas production potential of landfilled refuse. Refuse samples extracted from various depths in a landfill are being subjected to Biochemical Methane Production (BMP) assays with periodic qualitative examination of microbial populations. Triplicate assays of unamended refuse (controls) are compared to assays with added moisture, nutrients, and bacterial seed. To date, moisture addition is the single most important variable in stimulating gas production, particularly in samples with visible soil content. 56 refs., 2 figs., 3 tabs.

Bogner, J.; Vogt, M.; Piorkowski, R.

1989-01-01T23:59:59.000Z

223

Aerobic attached growth biofilter using tire chips and mixed broken glass as media for landfill leachate treatment.  

E-Print Network (OSTI)

??Ontario regulations can necessitate expensive leachate treatment plants in large landfills. Lower-cost technologies may suit rural landfills due to lower waste toxicity and less proximity (more)

Smith, Daniel

2009-01-01T23:59:59.000Z

224

Aerobic Attached Growth Biofilter Using Tire Chips And Mixed Broken Glass As Media For Landfill Leachate Treatment.  

E-Print Network (OSTI)

??Ontario regulations can necessitate expensive leachate treatment plants in large landfills. Lower-cost technologies may suit rural landfills due to lower waste toxicity and less proximity (more)

Smith, Daniel

2009-01-01T23:59:59.000Z

225

Survey of Landfill Gas Generation Potential: 2-MW Molten Carbonate Fuel Cell  

Science Conference Proceedings (OSTI)

Molten carbonate fuel cells can operate almost as efficiently on landfill gas as on natural gas. This study identified 749 landfills in the United States having the potential to support a total of nearly 3000 2-MW fuel cells.

1992-10-01T23:59:59.000Z

226

LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL  

Science Conference Proceedings (OSTI)

The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with conventional landfills. This is the highest methane recovery rate per unit waste, and thus progress toward stabilization, documented anywhere for such a large waste mass. This high recovery rate is attributed to moisture, and elevated temperature attained inexpensively during startup. Economic analyses performed under Phase I of this NETL contract indicate ''greenhouse cost effectiveness'' to be excellent. Other benefits include substantial waste volume loss (over 30%) which translates to extended landfill life. Other environmental benefits include rapidly improved quality and stabilization (lowered pollutant levels) in liquid leachate which drains from the waste.

Don Augenstein

2001-02-01T23:59:59.000Z

227

Estimation of landfill emission lifespan using process oriented modeling  

SciTech Connect

Depending on the particular pollutants emitted, landfills may require service activities lasting from hundreds to thousands of years. Flexible tools allowing long-term predictions of emissions are of key importance to determine the nature and expected duration of maintenance and post-closure activities. A highly capable option represents predictions based on models and verified by experiments that are fast, flexible and allow for the comparison of various possible operation scenarios in order to find the most appropriate one. The intention of the presented work was to develop a experimentally verified multi-dimensional predictive model capable of quantifying and estimating processes taking place in landfill sites where coupled process description allows precise time and space resolution. This constitutive 2-dimensional model is based on the macromechanical theory of porous media (TPM) for a saturated thermo-elastic porous body. The model was used to simulate simultaneously occurring processes: organic phase transition, gas emissions, heat transport, and settlement behavior on a long time scale for municipal solid waste deposited in a landfill. The relationships between the properties (composition, pore structure) of a landfill and the conversion and multi-phase transport phenomena inside it were experimentally determined. In this paper, we present both the theoretical background of the model and the results of the simulations at one single point as well as in a vertical landfill cross section.

Ustohalova, Veronika [Institute of Waste Management, University of Duisburg-Essen, Universitaetsstrasse 15, 45141 Essen (Germany)]. E-mail: veronika.ustohalova@uni-essen.de; Ricken, Tim [Institute of Mechanics, University of Duisburg-Essen, Universitaetsstrasse 15, 45141 Essen (Germany); Widmann, Renatus [Institute of Waste Management, University of Duisburg-Essen, Universitaetsstrasse 15, 45141 Essen (Germany)

2006-07-01T23:59:59.000Z

228

Feasibility of methane-gas recovery at the St. John's Landfill  

DOE Green Energy (OSTI)

All facets reviewed in assessing the feasibility of a commercial landfill gas recovery system at the St. Johns Landfill in Portland, Oregon are discussed. Included are: landfill operational history, step-by-step descriptions of the field testing (and all results therein), landfill gas production/recovery predictions, results of the preliminary market research, cost matrices for primary utilization modes, and conclusions and recommendations based on analysis of the data gathered. Tables and figures are used to illustrate various aspects of the report.

Not Available

1983-03-01T23:59:59.000Z

229

Modelling of environmental impacts of solid waste landfilling within the life-cycle analysis program EASEWASTE  

Science Conference Proceedings (OSTI)

A new computer-based life-cycle assessment model (EASEWASTE) has been developed to evaluate resource and environmental consequences of solid waste management systems. This paper describes the landfilling sub-model used in the life-cycle assessment program EASEWASTE, and examines some of the implications of this sub-model. All quantities and concentrations of leachate and landfill gas can be modified by the user in order to bring them in agreement with the actual landfill that is assessed by the model. All emissions, except the generation of landfill gas, are process specific. The landfill gas generation is calculated on the basis of organic matter in the landfilled waste. A landfill assessment example is provided. For this example, the normalised environmental effects of landfill gas on global warming and photochemical smog are much greater than the environmental effects for landfill leachate or for landfill construction. A sensitivity analysis for this example indicates that the overall environmental impact is sensitive to the gas collection efficiency and the use of the gas, but not to the amount of leachate generated, or the amount of soil or liner material used in construction. The landfill model can be used for evaluating different technologies with different liners, gas and leachate collection efficiencies, and to compare the environmental consequences of landfilling with alternative waste treatment options such as incineration or anaerobic digestion.

Kirkeby, Janus T.; Birgisdottir, Harpa [Environment and Resources, Technical University of Denmark, DTU, Building 113, DK-2800 Kgs. Lyngby (Denmark); Bhander, Gurbakash Singh; Hauschild, Michael [Department of Manufacturing Engineering and Management, Technical University of Denmark, Building 424, DK-2800 Lyngby (Denmark); Christensen, Thomas H. [Environment and Resources, Technical University of Denmark, DTU, Building 113, DK-2800 Kgs. Lyngby (Denmark)], E-mail: thc@er.dtu.dk

2007-07-01T23:59:59.000Z

230

Preliminary Evaluation of a Newly Isolated Microalga Scenedesmus sp. CHX1 for Treating Landfill Leachate  

Science Conference Proceedings (OSTI)

This study aims to evaluate the feasibility of landfill leach ate treatment using micro algae. The growth and nutrients removal efficiency of a newly isolated micro alga Scenedesmus sp. CHX1 were monitored when the strain grew in landfill leach ate at ... Keywords: Scenedesmus sp. CHX1, Growth, Landfill leachate, Nutrients removal

Hai-Xiang Cheng, Guang-Ming Tian

2013-01-01T23:59:59.000Z

231

Corrective Action Plan for Corrective Action Unit 424: Area 3 Landfill Complex, Tonopah Test Range, Nevada  

SciTech Connect

This corrective action plan provides the closure implementation methods for the Area 3 Landfill Complex, Corrective Action Unit (CAU) 424, located at the Tonopah Test Range. The Area 3 Landfill Complex consists of 8 landfill sites, each designated as a separate corrective action site.

Bechtel Nevada

1998-08-31T23:59:59.000Z

232

IEA-Renewable Energy Technologies, Bioenergy Agreement Task 37: Energy from Biogas and Landfill Gas  

E-Print Network (OSTI)

and Landfill Gas Teknologiområde: Anvendt forskning og udvikling, herunder viden formidling, -udveksling og-Bioenergy, Task 37- Energy from Biogas and Landfill Gas", via samarbejde, informationsudveksling, fælles analyser and landfill gas. I dette tidsinterval er en række aktiviteter blevet gennemført, herunder deltagelse til task

233

Hanford Landfill Reaches 15 Million Tons Disposed - Waste Disposal Mark  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Landfill Reaches 15 Million Tons Disposed - Waste Disposal Landfill Reaches 15 Million Tons Disposed - Waste Disposal Mark Shows Success Cleaning Up River Corridor Hanford Landfill Reaches 15 Million Tons Disposed - Waste Disposal Mark Shows Success Cleaning Up River Corridor July 9, 2013 - 12:00pm Addthis Media Contacts Cameron Hardy, DOE, (509) 376-5365 Cameron.Hardy@rl.doe.gov Mark McKenna, WCH, (509) 372-9032 media@wch-rcc.com RICHLAND, Wash. - The U.S. Department of Energy (DOE) and its contractors have disposed of 15 million tons of contaminated material at the Environmental Restoration Disposal Facility (ERDF) since the facility began operations in 1996. Removing contaminated material and providing for its safe disposal prevents contaminants from reaching the groundwater and the Columbia River. ERDF receives contaminated soil, demolition debris, and solid waste from

234

Risk assessment of landfill disposal sites - State of the art  

SciTech Connect

A risk assessment process can assist in drawing a cost-effective compromise between economic and environmental costs, thereby assuring that the philosophy of 'sustainable development' is adhered to. Nowadays risk analysis is in wide use to effectively manage environmental issues. Risk assessment is also applied to other subjects including health and safety, food, finance, ecology and epidemiology. The literature review of environmental risk assessments in general and risk assessment approaches particularly regarding landfill disposal sites undertaken by the authors, reveals that an integrated risk assessment methodology for landfill gas, leachate or degraded waste does not exist. A range of knowledge gaps is discovered in the literature reviewed to date. From the perspective of landfill leachate, this paper identifies the extent to which various risk analysis aspects are absent in the existing approaches.

Butt, Talib E. [Sustainability Centre in Glasgow (SCG), George Moore Building, 70 Cowcaddens Road, Glasgow Caledonian University, Glasgow G4 0BA, Scotland (United Kingdom)], E-mail: t_e_butt@hotmail.com; Lockley, Elaine [Be Environmental Ltd. Suite 213, Lomeshaye Business Village, Turner Road, Nelson, Lancashire, BB9 7DR, England (United Kingdom); Oduyemi, Kehinde O.K. [Built and Natural Environment, Baxter Building, University of Abertay Dundee, Bell Street, Dundee DD1 1HG, Scotland (United Kingdom)], E-mail: k.oduyemi@abertay.ac.uk

2008-07-01T23:59:59.000Z

235

Albany Landfill Gas Utilization Project Biomass Facility | Open Energy  

Open Energy Info (EERE)

Utilization Project Biomass Facility Utilization Project Biomass Facility Jump to: navigation, search Name Albany Landfill Gas Utilization Project Biomass Facility Facility Albany Landfill Gas Utilization Project Sector Biomass Facility Type Landfill Gas Location Albany County, New York Coordinates 42.5756797°, -73.9359821° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.5756797,"lon":-73.9359821,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

236

List of Landfill Gas Incentives | Open Energy Information  

Open Energy Info (EERE)

Incentives Incentives Jump to: navigation, search The following contains the list of 377 Landfill Gas Incentives. CSV (rows 1 - 377) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat Solar Water Heat Wind energy Yes Advanced Energy Fund (Ohio) Public Benefits Fund Ohio Commercial Industrial Institutional Residential Utility Biomass CHP/Cogeneration Fuel Cells Fuel Cells using Renewable Fuels Geothermal Electric

237

DOE EM Landfill Workshop and Path Forward - July 2009  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Teleconference: Teleconference: 2. DOE EM Landfill Workshop & Path Forward Office of Groundwater and Soil Remediation US Department of Energy July 2009 Slides prepared by CRESP DOE EM Landfill Workshop 2 Objective: - Discuss findings & recommendations from ITR visits to DOE facilities - Identify technology gaps and needs to advance EM disposal practice of the future. - Obtain input from experts within and outside of DOE. Panels: Waste subsidence: prediction and impacts Waste forecasting: predicting volumes and WACs Final covers: long-term performance and monitoring Liners: role and need Workshop Approach and Structure * Objective: - Discuss each issue - Evaluate the merits of each issue - Create a prioritized list of technologies needs for Office of

238

Development of a purpose built landfill system for the control of methane emissions from municipal solid waste  

E-Print Network (OSTI)

of landfill gas (LFG). Economic feasibility of the proposed system has been tested by comparing unit cost with gas recovery option. In the present paper, a methodology called purpose build landfill system (PBLF of the proposed system. A purpose built landfill system (PBLS) is a semi-engi- neered landfill with gas recovery

Columbia University

239

Landfill Gas Cleanup for Carbonate Fuel Cell Power Generation: Final Report  

DOE Green Energy (OSTI)

Landfill gas represents a significant fuel resource both in the United States and worldwide. The emissions of landfill gas from existing landfills has become an environmental liability contributing to global warming and causing odor problems. Landfill gas has been used to fuel reciprocating engines and gas turbines, and may also be used to fuel carbonate fuel cells. Carbonate fuel cells have high conversion efficiencies and use the carbon dioxide present in landfill gas as an oxidant. There are, however, a number of trace contaminants in landfill gas that contain chlorine and sulfur which are deleterious to fuel cell operation. Long-term economical operation of fuel cells fueled with landfill gas will, therefore, require cleanup of the gas to remove these contaminants. The overall objective of the work reported here was to evaluate the extent to which conventional contaminant removal processes could be combined.

Steinfeld, G.; Sanderson, R.

1998-02-01T23:59:59.000Z

240

PermanganateCandlesClean ContaminationatFormerCozadLandfill  

E-Print Network (OSTI)

PermanganateCandlesClean ContaminationatFormerCozadLandfill U N I V E R S I T Y O F N E B R A S K'sNotes.............................................2 2011AquiferTour..........................................4 Center director Lorrie Benson, who brought them off seamlessly and worked tirelessly to bring- in the right slate

Nebraska-Lincoln, University of

Note: This page contains sample records for the topic "waste-to-energy msw landfill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

The landfill methane balance: Model and practical applications  

SciTech Connect

A rational mass-balance framework is described for improved quantification of landfill methane processes at a given site. The methane balance model examines the partitioning of methane generated into methane recovered (via extraction systems), methane emitted, methane oxidized, methane migrated, and methane storage. This model encourages use of field-based data to better quantify rates of methane recovery and emissions.

Bogner, J.; Spokas, K.

1995-10-01T23:59:59.000Z

242

Economic aspects of the rehabilitation of the Hiriya landfill  

SciTech Connect

The Hiriya landfill, Israel's largest, operated from 1952 to 1998. The landfill, located in the heart of the Dan Region, developed over the years into a major landscape nuisance and environmental hazard. In 1998, the Israeli government decided to close the landfill, and in 2001 rehabilitation activities began at the site, including site investigations, engineering and scientific evaluations, and end-use planning. The purpose of the present research is to perform a cost-benefit analysis of engineering and architectural-landscape rehabilitation projects considered for the site. An engineering rehabilitation project is required for the reduction of environmental impacts such as greenhouse gas emissions, slope instability and leachate formation. An architectural-landscape rehabilitation project would consider improvements to the site to make it suitable for future end uses such as a public park. The findings reveal that reclamation is worthwhile only in the case of architectural-landscape rehabilitation of the landfill, converting it into a public park. Engineering rehabilitation alone was found to be unjustified, but is essential to enable the development of a public park.

Ayalon, O. [Department of Natural Resources and Environmental Management and NRERC, Haifa University, 32000 Haifa (Israel)]. E-mail: agofira@tx.technion.ac.il; Becker, N. [Department of Natural Resources and Environmental Management and NRERC, Haifa University, 32000 Haifa (Israel); Department of Economics and Management, Tel Hai College and NRERC, University of Haifa, Haifa (Israel); Shani, E. [Dan Region Association of Towns, Sanitation and Waste Disposal (Israel)

2006-07-01T23:59:59.000Z

243

Monitoring the Fixed FGD Sludge Landfill--Conesville, Ohio  

Science Conference Proceedings (OSTI)

Three years of extensive monitoring of the first full-scale application of the fixed flue gas desulfurization sludge process proved it technically sound. This new disposal method offers utilities leachate control in a landfill that allows diverse use of disposal sites in the future.

1984-10-01T23:59:59.000Z

244

Biological Removal of Siloxanes from Landfill and Digester Gases  

E-Print Network (OSTI)

volatilize from waste at landfills and wastewater treatment plants (1). As a result, biogas produced, as well as an increase in maintenance costs (6, 7). The presence of VMSs in biogas is thus a challenge recommended by most equipment manufacturers for un- hindered use (6). Of all VMSs in biogas

245

Comparison of slope stability in two Brazilian municipal landfills  

SciTech Connect

The implementation of landfill gas to energy (LFGTE) projects has greatly assisted in reducing the greenhouse gases and air pollutants, leading to an improved local air quality and reduced health risks. The majority of cities in developing countries still dispose of their municipal waste in uncontrolled 'open dumps.' Municipal solid waste landfill construction practices and operating procedures in these countries pose a challenge to implementation of LFGTE projects because of concern about damage to the gas collection infrastructure (horizontal headers and vertical wells) caused by minor, relatively shallow slumps and slides within the waste mass. While major slope failures can and have occurred, such failures in most cases have been shown to involve contributory factors or triggers such as high pore pressures, weak foundation soil or failure along weak geosynthetic interfaces. Many researchers who have studied waste mechanics propose that the shear strength of municipal waste is sufficient such that major deep-seated catastrophic failures under most circumstances require such contributory factors. Obviously, evaluation of such potential major failures requires expert analysis by geotechnical specialists with detailed site-specific information regarding foundation soils, interface shearing resistances and pore pressures both within the waste and in clayey barrier layers or foundation soils. The objective of this paper is to evaluate the potential use of very simple stability analyses which can be used to study the potential for slumps and slides within the waste mass and which may represent a significant constraint on construction and development of the landfill, on reclamation and closure and on the feasibility of a LFGTE project. The stability analyses rely on site-specific but simple estimates of the unit weight of waste and the pore pressure conditions and use 'generic' published shear strength envelopes for municipal waste. Application of the slope stability analysis method is presented in a case study of two Brazilian landfill sites; the Cruz das Almas Landfill in Maceio and the Muribeca Landfill in Recife. The Muribeca site has never recorded a slope failure and is much larger and better-maintained when compared to the Maceio site at which numerous minor slumps and slides have been observed. Conventional limit-equilibrium analysis was used to calculate factors of safety for stability of the landfill side slopes. Results indicate that the Muribeca site is more stable with computed factors of safety values in the range 1.6-2.4 compared with computed values ranging from 0.9 to 1.4 for the Maceio site at which slope failures have been known to occur. The results suggest that this approach may be useful as a screening-level tool when considering the feasibility of implementing LFGTE projects.

Gharabaghi, B. [School of Engineering, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada)], E-mail: bgharaba@uoguelph.ca; Singh, M.K. [Department of Civil and Geological Engineering, University of Saskatchewan, Saskatoon, S7N 5A9 (Canada); Inkratas, C. [School of Engineering, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada)], E-mail: cinkrata@uoguelph.ca; Fleming, I.R. [Department of Civil and Geological Engineering, University of Saskatchewan, Saskatoon, S7N 5A9 (Canada)], E-mail: ian.fleming@usask.ca; McBean, E. [School of Engineering, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada)], E-mail: emcbean@uoguelph.ca

2008-07-01T23:59:59.000Z

246

Landfill gas generation and migration: Review of current research  

DOE Green Energy (OSTI)

With regard to gas migration, a field investigation is examining bidirectional gas movement through landfill cover materials by processes of pressure and diffusional flow. The purpose of the study is to quantify gas loss from the landfill reservoir by natural venting and air influx due to pumping on recovery wells. Two field sites - a humid site with clay cover and a semiarid site with sand cover - have been instrumented to examine vertical gas movement through cover materials. Results from the humid site indicate that concentrations of methane, carbon dioxide, oxygen and nitrogen in soil gas vary seasonally with soil moisture; up to 10E5 g methane m/sup -2/ yr/sup -1/ are vented through the cover materials at the humid site (area of 17 ht); and during prolonged wet weather, pressure gradients of more than 2 kPa may develop between the cover materials and top of refuse, indicating that pressure flow is periodically an important mechanism for gas transport. Addressing landfill gas generation, the goal is to develop simple assay techniques to examined the gas production potential of landfilled refuse. Refuse samples extracted from various depths in a landfill are being leached by three different methods to separate microbial mass and substrate. The leachates are being subjected to Biochemical Methane Production (BMP) assays with periodic qualitative examination of microbial populations using fluorescence microscopy of live cultures and scanning electron microscopy (SEM). Triplicate assays of the leachates that produce insignificant quantities of biogas after 90 days incubation are being amended with sucrose, a nutrient broth, or a bacterial seed. Response of gas production to each of the three amendments was similar across all samples, regardless of the leaching method originally employed, with nutrient addition producing the most stable long-term biogas production with the highest methane content. 23 refs., 6 figs., 3 tabs.

Bogner, J.; Rose, C.; Vogt, M.; Gartman, D.

1987-01-01T23:59:59.000Z

247

Emission assessment at the Burj Hammoud inactive municipal landfill: Viability of landfill gas recovery under the clean development mechanism  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer LFG emissions are measured at an abandoned landfill with highly organic waste. Black-Right-Pointing-Pointer Mean headspace and vent emissions are 0.240 and 0.074 l CH{sub 4}/m{sup 2} hr, respectively. Black-Right-Pointing-Pointer At sites with high food waste content, LFG generation drops rapidly after site closure. Black-Right-Pointing-Pointer The viability of LFG recovery for CDMs in developing countries is doubtful. - Abstract: This paper examines landfill gas (LFG) emissions at a large inactive waste disposal site to evaluate the viability of investment in LFG recovery through the clean development mechanism (CDM) initiative. For this purpose, field measurements of LFG emissions were conducted and the data were processed by geospatial interpolation to estimate an equivalent site emission rate which was used to calibrate and apply two LFG prediction models to forecast LFG emissions at the site. The mean CH{sub 4} flux values calculated through tessellation, inverse distance weighing and kriging were 0.188 {+-} 0.014, 0.224 {+-} 0.012 and 0.237 {+-} 0.008 l CH{sub 4}/m{sup 2} hr, respectively, compared to an arithmetic mean of 0.24 l/m{sup 2} hr. The flux values are within the reported range for closed landfills (0.06-0.89 l/m{sup 2} hr), and lower than the reported range for active landfills (0.42-2.46 l/m{sup 2} hr). Simulation results matched field measurements for low methane generation potential (L{sub 0}) values in the range of 19.8-102.6 m{sup 3}/ton of waste. LFG generation dropped rapidly to half its peak level only 4 yrs after landfill closure limiting the sustainability of LFG recovery systems in similar contexts and raising into doubt promoted CDM initiatives for similar waste.

El-Fadel, Mutasem, E-mail: mfadel@aub.edu.lb [Department of Civil and Environmental Engineering, American University of Beirut (Lebanon); Abi-Esber, Layale; Salhab, Samer [Department of Civil and Environmental Engineering, American University of Beirut (Lebanon)

2012-11-15T23:59:59.000Z

248

Measurements of particulate matter concentrations at a landfill site (Crete, Greece)  

Science Conference Proceedings (OSTI)

Large amounts of solid waste are disposed in landfills and the potential of particulate matter (PM) emissions into the atmosphere is significant. Particulate matter emissions in landfills are the result of resuspension from the disposed waste and other activities such as mechanical recycling and composting, waste unloading and sorting, the process of coating residues and waste transport by trucks. Measurements of ambient levels of inhalable particulate matter (PM{sub 10}) were performed in a landfill site located at Chania (Crete, Greece). Elevated PM{sub 10} concentrations were measured in the landfill site during several landfill operations. It was observed that the meteorological conditions (mainly wind velocity and temperature) influence considerably the PM{sub 10} concentrations. Comparison between the PM{sub 10} concentrations at the landfill and at a PM{sub 10} background site indicates the influence of the landfill activities on local concentrations at the landfill. No correlation was observed between the measurements at the landfill and the background sites. Finally, specific preventing measures are proposed to control the PM concentrations in landfills.

Chalvatzaki, E.; Kopanakis, I. [Department of Environmental Engineering, Technical University of Crete, Chania 73100, Crete (Greece); Kontaksakis, M. [Municipal Company of Solid Waste Management, Chania 73100, Crete (Greece); Glytsos, T.; Kalogerakis, N. [Department of Environmental Engineering, Technical University of Crete, Chania 73100, Crete (Greece); Lazaridis, M., E-mail: lazaridi@mred.tuc.g [Department of Environmental Engineering, Technical University of Crete, Chania 73100, Crete (Greece)

2010-11-15T23:59:59.000Z

249

Trace-chemical characterization of pollutants occurring in the production of landfill gas from the shoreline regional park sanitary landfill, Mountain View, California  

DOE Green Energy (OSTI)

A summary is presented of the results of sampling and analysis of ambient and process gas streams, and liquid and solid samples taken at different locations from the Pacific Gas and Electric Company Landfill Gas Recovery Plant in Mountain View, California. The purpose of this study is to identify environmental pollutants and characterize the trace chemistry of landfill gas recovered from the Mountain View Sanitary (Class II) Landfill. Gaseous samples, liquid condensate, and other plant products were analyzed for their trace chemical constituents, and the results indicate that certain organic and inorganic pollutants inherent to the landfill are emitted into the ambient environment and also become involved in the methane recovery process. Incorporation of condensate traps, molecular seive and charcoal filtration was found to significantly reduce both the organic and inorganic component burdens in the product gas. The environmental significances of the landfill gas recovery to the surrounding area and to worker safety are presented.

Flynn, N.W.; Guttman, M.; Hahn, J.; Payne, J.R.

1982-10-01T23:59:59.000Z

250

Trace chemical characterization of pollutants occurring in the production of landfill gas from the shoreline regional park sanitary landfill, Mountain View, California  

DOE Green Energy (OSTI)

This report summarizes the results of sampling and analysis of ambient and process gas streams, and liquid and solid samples taken at different locations from the Pacific Gas and Electric Company Landfill Gas Recovery Plant in Mountain View, California. The purpose of this study is to identify environmental pollutants and characterize the trace chemistry of landfill gas recovered from the Mountain View Sanitary (Class II) Landfill. Gaseous samples, liquid condensate and other plant products were analyzed for their trace chemical constituents, and the results indicate that certain organic and inorganic pollutants inherent to the landfill are emitted into the ambient environment and also become involved in the methane recovery process. Incorporation of condensate traps, molecular seive and charcoal filtration was found to significantly reduce both the organic and inorganic component burdens in the product gas. The environmental significances of the landfill gas recovery to the surrounding area and to worker safety are presented.

Flynn, N.W.; Guttman, M.; Hahn, J.; Payne, J.R.

1981-04-01T23:59:59.000Z

251

Development of Energy Balances for the State of California  

E-Print Network (OSTI)

Solar Other Generation Non-fossil thermal Nuclear Geothermal Wood Landfill & MSW Other Biomass Total Generation efficiencies

Murtishaw, Scott; Price, Lynn; de la Rue du Can, Stephane; Masanet, Eric; Worrell, Ernst; Sahtaye, Jayant

2005-01-01T23:59:59.000Z

252

Distributed Generation Study/Modern Landfill | Open Energy Information  

Open Energy Info (EERE)

Landfill Landfill < Distributed Generation Study Jump to: navigation, search Study Location Model City, New York Site Description Other Utility Study Type Long-term Monitoring Technology Internal Combustion Engine Prime Mover Caterpillar G3516 Heat Recovery Systems Built-in Fuel Biogas System Installer Innovative Energy Systems System Enclosure Dedicated Shelter System Application Combined Heat and Power Number of Prime Movers 7 Stand-alone Capability Seamless Power Rating 5600 kW5.6 MW 5,600,000 W 5,600,000,000 mW 0.0056 GW 5.6e-6 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 28000000 Cooling Capacity (Refrig/Tons) Origin of Controller 3rd Party Off-the-Shelf Component Integration Customer Assembled Start Date 2004/12/31 Monitoring Termination Date 1969/12/31

253

Corrective Action Plan for Corrective Action Unit 453: Area 9 UXO Landfill, Tonopah Test Range, Nevada  

Science Conference Proceedings (OSTI)

This corrective action plan proposes the closure method for the area 9 unexploded Ordnance landfill, corrective action unit 453 located at the Tonopah Test Range. The area 9 UXO landfill consists of corrective action site no. 09-55-001-0952 and is comprised of three individual landfill cells designated as A9-1, A9-2, and A9-3. The three landfill cells received wastes from daily operations at area 9 and from range cleanups which were performed after weapons testing. Cell locations and contents were not well documented due to the unregulated disposal practices commonly associated with early landfill operations. However, site process knowledge indicates that the landfill cells were used for solid waste disposal, including disposal of UXO.

Bechtel Nevada

1998-09-30T23:59:59.000Z

254

Sanitary landfill groundwater monitoring report. First Quarter 1995  

SciTech Connect

This report contains analytical data for samples taken during first quarter 1994 from wells of the LFW series located at the Sanitary Landfill Operating permit (DWP-0874A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or screening levels, established by the US Environmental Protection Agency, the South Carolina final Primary Drinking Water Standard for lead, or the SRS flagging criteria.

NONE

1995-06-01T23:59:59.000Z

255

Site hydrogeologic/geotechnical characterization report for Site B new municipal solid waste landfill  

Science Conference Proceedings (OSTI)

This Site Hydrogeologic/Geotechnical Characterization Report (SHCR) presents the results of a comprehensive study conducted on a proposed solid waste landfill site, identified herein as Site B, at the Savannah River Site (SRS). This report is intended to satisfy all requirements of the South Carolina Department of Health and Environmental Control (SCDHEC) with regard to landfill siting requirements and ground water and environmental protection. In addition, this report provides substantial geotechnical data pertinent to the landfill design process.

Reynolds, R.; Nowacki, P.

1991-04-01T23:59:59.000Z

256

Sodium Dichromate Barrel Landfill expedited response action proposal  

SciTech Connect

The US Environmental Protection Agency (EPA) and Washington State Department of Ecology (Ecology) recommended that the US Department of Energy (DOE) prepare an expedited response action (ERA) for the Sodium Dichromate Barrel Landfill. The Sodium Dichromate Barrel Disposal Site was used in 1945 for disposal of crushed barrels. The site location is the sole waste site within the 100-IU-4 Operable Unit. The Waste Information Data System (WIDS 1992) assumes that the crushed barrels contained 1% residual sodium dichromate at burial time and that only buried crushed barrels are at the site. Burial depth is shallow since visual inspection finds numerous barrel debris on the surface. A non-time-critical ERA proposal includes preparation of an engineering evaluation and cost analysis (EE/CA) section. The EE/CA is a rapid, focused evaluation of available technologies using specific screening factors to assess feasibility, appropriateness, and cost. The ERA goal is to reduce the potential for any contaminant migration from the landfill to the soil column, groundwater, and Columbia River. Since the landfill is the only waste site within the operable unit, the ERA will present a final remediation of the 100-IU-4 operable unit.

Not Available

1993-09-01T23:59:59.000Z

257

INDEPENDENT VERIFICATION SURVEY REPORT OPERABLE UNIT-1 LANDFILL TRENCHES, MIAMISBURG CLOSURE PROJECT  

Science Conference Proceedings (OSTI)

INDEPENDENT VERIFICATION SURVEY REPORT FOR THE OPERABLE UNIT-1 LANDFILL TRENCHES, MIAMISBURG CLOSURE PROJECT, MIAMISBURG, OHIO DCN: 0468-SR-03-0

W.C. Adams

2010-07-21T23:59:59.000Z

258

Case Studies from the Climate Technology Partnership: Landfill Gas Projects in South Korea and Lessons Learned  

Science Conference Proceedings (OSTI)

This paper examines landfill gas projects in South Korea. Two case studies provide concrete examples of lessons learned and offer practical guidance for future projects.

Larney, C.; Heil, M.; Ha, G. A.

2006-12-01T23:59:59.000Z

259

INDEPENDENT VERIFICATION SURVEY REPORT FOR THE OPERABLE UNIT-1 LANDFILL TRENCHES, MIAMISBURG CLOSURE PROJECT  

SciTech Connect

INDEPENDENT VERIFICATION SURVEY REPORT FOR THE OPERABLE UNIT-1 LANDFILL TRENCHES, MIAMISBURG CLOSURE PROJECT, MIAMISBURG, OHIO DCN: 0468-SR-02-0

W.C. Adams

2010-05-24T23:59:59.000Z

260

NETL: News Release - DOE-Sponsored Process Enhances Use of Landfill...  

NLE Websites -- All DOE Office Websites (Extended Search)

December 11, 2001 DOE-Sponsored Process Enhances Use of Landfill Gas, Improves Air Quality Energy Secretary Abraham Commends Small Business for Innovative Concept Being Showcased...

Note: This page contains sample records for the topic "waste-to-energy msw landfill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Generating CO{sub 2}-credits through landfill in situ aeration  

Science Conference Proceedings (OSTI)

Landfills are some of the major anthropogenic sources of methane emissions worldwide. The installation and operation of gas extraction systems for many landfills in Europe and the US, often including technical installations for energy recovery, significantly reduced these emissions during the last decades. Residual landfill gas, however, is still continuously produced after the energy recovery became economically unattractive, thus resulting in ongoing methane emissions for many years. By landfill in situ aeration these methane emissions can be widely avoided both, during the aeration process as well as in the subsequent aftercare period. Based on model calculations and online monitoring data the amount of avoided CO{sub 2-eq}. can be determined. For an in situ aerated landfill in northern Germany, acting as a case study, 83-95% (depending on the kind and quality of top cover) of the greenhouse gas emission potential could be reduced under strictly controlled conditions. Recently the United Nations Framework Convention on Climate Change (UNFCCC) has approved a new methodology on the 'Avoidance of landfill gas emissions by in situ aeration of landfills' (). Based on this methodology landfill aeration projects might be considered for generation of Certified Emission Reductions (CERs) in the course of CDM projects. This paper contributes towards an evaluation of the potential of landfill aeration for methane emissions reduction.

Ritzkowski, M., E-mail: m.ritzkowski@tu-harburg.d [Institute of Environmental Technology and Energy Economics, Hamburg University of Technology, Harburger Schlossstr. 36, D-21079 Hamburg (Germany); Stegmann, R. [Consultants for Waste Management, Prof. R. Stegmann and Partner, Schellerdamm 19-21, D-21079 Hamburg (Germany)

2010-04-15T23:59:59.000Z

262

Mining the Midden: Dynamic Waste Harvesting at the Cedar Hills Regional Landfill.  

E-Print Network (OSTI)

??Mining the Midden intends to re-frame the sanitary landfill as a new typology of public land containing an embodied energy of cultural and material value. (more)

Allan, Aaron Marshall

2012-01-01T23:59:59.000Z

263

Two-year performance by evapotranspiration covers for municipal solid waste landfills in northwest Ohio  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer All ET covers produced rates of percolation less than 32 cm yr{sup -1}, the maximum allowable rate by the Ohio EPA. Black-Right-Pointing-Pointer Dredged sediment provided sufficient water storage and promoted growth by native plant species. Black-Right-Pointing-Pointer Native plant mixtures attained acceptable rates of evapotranspiration throughout the growing season. - Abstract: Evapotranspiration (ET) covers have gained interest as an alternative to conventional covers for the closure of municipal solid waste (MSW) landfills because they are less costly to construct and are expected to have a longer service life. Whereas ET covers have gained acceptance in arid and semi-arid regions (defined by a precipitation (P) to potential evapotranspiration (PET) ratio less than 0.75) by meeting performance standards (e.g. rate of percolation), it remains unclear whether they are suitable for humid regions (P:PET greater than 0.75). The goal of this project is to extend their application to northwest Ohio (P:PET equals 1.29) by designing covers that produce a rate of percolation less than 32 cm yr{sup -1}, the maximum acceptable rate by the Ohio Environmental Protection Agency (OEPA). Test ET covers were constructed in drainage lysimeters (1.52 m diameter, 1.52 m depth) using dredged sediment amended with organic material and consisted of immature (I, plants seeded onto soil) or mature (M, plants transferred from a restored tall-grass prairie) plant mixtures. The water balance for the ET covers was monitored from June 2009 to June 2011, which included measured precipitation and percolation, and estimated soil water storage and evapotranspiration. Precipitation was applied at a rate of 94 cm yr{sup -1} in the first year and at rate of 69 cm yr{sup -1} in the second year. During the first year, covers with the M plant mixture produced noticeably less percolation (4 cm) than covers with the I plant mixture (17 cm). However, during the second year, covers with the M plant mixture produced considerably more percolation (10 cm) than covers with the I plant mixture (3 cm). This is likely due to a decrease in the aboveground biomass for the M plant mixture from year 1 (1008 g m{sup -2}) to year 2 (794 g m{sup -2}) and an increase for the I plant mixture from year 1 (644 g m{sup -2}) to year 2 (1314 g m{sup -2}). Over the 2-year period, the mean annual rates of percolation for the covers with the M and I plant mixtures were 7 and 8 cm yr{sup -1}, which are below the OEPA standard. The results suggest the application of ET covers be extended to northwest Ohio and other humid regions.

Barnswell, Kristopher D., E-mail: kristopher.barnswell2@rockets.utoledo.edu [Department of Environmental Sciences, University of Toledo, Lake Erie Center, 6200 Bayshore Rd., Oregon, OH 43616 (United States); Dwyer, Daryl F., E-mail: daryl.dwyer@utoledo.edu [Department of Environmental Sciences, University of Toledo, 2801 W. Bancroft, Mail Stop 604, Toledo, OH 43606 (United States)

2012-12-15T23:59:59.000Z

264

Improved methodology to assess modification and completion of landfill gas management in the aftercare period  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer Performance-based evaluation of landfill gas control system. Black-Right-Pointing-Pointer Analytical framework to evaluate transition from active to passive gas control. Black-Right-Pointing-Pointer Focus on cover oxidation as an alternative means of passive gas control. Black-Right-Pointing-Pointer Integrates research on long-term landfill behavior with practical guidance. - Abstract: Municipal solid waste landfills represent the dominant option for waste disposal in many parts of the world. While some countries have greatly reduced their reliance on landfills, there remain thousands of landfills that require aftercare. The development of cost-effective strategies for landfill aftercare is in society's interest to protect human health and the environment and to prevent the emergence of landfills with exhausted aftercare funding. The Evaluation of Post-Closure Care (EPCC) methodology is a performance-based approach in which landfill performance is assessed in four modules including leachate, gas, groundwater, and final cover. In the methodology, the objective is to evaluate landfill performance to determine when aftercare monitoring and maintenance can be reduced or possibly eliminated. This study presents an improved gas module for the methodology. While the original version of the module focused narrowly on regulatory requirements for control of methane migration, the improved gas module also considers best available control technology for landfill gas in terms of greenhouse gas emissions, air quality, and emissions of odoriferous compounds. The improved module emphasizes the reduction or elimination of fugitive methane by considering the methane oxidation capacity of the cover system. The module also allows for the installation of biologically active covers or other features designed to enhance methane oxidation. A methane emissions model, CALMIM, was used to assist with an assessment of the methane oxidation capacity of landfill covers.

Morris, Jeremy W.F., E-mail: jmorris@geosyntec.com [Geosyntec Consultants, 10220 Old Columbia Road, Suite A, Columbia, MD 21046 (United States); Crest, Marion, E-mail: marion.crest@suez-env.com [Suez Environnement, 38 rue du President Wilson, 78230 Le Pecq (France); Barlaz, Morton A., E-mail: barlaz@ncsu.edu [Department of Civil, Construction, and Environmental Engineering, Campus Box 7908, North Carolina State University, Raleigh, NC 27695-7908 (United States); Spokas, Kurt A., E-mail: kurt.spokas@ars.usda.gov [United States Department of Agriculture - Agricultural Research Service, 1991 Upper Buford Circle, 439 Borlaug Hall, St. Paul, MN 55108 (United States); Akerman, Anna, E-mail: anna.akerman@sita.fr [SITA France, Tour CB 21, 16 Place de l'Iris, 92040 Paris La Defense Cedex (France); Yuan, Lei, E-mail: lyuan@geosyntec.com [Geosyntec Consultants, 10220 Old Columbia Road, Suite A, Columbia, MD 21046 (United States)

2012-12-15T23:59:59.000Z

265

FIRE PROTECTION DESIGN CONSIDERATIONS FOR WASTE-TO-ENERGY FACILITIES  

E-Print Network (OSTI)

. COOLING TOWERS Unless the cooling tower is constructed only of non combustible material, it should "Water Cooling Tower". For medium and large resource re covery facilities, the cooling tower system. For larger cooling towers, 20 min fire-resistant par titions that separate the cells would further minimize

Columbia University

266

EIA Energy Kids - Covanta Waste-to-Energy Plant  

U.S. Energy Information Administration (EIA)

Natural Gas; Nuclear; Oil (petroleum) Photovoltaic; Solar Thermal; Transportation; Wind; ... This means that Covanta takes garbage and turns it into electricity. Cool.

267

Waste-to-Energy Biomass Digester with Decreased Water Consumption  

The enormous amount of biomass waste created by animal feeding operations releases methane, a valuable fuel but also a greenhouse gas, and other pollutants into the environment. Waste digesters reduce this pollution by converting the waste into ...

268

Waste-to-Energy Technologies and Project Development  

NLE Websites -- All DOE Office Websites (Extended Search)

chemicals, synthetic diesel (development) *Torrefied wood for pellets, coal replacement *Pyrolysis oil for boilers and power (early commercial) * Specialty chemicals (commercial)...

269

The 2010 ERC Directory of Waste-to-Energy Plants  

E-Print Network (OSTI)

stream would have increased the overall thermal efficiency by another 10%. 3. U.S. EPA, eGrid 2007.gov/cleanenergy/energy-resources/ egrid/index.html. (Accessed February 13, 2009.) 4. Personal communication with Joseph Staniunas, UTC

Columbia University

270

(Continued on page 2) Waste-to-Energy Technologies  

E-Print Network (OSTI)

of 7700 Btu/lb University of Iowa Main Power Plant's Boiler 10 A boiler unit rated at 170,000 lb/h steam-fireB Averages 61.3 ± 0.7 0.0060 ± 0.003 131 ± 4 % DifferenceC -17.7% -81.2% -18.3 Iowa Main Power Plant's Boiler value (LHV) of the gas by 8.5%, from 569 British thermal units per standard cubic foot (Btu/scf) to 617

271

Microsoft Word - Oneida Waste to Energy Project DOE Final EA...  

NLE Websites -- All DOE Office Websites (Extended Search)

with an array of industries. Oneida applied for SEP funding under Wisconsin's "Job Creation and Retention through Clean Energy Advanced Manufacturing." Wisconsin determined that...

272

EFFECTS OF MATERIALS RECOVERY WASTE-TO-ENERGY CO  

E-Print Network (OSTI)

met 'Multinational Nuclear Approach' MNP Milieu en Natuur Planbureau MOX Mixed oxide fuel, aanduiding

Columbia University

273

Waste-to-Energy Projects at Army Installations  

NLE Websites -- All DOE Office Websites (Extended Search)

integrated with microturbine steam generator Others Fort Stewart 94,000 lbshr steam Wood Chip Plant (off line). Aberdeen Proving Ground - Offsite plant supplies approx...

274

Waste-to-Energy Biomass Digester with Decreased Water Consumption  

energy costs. Anaerobic digesters work by allowing bacteria to break down the ... water is scarce, and helps to reduce the environmental impact of ...

275

Waste-to-Energy Biomass Digester with Decreased Water Consumption  

Patent Informationreleases methane, a valuable fuel but also a greenhouse gas, and other pollu-Patent Pending; U. S. Provisional

276

CONSOLIDATED DATA BASE FOR WASTE-TO-ENERGY PLANT EMISSIONS  

E-Print Network (OSTI)

in northern England and Scotland. 4. Large scale generation and co-firing Biomass has a potentially significant role to play in co-firing and large scale generation. However, the location of current plants in providing co-firing supply. Particular sensitivities relevant to this are being explored elsewhere

Columbia University

277

Monitoring the Performance of an Alternative Landfill Cover at the Monticello, Utah, Uranium Mill Tailings Disposal Site  

Energy.gov (U.S. Department of Energy (DOE))

Monitoring the Performance of an Alternative Landfill Cover at the Monticello, Utah, Uranium Mill Tailings Disposal Site

278

Modeling of biogas generation in bioreactor landfills using neuro-fuzzy system  

Science Conference Proceedings (OSTI)

Biogas generation in anaerobic bioreactor landfills is modeled using the neuro-fuzzy system. The implemented inference system was an adaptive neuro-fuzzy inference system (ANFIS). The fuzzy logic controller featured a Multi-Input-Single-Output (MISO) ... Keywords: biogas generation, bioreactor landfills, neuro-fuzzy model

Mohamed S. Abdallah; Leta Fernandes; Mostafa A. Warith

2008-08-01T23:59:59.000Z

279

IpNose: Electronic nose for remote bad odour monitoring system in landfill sites Alex Perera*  

E-Print Network (OSTI)

IpNose: Electronic nose for remote bad odour monitoring system in landfill sites Alex Perera to classify and quantify different gas/odours. Here we suggest the integration of a small form factor computer of bad odours in landfill sites. Preliminary approach to this application using commercial sensors

Gutierrez-Osuna, Ricardo

280

Numerical Early Warning Model Research of Landfill Gas Permeation and Diffusion Considering Flow-Temperature Coupling  

Science Conference Proceedings (OSTI)

Based on seepage mechanics in porous medium gas and heat transfer theory, numerical early warning model is established, which is on quantitative description of migration and release of landfill gas and penetration and diffusion of energy, and dynamic ... Keywords: component, landfill gas, flow-temperature coupling, gas pressure and temperature distribution, numerical early warning model

Xue Qiang; Feng Xia-ting; Ma Shi-jin; Zhou Xiao-jun

2009-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste-to-energy msw landfill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

SPONSORED PROJECTS 1. Pending: "Feasibility Studies and Training to Support Landfill Gas Recovery in Ghana"  

E-Print Network (OSTI)

SPONSORED PROJECTS 1. Pending: "Feasibility Studies and Training to Support Landfill Gas Recovery: PI. 4. "An Improved Model to Predict Gas Generation from Landfills based on Waste Composition-2015, Role: Co-PI. 3. "Field Measurement of Emissions from Natural Gas Drilling, Production, and Distribution

Texas at Arlington, University of

282

Landfill Disamenities And Better Utilization of Waste Resources Presented to the Wisconsin Governor's Task Force on Waste Materials Recovery  

E-Print Network (OSTI)

emissions. I recently saw an exhibit of a landfill gas carbon adsorber designed to remove siloxanes and air toxics from landfill gas prior to engine burning, to reduce wear on the engine. They later stripped this is a common practice. Most landfill gas energy combustion systems are uncontrolled. In 1998, a New York State

Columbia University

283

Int. J. Environment and Pollution, V0/. IS, No.4, 2001 Economic evaluation of a landfill system with gas  

E-Print Network (OSTI)

and externalities are examined. A cost-benefit analysis of a landfill system with gas recovery (LFSGR) has been be made as follows: Yedla, S. and Parikh, 1.K. (2001) 'Economic evaluation of a landfill system with gas.K. Parikh Economic evaluation of a landfill system with gas recovery 435 Tonnes per dayMillion tonnes per

Columbia University

284

I 95 Municipal Landfill Phase I Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Municipal Landfill Phase I Biomass Facility Municipal Landfill Phase I Biomass Facility Jump to: navigation, search Name I 95 Municipal Landfill Phase I Biomass Facility Facility I 95 Municipal Landfill Phase I Sector Biomass Facility Type Landfill Gas Location Fairfax County, Virginia Coordinates 38.9085472°, -77.2405153° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.9085472,"lon":-77.2405153,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

285

Natural clay-shredded tire mixtures as landfill barrier materials  

Science Conference Proceedings (OSTI)

A natural overconsolidated fissured clay, Keuper Marl, was mixed with shredded tire, 1--4 and 4--8 mm angular size particles, in weight percentages between 6 and 15%, and examined for use as a constituent in a landfill liner in terms of compaction, unconfined compressive strength, stress-strain behavior, permeability to water and paraffin, leachability, free swell behavior and swelling pressure. The results showed that the compacted dry density reduced solely due to the lighter weight of the tire and the unconfined compressive strength of the mixture was as low 40% of the strength of the clay alone. In stress-strain behavior the clay-tire mixtures produced a prolonged strain range at failure of roughly double that observed for the clay alone. The permeability to paraffin was reduced by more than 50 times compared to that of water. The leachability results showed different leached levels of copper and nickel from the NRA and TCLP leaching tests which will need to be assessed in relation to appropriate standards. Paraffin caused considerable swelling of the clay-tire mixtures compared to the clay alone and caused the development of swelling pressures of up to 600 kPa. Combinations of the various test results will need to be assessed in relation to the design requirement of the specific landfill liner being designed.

Al-Tabbaa, A. [Univ. of Cambridge (United Kingdom). Dept. of Engineering; Aravinthan, T. [Babtie Group, Croydon (United Kingdom)

1998-12-31T23:59:59.000Z

286

Solar Neutrino Rates, Spectrum, and its Moments : an MSW Analysis in the Light of Super-Kamiokande Results  

E-Print Network (OSTI)

We re-examine MSW solutions of the solar neutrino problem in a two flavor scenario taking (a) the results on total rates and the electron energy spectrum from the 1117-day SuperKamiokande (SK) data and (b) those on total rates from the Chlorine and Gallium experiments. We find that the SMA solution gives the best fit to the total rates data from the different experiments. One new feature of our analysis is the use of the moments of the SK electron spectrum in a $\\chi^2$ analysis. The best-fit to the moments is broadly in agreement with that obtained from a direct fit to the spectrum data and prefers a $\\Delta m^2$ comparable to the SMA fit to the rates but the required mixing angle is larger. In the combined rate and spectrum analysis, apart from varying the normalization of the $^8$B flux as a free parameter and determining its best-fit value we also obtain the best-fit parameters when correlations between the rates and the spectrum data are included and the normalization of the $^8$B flux held fixed at its SSM value. We observe that the correlations between the rates and spectrum data are important and the goodness of fit worsens when these are included. In either case, the best-fit lies in the LMA region.

Srubabati Goswami; Debasish Majumdar; Amitava Raychaudhuri

2000-03-16T23:59:59.000Z

287

Landfill gas cleanup for carbonate fuel cell power generation. Final report  

DOE Green Energy (OSTI)

Landfill gas represents a significant fuel resource both in the US and worldwide. The emissions of landfill gas from existing landfills has become an environmental liability contributing to global warming and causing odor problems. Landfill gas has been used to fuel reciprocating engines and gas turbines, and may also be used to fuel carbonate fuel cells. Carbonate fuel cells have high conversion efficiencies and use the carbon dioxide present in landfill gas as an oxidant. There are, however, a number of trace contaminants in landfill gas that contain chlorine and sulfur which are deleterious to fuel cell operation. Long-term economical operation of fuel cells fueled with landfill gas will, therefore, require cleanup of the gas to remove these contaminants. The overall objective of the work reported here was to evaluate the extent to which conventional contaminant removal processes could be combined to economically reduce contaminant levels to the specifications for carbonate fuel cells. A pilot plant cleaned approximately 970,000 scf of gas over 1,000 hours of operation. The testing showed that the process could achieve the following polished gas concentrations: less than 80 ppbv hydrogen sulfide; less than 1 ppmv (the detection limit) organic sulfur; less than 300 ppbv hydrogen chloride; less than 20--80 ppbv of any individual chlorinated hydrocarbon; and 1.5 ppm sulfur dioxide.

Steinfield, G.; Sanderson, R.

1998-02-01T23:59:59.000Z

288

Migration and methanogens: A review of current landfill gas field research at ANL  

DOE Green Energy (OSTI)

Landfill gas recovery research at Argonne National Laboratory is focusing on a project studying gas movement through landfill cover materials and a pilot investigation of microbial populations in landfills. Vertical gas pressure and concentration gradients between the top of refuse and the landfill cover are being examined. In particular, changes in the vertical gradients indicative of changes in magnitude and direction of pressure or diffusional flow with time are being monitored. This study emphasizes changes in vertical pressure and concentration gradients related to barometric pressure and other meteorological variables, soil moisture changes, and pumping rates at simulated recovery wells. Preliminary results suggest that changes in soil-gas pressures in the landfill cover and top of refuse closely follow changes in barometric pressure. Measurable concentration gradients exist between the top of refuse and the cover materials indicating that diffusion is a major mechanism for gas movement, particularly during dry weather when pressure gradients are negligible. A pilot investigation has begun on microbial populations in sanitary landfills. First, a series of leachate samples from various depths at the Blackwell Forest Preserve Landfill were evaluated for microbial populations, selected chemical constituents, and methane production. Diverse motile populations of fluorescing organisms were found in selected samples. 19 refs., 6 figs., 3 tabs.

Bogner, J.; Torpy, M.; Rose, C.; Vogt, M.; Gartman, D.; Moore, C.

1986-01-01T23:59:59.000Z

289

Modified biochemical methane potential (BMP) assays to assess biodegradation potential of landfilled refuse  

DOE Green Energy (OSTI)

Modified Biochemical Methane Potential (BMP) assays were used to assess biogas production potential of solid landfill samples. In landfill samples with visible soil content, moisture addition alone was generally as effective at stimulating biogas production as the addition of a comprehensive nutrient media. In a variety of samples from humid and semiarid landfills, addition of an aqueous nutrient media was the most effective stimulant for biogas production; however, moisture addition was almost as effective for most samples, suggesting that water addition would be the most cost-effective field approach. Onset of methanogenesis was slower in fresh refuse samples (even when inoculated with anaerobic digester sludge) than in landfill samples, indicating that the soil into which materials are landfilled is a major source of microorganisms. High volatile solids loading in fresh refuse and landfill assays retarded methanogenesis. A comparison of anaerobic and aerobic sample handling techniques showed no significant differences with regard to onset of methanogenesis and total gas production. The technique shows initial promise with regard to replication and reproducibility of results and could be a meaningful addition to landfill site evaluations where commercial gas recovery is anticipated. The BMP technique could also be adapted to assess anaerobic biodegradability of other solid waste materials for conventional anaerobic digestion applications. 9 refs., 6 figs., 2 tabs.

Bogner, J.E.; Rose, C.; Piorkowski, R.

1989-01-01T23:59:59.000Z

290

Limited site investigation of Landfills 1 and 4, Fort Lewis, Washington  

SciTech Connect

The information presented in this report was collected during limited site investigation activities conducted in the vicinity of Landfills 1 and 4 at Fort Lewis. The purpose of this work was to provide a means of detecting and evaluating the impacts of these inactive landfills on ground-water quality and adjacent lands. This effort included the design and construction of ground-water monitoring systems for compliance with applicable federal and state regulations governing Resource Conservation and Recovery Act (RCRA)-type landfills. Ground-water samples were collected from both existing (1981 and 1984) wells and the newly installed (1988) wells. The analytical results from the water samples indicate that the ground water in and around Landfill 1 contains limited contamination. Contaminants may include volatile organic compounds and nitrate. The primary concern in the area around Landfill 1 was the determination that ground water from two wells may contain cis-1,2-dichloroethylene and 1,1,1-trichloroethylene above drinking water standards. Nitrate levels in the downgradient wells were greater than those in upgradient wells and exceeded drinking water standards in some of the less-representative samples. Analyses of ground-water samples from wells in and around Landfill 4 indicate several contaminants may be present. These include volatile organic compounds (principally cis-1,2-dichloroethylene and 1,1,1-trichloroethylene), coliform, oil and grease, and perhaps some metals (iron and magnesium). The primary concern in the area around Landfill 4 was the determination that ground water from five wells contained cis-1,2-dichloroethylene and 1,1,1-trichloroethylene above drinking water standards. The source of contaminants beneath either landfill cannot yet be identified. Insufficient data exist to disprove or confirm either landfill as possible contributors. 19 refs., 32 figs., 17 tabs.

Last, G.V.; Eddy, P.A.; Airhart, S.P.; Olsen, K.R.; Raymond, J.R.; Dahl, D.R.

1990-08-01T23:59:59.000Z

291

Landfill CH sub 4 : Rates, fates, and role in global carbon cycle  

SciTech Connect

Published estimates for worldwide landfill methane emissions range from 9 to 70 Tg yr{sup {minus}1}. Field and laboratory studies suggest that maximum methane yields from lanfilled refuse are about 0.06 to 0.09 m{sup 3} (dry Kg){sup {minus}1} refuse, depending on moisture content and other variables, such as organic loading, buffering capacity, and nutrients in landfill microevnironments. Methane yields may vary by more than an order of magnitude within a given site. Fates for landfill methane include (1) direct or delayed emission to the atmosphere through landfill cover materials or surface soils; (2) oxidation by methanotrophs in cover soils, with resulting emission of carbon dioxide; or (3) recovery of methane followed by combustion to produce carbon dioxide. The percent methane assigned to each pathway will vary among field sites and, for individual sites, through time. Nevertheless, a general framework for a landfill methane balance can be developed by consideration of landfill age, engineering and management practices, cover soil characteristics, and water balance. Direct measurements of landfill methane emissions are sparse, with rates between 10{sup {minus}6} and 10{sup {minus}8} g cm{sup {minus}2} s{sup {minus}1}; very high rates of 400 kg m{sup {minus}2} yr{sup {minus}1} have been measured at a semiarid unvegetated site. The proportion of landfill carbon that is ultimately converted to methane and carbon dioxide is problematical; the literature suggests that, at best, 25% to 40% of refuse carbon can be converted to biogas carbon. Cellulose contributes the major portion of the methane potential. Routine excavation of nondecomposed cellulosic materials after one or two decades of landfill burial suggests that uniformly high conversion rates are rarely attained at field sites.

Bogner, J.; Spokas, K.

1991-01-01T23:59:59.000Z

292

Landfill CH{sub 4}: Rates, fates, and role in global carbon cycle  

SciTech Connect

Published estimates for worldwide landfill methane emissions range from 9 to 70 Tg yr{sup {minus}1}. Field and laboratory studies suggest that maximum methane yields from lanfilled refuse are about 0.06 to 0.09 m{sup 3} (dry Kg){sup {minus}1} refuse, depending on moisture content and other variables, such as organic loading, buffering capacity, and nutrients in landfill microevnironments. Methane yields may vary by more than an order of magnitude within a given site. Fates for landfill methane include (1) direct or delayed emission to the atmosphere through landfill cover materials or surface soils; (2) oxidation by methanotrophs in cover soils, with resulting emission of carbon dioxide; or (3) recovery of methane followed by combustion to produce carbon dioxide. The percent methane assigned to each pathway will vary among field sites and, for individual sites, through time. Nevertheless, a general framework for a landfill methane balance can be developed by consideration of landfill age, engineering and management practices, cover soil characteristics, and water balance. Direct measurements of landfill methane emissions are sparse, with rates between 10{sup {minus}6} and 10{sup {minus}8} g cm{sup {minus}2} s{sup {minus}1}; very high rates of 400 kg m{sup {minus}2} yr{sup {minus}1} have been measured at a semiarid unvegetated site. The proportion of landfill carbon that is ultimately converted to methane and carbon dioxide is problematical; the literature suggests that, at best, 25% to 40% of refuse carbon can be converted to biogas carbon. Cellulose contributes the major portion of the methane potential. Routine excavation of nondecomposed cellulosic materials after one or two decades of landfill burial suggests that uniformly high conversion rates are rarely attained at field sites.

Bogner, J.; Spokas, K.

1991-12-31T23:59:59.000Z

293

Corrective action investigation plan for CAU Number 453: Area 9 Landfill, Tonopah Test Range  

SciTech Connect

This Corrective Action Investigation Plan (CAIP) contains the environmental sample collection objectives and criteria for conducting site investigation activities at the Area 9 Landfill, Corrective Action Unit (CAU) 453/Corrective Action (CAS) 09-55-001-0952, which is located at the Tonopah Test Range (TTR). The TTR, included in the Nellis Air Force Range, is approximately 255 kilometers (140 miles) northwest of Las Vegas, Nevada. The Area 9 Landfill is located northwest of Area 9 on the TTR. The landfill cells associated with CAU 453 were excavated to receive waste generated from the daily operations conducted at Area 9 and from range cleanup which occurred after test activities.

NONE

1997-05-14T23:59:59.000Z

294

RD & D priorities for energy production and resource conservation from municipal solid waste  

Science Conference Proceedings (OSTI)

This report identifies research, development, and demonstration (RD&D) needs and priorities associated with municipal solid waste (MSW) management technologies that conserve or produce energy or resources. The changing character of MSW waste management and the public`s heightened awareness of its real and perceived benefits and costs creates opportunities for RD&D in MSW technologies. Increased recycling, for example, creates new opportunities for energy, chemicals, and materials recovery. New technologies to control and monitor emissions from MSW combustion facilities are available for further improvement or application. Furthermore, emerging waste-to-energy technologies may offer environmental, economic, and other advantages. Given these developments, DOE identified a need to assess the RD&D needs and pdodties and carefully target RD&D efforts to help solve the carbon`s waste management problem and further the National Energy Strategy. This report presents such an assessment. It identifies and Documents RD&D needs and priorities in the broad area of MSW resource . recovery, focusing on efforts to make MSW management technologies commercially viable or to improve their commercial deployment over a 5 to l0 year period. Panels of technical experts identifies 279 RD&D needs in 12 technology areas, ranking about one-fifth of these needs as priorities. A ``Peer Review Group`` identified mass-burn combustion, ``systems studies,`` landfill gas, and ash utilization and disposal as high priority areas for RD&D based on cost and the impacts of further RD&D. The results of this assessment are intended to provide guidance to DOE concerning possible future RD&D projects.

Not Available

1992-08-01T23:59:59.000Z

295

Recovery Act milestone: Excavation begins at Manhattan Project landfill  

NLE Websites -- All DOE Office Websites (Extended Search)

Recovery Act milestone Recovery Act milestone Recovery Act milestone: Excavation begins at Manhattan Project landfill The six-acre site contains a series of trenches used from 1944 to 1948 to dispose of hazardous and non-hazardous trash from Manhattan Project labs and buildings. July 1, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

296

Using GIS to Identify Remediation Areas in Landfills  

Science Conference Proceedings (OSTI)

This paper reports the use of GIS mapping softwareArcMap and ArcInfo Workstationby the Idaho National Engineering and Environmental Laboratory (INEEL) as a non-intrusive method of locating and characterizing radioactive waste in a 97-acre landfill to aid in planning cleanup efforts. The fine-scale techniques and methods used offer potential application for other burial sites for which hazards indicate a non-intrusive approach. By converting many boxes of paper shipping records in multiple formats into a relational database linked to spatial data, the INEEL has related the paper history to our current GIS technologies and spatial data layers. The wide breadth of GIS techniques and tools quickly display areas in need of remediation as well as evaluate methods of remediation for specific areas as the site characterization is better understood and early assumptions are refined.

Linda A.Tedrow

2004-08-01T23:59:59.000Z

297

EA-0767: Construction and Experiment of an Industrial Solid Waste Landfill  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

767: Construction and Experiment of an Industrial Solid Waste 767: Construction and Experiment of an Industrial Solid Waste Landfill at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio EA-0767: Construction and Experiment of an Industrial Solid Waste Landfill at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio SUMMARY This EA evaluates the environmental impacts of a proposal to construct and operate a solid waste landfill within the boundary at the U.S. Department of Energy's Portsmouth Gaseous Diffusion plant in Piketon, Ohio. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD October 25, 1995 EA-0767: Finding of No Significant Impact Construction and Experiment of an Industrial Solid Waste Landfill at Portsmouth Gaseous Diffusion Plant October 25, 1995 EA-0767: Final Environmental Assessment

298

July 17, 2012, Webinar: Landfill Gas-to-Energy Projects | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 17, 2012, Webinar: Landfill Gas-to-Energy Projects July 17, 2012, Webinar: Landfill Gas-to-Energy Projects July 17, 2012, Webinar: Landfill Gas-to-Energy Projects This webinar, held July 17, 2012, provided information on the challenges and benefits of developing successful community landfill gas-to-energy projects in Will County, Illinois, and Escambia County, Florida. Download the presentations below, watch the webinar (WMV 112 MB) or view the text version. Find more CommRE webinars. Prairie View RDF Gas to Energy Facility: A Public/Private Partnership Will County partnered with Waste Management, using a portion of the county's DOE Energy Efficiency and Conservation Block Grant (EECBG) funding, to develop the Prairie View Recycling and Disposal Facility. A gas purchase agreement was executed in 2010 and the facility became operational

299

Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Community Renewable Energy Success Stories: Landfill Gas-to-Energy Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects Webinar (text version) Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects Webinar (text version) Below is the text version of the Webinar titled "Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects," originally presented on July 17, 2012. Recorded Voice: The broadcast is now starting. All attendees are in listen-only mode. Sarah Busche: Hello, everyone. Good afternoon and welcome to today's webinar. This is sponsored by the U.S. Department of Energy. My name is Sarah Busche, and I'm here with Devin Egan, and we're broadcasting live from the National Renewable Energy Laboratory in Golden, Colorado. We're going to give folks

300

Landfill methane recovery. Part II: gas characterization. Final report, December 1981-December 1982  

SciTech Connect

This study addresses field sampling, analytical testing, and data generation for the characterization of both raw and processed landfill gas. Standardized protocols were developed for the sampling and analysis of the landfill gas for trace constituents and are presented as Appendices A-C. A nationwide survey was conducted in which gas samples were collected at nine landfill sites and tested for trace volatile organic compounds (VOC), trace volatile mercury, and human pathogenic viruses and bacteria. Surface-gas flux measurements at the landfill surface were also made. Repetitive sampling and analysis for each of the nice sites porvided the opportunity to evaluate agreement (or variations) within a laboratory and between two analytical laboratories. Sampling and analytical protocols used by both laboratories were identical, however, the analytical hardware and interpretive computer hardware and software were different.

Lytwynyshyn, G.R.; Zimmerman, R.E.; Flynn, N.W.; Wingender, R.; Olivieri, V.

1982-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste-to-energy msw landfill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Corrective action investigation plan for CAU No. 424: Area 3 Landfill Complex, Tonopah Test Range, Nevada  

Science Conference Proceedings (OSTI)

This Correction Action Investigation Plan contains the environmental sample collection objectives and the criteria for conducting site investigation activities at the Area 3 Landfill Complex, CAU No. 424, which is located at the Tonopah Test Range (TTR). The TTR, included in the Nellis Air Force Range, is approximately 255 kilometers (140 miles) northwest of Las Vegas, nevada. The CAU 424 is comprised of eight individual landfill sites that are located around and within the perimeter of the Area 3 Compound. Due to the unregulated disposal activities commonly associated with early landfill operations, an investigation will be conducted at each CAS to complete the following tasks: identify the presence and nature of possible contaminant migration from the landfills; determine the vertical and lateral extent of possible contaminant migration; ascertain the potential impact to human health and the environment; and provide sufficient information and data to develop and evaluate appropriate corrective action strategies for each CAS.

NONE

1997-04-01T23:59:59.000Z

302

Information on the Fate of Mercury From Fluorescent Lamps Disposed in Landfills  

Science Conference Proceedings (OSTI)

Mercury is contained in energy-efficient fluorescent, mercury-vapor, metal halide, and high-pressure sodium lamps. This report presents information on the potential for air and groundwater contamination when mercury lamps are disposed in municipal landfills.

1995-04-19T23:59:59.000Z

303

Investigation of Integrated Subsurface Processing of Landfill Gas and Carbon Sequestration, Johnson County, Kansas  

SciTech Connect

The Johnson County Landfill in Shawnee, KS is operated by Deffenbaugh Industries and serves much of metropolitan Kansas City. Refuse, which is dumped in large plastic-underlined trash cells covering several acres, is covered over with shale shortly after burial. The landfill waste, once it fills the cell, is then drilled by Kansas City LFG, so that the gas generated by anaerobic decomposition of the refuse can be harvested. Production of raw landfill gas from the Johnson County landfill comes from 150 wells. Daily production is approximately 2.2 to 2.5 mmcf, of which approximately 50% is methane and 50% is carbon dioxide and NMVOCs (non-methane volatile organic compounds). Heating value is approximately 550 BTU/scf. A upgrading plant, utilizing an amine process, rejects the carbon dioxide and NMVOCs, and upgrades the gas to pipeline quality (i.e., nominally a heating value >950 BTU/scf). The gas is sold to a pipeline adjacent to the landfill. With coal-bearing strata underlying the landfill, and carbon dioxide a major effluent gas derived from the upgrading process, the Johnson County Landfill is potentially an ideal setting to study the feasibility of injecting the effluent gas in the coals for both enhanced coalbed methane recovery and carbon sequestration. To these ends, coals below the landfill were cored and then were analyzed for their thickness and sorbed gas content, which ranged up to 79 scf/ton. Assuming 1 1/2 square miles of land (960 acres) at the Johnson County Landfill can be utilized for coalbed and shale gas recovery, the total amount of in-place gas calculates to 946,200 mcf, or 946.2 mmcf, or 0.95 bcf (i.e., 985.6 mcf/acre X 960 acres). Assuming that carbon dioxide can be imbibed by the coals and shales on a 2:1 ratio compared to the gas that was originally present, then 1682 to 1720 days (4.6 to 4.7 years) of landfill carbon dioxide production can be sequestered by the coals and shales immediately under the landfill. Three coal--the Bevier, Fleming, and Mulberry coals--are the major coals of sufficient thickness (nominally >1-foot) that can imbibe carbon dioxide gas with an enhanced coalbed injection. Comparison of the adsorption gas content of coals to the gas desorbed from the coals shows that the degree of saturation decreases with depth for the coals.

K. David Newell; Timothy R. Carr

2007-03-31T23:59:59.000Z

304

Development of the utilization of combustible gas produced in existing sanitary landfills: effects of corrosion at the Mountain View, CA Landfill Gas-Recovery Plant  

DOE Green Energy (OSTI)

Corrosion of equipment has occurred at the Mountain View, California Landfill Gas Recovery Plant. Corrosion is most severe on compressor valve seats and cages, tubes in the first and second stages of the interstage gas cooler, and first and second stage piping and liquid separators. Corrosion occurs because the raw landfill gas contains water, carbon dioxide, and oxygen. Some corrosion may also result from trace concentrations of organic acids present in the landfill gas. Corrosion of the third stage compressor, cooler, and piping does not occur because the gas is dehydrated immediately prior to the third stage. Controlling corrosion is necessary to maintain the mechanical integrity of the plant and to keep the cost of the gas competitive with natural gas. Attempts to reduce corrosion rates by injecting a chemical inhibitor have proved only partially successful. Recommendations for dealing with corrosion include earlier dehydration of the gas, selection of special alloys in critical locations, chemical inhibition, and regular plant inspections.

Not Available

1982-10-01T23:59:59.000Z

305

Fluxes of methane between landfills and the atmosphere: Natural and engineered controls  

SciTech Connect

Field measurement of landfill methane emissions indicates natural variability spanning more than 2 seven orders of magnitude, from approximately 0.0004 to more than 4000 g m{sub -2} day{sup -1}. This wide range reflects net emissions resulting from production (methanogenesis), consumption (methanotrophic oxidation), and gaseous transport processes. The determination of an {open_quotes}average{close_quotes} emission rate for a given field site requires sampling designs and statistical techniques which consider spatial and temporal variability. Moreover, particularly at sites with pumped gas recovery systems, it is possible for methanotrophic microorganisms in aerated cover soils to oxidize all of the methane from landfill sources below and, additionally, to oxidize methane diffusing into cover soils from atmospheric sources above. In such cases, a reversed soil gas concentration gradient is observed in shallow cover soils, indicating bidirectional diffusional transport to the depth of optimum methane oxidation. Rates of landfill methane oxidation from field and laboratory incubation studies range up to 166 g m{sup -2} day{sup -1} among the highest for any natural setting, providing an effective natural control on net emissions. Estimates of worldwide landfill methane emissions to the atmosphere have ranged from 9 to 70 Tg yr{sup -1}, differing mainly in assumed methane yields from estimated quantities of landfilled refuse. At highly controlled landfill sites in developed countries, landfill methane is often collected via vertical wells or horizontal collectors. Recovery of landfill methane through engineered systems can provide both environmental and energy benefits by mitigating subsurface migration, reducing surface emissions, and providing an alternative energy resource for industrial boiler use, on-site electrical generation, or upgrading to a substitute natural gas.

Bogner, J. [Argonne National Lab., IL (United States); Meadows, M. [ETSU, Harwell, Oxfordshire (United Kingdom); Czepiel, P. [Harvard Univ., Cambridge, MA (United States)

1997-08-01T23:59:59.000Z

306

Knowledge based ranking algorithm for comparative assessment of post-closure care needs of closed landfills  

Science Conference Proceedings (OSTI)

Post-closure care (PCC) activities at landfills include cap maintenance; water quality monitoring; maintenance and monitoring of the gas collection/control system, leachate collection system, groundwater monitoring wells, and surface water management system; and general site maintenance. The objective of this study was to develop an integrated data and knowledge based decision making tool for preliminary estimation of PCC needs at closed landfills. To develop the decision making tool, 11 categories of parameters were identified as critical areas which could affect future PCC needs. Each category was further analyzed by detailed questions which could be answered with limited data and knowledge about the site, its history, location, and site specific characteristics. Depending on the existing knowledge base, a score was assigned to each question (on a scale 1-10, as 1 being the best and 10 being the worst). Each category was also assigned a weight based on its relative importance on the site conditions and PCC needs. The overall landfill score was obtained from the total weighted sum attained. Based on the overall score, landfill conditions could be categorized as critical, acceptable, or good. Critical condition indicates that the landfill may be a threat to the human health and the environment and necessary steps should be taken. Acceptable condition indicates that the landfill is currently stable and the monitoring should be continued. Good condition indicates that the landfill is stable and the monitoring activities can be reduced in the future. The knowledge base algorithm was applied to two case study landfills for preliminary assessment of PCC performance.

Sizirici, Banu, E-mail: bsy3@case.edu [Case Western Reserve University, Civil Engineering Department, 2104 Adelbert Road, Bingham Bld. Room: 216, Cleveland, OH 44106 (United States); Tansel, Berrin; Kumar, Vivek [Florida International University, Civil and Environmental Engineering Department, Miami, FL (United States)

2011-06-15T23:59:59.000Z

307

Pricing landfill externalities: Emissions and disamenity costs in Cape Town, South Africa  

Science Conference Proceedings (OSTI)

Highlights: > The paper estimates landfill externalities associated with emissions, disamenities and transport. > Transport externalities vary from 24.22 to 31.42 Rands per tonne. > Costs of emissions (estimated using benefits transfer) vary from 0.07 to 28.91 Rands per tonne. > Disamenities (estimated using hedonic pricing) vary from 0.00 to 57.46 Rands per tonne. > Overall, external costs for urban landfills exceed those of a regional landfill. - Abstract: The external (environmental and social) costs of landfilling (e.g. emissions to air, soil and water; and 'disamenities' such as odours and pests) are difficult to quantify in monetary terms, and are therefore not generally reflected in waste disposal charges or taken into account in decision making regarding waste management options. This results in a bias against alternatives such as recycling, which may be more expensive than landfilling from a purely financial perspective, but preferable from an environmental and social perspective. There is therefore a need to quantify external costs in monetary terms, so that different disposal options can be compared on the basis of their overall costs to society (financial plus external costs). This study attempts to estimate the external costs of landfilling in the City of Cape Town for different scenarios, using the benefits transfer method (for emissions) and the hedonic pricing method (for disamenities). Both methods (in particular the process of transferring and adjusting estimates from one study site to another) are described in detail, allowing the procedures to be replicated elsewhere. The results show that external costs are currently R111 (in South African Rands, or approximately US$16) per tonne of waste, although these could decline under a scenario in which energy is recovered, or in which the existing urban landfills are replaced with a new regional landfill.

Nahman, Anton, E-mail: anahman@csir.co.za [Environmental and Resource Economics Group, Natural Resources and the Environment, Council for Scientific and Industrial Research, P.O. Box 320, Stellenbosch 7599 (South Africa)

2011-09-15T23:59:59.000Z

308

Feasibility Study of Economics and Performance of Solar Photovoltaics at Johnson County Landfill  

DOE Green Energy (OSTI)

The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Johnson County Landfill in Shawnee, Kansas, for a feasibility study of renewable energy production. Citizens of Shawnee, city planners, and site managers are interested in redevelopment uses for landfills in Kansas that are particularly well suited for grid-tied solar photovoltaic (PV) installation. This report assesses the Johnson County Landfill for possible grid-tied PV installations and estimates the cost, performance, and site impacts of three different PV options: crystalline silicon (fixed tilt), crystalline silicon (single-axis tracking), and thin film (fixed tilt). Each option represents a standalone system that can be sized to use an entire available site area. In addition, the report outlines financing options that could assist in the implementation of a system. The feasibility of PV systems installed on landfills is highly impacted by the available area for an array, solar resource, operating status, landfill cap status, distance to transmission lines, and distance to major roads. The report findings are applicable to other landfills in the surrounding area.

Salasovich, J.; Mosey, G.

2012-01-01T23:59:59.000Z

309

Stochastic modelling of landfill leachate and biogas production incorporating waste heterogeneity. Model formulation and uncertainty analysis  

Science Conference Proceedings (OSTI)

A mathematical model simulating the hydrological and biochemical processes occurring in landfilled waste is presented and demonstrated. The model combines biochemical and hydrological models into an integrated representation of the landfill environment. Waste decomposition is modelled using traditional biochemical waste decomposition pathways combined with a simplified methodology for representing the rate of decomposition. Water flow through the waste is represented using a statistical velocity model capable of representing the effects of waste heterogeneity on leachate flow through the waste. Given the limitations in data capture from landfill sites, significant emphasis is placed on improving parameter identification and reducing parameter requirements. A sensitivity analysis is performed, highlighting the model's response to changes in input variables. A model test run is also presented, demonstrating the model capabilities. A parameter perturbation model sensitivity analysis was also performed. This has been able to show that although the model is sensitive to certain key parameters, its overall intuitive response provides a good basis for making reasonable predictions of the future state of the landfill system. Finally, due to the high uncertainty associated with landfill data, a tool for handling input data uncertainty is incorporated in the model's structure. It is concluded that the model can be used as a reasonable tool for modelling landfill processes and that further work should be undertaken to assess the model's performance.

Zacharof, A.I.; Butler, A.P

2004-07-01T23:59:59.000Z

310

Greenhouse gas reduction by recovery and utilization of landfill methane and CO{sub 2} technical and market feasibility study, Boului Landfill, Bucharest, Romania. Final report, September 30, 1997--September 19, 1998  

SciTech Connect

The project is a landfill gas to energy project rated at about 4 megawatts (electric) at startup, increasing to 8 megawatts over time. The project site is Boului Landfill, near Bucharest, Romania. The project improves regional air quality, reduces emission of greenhouse gases, controls and utilizes landfill methane, and supplies electric power to the local grid. The technical and economic feasibility of pre-treating Boului landfill gas with Acrion`s new landfill gas cleanup technology prior to combustion for power production us attractive. Acrion`s gas treatment provides several benefits to the currently structured electric generation project: (1) increase energy density of landfill gas from about 500 Btu/ft{sup 3} to about 750 Btu/ft{sup 3}; (2) remove contaminants from landfill gas to prolong engine life and reduce maintenance;; (3) recover carbon dioxide from landfill gas for Romanian markets; and (4) reduce emission of greenhouse gases methane and carbon dioxide. Greenhouse gas emissions reduction attributable to successful implementation of the landfill gas to electric project, with commercial liquid CO{sub 2} recovery, is estimated to be 53 million metric tons of CO{sub 2} equivalent of its 15 year life.

Cook, W.J.; Brown, W.R.; Siwajek, L. [Acrion Technologies, Inc., Cleveland, OH (United States); Sanders, W.I. [Power Management Corp., Bellevue, WA (United States); Botgros, I. [Petrodesign, SA, Bucharest (Romania)

1998-09-01T23:59:59.000Z

311

DOE/EA-1624: Environmental Assessment for Auburn Landfill Gas Electric Generators and Anaerobic Digester Energy Facilities (December 2008)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Auburn Landfill Gas Electric Generators and Auburn Landfill Gas Electric Generators and Anaerobic Digester Energy Facilities Auburn, New York Final Environmental Assessment DOE/EA-1624 Prepared for: U.S. Department of Energy National Energy Technology Laboratory January 2009 INTENTIONALLY LEFT BLANK AUBURN LANDFILL GAS ELECTRIC GENERATORS AND ANAEROBIC DIGESTER ELECTRIC FACILITIES FINAL EA DOE/EA-1624 i Table of Contents 1.0 INTRODUCTION .......................................................................................................................................... 1 1.1 BACKGROUND............................................................................................................................................... 2 1.2 PURPOSE AND NEED ...................................................................................................................................... 4

312

Guide to implementing reclamation processes at Department of Defense municipal solid waste and construction debris landfills. Master's thesis  

Science Conference Proceedings (OSTI)

This thesis serves as a guide for implementing landfill reclamation techniques on municipal solid waste or construction debris landfills owned, operated, or used by the DoD. The research describes historical and current methods for disposing of solid waste including open dumping, sanitary landfilling, and the development of state-of-the-art sanitary landfill cell technology. The thesis also identifies the factors which have led to the need for new methods of managing municipal solid waste. The vast majority of the study is devoted to identifying actions which should be taken before, during, and after implementation of a landfill reclamation project. These actions include the development of health, safety, and contingency planning documents, the establishment of systems for characterizing and monitoring site conditions, and the identification of other procedures and processes necessary for performing successful operations. Finally, this study contains a model for analyzing under which conditions reclamation is economically feasible. The model examines economic feasibility in four separate conditions and shows that reclamation is economically feasible in a wide variety of markets. However, the model also shows that feasibility is directly associated with a continuance of normal landfilling operations. Landfill, Landfill reclamation, Landfill mining, Municipal solid waste, Recycling, Construction debris.

Tures, G.L.

1993-09-21T23:59:59.000Z

313

Photoacoustic infrared spectroscopy for conducting gas tracer tests and measuring water saturations in landfills  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer Photoacoustic infrared spectroscopy tested for measuring tracer gas in landfills. Black-Right-Pointing-Pointer Measurement errors for tracer gases were 1-3% in landfill gas. Black-Right-Pointing-Pointer Background signals from landfill gas result in elevated limits of detection. Black-Right-Pointing-Pointer Technique is much less expensive and easier to use than GC. - Abstract: Gas tracer tests can be used to determine gas flow patterns within landfills, quantify volatile contaminant residence time, and measure water within refuse. While gas chromatography (GC) has been traditionally used to analyze gas tracers in refuse, photoacoustic spectroscopy (PAS) might allow real-time measurements with reduced personnel costs and greater mobility and ease of use. Laboratory and field experiments were conducted to evaluate the efficacy of PAS for conducting gas tracer tests in landfills. Two tracer gases, difluoromethane (DFM) and sulfur hexafluoride (SF{sub 6}), were measured with a commercial PAS instrument. Relative measurement errors were invariant with tracer concentration but influenced by background gas: errors were 1-3% in landfill gas but 4-5% in air. Two partitioning gas tracer tests were conducted in an aerobic landfill, and limits of detection (LODs) were 3-4 times larger for DFM with PAS versus GC due to temporal changes in background signals. While higher LODs can be compensated by injecting larger tracer mass, changes in background signals increased the uncertainty in measured water saturations by up to 25% over comparable GC methods. PAS has distinct advantages over GC with respect to personnel costs and ease of use, although for field applications GC analyses of select samples are recommended to quantify instrument interferences.

Jung, Yoojin; Han, Byunghyun; Mostafid, M. Erfan; Chiu, Pei [Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716 (United States); Yazdani, Ramin [Yolo County Planning and Public Works Department, Division of Integrated Waste Management, Yolo County, 44090 County Rd. 28H, Woodland, CA 95776 (United States); Imhoff, Paul T., E-mail: imhoff@udel.edu [Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716 (United States)

2012-02-15T23:59:59.000Z

314

Appendix B Landfill Inspection Forms and Survey Data  

Office of Legacy Management (LM)

This page intentionally left blank This page intentionally left blank Rocky Flats Site Original Landfill - Settlement Plates Monitoring Quarterly Survey March 26, 2010 Comparison to Previous Survey December 15, 2009 03-26-10 OBSERVATIONS DELTA DELTA DELTA 12-15-09 OBSERVATIONS POINT NUMBER NORTHING EASTING ELEVATION DESCRIPTION NORTHING EASTING ELEVATION POINT NUMBER NORTHING EASTING ELEVATION DESCRIPTION 15053 747913.6883 2082233.082 6005.91 N-RIM-PIPE-AA 0.00 -0.02 -0.02 76527 747913.6913 2082233.064 6005.88 PIPE-N-RIM-AA 15052 747644.9257 2081851.191 5975.35 N-RIM-PIPE-BB -0.02 -0.01 -0.03 76528 747644.9087 2081851.179 5975.32 PIPE-N-RIM-BB 15059 747883.3477 2081666.073 6019.61 N-RIM-PIPE-CC 0.01 0.00 -0.01 76515 747883.3557 2081666.077 6019.59 PIPE-N-RIM-CC 15058 747803.4731 2081642.34 6006.10 N-RIM-PIPE-DD

315

Phytostabilization of a landfill containing coal combustion waste.  

SciTech Connect

The establishment of a vegetative cover to enhance evapotranspiration and control runoff and drainage was examined as a method for stabilizing a landfill containing coal combustion waste. Suitable plant species and pretreatment techniques in the form of amendments, tilling, and chemical stabilization were evaluated. A randomized plot design consisting of three subsurface treatments (blocks) and five surface amendments (treatments) was implemented. The three blocks included (1) ripping and compost amended, (2) ripping only, and (3) control. Surface treatments included (1) topsoil, (2) fly ash, (3) compost, (4) apatite, and (5) control. Inoculated loblolly (Pinus taeda) and Virginia (Pinus virginiana) pine trees were planted on each plot. After three growing seasons, certain treatments were shown to be favorable for the establishment of vegetation on the basin. Seedlings located on block A developed a rooting system that penetrated into the basin media without significant adverse effects to the plant. However, seedlings on blocks B and C displayed poor rooting conditions and high mortality, regardless of surface treatment. Pore-water samples from lysimeters in block C were characterized by high acidity, Fe, Mn, Al, sulfate, and traceelement concentrations. Water-quality characteristics of the topsoil plots in block A, however, conformed to regulatory protocols. A decrease in soil-moisture content was observed in the rooting zone of plots that were successfully revegetated, which suggests that the trees, in combination with the surface treatments, influenced the water balance by facilitating water loss through transpiration and thereby reducing the likelihood of unwanted surface runoff and/or drainage effluent.

Barton, Christopher; Marx, Donald; Adriano, Domy; Koo, Bon Jun; Newman, Lee; Czapka, Stephen; Blake, John

2005-12-01T23:59:59.000Z

316

Microbial oxidation of methane from old landfills in biofilters  

Science Conference Proceedings (OSTI)

Landfill gas emissions are among the largest sources of the greenhouse gas methane. For this reason, the possibilities of microbial methane degradation in biofilters were investigated. Different filter materials were tested in two experimental plants, a bench-scale plant (total filter volume 51 l) and a pilot plant (total filter volume 4 m{sup 3}). Three months after the beginning of the experiment, very high degradation rates of up to 63 g CH{sub 4}/(m{sup 3}h) were observed in the bench-scale plant at mean methane concentrations of 2.5% v/v and with fine-grained compost as biofilter material. However, the degradation rates of the compost biofilter decreased in the fifth month of the experiment, probably due to the accumulation of exopolymeric substances formed by the microorganisms. A mixture of compost, peat, and wood fibers showed stable and satisfactory degradation rates around 20 g/(m{sup 3}h) at mean concentrations of 3% v/v over a period of one year. In this material, the wood fibers served as a structural material and prevented clogging of the biofilter. Extrapolation of the experimental data indicates that biofilters for methane oxidation have to be at least 100 times the volume of biofilters for odor control to obtain the same cleaning efficiency per unit volume flow of feed gas.

Streese, J.; Stegmann, R

2003-07-01T23:59:59.000Z

317

Environmental impact of landfill disposal of selected geothermal residues  

Science Conference Proceedings (OSTI)

A solid waste is classified as hazardous if it contains sufficient leachable components to contaminate the groundwater and the environment if disposed in a landfill. Scale, sludge and drilling mud from three geothermal fields (Bulalo, Phlippines; Cerro Prieto, Mexico; and Dixie Valley, USA) containing regulated elements at levels above the earths crustal abundance were studied for their leachability. Cr, As, Cu, Zn and Pb were detected at levels which could impair groundwater quality if leaching occurred. Several procedures were used to assess the likely risk posed by the residues : protocol leaching tests (Canadian LEP and US TCLP), toxicity testing, accelerated weathering test, and a preliminary acid mine drainage potential test. Whole rock analysis, X-ray diffraction, and radioactivity counting were also performed to characterize the samples. Toxi-chromotest and SOS-chromotest results were negative for all samples. Leachng tests indicated that all of them could be classified as nonhazardous wastes. Only one of the six showed a low-level radioactivity based on its high Pb-210 activity. Initial tests for acidification potential gave positive results for three out of six samples whle none of the regulated elements were found in the leachate after accelerated weathering experiment for three months.

Peralta, G.L.; Graydon, J.W.; Seyfried, P.L.; Kirk, D.W.

1996-01-24T23:59:59.000Z

318

Recovery Act: Johnston Rhode Island Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas  

SciTech Connect

The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Central Landfill in Johnston, Rhode Island. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting project reflected a cost effective balance of the following specific sub-objectives. 1) Meet environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas. 2) Utilize proven and reliable technology and equipment. 3) Maximize electrical efficiency. 4) Maximize electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Central Landfill. 5) Maximize equipment uptime. 6) Minimize water consumption. 7) Minimize post-combustion emissions. To achieve the Project Objective the project consisted of several components. 1) The landfill gas collection system was modified and upgraded. 2) A State-of-the Art gas clean up and compression facility was constructed. 3) A high pressure pipeline was constructed to convey cleaned landfill gas from the clean-up and compression facility to the power plant. 4) A combined cycle electric generating facility was constructed consisting of combustion turbine generator sets, heat recovery steam generators and a steam turbine. 5) The voltage of the electricity produced was increased at a newly constructed transformer/substation and the electricity was delivered to the local transmission system. The Project produced a myriad of beneficial impacts. 1) The Project created 453 FTE construction and manufacturing jobs and 25 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. 2) By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). 3) The Project will annually produce 365,292 MWh?s of clean energy. 4) By destroying the methane in the landfill gas, the Project will generate CO{sub 2} equivalent reductions of 164,938 tons annually. The completed facility produces 28.3 MWnet and operates 24 hours a day, seven days a week.

Galowitz, Stephen

2013-06-30T23:59:59.000Z

319

Polybrominated diphenyl ethers (PBDEs) in leachates from selected landfill sites in South Africa  

Science Conference Proceedings (OSTI)

The last few decades have seen dramatic growth in the scale of production and the use of polybrominated diphenyl ethers (PBDEs) as flame retardants. Consequently, PBDEs such as BDE -28, -47, -66, -71, -75, -77, -85, -99, -100, -119, -138, -153, -154, and -183 have been detected in various environmental matrices. Generally, in South Africa, once the products containing these chemicals have outlived their usefulness, they are discarded into landfill sites. Consequently, the levels of PBDEs in leachates from landfill sites may give an indication of the general exposure and use of these compounds. The present study was aimed at determining the occurrence and concentrations of most common PBDEs in leachates from selected landfill sites. The extraction capacities of the solvents were also tested. Spiked landfill leachate samples were used for the recovery tests. Separation and determination of the PBDE congeners were carried out with a gas chromatograph equipped with Ni{sup 63} electron capture detector. The mean percentage recoveries ranged from 63% to 108% (n = 3) for landfill leachate samples with petroleum ether giving the highest percentage extraction. The mean concentrations of PBDEs obtained ranged from ND to 2670 pg l{sup -1}, ND to 6638 pg l{sup -1}, ND to 7230 pg l{sup -1}, 41 to 4009 pg l{sup -1}, 90 to 9793 pg l{sup -1} for the Garankuwa, Hatherly, Kwaggarsrand, Soshanguve and Temba landfill sites, respectively. Also BDE -28, -47, -71 and BDE-77 were detected in the leachate samples from all the landfill sites; and all the congeners were detected in two of the oldest landfill sites. The peak concentrations were recorded for BDE-47 at three sites and BDE-71 and BDE-75 at two sites. The highest concentration, 9793 {+-} 1.5 pg l{sup -1}, was obtained for the Temba landfill site with the highest BOD value. This may suggest some influence of organics on the level of PBDEs. Considering the leaching characteristics of brominated flame retardants, there is a high possibility that with time these compounds may infiltrate into the groundwater around the sites since most of the sites are not adequately lined.

Odusanya, David O. [Department of Environmental, Water and Earth Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, 175 Nelson Mandela Drive, Arcadia, Pretoria 0001 (South Africa); Okonkwo, Jonathan O. [Department of Environmental, Water and Earth Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, 175 Nelson Mandela Drive, Arcadia, Pretoria 0001 (South Africa)], E-mail: OkonkwoOJ@tut.ac.za; Botha, Ben [Department of Environmental, Water and Earth Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, 175 Nelson Mandela Drive, Arcadia, Pretoria 0001 (South Africa)

2009-01-15T23:59:59.000Z

320

MSW RESEARCH SEQUENCE BIBLIOGRAPHY  

E-Print Network (OSTI)

The books and articles listed below cover many areas of research relevant to social work. All of the books on this list should be either in the UMD library or on order. If you identify other books that prove useful to you, please let Denny Falk know so they can be added to the bibliography. American Psychological Association 2001. Publication Manual of the APA (5th Edition). APA: Washington, DC.

unknown authors

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste-to-energy msw landfill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

T2LBM Version 1.0: Landfill bioreactor model for TOUGH2  

DOE Green Energy (OSTI)

The need to control gas and leachate production and minimize refuse volume in landfills has motivated the development of landfill simulation models that can be used by operators to predict and design optimal treatment processes. T2LBM is a module for the TOUGH2 simulator that implements a Landfill Bioreactor Model to provide simulation capability for the processes of aerobic or anaerobic biodegradation of municipal solid waste and the associated flow and transport of gas and liquid through the refuse mass. T2LBM incorporates a Monod kinetic rate law for the biodegradation of acetic acid in the aqueous phase by either aerobic or anaerobic microbes as controlled by the local oxygen concentration. Acetic acid is considered a proxy for all biodegradable substrates in the refuse. Aerobic and anaerobic microbes are assumed to be immobile and not limited by nutrients in their growth. Methane and carbon dioxide generation due to biodegradation with corresponding thermal effects are modeled. The numerous parameters needed to specify biodegradation are input by the user in the SELEC block of the TOUGH2 input file. Test problems show that good matches to laboratory experiments of biodegradation can be obtained. A landfill test problem demonstrates the capabilities of T2LBM for a hypothetical two-dimensional landfill scenario with permeability heterogeneity and compaction.

Oldenburg, Curtis M.

2001-05-22T23:59:59.000Z

322

Methane production during the anaerobic decomposition of composted and raw organic refuse in simulated landfill cells  

E-Print Network (OSTI)

Methane contributes 20% annually to increases in global warming, and is explosive at concentrations of 5-15% in air. Landfills contribute 15% to total methane emissions. This study was conducted to determine the potential decrease in methane production from landfills if organic waste is composted prior to. The quantities and rates of methane production were measured from simulated landfill cells containing composted and raw simulated refuse. The refuse was composted in an open pile and characterized by temperature, pH, ash content and C02 evolved during aerobic respiration. Assuming a 1 0% lignin content, the labile carbon fraction was reduced by an estimated 71 % during composting. Over a of six month period, simulated landfill cells filled with raw waste generated 66 M3 methane per Mg of dry refuse, while cells containing compost produced 31 M3 methane per Mg of dry compost. Per unit weight of dry raw material, composted waste placed in a landfill produced only 23% of the methane that was generated from raw refuse.

West, Margrit Evelyn

1995-01-01T23:59:59.000Z

323

Reconsidering Municipal Solid Waste as a Renewable Energy Feedstock For many years, opposition to the use of municipal solid waste (MSW) as an energy resource has been nearly universal among  

E-Print Network (OSTI)

used in that year,2 depending on conversion efficiency.3 Alternatively, Fulcrum BioEnergy estimates reaction.22 · Gasification -- MSW is heated in a chamber with a small amount of oxygen present for conversion into renewable fuels or other biobased products.23 Gasification is economically viable at a small

Columbia University

324

Analytical risk-based model of gaseous and liquid-phase radon transport in landfills with radium sources  

Science Conference Proceedings (OSTI)

An analytical model of gaseous and liquid-phase radon transport through soils is derived for environmental modeling of landfills containing uranium mill tailings or Ra-226 sources. Processes include radon diffusion in both the gas and liquid phases, ... Keywords: Landfill, Multiphase, Performance assessment, Probabilistic modeling, Radium, Radon, Transport

Clifford K. Ho

2008-09-01T23:59:59.000Z

325

Renewable Energy Opportunities at Fort Hood, Texas  

Science Conference Proceedings (OSTI)

This report presents the results of Pacific Northwest National Laboratory's (PNNL) follow-on renewable energy (RE) assessment of Fort Hood. Fort Hood receives many solicitations from renewable energy vendors who are interested in doing projects on site. Based on specific requests from Fort Hood staff so they can better understand these proposals, and the results of PNNL's 2008 RE assessment of Fort Hood, the following resources were examined in this assessment: (1) Municipal solid waste (MSW) for waste-to-energy (WTE); (2) Wind; (3) Landfill gas; (4) Solar photovoltaics (PV); and (5) Shale gas. This report also examines the regulatory issues, development options, and environmental impacts for the promising RE resources, and includes a review of the RE market in Texas.

Solana, Amy E.; Warwick, William M.; Orrell, Alice C.; Russo, Bryan J.; Parker, Kyle R.; Weimar, Mark R.; Horner, Jacob A.; Manning, Anathea

2011-11-14T23:59:59.000Z

326

Health assessment for New Lyme Landfill, Ashtabula, Ohio, Region 5. CERCLIS No. OHD980794614. Final report  

SciTech Connect

The New Lyme Landfill is a 40-acre facility operated from 1969 until 1978 as a trench and fill landfill with majority of the waste coming from industrial and commercial sources. Leachate includes both leachate seeps at the surface of the landfill and water that is either stagnant or moving very slowly in or out of the trenches. Organic compounds detected consisted of VOCs and phenolic compounds. Concentrations of inorganic compounds were generally an order-of-magnitude or more in ground water. Chrysotile asbestos fibers were found in two leachate water samples. The primary potential exposure pathways for leachate are direct contact or inhalation of airborne asbestos fibers. Based on the nature of the contaminants and the hydrological conditions at the site, residential development of the area may not be suitable.

Not Available

1986-01-30T23:59:59.000Z

327

Waste management health risk assessment: A case study of a solid waste landfill in South Italy  

Science Conference Proceedings (OSTI)

An integrated risk assessment study has been performed in an area within 5 km from a landfill that accepts non hazardous waste. The risk assessment was based on measured emissions and maximum chronic population exposure, for both children and adults, to contaminated air, some foods and soil. The toxic effects assessed were limited to the main known carcinogenic compounds emitted from landfills coming both from landfill gas torch combustion (e.g., dioxins, furans and polycyclic aromatic hydrocarbons, PAHs) and from diffusive emissions (vinyl chloride monomer, VCM). Risk assessment has been performed both for carcinogenic and non-carcinogenic effects. Results indicate that cancer and non-cancer effects risk (hazard index, HI) are largely below the values accepted from the main international agencies (e.g., WHO, US EPA) and national legislation ( and ).

Davoli, E., E-mail: enrico.davoli@marionegri.i [Istituto di Ricerche Farmacologiche 'Mario Negri', Environmental Health Sciences Department, Via Giuseppe La Masa 19, 20156 Milano (Italy); Fattore, E.; Paiano, V.; Colombo, A.; Palmiotto, M. [Istituto di Ricerche Farmacologiche 'Mario Negri', Environmental Health Sciences Department, Via Giuseppe La Masa 19, 20156 Milano (Italy); Rossi, A.N.; Il Grande, M. [Progress S.r.l., Via Nicola A. Porpora 147, 20131 Milano (Italy); Fanelli, R. [Istituto di Ricerche Farmacologiche 'Mario Negri', Environmental Health Sciences Department, Via Giuseppe La Masa 19, 20156 Milano (Italy)

2010-08-15T23:59:59.000Z

328

Feasibility Study of Solar Photovoltaics on Landfills in Puerto Rico (Second Study)  

Science Conference Proceedings (OSTI)

This report presents the results of an assessment of the technical and economic feasibility of deploying a solar photovoltaics (PV) system on landfill sites in Puerto Rico. The purpose of this report is to assess the landfills with the highest potential for possible solar PV installation and estimate cost, performance, and site impacts of three different PV options: crystalline silicon (fixed tilt), crystalline silicon (single-axis tracking), and thin film (fixed tilt). The report outlines financing options that could assist in the implementation of a system. According to the site production calculations, the most cost-effective system in terms of return on investment is the thin-film fixed-tilt technology. The report recommends financing options that could assist in the implementation of such a system. The landfills and sites considered in this report were all determined feasible areas in which to implement solar PV systems.

Salasovich, J.; Mosey, G.

2011-08-01T23:59:59.000Z

329

Design document for landfill capping Prototype Decision Support System. Draft 1.0  

Science Conference Proceedings (OSTI)

The overall objective of the Prototype Decision Support System for shallow land burial project is to ``Develop a Decision Support System tool which incorporates simulation modeling and multi-objective decision theory for the purpose of designing and evaluating alternative trench cap designs for mixed waste landfill covers. The goal is to improve the quality of technical information used by the risk manager to select landfill cover designs while taking into account technological, economical, and regulatory factors.`` The complexity of the technical and non-technical information, and how the information varies in importance across sites, points to the need for decision analysis tools that provide a common basis for integrating, synthesizing, and valuing the decision input. Because the cost of remediating thousands of contaminated DOE sites is projected to be in the 10`s--100`s of billions of dollars, methods will be needed to establish cleanup priorities and to help in the selection and evaluation of cost effective remediation alternatives. Even at this early stage in DOE`s cleanup program, it is certain that capping technologies will be heavily relied upon to remediate the 3000+ landfills on DOE property. Capping is favored in remediating most DOE landfills because, based on preliminary baseline risk assessments, human and ecological risks are considered to be low at most of these sites and the regulatory requirements for final closure of old landfills can be met using a well designed cap to isolate the buried waste. This report describes a program plan to design, develop, and test a decision support system (DSS) for assisting the DOE risk manager in evaluating capping alternatives for radioactive and hazardous waste landfills. The DOE DSS will incorporate methods for calculating, integrating and valuing technical, regulatory, and economic criteria.

Stone, J.J.; Paige, G.; Hakonson, T.E. [Los Alamos National Lab., NM (United States); Lane, L.J. [USDA-ARS Southwest Watershed Research Center, Tucson, AZ (United State)

1994-01-01T23:59:59.000Z

330

Landfill gas cleanup for carbonate fuel cell power generation. Final report  

DOE Green Energy (OSTI)

To utilize landfill gas for power generation using carbonate fuel cells, the LFG must be cleaned up to remove sulfur and chlorine compounds. This not only benefits the operation of the fuel cell, but also benefits the environment by preventing the emission of these contaminants to the atmosphere. Commercial technologies for gas processing are generally economical in relatively large sizes (3 MMSCFD or larger), and may not achieve the low levels of contaminants required. To address the issue of LFG clean-up for fuel cell application, a process was developed utilizing commercially available technology. A pilot-scale test facility utilizing this process was built at a landfill site in Anoka, Minnesota using the EPRI fuel cell test facility used for coal gas testing. The pilot plant was tested for 1000 hours, processing 970,000 SCF (27,500 Nm{sup 3}) of landfill gas. Testing indicated that the process could achieve the following concentrations of contaminants in the clean gas: Less than 80 ppbv hydrogen sulfide; less than 1 ppm (the detection limit) organic sulfur; less than 300 ppbv hydrogen chloride; less than 20--80 ppbv if any individual chlorinated hydrocarbon; and 1.5 ppm (average) Sulfur Dioxide. The paper describes the LFG composition for bulk and trace compounds; evaluation of various methods to clean landfill gas; design of a LFG cleanup system; field test of pilot-scale gas cleanup process; fuel cell testing on simulated landfill gas; single cell testing on landfill gas contaminants and post test analysis; and design and economic analyses of a full scale gas cleanup system.

Steinfeld, G.; Sanderson, R.

1998-02-01T23:59:59.000Z

331

Settlement Prediction, Gas Modeling and Slope Stability Analysis  

E-Print Network (OSTI)

Settlement Prediction, Gas Modeling and Slope Stability Analysis in Coll Cardús Landfill Li Yu using mechanical models Simulation of gas generation, transport and extraction in MSW landfill 1 models Simulation of gas generation, transport and extraction in MSW landfill 1) Analytical solution

Politècnica de Catalunya, Universitat

332

Barometric pumping of burial trench soil gases into the atmosphere at the 740-G Sanitary Landfill  

SciTech Connect

In 1991, a soil gas survey was performed at the Savannah River Site Sanitary Landfill as part of the characterization efforts required under the integrated Resource Conservation and Recovery Act (RCRA) Facility Investigation and Comprehensive Environmental Resource Conservation and Recovery Act (CERCLA) Remedial Investigation (RFI/RI) program. This report details the findings of this survey, which identified several areas of the landfill that were releasing volatile organic compounds to the atmosphere at levels exceeding regulatory standards. Knowledge of the rates of VOC outgassing is necessary to protect site workers, provide input into the human health and environmental risk assessment documents and provide input into the remedial design scenario.

Wyatt, D.E.; Pirkle, R.J.; Masdea, D.J.

1992-12-01T23:59:59.000Z

333

EM SSAB ITR Landfill Assessment Project Lessons Learned Presentation - July 2009  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Teleconference: Teleconference: 1. DOE EM ITR Landfill Assessment Project: Lessons Learned Craig H. Benson, PhD, PE CRESP July 2009 1 Independent Technical Review Team * Craig H. Benson, PhD, PE - University of Wisconsin-Madison: waste containment systems, civil engineering, geotechnical engineering. * William H. Albright, PhD - Desert Research Institute, Reno, Nevada: waste containment systems, hydrology, regulatory interactions. * David P. Ray, PE - US Army Corps of Engineers, Omaha, NB: waste containment systems, civil engineering, geotechnical engineering. * John Smegal - Legin Group, Washington, DC: economics, management. 2 * Mixed-waste landfill authorized by EPA and Washington State DoE for disposal of

334

Landfill Gas Conversion to LNG and LCO{sub 2}. Final Report  

Science Conference Proceedings (OSTI)

This report summarizes work on the development of a process to produce LNG (liquefied methane) for heavy vehicle use from landfill gas (LFG) using Acrion's CO{sub 2} wash process for contaminant removal and CO{sub 2} recovery. Work was done in the following areas: (1) production of natural gas pipeline methane for liquefaction at an existing LNG facility, (2) production of LNG from sewage digester gas, (3) the use of mixed refrigerants for process cooling in the production of LNG, liquid CO{sub 2} and pipeline methane, (4) cost estimates for an LNG production facility at the Arden Landfill in Washington PA.

Brown, W.R.; Cook, W. J.; Siwajek, L.A.

2000-10-20T23:59:59.000Z

335

BUNCOMBE COUNTY WASTEWATER PRE-TREATMENT AND LANDFILL GAS TO ENERGY PROJECT  

Science Conference Proceedings (OSTI)

The objective of this project was to construct a landfill gas-to-energy (LFGTE) facility that generates a renewable energy source utilizing landfill gas to power a 1.4MW generator, while at the same time reducing the amount of leachate hauled offsite for treatment. The project included an enhanced gas collection and control system, gas conditioning equipment, and a 1.4 MW generator set. The production of cleaner renewable energy will help offset the carbon footprint of other energy sources that are currently utilized.

Jon Creighton

2012-03-13T23:59:59.000Z

336

Reducing Open Cell Landfill Methane Emissions with a Bioactive Alternative Daily  

Science Conference Proceedings (OSTI)

Methane and carbon dioxide are formed in landfills as wastes degrade. Molecule-for-molecule, methane is about 20 times more potent than carbon dioxide at trapping heat in the earth's atmosphere, and thus, it is the methane emissions from landfills that are scrutinized. For example, if emissions composed of 60% methane and 40% carbon dioxide were changed to a mix that was 40% methane and 60% carbon dioxide, a 30% reduction in the landfill's global warming potential would result. A 10% methane, 90% carbon dioxide ratio will result in a 75% reduction in global warming potential compared to the baseline. Gas collection from a closed landfill can reduce emissions, and it is sometimes combined with a biocover, an engineered system where methane oxidizing bacteria living in a medium such as compost, convert landfill methane to carbon dioxide and water. Although methane oxidizing bacteria merely convert one greenhouse gas (methane) to another (carbon dioxide), this conversion can offer significant reductions in the overall greenhouse gas contribution, or global warming potential, associated with the landfill. What has not been addressed to date is the fact that methane can also escape from a landfill when the active cell is being filled with waste. Federal regulations require that newly deposited solid waste to be covered daily with a 6 in layer of soil or an alternative daily cover (ADC), such as a canvas tarp. The aim of this study was to assess the feasibility of immobilizing methane oxidizing bacteria into a tarp-like matrix that could be used for alternative daily cover at open landfill cells to prevent methane emissions. A unique method of isolating methanotrophs from landfill cover soil was used to create a liquid culture of mixed methanotrophs. A variety of prospective immobilization techniques were used to affix the bacteria in a tarp-like matrix. Both gel encapsulation of methanotrophs and gels with liquid cores containing methanotrophs were readily made but prone to rapid desiccation. Bacterial adsorption onto foam padding, natural sponge, and geotextile was successful. The most important factor for success appeared to be water holding capacity. Prototype biotarps made with geotextiles plus adsorbed methane oxidizing bacteria were tested for their responses to temperature, intermittent starvation, and washing (to simulate rainfall). The prototypes were mesophilic, and methane oxidation activity remained strong after one cycle of starvation but then declined with repeated cycles. Many of the cells detached with vigorous washing, but at least 30% appeared resistant to sloughing. While laboratory landfill simulations showed that four-layer composite biotarps made with two different types of geotextile could remove up to 50% of influent methane introduced at a flux rate of 22 g m{sup -2} d{sup -1}, field experiments did not yield high activity levels. Tests revealed that there were high hour-to-hour flux variations in the field, which, together with frequent rainfall events, confounded the field testing. Overall, the findings suggest that a methanotroph embedded biotarp appears to be a feasible strategy to mitigate methane emission from landfill cells, although the performance of field-tested biotarps was not robust here. Tarps will likely be best suited for spring and summer use, although the methane oxidizer population may be able to shift and adapt to lower temperatures. The starvation cycling of the tarp may require the capacity for intermittent reinoculation of the cells, although it is also possible that a subpopulation will adapt to the cycling and become dominant. Rainfall is not expected to be a major factor, because a baseline biofilm will be present to repopulate the tarp. If strong performance can be achieved and documented, the biotarp concept could be extended to include interception of other compounds beyond methane, such as volatile aromatic hydrocarbons and chlorinated solvents.

Helene Hilger; James Oliver; Jean Bogner; David Jones

2009-03-31T23:59:59.000Z

337

Superfund Record of Decision (EPA Region 5): Tri County/Elgin Landfill Site, Elgin, IL. (First remedial action), September 1992. Final report  

SciTech Connect

The 66-acre Tri County Landfill (TCL) site comprises two former landfills the Tri County Landfill and the Elgin Landfill, located near the junction of Kane, Cook and DuPage Counties, Illinois. The two disposal operations overlapped to the point where the two landfills were indistinguishable. Land use in the area is predominantly agricultural. The local residents and businesses use private wells as their drinking water supply. Prior to the 1940's, both landfills were used for gravel mining operations. From 1968 to 1976, the TCL received liquid and industrial waste. State and county inspection reports revealed that open dumping, area filling, and dumping into the abandonded gravel quarry had occurred at the site. In addition, confined dumping, inadequate daily cover, blowing litter, fires, lack of access restrictions, and leachate flows were typical problems reported. In 1981, the landfill was closed with a final cover.

Not Available

1992-09-30T23:59:59.000Z

338

Property:Building/SPPurchasedEngyForPeriodMwhYrDigesterLandfillGas | Open  

Open Energy Info (EERE)

SPPurchasedEngyForPeriodMwhYrDigesterLandfillGas SPPurchasedEngyForPeriodMwhYrDigesterLandfillGas Jump to: navigation, search This is a property of type String. Digester / landfill gas Pages using the property "Building/SPPurchasedEngyForPeriodMwhYrDigesterLandfillGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 +

339

FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL  

DOE Green Energy (OSTI)

The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Liquid addition has commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell is nearly complete with only the biofilter remaining and is scheduled to be complete by the end of August 2003. The current project status and preliminary monitoring results are summarized in this report.

Ramin Yazdani; Jeff Kieffer; Heather Akau

2003-08-01T23:59:59.000Z

340

FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL  

DOE Green Energy (OSTI)

The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Construction is complete on the 3.5-acre anaerobic cell and liquid addition has commenced. Construction of the 2.5-acre aerobic cell is nearly complete with only the biofilter remaining and construction of the west-side 6-acre anaerobic cell is nearly complete with only the liquid addition system remaining. The current project status and preliminary monitoring results are summarized in this report.

Ramin Yazdani; Jeff Kieffer; Heather Akau

2003-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste-to-energy msw landfill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL  

DOE Green Energy (OSTI)

The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Construction is complete on the 3.5-acre anaerobic cell and liquid addition has commenced. Construction of the 2.5 acre aerobic cell is nearly complete with only the blower station and biofilter remaining. Waste placement and instrumentation installation is ongoing in the west-side 6-acre anaerobic cell. The current project status and preliminary monitoring results are summarized in this report.

Ramin Yazdani; Jeff Kieffer; Heather Akau

2002-08-01T23:59:59.000Z

342

Property:Building/SPPurchasedEngyNrmlYrMwhYrDigesterLandfillGas | Open  

Open Energy Info (EERE)

SPPurchasedEngyNrmlYrMwhYrDigesterLandfillGas SPPurchasedEngyNrmlYrMwhYrDigesterLandfillGas Jump to: navigation, search This is a property of type String. Digester / landfill gas Pages using the property "Building/SPPurchasedEngyNrmlYrMwhYrDigesterLandfillGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 +

343

Property:Building/SPPurchasedEngyPerAreaKwhM2DigesterLandfillGas | Open  

Open Energy Info (EERE)

DigesterLandfillGas DigesterLandfillGas Jump to: navigation, search This is a property of type String. Digester / landfill gas Pages using the property "Building/SPPurchasedEngyPerAreaKwhM2DigesterLandfillGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 +

344

Impact of different plants on the gas profile of a landfill cover  

SciTech Connect

Research highlights: > Plants influence gas profile and methane oxidation in landfill covers. > Plants regulate water content and increase the availability of oxygen for methane oxidation. > Plant species with deep roots like alfalfa showed more stimulation of methane oxidation than plants with shallow root systems like grasses. - Abstract: Methane is an important greenhouse gas emitted from landfill sites and old waste dumps. Biological methane oxidation in landfill covers can help to reduce methane emissions. To determine the influence of different plant covers on this oxidation in a compost layer, we conducted a lysimeter study. We compared the effect of four different plant covers (grass, alfalfa + grass, miscanthus and black poplar) and of bare soil on the concentration of methane, carbon dioxide and oxygen in lysimeters filled with compost. Plants were essential for a sustainable reduction in methane concentrations, whereas in bare soil, methane oxidation declined already after 6 weeks. Enhanced microbial activity - expected in lysimeters with plants that were exposed to landfill gas - was supported by the increased temperature of the gas in the substrate and the higher methane oxidation potential. At the end of the first experimental year and from mid-April of the second experimental year, the methane concentration was most strongly reduced in the lysimeters containing alfalfa + grass, followed by poplar, miscanthus and grass. The observed differences probably reflect the different root morphology of the investigated plants, which influences oxygen transport to deeper compost layers and regulates the water content.

Reichenauer, Thomas G., E-mail: thomas.reichenauer@ait.ac.at [Health and Environment Department, Environmental Resources and Technologies, AIT - Austrian Institute of Technology GmbH, 2444 Seibersdorf (Austria); Watzinger, Andrea; Riesing, Johann [Health and Environment Department, Environmental Resources and Technologies, AIT - Austrian Institute of Technology GmbH, 2444 Seibersdorf (Austria); Gerzabek, Martin H. [Institute of Soil Research, Department of Forest and Soil Sciences, University of Natural Resources and Applied Life Sciences, Peter Jordan-Strasse 82, 1190 Vienna (Austria)

2011-05-15T23:59:59.000Z

345

LIQUID NATURAL GAS (LNG): AN ALTERNATIVE FUEL FROM LANDFILL GAS (LFG) AND WASTEWATER DIGESTER GAS  

DOE Green Energy (OSTI)

This Research and Development Subcontract sought to find economic, technical and policy links between methane recovery at landfill and wastewater treatment sites in New York and Maryland, and ways to use that methane as an alternative fuel--compressed natural gas (CNG) or liquid natural gas (LNG) -- in centrally fueled Alternative Fueled Vehicles (AFVs).

VANDOR,D.

1999-03-01T23:59:59.000Z

346

Full Scale Bioreactor Landfill for Carbon Sequestration and Greenhouse Emission Control  

DOE Green Energy (OSTI)

The Yolo County Department of Planning and Public Works constructed a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective was to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entailed the construction of a 12-acre module that contained a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells were highly instrumented to monitor bioreactor performance. Liquid addition commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell and biofilter has been completed. The current project status and preliminary monitoring results are summarized in this report.

Ramin Yazdani; Jeff Kieffer; Kathy Sananikone; Don Augenstein

2005-03-30T23:59:59.000Z

347

FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL  

DOE Green Energy (OSTI)

The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Liquid addition has commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell and biofilter has been completed. The remaining task to be completed is to test the biofilter prior to operation, which is currently anticipated to begin in January 2004. The current project status and preliminary monitoring results are summarized in this report.

Ramin Yazdani; Jeff Kieffer; Heather Akau

2003-12-01T23:59:59.000Z

348

Fault tree analysis and fuzzy expert systems: Early warning and emergency response of landfill operations  

Science Conference Proceedings (OSTI)

In this paper we argue that Early Warning Systems for engineering facilities can be developed by combining and integrating existing technologies and theories. As example, we present an efficient integration of fuzzy expert systems, fault tree analysis ... Keywords: Accidents, Early Warning System, Expert systems, Fault tree analysis, Fuzzy logic, Landfills, Operational problems, Possibility theory, Public Access to Environmental Information

I. M. Dokas; D. A. Karras; D. C. Panagiotakopoulos

2009-01-01T23:59:59.000Z

349

Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils  

SciTech Connect

The overall objective of this project, 'Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils' was to develop effective, efficient, and economic methodologies by which microbial production of nitrous oxide can be minimized while also maximizing microbial consumption of methane in landfill cover soils. A combination of laboratory and field site experiments found that the addition of nitrogen and phenylacetylene stimulated in situ methane oxidation while minimizing nitrous oxide production. Molecular analyses also indicated that methane-oxidizing bacteria may play a significant role in not only removing methane, but in nitrous oxide production as well, although the contribution of ammonia-oxidizing archaea to nitrous oxide production can not be excluded at this time. Future efforts to control both methane and nitrous oxide emissions from landfills as well as from other environments (e.g., agricultural soils) should consider these issues. Finally, a methanotrophic biofiltration system was designed and modeled for the promotion of methanotrophic activity in local methane 'hotspots' such as landfills. Model results as well as economic analyses of these biofilters indicate that the use of methanotrophic biofilters for controlling methane emissions is technically feasible, and provided either the costs of biofilter construction and operation are reduced or the value of CO{sub 2} credits is increased, can also be economically attractive.

Jeremy Semrau; Sung-Woo Lee; Jeongdae Im; Sukhwan Yoon; Michael Barcelona

2010-09-30T23:59:59.000Z

350

FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL  

DOE Green Energy (OSTI)

The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches while providing superior environmental protection. The overall objective is to manage landfill solid waste for rapid waste decomposition, maximum landfill gas generation and capture, and minimum long-term environmental consequences. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. The current project status and preliminary monitoring results are summarized in this report.

Ramin Yazdani; Jeff Kieffer; Heather Akau

2002-01-01T23:59:59.000Z

351

FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL  

DOE Green Energy (OSTI)

The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches while providing superior environmental protection. The overall objective is to manage landfill solid waste for rapid waste decomposition, maximum landfill gas generation and capture, and minimum long-term environmental consequences. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. The current project status and preliminary monitoring results are summarized in this report.

Ramin Yazdani; Jeff Kieffer; Heather Akau

2002-02-01T23:59:59.000Z

352

FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL  

DOE Green Energy (OSTI)

The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches while providing superior environmental protection. The overall objective is to manage landfill solid waste for rapid waste decomposition, maximum landfill gas generation and capture, and minimum long-term environmental consequences. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Construction is complete on the 3.5 acre anaerobic cell and liquid addition has commenced. Construction of the 2.5 acre aerobic cell is nearly complete with only the blower station and biofilter remaining. Waste placement and instrumentation installation is ongoing in the west-side 6-acre anaerobic cell. The current project status and preliminary monitoring results are summarized in this report.

Ramin Yazdani; Jeff Kieffer; Heather Akau

2002-04-01T23:59:59.000Z

353

Assessment of the methane oxidation capacity of compacted soils intended for use as landfill cover materials  

SciTech Connect

The microbial oxidation of methane in engineered cover soils is considered a potent option for the mitigation of emissions from old landfills or sites containing wastes of low methane generation rates. A laboratory column study was conducted in order to derive design criteria that enable construction of an effective methane oxidising cover from the range of soils that are available to the landfill operator. Therefore, the methane oxidation capacity of different soils was assessed under simulated landfill conditions. Five sandy potential landfill top cover materials with varying contents of silt and clay were investigated with respect to methane oxidation and corresponding soil gas composition over a period of four months. The soils were compacted to 95% of their specific proctor density, resulting in bulk densities of 1.4-1.7 g cm{sup -3}, reflecting considerably unfavourable conditions for methane oxidation due to reduced air-filled porosity. The soil water content was adjusted to field capacity, resulting in water contents ranging from 16.2 to 48.5 vol.%. The investigated inlet fluxes ranged from 25 to about 100 g CH{sub 4} m{sup -2} d{sup -1}, covering the methane load proposed to allow for complete oxidation in landfill covers under Western European climate conditions and hence being suggested as a criterion for release from aftercare. The vertical distribution of gas concentrations, methane flux balances as well as stable carbon isotope studies allowed for clear process identifications. Higher inlet fluxes led to a reduction of the aerated zone, an increase in the absolute methane oxidation rate and a decline of the relative proportion of oxidized methane. For each material, a specific maximum oxidation rate was determined, which varied between 20 and 95 g CH{sub 4} m{sup -2} d{sup -1} and which was positively correlated to the air-filled porosity of the soil. Methane oxidation efficiencies and gas profile data imply a strong link between oxidation capacity and diffusive ingress of atmospheric air. For one material with elevated levels of fine particles and high organic matter content, methane production impeded the quantification of methane oxidation potentials. Regarding the design of landfill cover layers it was concluded that the magnitude of the expected methane load, the texture and expected compaction of the cover material are key variables that need to be known. Based on these, a column study can serve as an appropriate testing system to determine the methane oxidation capacity of a soil intended as landfill cover material.

Rachor, Ingke, E-mail: i.rachor@ifb.uni-hamburg.de [University of Hamburg, Institute of Soil Science, Allende-Platz 2, 20146 Hamburg (Germany); Gebert, Julia; Groengroeft, Alexander; Pfeiffer, Eva-Maria [University of Hamburg, Institute of Soil Science, Allende-Platz 2, 20146 Hamburg (Germany)

2011-05-15T23:59:59.000Z

354

Mitigation of methane emission from Fakse landfill using a biowindow system  

Science Conference Proceedings (OSTI)

Landfills are significant sources of atmospheric methane (CH{sub 4}) that contributes to climate change, and therefore there is a need to reduce CH{sub 4} emissions from landfills. A promising cost efficient technology is to integrate compost into landfill covers (so-called 'biocovers') to enhance biological oxidation of CH{sub 4}. A full scale biocover system to reduce CH{sub 4} emissions was installed at Fakse landfill, Denmark using composted yard waste as active material supporting CH{sub 4} oxidation. Ten biowindows with a total area of 5000 m{sup 2} were integrated into the existing cover at the 12 ha site. To increase CH{sub 4} load to the biowindows, leachate wells were capped, and clay was added to slopes at the site. Point measurements using flux chambers suggested in most cases that almost all CH{sub 4} was oxidized, but more detailed studies on emissions from the site after installation of the biocover as well as measurements of total CH{sub 4} emissions showed that a significant portion of the emission quantified in the baseline study continued unabated from the site. Total emission measurements suggested a reduction in CH{sub 4} emission of approximately 28% at the end of the one year monitoring period. This was supported by analysis of stable carbon isotopes which showed an increase in oxidation efficiency from 16% to 41%. The project documented that integrating approaches such a whole landfill emission measurements using tracer techniques or stable carbon isotope measurements of ambient air samples are needed to document CH{sub 4} mitigation efficiencies of biocover systems. The study also revealed that there still exist several challenges to better optimize the functionality. The most important challenges are to control gas flow and evenly distribute the gas into the biocovers.

Scheutz, Charlotte, E-mail: chs@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, Miljovej - Building 113, 2800 Kongens Lyngby (Denmark); Fredenslund, Anders M., E-mail: amf@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, Miljovej - Building 113, 2800 Kongens Lyngby (Denmark); Chanton, Jeffrey, E-mail: jchanton@fsu.edu [Department of Earth, Ocean and Atmospheric Science, 117 N. Woodward Avenue, Florida State University, Tallahassee, Fl 32306-4320 (United States); Pedersen, Gitte Bukh, E-mail: gbp@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, Miljovej - Building 113, 2800 Kongens Lyngby (Denmark); Kjeldsen, Peter, E-mail: pk@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, Miljovej - Building 113, 2800 Kongens Lyngby (Denmark)

2011-05-15T23:59:59.000Z

355

Waste as a Renewable Source of Energy  

E-Print Network (OSTI)

Waste as a Renewable Source of Energy Dr. Karsten Millrath Columbia University / Waste-To-Energy Waste Management · Status of Renewable · Current and Future Practices · The Waste-To-Energy Research management practices renewable resources> Millrath 10 #12;MSW as Renewable Energy Source · Broader

Columbia University

356

Weighing the Costs and Benefits of Renewables Portfolio Standards: A Comparative Analysis of State-Level Policy Impact Projections  

E-Print Network (OSTI)

hydro fuel cells, anaerobic digestion, and MSW incineration.Power Landfill Gas Anaerobic Digestion Biomass Gasificationlandfill gas, and anaerobic digestion. c - Study uses NEMS.

Chen, Cliff; Wiser, Ryan; Bolinger, Mark

2007-01-01T23:59:59.000Z

357

Assessment of landfill reclamation and the effects of age on the combustion of recovered municipal solid waste  

DOE Green Energy (OSTI)

This report summarized the Lancaster county Solid Waste Management Authorities`s (LCSWMA)landfill reclamation activities, ongoing since 1991. All aspects have been analyzed from the manpower and equipment requirements at the landfill to the operational impacts felt at the LCSWMA Resource Recovery Facility (RRF) where the material is delivered for processing. Characteristics of the reclaimed refuse and soil recovered from trommeling operations are discussed as are results of air monitoring performed at the landfill excavation site and the RRF. The report also discusses the energy value of the reclaimed material and compares this value with those obtained for significantly older reclaimed waste streams. The effects of waste age on the air emissions and ash residue quality at the RRF are also provided. The report concludes by summarizing the project benefits and provides recommendations for other landfill reclamation operations and areas requiring further research.

Forster, G.A. [Lancaster Environmental Foundation, PA (United States)] [Lancaster Environmental Foundation, PA (United States)

1995-01-01T23:59:59.000Z

358

Effects of adding wash tower effluent to Ano Liossia landfill to enhance bioreaction c by Olympia Galenianou.  

E-Print Network (OSTI)

A theoretical study was performed on the effects of adding sulfate-rich wash tower effluent from the Athens hospital waste incinerator to the Ano Liossia landfill of Athens. The method of mass balance was used to examine ...

Galenianou, Olympia

2006-01-01T23:59:59.000Z

359

Annual Performance Assessment and Composite Analysis Review for the ICDF Landfill FY 2008  

SciTech Connect

This report addresses low-level waste disposal operations at the Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility (ICDF) landfill from the start of operations in Fiscal Year 2003 through Fiscal Year 2008. The ICDF was authorized in the Operable Unit 3-13 Record of Decision for disposal of waste from the Idaho National Laboratory Site CERCLA environmental restoration activities. The ICDF has been operating since 2003 in compliance with the CERCLA requirements and the waste acceptance criteria developed in the CERCLA process. In developing the Operable Unit 3-13 Record of Decision, U.S. Department of Energy Order (DOE) 435.1, 'Radioactive Waste Management', was identified as a 'to be considered' requirement for the ICDF. The annual review requirement under DOE Order 435.1 was determined to be an administrative requirement and, therefore, annual reviews were not prepared on an annual basis. However, the landfill has been operating for 5 years and, since the waste forms and inventories disposed of have changed from what was originally envisioned for the ICDF landfill, the ICDF project team has decided that this annual review is necessary to document the changes and provide a basis for any updates in analyses that may be necessary to continue to meet the substantive requirements of DOE Order 435.1. For facilities regulated under DOE Order 435.1-1, U.S. DOE Manual 435.1-1, 'Radioactive Waste Management', IV.P.(4)(c) stipulates that annual summaries of low-level waste disposal operations shall be prepared with respect to the conclusions and recommendations of the performance assessment and composite analysis. Important factors considered in this review include facility operations, waste receipts, and results from monitoring and research and development programs. There have been no significant changes in operations at the landfill in respect to the disposal geometry, the verification of waste characteristics, and the tracking of inventories against total limits that would affect the results and conclusions of the performance assessment. Waste receipts to date and projected waste receipts through Fiscal Year 2012 are both greater than the inventory assessed in the performance assessment and composite analysis. The waste forms disposed of to the landfill are different from the waste form (compacted soil) assessed in the performance assessment. The leak detection system and groundwater monitoring results indicate the landfill has not leaked. The results of the performance assessment/composite analysis are valid (i.e., there is still a reasonable expectation of meeting performance objectives) but the new information indicates less conservatism in the results than previously believed.

Karen Koslow Arthur Rood

2009-08-31T23:59:59.000Z

360

Quantification of multiple methane emission sources at landfills using a double tracer technique  

SciTech Connect

Research highlights: > Precise and reliable measurements of emissions from landfills are needed. > A tracer technique involving simultaneous release of two tracers was proven successful. > Measurements to be performed at times with low changing trends in barometric pressure. - Abstract: A double tracer technique was used successfully to quantify whole-site methane (CH{sub 4}) emissions from Fakse Landfill. Emissions from different sections of the landfill were quantified by using two different tracers. A scaled-down version of the tracer technique measuring close-by to localized sources having limited areal extent was also used to quantify emissions from on-site sources at the landfill facility, including a composting area and a sewage sludge storage pit. Three field campaigns were performed. At all three field campaigns an overall leak search showed that the CH{sub 4} emissions from the old landfill section were localized to the leachate collection wells and slope areas. The average CH{sub 4} emissions from the old landfill section were quantified to be 32.6 {+-} 7.4 kg CH{sub 4} h{sup -1}, whereas the source at the new section was quantified to be 10.3 {+-} 5.3 kg CH{sub 4} h{sup -1}. The CH{sub 4} emission from the compost area was 0.5 {+-} 0.25 kg CH{sub 4} h{sup -1}, whereas the carbon dioxide (CO{sub 2}) and nitrous oxide (N{sub 2}O) flux was quantified to be in the order of 332 {+-} 166 kg CO{sub 2} h{sup -1} and 0.06 {+-} 0.03 kg N{sub 2}O h{sup -1}, respectively. The sludge pit located west of the compost material was quantified to have an emission of 2.4 {+-} 0.63 kg h{sup -1} CH{sub 4}, and 0.03 {+-} 0.01 kg h{sup -1} N{sub 2}O.

Scheutz, C., E-mail: chs@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, Miljovej, Building 113, 2800 Kongens Lyngby (Denmark); Samuelsson, J., E-mail: jerker.samuelsson@fluxsense.se [Chalmers University of Technology/FluxSense AB, SE-412 96 Goeteborg (Sweden); Fredenslund, A.M., E-mail: amf@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, Miljovej, Building 113, 2800 Kongens Lyngby (Denmark); Kjeldsen, P., E-mail: pk@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, Miljovej, Building 113, 2800 Kongens Lyngby (Denmark)

2011-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "waste-to-energy msw landfill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Feasibility Study of Economics and Performance of Solar Photovoltaics at Johnson County Landfill  

NLE Websites -- All DOE Office Websites (Extended Search)

Johnson Johnson County Landfill James Salasovich and Gail Mosey Technical Report NREL/TP-6A20-53186 January 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Feasibility Study of Economics and Performance of Solar Photovoltaics at Johnson County Landfill James Salasovich and Gail Mosey Prepared under Task No. IGST.1100 Technical Report NREL/TP-6A20-53186 January 2012 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

362

Constructed wetlands for municipal solid waste landfill leachate treatment. Final report  

SciTech Connect

In 1989, the US Geological Survey and Cornell University, in cooperation with the New York State Energy Research and Development Authority and the Tompkins County Solid Waste Department, began a three-year study at a municipal solid-waste landfill near Ithaca, New York, to test the effectiveness of leachate treatment with constructed wetlands and to examine the associated treatment processes. Specific objectives of the study were to examine: treatment efficiency as function of substrate composition and grain size, degree of plant growth, and seasonal changes in evapotranspiration rates and microbial activity; effects of leachate and plant growth on the hydraulic characteristics of the substrate; and chemical, biological, and physical processes by which nutrients, metals, and organic compounds are removed from leachate as it flows through the substrate. A parallel study at a municipal solid-waste landfill near Fenton, New York was conducted by researchers at Cornell University, Ithaca College, and Hawk Engineering (Trautmann and others, 1989). Results are described.

Peverly, J.; Sanford, W.E.; Steenhuis, T.S. [Cornell Univ., Ithaca, NY (United States)

1993-11-01T23:59:59.000Z

363

Closure report for CAU No. 400: Bomblet Pit and Five Points Landfill, Tonopah test range  

SciTech Connect

This Closure Reports presents the information obtained from corrective and investigative actions performed to affirm the decision for clean closure of Corrective Action Unit No. 400 which includes the Bomblet Pit and the Five Points Landfill, two sites used for disposal of unexploded ordnance (UXO) and other solid waste at the U.S. Department of Energy`s (DOE) Tonopah Test Range, located in south-central Nevada. The first phase, or corrective action, for clean closure was performed under the Voluntary Correction Action Work Plan for Ordnance Removal from Five Disposal Sites at the Tonopah Test Range, hereafter referred to as the VCA Work Plan. The second phase consisted of collecting verification samples under the Streamlined Approach for Environmental Restoration Plan, CA U No. 400: Bomblet Pit and Five Points Landfill, Tonopah Test Range, hereafter referred to as the SAFER Plan. Results of the two phases are summarized in this document.

NONE

1996-11-01T23:59:59.000Z

364

Title I conceptual design for Pit 6 landfill closure at Lawrence Livermore National Laboratory Site 300  

Science Conference Proceedings (OSTI)

The objective of this design project is to evaluate and prepare design and construction documents for a closure cover cap for the Pit 6 Landfill located at Lawrence Livermore National Laboratory Site 300. This submittal constitutes the Title I Design (Conceptual Design) for the closure cover of the Pit 6 Landfill. A Title I Design is generally 30 percent of the design effort. Title H Design takes the design to 100 percent complete. Comments and edits to this Title I Design will be addressed in the Title II design submittal. Contents of this report are as follows: project background; design issues and engineering approach; design drawings; calculation packages; construction specifications outline; and construction quality assurance plan outline.

MacDonnell, B.A.; Obenauf, K.S. [Golder Associates, Inc., Alameda, CA (United States)

1996-08-01T23:59:59.000Z

365

Sanitary landfill groundwater monitoring report. Fourth quarter 1994 and 1994 summary  

Science Conference Proceedings (OSTI)

Eighty-nine wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Waste Permit DWP-087A and as part of the SRS Groundwater Monitoring Program. Dichloromethane, a common laboratory contaminant, and trichloroethylene were the most widespread constituents exceeding standards during 1994. Benzene, chloroethene (vinyl chloride), 1,2-dichloroethane, 1,1-dichloroethylene, 1,2-dichloropropane, gross alpha, mercury, nonvolatile beta, tetrachloroethylene, and tritium also exceeded standards in one or more wells. The groundwater flow direction in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill was to the southeast (universal transverse Mercator coordinates). The flow rate in this unit was approximately 140 ft/year during first and fourth quarters 1994.

NONE

1995-02-01T23:59:59.000Z

366

A-1 SITE ENVIRONMENTAL REPORT 2000 APPENDIX A: GLOSSARY  

E-Print Network (OSTI)

to landfilling the municipal solid wastes (MSW) of New York City. Detailed characterization of the wastes led. The ash meets the EPA non-toxic criteria (TCLP test) and can be used as landfill cover and other

Homes, Christopher C.

367

Quantifying methane oxidation in a landfill-cover soil by gas push-pull tests  

SciTech Connect

Methane (CH{sub 4}) oxidation by aerobic methanotrophs in landfill-cover soils decreases emissions of landfill-produced CH{sub 4} to the atmosphere. To quantify in situ rates of CH{sub 4} oxidation we performed five gas push-pull tests (GPPTs) at each of two locations in the cover soil of the Lindenstock landfill (Liestal, Switzerland) over a 4 week period. GPPTs consist of the injection of a gas mixture containing CH{sub 4}, O{sub 2} and noble gas tracers followed by extraction from the same location. Quantification of first-order rate constants was based upon comparison of breakthrough curves of CH{sub 4} with either Ar or CH{sub 4} itself from a subsequent inactive GPPT containing acetylene as an inhibitor of CH{sub 4} oxidation. The maximum calculated first-order rate constant was 24.8 {+-} 0.8 h{sup -1} at location 1 and 18.9 {+-} 0.6 h{sup -1} at location 2. In general, location 2 had higher background CH{sub 4} concentrations in vertical profile samples than location 1. High background CH{sub 4} concentrations in the cover soil during some experiments adversely affected GPPT breakthrough curves and data interpretation. Real-time PCR verified the presence of a large population of methanotrophs at the two GPPT locations and comparison of stable carbon isotope fractionation of CH{sub 4} in an active GPPT and a subsequent inactive GPPT confirmed that microbial activity was responsible for the CH{sub 4} oxidation. The GPPT was shown to be a useful tool to reproducibly estimate in situ rates of CH{sub 4} oxidation in a landfill-cover soil when background CH{sub 4} concentrations were low.

Gomez, K.E. [Institute of Biogeochemistry and Pollutant Dynamics, ETH Zuerich, Universitaetstrasse 16, 8092 Zuerich (Switzerland)], E-mail: gomezke@hotmail.com; Gonzalez-Gil, G.; Lazzaro, A. [Institute of Biogeochemistry and Pollutant Dynamics, ETH Zuerich, Universitaetstrasse 16, 8092 Zuerich (Switzerland); Schroth, M.H. [Institute of Biogeochemistry and Pollutant Dynamics, ETH Zuerich, Universitaetstrasse 16, 8092 Zuerich (Switzerland)], E-mail: martin.schroth@env.ethz.ch

2009-09-15T23:59:59.000Z

368

Multiphase Modeling of Flow, Transport, and Biodegradation in a Mesoscale Landfill Bioreactor  

DOE Green Energy (OSTI)

The need to control gas and leachate production and minimize refuse volume in municipal solid waste landfills has motivated the development of landfill simulation models to predict and design optimal treatment processes. We have developed a multiphase and multicomponent nonisothermal module called T2LBM for the three-dimensional TOUGH2 flow and transport simulator. T2LBM can be used to simulate aerobic or anaerobic biodegradation of municipal solid waste and the associated flow and transport of gas and liquid through the refuse mass. Acetic acid is used as a proxy for all biodegradable substrates in the refuse. T2LBM incorporates a Monod kinetic rate law for the biodegradation of acetic acid by either aerobic or anaerobic microbes as controlled by the local oxygen concentration. We have verified the model against published data, and applied it to our own mesoscale laboratory aerobic landfill bioreactor experiments. We observe spatial variability of flow and biodegradation consistent with permeability heterogeneity and the geometry of the radial grid. The model is capable of matching results of a shut-in test where the respiration of the system is measured over time.

Oldenburg, Curtis M.; Borglin, Sharon E.; Hazen, Terry C.

2002-02-01T23:59:59.000Z

369

Organic and nitrogen removal from landfill leachate in aerobic granular sludge sequencing batch reactors  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Aerobic granular sludge SBR was used to treat real landfill leachate. Black-Right-Pointing-Pointer COD removal was analyzed kinetically using a modified model. Black-Right-Pointing-Pointer Characteristics of nitrogen removal at different ammonium inputs were explored. Black-Right-Pointing-Pointer DO variations were consistent with the GSBR performances at low ammonium inputs. - Abstract: Granule sequencing batch reactors (GSBR) were established for landfill leachate treatment, and the COD removal was analyzed kinetically using a modified model. Results showed that COD removal rate decreased as influent ammonium concentration increasing. Characteristics of nitrogen removal at different influent ammonium levels were also studied. When the ammonium concentration in the landfill leachate was 366 mg L{sup -1}, the dominant nitrogen removal process in the GSBR was simultaneous nitrification and denitrification (SND). Under the ammonium concentration of 788 mg L{sup -1}, nitrite accumulation occurred and the accumulated nitrite was reduced to nitrogen gas by the shortcut denitrification process. When the influent ammonium increased to a higher level of 1105 mg L{sup -1}, accumulation of nitrite and nitrate lasted in the whole cycle, and the removal efficiencies of total nitrogen and ammonium decreased to only 35.0% and 39.3%, respectively. Results also showed that DO was a useful process controlling parameter for the organics and nitrogen removal at low ammonium input.

Wei Yanjie [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China); Key Laboratory of Environmental Protection in Water Transport Engineering Ministry of Communications, Tianjin Research Institute of Water Transport Engineering, Tianjin 300456 (China); Ji Min, E-mail: jmtju@yahoo.cn [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China); Li Ruying [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China); Qin Feifei [Tianjin Tanggu Sino French Water Supply Co. Ltd., Tianjin 300450 (China)

2012-03-15T23:59:59.000Z

370

Study examining a DOE proposal to dispose of mixed low level waste at the Nevada test site using an alternative landfill design.  

E-Print Network (OSTI)

??The Department of Energy has set forth a proposal to use an Alternative Landfill Design (ALD) for the Mixed Low Level Waste disposal facility, in (more)

Hart, Deborah

2005-01-01T23:59:59.000Z

371

Health assessment for 19th Avenue Landfill National Priorities List (NPL) Site, Phoenix, Maricopa County, Arizona, Region 9. CERCLIS No. AZD980496780. Preliminary report  

Science Conference Proceedings (OSTI)

The 19th Avenue Landfill is an National Priorities List site located in Maricopa County, Phoenix, Arizona. The site was operated as a sanitary landfill between 1957 and 1979. Most of the waste disposed of at the landfill was from municipal sources; however, old gasoline storage tanks, radioactive waste, hospital waste, industrial waste, and old transformers were also landfilled. The site is considered to be of potential public health concern because of the risk to human health caused by the possibility of exposure to hazardous substances via ingestion, dermal contact, or inhalation of contaminants in subsurface soil and refuse, soil-gas, and air.

Not Available

1989-04-10T23:59:59.000Z

372

Application of landfill gas as a liquefied natural gas fuel for refuse trucks in Texas  

E-Print Network (OSTI)

The energy consumption throughout the world has increased substantially over the past few years and the trend is projected to continue indefinitely. The primary sources of energy are conventional fuels such as oil, natural gas and coal. The most apparent negative impacts of these conventional fuels are global warming, poor air-quality, and adverse health effects. Considering these negative impacts, it is necessary to develop and use non-conventional sources of energy. Landfill gas (LFG) generated at landfills can serve as a source of cleaner energy. LFG has substantial energy generation potential and, if cleaned of certain impurities, can be used for several applications such as electricity generation and conversion to high Btu gas. This thesis considers another application of LFG, which consists of using it as a vehicular fuel for refuse trucks. Currently, limited research has been performed on the development of such a methodology to evaluate the application of LFG as a vehicular fuel for refuse truck operations. The purpose of this thesis is to develop a methodology that can be used to evaluate the use of LFG generated at landfills as a Liquefied Natural Gas (LNG) fuel source for refuse trucks in Texas. The methodology simulates the gas generation process at a landfill by using standard models developed by the Environmental Protection Agency. The operations of a refuse truck fleet are replicated by using generic drive cycles developed as part of this research. The economic feasibility is evaluated by estimating the costs required for cleaning the LFG and converting the truck fleet from diesel to LNG as well as quantifying the benefits obtained due to change in fuel consumption and emission generation by the refuse trucks. The methodology was applied to a potential landfill in Texas. The results show that the methodology offers an innovative tool that allows the stakeholders to evaluate the economic feasibility of using LFG for refuse truck operations. The methodology also provides a flexible framework wherein each component can be changed or tailored to meet the specific needs of the stakeholders.

Gokhale, Bhushan

2006-12-01T23:59:59.000Z

373

Microbial nitrogen transformation potential in surface run-off leachate from a tropical landfill  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Microbial nitrogen transformations can alleviate toxic ammonium discharge. Black-Right-Pointing-Pointer Aerobic ammonium oxidation was rate-limiting in Indonesian landfill leachate. Black-Right-Pointing-Pointer Organic nitrogen ammonification was most dominant. Black-Right-Pointing-Pointer Anaerobic nitrate reduction and ammonium oxidation potential were also high. Black-Right-Pointing-Pointer A two-stage aerobic-anaerobic nitrogen removal system needs to be implemented. - Abstract: Ammonium is one of the major toxic compounds and a critical long-term pollutant in landfill leachate. Leachate from the Jatibarang landfill in Semarang, Indonesia, contains ammonium in concentrations ranging from 376 to 929 mg N L{sup -1}. The objective of this study was to determine seasonal variation in the potential for organic nitrogen ammonification, aerobic nitrification, anaerobic nitrate reduction and anaerobic ammonium oxidation (anammox) at this landfilling site. Seasonal samples from leachate collection treatment ponds were used as an inoculum to feed synthetic media to determine potential rates of nitrogen transformations. Aerobic ammonium oxidation potential (<0.06 mg N L{sup -1} h{sup -1}) was more than a hundred times lower than the anaerobic nitrogen transformation processes and organic nitrogen ammonification, which were of the same order of magnitude. Anaerobic nitrate oxidation did not proceed beyond nitrite; isolates grown with nitrate as electron acceptor did not degrade nitrite further. Effects of season were only observed for aerobic nitrification and anammox, and were relatively minor: rates were up to three times higher in the dry season. To completely remove the excess ammonium from the leachate, we propose a two-stage treatment system to be implemented. Aeration in the first leachate pond would strongly contribute to aerobic ammonium oxidation to nitrate by providing the currently missing oxygen in the anaerobic leachate and allowing for the growth of ammonium oxidisers. In the second pond the remaining ammonium and produced nitrate can be converted by a combination of nitrate reduction to nitrite and anammox. Such optimization of microbial nitrogen transformations can contribute to alleviating the ammonium discharge to surface water draining the landfill.

Mangimbulude, Jubhar C. [Faculty of Biology, Universitas Kristen Satya Wacana, Jl Diponegoro 52-60, Salatiga 50711 (Indonesia); Straalen, Nico M. van [Department of Ecological Science, Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, NL-1081 HV, Amsterdam (Netherlands); Roeling, Wilfred F.M., E-mail: wilfred.roling@falw.vu.nl [Department of Molecular Cell Physiology, Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, NL-1081 HV, Amsterdam (Netherlands)

2012-01-15T23:59:59.000Z

374

Mixed waste landfill cell construction at energy solutions LLC: a regulator's perspective  

SciTech Connect

A small percentage of the property that EnergySolutions' (formerly Envirocare) operates at Clive, Utah is permitted by the State of Utah as a treatment, storage and disposal facility for mixed waste. Mixed Waste is defined as a hazardous waste (Title 40 Code of Federal Regulations Part 261.3) that also has a radioactive component. Typically, the waste EnergySolutions receives at its mixed waste facility is contaminated with heavy metals and organic compounds while also contaminated with radioactivity. For EnergySolutions, the largest generator of mixed waste is the United States Department of Energy. However, EnergySolutions also accepts a wide variety of mixed waste from other generators. For many wastes, EnergySolutions goes through the process of characterization and acceptance (if appropriate) of the waste, treating the waste (if necessary), confirmation that the waste meets Land Disposal Restriction, and disposal of the waste in its mixed waste landfill cell (MWLC). EnergySolutions originally received its State-issued Part B (RCRA) permit in 1990. The Permit allows a mixed waste landfill cell footprint that covers roughly 10 hectares and includes 20 individual 'sumps'. EnergySolutions chose to build small segments of the landfill cell as waste receipts dictated. Nearly 16 years later, EnergySolutions has just completed its Phase V construction project. 18 of the 20 sumps in the original design have been constructed. The last two sumps are anticipated to be its Phase VI construction project. Further expansion of its mixed waste disposal landfill capacity beyond the current design would require a permit modification request and approval by the Executive Secretary of the Utah Solid and Hazardous Waste Control Board. Construction of the landfill cell is governed by the Construction Quality Assurance/Quality Control manual of its State-issued Permit. The construction of each sump is made up of (from the bottom up): a foundation; three feet of engineered clay; primary and secondary geo-synthetics (60 mil HDPE, geo-fabric and geo-textile); a two foot soil protective cover; tertiary geo-synthetics (80 mil HDPE, geo-fabric and geo-textile); and a final two foot soil protective cover. The Utah Department of Environmental Quality Division of Solid and Hazardous Waste (UDEQ/DSHW) oversees the construction process and reviews the documentation after the construction is complete. If all aspects of the construction process are met, the Executive Secretary of the Utah Solid and Hazardous Waste Control Board approves the landfill cell for disposal. It is the role of the regulator to ensure to the stakeholders that the landfill cell has been constructed in accordance with the State-issued permit and that the cell is protective of human health and the environment. A final determination may require conflict resolution between the agency and the facility. (authors)

Lukes, G.C.; Willoughby, O.H. [Utah Department of Environmental Quality, Div. of Solid and Hazardous Waste (United States)

2007-07-01T23:59:59.000Z

375

CORRECTIVE ACTION DECISION DOCUMENT FOR THE AREA 3 LANDFILL COMPLEX, TONOPAH TEST RANGE, CAU 424, REVISION 0, MARCH 1998  

SciTech Connect

This Corrective Action Decision Document (CADD) has been prepared for the Area 3 Landfill Complex (Corrective Action Unit [CAU] 424) in accordance with the Federal Facility Agreement and Consent Order (FFACO) of 1996. Corrective Action Unit 424 is located at the Tonopah Test Range (TTR) and is comprised of the following Corrective Action Sites (CASs), each an individual landfill located around and within the perimeter of the Area 3 Compound (DOE/NV, 1996a): (1) Landfill A3-1 is CAS No. 03-08-001-A301. (2) Landfill A3-2 is CAS No. 03-08-002-A302. (3) Landfill A3-3 is CAS No. 03-08-002-A303. (4) Landfill A3-4 is CAS No. 03-08-002-A304. (5) Landfill A3-5 is CAS No. 03-08-002-A305. (6) Landfill A3-6 is CAS No. 03-08-002-A306. (7) Landfill A3-7 is CAS No. 03-08-002-A307. (8) Landfill A3-8 is CAS No. 03-08-002-A308. The purpose of this CADD is to identify and provide a rationale for the selection of a recommended corrective action alternative for each CAS. The scope of this CADD consists of the following: (1) Develop corrective action objectives. (2) Identify corrective action alternative screening criteria. (3) Develop corrective action alternatives. (4) Perform detailed and comparative evaluations of the corrective action alternatives in relation to the corrective action objectives and screening criteria. (6) Recommend and justify a preferred corrective action alternative for each CAS. In June and July 1997, a corrective action investigation was performed as set forth in the Corrective Action Investigation Plan (CAIP) for CAU No. 424: Area 3 Landfill Complex, Tonopah Test Range, Nevada (DOE/NV, 1997). Details can be found in Appendix A of this document. The results indicated four groupings of site characteristics as shown in Table ES-1. Based on the potential exposure pathways, the following corrective action objectives have been identified for CAU No. 424: (1) Prevent or mitigate human exposure to subsurface soils containing waste. (2) Remediate the site per applicable state and federal regulations (NAC, 1996c). (3) Prevent adverse impacts to groundwater quality. Based on the review of existing data, future land use, and current operations at the TTR, the following alternatives were developed for consideration at the Area 3 Landfill Complex CAU: Alternative 1 - No Action; Alternative 2 - Administrative Closure; Alternative 3 - Partial Excavation, Backfill, and Recontouring The corrective action alternatives were evaluated based on four general corrective action standards and five remedy-selection decision factors. Based on the results of this evaluation, preferred alternatives were selected for each CAS as indicated in Table ES-2. The preferred corrective action alternatives were evaluated on their technical merits, focusing on performance, reliability, feasibility, and safety. The alternatives were judged to meet all requirements for the technical components evaluated. These alternatives meet all applicable state and federal regulations for closure of the site and will reduce potential future exposure pathways to the contents of the landfills. During corrective action implementation, these alternatives will present minimal potential threat to site workers who come in contact with the waste. However, procedures will be developed and implemented to ensure worker health and safety.

DOE /NV

1998-03-03T23:59:59.000Z

376

Interim site characterization report and ground-water monitoring program for the Hanford site solid waste landfill  

SciTech Connect

Federal and state regulations governing the operation of landfills require utilization of ground-water monitoring systems to determine whether or not landfill operations impact ground water at the point of compliance (ground water beneath the perimeter of the facility). A detection-level ground-water monitoring system was designed, installed, and initiated at the Hanford Site Solid Waste Landfill (SWL). Chlorinated hydrocarbons were detected at the beginning of the ground-water monitoring program and continue to be detected more than 1 year later. The most probable source of the chlorinated hydrocarbons is washwater discharged to the SWL between 1985 and 1987. This is an interim report and includes data from the characterization work that was performed during well installation in 1987, such as field observations, sediment studies, and geophysical logging results, and data from analyses of ground-water samples collected in 1987 and 1988, such as field parameter measurements and chemical analyses. 38 refs., 27 figs., 8 tabs.

Fruland, R.M.; Hagan, R.A.; Cline, C.S.; Bates, D.J.; Evans, J.C.; Aaberg, R.L.

1989-07-01T23:59:59.000Z

377

Treatment of municipal landfill leachate using a combined anaerobic digester and activated sludge system  

Science Conference Proceedings (OSTI)

The main objective of this study was to assess the feasibility of treating sanitary landfill leachate using a combined anaerobic and activated sludge system. A high-strength leachate from Shiraz municipal landfill site was treated using this system. A two-stage laboratory-scale anaerobic digester under mesophilic conditions and an activated sludge unit were used. Landfill leachate composition and characteristics varied considerably during 8 months experiment (COD concentrations of 48,552-62,150 mg/L). It was found that the system could reduce the COD of the leachate by 94% at a loading rate of 2.25 g COD/L/d and 93% at loading rate of 3.37 g COD/L/d. The anaerobic digester treatment was quite effective in removing Fe, Cu, Mn, and Ni. However, in the case of Zn, removal efficiency was about 50%. For the rest of the HMs the removal efficiencies were in the range 88.8-99.9%. Ammonia reduction did not occur in anaerobic digesters. Anaerobic reactors increased alkalinity about 3.2-4.8% in the 1st digester and 1.8-7.9% in the 2nd digester. In activated sludge unit, alkalinity and ammonia removal efficiency were 49-60% and 48.6-64.7%, respectively. Methane production rate was in the range of 0.02-0.04, 0.04-0.07, and 0.02-0.04 L/g COD{sub rem} for the 1st digester, the 2nd digester, and combination of both digesters, respectively; the methane content of the biogas varied between 60% and 63%.

Kheradmand, S. [Department of Civil and Environmental Engineering, University of Shiraz, Shiraz 7134851156 (Iran, Islamic Republic of); Karimi-Jashni, A., E-mail: akarimi@shirazu.ac.i [Department of Civil and Environmental Engineering, University of Shiraz, Shiraz 7134851156 (Iran, Islamic Republic of); Sartaj, M. [Department of Civil Engineering, Isfahan University of Technology, Isfahan 841568311 (Iran, Islamic Republic of)

2010-06-15T23:59:59.000Z

378

Metal speciation in landfill leachates with a focus on the influence of organic matter  

SciTech Connect

Highlights: > This study characterises the heavy-metal content in leachates collected from eight landfills in France. > Most of the metals are concentrated in the <30 kDa fraction, while Pb, Cu and Cd are associated with larger particles. > Metal complexation with OM is not sufficient to explain apparent supersaturation of metals with sulphide minerals. - Abstract: This study characterises the heavy-metal content in leachates collected from eight landfills in France. In order to identify heavy metal occurrence in the different size fractions of leachates, a cascade filtration protocol was applied directly in the field, under a nitrogen gas atmosphere to avoid metal oxidation. The results of analyses performed on the leachates suggest that most of the metals are concentrated in the <30 kDa fraction, while lead, copper and cadmium show an association with larger particles. Initial speciation calculations, without considering metal association with organic matter, suggest that leachate concentrations in lead, copper, nickel and zinc are super-saturated with respect to sulphur phases. Speciation calculations that account for metal complexation with organic matter, considered as fulvic acids based on C1(s) NEXAFS spectroscopy, show that this mechanism is not sufficient to explain such deviation from equilibrium conditions. It is therefore hypothesized that the deviation results also from the influence of biological activity on the kinetics of mineral phase precipitation and dissolution, thus providing a dynamic system. The results of chemical analyses of sampled fluids are compared with speciation calculations and some implications for the assessment of metal mobility and natural attenuation in a context of landfill risk assessment are discussed.

Claret, Francis, E-mail: f.claret@brgm.fr [BRGM, 3 avenue C. Guillemin, BP 6009, 45060 Orleans (France); Tournassat, Christophe; Crouzet, Catherine; Gaucher, Eric C. [BRGM, 3 avenue C. Guillemin, BP 6009, 45060 Orleans (France); Schaefer, Thorsten [Karlsruhe Institute of Technology (KIT), Institute for Nuclear Waste Disposal (INE), P.O. Box 3640, 76021 Karlsruhe (Germany); Freie Universitaet Berlin, Institute of Geological Sciences, Department of Earth Sciences, Hydrogeology Group, D-12249 Berlin (Germany); Braibant, Gilles; Guyonnet, Dominique [BRGM, 3 avenue C. Guillemin, BP 6009, 45060 Orleans (France)

2011-09-15T23:59:59.000Z

379

RADIOLOGICAL SURVEY OF A PORTION OF PROPERTY OWNED BY MODERN LANDFILL, INC. -  

Office of Legacy Management (LM)

A" 917 A" 917 RADIOLOGICAL SURVEY OF A PORTION OF PROPERTY OWNED BY MODERN LANDFILL, INC. - FORMER LOOW SITE Summary Report Work performed by the Health and Safety Research Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830 March 1981 OAK RIDGE NATIONAL LABORATORY operated by UNION. CARBIDE CORPORATION for the DEPARTMENT OF ENERGY as part of the Formerly Utilized Sites-- Remedial Action Program CONTENTS Page LIST OF FIGURES .. .. . .. . . . . . . . ......... iii LIST OF TABLES ......... .. iv INTRODUCTION .. ......... 1 OBJECTIVE .................... 1 SURVEY TECHNIQUES . . ............. ...... 1 RESULTS ..... 2 Gamma-Ray Exposure Rates . . . . . . 2 Beta-Gamma Dose Rate ............. 2 226Ra in Soil ............ 3 CONCLUSIONS .. . . . . . . . . . . . .. .. . .. .. 3 REFERENCES . . . . . . . . .

380

Microsoft Word - Roosevelt-HW-Hill_Landfill-G0335-I0019-CX.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1, 2009 1, 2009 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum James Hall Customer Service Engineer - TPC-TPP-4 Proposed Action: H.W. Hill / Roosevelt Landfill Gas Generation Expansion Project (#I0019 and #G0335) Budget Information: Work Order # 244620, Task # 03 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.7: "Acquisition, installation, operation, and removal of communication systems..." B4.6: "Additions or modifications to electric power transmission facilities that would not affect the environment beyond the previously developed facility area..." Location: Klickitat County, Washington Proposed by: Klickitat County Public Utility District No.1 (KPUD) and Bonneville Power

Note: This page contains sample records for the topic "waste-to-energy msw landfill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Groundwater Strategy for the Ou-1 Landfill Area, Miamisburg Closure Project, Ohio  

SciTech Connect

The general objective of the study was to assist the Miamisburg Closure Project in their efforts to develop and refine a comprehensive, technically sound strategy for remediation of groundwater contaminated with trichloroethylene and other volatile organic compounds in the vicinity of the landfill in Operable Unit 1. To provide the necessary flexibility to the site, regulators and stakeholders, the resulting evaluation considered a variety of approaches ranging from ''no further action'' to waste removal. The approaches also included continued soil vapor extraction, continued groundwater pump and treat, monitored natural attenuation, biostimulation, partitioning barriers, hydrologic modification, and others.

LOONEY, BRIANB.

2004-01-01T23:59:59.000Z

382

Monitoring Data from the Chemical Waste Landfill, Sandia National Laboratories, Albuquerque, New Mexico (2003 - 2006)  

DOE Data Explorer (OSTI)

The Chemical Waste Landfill (CWL) was a 1.9 acre site used from 1962 until 1985 for disposal of chemical wastes. The wastes were generated by research at Sandia's laboratories. The excavation of the CWL and the removal of 2000 intact chemical containers was completed safely and successfully. Contaminated soils were also removed for treatment or disposal. An "in-site" chemiresistor sensor was developed for the project that provided continuous monitoring of volatile organic compounds in the air, soil, and water. The monitoring data, collected from March, 2003 through April, 2006 is summarized and presented at this website.

Ho, Cliff (Sandia National Laboratories)

383

Health Consultation Des Moines (Ex) Ordnance Site Landfill and Lagoon Complex Prairie Trail Development Site  

E-Print Network (OSTI)

This letter has been prepared as a consultation to evaluate human health impacts that will remain in a commercial and residential area within Ankeny, Iowa known as the Prairie Trail Development Site. The Iowa Department of Public Healths priority is to ensure the Ankeny community has the best information possible to safeguard its health. That information is included in the following paragraphs. Background and Statement of Issues The Prairie Trail Development Area is located in the southern portion of Ankeny, Iowa. This development area is located in an area that was formally occupied by the Des Moines Ordnance Plant. The Des Moines Ordnance Plant was constructed for the production and testing of small arms munitions for use during World War II. The Landfill and Lagoon Complex was utilized for disposal of wastes from the ordnance plant and also from various entities that utilized the site property until 1991. The United States Environmental Protection Agency (EPA) is overseeing the cleanup of the Landfill and Lagoon Complex. A portion of the remainder of the site property had been used for burning of scrap explosives, the storage and disposal of chemicals, a disposal pond, testing of products, and various munitions manufacturing activities. The Iowa Department of Natural Resources (IDNR) is overseeing the cleanup of this remaining portion of the site property.

Terry E. Branstad; Kim Reynolds

2012-01-01T23:59:59.000Z

384

Metal Speciation in Landfill Leachates with a Focus on the Influence of Organic Matter  

SciTech Connect

This study characterizes the heavy-metal content in leachates collected from eight landfills in France. In order to identify heavy metal occurrence in the different size fractions of leachates, a cascade filtration protocol was applied directly in the field, under a nitrogen gas atmosphere to avoid metal oxidation. The results of analyses performed on the leachates suggest that most of the metals are concentrated in the <30 kDa fraction, while lead, copper and cadmium show an association with larger particles. Initial speciation calculations, without considering metal association with organic matter, suggest that leachate concentrations in lead, copper, nickel and zinc are super-saturated with respect to sulphur phases. Speciation calculations that account for metal complexation with organic matter, considered as fulvic acids based on C1(s) NEXAFS spectroscopy, show that this mechanism is not sufficient to explain such deviation from equilibrium conditions. It is therefore hypothesized that the deviation results also from the influence of biological activity on the kinetics of mineral phase precipitation and dissolution, thus providing a dynamic system. The results of chemical analyses of sampled fluids are compared with speciation calculations and some implications for the assessment of metal mobility and natural attenuation in a context of landfill risk assessment are discussed.

F Claret; C Tournassat; C Crouzet; E Gaucher; T Schfer; G Braibant; D Guyonnet

2011-12-31T23:59:59.000Z

385

Above- and below-ground methane fluxes and methanotrophic activity in a landfill-cover soil  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer We quantify above- and below-ground CH{sub 4} fluxes in a landfill-cover soil. Black-Right-Pointing-Pointer We link methanotrophic activity to estimates of CH{sub 4} loading from the waste body. Black-Right-Pointing-Pointer Methane loading and emissions are highly variable in space and time. Black-Right-Pointing-Pointer Eddy covariance measurements yield largest estimates of CH{sub 4} emissions. Black-Right-Pointing-Pointer Potential methanotrophic activity is high at a location with substantial CH{sub 4} loading. - Abstract: Landfills are a major anthropogenic source of the greenhouse gas methane (CH{sub 4}). However, much of the CH{sub 4} produced during the anaerobic degradation of organic waste is consumed by methanotrophic microorganisms during passage through the landfill-cover soil. On a section of a closed landfill near Liestal, Switzerland, we performed experiments to compare CH{sub 4} fluxes obtained by different methods at or above the cover-soil surface with below-ground fluxes, and to link methanotrophic activity to estimates of CH{sub 4} ingress (loading) from the waste body at selected locations. Fluxes of CH{sub 4} into or out of the cover soil were quantified by eddy-covariance and static flux-chamber measurements. In addition, CH{sub 4} concentrations at the soil surface were monitored using a field-portable FID detector. Near-surface CH{sub 4} fluxes and CH{sub 4} loading were estimated from soil-gas concentration profiles in conjunction with radon measurements, and gas push-pull tests (GPPTs) were performed to quantify rates of microbial CH{sub 4} oxidation. Eddy-covariance measurements yielded by far the largest and probably most representative estimates of overall CH{sub 4} emissions from the test section (daily mean up to {approx}91,500 {mu}mol m{sup -2} d{sup -1}), whereas flux-chamber measurements and CH{sub 4} concentration profiles indicated that at the majority of locations the cover soil was a net sink for atmospheric CH{sub 4} (uptake up to -380 {mu}mol m{sup -2} d{sup -1}) during the experimental period. Methane concentration profiles also indicated strong variability in CH{sub 4} loading over short distances in the cover soil, while potential methanotrophic activity derived from GPPTs was high (v{sub max} {approx} 13 mmol L{sup -1}(soil air) h{sup -1}) at a location with substantial CH{sub 4} loading. Our results provide a basis to assess spatial and temporal variability of CH{sub 4} dynamics in the complex terrain of a landfill-cover soil.

Schroth, M.H., E-mail: martin.schroth@env.ethz.ch [Institute of Biogeochemistry and Pollutant Dynamics, ETH Zuerich, Universitaetstrasse 16, 8092 Zuerich (Switzerland); Eugster, W. [Institute of Agricultural Sciences, ETH Zuerich, Universitaetstrasse 2, 8092 Zuerich (Switzerland); Gomez, K.E. [Institute of Biogeochemistry and Pollutant Dynamics, ETH Zuerich, Universitaetstrasse 16, 8092 Zuerich (Switzerland); Gonzalez-Gil, G. [Laboratory for Environmental Biotechnology, EPF Lausanne, 1015 Lausanne (Switzerland); Niklaus, P.A. [Institute of Agricultural Sciences, ETH Zuerich, Universitaetstrasse 2, 8092 Zuerich (Switzerland); Oester, P. [Oester Messtechnik, Bahnhofstrasse 3, 3600 Thun (Switzerland)

2012-05-15T23:59:59.000Z

386

Integrating multi-criteria decision analysis for a GIS-based hazardous waste landfill sitting in Kurdistan Province, western Iran  

SciTech Connect

The evaluation of a hazardous waste disposal site is a complicated process because it requires data from diverse social and environmental fields. These data often involve processing of a significant amount of spatial information which can be used by GIS as an important tool for land use suitability analysis. This paper presents a multi-criteria decision analysis alongside with a geospatial analysis for the selection of hazardous waste landfill sites in Kurdistan Province, western Iran. The study employs a two-stage analysis to provide a spatial decision support system for hazardous waste management in a typically under developed region. The purpose of GIS was to perform an initial screening process to eliminate unsuitable land followed by utilization of a multi-criteria decision analysis (MCDA) to identify the most suitable sites using the information provided by the regional experts with reference to new chosen criteria. Using 21 exclusionary criteria, as input layers, masked maps were prepared. Creating various intermediate or analysis map layers a final overlay map was obtained representing areas for hazardous waste landfill sites. In order to evaluate different landfill sites produced by the overlaying a landfill suitability index system was developed representing cumulative effects of relative importance (weights) and suitability values of 14 non-exclusionary criteria including several criteria resulting from field observation. Using this suitability index 15 different sites were visited and based on the numerical evaluation provided by MCDA most suitable sites were determined.

Sharifi, Mozafar [Razi University Center for Environmental Studies, Faculty of Science, Baghabrisham 67149, Kermanshah (Iran, Islamic Republic of)], E-mail: sharifimozafar@gmail.com; Hadidi, Mosslem [Academic Center for Education, Culture and Research, Kermanshah (Iran, Islamic Republic of)], E-mail: hadidi_moslem@yahoo.com; Vessali, Elahe [Paradise Ave, Azad University, School of Agriculture, Shiraz (Iran, Islamic Republic of)], E-mail: elahe_vesali@yahoo.com; Mosstafakhani, Parasto [Razi University Centre for Environmental Studies, Faculty of Science, Baghabrisham 67149, Kermanshah (Iran, Islamic Republic of)], E-mail: mostafakhany2003@yahoo.com; Taheri, Kamal [Regional office of Water Resource Management, Zan Boulevard, Kermanshah (Iran, Islamic Republic of)], E-mail: taheri.kamal@gmail.com; Shahoie, Saber [Department of Soil Science, Faculty of Agriculture, Kurdistan University, University Boulevard, Sanandadj (Iran, Islamic Republic of)], E-mail: shahoei@yahoo.com; Khodamoradpour, Mehran [Regional office of Climatology, Sanandaj (Iran, Islamic Republic of)], E-mail: mehrankhodamorad@yahoo.com

2009-10-15T23:59:59.000Z

387

The importance of climatological variability and the rate at which waste is added to modeling water budget of landfills  

SciTech Connect

A transient one-dimensional wetting front model was developed to predict water budgets for landfills. The model simulates the moisture profile by a series of blocks, each of which has a uniform soil moisture content. The model can simulate the continual stacking of waste by adding blocks, which represent new waste layers. The model can be programmed to build up a landfill at a given rate and to cap the landfill with a liner once a specific height has been reached. The wetting front model has been compared with models that solve the Richards Equation directly. In past studies the results between the two types of models compared well,but the wetting front model solved problems with a fraction of the computer time. Because of its efficient algorithms, the wetting front model is well suited for Monte Carlo simulation of different meteorological conditions in order to produce probability density functions for runoff, evapotranspiration, and leachate generation. In order to simulate different meteorological conditions, the TVA developed RGEN, which generates hourly rainfall, and EGEN which generates daily potential evaporation rates. The results of the numerous runs with the wetting front model were used to determine the potential importance of climatological variability and the effects of the rate at which new waste is added on the water budget of dry-stack fly ash landfills. 13 refs., 12 figs., 3 tabs.

Young, S.C.; Clapp, R.B.

1989-01-01T23:59:59.000Z

388

Design and Testing of a Landfill Gas Cleanup System for Carbonate Fuel Cell Power Plants: Volume 1: Field Test Results  

Science Conference Proceedings (OSTI)

This report presents results of an effort to develop a low-cost cleanup system that would enable landfill gas to be used in carbonate fuel cells or other power generation devices. The EPRI-developed system is now available for license to commercial applications.

1997-11-26T23:59:59.000Z

389

Economic Feasibility of Converting Landfill Gas to Natural Gas for Use as a Transportation Fuel in Refuse Trucks  

E-Print Network (OSTI)

Approximately 136,000 refuse trucks were in operation in the United States in 2007. These trucks burn approximately 1.2 billion gallons of diesel fuel a year, releasing almost 27 billion pounds of greenhouse gases. In addition to contributing to global climate change, diesel-fueled refuse trucks are one of the most concentrated sources of health-threatening air pollution in most cities. The landfills that they ultimately place their waste in are the second largest source of human-related methane emissions in the United States, accounting for approximately 23 percent of these emissions in 2007. At the same time, methane emissions from landfills represent a lost opportunity to capture and use a significant energy resource. Many landfill-gas-to-energy (LFGTE) projects are underway in an attempt to curb emissions and make better use of this energy. The methane that is extracted from these landfills can be converted into a transportation fuel, sold as a pipeline-quality natural gas, operate turbines for electricity, or be flared. The unique relationship that occurs between refuse trucks' constant visits to the landfill and the ability of the landfill itself to produce a transportation fuel creates an ability to accomplish emissions reduction in two sectors with the implementation of using landfill gas to fuel refuse trucks. Landfill owners and operators are very reluctant to invest in large capital LFGTE projects without knowing their long-term feasibility. The costs and benefits associated with each LFGTE project have been presented in such a way that owners/operators can make informed decisions based on economics while also implementing clean energy technology. Owners/operators benefit from larger economic returns, and the citizens of the surrounding cities benefit from better air quality. This research focused on six scenarios: converting landfill gas (LFG) to liquefied natural gas (LNG) for use as a transportation fuel, converting LFG to compressed natural gas (CNG) for use as a transportation fuel, converting LFG to pipeline-quality natural gas, converting LFG to electricity, flaring LFG, and doing nothing. For the test case of a 280-acre landfill, the option of converting LFG to CNG for use as a transportation fuel provided the best benefit-cost ratio at 5.63. Other significant benefit-cost findings involved the LFG-to-LNG option, providing a 5.51 benefit-cost ratio. Currently, the most commonly used LFGTE option of converting LFG to electricity provides only a 1.35 benefit-cost ratio while flaring which is the most common mitigation strategy provides a 1.21, further providing evidence that converting LFG to LNG/CNG for use as a transportation fuel provides greater economic benefits than the most common LFGTE option or mitigation strategy.

Sprague, Stephen M.

2009-12-01T23:59:59.000Z

390

OpenEI - MSW Biogenic  

Open Energy Info (EERE)

Renewable Energy Renewable Energy Consumption by Energy Use Sector and Energy Source, 2004 - 2008 http://en.openei.org/datasets/node/51 Provides annual consumption (in quadrillion Btu) of renewable energy by energy use sector (residential, commercial, industrial, transportation and electricity) and by energy source (e.g. solar, biofuel) for 2004 through 2008. Original sources for data are cited on spreadsheet. Also available from: www.eia.gov/cneaf/solar.renewables/page/trends/table1_2.xls License

391

Public health assessment for Seattle Municipal Landfill/Kent Highlands, Kent, King County, Washington, Region 10. Cerclis No. WAD980639462. Final report  

SciTech Connect

The Seattle Municipal Landfill, better known as the Kent Highlands Landfill, is located in the City of Kent, approximately 14 miles south of the City of Seattle, Washington, at 23076 Military Road South. Surface water settling ponds, a leachate collection system, and gas collection system have been constructed. Only one completed pathway exists, which is the use of Midway Creek by recreationists. However, worst case scenarios were evaluated and there did not appear to be a human health threat. Two potential pathways were analyzed, for landfill gas and ground water. Again the worst case scenarios did not reveal any imminent human health threat.

1994-11-23T23:59:59.000Z

392

Impact of nitrate-enhanced leachate recirculation on gaseous releases from a landfill bioreactor cell  

SciTech Connect

This study evaluates the impact of nitrate injection on a full scale landfill bioreactor through the monitoring of gaseous releases and particularly N{sub 2}O emissions. During several weeks, we monitored gas concentrations in the landfill gas collection system as well as surface gas releases with a series of seven static chambers. These devices were directly connected to a gas chromatograph coupled to a flame ionisation detector and an electron capture detector (GC-FID/ECD) placed directly on the field. Measurements were performed before, during and after recirculation of raw leachate and nitrate-enhanced leachate. Raw leachate recirculation did not have a significant effect on the biogas concentrations (CO{sub 2}, CH{sub 4} and N{sub 2}O) in the gas extraction network. However, nitrate-enhanced leachate recirculation induced a marked increase of the N{sub 2}O concentrations in the gas collected from the recirculation trench (100-fold increase from 0.2 ppm to 23 ppm). In the common gas collection system however, this N{sub 2}O increase was no more detectable because of dilution by gas coming from other cells or ambient air intrusion. Surface releases through the temporary cover were characterized by a large spatial and temporal variability. One automated chamber gave limited standard errors over each experimental period for N{sub 2}O releases: 8.1 {+-} 0.16 mg m{sup -2} d{sup -1} (n = 384), 4.2 {+-} 0.14 mg m{sup -2} d{sup -1} (n = 132) and 1.9 {+-} 0.10 mg m{sup -2} d{sup -1} (n = 49), during, after raw leachate and nitrate-enhanced leachate recirculation, respectively. No clear correlation between N{sub 2}O gaseous surface releases and recirculation events were evidenced. Estimated N{sub 2}O fluxes remained in the lower range of what is reported in the literature for landfill covers, even after nitrate injection.

Tallec, G.; Bureau, C. [Cemagref, UR HBAN, Parc de Tourvoie, BP44, F-92163 Antony (France); Peu, P.; Benoist, J.C. [Cemagref, UR GERE, 17 Avenue de Cucille, CS 64427, F-35044 Rennes (France); Lemunier, M. [Suez-Environnement, CIRADE, 38 Av. Jean Jaures, 78440 Gargenville (France); Budka, A.; Presse, D. [SITA France, 132 Rue des 3 Fontanot, 92000 Nanterre Cedex (France); Bouchez, T. [Cemagref, UR HBAN, Parc de Tourvoie, BP44, F-92163 Antony (France)], E-mail: theodore.bouchez@cemagref.fr

2009-07-15T23:59:59.000Z

393

TOTAL WATER REUSE AT A WASTE-TO-ENERGY DAVID CHILD  

E-Print Network (OSTI)

. It has been used as makeup to cooling towers and for use in condensers for many years. In some, the cooling tower blowdown, miscellaneous washwaters and makeup from the Elizabethtown WWTP facility

Columbia University

394

COMBINED HEAT AND POWER FOR A COLLEGE CAMPUS THE HARRISONBURG, VIRGINIA WASTE-TO-ENERGY FACILITY  

E-Print Network (OSTI)

of installing the super-heaters, cooling towers, condensers and auxiliary equipment needed to make and cooling needs of the campus. This facility also has a small turbine that can be brought on line to produce Madison University central heating & cooling system. This facility uses a mass-burn style waste combustion

Columbia University

395

12th North American Waste to Energy Conference May 17-19. 2004. Savannah. Georgia USA  

E-Print Network (OSTI)

of recyclable ferrous and nonferrous metals and about 165,000 MWHR per year of power. Significant Historical by EBIIDA associated with installation time and forced outage time. A comparison was made between costs reduced. The analysis shows that costs chargeable to the superheater will be reduced by 46% per year

Columbia University

396

Microsoft Word - Oneida Waste to Energy Project DOE Final EA 1862  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ONEIDA SEVEN GENERATIONS ONEIDA SEVEN GENERATIONS CORPORATION: ENERGY RECOVERY PROJECT, GREEN BAY, WISCONSIN U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Golden Field Office NOVEMBER 2011 DOE/EA-1862 FINAL ENVIRONMENTAL ASSESSMENT FOR THE ONEIDA SEVEN GENERATIONS CORPORATION: ENERGY RECOVERY PROJECT, GREEN BAY, WISCONSIN U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Golden Field Office NOVEMBER 2011 DOE/EA-1862 DOE/EA-1862 iii November 2011 COVER SHEET RESPONSIBLE AGENCY: U.S. Department of Energy TITLE: Environmental Assessment for Oneida Seven Generations Corporation: Energy Recovery Project, Green Bay, Wisconsin (DOE/EA-1862) CONTACT: For more information on this Environmental Assessment (EA), please contact:

397

Proceedings of NAWTEC16 16th Annual North American Waste-to-Energy Conference  

E-Print Network (OSTI)

advanced oxygen enrichment technology. However, there are also over 100 thermal treatment plants based: Stoker (CFB) (Figure and they are c e feed, to mak of Chinese MS he total ther is estimated 50 facilities Institute o f the Chinese y Prof. Yunhan of Zhejiang U eported to be s/day are unde cy of scaveng results

Columbia University

398

DOD-DOE Workshop Summary on Converting Waste to Energy Using Fuel Cells Table of Contents  

E-Print Network (OSTI)

streams into usable fuel for energy conversion devices (such as combustion engines, boilers, gas turbines of the Union: President Obama's Plan to Win the Future," The White House, January 25, 2011, http://www.whitehouse.gov/the-press-office/2011/01/25/fact-sheet-state-union-president-obamas-plan- win-future; Office of the Press Secretary

399

Proceedings of NAWTEC16 16th Annual North American Waste-to-Energy Conference  

E-Print Network (OSTI)

's average per capita waste generation rate is 0.18 tonnes per person. Although the reported collection and there is a market for the electricity generated by the WTE facility. The main problem to overcome is the source historically been a driver of economic growth not only for the state of Maharashtra, of which it is the capital

Columbia University

400

10th North American Waste to Energy Conference NAWTEC10-1004  

E-Print Network (OSTI)

superheater 1, passes through a spray attemperator and enters platen superheater 2 located in the right hand attemperator and into superheater 3 located in the 5th pass between superheater 4 and economizer 3. Steam from

Columbia University

Note: This page contains sample records for the topic "waste-to-energy msw landfill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

13th North American Waste to Energy Conference May 23-25, 2005, Orlando, Florida USA  

E-Print Network (OSTI)

identify this parameter, was again the acoustic valve leak detection survey. In checking the attemperator it to operate at a slightly higher back pressure resulting in additional power loss Attemperator or de. The superheater attemperator block valves were found leaking. By repairing these during subsequent outages

Columbia University

402

11th North American Waste to Energy Conference Copyright Q 2003 by ASME  

E-Print Network (OSTI)

through a secondary section also in the 2"4 pass. An attemperator for final steam temperature contro valves. A steam attemperator section was installed between the high-temperature primary and the secondary

Columbia University

403

13th North American Waste to Energy Conference May 23-25, 2005, Orlando, Florida USA  

E-Print Network (OSTI)

. Water is not used for boiler cleaning. The superheater sections utilize dual attemperators a small amount of superheater attemperation spray. The achievement of rated steam temperatures has

Columbia University

404

Proceedings of the 18th Annual North American Waste-to-Energy Conference  

E-Print Network (OSTI)

will be combined with petroleum coke as fuel in fluidized bed combustion facilities to generate steam and electric and St. Thomas, have a projected cost of $440 million and will convert an estimated 146,000 tons per year MW of electric power to St. Croix, and will help to provide long-term cost stability for electric

Columbia University

405

11th North American Waste to Energy Conference Copyright 2003 by ASME  

E-Print Network (OSTI)

flue gas in an intensive contact with Ca(OH)z, open hearth furnace coke, water and recirculated, in the TURBOSORP® FGC process open-hearth oven coke (HOC) is injected in addition to the sorbent containing calcium during the operation of the pilot plant. As already mentioned above open-hearth oven coke is added

Columbia University

406

13th North American Waste to Energy Conference May 23-25, 2005, Orlando, Florida USA  

E-Print Network (OSTI)

-permeability sand packs [41]. The layer-partitioning technique may produce a significant error when applied to tight in the experiment. The absolute permeability of the sand packs used in the experiments was between 17.8 and 262

Columbia University

407

11th North American Waste to Energy Conference Copyright 2003 by ASME  

E-Print Network (OSTI)

of synthesis gas from gasification of animal manure was estimated to be around 4.2 MJ/m3 (113 Btu/ft3 ................................................................................................5 Gasification Experiments ............................................................................................................8 Manure gasification experiment conducted on July, 9 2008

Columbia University

408

10th North American Waste to Energy Conference NAWTEC10-1012  

E-Print Network (OSTI)

, and production cost estimates for gasification-based thermochemical conversion of switchgrass into FischerOctober 2005 Gasification-Based Fuels and Electricity Production from Biomass, without......................................................................... 9 3.1.1 Biomass Gasification

Columbia University

409

13th North American Waste to Energy Conference May 23-25, 2005, Orlando, Florida USA  

E-Print Network (OSTI)

, renewables, and coal gasification-based energy supply technologies, can enable China to meet economic), and (3) coal gasification technolo- gies co-producing electricity and clean liquid and gaseous energy-induced oil price shocks. · Estimate the relative costs of achieving target levels of reductions in air

Columbia University

410

Copyright ASME 20091 Proceedings of the 17th Annual North American Waste-to-Energy Conference  

E-Print Network (OSTI)

procedure for estimating costs for industrial, on-site, waste gasification processes. However, gen eralizingECONOMICS OF ON-SITE WASTE GASIFICATION ALFRED C. W. EGGEN K. T. Lear Associates. Inc. Manchester, Charles R Velzy Associates, Inc., Elmsford, N.Y. On-site waste gasification may well be an at tractive

Columbia University

411

12th North American Waste to Energy Conference May 17-19, 2004, Savannah, Georgia USA  

E-Print Network (OSTI)

receiver hitch and mounting frame. 100.00$ #12008 Great Plains Air drill distributor tower 10.00$ #12009 cogs 2.00$ #12017 Sewer line rueter 5.00$ #12018 Craftsman spray gun and canister 5.00$ #12019 4 water

Columbia University

412

PEER-REVIEW Air PollutionControl for Waste to Energy Plants -  

E-Print Network (OSTI)

included two plate and frame coolers along with two pumps located next to the existing cooling tower (C to increased air supply demand by the spray dryer absorbers (SDAs) and fabric filters (FFs). A system of air-cell cooling tower (located 160 feet east of the dry coolers) with chlorides and biocides attaching

Columbia University

413

HIGH CAPACITY WASTE-TO-ENERGY CONVERSION AT THE KIEL DISTRICT HEATING STATION  

E-Print Network (OSTI)

as from its participation in a joint · 9 venture with Nordwestdeutsche Kraftwerke A.G. . The latter

Columbia University

414

Retrofit of waste-to-energy facilities equipped with electrostatic precipitators. Volume III: Test protocol  

DOE Green Energy (OSTI)

The American Society of Mechanical Engineers' [ASME] Center for Research and Technology Development [CRTD] has been awarded a subcontract by the National Renewable Energy Laboratory [NREL] to demonstrate the technical performance and viability of flue gas temperature control in combination with dry acid gas reagent and activated carbon injection at an existing electrostatic precipitator [ESP] equipped municipal waste combustor [MWC]. The objective of this proof-of-concept demonstration test is to economically and reliably meet 40 CFR 60 Subpart Cb Emissions Guidelines for MWC's at existing ESP equipped facilities. The effort is being directed by a Subcommittee of tile ASME Research Committee on Industrial and Municipal Wastes [RCIMW] chaired by Dave Hoecke. Mr. Greg Barthold of ASME/CRTD is the Project Manager. ASME/CRTD contracted with Rigo & Rigo Associates, Inc. in cooperation with A.J. Chandler & Associates, Ltd. to be the Principal Investigator for the project and manage the day-t o-day aspects of the program, conduct the testing reduce and interpret the data and prepare the report. Testing will be conducted at the 2 by 210 TPD, ESP equipped MWC at the Davis County Resource Recovery Facility in Layton, Utah. The test plan calls for duplicate metals (Cd, Pb and Hg), dioxin and acid gas runs.

Rigo, H.G. [Rigo & Rigo Associates, Inc., Berea, OH (US); Chandler, A.J. [A.J. Chandler & Associates, Inc., Toronto, Ontario (Canada)

1996-04-01T23:59:59.000Z

415

10th North American Waste to Energy Conference NAWTEC10-1005  

E-Print Network (OSTI)

) to control the particulate emissions. Dry sorbent (trona) was injected just upstream of the economizer controlled by dry sorbent injection (trona) at the economizer inlet. Performance of the dry sorbent injection

Columbia University

416

New Mercury Control Technology for the Ft. Dix Waste-to-Energy Plant Sid Nelson Jr.  

E-Print Network (OSTI)

temperature. Mercury chloride (HgCI2) tends to be found in incinerator flue gases and this species may be well mercury measurement with no interference from acidic gases, such as S02. Low-Temperature Sorbents After of the oxidized mercury species, such as mercury chloride. Then, the large surface area in the baghouse would

Columbia University

417

13th North American Waste to Energy Conference May 23-25, 2005, Orlando, Florida USA  

E-Print Network (OSTI)

was mercury adsorption onto calcium sulfate (CaSO4), a byproduct of the flue gas desulfurization (FGD) wet., Powers K.W., and Pitoniak E.R. (2004) Method for Purifying Flue Gases from Combustion Sources. PatentCoupling of Advanced Oxidation and Adsorption Processes onto Silica-Titania Composites for Low

Columbia University

418

9th Annual North American Waste to Energy Conference MERCURY CEMs: TECHNOLOGY UPDATE  

E-Print Network (OSTI)

in Baltimore, MD, Scrubber Dry Adsorber (SDA), SNCR and Mercury APC systems were added to the existing technology (Baghouse). Most large MWCs have to install a Mercury Control system to meet the Federal Emission Guidelines. New Jersey and Florida have developed more stringent mercury standards than the federal limits

Columbia University

419

9th Annual North American Waste to Energy Conference Ash Recycling: Partnering for Progress  

E-Print Network (OSTI)

Townships as the host municipalities, PennDOT as a potential major end-user, MYRES as the RRC opaator the RRC's ash. After exhaustive research, YCSWA selected AAR's technology and commWlicated those benefits Center (RRC) in Manchester Township, Pennsylvania; and owns and operates the Yard Waste Compot Site

Columbia University

420

ANALYSIS OF THERMAL PLASMA ASSISTED WASTE-TO ENERGY Caroline Ducharme, Nickolas Themelis  

E-Print Network (OSTI)

............................................................. 7 Gasification Direct Solar Gasification...................................................................... 11 Miscellaneous Gasification Processes.................................................... 11 Biomass

Columbia University

Note: This page contains sample records for the topic "waste-to-energy msw landfill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Technical and economic analysis of Plasma-assisted Waste-to-Energy processes  

E-Print Network (OSTI)

on a process of a hydrothermal gasification to produce hydrogen from wet biomass, such as sewage treatment energy efficiency. Thus, scientists in the KIT experimental center of the world's largest microwave is provided by powerful gyrotron tubes, a kind of microwave oven. This 140 gigahertz gyrotron developed at KIT

Columbia University

422

10th North American Waste to Energy Conference NAWTEC10-1028  

E-Print Network (OSTI)

diamond. We describe a new ultrananocrystalline diamond (UNCD) film technology based on a microwave plasma 542 3.2. Ar-rich CH4/Ar microwave plasma growth process for ultrananocrystalline diamond (UNCD) films-rich CH4/Ar microwave plasma growth process for ultrananocrystalline diamond (UNCD) films In the process

Columbia University

423

THE ROLE OF WASTE-TO-ENERGY IN SOLID WASTE MANAGEMENT Introduction  

E-Print Network (OSTI)

Quadrennial Congress, Vienna, Austria, May 1 996. The ISWA 25th Anniversary Congress, Yokohama, Japan

Columbia University

424

13th North American Waste to Energy Conference May 23-25, 2005, Orlando, Florida USA  

E-Print Network (OSTI)

that can use blue stained wood and wood pellets (beyond pellet fuel) · The area of value-added products Facilities- no specific goals or incentives Federal · Dedicated biomass power vs co-firing and Production Tax-firing with coal- 456 MW Hayden Sawmill- CHP Biomass Power- 45 MWe WoodChipsGT/Year Larger Scale Biomass Heat/CHP/Co-firing/Power

Columbia University

425

Financing options for projects converting forestry and farm wastes to energy  

DOE Green Energy (OSTI)

A significant barrier to increased use of wastes and residues as fuel by small- and medium-sized industries is financing of projects. This document covers governmental and private sector financing options available to prospective users of wood residues and agricultural wastes for industrial applications-direct combustion, steam generation, or cogeneration. This guide contains four major sections. Section I provides brief descriptions of the type of project financing options available to industry through private sector sources. This section is not intended to provide the level of detailed information required to make a final determination of the best source of private sector financing for a particular company or organization. It does, however, present a concise review of the options available on which more detailed study can be based. Section II introduces the availability of assistance for specific types of projects from federal, state, and several municipalities. Section III presents two case studies of costs, annual savings, return on investment, and payback periods for these projects, as well as the affects of depreciation, taxes, tax credits and sale of excess power. All facts and figures were supplied by the individual companies or by their engineering consulting firms. A checklist for decisions concerning bioenergy projects, as well as addresses and contacts in regional government agency offices involved in providing financial assistance, are included in the final section.

Farley, R.C.; Parker, S.K.; Hodam, R.

1980-07-01T23:59:59.000Z

426

11th North American Waste to Energy Conference Copyright 2003 by ASME  

E-Print Network (OSTI)

added for NOx control. Some WTE facilities as a result of their specific combustion technology andlor/dscm 0.49 mg/dscm 1.6 mg/dscm Mercury 0.080 mg/dscm or 0.080 mg/dscm or .080 mg/dscm or 85% reduction 85% reduction 85% reduction ACID GASES Sulfur Dioxide (S02) 29 ppmv or 75% 31 ppmv or 75% 77 ppmv or 50

Columbia University

427

REDUCING OXIDES OF NITROGEN EMISSIONS FROM WASTE-TO-ENERGY FACILITIES WITH  

E-Print Network (OSTI)

compromising combustion ef ficiency. Further research to determine the potential for NOx reduction via to a lower level by applying combustion control for the reduction of NOx, while still maintaining acceptable, resulting in a 30% reduction of NOx' The techniques developed from this test program are used today

Columbia University

428

PERFORMANCE OF NOx CONTROL TECHNOLOGIES ON THREE CALIFORNIA WASTE-TO-ENERGY  

E-Print Network (OSTI)

catalytic reduction (SNCR) technology. There is a sub stantial volume of literature available discussing NOx in the first three undergrate zones on the SERRF units. Preliminary indications were that some NOx reduction) to quantify the effect of FGR's contribution to NOx reduction during simultaneous FGRIThermal DeNOx use; (b

Columbia University

429

9th Annual North American Waste to Energy Conference USING FLAME QUENCHING TO REDUCE  

E-Print Network (OSTI)

; · Reductions in NOx by lowering flame temperature; and , · The generation of new revenues by utilizing for NOx reduction include load reduction, excess air reduction, stage firing, chemical injection (urea; · Reductions in combustion velocities and tube erosion rate; · Reductions in thermal NOx by loweringflame

Columbia University

430

14th North American Waste to Energy Conference May 1-3,2006, Tampa, Florida USA  

E-Print Network (OSTI)

,000 references > Operation and maintenance > Modernisation and upgrades > Co-firing of biomass > Emission

Columbia University

431

15th North American Waste to Energy Conference May 21-23, 2007, Miami, Florida USA  

E-Print Network (OSTI)

tidal stream, others nuclear, with most supporting co-firing of biomass with coal on the sites be given to a long term future for co-firing of biomass in the few remaining large coal-fired power

Columbia University

432

14th North American Waste to Energy Conference May 1-3, 2006, Tampa, Florida USA  

E-Print Network (OSTI)

.000 +---.-..--.......;..------........---...-.....oio;;;;_............,...............+__I......._I1 3.500 +------------..-..._-.......,,-I

Columbia University

433

10th North American Waste to Energy Conference NAWTEC10-1007  

E-Print Network (OSTI)

: GLOSSARY kBg kilobecquerels kwH kilowatt hours LED light emitting diode LIE Long Island Expressway LINAC trichloroethylene TCLP toxicity characteristic leaching procedure TLD thermoluminescent dosimeter TSCA Toxic

Columbia University

434

Renewable LNG: Update on the World's Largest Landfill Gas to LNG Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

LNG LNG Update on the world's largest landfill gas to LNG plant Mike McGowan Head of Government Affairs Linde NA, Inc. June 12, 2012 $18.3 billion global sales A leading gases and engineering company Linde North America Profile $2.3 billion in gases sales revenue in North America in 2011 5,000 employees throughout the U.S., Canada and the Caribbean Supplier of compressed and cryogenic gases and technology Atmospheric gases - oxygen, nitrogen, argon Helium LNG and LPG Hydrogen Rare gases Plant engineering and supply LNG Petrochemicals Natural gas processing Atmospheric gases 3 Linde's alternative fuels portfolio Green hydrogen production - Magog, Quebec Renewable liquefied natural gas production - Altamont, CA Biogas fueling, LNG import terminal - Sweden

435

Effects of residues from municipal solid waste landfill on corn yield and heavy metal content  

Science Conference Proceedings (OSTI)

The effects of residues from municipal solid waste landfill, Khon Kaen Municipality, Thailand, on corn (Zea mays L.) yield and heavy metal content were studied. Field experiments with randomized complete block design with five treatments (0, 20, 40, 60 and 80% v/v of residues and soil) and four replications were carried out. Corn yield and heavy metal contents in corn grain were analyzed. Corn yield increased by 50, 72, 85 and 71% at 20, 40, 60 and 80% treatments as compared to the control, respectively. All heavy metals content, except cadmium, nickel and zinc, in corn grain were not significantly different from the control. Arsenic, cadmium and zinc in corn grain were strongly positively correlated with concentrations in soil. The heavy metal content in corn grain was within regulated limits for human consumption.

Prabpai, S. [Suphan Buri Campus Establishment Project, Kasetsart University, 50 U Floor, Administrative Building, Paholyothin Road, Jatujak, Bangkok 10900 (Thailand)], E-mail: s.prabpai@hotmail.com; Charerntanyarak, L. [Department of Epidemiology, Faculty of Public Health, Khon Kaen University, Khon Kaen 40002 (Thailand)], E-mail: lertchai@kku.ac.th; Siri, B. [Department of Agronomy, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002 (Thailand)], E-mail: boonmee@kku.ac.th; Moore, M.R. [The University of Queensland, The National Research Center for Environmental Toxicology, 39 Kessels Road, Coopers Plans, Brisbane, Queensland 4108 (Australia)], E-mail: m.moore@uq.edu.au; Noller, Barry N. [The University of Queensland, Centre for Mined Land Rehabilitation, Brisbane, Queensland 4072 (Australia)], E-mail: b.noller@uq.edu.au

2009-08-15T23:59:59.000Z

436

Scaling methane oxidation: From laboratory incubation experiments to landfill cover field conditions  

SciTech Connect

Evaluating field-scale methane oxidation in landfill cover soils using numerical models is gaining interest in the solid waste industry as research has made it clear that methane oxidation in the field is a complex function of climatic conditions, soil type, cover design, and incoming flux of landfill gas from the waste mass. Numerical models can account for these parameters as they change with time and space under field conditions. In this study, we developed temperature, and water content correction factors for methane oxidation parameters. We also introduced a possible correction to account for the different soil structure under field conditions. These parameters were defined in laboratory incubation experiments performed on homogenized soil specimens and were used to predict the actual methane oxidation rates to be expected under field conditions. Water content and temperature corrections factors were obtained for the methane oxidation rate parameter to be used when modeling methane oxidation in the field. To predict in situ measured rates of methane with the model it was necessary to set the half saturation constant of methane and oxygen, K{sub m}, to 5%, approximately five times larger than laboratory measured values. We hypothesize that this discrepancy reflects differences in soil structure between homogenized soil conditions in the lab and actual aggregated soil structure in the field. When all of these correction factors were re-introduced into the oxidation module of our model, it was able to reproduce surface emissions (as measured by static flux chambers) and percent oxidation (as measured by stable isotope techniques) within the range measured in the field.

Abichou, Tarek, E-mail: abichou@eng.fsu.edu [Florida State University, Tallahassee, FL 32311 (United States); Mahieu, Koenraad; Chanton, Jeff [Florida State University, Tallahassee, FL 32311 (United States); Romdhane, Mehrez; Mansouri, Imane [Unite de Recherche M.A.C.S., Ecole Nationale d'Ingenieurs de Gabes, Route de Medenine, 6029 Gabes (Tunisia)

2011-05-15T23:59:59.000Z

437

Sustainable sanitary landfills for neglected small cities in developing countries: The semi-mechanized trench method from Villanueva, Honduras  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Open dumping is the most common form of waste disposal in neglected small cities. Black-Right-Pointing-Pointer Semi-mechanized landfills can be a sustainable option for small cities. Black-Right-Pointing-Pointer We present the theory of design and operation of semi-mechanized landfills. Black-Right-Pointing-Pointer Villanueva, Honduras has operated its semi-mechanized landfill for 15 years. Black-Right-Pointing-Pointer The cost of operation is US$4.60/ton with a land requirement of 0.2m{sup 2}/person-year. - Abstract: Open dumping is the most common practice for the disposal of urban solid wastes in the least developed regions of Africa, Asia and Latin America. Sanitary landfill design and operation has traditionally focused on large cities, but cities with fewer than 50,000 in population can comprise from 6% to 45% of a given country's total population. These thousands of small cities cannot afford to operate a sanitary landfill in the way it is proposed for large cities, where heavy equipment is used to spread and compact the waste in daily cells, and then to excavate, transport and apply daily cover, and leachate is managed with collection and treatment systems. This paper presents an alternative approach for small cities, known as the semi-mechanized trench method, which was developed in Villanueva, Honduras. In the semi-mechanized trench method a hydraulic excavator is used for 1-3 days to dig a trench that will last at least a month before it is filled with waste. Trucks can easily unload their wastes into the trench, and the wastes compact naturally due to semi-aerobic biodegradation, after which the trenches are refilled and covered. The exposed surface area is minimal since only the top surface of the wastes is exposed, the remainder being covered by the sides and bottom of the trench. The surplus material from trench excavation can be valorized for use as engineering fill onsite or off. The landfill in Villanueva has operated for 15 years, using a total land area of approximately 11 ha for a population that grew from 23,000 to 48,000, with a land requirement of 0.2 m{sup 2}/person year, a cover to waste ratio of 0.2, and an estimated soil surplus of 298,000 m{sup 3} that is valorized and used onsite. The landfill has been operated solely by the municipality with an operational cost in 2010 estimated at US$4.60 per ton. A modified water balance analysis at Villanueva shows negligible leachate generation from covered trenches and 700 m{sup 3}/yr (60 m{sup 3}/ha yr) from the two open trenches required for daily operation. If the site were an open dump, however, leachate generation is estimated to be 3900 m{sup 3}/ha yr and contaminated runoff 5000 m{sup 3}/ha yr. A simple model used to estimate dilution of generated leachate based on groundwater flow data and aquifer stratigraphy suggests that the leachate will be diluted by a factor of 0.01 in the aquifer. Leachate contaminants will not accumulate because the aquifer discharges to the Ulua River 2 km south of the landfill. While not suitable for all sites, the Villanueva method nevertheless serves as an excellent example of how a small city landfill with natural compaction of waste and attenuation of leachate can be sustainably operated.

Oakley, Stewart M., E-mail: soakley@csuchico.edu [Department of Civil Engineering, Chico State University, California State University, Chico, CA 95929 (United States); Jimenez, Ramon, E-mail: rjimenez1958@yahoo.com [Public Works, Municipality of Villanueva, Cortes (Honduras)

2012-12-15T23:59:59.000Z

438

Economic Comparison of Renewable Sources for  

E-Print Network (OSTI)

, MSW, landfill gas, and livestock manure) · State wind totals from EPRI/DOE, state class breakdown from/year #12;6 Biomass Cost Assumptions 115 m.t. H2/day $22/m.t.Livestock Manure $1.64/KscfLandfill gas $22/mPlant Capital Cost 1.32Livestock Manure 1.45MSW 1.98*Landfill gas 1.68Wood & Ag Waste 1.75Energy crops Cost of H

439

Landfill Gas Conversion to LNG and LCO{sub 2}. Phase II Final Report for January 25, 1999 - April 30, 2000  

Science Conference Proceedings (OSTI)

This report summarizes work on the development of a process to produce LNG (liquefied methane) for heavy vehicle use from landfill gas (LFG) using Acrion's CO{sub 2} wash process for contaminant removal and CO{sub 2} recovery.

Brown, W. R.; Cook, W. J.; Siwajek, L. A.

2000-10-20T23:59:59.000Z

440

A survey of state clean energy fund support for biomass  

E-Print Network (OSTI)

as wood, agricultural, or food wastes, energy crops, biogas,v) landfill gas; (vi) waste-to-energy which is a componentChop Energy Costs and Recycle Wood Waste. http://

Fitzgerald, Garrett; Bolinger, Mark; Wiser, Ryan

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste-to-energy msw landfill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Final Environmental Assessment for Proposed Closure of the Airport Landfills Within Technical Area 73 at Los Alamos National Laboratory, Los Alamos, New Mexico  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

15 15 Final Environmental Assessment for Proposed Closure of the Airport Landfills Within Technical Area 73 at Los Alamos National Laboratory, Los Alamos, New Mexico May 22, 2005 Department of Energy National Nuclear Security Administration Los Alamos Site Office Final EA for Proposed Closure of the Airport Landfills within TA-73 at LANL Page iii of viii Contents Acronyms and Terms .................................................................................................................. vi 1.0 Purpose and Need ................................................................................................. 1 1.1 Introduction.............................................................................................................

442

Post-Closure Inspection Report for Corrective Action Unit 424: Area 3 Landfill Complex, Tonopah Test Range, Nevada, Calendar Year 2000  

SciTech Connect

Corrective Action Unit (CAU) 424, the Area 3 Landfill Complex at Tonopah Test Range, consists of eight landfill sites, Corrective Action Sites (CASS), seven of which are landfill cells that were closed previously by capping. (The eighth CAS, A3-7, was not used as a landfill site and was closed without taking any corrective action.) Figure 1 shows the locations of the landfill cells. CAU 424 closure activities included removing small volumes of soil containing petroleum hydrocarbons, repairing cell covers that were cracked or had subsided, and installing above-grade and at-grade monuments marking the comers of the landfill cells. Post-closure monitoring requirements for CAU 424 are detailed in Section 5.0, Post-Closure Inspection Plan contained, in the Closure Report for Corrective Action Unit 424: Area 3 Landfill Complex, Tonopah Test Range. Nevada, report number DOE/NV--283. The Closure Report (CR) was approved by the Nevada Division of Environmental Protection (NDEP) in July 1999. The CR includes compaction and permeability results of soils that cap the seven landfill cells. Post-closure monitoring consists of the following: (1) Site inspections done twice a year to evaluate the condition of the unit; (2) Verification that the site is secure; (3) Notice of any subsidence or deficiencies that may compromise the integrity of the unit; (4) Remedy of any deficiencies within 90 days of discovery; and (5) Preparation and submittal of an annual report. Site inspections were conducted on June 20, 2000, and November 20, 2000. The inspections were preformed after the NDEP approval of the CR. This report includes copies of the inspection checklist and photographs, and recommendations and conclusions. The Post-Closure Inspection Checklists are found in Attachment A, a copy of the field notes is found in Attachment B, and copies of the inspection photographs are found in Attachment C.

K. B. Campbell

2001-06-01T23:59:59.000Z

443

Design and Testing of a Landfill Gas Cleanup System for Carbonate Fuel Cell Power Plants: Volume II: Full Scale Landfill Gas Cleanup for Carbonate Fuel Cell Power Plants (Proprietary)  

Science Conference Proceedings (OSTI)

This document is a proprietary version of section 5 of EPRI technical report TR-108043-V1. The volume contains detailed design information and operating conditions for a full-scale, low-cost cleanup system that would enable landfill gas to be used in carbonate fuel cells or other power generation devices. The EPRI-developed system is now available for license to commercial applications.

1998-02-27T23:59:59.000Z

444

Cultural Resources Review for Closure of the nonradioactive Dangerous Waste Landfill and Solid Waste Landfill in the 600 Area, Hanford Site, Benton County, Washington, HCRC# 2010-600-018R  

SciTech Connect

The U.S. Department of Energy Richland Operations Office is proposing to close the Nonradioactive Dangerous Waste Landfill (NRDWL) and Solid Waste Landfill (SWL) located in the 600 Area of the Hanford Site. The closure of the NRDWL/SWL entails the construction of an evapotranspiration cover over the landfill. This cover would consist of a 3-foot (1-meter) engineered layer of fine-grained soil, modified with 15 percent by weight pea gravel to form an erosion-resistant topsoil that will sustain native vegetation. The area targeted for silt-loam borrow soil sits in Area C, located in the northern central portion of the Fitzner/Eberhardt Arid Lands Ecology (ALE) Reserve Unit. The pea gravel used for the mixture will be obtained from both off-site commercial sources and an active gravel pit (Pit #6) located just west of the 300 Area of the Hanford Site. Materials for the cover will be transported along Army Loop Road, which runs from Beloit Avenue (near the Rattlesnake Barricade) east-northeast to the NRDWL/SWL, ending at State Route 4. Upgrades to Army Loop Road are necessary to facilitate safe bidirectional hauling traffic. This report documents a cultural resources review of the proposed activity, conducted according to Section 106 of the National Historic Preservation Act of 1966.

Gutzeit, Jennifer L.; Kennedy, Ellen P.; Bjornstad, Bruce N.; Sackschewsky, Michael R.; Sharpe, James J.; DeMaris, Ranae; Venno, M.; Christensen, James R.