National Library of Energy BETA

Sample records for waste wind photovoltaic

  1. Recycling Of Cis Photovoltaic Waste

    DOE Patents [OSTI]

    Drinkard, Jr., William F. (Charlotte, NC); Long, Mark O. (Charlotte, NC); Goozner; Robert E. (Charlotte, NC)

    1998-07-14

    A method for extracting and reclaiming metals from scrap CIS photovoltaic cells and associated photovoltaic manufacturing waste by leaching the waste with dilute nitric acid, skimming any plastic material from the top of the leaching solution, separating glass substrate from the leachate, electrolyzing the leachate to plate a copper and selenium metal mixture onto a first cathode, replacing the cathode with a second cathode, re-electrolyzing the leachate to plate cadmium onto the second cathode, separating the copper from selenium, and evaporating the depleted leachate to yield a zinc and indium containing solid.

  2. Recycling of CdTe photovoltaic waste

    DOE Patents [OSTI]

    Goozner, Robert E. (Charlotte, NC); Long, Mark O. (Charlotte, NC); Drinkard, Jr., William F. (Charlotte, NC)

    1999-01-01

    A method for extracting and reclaiming metals from scrap CdTe photovoltaic cells and manufacturing waste by leaching the waste with a leaching solution comprising nitric acid and water, skimming any plastic material from the top of the leaching solution, separating the glass substrate from the liquid leachate and electrolyzing the leachate to separate Cd from Te, wherein the Te is deposits onto a cathode while the Cd remains in solution.

  3. Use of photovoltaics for waste heat recovery

    DOE Patents [OSTI]

    Polcyn, Adam D

    2013-04-16

    A device for recovering waste heat in the form of radiated light, e.g. red visible light and/or infrared light includes a housing having a viewing window, and a photovoltaic cell mounted in the housing in a relationship to the viewing window, wherein rays of radiated light pass through the viewing window and impinge on surface of the photovoltaic cell. The housing and/or the cell are cooled so that the device can be used with a furnace for an industrial process, e.g. mounting the device with a view of the interior of the heating chamber of a glass making furnace. In this manner, the rays of the radiated light generated during the melting of glass batch materials in the heating chamber pass through the viewing window and impinge on the surface of the photovoltaic cells to generate electric current which is passed onto an electric load.

  4. Recycling of CdTe photovoltaic waste

    DOE Patents [OSTI]

    Goozner, Robert E. (Charlotte, NC); Long, Mark O. (Charlotte, NC); Drinkard, Jr., William F. (Charlotte, NC)

    1999-04-27

    A method for extracting and reclaiming metals from scrap CdTe photovoltaic cells and manufacturing waste by leaching the metals in dilute nitric acid, leaching the waste with a leaching solution comprising nitric acid and water, skimming any plastic material from the top of the leaching solution, separating the glass substrate from the liquid leachate, adding a calcium containing base to the leachate to precipitate Cd and Te, separating the precipitated Cd and Te from the leachate, and recovering the calcium-containing base.

  5. Recycling of CdTe photovoltaic waste

    DOE Patents [OSTI]

    Goozner, R.E.; Long, M.O.; Drinkard, W.F. Jr.

    1999-04-27

    A method for extracting and reclaiming metals from scrap CdTe photovoltaic cells and manufacturing waste by leaching the metals in dilute nitric acid, leaching the waste with a leaching solution comprising nitric acid and water, skimming any plastic material from the top of the leaching solution, separating the glass substrate from the liquid leachate, adding a calcium containing base to the leachate to precipitate Cd and Te, separating the precipitated Cd and Te from the leachate, and recovering the calcium-containing base. 3 figs.

  6. Oscillation Damping: A Comparison of Wind and Photovoltaic Power Plant Capabilities: Preprint

    SciTech Connect (OSTI)

    Singh, M.; Allen, A.; Muljadi, E.; Gevorgian, V.

    2014-07-01

    This work compares and contrasts strategies for providing oscillation damping services from wind power plants and photovoltaic power plants.

  7. ENERGY MODELING OF A LEAD-ACID BATTERY WITHIN HYBRID WIND / PHOTOVOLTAIC SYSTEMS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ENERGY MODELING OF A LEAD-ACID BATTERY WITHIN HYBRID WIND / PHOTOVOLTAIC SYSTEMS O. GERGAUD, G Abstract: Within the scope of full-scale energy modeling of a hybrid wind / photovoltaic system coupled-power hybrid wind/photovoltaic production system (20 ASE modules for a 2- kW polycrystalline silicon peak

  8. A novel hybrid (wind-photovoltaic) system sizing procedure

    SciTech Connect (OSTI)

    Hocaoglu, Fatih O.; Gerek, Oemer N.; Kurban, Mehmet

    2009-11-15

    Wind-photovoltaic hybrid system (WPHS) utilization is becoming popular due to increasing energy costs and decreasing prices of turbines and photovoltaic (PV) panels. However, prior to construction of a renewable generation station, it is necessary to determine the optimum number of PV panels and wind turbines for minimal cost during continuity of generated energy to meet the desired consumption. In fact, the traditional sizing procedures find optimum number of the PV modules and wind turbines subject to minimum cost. However, the optimum battery capacity is either not taken into account, or it is found by a full search between all probable solution spaces which requires extensive computation. In this study, a novel description of the production/consumption phenomenon is proposed, and a new sizing procedure is developed. Using this procedure, optimum battery capacity, together with optimum number of PV modules and wind turbines subject to minimum cost can be obtained with good accuracy. (author)

  9. Photovoltaic module with removable wind deflector

    DOE Patents [OSTI]

    Botkin, Jonathan (El Cerrito, CA); Graves, Simon (Berkeley, CA); Danning, Matt (Oakland, CA); Culligan, Matthew (Berkeley, CA)

    2012-08-07

    A photovoltaic (PV) module assembly including a PV module, a deflector, and a clip. The PV module includes a PV device and a frame. A PV laminate is assembled to the frame, and the frame includes a support arm forming a seat. The deflector defines a front face and a rear face, with the clip extending from either the trailing frame member or the rear face of the deflector. In a mounted state, the deflector is nested within the seat and is releasably mounted to the trailing frame member via the clip. In some embodiments, the support arm forms a second seat, with the PV module assembly providing a second mounted state in which the deflector is in a differing orientation/slope, nested within the second seat and releasably mounted to the trailing frame member via the clip.

  10. Photovoltaic module with removable wind deflector

    DOE Patents [OSTI]

    Botkin, Jonathan; Graves, Simon; Danning, Matt; Culligan, Matthew

    2013-05-28

    A photovoltaic (PV) module assembly including a PV module, a deflector, and a clip. The PV module includes a PV device and a frame. A PV laminate is assembled to the frame, and the frame includes a support arm forming a seat. The deflector defines a front face and a rear face, with the clip extending from either the trailing frame member or the rear face of the deflector. In a mounted state, the deflector is nested within the seat and is releasably mounted to the trailing frame member via the clip. In some embodiments, the support arm forms a second seat, with the PV module assembly providing a second mounted state in which the deflector is in a differing orientation/slope, nested within the second seat and releasably mounted to the trailing frame member via the clip.

  11. Photovoltaic module with removable wind deflector

    DOE Patents [OSTI]

    Botkin, Jonathan; Graves, Simon; Danning, Matt; Culligan, Matthew

    2014-02-18

    A photovoltaic (PV) module assembly including a PV module, a deflector, and a clip. The PV module includes a PV device and a frame. A PV laminate is assembled to the frame, and the frame includes a support arm forming a seat. The deflector defines a front face and a rear face, with the clip extending from either the trailing frame member or the rear face of the deflector. In a mounted state, the deflector is nested within the seat and is releasably mounted to the trailing frame member via the clip. In some embodiments, the support arm forms a second seat, with the PV module assembly providing a second mounted state in which the deflector is in a differing orientation/slope, nested within the second seat and releasably mounted to the trailing frame member via the clip.

  12. Wind loads on flat plate photovoltaic array fields. Phase III, final report

    SciTech Connect (OSTI)

    Miller, R.D.; Zimmerman, D.K.

    1981-04-01

    The results of an experimental analysis (boundary layer wind tunnel test) of the aerodynamic forces resulting from winds acting on flat plate photovoltaic arrays are presented. Local pressure coefficient distributions and normal force coefficients on the arrays are shown and compared to theoretical results. Parameters that were varied when determining the aerodynamic forces included tilt angle, array separation, ground clearance, protective wind barriers, and the effect of the wind velocity profile. Recommended design wind forces and pressures are presented, which envelop the test results for winds perpendicular to the array's longitudinal axis. This wind direction produces the maximum wind loads on the arrays except at the array edge where oblique winds produce larger edge pressure loads.

  13. Power Control and Optimization of Photovoltaic and Wind Energy Conversion Systems /

    E-Print Network [OSTI]

    Ghaffari, Azad

    2013-01-01

    Power Point Tracking in Photovoltaic Systems . . . 4.1DC- DC converter photovoltaic systems: power optimizationgrid-connected photovoltaic systems,” IET Electric Power

  14. Power Control and Optimization of Photovoltaic and Wind Energy Conversion Systems /

    E-Print Network [OSTI]

    Ghaffari, Azad

    2013-01-01

    Power Optimization and Control in Wind Energy Conversion Systemspower point tracking in wind energy conversion systems,”power point tracking of wind energy conversion systems based

  15. Power Control and Optimization of Photovoltaic and Wind Energy Conversion Systems /

    E-Print Network [OSTI]

    Ghaffari, Azad

    2013-01-01

    77 5.2 Wind Energy Conversion System . . . . .Optimization and Control in Wind Energy Conversion SystemsAC matrix con- verter for wind energy conversion system,” in

  16. Photovoltaic's silica-rich waste sludge as supplementary cementitious material (SCM)

    SciTech Connect (OSTI)

    Quercia, G., E-mail: g.quercia@tue.nl [Materials innovation institute (M2i), Mekelweg 2, P.O. Box 5008, 2600 GA Delft (Netherlands); Eindhoven University of Technology, Department of the Built Environment, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Putten, J.J.G. van der [Eindhoven University of Technology, Department of the Built Environment, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Hüsken, G. [BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, D-12205 Berlin (Germany)] [BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, D-12205 Berlin (Germany); Brouwers, H.J.H. [Eindhoven University of Technology, Department of the Built Environment, P.O. Box 513, 5600 MB Eindhoven (Netherlands)] [Eindhoven University of Technology, Department of the Built Environment, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2013-12-15

    Waste sludge, a solid recovered from wastewater of photovoltaic-industries, composes of agglomerates of nano-particles like SiO{sub 2} and CaCO{sub 3}. This sludge deflocculates in aqueous solutions into nano-particles smaller than 1 ?m. Thus, this sludge constitutes a potentially hazardous waste when it is improperly disposed. Due to its high content of amorphous SiO{sub 2}, this sludge has a potential use as supplementary cementitious material (SCM) in concrete. In this study the main properties of three different samples of photovoltaic's silica-rich waste sludge (nSS) were physically and chemically characterized. The characterization techniques included: scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), nitrogen physical adsorption isotherm (BET method), density by Helium pycnometry, particle size distribution determined by laser light scattering (LLS) and zeta-potential measurements by dynamic light scattering (DLS). In addition, a dispersability study was performed to design stable slurries to be used as liquid additives for the concrete production on site. The effects on the hydration kinetics of cement pastes by the incorporation of nSS in the designed slurries were determined using an isothermal calorimeter. A compressive strength test of standard mortars with 7% of cement replacement was performed to determine the pozzolanic activity of the waste nano-silica sludge. Finally, the hardened system was fully characterized to determine the phase composition. The results demonstrate that the nSS can be utilized as SCM to replace portion of cement in mortars, thereby decreasing the CO{sub 2} footprint and the environmental impact of concrete. -- Highlights: •Three different samples of PV nano-silica sludge (nSS) were fully characterized. •nSS is composed of agglomerates of nano-particles like SiO{sub 2} and CaCO{sub 3}. •Dispersability studies demonstrated that nSS agglomerates are broken to nano-size. •nSS can be classified as a pozzolanic material with activity index higher than 100. •nSS can be use as a potential SCM to partly replace cement in concrete.

  17. Power Control and Optimization of Photovoltaic and Wind Energy Conversion Systems /

    E-Print Network [OSTI]

    Ghaffari, Azad

    2013-01-01

    both AC drives and wind energy Turbine, shaft, and Gear BoxWind Energy Conversion Systems using Extremum Seeking Wind turbines (wind turbines: standard and adaptive techniques for maximizing energy

  18. Power Control and Optimization of Photovoltaic and Wind Energy Conversion Systems /

    E-Print Network [OSTI]

    Ghaffari, Azad

    2013-01-01

    multiple photovoltaic arrays: a PSO approach,” IEEE Trans.Particle Swarm Optimization (PSO), which is an algorithmParticle Swarm Optimization (PSO), which is an algorithm

  19. Optimization of Electric Power Systems for Off-Grid Domestic Applications: An Argument for Wind/Photovoltaic Hybrids

    SciTech Connect (OSTI)

    Jennings, W.; Green, J.

    2001-01-01

    The purpose of this research was to determine the optimal configuration of home power systems relevant to different regions in the United States. The hypothesis was that, regardless of region, the optimal system would be a hybrid incorporating wind technology, versus a photovoltaic hybrid system without the use of wind technology. The method used in this research was HOMER, the Hybrid Optimization Model for Electric Renewables. HOMER is a computer program that optimizes electrical configurations under user-defined circumstances. According to HOMER, the optimal system for the four regions studied (Kansas, Massachusetts, Oregon, and Arizona) was a hybrid incorporating wind technology. The cost differences between these regions, however, were dependent upon regional renewable resources. Future studies will be necessary, as it is difficult to estimate meteorological impacts for other regions.

  20. Power Control and Optimization of Photovoltaic and Wind Energy Conversion Systems /

    E-Print Network [OSTI]

    Ghaffari, Azad

    2013-01-01

    2011. [2] ——, “High altitude wind power systems: A survey onidea of harnessing high altitude wind power using a tetheredComputed power densities in high altitude winds exceed a 10

  1. Power Control and Optimization of Photovoltaic and Wind Energy Conversion Systems /

    E-Print Network [OSTI]

    Ghaffari, Azad

    2013-01-01

    Output power leveling of wind turbine generator for allpower map of Distributed Generators (DG), including Photo- voltaic (PV) and WindGenerator (IG) stator. Introduction A variable speed wind turbine generates power

  2. Power Control and Optimization of Photovoltaic and Wind Energy Conversion Systems /

    E-Print Network [OSTI]

    Ghaffari, Azad

    2013-01-01

    be realized by capturing wind power at altitudes over the2011. [2] ——, “High altitude wind power systems: A survey onOckels, “Optimal cross-wind towing and power generation with

  3. Power Control and Optimization of Photovoltaic and Wind Energy Conversion Systems /

    E-Print Network [OSTI]

    Ghaffari, Azad

    2013-01-01

    power at the wind turbine shaft as the cost func- tion asstructure, cost, and land occupation. In wind turbines, thecost. Since the P&O method adds delay, it is not practical for medium- and large-inertia wind turbine

  4. Analysis of the value of battery storage with wind and photovoltaic generation to the Sacramento Municipal Utility District

    SciTech Connect (OSTI)

    Zaininger, H.W. [Zaininger Engineering Co., Inc., Roseville, CA (United States)

    1998-08-01

    This report describes the results of an analysis to determine the economic and operational value of battery storage to wind and photovoltaic (PV) generation technologies to the Sacramento Municipal Utility District (SMUD) system. The analysis approach consisted of performing a benefit-cost economic assessment using established SMUD financial parameters, system expansion plans, and current system operating procedures. This report presents the results of the analysis. Section 2 describes expected wind and PV plant performance. Section 3 describes expected benefits to SMUD associated with employing battery storage. Section 4 presents preliminary benefit-cost results for battery storage added at the Solano wind plant and the Hedge PV plant. Section 5 presents conclusions and recommendations resulting from this analysis. The results of this analysis should be reviewed subject to the following caveat. The assumptions and data used in developing these results were based on reports available from and interaction with appropriate SMUD operating, planning, and design personnel in 1994 and early 1995 and are compatible with financial assumptions and system expansion plans as of that time. Assumptions and SMUD expansion plans have changed since then. In particular, SMUD did not install the additional 45 MW of wind that was planned for 1996. Current SMUD expansion plans and assumptions should be obtained from appropriate SMUD personnel.

  5. Power Control and Optimization of Photovoltaic and Wind Energy Conversion Systems /

    E-Print Network [OSTI]

    Ghaffari, Azad

    2013-01-01

    Extremum Seeking Wind turbines (WTs) are a promising sourcethose of the Wind Turbines (WTs). The flight of the wings isaltitudes than those of the WTs (up to 1000 m, using 1200–

  6. Power Control and Optimization of Photovoltaic and Wind Energy Conversion Systems /

    E-Print Network [OSTI]

    Ghaffari, Azad

    2013-01-01

    design that has good performance robustness to uncertainty, and faster transient performance, allowing for power tracking under rapidly varying wind

  7. Power Control and Optimization of Photovoltaic and Wind Energy Conversion Systems /

    E-Print Network [OSTI]

    Ghaffari, Azad

    2013-01-01

    Wind Energy Conversion Systems using Extremum Seeking,” Submitted to the IEEE Transactions on Control Systems Technology. (Wind Energy Conversion Systems using Extremum Seeking,” Submitted to the IEEE Transactions on Control Systems Technology.current wind technology has limitations in terms of energy

  8. Studies of Photovoltaic Roofing Systems at Wind Engineering and Fluids Laboratory at Colorado State University

    E-Print Network [OSTI]

    Connors, Daniel A.

    University Rising prices of crude oil and natural gas have led to renewed societal interest in application of the solar power market. As a result of our technology lead, SunPower is today a global leader in the market roofing products have been significantly improved. Fig. 2. Representative Wind Tunnel Configuration

  9. Multiband semiconductor compositions for photovoltaic devices...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual...

  10. Greenhouse gas and air pollutant emission reduction potentials of renewable energy - case studies on photovoltaic and wind power introduction considering interactions among technologies in Taiwan

    SciTech Connect (OSTI)

    Yu-Ming Kuo; Yasuhiro Fukushima

    2009-03-15

    To achieve higher energy security and lower emission of greenhouse gases (GHGs) and pollutants, the development of renewable energy has attracted much attention in Taiwan. In addition to its contribution to the enhancement of reliable indigenous resources, the introduction of renewable energy such as photovoltaic (PV) and wind power systems reduces the emission of GHGs and air pollutants by substituting a part of the carbon- and pollutant-intensive power with power generated by methods that are cleaner and less carbon-intensive. To evaluate the reduction potentials, consequential changes in the operation of different types of existing power plants have to be taken into account. In this study, a linear mathematical programming model is constructed to simulate a power mix for a given power demand in a power market sharing a cost-minimization objective. By applying the model, the emission reduction potentials of capacity extension case studies, including the enhancement of PV and wind power introduction at different scales, were assessed. In particular, the consequences of power mix changes in carbon dioxide, nitrogen oxides, sulfur oxides, and particulates were discussed. Seasonally varying power demand levels, solar irradiation, and wind strength were taken into account. In this study, we have found that the synergetic reduction of carbon dioxide emission induced by PV and wind power introduction occurs under a certain level of additional installed capacity. Investigation of a greater variety of case studies on scenario development with emerging power sources becomes possible by applying the model developed in this study. 15 refs., 8 figs., 11 tabs.

  11. Residential photovoltaics

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The photovoltaics overview section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  12. Fine-grained Photovoltaic Output Prediction using a Bayesian Ensemble Prithwish Chakraborty1,2

    E-Print Network [OSTI]

    Ramakrishnan, Naren

    Fine-grained Photovoltaic Output Prediction using a Bayesian Ensemble Prithwish Chakraborty1 Increasingly, local and distributed power generation e.g., through solar (photovoltaic or PV), wind, fuel cells. However, renewable power sources such as photovoltaic (PV) arrays and wind are both variable

  13. Photovoltaic roof heat flux

    E-Print Network [OSTI]

    Samady, Mezhgan Frishta

    2011-01-01

    Effect of building integrated photovoltaics on microclimateof a building's integrated-photovoltaics on heating a n dgaps for building- integrated photovoltaics, Solar Energy

  14. Best Practices for Siting Solar Photovoltaics on Municipal Solid Waste Landfills. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Kiatreungwattana, K.; Mosey, G.; Jones-Johnson, S.; Dufficy, C.; Bourg, J.; Conroy, A.; Keenan, M.; Michaud, W.; Brown, K.

    2013-04-01

    The Environmental Protection Agency and the National Renewable Energy Laboratory developed this best practices document to address common technical challenges for siting solar photovoltaics (PV) on municipal solid waste (MSW) landfills. The purpose of this document is to promote the use of MSW landfills for solar energy systems. Closed landfills and portions of active landfills with closed cells represent thousands of acres of property that may be suitable for siting solar photovoltaics (PV). These closed landfills may be suitable for near-term construction, making these sites strong candidate to take advantage of the 30% Federal Business Energy Investment Tax Credit. It was prepared in response to the increasing interest in siting renewable energy on landfills from solar developers; landfill owners; and federal, state, and local governments. It contains examples of solar PV projects on landfills and technical considerations and best practices that were gathered from examining the implementation of several of these projects.

  15. EELE408 Photovoltaics Lecture 20: Photovoltaic Systems

    E-Print Network [OSTI]

    Kaiser, Todd J.

    1 EELE408 Photovoltaics Lecture 20: Photovoltaic Systems Dr. Todd J. Kaiser tjkaiser into the grid 2 Application Areas 3 Photovoltaic System Basics · Photovoltaic Systems ­ Cell Panel Array · 6. Determine battery size for recommended reserve time Photovoltaic System Design Block Diagram Ph

  16. A prototype photovoltaic/thermal system integrated with transpired collector

    SciTech Connect (OSTI)

    Athienitis, Andreas K.; Bambara, James; O'Neill, Brendan; Faille, Jonathan

    2011-01-15

    Building-integrated photovoltaic/thermal (BIPV/T) systems may be utilized to produce useful heat while simultaneously generating electricity from the same building envelope surface. A well known highly efficient collector is the open-loop unglazed transpired collector (UTC) which consists of dark porous cladding through which outdoor air is drawn and heated by absorbed solar radiation. Commercially available photovoltaic systems typically produce electricity with efficiencies up to about 18%. Thus, it is beneficial to obtain much of the normally wasted heat from the systems, possibly by combining UTC with photovoltaics. Combination of BIPV/T and UTC systems for building facades is considered in this paper - specifically, the design of a prototype facade-integrated photovoltaic/thermal system with transpired collector (BIPV/T). A full scale prototype is constructed with 70% of UTC area covered with PV modules specially designed to enhance heat recovery and compared to a UTC of the same area under outdoor sunny conditions with low wind. The orientation of the corrugations in the UTC is horizontal and the black-framed modules are attached so as to facilitate flow into the UTC plenum. While the overall combined thermal efficiency of the UTC is higher than that of the BIPV/T system, the value of the generated energy - assuming that electricity is at least four times more valuable than heat - is between 7% and 17% higher. Also, the electricity is always useful while the heat is usually utilized only in the heating season. The BIPV/T concept is applied to a full scale office building demonstration project in Montreal, Canada. The ratio of photovoltaic area coverage of the UTC may be selected based on the fresh air heating needs of the building, the value of the electricity generated and the available building surfaces. (author)

  17. Photovoltaics Special Research

    E-Print Network [OSTI]

    New South Wales, University of

    1999 Photovoltaics Special Research Centre UUNNSSWW 1999 Photovoltaics Special Research Centre The University of New South Wales Centre for Photovoltaic Engineering Electrical Engineering Building contains three sections which are colour coded as follows: Red: Photovoltaics Special Research Centre End

  18. China Solar Photovoltaic Group CNPV aka Dongying Photovoltaic...

    Open Energy Info (EERE)

    Photovoltaic Group CNPV aka Dongying Photovoltaic Power Co Ltd or China Solar PV Jump to: navigation, search Name: China Solar Photovoltaic Group (CNPV, aka Dongying Photovoltaic...

  19. EELE408 Photovoltaics Lecture 15 Photovoltaic Devices

    E-Print Network [OSTI]

    Kaiser, Todd J.

    1 EELE408 Photovoltaics Lecture 15 Photovoltaic Devices Dr. Todd J. Kaiser tjkaiser) · Demonstrated the photovoltaic effect · Best results with UV or blue light 2 g · Electrodes covered with light of photovoltaic effect in an all solid state device · Several decades before the effect could be explained Fritts

  20. Gross Receipts Tax Exemption for Sales of Wind and Solar Systems...

    Broader source: Energy.gov (indexed) [DOE]

    Photovoltaics Wind (All) Wind (Small) Program Info Sector Name State Administrator New Mexico Taxation & Revenue Department Website http:www.emnrd.state.nm.usECMD...

  1. Dose potential of sludge contaminated and/or TRU contaminated waste in B-25s for tornado and straight wind events

    SciTech Connect (OSTI)

    Aponte, C.I.

    2000-02-17

    F and H Tank Farms generate supernate and sludge contaminated Low-Level Waste. The waste is collected, characterized, and packaged for disposal. Before the waste can be disposed of, however, it must be properly characterized. Since the radionuclide distribution in typical supernate is well known, its characterization is relatively straight forward and requires minimal effort. Non-routine waste, including potentially sludge contaminated, requires much more effort to effectively characterize. The radionuclide distribution must be determined. In some cases the waste can be contaminated by various sludge transfers with unique radionuclide distributions. In these cases, the characterization can require an extensive effort. Even after an extensive characterization effort, the container must still be prepared for shipping. Therefore a significant amount of time may elapse from the time the waste is generated until the time of disposal. During the time it is possible for a tornado or high wind scenario to occur. The purpose of this report is to determine the effect of a tornado on potential sludge contaminated waste, or Transuranic (TRU) waste in B-25s [large storage containers], to evaluate the potential impact on F and H Tank Farms, and to help establish a B-25 control program for tornado events.

  2. Photovoltaic roof heat flux

    E-Print Network [OSTI]

    Samady, Mezhgan Frishta

    2011-01-01

    designs (relatively) Photovoltaic Solar P a n e l AtmosphereCALIFORNIA, SAN DIEGO Photovoltaic Roof Heat Flux A ThesisABSTRACT OF T H E THESIS Photovoltaic Roof Heat Flux by

  3. Photovoltaics Life Cycle Analysis

    E-Print Network [OSTI]

    1 Photovoltaics Life Cycle Analysis Vasilis Fthenakis Center of Life Cycle Analysis Earth & Environmental Engineering Department Columbia University and National Photovoltaic (PV) EHS Research Center (air, water, solid) M, Q E PV array Photovoltaic modules Balance of System (BOS) (Inverters

  4. INTEGRATING PHOTOVOLTAIC SYSTEMS

    E-Print Network [OSTI]

    Delaware, University of

    INTEGRATING PHOTOVOLTAIC SYSTEMS INTO PUBLIC SECTOR PERFORMANCE CONTRACTS IN DELAWARE FINAL for Energy and Environmental Policy University of Delaware February 2006 #12;INTEGRATING PHOTOVOLTAIC..................................................................................................... 1 1.2 Photovoltaics in Performance Contracts: An Overview

  5. Amorphous Silicon-Carbon Nanostructure Photovoltaic Devices

    E-Print Network [OSTI]

    Schriver, Maria Christine

    2012-01-01

    and Photovoltaic Performance . . . . . . . . . . . . . . .Amorphous Silicon as a Photovoltaic Material 2.1.2ii Photovoltaic Model . . . . . . . . . . .

  6. Photovoltaic Technology Basics

    Broader source: Energy.gov [DOE]

    Photovoltaic (PV) materials and devices convert sunlight into electrical energy, and PV cells are commonly known as solar cells. Photovoltaics can literally be translated as light-electricity.

  7. A solar concentrating photovoltaic / thermal collector J.S. Coventry

    E-Print Network [OSTI]

    solar concentrating photovoltaic / thermal collector Coventry "Photovoltaic and Wind Power for Urban in this area are summarised. The Combined Heat and Power Solar (CHAPS) collector, under development collector. Some of the technical challenges in the design of the CHAPS collector are discussed

  8. EELE408 Photovoltaics Lecture 17 Photovoltaic Modules

    E-Print Network [OSTI]

    Kaiser, Todd J.

    1 EELE408 Photovoltaics Lecture 17 Photovoltaic Modules Dr. Todd J. Kaiser tjkaiser with the lowest output · Cells usually matched to each other · Shaded cell acts like poor cell ­ Significantly

  9. Photovoltaics information user study

    SciTech Connect (OSTI)

    Belew, W.W.; Wood, B.L.; Marie, T.L.; Reinhardt, C.L.

    1980-10-01

    The results of a series of telephone interviews with groups of users of information on photovoltaics (PV) are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. The report is 1 of 10 discussing study results. The overall study provides baseline data about information needs in the solar community. It covers these technological areas: photovoltaics, passive solar heating and cooling, active solar heating and cooling, biomass energy, solar thermal electric power, solar industrial and agricultural process heat, wind energy, ocean energy, and advanced energy storage. An earlier study identified the information user groups in the solar community and the priority (to accelerate solar energy commercialization) of getting information to each group. In the current study only high-priority groups were examined. Results from seven PV groups respondents are analyzed in this report: DOE-Funded Researchers, Non-DOE-Funded Researchers, Researchers Working for Manufacturers, Representatives of Other Manufacturers, Representatives of Utilities, Electric Power Engineers, and Educators.

  10. PHOTOVOLTAICS SPECIAL RESEARCH

    E-Print Network [OSTI]

    New South Wales, University of

    PHOTOVOLTAICS SPECIAL RESEARCH CENTRE UNSW ANNUAL REPORT 1997 #12;PHOTOVOLTAICS SPECIAL RESEARCH CENTRE UNSW ANNUAL REPORT 1997 Photovoltaics Special Research Centre School of Electrical Engineering.labs@unsw.edu.au WWW: http://www.pv.unsw.edu.au THE UNIVERSITY OF NEW SOUTH WALES The Photovoltaics Special Research

  11. Photovoltaic solar concentrator

    DOE Patents [OSTI]

    Nielson, Gregory N.; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J.; Sanchez, Carlos Anthony; Clews, Peggy J.; Gupta, Vipin P.

    2015-09-08

    A process including forming a photovoltaic solar cell on a substrate, the photovoltaic solar cell comprising an anchor positioned between the photovoltaic solar cell and the substrate to suspend the photovoltaic solar cell from the substrate. A surface of the photovoltaic solar cell opposite the substrate is attached to a receiving substrate. The receiving substrate may be bonded to the photovoltaic solar cell using an adhesive force or a metal connecting member. The photovoltaic solar cell is then detached from the substrate by lifting the receiving substrate having the photovoltaic solar cell attached thereto and severing the anchor connecting the photovoltaic solar cell to the substrate. Depending upon the type of receiving substrate used, the photovoltaic solar cell may be removed from the receiving substrate or remain on the receiving substrate for use in the final product.

  12. Photovoltaics: New opportunities for utilities

    SciTech Connect (OSTI)

    Not Available

    1991-07-01

    This publication presents information on photovoltaics. The following topics are discussed: Residential Photovoltaics: The New England Experience Builds Confidence in PV; Austin's 300-kW Photovoltaic Power Station: Evaluating the Breakeven Costs; Residential Photovoltaics: The Lessons Learned; Photovoltaics for Electric Utility Use; Least-Cost Planning: The Environmental Link; Photovoltaics in the Distribution System; Photovoltaic Systems for the Rural Consumer; The Issues of Utility-Intertied Photovoltaics; and Photovoltaics for Large-Scale Use: Costs Ready to Drop Again.

  13. Interfacial Engineering of Molecular Photovoltaics

    E-Print Network [OSTI]

    Shelton, Steven Wade

    2014-01-01

    Engineering of Molecular Photovoltaics by Steven WadeEngineering of Molecular Photovoltaics Copyright © 2014 byEngineering of Molecular Photovoltaics by Steven Wade

  14. Clark County- Solar and Wind Building Permit Guides

    Broader source: Energy.gov [DOE]

    Clark County, Nevada has established guides for obtaining building permits for wind and solar photovoltaic (PV) systems for both residential and commercial purposes. The guides outline applicable...

  15. Abstract--Environmentally friendly technologies such as photovoltaics and fuel cells are DC sources. In the current power

    E-Print Network [OSTI]

    Tolbert, Leon M.

    Abstract--Environmentally friendly technologies such as photovoltaics and fuel cells are DC sources in pollution [1]. The most well-known green technologies include photovoltaics and wind turbines. Although fuel, fuel cells and photovoltaics, produce direct current (DC). Currently, power system infrastructures

  16. Electroluminescence in photovoltaic cell

    E-Print Network [OSTI]

    Petraglia, Antonio; 10.1088/0031-9120/46/5/F01

    2011-01-01

    Here we propose two methods to get electroluminescence images from photovoltaic cells in a school or home lab.

  17. Photovoltaics (Fact Sheet)

    SciTech Connect (OSTI)

    DOE Solar Energy Technologies Program

    2011-06-27

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its photovoltaics subprogram.

  18. Photovoltaic Materials

    SciTech Connect (OSTI)

    Duty, C.; Angelini, J.; Armstrong, B.; Bennett, C.; Evans, B.; Jellison, G. E.; Joshi, P.; List, F.; Paranthaman, P.; Parish, C.; Wereszczak, A.

    2012-10-15

    The goal of the current project was to help make the US solar industry a world leader in the manufacture of thin film photovoltaics. The overall approach was to leverage ORNL’s unique characterization and processing technologies to gain a better understanding of the fundamental challenges for solar cell processing and apply that knowledge to targeted projects with industry members. ORNL has the capabilities in place and the expertise required to understand how basic material properties including defects, impurities, and grain boundaries affect the solar cell performance. ORNL also has unique processing capabilities to optimize the manufacturing process for fabrication of high efficiency and low cost solar cells. ORNL recently established the Center for Advanced Thin-film Systems (CATS), which contains a suite of optical and electrical characterization equipment specifically focused on solar cell research. Under this project, ORNL made these facilities available to industrial partners who were interested in pursuing collaborative research toward the improvement of their product or manufacturing process. Four specific projects were pursued with industrial partners: Global Solar Energy is a solar industry leader in full scale production manufacturing highly-efficient Copper Indium Gallium diSelenide (CIGS) thin film solar material, cells and products. ORNL worked with GSE to develop a scalable, non-vacuum, solution technique to deposit amorphous or nanocrystalline conducting barrier layers on untextured stainless steel substrates for fabricating high efficiency flexible CIGS PV. Ferro Corporation’s Electronic, Color and Glass Materials (“ECGM”) business unit is currently the world’s largest supplier of metallic contact materials in the crystalline solar cell marketplace. Ferro’s ECGM business unit has been the world's leading supplier of thick film metal pastes to the crystalline silicon PV industry for more than 30 years, and has had operational cells and modules in the field for 25 years. Under this project, Ferro leveraged world leading analytical capabilities at ORNL to characterize the paste-to-silicon interface microstructure and develop high efficiency next generation contact pastes. Ampulse Corporation is developing a revolutionary crystalline-silicon (c-Si) thin-film solar photovoltaic (PV) technology. Utilizing uniquely-textured substrates and buffer materials from the Oak Ridge National Laboratory (ORNL), and breakthroughs in Hot-Wire Chemical Vapor Deposition (HW-CVD) techniques in epitaxial silicon developed at the National Renewable Energy Laboratory (NREL), Ampulse is creating a solar technology that is tunable in silicon thickness, and hence in efficiency and economics, to meet the specific requirements of multiple solar PV applications. This project focused on the development of a high rate deposition process to deposit Si, Ge, and Si1-xGex films as an alternate to hot-wire CVD. Mossey Creek Solar is a start-up company with great expertise in the solar field. The primary interest is to create and preserve jobs in the solar sector by developing high-yield, low-cost, high-efficiency solar cells using MSC-patented and -proprietary technologies. The specific goal of this project was to produce large grain formation in thin, net-shape-thickness mc-Si wafers processed with high-purity silicon powder and ORNL's plasma arc lamp melting without introducing impurities that compromise absorption coefficient and carrier lifetime. As part of this project, ORNL also added specific pieces of equipment to enhance our ability to provide unique insight for the solar industry. These capabilities include a moisture barrier measurement system, a combined physical vapor deposition and sputtering system dedicated to cadmium-containing deposits, adeep level transient spectroscopy system useful for identifying defects, an integrating sphere photoluminescence system, and a high-speed ink jet printing system. These tools were combined with others to study the effect of defects on the performance of crystalline silicon and

  19. Amorphous silicon photovoltaic devices

    DOE Patents [OSTI]

    Carlson, David E.; Lin, Guang H.; Ganguly, Gautam

    2004-08-31

    This invention is a photovoltaic device comprising an intrinsic or i-layer of amorphous silicon and where the photovoltaic device is more efficient at converting light energy to electric energy at high operating temperatures than at low operating temperatures. The photovoltaic devices of this invention are suitable for use in high temperature operating environments.

  20. PHOTOVOLTAICS EXCELLENCE IS

    E-Print Network [OSTI]

    New South Wales, University of

    #12;THE PHOTOVOLTAICS CENTRE OF EXCELLENCE IS A CENTRE OF EXCELLENCE OF THE AUSTRALIAN RESEARCH) Photovoltaics Centre of Excellence commenced at the University of New South Wales (UNSW) on 13th June, 2003 silicon photovoltaic research on three separate fronts, as well as to apply these advances to the related

  1. Photovoltaic device and method

    DOE Patents [OSTI]

    Cleereman, Robert; Lesniak, Michael J.; Keenihan, James R.; Langmaid, Joe A.; Gaston, Ryan; Eurich, Gerald K.; Boven, Michelle L.

    2015-11-24

    The present invention is premised upon an improved photovoltaic device ("PVD") and method of use, more particularly to an improved photovoltaic device with an integral locator and electrical terminal mechanism for transferring current to or from the improved photovoltaic device and the use as a system.

  2. Photovoltaic device and method

    DOE Patents [OSTI]

    Cleereman, Robert J; Lesniak, Michael J; Keenihan, James R; Langmaid, Joe A; Gaston, Ryan; Eurich, Gerald K; Boven, Michelle L

    2015-01-27

    The present invention is premised upon an improved photovoltaic device ("PVD") and method of use, more particularly to an improved photovoltaic device with an integral locator and electrical terminal mechanism for transferring current to or from the improved photovoltaic device and the use as a system.

  3. PHOTOVOLTAICS AND COMMERCIAL BUILDINGS--

    E-Print Network [OSTI]

    Perez, Richard R.

    PHOTOVOLTAICS AND COMMERCIAL BUILDINGS-- A NATURAL MATCH A study highlighting strategic opportunities and locations for using photovoltaics to power businesses #12;SHOULD PV BE IN YOUR BUSINESS PLAN know that solar energy is environ- mentally attractive--and that photovoltaic or PV systems have made

  4. Oscar Wilkie BE in Photovoltaics

    E-Print Network [OSTI]

    New South Wales, University of

    Oscar Wilkie BE in Photovoltaics and solar EnErgy EnginEEring What dO PhOtOvOltaics engineers dO? Photovoltaics engineering focuses on the manufacture and use of photovoltaic solar cells to generate electricity with an increased need for specialised photovoltaics engineers and there are constantly new opportunities arising

  5. Optical Refrigeration for Ultra-Efficient Photovoltaics

    E-Print Network [OSTI]

    Manor, Assaf; Rotschild, Carmel

    2014-01-01

    Improving the conversion efficiency of solar energy to electricity is most important to mankind. For single-junction photovoltaic solar-cells, the Shockley-Queisser thermodynamic efficiency limit is extensively due to the heat dissipation, inherently accompanying the quantum process of electro-chemical potential generation. Concepts such as solar thermo-photovoltaics and thermo-photonics, have been suggested to harness this wasted heat, yet efficiencies exceeding the Shockley-Queisser limit have not been demonstrated due to the challenge of operating at high temperatures. Here, we present a highly efficient converter based on endothermic photoluminescence, which operates at relative low temperatures. The thermally induced blue-shifted photoluminescence of a low-bandgap absorber is coupled to a high-bandgap photovoltaic cell. The high absorber's photo-current and the high cell's voltage results in 69% maximal theoretical conversion efficiencies. We experimentally demonstrate tenfold thermal-enhancement of usef...

  6. Amorphous Silicon-Carbon Nanostructure Photovoltaic Devices

    E-Print Network [OSTI]

    Schriver, Maria Christine

    2012-01-01

    cells: An overview. Progress in Photovoltaics: Research andnanoparticles. Progress in Photovoltaics, 19( 3):260–265,

  7. Photovoltaic technology assessment

    SciTech Connect (OSTI)

    Backus, C.E.

    1981-01-01

    After a brief review of the history of photovoltaic devices and a discussion of the cost goals set for photovoltaic modules, the status of photovoltaic technology is assessed. Included are discussions of: current applications, present industrial production, low-cost silicon production techniques, energy payback periods for solar cells, advanced materials research and development, concentrator systems, balance-of-system components. Also discussed are some nontechnical aspects, including foreign markets, US government program approach, and industry attitudes and approaches. (LEW)

  8. Solar Photovoltaic SPECIFICATION, CHECKLIST...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHECKLIST AND GUIDE Renewable Energy Ready Home Renewable Energy Ready Home SOLAR PHOTOVOLTAIC SPECIFICATION, CHECKLIST AND GUIDE i Table of Contents About the...

  9. Lab Breakthrough: Microelectronic Photovoltaics

    Broader source: Energy.gov [DOE]

    Sandia's glitter-sized photovoltaic cells are highly efficient and cost effective – the perfect combination for a game-changing technology.

  10. National Laboratory Photovoltaics Research

    Broader source: Energy.gov [DOE]

    DOE supports photovoltaic (PV) research and development and facilities at its national laboratories to accelerate progress toward achieving the SunShot Initiative's technological and economic...

  11. Concentrating Photovoltaics (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.

    2009-01-20

    Solar is growing rapidly, and the concentrating photovoltaics industry-both high- and low-concentration cell approaches-may be ready to ramp production in 2009.

  12. Photovoltaics Business Models

    SciTech Connect (OSTI)

    Frantzis, L.; Graham, S.; Katofsky, R.; Sawyer, H.

    2008-02-01

    This report summarizes work to better understand the structure of future photovoltaics business models and the research, development, and demonstration required to support their deployment.

  13. Lightweight, self-ballasting photovoltaic roofing assembly

    DOE Patents [OSTI]

    Dinwoodie, Thomas L.

    2006-02-28

    A photovoltaic roofing assembly comprises a roofing membrane (102), a plurality of photovoltaic modules (104, 106, 108) disposed as a layer on top of the roofing membrane (102), and a plurality of pre-formed spacers, pedestals or supports (112, 114, 116, 118, 120, 122) which are respectively disposed below the plurality of photovoltaic modules (104, 106, 108) and integral therewith, or fixed thereto. Spacers (112, 114, 116, 118, 120, 122) are disposed on top of roofing membrane (102). Membrane (102) is supported on conventional roof framing, and attached thereto by conventional methods. In an alternative embodiment, the roofing assembly may have insulation block (322) below the spacers (314, 314', 315, 315'). The geometry of the pre-formed spacers (112, 114, 116, 118, 120, 122, 314, 314', 315, 315') is such that wind tunnel testing has shown its maximum effectiveness in reducing net forces of wind uplift on the overall assembly. Such construction results in a simple, lightweight, self-ballasting, readily assembled roofing assembly which resists the forces of wind uplift using no roofing penetrations.

  14. Lightweight, self-ballasting photovoltaic roofing assembly

    DOE Patents [OSTI]

    Dinwoodie, T.L.

    1998-05-05

    A photovoltaic roofing assembly comprises a roofing membrane (102), a plurality of photovoltaic modules (104, 106, 108) disposed as a layer on top of the roofing membrane (102), and a plurality of pre-formed spacers, pedestals or supports (112, 114, 116, 118, 120, 122) which are respectively disposed below the plurality of photovoltaic modules (104, 106, 108) and integral therewith, or fixed thereto. Spacers (112, 114, 116, 118, 120, 122) are disposed on top of roofing membrane (102). Membrane (102) is supported on conventional roof framing, and attached thereto by conventional methods. In an alternative embodiment, the roofing assembly may have insulation block (322) below the spacers (314, 314', 315, 315'). The geometry of the preformed spacers (112, 114, 116, 118, 120, 122, 314, 314', 315, 315') is such that wind tunnel testing has shown its maximum effectiveness in reducing net forces of wind uplift on the overall assembly. Such construction results in a simple, lightweight, self-ballasting, readily assembled roofing assembly which resists the forces of wind uplift using no roofing penetrations.

  15. Lightweight, self-ballasting photovoltaic roofing assembly

    DOE Patents [OSTI]

    Dinwoodie, Thomas L. (Berkeley, CA)

    1998-01-01

    A photovoltaic roofing assembly comprises a roofing membrane (102), a plurality of photovoltaic modules (104, 106, 108) disposed as a layer on top of the roofing membrane (102), and a plurality of pre-formed spacers, pedestals or supports (112, 114, 116, 118, 120, 122) which are respectively disposed below the plurality of photovoltaic modules (104, 106, 108) and integral therewith, or fixed thereto. Spacers (112, 114, 116, 118, 120, 122) are disposed on top of roofing membrane (102). Membrane (102) is supported on conventional roof framing, and attached thereto by conventional methods. In an alternative embodiment, the roofing assembly may have insulation block (322) below the spacers (314, 314', 315, 315'). The geometry of the preformed spacers (112, 114, 116, 118, 120, 122, 314, 314', 315, 315') is such that wind tunnel testing has shown its maximum effectiveness in reducing net forces of wind uplift on the overall assembly. Such construction results in a simple, lightweight, self-ballasting, readily assembled roofing assembly which resists the forces of wind uplift using no roofing penetrations.

  16. Microsystems Enabled Photovoltaics

    ScienceCinema (OSTI)

    Gupta, Vipin; Nielson, Greg; Okandan, Murat, Granata, Jennifer; Nelson, Jeff; Haney, Mike; Cruz-Campa, Jose Luiz

    2014-06-23

    Sandia's microsystems enabled photovoltaic advances combine mature technology and tools currently used in microsystem production with groundbreaking advances in photovoltaics cell design, decreasing production and system costs while improving energy conversion efficiency. The technology has potential applications in buildings, houses, clothing, portable electronics, vehicles, and other contoured structures.

  17. Photovoltaics industry profile

    SciTech Connect (OSTI)

    1980-10-01

    A description of the status of the US photovoltaics industry is given. Principal end-user industries are identified, domestic and foreign market trends are discussed, and industry-organized and US government-organized trade promotion events are listed. Trade associations and trade journals are listed, and a photovoltaic product manufacturers list is included. (WHK)

  18. Photovoltaics Centre of Excellence The Photovoltaics Centre of Excellence

    E-Print Network [OSTI]

    New South Wales, University of

    Photovoltaics Centre of Excellence #12;The Photovoltaics Centre of Excellence is a Centre;#12;Photovoltaics involve the direct conversion of light, normally sunlight, into electricity when falling upon to its leading role in microelectronics. The Australian Research Council (ARC) Photovoltaics Centre

  19. Wind Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Power Bioenergy Power Systems Wind Power Wind Power Main Page Outreach Programs Image Gallery FAQs Links Software Hydro Power INL Home Wind Power Introduction The Wind Power...

  20. Interband Cascade Photovoltaic Cells

    SciTech Connect (OSTI)

    Yang, Rui Q.; Santos, Michael B.; Johnson, Matthew B.

    2014-09-24

    In this project, we are performing basic and applied research to systematically investigate our newly proposed interband cascade (IC) photovoltaic (PV) cells [1]. These cells follow from the great success of infrared IC lasers [2-3] that pioneered the use of quantum-engineered IC structures. This quantum-engineered approach will enable PV cells to efficiently convert infrared radiation from the sun or other heat source, to electricity. Such cells will have important applications for more efficient use of solar energy, waste-heat recovery, and power beaming in combination with mid-infrared lasers. The objectives of our investigations are to: achieve extensive understanding of the fundamental aspects of the proposed PV structures, develop the necessary knowledge for making such IC PV cells, and demonstrate prototype working PV cells. This research will focus on IC PV structures and their segments for utilizing infrared radiation with wavelengths from 2 to 5 ?m, a range well suited for emission by heat sources (1,000-2,000 K) that are widely available from combustion systems. The long-term goal of this project is to push PV technology to longer wavelengths, allowing for relatively low-temperature thermal sources. Our investigations address material quality, electrical and optical properties, and their interplay for the different regions of an IC PV structure. The tasks involve: design, modeling and optimization of IC PV structures, molecular beam epitaxial growth of PV structures and relevant segments, material characterization, prototype device fabrication and testing. At the end of this program, we expect to generate new cutting-edge knowledge in the design and understanding of quantum-engineered semiconductor structures, and demonstrate the concepts for IC PV devices with high conversion efficiencies.

  1. ANNUAL REPORT 1998 PHOTOVOLTAICS GROUP

    E-Print Network [OSTI]

    New South Wales, University of

    ANNUAL REPORT 1998 UNSW PHOTOVOLTAICS GROUP ANNUAL REPORT 1998 UNSW PHOTOVOLTAICS GROUP #12;THE UNIVERSITY OF NEW SOUTH WALES THE PHOTOVOLTAICS SPECIAL RESEARCH CENTRE IS A SPECIAL RESEARCH CENTRE OF THE AUSTRALIAN RESEARCH COUNCIL THE KEY CENTRE FOR PHOTOVOLTAIC ENGINEERING IS A KEY CENTRE OF THE AUSTRALIAN

  2. Characterization of 3D Photovoltaics

    E-Print Network [OSTI]

    Characterization of 3D Photovoltaics SEMICONDUCTORS Our goal is to provide industry with test structures and models of next-generation photovoltaics, with an initial focus on cadmium telluride (Cd (nanostructured) photovoltaic devices. Objective Impact and Customers · The U.S. Photovoltaic Industry Roadmap

  3. Metallic nanostructures for optoelectronic and photovoltaic applications

    E-Print Network [OSTI]

    Lim, Swee Hoe

    2009-01-01

    enhanced performance of photovoltaic and photodetector Proc.and H. Wagner, in Photovoltaic Specialists Conference. ,for Optoelectronic and Photovoltaic Applications by Swee Hoe

  4. DISSERTATION DEVICE CHARACTERIZATION OF CADMIUM TELLURIDE PHOTOVOLTAICS

    E-Print Network [OSTI]

    Sites, James R.

    DISSERTATION DEVICE CHARACTERIZATION OF CADMIUM TELLURIDE PHOTOVOLTAICS Submitted by Russell M Reserved #12;ABSTRACT DEVICE CHARACTERIZATION OF CADMIUM TELLURIDE PHOTOVOLTAICS Thin-film photovoltaics

  5. Amorphous Silicon-Carbon Nanostructure Photovoltaic Devices

    E-Print Network [OSTI]

    Schriver, Maria Christine

    2012-01-01

    costs for installed photovoltaic systems. This graph showsOne dollar per watt photovoltaic systems workshop sum- mary,costs for installed photovoltaic systems. This graph shows

  6. A Unified Framework for Reliability Assessment of Wind Energy Conversion Systems

    E-Print Network [OSTI]

    Dominguez-Garcia, Alejandro

    , such as photo-voltaics or hydrogen fuel cells, research has led to various preliminary designs. However, wind analysis, based on load and wind generation curves, is presented. The goal is to produce an optimal

  7. Photovoltaic Cell Performance Basics

    Broader source: Energy.gov [DOE]

    Photovoltaic (PV), or solar cells use the energy in sunlight to produce electricity. However, the amount of electricity produced depends on the quality of the light available and the performance of the PV cell.

  8. Photovoltaic roof heat flux

    E-Print Network [OSTI]

    Samady, Mezhgan Frishta

    2011-01-01

    e l Atmosphere ceiling, back panel roof, exposed roof insideSAN DIEGO Photovoltaic Roof Heat Flux A Thesis submitted i no n Convection Exposed Roof Temperature Seasonal Temperature

  9. Photovoltaic decision analysis

    E-Print Network [OSTI]

    Goldman, Neil L.

    1977-01-01

    This paper is concerned with the development and implementation of a methodology that analyzes information relating to the choice between flat plate and concentrator technologies for photovoltaic development. A

  10. Crystalline Silicon Photovoltaics Research

    Broader source: Energy.gov [DOE]

    DOE supports crystalline silicon photovoltaic (PV) research and development efforts that lead to market-ready technologies. Below are a list of the projects, summary of the benefits, and discussion...

  11. Organic Photovoltaics Research

    Broader source: Energy.gov [DOE]

    DOE funds research and development projects related to organic photovoltaics (OPV) due to the unique benefits of the technology. Below is a list of the projects, summary of the benefits, and...

  12. Three-dimensional photovoltaics

    E-Print Network [OSTI]

    Myers, Bryan

    The concept of three-dimensional (3D) photovoltaics is explored computationally using a genetic algorithm to optimize the energy production in a day for arbitrarily shaped 3D solar cells confined to a given area footprint ...

  13. Organic photovoltaics and concentrators

    E-Print Network [OSTI]

    Mapel, Jonathan King

    2008-01-01

    The separation of light harvesting and charge generation offers several advantages in the design of organic photovoltaics and organic solar concentrators for the ultimate end goal of achieving a lower cost solar electric ...

  14. Photovoltaic solar cell

    DOE Patents [OSTI]

    Nielson, Gregory N; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J

    2014-05-20

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electricity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  15. Photovoltaic Research Facilities

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy (DOE) funds photovoltaic (PV) research and development (R&D) at its national laboratory facilities located throughout the country. To encourage further innovation,...

  16. Photovoltaic solar cell

    DOE Patents [OSTI]

    Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

    2013-11-26

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electicity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  17. Amonix Photovoltaic System

    Broader source: Energy.gov [DOE]

    This photograph features the Amonix and Arizona Public Service (APS) partnership to install the world’s largest utility-scale concentrating photovoltaic (CPV) power plant in 2002. Photovoltaic (PV) systems at the APS facility use a combination of technologies. The systems in the foreground are single-axis tracking flat-plate silicon systems. Shown in the upper right are three large (35 kilowatt) Amonix CPV.

  18. Photovoltaics: The next generation

    SciTech Connect (OSTI)

    Wilson, A.

    1986-08-01

    The development of photovoltaics in the United States, with a few notable exceptions, has been carried out by the oil industry. Companies such as Arco, Exxon, Mobil and Sohio have played a tremendously important role in bringing photovoltaic technology to its current state of development. Many of these companies are continuing very active programs in pv, including the investigation of new and potentially far-reaching technologies.

  19. Photovoltaic systems and applications

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    Abstracts are given of presentations given at a project review meeting held at Albuquerque, NM. The proceedings cover the past accomplishments and current activities of the Photovoltaic Systems Research, Balance-of-System Technology Development and System Application Experiments Projects at Sandia National Laboratories. The status of intermediate system application experiments and residential system analysis is emphasized. Some discussion of the future of the Photovoltaic Program in general, and the Sandia projects in particular is also presented.

  20. Photovoltaic module and interlocked stack of photovoltaic modules

    DOE Patents [OSTI]

    Wares, Brian S.

    2014-09-02

    One embodiment relates to an arrangement of photovoltaic modules configured for transportation. The arrangement includes a plurality of photovoltaic modules, each photovoltaic module including a frame. A plurality of individual male alignment features and a plurality of individual female alignment features are included on each frame. Adjacent photovoltaic modules are interlocked by multiple individual male alignment features on a first module of the adjacent photovoltaic modules fitting into and being surrounded by corresponding individual female alignment features on a second module of the adjacent photovoltaic modules. Other embodiments, features and aspects are also disclosed.

  1. REGULATIONS ON PHOTOVOLTAIC MODULE DISPOSAL AND RECYCLING.

    SciTech Connect (OSTI)

    FTHENAKIS,V.

    2001-01-29

    Environmental regulations can have a significant impact on product use, disposal, and recycling. This report summarizes the basic aspects of current federal, state and international regulations which apply to end-of-life photovoltaic (PV) modules and PV manufacturing scrap destined for disposal or recycling. It also discusses proposed regulations for electronics that may set the ground of what is to be expected in this area in the near future. In the US, several states have started programs to support the recycling of electronic equipment, and materials destined for recycling often are excepted from solid waste regulations during the collection, transfer, storage and processing stages. California regulations are described separately because they are different from those of most other states. International agreements on the movement of waste between different countries may pose barriers to cross-border shipments. Currently waste moves freely among country members of the Organization of Economic Cooperation and Development (OECD), and between the US and the four countries with which the US has bilateral agreements. However, it is expected, that the US will adopt the rules of the Basel Convention (an agreement which currently applies to 128 countries but not the US) and that the Convection's waste classification system will influence the current OECD waste-handling system. Some countries adopting the Basel Convention consider end-of-life electronics to be hazardous waste, whereas the OECD countries consider them to be non-hazardous. Also, waste management regulations potentially affecting electronics in Germany and Japan are mentioned in this report.

  2. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Photovoltaics, Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Combined Heat & Power, Wind (Small), Hydroelectric (Small), Other Distributed Generation Technologies...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Photovoltaics, Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Combined Heat & Power, Wind (Small), Hydroelectric (Small), Other Distributed Generation Technologies Net...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Tidal, Wave, Wind (Small), Hydroelectric (Small) Renewable Energy Systems Exemption...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Tidal, Wave, Wind (Small), Hydroelectric (Small) Alternative Energy and Energy...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Tidal, Wave, Wind (Small), Other Distributed Generation Technologies Municipal Energy Reduction...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Tidal, Wave, Wind (Small), Hydroelectric (Small) Renewable Energy Systems Exemption Recognized...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Tidal, Wave, Wind (Small), Hydroelectric (Small) Alternative Energy and Energy Conservation...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Electric, Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Combined Heat & Power, Wind (Small), Hydroelectric...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Geothermal Electric, Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Combined Heat & Power, Wind (Small),...

  11. Sustainability of Large Photovoltaic Deployment: Environmental Research

    E-Print Network [OSTI]

    Homes, Christopher C.

    Sustainability of Large Photovoltaic Deployment: Environmental Research Sustainability of Large Photovoltaic Deployment: Environmental ResearchEnvironmental ResearchEnvironmental Research Vasilis Fthenakis and Te from Cadmium Telluride Photovoltaic Manufacturing Scrap, Progress in Photovoltaics: Research

  12. General Services Administration Photovoltaics Project in Sacramento...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    General Services Administration Photovoltaics Project in Sacramento, California General Services Administration Photovoltaics Project in Sacramento, California Document describes a...

  13. Photovoltaic Subcontract Program

    SciTech Connect (OSTI)

    Surek, Thomas; Catalano, Anthony

    1993-03-01

    This report summarizes the fiscal year (FY) 1992 progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL)-formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Crystalline Materials and Advanced Concepts project, the Polycrystalline Thin Films project, Amorphous Silicon Research project, the Photovoltaic Manufacturing Technology (PVMaT) project, PV Module and System Performance and Engineering project, and the PV Analysis and Applications Development project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1992, and future research directions.

  14. Nanowires enabling strained photovoltaics

    SciTech Connect (OSTI)

    Greil, J.; Bertagnolli, E.; Lugstein, A.; Birner, S.

    2014-04-21

    Photovoltaic nano-devices have largely been relying on charge separation in conventional p-n junctions. Junction formation via doping, however, imposes major challenges in process control. Here, we report on a concept for photovoltaic energy conversion at the nano scale without the need for intentional doping. Our approach relies on charge carrier separation in inhomogeneously strained germanium nanowires (Ge NWs). This concept utilizes the strain-induced gradient in bandgap along tapered NWs. Experimental data confirms the feasibility of strain-induced charge separation in individual vapor-liquid-solid grown Ge NW devices with an internal quantum efficiency of ?5%. The charge separation mechanism, though, is not inherently limited to a distinct material. Our work establishes a class of photovoltaic nano-devices with its opto-electronic properties engineered by size, shape, and applied strain.

  15. Technical Potential for Solar Photovoltaics

    E-Print Network [OSTI]

    Branoff, Theodore J.

    Technical Potential for Solar Photovoltaics in Illinois May 2013 #12;Authors ...................................................................................................... 1.1 Utility-Scale Solar Photovoltaic Systems in the U.S. ........................... 1.2 Previous ...................................................................................................... 3.1 Optimization Matrix for Large-Scale PV System Applications ......... 3.2 Photovoltaic

  16. High efficiency photovoltaic device

    DOE Patents [OSTI]

    Guha, Subhendu (Troy, MI); Yang, Chi C. (Troy, MI); Xu, Xi Xiang (Findlay, OH)

    1999-11-02

    An N-I-P type photovoltaic device includes a multi-layered body of N-doped semiconductor material which has an amorphous, N doped layer in contact with the amorphous body of intrinsic semiconductor material, and a microcrystalline, N doped layer overlying the amorphous, N doped material. A tandem device comprising stacked N-I-P cells may further include a second amorphous, N doped layer interposed between the microcrystalline, N doped layer and a microcrystalline P doped layer. Photovoltaic devices thus configured manifest improved performance, particularly when configured as tandem devices.

  17. Concentrating photovoltaic solar panel

    DOE Patents [OSTI]

    Cashion, Steven A; Bowser, Michael R; Farrelly, Mark B; Hines, Braden E; Holmes, Howard C; Johnson, Jr., Richard L; Russell, Richard J; Turk, Michael F

    2014-04-15

    The present invention relates to photovoltaic power systems, photovoltaic concentrator modules, and related methods. In particular, the present invention features concentrator modules having interior points of attachment for an articulating mechanism and/or an articulating mechanism that has a unique arrangement of chassis members so as to isolate bending, etc. from being transferred among the chassis members. The present invention also features adjustable solar panel mounting features and/or mounting features with two or more degrees of freedom. The present invention also features a mechanical fastener for secondary optics in a concentrator module.

  18. Cost-minimized combinations of wind power, solar power and electrochemical storage, powering the grid up to 99.9% of the time

    E-Print Network [OSTI]

    Firestone, Jeremy

    wind, and photovoltaics) with electrochemical storage (batteries and fuel cells), incorporated if we optimize the mix of generation and storage technologies. Ó 2012 Published by Elsevier B

  19. Photovoltaic Energy Conversion

    E-Print Network [OSTI]

    Glashausser, Charles

    Photovoltaic Energy Conversion Frank Zimmermann #12;Solar Electricity Generation Consumes no fuel Electrode Valence Band Conduction Band Fermi Level I- /I3 - Redox Potential Dye 1D 3D* 1D* Energy Levels Counter Electrode Valence Band Conduction Band Fermi Level I- /I3 - Redox Potential Dye 1D 3D* 1D* Energy

  20. Formed photovoltaic module busbars

    DOE Patents [OSTI]

    Rose, Douglas; Daroczi, Shan; Phu, Thomas

    2015-11-10

    A cell connection piece for a photovoltaic module is disclosed herein. The cell connection piece includes an interconnect bus, a plurality of bus tabs unitarily formed with the interconnect bus, and a terminal bus coupled with the interconnect bus. The plurality of bus tabs extend from the interconnect bus. The terminal bus includes a non-linear portion.

  1. Photovoltaics (Fact Sheet)

    SciTech Connect (OSTI)

    DOE Solar Energy Technologies Program

    2011-10-13

    DOE works with national labs, academia, and industry to support the domestic photovoltaics (PV) industry and research enterprise. SunShot aims to achieve widespread, unsubsidized cost-competitiveness through an applied research and development (R&D) portfolio spanning PV materials, devices, and manufacturing technologies.

  2. Photovoltaics (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    DOE works with national labs, academia, and industry to support the domestic photovoltaics (PV) industry and research enterprise. SunShot aims to achieve widespread, unsubsidized cost-competitiveness through an applied research and development (R&D) portfolio spanning PV materials, devices, and manufacturing technologies.

  3. Photovoltaics (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-11-01

    The U.S. Department of Energy (DOE) works with industry, academia, national laboratories, and other government agencies to advance solar photovoltaics (PV) domestically. The SunShot Initiative aims to achieve widespread, unsubsidized cost-competitiveness through an applied research and development (R&D) portfolio spanning PV materials, devices, and manufacturing technologies.

  4. Thin film photovoltaic cell

    DOE Patents [OSTI]

    Meakin, John D. (Newark, DE); Bragagnolo, Julio (Newark, DE)

    1982-01-01

    A thin film photovoltaic cell having a transparent electrical contact and an opaque electrical contact with a pair of semiconductors therebetween includes utilizing one of the electrical contacts as a substrate and wherein the inner surface thereof is modified by microroughening while being macro-planar.

  5. Photovoltaic module and interlocked stack of photovoltaic modules

    DOE Patents [OSTI]

    Wares, Brian S.

    2012-09-04

    One embodiment relates to an arrangement of photovoltaic modules configured for transportation. The arrangement includes a plurality of photovoltaic modules, each photovoltaic module including a frame having at least a top member and a bottom member. A plurality of alignment features are included on the top member of each frame, and a plurality of alignment features are included on the bottom member of each frame. Adjacent photovoltaic modules are interlocked by the alignment features on the top member of a lower module fitting together with the alignment features on the bottom member of an upper module. Other embodiments, features and aspects are also disclosed.

  6. Temperature compensated photovoltaic array

    DOE Patents [OSTI]

    Mosher, D.M.

    1997-11-18

    A temperature compensated photovoltaic module comprises a series of solar cells having a thermally activated switch connected in parallel with several of the cells. The photovoltaic module is adapted to charge conventional batteries having a temperature coefficient differing from the temperature coefficient of the module. The calibration temperatures of the switches are chosen whereby the colder the ambient temperature for the module, the more switches that are on and form a closed circuit to short the associated solar cells. By shorting some of the solar cells as the ambient temperature decreases, the battery being charged by the module is not excessively overcharged at lower temperatures. PV module is an integrated solution that is reliable and inexpensive. 2 figs.

  7. Temperature compensated photovoltaic array

    DOE Patents [OSTI]

    Mosher, Dan Michael (Plano, TX)

    1997-11-18

    A temperature compensated photovoltaic module (20) comprised of a series of solar cells (22) having a thermally activated switch (24) connected in parallel with several of the cells (22). The photovoltaic module (20) is adapted to charge conventional batteries having a temperature coefficient (TC) differing from the temperature coefficient (TC) of the module (20). The calibration temperatures of the switches (24) are chosen whereby the colder the ambient temperature for the module (20), the more switches that are on and form a closed circuit to short the associated solar cells (22). By shorting some of the solar cells (22) as the ambient temperature decreases, the battery being charged by the module (20) is not excessively overcharged at lower temperatures. PV module (20) is an integrated solution that is reliable and inexpensive.

  8. The Market Value and Cost of Solar Photovoltaic Electricity Production

    E-Print Network [OSTI]

    Borenstein, Severin

    2008-01-01

    Large Grid- Connected Photovoltaic Systems in California andEconomics of Commercial Photovoltaic Systems in California,”

  9. Photovoltaic-thermal collectors

    DOE Patents [OSTI]

    Cox, III, Charles H. (Carlisle, MA)

    1984-04-24

    A photovoltaic-thermal solar cell including a semiconductor body having antireflective top and bottom surfaces and coated on each said surface with a patterned electrode covering less than 10% of the surface area. A thermal-absorbing surface is spaced apart from the bottom surface of the semiconductor and a heat-exchange fluid is passed between the bottom surface and the heat-absorbing surface.

  10. Iron Chalcogenide Photovoltaic Absorbers

    SciTech Connect (OSTI)

    Yu, Liping; Lany, Stephan; Kykyneshi, Robert; Jieratum, Vorranutch; Ravichandran, Ram; Pelatt, Brian; Altschul, Emmeline; Platt, Heather A. S.; Wager, John F.; Keszler, Douglas A.; Zunger, Alex

    2011-08-10

    An integrated computational and experimental study of FeS? pyrite reveals that phase coexistence is an important factor limiting performance as a thin-film solar absorber. This phase coexistence is suppressed with the ternary materials Fe?SiS? and Fe?GeS?, which also exhibit higher band gaps than FeS?. Thus, the ternaries provide a new entry point for development of thin-film absorbers and high-efficiency photovoltaics.

  11. Sandia Photovoltaics Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool FitsProjectData Dashboard RutlandSTEAB's PrioritiesFuelofPhotovoltaics Program

  12. Photovoltaic self-assembly.

    SciTech Connect (OSTI)

    Lavin, Judith; Kemp, Richard Alan; Stewart, Constantine A.

    2010-10-01

    This late-start LDRD was focused on the application of chemical principles of self-assembly on the ordering and placement of photovoltaic cells in a module. The drive for this chemical-based self-assembly stems from the escalating prices in the 'pick-and-place' technology currently used in the MEMS industries as the size of chips decreases. The chemical self-assembly principles are well-known on a molecular scale in other material science systems but to date had not been applied to the assembly of cells in a photovoltaic array or module. We explored several types of chemical-based self-assembly techniques, including gold-thiol interactions, liquid polymer binding, and hydrophobic-hydrophilic interactions designed to array both Si and GaAs PV chips onto a substrate. Additional research was focused on the modification of PV cells in an effort to gain control over the facial directionality of the cells in a solvent-based environment. Despite being a small footprint research project worked on for only a short time, the technical results and scientific accomplishments were significant and could prove to be enabling technology in the disruptive advancement of the microelectronic photovoltaics industry.

  13. Photovoltaic module reliability workshop

    SciTech Connect (OSTI)

    Mrig, L. (ed.)

    1990-01-01

    The paper and presentations compiled in this volume form the Proceedings of the fourth in a series of Workshops sponsored by Solar Energy Research Institute (SERI/DOE) under the general theme of photovoltaic module reliability during the period 1986--1990. The reliability Photo Voltaic (PV) modules/systems is exceedingly important along with the initial cost and efficiency of modules if the PV technology has to make a major impact in the power generation market, and for it to compete with the conventional electricity producing technologies. The reliability of photovoltaic modules has progressed significantly in the last few years as evidenced by warranties available on commercial modules of as long as 12 years. However, there is still need for substantial research and testing required to improve module field reliability to levels of 30 years or more. Several small groups of researchers are involved in this research, development, and monitoring activity around the world. In the US, PV manufacturers, DOE laboratories, electric utilities and others are engaged in the photovoltaic reliability research and testing. This group of researchers and others interested in this field were brought together under SERI/DOE sponsorship to exchange the technical knowledge and field experience as related to current information in this important field. The papers presented here reflect this effort.

  14. Scattering Properties of nanostructures : applications to photovoltaics

    E-Print Network [OSTI]

    Derkacs, Daniel

    2009-01-01

    Arya, D. Carlson, Prog. Photovoltaics 10, p. 69 (2002). K.and J. Bailat, Prog. in Photovoltaics 12 , 113 (2004). M.and A. Mart?´, Progress in Photovoltaics 9, p. 73 (2001). S.

  15. Photon management in thermal and solar photovoltaics

    E-Print Network [OSTI]

    Hu, Lu

    2008-01-01

    Photovoltaics is a technology that directly converts photon energy into electrical energy. Depending on the photon source, photovoltaic systems can be categorized into two groups: solar photovoltaics (PV) and thermophotovoltaics ...

  16. Wind Tunnel 

    E-Print Network [OSTI]

    Unknown

    2011-08-17

    The increased interest in the offshore wind resource in both industry and academic and the extension of the wind field where offshore wind turbine can be deployed has stimulated quite a number of offshore wind turbines concepts. This thesis presents...

  17. Monitoring SERC Technologies — Solar Photovoltaics

    Broader source: Energy.gov [DOE]

    A webinar by National Renewable Energy Laboratory's Market Transformation Center electrical engineer Peter McNutt about Solar Photovoltaics and how to properly monitor its installation.

  18. Photovoltaics for Residential Buildings Webinar

    Broader source: Energy.gov [DOE]

    A webinar by National Renewable Energy Laboratory (NREL) Senior Engineer Otto VanGeet on using solar photovoltaic (PV) systems to provide electricity for homes.

  19. Utility-scale photovoltaic concentrators

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The photovoltaics concentrators section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  20. Southwest Photovoltaic Systems Inc | Open Energy Information

    Open Energy Info (EERE)

    Southwest Photovoltaic Systems Inc Jump to: navigation, search Name: Southwest Photovoltaic Systems Inc Place: Tomball, Texas Zip: 77375 Product: Distributor of small scale PV...

  1. ULTRATHIN FLEXIBLE CRYSTALLINE SILICON: MICROSYSTEMS ENABLED PHOTOVOLTAICS

    E-Print Network [OSTI]

    ULTRATHIN FLEXIBLE CRYSTALLINE SILICON: MICROSYSTEMS ENABLED PHOTOVOLTAICS Jose L. Cruz Photovoltaics (MEPV) is a technique to create solar cells relying on tools from the microsystems and integrated

  2. Organic Photovoltaics Experiments Showcase 'Superfacility' Concept

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organic Photovoltaics Experiments Showcase 'Superfacility' Concept Organic Photovoltaics Experiments Showcase 'Superfacility' Concept Collaboration Key to Enabling On-The-Fly HPC...

  3. Ris Energy Report 5 Photovoltaics 6.3.1 Photovoltaics

    E-Print Network [OSTI]

    kREbs, RIsø NATIONAL LAbORATORy, DENMARk The market for photovoltaics (PV, or solar cells) has grown? Crystalline silicon remains the standard PV technology, with a market share that has increased from 85 Photovoltaics 6.3.1 less than half the market. Figure 18 shows that the cost of traditional PV technology has

  4. WIND ENERGY Wind Energ. (2014)

    E-Print Network [OSTI]

    Peinke, Joachim

    2014-01-01

    to generate in this way wind speed fluctuations with similar statistics as observed in nature. Forces wereWIND ENERGY Wind Energ. (2014) Published online in Wiley Online Library (wileyonlinelibrary wind inflow conditions M. R. Luhur, J. Peinke, J. Schneemann and M. Wächter ForWind-Center for Wind

  5. Graphite-based photovoltaic cells

    DOE Patents [OSTI]

    Lagally, Max (Madison, WI); Liu, Feng (Salt Lake City, UT)

    2010-12-28

    The present invention uses lithographically patterned graphite stacks as the basic building elements of an efficient and economical photovoltaic cell. The basic design of the graphite-based photovoltaic cells includes a plurality of spatially separated graphite stacks, each comprising a plurality of vertically stacked, semiconducting graphene sheets (carbon nanoribbons) bridging electrically conductive contacts.

  6. Photovoltaic panel clamp

    DOE Patents [OSTI]

    Mittan, Margaret Birmingham (Oakland, CA); Miros, Robert H. J. (Fairfax, CA); Brown, Malcolm P. (San Francisco, CA); Stancel, Robert (Loss Altos Hills, CA)

    2012-06-05

    A photovoltaic panel clamp includes an upper and lower section. The interface between the assembled clamp halves and the module edge is filled by a flexible gasket material, such as EPDM rubber. The gasket preferably has small, finger like protrusions that allow for easy insertion onto the module edge while being reversed makes it more difficult to remove them from the module once installed. The clamp includes mounting posts or an integral axle to engage a bracket. The clamp also may include a locking tongue to secure the clamp to a bracket.

  7. Photovoltaic panel clamp

    DOE Patents [OSTI]

    Brown, Malcolm P.; Mittan, Margaret Birmingham; Miros, Robert H. J.; Stancel, Robert

    2013-03-19

    A photovoltaic panel clamp includes an upper and lower section. The interface between the assembled clamp halves and the module edge is filled by a flexible gasket material, such as EPDM rubber. The gasket preferably has small, finger like protrusions that allow for easy insertion onto the module edge while being reversed makes it more difficult to remove them from the module once installed. The clamp includes mounting posts or an integral axle to engage a bracket. The clamp also may include a locking tongue to secure the clamp to a bracket.

  8. Bracket for photovoltaic modules

    DOE Patents [OSTI]

    Ciasulli, John; Jones, Jason

    2014-06-24

    Brackets for photovoltaic ("PV") modules are described. In one embodiment, a saddle bracket has a mounting surface to support one or more PV modules over a tube, a gusset coupled to the mounting surface, and a mounting feature coupled to the gusset to couple to the tube. The gusset can have a first leg and a second leg extending at an angle relative to the mounting surface. Saddle brackets can be coupled to a torque tube at predetermined locations. PV modules can be coupled to the saddle brackets. The mounting feature can be coupled to the first gusset and configured to stand the one or more PV modules off the tube.

  9. Thin film photovoltaic device

    DOE Patents [OSTI]

    Catalano, A.W.; Bhushan, M.

    1982-08-03

    A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids. 5 figs.

  10. Photovoltaic manufacturing technology

    SciTech Connect (OSTI)

    Wohlgemuth, J.H.; Whitehouse, D.; Wiedeman, S.; Catalano, A.W.; Oswald, R. (Solarex Corp., Frederick, MD (United States))

    1991-12-01

    This report identifies steps leading to manufacturing large volumes of low-cost, large-area photovoltaic (PV) modules. Both crystalline silicon and amorphous silicon technologies were studied. Cost reductions for each step were estimated and compared to Solarex Corporation's manufacturing costs. A cost model, a simple version of the SAMICS methodology developed by the Jet Propulsion Laboratory (JPL), projected PV selling prices. Actual costs of materials, labor, product yield, etc., were used in the cost model. The JPL cost model compared potential ways of lowering costs. Solarex identified the most difficult technical challenges that, if overcome, would reduce costs. Preliminary research plans were developed to solve the technical problems. 13 refs.

  11. Photovoltaic Degradation Risk: Preprint

    SciTech Connect (OSTI)

    Jordan, D. C.; Kurtz, S. R.

    2012-04-01

    The ability to accurately predict power delivery over the course of time is of vital importance to the growth of the photovoltaic (PV) industry. Important cost drivers include the efficiency with which sunlight is converted into power, how this relationship changes over time, and the uncertainty in this prediction. An accurate quantification of power decline over time, also known as degradation rate, is essential to all stakeholders - utility companies, integrators, investors, and researchers alike. In this paper we use a statistical approach based on historical data to quantify degradation rates, discern trends and quantify risks related to measurement uncertainties, number of measurements and methodologies.

  12. Thin film photovoltaic device

    DOE Patents [OSTI]

    Catalano, Anthony W. (Wilmington, DE); Bhushan, Manjul (Wilmington, DE)

    1982-01-01

    A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids.

  13. Photovoltaics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLC JumpPhono Solar Jump to: navigation,asPhotovoltaics

  14. Photovoltaic System Fault Detection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access| DepartmentPeerFederal FleetUp in thePhotonPhotosPhotovoltaic

  15. Sandia Energy - Photovoltaics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)Geothermal Energy &WaterNewPhotoionization MassPhotovoltaic

  16. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Tidal, Wave, Wind (Small), Hydroelectric (Small) Solar and Wind Energy Credit (Corporate)...

  17. Optimal Design of Hybrid Energy System with PV/ Wind Turbine/ Storage: A Case Study

    E-Print Network [OSTI]

    Wierman, Adam

    Optimal Design of Hybrid Energy System with PV/ Wind Turbine/ Storage: A Case Study Rui Huang with photovoltaic (PV) arrays, wind turbines, and battery storage is designed based on empirical weather and load with renewable resources such as solar and wind power, supplemented with battery storage in a case study. One

  18. High Altitude Wind Power Systems: A Survey on Flexible Power Kites Mariam Ahmed*

    E-Print Network [OSTI]

    Boyer, Edmond

    High Altitude Wind Power Systems: A Survey on Flexible Power Kites Mariam Ahmed* Grenoble (G2ELab) 38402 Saint-Martin d'Heres, France Abstract-- High altitude wind energy (HAWE) is a new interest in sustainable development, renewable energy systems, such as solar photo-voltaic, wind and tidal

  19. Simulation of electricity supply of an Atlantic island by offshore wind turbines and wave

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Simulation of electricity supply of an Atlantic island by offshore wind turbines and wave energy community. Key words: Wave energy, offshore wind turbines, marine energy 1 Introduction Marine renewables installations of a few kW like small wind turbines or photovoltaic cells installed to provide electricity

  20. Ballasted photovoltaic module and module arrays

    DOE Patents [OSTI]

    Botkin, Jonathan (El Cerrito, CA); Graves, Simon (Berkeley, CA); Danning, Matt (Oakland, CA)

    2011-11-29

    A photovoltaic (PV) module assembly including a PV module and a ballast tray. The PV module includes a PV device and a frame. A PV laminate is assembled to the frame, and the frame includes an arm. The ballast tray is adapted for containing ballast and is removably associated with the PV module in a ballasting state where the tray is vertically under the PV laminate and vertically over the arm to impede overt displacement of the PV module. The PV module assembly can be installed to a flat commercial rooftop, with the PV module and the ballast tray both resting upon the rooftop. In some embodiments, the ballasting state includes corresponding surfaces of the arm and the tray being spaced from one another under normal (low or no wind) conditions, such that the frame is not continuously subjected to a weight of the tray.

  1. Photovoltaic array mounting apparatus, systems, and methods

    DOE Patents [OSTI]

    West, John Raymond; Atchley, Brian; Hudson, Tyrus Hawkes; Johansen, Emil

    2014-12-02

    An apparatus for mounting a photovoltaic (PV) module on a surface, including a support with an upper surface, a lower surface, tabs, one or more openings, and a clip comprising an arm and a notch, where the apparatus resists wind forces and seismic forces and creates a grounding electrical bond between the PV module, support, and clip. The invention further includes a method for installing PV modules on a surface that includes arranging supports in rows along an X axis and in columns along a Y axis on a surface such that in each row the distance between two neighboring supports does not exceed the length of the longest side of a PV module and in each column the distance between two neighboring supports does not exceed the length of the shortest side of a PV module.

  2. NREL Center for Photovoltaics

    ScienceCinema (OSTI)

    None

    2013-05-29

    Solar cells, also called photovoltaics (PV) by solar cell scientists, convert sunlight directly into electricity. Solar cells are often used to power calculators and watches. The performance of a solar cell is measured in terms of its efficiency at turning sunlight into electricity. Only sunlight of certain energies will work efficiently to create electricity, and much of it is reflected or absorbed by the material that make up the cell. Because of this, a typical commercial solar cell has an efficiency of 15%?about one-sixth of the sunlight striking the cell generates electricity. Low efficiencies mean that larger arrays are needed, and that means higher cost. Improving solar cell efficiencies while holding down the cost per cell is an important goal of the PV industry, researchers at the National Renewable Energy Laboratory (NREL) and other U.S. Department of Energy (DOE) laboratories, and they have made significant progress. The first solar cells, built in the 1950s, had efficiencies of less than 4%. For a text version of this video visit http://www.nrel.gov/learning/re_photovoltaics_video_text.html

  3. Collegiate Wind Competition Wind Tunnel Specifications | Department...

    Energy Savers [EERE]

    Wind Tunnel Specifications Collegiate Wind Competition Wind Tunnel Specifications Collegiate Wind Competition Wind Tunnel Specifications Teams competing in the U.S. Department of...

  4. Photovoltaic Product Directory and Buyers Guide

    SciTech Connect (OSTI)

    Watts, R.L.; Smith, S.A.; Dirks, J.A.; Mazzucchi, R.P.; Lee, V.E.

    1984-04-01

    The directory guide explains photovoltaic systems briefly and shows what products are available off-the-shelf. Information is given to assist in designing a photovoltaic system and on financial incentives. Help is given for determining if photovoltaic products can meet a particular buyer's needs, and information is provided on actual photovoltaic user's experiences. Detailed information is appended on various financial incentives available from state and federal governments, sources of additional information on photovoltaics, sources of various photovoltaic products, and a listing of addresses of photovoltaic products suppliers. (LEW)

  5. Nebraska Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind...

  6. Iowa Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind...

  7. Kansas Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind...

  8. Vermont Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind...

  9. WIND ENERGY Wind Energ. (2014)

    E-Print Network [OSTI]

    2014-01-01

    , wind power has been expanding globally in recent years and it has become a dominant renewable energy the turbulent atmosphere and the wind turbine wake in order to optimize the design of the wind turbine as wellWIND ENERGY Wind Energ. (2014) Published online in Wiley Online Library (wileyonlinelibrary

  10. High Performance Photovoltaic Project Overview

    SciTech Connect (OSTI)

    Symko-Davies, M.; McConnell, R.

    2005-01-01

    The High-Performance Photovoltaic (HiPerf PV) Project was initiated by the U.S. Department of Energy to substantially increase the viability of photovoltaics (PV) for cost-competitive applications so that PV can contribute significantly to our energy supply and environment in the 21st century. To accomplish this, the National Center for Photovoltaics (NCPV) directs in-house and subcontracted research in high-performance polycrystalline thin-film and multijunction concentrator devices. In this paper, we describe the recent research accomplishments in the in-house directed efforts and the research efforts under way in the subcontracted area.

  11. Photovoltaic module with adhesion promoter

    DOE Patents [OSTI]

    2013-10-08

    Photovoltaic modules with adhesion promoters and methods for fabricating photovoltaic modules with adhesion promoters are described. A photovoltaic module includes a solar cell including a first surface and a second surface, the second surface including a plurality of interspaced back-side contacts. A first glass layer is coupled to the first surface by a first encapsulating layer. A second glass layer is coupled to the second surface by a second encapsulating layer. At least a portion of the second encapsulating layer is bonded directly to the plurality of interspaced back-side contacts by an adhesion promoter.

  12. Fabrication and Characterization of Organic/Inorganic Photovoltaic Devices

    E-Print Network [OSTI]

    Guvenc, Ali Bilge

    2012-01-01

    Third generation photovoltaics: solar cells for 2020 andfor use in organic photovoltaics, Solar Energy Materials andSolar cell efficiency tables (Version 27), Progress in Photovoltaics

  13. Optical Design Considerations for High Conversion Efficiency in Photovoltaics

    E-Print Network [OSTI]

    Ganapati, Vidya

    2015-01-01

    thermophotovoltaics. In solar photovoltaics, radiation fromto the efficiency of solar photovoltaics can have largeof efficiency in solar photovoltaics, and looks at how

  14. Financing Non-Residential Photovoltaic Projects: Options and Implications

    E-Print Network [OSTI]

    Bolinger, Mark

    2009-01-01

    Coggeshall. 2008. Solar Photovoltaic Financing: DeploymentEconomics of Commercial Photovoltaic Systems in California.Financing Non-Residential Photovoltaic Projects: Options and

  15. Statistical Methods for Enhanced Metrology in Semiconductor/Photovoltaic Manufacturing

    E-Print Network [OSTI]

    Zeng, Dekong

    2012-01-01

    and Simulation of Photovoltaic Arrays. ” IEEE Trans. PowerSolar Cell Variability Photovoltaic (PV) cells manufacturedmodeling method for photovoltaic cells. ” in Proc. IEEE 35th

  16. Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies

    E-Print Network [OSTI]

    Wang, Chunhua

    2011-01-01

    and V.U. Ho?mann. Photovoltaic Solar Energy Gen- eration.Concentrations for Photovoltaic Technologies A dissertationThirteenth IEEE Photovoltaic Specialists Conference- 1978—

  17. Statistical Methods for Enhanced Metrology in Semiconductor/Photovoltaic Manufacturing

    E-Print Network [OSTI]

    Zeng, Dekong

    2012-01-01

    modeling method for photovoltaic cells. ” in Proc. IEEE 35thlosses in solar photovoltaic cell networks. ” Energy 32:Modeling of Solar Cell Variability Photovoltaic (PV) cells

  18. The Market Value and Cost of Solar Photovoltaic Electricity Production

    E-Print Network [OSTI]

    Borenstein, Severin

    2008-01-01

    Production of Solar Photovoltaic Cells”, Center for theconcerns is solar photovoltaic cells (PVs), which captureProduction of Solar Photovoltaic Cells Solar PV cells

  19. Structure-Function Relationships in Semiconducting Polymers for Organic Photovoltaics

    E-Print Network [OSTI]

    Kavulak, David Fredric Joel

    2010-01-01

    film transistors 1-4 and photovoltaic cells. 5-9 Among thesePhotovoltaic Cell .the materials, all photovoltaic cells operate on the basic

  20. Fabrication and Characterization of Organic/Inorganic Photovoltaic Devices

    E-Print Network [OSTI]

    Guvenc, Ali Bilge

    2012-01-01

    Diodes, Photodiodes, and Photovoltaic Cells, Applied Physicsprocessable polymer photovoltaic cells by self-organizationand their influence on photovoltaic cells, Solar Energy

  1. Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies

    E-Print Network [OSTI]

    Wang, Chunhua

    2011-01-01

    the manufacturing of solar cells and photovoltaic arrays hasfor providing us Photovoltaic cells, lumines- cent materialsthe currently available photovoltaic cells. The property of

  2. Charge transport in hybrid nanorod-polymer composite photovoltaic cells

    E-Print Network [OSTI]

    Huynh, Wendy U.; Dittmer, Janke J.; Teclemariam, Nerayo; Milliron, Delia; Alivisatos, A. Paul; Barnham, Keith W.J.

    2002-01-01

    circuit diagram for a photovoltaic cell under illumination.devices such as photovoltaic cells and light-emitting-Polymer Composite Photovoltaic Cells Wendy U. Huynh ‡ ,

  3. EA-341 Photovoltaic Technologies, LLC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EA-341 Photovoltaic Technologies, LLC EA-341 Photovoltaic Technologies, LLC Order authorizing Photovoltaic Technologies, LLC to export electric energy to Mexico EA- 341...

  4. Tariffs Can Be Structured to Encourage Photovoltaic Energy

    E-Print Network [OSTI]

    Wiser, Ryan

    2009-01-01

    Be Structured to Encourage Photovoltaic Energy Ryan Wiser,of customer-sited photovoltaic (PV) systems. Though theseEconomics of Commercial Photovoltaic Systems in California,

  5. Effects of solar photovoltaic panels on roof heat transfer

    E-Print Network [OSTI]

    Dominguez, Anthony; Kleissl, Jan; Luvall, Jeffrey C

    2011-01-01

    the energy performance of  photovoltaic roofs, ASHRAE Trans A thermal model for photovoltaic systems, Solar Energy, Effects of Solar Photovoltaic Panels on Roof Heat Transfer 

  6. Fabrication and Characterization of Organic/Inorganic Photovoltaic Devices

    E-Print Network [OSTI]

    Guvenc, Ali Bilge

    2012-01-01

    J. W. Yu, Organic photovoltaic devices with a crosslinkablein Nanostructured Photovoltaic Devices, Recent Patents oninterfaces in organic photovoltaic devices, Solar Energy

  7. Electronic structure and photovoltaic application of BiI3

    E-Print Network [OSTI]

    2015-01-01

    Electronic structure and photovoltaic application of BiI 3Electronic structure and photovoltaic application of BiI 3recent improvement in photovoltaic efficiency in hybrid lead

  8. Hybrid solar collector using nonimaging optics and photovoltaic components

    E-Print Network [OSTI]

    2015-01-01

    Evaluation of On-Board Photovoltaic Modules Options forthe Temperature Dependence of Photovoltaic Module ElectricalChow, T. T. , "A review on photovoltaic/thermal hybrid solar

  9. Aerosol Spray Pyrolysis Synthesis of CZTS Nanostructures for Photovoltaic Applications

    E-Print Network [OSTI]

    Exarhos, Stephen

    2015-01-01

    Eventually a full photovoltaic cell can be constructed based20.8%. ” 29th European Photovoltaic Solar Energy ConferenceFilms, Thin Film Chalogenide Photovoltaic Materials (EMRS,

  10. Efficient yet Accurate Models for Photovoltaic Modules with Shading Effects

    E-Print Network [OSTI]

    Tu, Tianheng

    2014-01-01

    Jiang, “Partial shading modeling of photovoltaic system withModels for Photovoltaic Modules with Shading Effects AModels for Photovoltaic Modules with Shading Effects by

  11. Femtosecond laser processing of photovoltaic and transparent materials

    E-Print Network [OSTI]

    Ahn, Sanghoon

    2013-01-01

    at  300  K.  Progress   in  Photovoltaics.  1995;3:189-­?A   review.   Progress   in   Photovoltaics.  2006;14:107-­?efficiency.  Progress  in  Photovoltaics.  2004;12:553-­?

  12. The Development of Semiconducting Materials for Organic Photovoltaics

    E-Print Network [OSTI]

    Douglas, Jessica D.

    2013-01-01

    F. C. ; Norrman, K. Prog. Photovoltaics 2007, 15, 697–712.Processed Organic Photovoltaics that Generate Chargepolymer-based organic photovoltaics (OPVs) have attracted

  13. Comment on "coherence and uncertainty in nanostructured organic photovoltaics"

    E-Print Network [OSTI]

    Mukamel, S

    2013-01-01

    provide new probes for photovoltaics. The develop- ment ofin Nanostructured Organic Photovoltaics. J. Phys. Chem. Lettin Nanostructured Organic Photovoltaics” Shaul Mukamel

  14. Structure-Function Relationships in Semiconducting Polymers for Organic Photovoltaics

    E-Print Network [OSTI]

    Kavulak, David Fredric Joel

    2010-01-01

    properties for organic photovoltaics (OPVs). Space-chargePolymers for Organic Photovoltaics By David Fredric JoelPolymers for Organic Photovoltaics by David Fredric Joel

  15. Nonlinear Predictive Energy Management of Residential Buildings with Photovoltaics & Batteries

    E-Print Network [OSTI]

    Sun, Chao; Sun, Fengchun; Moura, Scott J

    2015-01-01

    of Residential Buildings with Photovoltaics & Batteries Chaobuildings equipped with photovoltaics and bat- teries (RBPB)In these systems the photovoltaics (PVs) operate as a local

  16. Temperature-Dependent Electron Transport in Quantum Dot Photovoltaics

    E-Print Network [OSTI]

    Padilla, Derek

    2013-01-01

    4.4 Photovoltaics in Practice . . . . . . . . . . . . . .milestones. Quantum dot photovoltaics is in the bottom-rightIN QUANTUM DOT PHOTOVOLTAICS A dissertation submitted in

  17. Optical Design Considerations for High Conversion Efficiency in Photovoltaics

    E-Print Network [OSTI]

    Ganapati, Vidya

    2015-01-01

    for light trapping in photovoltaics: the supercell concept”,efficiency tables”, Progress in Photovoltaics: Research andphotovoltaic cells”, Progress in Photovoltaics: Research and

  18. Optically Functional Nanomaterials: Optothermally Responsive Composites and Carbon Nanotube Photovoltaics

    E-Print Network [OSTI]

    Okawa, David

    2010-01-01

    and Carbon Nanotube Photovoltaics by David Christopher OkawaPart II: Carbon Nanotube Photovoltaics Chapter 6:Carbon Nanotube – Polymer Photovoltaics 6.1 Polymer-Nanotube

  19. Soiling losses for solar photovoltaic systems in California

    E-Print Network [OSTI]

    Mejia, Felipe A; Kleissl, Jan

    2013-01-01

    Large Grid-Connected Photovoltaic Systems in California andin design of photovoltaic systems. In: Markvart T. andA thermal model for photovoltaic systems. Solar Energy 2001;

  20. Nonlinear Predictive Energy Management of Residential Buildings with Photovoltaics & Batteries

    E-Print Network [OSTI]

    Sun, Chao; Sun, Fengchun; Moura, Scott J

    2015-01-01

    for grid-connected photovoltaic systems,” IEEE Transactionswith a rooftop photovoltaic (PV) system and second-lifeconnected, photovoltaic- battery storage systems,” Renewable

  1. Applications of Small Wind Turbines Emphasizing the Economic Viability of Integration into a Home Energy System

    E-Print Network [OSTI]

    Moore, Cody K.

    2014-12-31

    requirement, it analyzes how well suited the wind turbine is for supplying the needed electricity as compared to a conventional gasoline generator and to the potential use of solar photovoltaics. The specific advantages and disadvantages of each of these three...

  2. wind energy

    National Nuclear Security Administration (NNSA)

    5%2A en Pantex to Become Wind Energy Research Center http:nnsa.energy.govfieldofficesnponpopressreleasespantex-become-wind-energy-research-center

  3. Photovoltaic cell assembly

    DOE Patents [OSTI]

    Beavis, Leonard C. (Albuquerque, NM); Panitz, Janda K. G. (Edgewood, NM); Sharp, Donald J. (Albuquerque, NM)

    1990-01-01

    A photovoltaic assembly for converting high intensity solar radiation into lectrical energy in which a solar cell is separated from a heat sink by a thin layer of a composite material which has excellent dielectric properties and good thermal conductivity. This composite material is a thin film of porous Al.sub.2 O.sub.3 in which the pores have been substantially filled with an electrophoretically-deposited layer of a styrene-acrylate resin. This composite provides electrical breakdown strengths greater than that of a layer consisting essentially of Al.sub.2 O.sub.3 and has a higher thermal conductivity than a layer of styrene-acrylate alone.

  4. Photovoltaic solar cell

    DOE Patents [OSTI]

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2015-09-08

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  5. Photovoltaic solar concentrator

    DOE Patents [OSTI]

    Nielson, Gregory N.; Okandan, Murat; Resnick, Paul J.; Cruz-Campa, Jose Luis

    2012-12-11

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  6. Photovoltaic module mounting system

    DOE Patents [OSTI]

    Miros, Robert H. J. (Fairfax, CA); Mittan, Margaret Birmingham (Oakland, CA); Seery, Martin N. (San Rafael, CA); Holland, Rodney H. (Novato, CA)

    2012-04-17

    A solar array mounting system having unique installation, load distribution, and grounding features, and which is adaptable for mounting solar panels having no external frame. The solar array mounting system includes flexible, pedestal-style feet and structural links connected in a grid formation on the mounting surface. The photovoltaic modules are secured in place via the use of attachment clamps that grip the edge of the typically glass substrate. The panel mounting clamps are then held in place by tilt brackets and/or mid-link brackets that provide fixation for the clamps and align the solar panels at a tilt to the horizontal mounting surface. The tilt brackets are held in place atop the flexible feet and connected link members thus creating a complete mounting structure.

  7. Photovoltaic module mounting system

    SciTech Connect (OSTI)

    Miros, Robert H. J.; Mittan, Margaret Birmingham; Seery, Martin N; Holland, Rodney H

    2012-09-18

    A solar array mounting system having unique installation, load distribution, and grounding features, and which is adaptable for mounting solar panels having no external frame. The solar array mounting system includes flexible, pedestal-style feet and structural links connected in a grid formation on the mounting surface. The photovoltaic modules are secured in place via the use of attachment clamps that grip the edge of the typically glass substrate. The panel mounting clamps are then held in place by tilt brackets and/or mid-link brackets that provide fixation for the clamps and align the solar panels at a tilt to the horizontal mounting surface. The tilt brackets are held in place atop the flexible feet and connected link members thus creating a complete mounting structure.

  8. Rooftop Photovoltaics Market Penetration Scenarios

    SciTech Connect (OSTI)

    Paidipati, J.; Frantzis, L.; Sawyer, H.; Kurrasch, A.

    2008-02-01

    The goal of this study was to model the market penetration of rooftop photovoltaics (PV) in the United States under a variety of scenarios, on a state-by-state basis, from 2007 to 2015.

  9. SAM Photovoltaic Model Technical Reference

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SAM Photovoltaic Model Technical Reference P. Gilman National Renewable Energy Laboratory Technical Report NRELTP-6A20-64102 May 2015 NREL is a national laboratory of the U.S....

  10. Denver International Airport Photovoltaic System

    Broader source: Energy.gov [DOE]

    The Denver International Airport (DIA) features a 2-megawatt (MW) photovoltaic (PV) system. DIA also hosts to a second 1.6-MW system. Denver is a Solar America City.

  11. Reducing recombination in organic photovoltaics

    E-Print Network [OSTI]

    Sussman, Jason M. (Jason Michael)

    2011-01-01

    In this thesis, I consider two methods to improve organic photovoltaic efficiency: energy level cascades and promotion of triplet state excitons. The former relies on a thin layer of material placed between the active ...

  12. Plug-and-Play Photovoltaics

    Broader source: Energy.gov [DOE]

    On December 7, 2012, DOE announced $21 million in funding for the Plug-and-Play Photovoltaics funding opportunity. Part of the SunShot Systems Integration efforts, the following projects were...

  13. OTEC- Residential Photovoltaic Rebate Program

    Broader source: Energy.gov [DOE]

    Customers of Oregon Trail Electric Consumers Cooperative (OTEC) who install photovoltaic systems are eligible for a rebate of $500 for the first kilowatt (kW) of installed capacity per year. ...

  14. Ameren Missouri- Photovoltaic Rebate Program

    Broader source: Energy.gov [DOE]

    Ameren Missouri offers rebates to its customers for the installation of net metered photovoltaic (PV) systems on their properties. The rebate is set at $2.00 per DC watt with a maximum rebate of ...

  15. Solid State Photovoltaic Research Branch

    SciTech Connect (OSTI)

    Not Available

    1990-09-01

    This report summarizes the progress of the Solid State Photovoltaic Research Branch of the Solar Energy Research Institute (SERI) from October 1, 1988, through September 30,l 1989. Six technical sections of the report cover these main areas of SERIs in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, and Laser Raman and Luminescence Spectroscopy. Sections have been indexed separately for inclusion on the data base.

  16. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Savings Category: Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Combined Heat & Power, Fuel Cells using...

  17. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Government, Agricultural, Institutional Savings Category: Geothermal Electric, Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Municipal Solid Waste, Fuel Cells...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Federal Government Savings Category: Geothermal Electric, Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Combined...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Retail Supplier Savings Category: Geothermal Electric, Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Combined...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photovoltaics, Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Landfill Gas, Tidal, Wave, Ocean Thermal, Yes; specific technologies not identified, Hydroelectric...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    ... Eligibility: Commercial, Industrial Savings Category: Geothermal Electric, Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Municipal Solid Waste,...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supplier Savings Category: Geothermal Electric, Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Combined Heat & Power,...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Government Savings Category: Geothermal Electric, Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Combined Heat & Power,...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Supplier Savings Category: Geothermal Electric, Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Landfill Gas, Tidal,...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Savings Category: Geothermal Electric, Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Combined Heat & Power,...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Government, Agricultural, Institutional Savings Category: Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Municipal Solid Waste, Combined Heat & Power,...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    State Government, Federal Government, Agricultural, Institutional Savings Category: Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Municipal Solid Waste,...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Institutional Savings Category: Geothermal Electric, Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Municipal Solid Waste, Fuel Cells using...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Electric, Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Hydrogen, Municipal Solid Waste, Combined Heat & Power, Landfill Gas,...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Electric, Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Combined Heat & Power, Fuel Cells using...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Schools, Institutional Savings Category: Solar Water Heat, Geothermal Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Landfill...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    (Small), Hydroelectric (Small) Renewable Energy Systems Exemption Recognized forms of energy generation include solar photovoltaics, passive solar, wind, solid waste,...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential, Institutional Savings Category: Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Combined Heat & Power,...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Institutional Savings Category: Geothermal Electric, Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Combined Heat & Power,...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Utility Savings Category: Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Landfill Gas, Hydroelectric (Small), Anaerobic...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential, Institutional Savings Category: Geothermal Electric, Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Combined...

  17. An update on environmental, health and safety issues of interest to the photovoltaic industry

    SciTech Connect (OSTI)

    Moskowitz, P.D.; Viren, J.; Fthenakis, V.M.

    1992-08-01

    There is growing interest in the environmental, health, and safety issues related to new photovoltaic technologies as they approach commercialization. Such issues include potential toxicity of II--VI compounds; the impacts of new environmental regulations on module manufacturers; and, the need for recycling of spent modules and manufacturing wastes. This paper will review these topics. 20 refs.

  18. Photovoltaic array mounting apparatus, systems, and methods

    DOE Patents [OSTI]

    West, Jack Raymond; Atchley, Brian; Hudson, Tyrus Hawkes; Johansen, Emil

    2015-04-14

    A photovoltaic array, including: (a) supports laid out on a surface in rows and columns; (b) photovoltaic modules positioned on top of the supports; and (c) fasteners connecting the photovoltaic modules to the supports, wherein the supports have an upper pedestal surface and a lower pedestal surface such that the photovoltaic modules are positioned at a non-horizontal angle when edges of the photovoltaic modules are positioned on top of the upper and lower pedestal surfaces, and wherein a portion of the fasteners rotate to lock the photovoltaic modules onto the supports.

  19. Tariffs Can Be Structured to Encourage Photovoltaic Energy

    E-Print Network [OSTI]

    Wiser, Ryan

    2009-01-01

    Economics of Commercial Photovoltaic Systems in California,of customer-sited photovoltaic (PV) systems. Though these

  20. Effects of solar photovoltaic panels on roof heat transfer

    E-Print Network [OSTI]

    Dominguez, Anthony; Kleissl, Jan; Luvall, Jeffrey C

    2011-01-01

    thermal model for photovoltaic systems, Solar Energy, Vol.  benefits of rooftop photovoltaic (PV) systems for building 

  1. Photovoltaic Incentive Design Handbook

    SciTech Connect (OSTI)

    Hoff, T. E.

    2006-12-01

    Investments in customer-owned grid-connected photovoltaic (PV) energy systems are growing at a steady pace. This is due, in part, to the availability of attractive economic incentives offered by public state agencies and utilities. In the United States, these incentives have largely been upfront lump payments tied to the system capacity rating. While capacity-based ''buydowns'' have stimulated the domestic PV market, they have been criticized for subsidizing systems with potentially poor energy performance. As a result, the industry has been forced to consider alternative incentive structures, particularly ones that pay based on long-term measured performance. The industry, however, lacks consensus in the debate over the tradeoffs between upfront incentive payments versus longer-term payments for energy delivery. This handbook is designed for agencies and utilities that offer or intend to offer incentive programs for customer-owned PV systems. Its purpose is to help select, design, and implement incentive programs that best meet programmatic goals. The handbook begins with a discussion of the various available incentive structures and then provides qualitative and quantitative tools necessary to design the most appropriate incentive structure. It concludes with program administration considerations.

  2. Australian Centre for Advanced Photovoltaics Australia-US Institute for Advanced Photovoltaics

    E-Print Network [OSTI]

    New South Wales, University of

    Australian Centre for Advanced Photovoltaics Australia-US Institute for Advanced Photovoltaics Annual Report 2014 Engineering Photovoltaic and Renewable Energy EngineeringNever Stand Still Stanford University #12;AustralianCentreforAdvancedPhotovoltaics-AnnualReport2014 Table of Contents 1. Director

  3. 282 IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 5, NO. 1, JANUARY 2015 Photovoltaic Material Characterization With Steady

    E-Print Network [OSTI]

    Javey, Ali

    282 IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 5, NO. 1, JANUARY 2015 Photovoltaic Material an approach to characterize the surface and bulk properties for thin films of photovoltaic mate- rials- toluminescence (PL), photovoltaic cells. I. INTRODUCTION VARIOUS characterization techniques based on photolu

  4. Process Development for Nanostructured Photovoltaics

    SciTech Connect (OSTI)

    Elam, Jeffrey W.

    2015-01-01

    Photovoltaic manufacturing is an emerging industry that promises a carbon-free, nearly limitless source of energy for our nation. However, the high-temperature manufacturing processes used for conventional silicon-based photovoltaics are extremely energy-intensive and expensive. This high cost imposes a critical barrier to the widespread implementation of photovoltaic technology. Argonne National Laboratory and its partners recently invented new methods for manufacturing nanostructured photovoltaic devices that allow dramatic savings in materials, process energy, and cost. These methods are based on atomic layer deposition, a thin film synthesis technique that has been commercialized for the mass production of semiconductor microelectronics. The goal of this project was to develop these low-cost fabrication methods for the high efficiency production of nanostructured photovoltaics, and to demonstrate these methods in solar cell manufacturing. We achieved this goal in two ways: 1) we demonstrated the benefits of these coatings in the laboratory by scaling-up the fabrication of low-cost dye sensitized solar cells; 2) we used our coating technology to reduce the manufacturing cost of solar cells under development by our industrial partners.

  5. Thin film photovoltaic panel and method

    DOE Patents [OSTI]

    Ackerman, Bruce (El Paso, TX); Albright, Scot P. (El Paso, TX); Jordan, John F. (El Paso, TX)

    1991-06-11

    A thin film photovoltaic panel includes a backcap for protecting the active components of the photovoltaic cells from adverse environmental elements. A spacing between the backcap and a top electrode layer is preferably filled with a desiccant to further reduce water vapor contamination of the environment surrounding the photovoltaic cells. The contamination of the spacing between the backcap and the cells may be further reduced by passing a selected gas through the spacing subsequent to sealing the backcap to the base of the photovoltaic panels, and once purged this spacing may be filled with an inert gas. The techniques of the present invention are preferably applied to thin film photovoltaic panels each formed from a plurality of photovoltaic cells arranged on a vitreous substrate. The stability of photovoltaic conversion efficiency remains relatively high during the life of the photovoltaic panel, and the cost of manufacturing highly efficient panels with such improved stability is significantly reduced.

  6. Amorphous Silicon-Carbon Nanostructure Photovoltaic Devices

    E-Print Network [OSTI]

    Schriver, Maria Christine

    2012-01-01

    way to do better. A photovoltaic cell, or solar cell, is aFor this thesis, I made photovoltaic cells using a Schottkyphotovoltaic processes oc- cur in a Schottky barrier solar cell. . . . . . . . . . . . . . . . . .

  7. Mounting support for a photovoltaic module

    DOE Patents [OSTI]

    Brandt, Gregory Michael; Barsun, Stephan K.; Coleman, Nathaniel T.; Zhou, Yin

    2013-03-26

    A mounting support for a photovoltaic module is described. The mounting support includes a foundation having an integrated wire-way ledge portion. A photovoltaic module support mechanism is coupled with the foundation.

  8. Plug-and-Play Photovoltaics Funding Opportunity

    Office of Energy Efficiency and Renewable Energy (EERE)

    Through the Plug-and-Play Photovoltaics program, DOE will advance the development of a commercial plug-and-play photovoltaic (PV) system, an off-the-shelf product that is fully inclusive with...

  9. Photovoltaic cell efficiency at elevated temperatures

    E-Print Network [OSTI]

    Ray, Katherine Leung

    2010-01-01

    In order to determine what type of photovoltaic solar cell could best be used in a thermoelectric photovoltaic hybrid power generator, we tested the change in efficiency due to higher temperatures of three types of solar ...

  10. Photovoltaic product directory and buyers guide

    SciTech Connect (OSTI)

    Watts, R.L.; Smith, S.A.; Mazzucchi, R.P.

    1981-06-01

    Basic information on photovoltaic conversion technology is provided for those unfamiliar with the field. Various types of photovoltaic products and systems currently available off-the-shelf are described. These include products without batteries, battery chargers, power packages, home electric systems, and partial systems. Procedures are given for designing a photovoltaic system from scratch. A few custom photovoltaic systems are described, and a list is compiled of photovoltaic firms which can provide custom systems. Guidance is offered for deciding whether or not to use photovoltaic products. A variety of installations are described and their performance is appraised by the owners. Information is given on various financial incentives available from state and federal governments. Sources of additional information on photovoltaics are listed. A matrix is provided indicating the sources of various types of photovoltaic products. The addresses of suppliers are listed. (LEW)

  11. ULTRA BARRIER TOPSHEET (UBT) FOR FLEXIBLE PHOTOVOLTAICS

    SciTech Connect (OSTI)

    DeScioli, Derek

    2013-06-01

    This slide-show presents 3M photovoltaic-related products, particularly flexible components. Emphasis is on the 3M Ultra Barrier Solar Films. Topics covered include reliability and qualification testing and flexible photovoltaic encapsulation costs.

  12. Photovoltaic Subcontract Program, FY 1991

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    This report summarizes the fiscal year (FY) 1991 (October 1, 1990, through September 30, 1991) progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL) -- formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, the New Ideas Program, the University Participation Program, and the Photovoltaic Manufacturing Technology (PVMaT) project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1991, and future research directions.

  13. Discovery Park Impact Network for Photovoltaic Technology

    E-Print Network [OSTI]

    Holland, Jeffrey

    Discovery Park Impact Network for Photovoltaic Technology NEED Discovery Park provides for Photovoltaic Technology (NPT). The NPT is designed to be a unique venue for industry-directed, university aims to become an international center of gravity for photovoltaic research that connects islands

  14. High Concentrated Photovoltaic (CPV) Masafumi Yamaguchi

    E-Print Network [OSTI]

    Canet, Léonie

    High Concentrated Photovoltaic (CPV) Masafumi Yamaguchi Toyota Technological Institute, Nagoya, 468,, other partners #12;Outline 1. Importance of High Performance, Low Cost and Highly Reliable Photovoltaics on Concentrator Photovoltaics (CPV) ; NG-CPV 4. Future Prospects of PV and Summary #12;1. Importance of High

  15. Mirror-Augmented Photovoltaic Designs and Performance

    E-Print Network [OSTI]

    Rollins, Andrew M.

    Mirror-Augmented Photovoltaic Designs and Performance Wei-Chun Lin, Dave Hollingshead, Kara A-In developing photovoltaic (PV) technology, it is crucial to provide lower cost PV power. One of the useful-tracked) mirror-augmented photovoltaic (MAPV) system. A series of MATLAB calculations were developed to screen

  16. Photovoltaic retinal prosthesis with high pixel density

    E-Print Network [OSTI]

    Palanker, Daniel

    Photovoltaic retinal prosthesis with high pixel density Keith Mathieson1,4 , James Loudin1 to stimulating electrodes via intraocular cables. We present a photovoltaic subretinal prosthesis, in which pixel, demonstrating the possibility of a fully integrated photovoltaic retinal prosthesis with high

  17. ROBOTIC DEVICE FOR CLEANING PHOTOVOLTAIC PANEL ARRAYS

    E-Print Network [OSTI]

    Mavroidis, Constantinos

    1 ROBOTIC DEVICE FOR CLEANING PHOTOVOLTAIC PANEL ARRAYS MARK ANDERSON, ASHTON GRANDY, JEREMY HASTIE. The main method for harnessing solar power is with arrays made up of photovoltaic (PV) panels. Accumulation-based cleaning methods for photovoltaic arrays are costly in time, water and energy usage and lack automation

  18. International photovoltaic products and manufacturers directory, 1995

    SciTech Connect (OSTI)

    Shepperd, L.W.

    1995-11-01

    This international directory of more than 500 photovoltaic-related manufacturers is intended to guide potential users of photovoltaics to sources for systems and their components. Two indexes help the user to locate firms and materials. A glossary describes equipment and terminology commonly used in the photovoltaic industry.

  19. EELE408 Photovoltaics Lecture 23: Summary

    E-Print Network [OSTI]

    Kaiser, Todd J.

    1 EELE408 Photovoltaics Lecture 23: Summary Dr. Todd J. Kaiser tjkaiser@ece.montana.edu Department the circuit delivering power to the load Photovoltaic Effect Voltage Separation of holes and electrons p 5-6% Resistance 14-23% LLNL Energy Chart 6 #12;2 Energy Demand Predictions 7 Photovoltaic Myths 8

  20. EELE408 Photovoltaics Lecture 01: Intro & Safety

    E-Print Network [OSTI]

    Kaiser, Todd J.

    1 EELE408 Photovoltaics Lecture 01: Intro & Safety Dr. Todd J. Kaiser tjkaiser@ece.montana.edu Department of Electrical and Computer Engineering Montana State University - Bozeman EELE408 Photovoltaics & Ventre: Photovoltaic Systems Engineering , 3E · Resources: ­ Green: Solar Cells: Operating Principles

  1. Ryne P. Raffaelle National Center for Photovoltaics

    E-Print Network [OSTI]

    Ryne P. Raffaelle National Center for Photovoltaics National Renewable Energy Laboratory DOING&D Partnerships #12;National Center for Photovoltaics The National Center for Photovoltaics (NCPV) focuses generations to meet their own needs. ­ UN Bruntland Commission Our Focus: Making PV More Sustainable

  2. Low band gap polymers Organic Photovoltaics

    E-Print Network [OSTI]

    Low band gap polymers for Organic Photovoltaics Eva Bundgaard Ph.D. Dissertation Risø National Bundgaard Title: Low band gap polymers for Organic photovoltaics Department: The polymer department Report the area of organic photovoltaics are focusing on low band gap polymers, a type of polymer which absorbs

  3. Rational Design of Zinc Phosphide Heterojunction Photovoltaics

    E-Print Network [OSTI]

    Winfree, Erik

    Rational Design of Zinc Phosphide Heterojunction Photovoltaics Thesis by Jeffrey Paul Bosco would meet me with the same energy and enthusiasm regarding the topic of zinc phosphide photovoltaics to the field of earth-abundant photovoltaics has been indispensable to my work. Greg also made a great mentor

  4. Model institutional infrastructures for recycling of photovoltaic modules

    SciTech Connect (OSTI)

    Reaven, S.J.; Moskowitz, P.D.; Fthenakis, V.

    1996-01-01

    How will photovoltaic modules (PVMS) be recycled at the end of their service lives? This question has technological and institutional components (Reaven, 1994a). The technological aspect concerns the physical means of recycling: what advantages and disadvantages of the several existing and emerging mechanical, thermal, and chemical recycling processes and facilities merit consideration? The institutional dimension refers to the arrangements for recycling: what are the operational and financial roles of the parties with an interest in PVM recycling? These parties include PVM manufacturers, trade organizations; distributors, and retailers; residential, commercial, and utility PVM users; waste collectors, transporters, reclaimers, and reclaimers; and governments.

  5. Photovoltaic cell and production thereof

    DOE Patents [OSTI]

    Narayanan, Srinivasamohan (Gaithersburg, MD); Kumar, Bikash (Bangalore, IN)

    2008-07-22

    An efficient photovoltaic cell, and its process of manufacture, is disclosed wherein the back surface p-n junction is removed from a doped substrate having an oppositely doped emitter layer. A front surface and edges and optionally the back surface periphery are masked and a back surface etch is performed. The mask is not removed and acts as an anti-reflective coating, a passivating agent, or both. The photovoltaic cell retains an untextured back surface whether or not the front is textured and the dopant layer on the back surface is removed to enhance the cell efficiency. Optionally, a back surface field is formed.

  6. Aternating current photovoltaic building block

    DOE Patents [OSTI]

    Bower, Ward Issac; Thomas, Michael G.; Ruby, Douglas S.

    2004-06-15

    A modular apparatus for and method of alternating current photovoltaic power generation comprising via a photovoltaic module, generating power in the form of direct current; and converting direct current to alternating current and exporting power via one or more power conversion and transfer units attached to the module, each unit comprising a unitary housing extending a length or width of the module, which housing comprises: contact means for receiving direct current from the module; one or more direct current-to-alternating current inverters; an alternating current bus; and contact means for receiving alternating current from the one or more inverters.

  7. Nanostructured Photovoltaics: - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shinesSolar Photovoltaic Solar Photovoltaic Find More Like This Return to Search

  8. Wind Farm

    Broader source: Energy.gov [DOE]

    The wind farm in Greensburg, Kansas, was completed in spring 2010, and consists of ten 1.25 megawatt (MW) wind turbines that supply enough electricity to power every house, business, and municipal...

  9. DOE Awards Contract for Oak Ridge Transuranic Waste Processing...

    Energy Savers [EERE]

    - The U.S. Department of Energy (DOE) today announced the award of a contract to North Wind Solutions, LLC for waste processing services at the Oak Ridge Transuranic Waste...

  10. Nanocrystal Photovoltaics: The Case of Cu2S-CdS

    E-Print Network [OSTI]

    Rivest, Jessica Louis Baker

    2011-01-01

    M. A. Third generation photovoltaics: Ultra-high conversionmodern photovoltaic age. … in photovoltaics: research andnanopillar-array photovoltaics on low-cost and flexible

  11. Rapid screening buffer layers in photovoltaics

    DOE Patents [OSTI]

    List, III, Frederick Alyious; Tuncer, Enis

    2014-09-09

    An apparatus and method of testing electrical impedance of a multiplicity of regions of a photovoltaic surface includes providing a multi-tipped impedance sensor with a multiplicity of spaced apart impedance probes separated by an insulating material, wherein each impedance probe includes a first end adapted for contact with a photovoltaic surface and a second end in operable communication with an impedance measuring device. The multi-tipped impedance sensor is used to contact the photovoltaic surface and electrical impedance of the photovoltaic material is measured between individual first ends of the probes to characterize the quality of the photovoltaic surface.

  12. Improved photovoltaic cells and electrodes

    DOE Patents [OSTI]

    Skotheim, T.A.

    1983-06-29

    Improved photovoltaic cells and electrodes for use therein, particularly electrodes employing amorphous silicon or polyacetylene coating are produced by a process which includes filling pinholes or porous openings in the coatings by electrochemical oxidation of selected monomers to deposit insulating polymer in the openings.

  13. Electrochemical photovoltaic cells and electrodes

    DOE Patents [OSTI]

    Skotheim, Terje A. (East Patchogue, NY)

    1984-01-01

    Improved electrochemical photovoltaic cells and electrodes for use therein, particularly electrodes employing amorphous silicon or polyacetylene coating are produced by a process which includes filling pinholes or porous openings in the coatings by electrochemical oxidation of selected monomers to deposit insulating polymer in the openings.

  14. SAM Photovoltaic Model Technical Reference

    SciTech Connect (OSTI)

    Gilman, P.

    2015-05-27

    This manual describes the photovoltaic performance model in the System Advisor Model (SAM). The U.S. Department of Energy’s National Renewable Energy Laboratory maintains and distributes SAM, which is available as a free download from https://sam.nrel.gov. These descriptions are based on SAM 2015.1.30 (SSC 41).

  15. Breakthrough: micro-electronic photovoltaics

    ScienceCinema (OSTI)

    Okandan, Murat; Gupta, Vipin

    2014-06-23

    Sandia developed tiny glitter-sized photovoltaic (PV) cells that could revolutionize solar energy collection. The crystalline silicon micro-PV cells will be cheaper and have greater efficiencies than current PV collectors. Micro-PV cells require relatively little material to form well-controlled, highly efficient devices. Cell fabrication uses common microelectric and micro-electromechanical systems (MEMS) techniques.

  16. Photovoltaic cells employing zinc phosphide

    DOE Patents [OSTI]

    Barnett, Allen M. (Newark, DE); Catalano, Anthony W. (Wilmington, DE); Dalal, Vikram L. (Newark, DE); Masi, James V. (Wilbraham, MA); Meakin, John D. (Newark, DE); Hall, Robert B. (Newark, DE)

    1984-01-01

    A photovoltaic cell having a zinc phosphide absorber. The zinc phosphide can be a single or multiple crystal slice or a thin polycrystalline film. The cell can be a Schottky barrier, heterojunction or homojunction device. Methods for synthesizing and crystallizing zinc phosphide are disclosed as well as a method for forming thin films.

  17. Photovoltaic Subcontract Program, FY 1990

    SciTech Connect (OSTI)

    Summers, K.A.

    1991-03-01

    This report summarizes the progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaics Program at the Solar Energy Research Institute (SERI). The SERI subcontracted PV research and development represents most of the subcontracted R D that is funded by the US Department of Energy (DOE) National Photovoltaics Program. This report covers fiscal year (FY) 1990: October 1, 1989 through September 30, 1990. During FY 1990, the SERI PV program started to implement a new DOE subcontract initiative, entitled the Photovoltaic Manufacturing Technology (PVMaT) Project.'' Excluding (PVMaT) because it was in a start-up phase, in FY 1990 there were 54 subcontracts with a total annualized funding of approximately $11.9 million. Approximately two-thirds of those subcontracts were with universities, at a total funding of over $3.3 million. Cost sharing by industry added another $4.3 million to that $11.9 million of SERI PV subcontracted R D. The six technical sections of this report cover the previously ongoing areas of the subcontracted program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, the New Ideas Program, and the University Participation Program. Technical summaries of each of the subcontracted programs discuss approaches, major accomplishments in FY 1990, and future research directions. Another section introduces the PVMaT project and reports the progress since its inception in FY 1990. Highlights of technology transfer activities are also reported.

  18. Breakthrough: micro-electronic photovoltaics

    SciTech Connect (OSTI)

    Okandan, Murat; Gupta, Vipin

    2012-04-23

    Sandia developed tiny glitter-sized photovoltaic (PV) cells that could revolutionize solar energy collection. The crystalline silicon micro-PV cells will be cheaper and have greater efficiencies than current PV collectors. Micro-PV cells require relatively little material to form well-controlled, highly efficient devices. Cell fabrication uses common microelectric and micro-electromechanical systems (MEMS) techniques.

  19. NREL Photovoltaic Program FY 1993

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    This report reviews the in-house and subcontracted research and development (R&D) activities under the National Renewable Energy Laboratory (NREL) Photovoltaic (PV) Program from October 1, 1992, through September 30, 1993 (fiscal year [FY] 1993). The NREL PV Program is part of the U.S. Department of Energy`s (DOE`s) National Photovoltaics Program, as described in the DOE Photovoltaics Program Plan, FY 1991 - FY 1995. The FY 1993 budget authority (BA) for carrying out the NREL PV Program was $40.1 million in operating funds and $0.9 million in capital equipment funds. An additional $4.8 million in capital equipment funds were made available for the new Solar Energy Research Facility (SERF) that will house the in-house PV laboratories beginning in FY 1994. Subcontract activities represent a major part of the NREL PV Program, with more than $23.7 million (nearly 59%) of the FY 1993 operating funds going to 70 subcontractors. In FY 1993, DOE assigned certain other PV subcontracting efforts to the DOE Golden Field Office (DOE/GO), and assigned responsibility for their technical support to the NREL PV Program. An example is the PV:BONUS (Building Opportunities in the U.S. for Photovoltaics) Project. These DOE/GO efforts are also reported in this document.

  20. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Photovoltaics, Wind (All), Municipal Solid Waste, Wind (Small) Santa Clara Water & Sewer- Solar Water Heating Program In 1975, the City of Santa Clara established the nation's...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Local Government Savings Category: Solar Water Heat, Solar Space Heat, Solar Thermal Electric, Solar Photovoltaics, Wind (All), Municipal Solid Waste, Wind (Small)...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Geothermal Heat Pumps, Municipal Solid Waste, Landfill Gas, Tidal, Wave, Ocean Thermal, Wind (Small),...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Heat, Solar Photovoltaics, Wind (All), Biomass, Hydrogen, Municipal Solid Waste, Combined Heat & Power, Landfill Gas, Solar Pool Heating, Wind (Small), Anaerobic Digestion, Fuel...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Electric, Solar Photovoltaics, Wind (All), Biomass, Municipal Solid Waste, Combined Heat & Power, Landfill Gas, Tidal, Wave, Solar Pool Heating, Wind (Small), Anaerobic...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Category: Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Combined Heat & Power, Fuel Cells using Non-Renewable Fuels, Landfill Gas, Wind...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Tidal, Wave, Wind (Small), Hydroelectric (Small) Net Metering NOTE: In Feb 2014, the PUC proposed...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Photovoltaics, Wind (All), Municipal Solid Waste, Wind (Small) Alternative Energy and Energy Conservation Patent Exemption (Corporate) Massachusetts offers a corporate...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric, Solar Photovoltaics, Wind (All), Municipal Solid Waste, Wind (Small) Alternative Energy and Energy Conservation Patent Exemption (Corporate) Massachusetts offers a...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Solar Photovoltaics, Wind (All), Municipal Solid Waste, Wind (Small) Low-Interest Energy Loan Programs The Idaho Governor's Office of Energy Resources (OER) State Energy Loan...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photovoltaics, Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Combined Heat & Power, Wind (Small), Hydroelectric (Small) Energy Efficiency Standards for State Buildings...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Tidal, Wave, Wind (Small), Hydroelectric (Small) NV Energy- RenewableGenerations Rebate...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Tidal, Wave, Wind (Small), Hydroelectric (Small) Renewable Energy Systems Property Tax...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Photovoltaics, Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Landfill Gas, Tidal, Wave, Ocean Thermal, Wind (Small), Hydroelectric (Small), Anaerobic Digestion, Fuel...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Tidal, Wave, Wind (Small), Hydroelectric (Small) Energy Conversion and Thermal Efficiency...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Tidal, Wave, Wind (Small), Hydroelectric (Small) Renewable Energy Systems Tax Credit...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Tidal, Wave, Wind (Small), Hydroelectric (Small) Sustainable Energy Trust Fund The SETF is...

  17. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Photovoltaics, Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Landfill Gas, Tidal, Wave, Wind (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels Renewable...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Tidal, Wave, Wind (Small), Hydroelectric (Small) State Energy Loan Program The program...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Tidal, Wave, Wind (Small), Hydroelectric (Small) Energy Trust of Oregon Of the funds...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Tidal, Wave, Wind (Small), Hydroelectric (Small) Dollar and Energy Savings Loans Renewable...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Tidal, Wave, Wind (Small), Hydroelectric (Small) Renewable Energy Property Tax Exemption...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Savings Category: Geothermal Electric, Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Municipal Solid Waste, Landfill Gas, Tidal, Wave, Ocean Thermal, Wind...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Process Heat, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Geothermal Heat Pumps, Municipal Solid Waste, Combined Heat & Power, Landfill Gas, Tidal, Wave, Wind...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Solar Photovoltaics, Wind (All), Biomass, Municipal Solid Waste, Combined Heat & Power, Landfill Gas, Tidal, Wave, Solar Pool Heating, Wind (Small), Anaerobic Digestion Net...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photovoltaics, Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Landfill Gas, Solar Pool Heating, Yes; specific technologies not identified, Wind (Small), Anaerobic...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Photovoltaics, Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Combined Heat & Power, Fuel Cells using Non-Renewable Fuels, Landfill Gas, Wind (Small), Fuel Cells using...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Photovoltaics, Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Combined Heat & Power, Landfill Gas, Wind (Small), Anaerobic Digestion Portfolio Energy Credits Nevada's...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Hydrogen, Municipal Solid Waste, Fuel Cells using Non-Renewable Fuels, Landfill Gas, Wind...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Tidal, Wave, Wind (Small), Hydroelectric (Small) Renewable Portfolio Standard NOTE: NYSERDA has...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Tidal, Wave, Wind (Small), Hydroelectric (Small) Renewable Energy Systems Tax Credit (Personal)...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Tidal, Wave, Wind (Small), Hydroelectric (Small) NV Energy- RenewableGenerations Rebate Program...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Tidal, Wave, Wind (Small), Hydroelectric (Small) Energy Trust of Oregon Of the funds collected by...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Tidal, Wave, Wind (Small), Hydroelectric (Small) Energy Conversion and Thermal Efficiency Sales...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Tidal, Wave, Wind (Small), Hydroelectric (Small) Connecticut Clean Energy Fund Connecticut's 1998...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Savings Category: Geothermal Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Landfill Gas, Tidal, Wave, Ocean Thermal, Wind (Small),...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Tidal, Wave, Wind (Small), Hydroelectric (Small) Local Option- Property Tax Exemption for...

  17. Photovoltaic power generation system free of bypass diodes

    DOE Patents [OSTI]

    Lentine, Anthony L.; Okandan, Murat; Nielson, Gregory N.

    2015-07-28

    A photovoltaic power generation system that includes a solar panel that is free of bypass diodes is described herein. The solar panel includes a plurality of photovoltaic sub-modules, wherein at least two of photovoltaic sub-modules in the plurality of photovoltaic sub-modules are electrically connected in parallel. A photovoltaic sub-module includes a plurality of groups of electrically connected photovoltaic cells, wherein at least two of the groups are electrically connected in series. A photovoltaic group includes a plurality of strings of photovoltaic cells, wherein a string of photovoltaic cells comprises a plurality of photovoltaic cells electrically connected in series. The strings of photovoltaic cells are electrically connected in parallel, and the photovoltaic cells are microsystem-enabled photovoltaic cells.

  18. Western Wind and Solar Integration Study: Executive Summary

    Broader source: Energy.gov [DOE]

    This study investigates the operational impact of up to 35% energy penetration of wind, photovoltaics (PVs), and concentrating solar power (CSP) on the power system operated by the WestConnect group of utilities in Arizona, Colorado, Nevada, New Mexico, and Wyoming.

  19. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    forms of energy generation include solar photovoltaics, passive solar, wind, solid waste, decomposition of organic wastes, geothermal, small hydropower plants, low-emission...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Savings Renewable Energy Systems Exemption Recognized forms of energy generation include solar photovoltaics, passive solar, wind, solid waste, decomposition of organic wastes,...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Exemption Recognized forms of energy generation include solar photovoltaics, passive solar, wind, solid waste, decomposition of organic wastes, geothermal, small...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Fuels Renewable Energy Systems Exemption Recognized forms of energy generation include solar photovoltaics, passive solar, wind, solid waste, decomposition of organic wastes,...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Renewable Energy Systems Exemption Recognized forms of energy generation include solar photovoltaics, passive solar, wind, solid waste, decomposition of organic wastes,...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Energy Systems Exemption Recognized forms of energy generation include solar photovoltaics, passive solar, wind, solid waste, decomposition of organic wastes, geothermal, small...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Energy Systems Exemption Recognized forms of energy generation include solar photovoltaics, passive solar, wind, solid waste, decomposition of organic wastes, geothermal,...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Exemption Recognized forms of energy generation include solar photovoltaics, passive solar, wind, solid waste, decomposition of organic wastes, geothermal, small hydropower plants,...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Recognized forms of energy generation include solar photovoltaics, passive solar, wind, solid waste, decomposition of organic wastes, geothermal, small hydropower plants,...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Systems Exemption Recognized forms of energy generation include solar photovoltaics, passive solar, wind, solid waste, decomposition of organic wastes, geothermal, small hydropower...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    include solar photovoltaics, passive solar, wind, solid waste, decomposition of organic wastes, geothermal, small hydropower plants, low-emission wood or... Eligibility:...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Renewable Energy Systems Exemption Recognized forms of energy generation include solar photovoltaics, passive solar, wind, solid waste, decomposition of organic wastes, geothermal,...

  11. Wind Power Forecasting Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operations Call 2012 Retrospective Reports 2012 Retrospective Reports 2011 Smart Grid Wind Integration Wind Integration Initiatives Wind Power Forecasting Wind Projects Email...

  12. Idaho_Wind_Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Bryans Run Cell Tower Site Wilson Peak Eckert Site Loertscher Boise State's Wind Data Link Wind Power Idaho Wind Data See also: Idaho Energy Resources - Wind, American...

  13. High voltage photovoltaic power converter

    DOE Patents [OSTI]

    Haigh, Ronald E. (Arvada, CO); Wojtczuk, Steve (Cambridge, MA); Jacobson, Gerard F. (Livermore, CA); Hagans, Karla G. (Livermore, CA)

    2001-01-01

    An array of independently connected photovoltaic cells on a semi-insulating substrate contains reflective coatings between the cells to enhance efficiency. A uniform, flat top laser beam profile is illuminated upon the array to produce electrical current having high voltage. An essentially wireless system includes a laser energy source being fed through optic fiber and cast upon the photovoltaic cell array to prevent stray electrical signals prior to use of the current from the array. Direct bandgap, single crystal semiconductor materials, such as GaAs, are commonly used in the array. Useful applications of the system include locations where high voltages are provided to confined spaces such as in explosive detonation, accelerators, photo cathodes and medical appliances.

  14. US photovoltaic patents: 1991--1993

    SciTech Connect (OSTI)

    Pohle, L

    1995-03-01

    This document contains US patents on terrestrial photovoltaic (PV) power applications, including systems, components, and materials as well as manufacturing and support functions. The patent entries in this document were issued from 1991 to 1993. The entries were located by searching USPA, the database of the US Patent Office. The final search retrieved all patents under the class ``Batteries, Thermoelectric and Photoelectric`` and the subclasses ``Photoelectric,`` ``Testing,`` and ``Applications.`` The search also located patents that contained the words ``photovoltaic(s)`` or ``solar cell(s)`` and their derivatives. After the initial list was compiled, most of the patents on the following subjects were excluded: space photovoltaic technology, use of the photovoltaic effect for detectors, and subjects only peripherally concerned with photovoltaic. Some patents on these three subjects were included when ft appeared that those inventions might be of use in terrestrial PV power technologies.

  15. Do Photovoltaic Energy Systems Effect Residential Selling Prices? Results from a California Statewide Investigation.

    E-Print Network [OSTI]

    Hoen, Ben

    2012-01-01

    PHOTOVOLTAIC ENERGY SYSTEMS AFFECT RESIDENTIAL SELLING PRICES?PHOTOVOLTAIC ENERGY SYSTEMS AFFECT RESIDENTIAL SELLING PRICES?

  16. Understanding Variability and Uncertainty of Photovoltaics for Integration with the Electric Power System

    E-Print Network [OSTI]

    Mills, Andrew

    2010-01-01

    and Uncertainty of Photovoltaics for Integration with themodels and datasets. Photovoltaics fall under the broader

  17. Producer-Focused Life Cycle Assessment of Thin-Film Silicon Photovoltaic Systems

    E-Print Network [OSTI]

    Zhang, Teresa Weirui

    2011-01-01

    installed power from photovoltaic systems worldwide fromphotovoltaic systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .times than bulk Si photovoltaic systems. . . Comparison of

  18. Low-Cost Photovoltaics: Luminescent Solar Concentrators And Colloidal Quantum Dot Solar Cells

    E-Print Network [OSTI]

    Leow, Shin Woei

    2014-01-01

    J. Nozik, “Third Generation Photovoltaics based on Multiple8].Applications in third generation photovoltaics have the

  19. Decentalized solar photovoltaic energy systems

    SciTech Connect (OSTI)

    Krupka, M. C.

    1980-09-01

    Environmental data for decentralized solar photovoltaic systems have been generated in support of the Technology Assessment of Solar Energy Systems program (TASE). Emphasis has been placed upon the selection and use of a model residential photovoltaic system to develop and quantify the necessary data. The model consists of a reference home located in Phoenix, AZ, utilizing a unique solar cell array-roof shingle combination. Silicon solar cells, rated at 13.5% efficiency at 28/sup 0/C and 100 mW/cm/sup 2/ (AMI) insolation are used to generate approx. 10 kW (peak). An all-electric home is considered with lead-acid battery storage, dc-ac inversion and utility backup. The reference home is compared to others in regions of different insolation. Major material requirements, scaled to quad levels of end-use energy include significant quantities of silicon, copper, lead, antimony, sulfuric acid and plastics. Operating residuals generated are negligible with the exception of those from the storage battery due to a short (10-year) lifetime. A brief general discussion of other environmental, health, and safety and resource availability impacts is presented. It is suggested that solar cell materials production and fabrication may have the major environmental impact when comparing all facets of photovoltaic system usage. Fabrication of the various types of solar cell systems involves the need, handling, and transportation of many toxic and hazardous chemicals with attendant health and safety impacts. Increases in production of such materials as lead, antimony, sulfuric acid, copper, plastics, cadmium and gallium will be required should large scale usage of photovoltaic systems be implemented.

  20. Ligitek Photovoltaic | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona: EnergyLebanonTexas:Hill,Photovoltaic Jump to: navigation, search

  1. Photovoltaic nanocrystal scintillators hybridized on Si solar cells

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    Photovoltaic nanocrystal scintillators hybridized on Si solar cells for enhanced conversion on solar cells to enhance photovoltaic device parameters including spectral responsivity, open circuit@bilkent.edu.tr Abstract: We propose and demonstrate semiconductor nanocrystal based photovoltaic scintillators integrated

  2. Synthesis and photovoltaic application of coper (I) sulfide nanocrystals

    E-Print Network [OSTI]

    Wu, Yue

    2008-01-01

    polymer hybrid photovoltaic cells. Appl. Phys. Lett. 88,S-CdS heterojunction photovoltaic cells. J. Appl. Phys. 45,photovoltaic devices, such as dye-sensitized solar cells 1-

  3. Photovoltaic Lifetime & Degradation Science Statistical Pathway Development: Acrylic Degradation

    E-Print Network [OSTI]

    Rollins, Andrew M.

    Photovoltaic Lifetime & Degradation Science Statistical Pathway Development: Acrylic Degradation, USA ABSTRACT In order to optimize and extend the life of photovoltaics (PV) modules, scientific photovoltaics. The statisti- cally significant relationships were investigated using lifetime and degradation

  4. Synthesis and photovoltaic application of coper (I) sulfide nanocrystals

    E-Print Network [OSTI]

    Wu, Yue

    2008-01-01

    CdSe quantum dots for photovoltaic devices. Nano Lett. 7,nanocrystal-polymer hybrid photovoltaic cells. Appl. Phys.Gill, W. D. , Bube, R. H. Photovoltaic Properties of Cu 2 S-

  5. EXPERIMENTS with PHOTOVOLTAIC CELLS for high school science students

    E-Print Network [OSTI]

    Oregon, University of

    EXPERIMENTS with PHOTOVOLTAIC CELLS for high school science students By Dick Erickson ­ Pleasant Activity ­ Testing Photovoltaic Cells ..........................5 Expected Observations: ........................................................................................................8 II. LAB ACTIVITY - TESTING PHOTOVOLTAIC CELLS ..................................9 BEFORE YOU START

  6. Solution-processed photovoltaics with advanced characterization and analysis

    E-Print Network [OSTI]

    Duan, Hsin-Sheng

    2014-01-01

    at the 37th IEEE Photovoltaics Specialists Conference (D. B. Mitzi, Prog. Photovoltaics 2011, 20, 6. [23] S. Bag,R. Noufi, IEEE J. Photovoltaics 2012, T. Todorov, J. Tang,

  7. Fall 2013 Course Announcement EEE 598 ADVANCED PHOTOVOLTAICS

    E-Print Network [OSTI]

    Zhang, Junshan

    Fall 2013 Course Announcement EEE 598 ADVANCED PHOTOVOLTAICS Professor Meng Tao (meng a role will photovoltaics play in this new energy infrastructure? There are fundamental bottlenecks for current photovoltaic technologies to become a noticeable source of energy: material availability, energy

  8. Aalborg Universitet Analysis and Modeling of Transformerless Photovoltaic Inverter Systems

    E-Print Network [OSTI]

    Kerekes, Tamas

    Aalborg Universitet Analysis and Modeling of Transformerless Photovoltaic Inverter Systems Kerekes and Modeling of Transformerless Photovoltaic Inverter Systems. Aalborg Universitet: Institut for Energiteknik from vbn.aau.dk on: juli 05, 2015 #12;Analysis and Modeling of Transformerless Photovoltaic Inverter

  9. Degradation Pathway Models for Photovoltaics Module Lifetime Performance

    E-Print Network [OSTI]

    Rollins, Andrew M.

    Degradation Pathway Models for Photovoltaics Module Lifetime Performance Nicholas R. Wheeler, Laura data from Underwriter Labs, featuring measurements taken on 18 identical photovoltaic (PV) modules in modules and their effects on module performance over lifetime. Index Terms--photovoltaics, statistical

  10. 350 IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 5, NO. 1, JANUARY 2015 Optimal Dispatch of Residential Photovoltaic

    E-Print Network [OSTI]

    Giannakis, Georgios

    350 IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 5, NO. 1, JANUARY 2015 Optimal Dispatch of Residential Photovoltaic Inverters Under Forecasting Uncertainties Emiliano Dall'Anese, Member, IEEE, Sairaj V. Dhople--Efforts to ensure reliable operation of existing low- voltage distribution systems with high photovoltaic (PV

  11. Energizing the Next Generation with Photovoltaics Following the lead of Russian colleagues, photovoltaic (PV)

    E-Print Network [OSTI]

    Oregon, University of

    Energizing the Next Generation with Photovoltaics ABSTRACT Following the lead of Russian colleagues, photovoltaic (PV) lab kits are being built and experiments and curricula are being developed for use of these kits. This Photovoltaic Sci- ence Experiments and Curriculum (PSEC) is being tested in local high

  12. Nanocrystal and Molecular Precursors for Photovoltaic Applications...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanocrystal and Molecular Precursors for Photovoltaic Applications The objective in this proposal is to identify factors that limit the efficiency of nanocrystal based solar cells...

  13. Multiband semiconductor compositions for photovoltaic devices...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    perfectly satisfying the conditions for single-junction photovoltaics with the potential for power conversion efficiencies surpassing 50%. Inventors: Walukiewicz; Wladyslaw...

  14. Renewable Energy Ready Home Solar Photovoltaic Specifications...

    Broader source: Energy.gov (indexed) [DOE]

    Solar Photovoltaic Specification, Checklist and Guide, from the U.S. Environmental Protection Agency. rerhsolarelectricguide.pdf More Documents & Publications Solar Water...

  15. PROJECT PROFILE: Photovoltaic Stakeholder Engagement Initiatives

    Broader source: Energy.gov [DOE]

    This project is focused on independent stakeholder engagement activities conducted by Sandia National Laboratory relating to photovoltaic (PV) outreach at the national and international level.

  16. Hudson Light & Power- Photovoltaic Incentive Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Hudson Light & Power Department, the municipal utility for the Town of Hudson, offers a limited number of solar photovoltaic (PV) rebates for residential, commercial, industrial, and municipal...

  17. Solar photovoltaic reflective trough collection structure

    DOE Patents [OSTI]

    Anderson, Benjamin J.; Sweatt, William C.; Okandan, Murat; Nielson, Gregory N.

    2015-11-19

    A photovoltaic (PV) solar concentration structure having at least two troughs encapsulated in a rectangular parallelepiped optical plastic structure, with the troughs filled with an optical plastic material, the troughs each having a reflective internal surface and approximately parabolic geometry, and the troughs each including photovoltaic cells situated so that light impinging on the optical plastic material will be concentrated onto the photovoltaic cells. Multiple structures can be connected to provide a solar photovoltaic collection system that provides portable, efficient, low-cost electrical power.

  18. Mesa Top Photovoltaic Array (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-07-01

    Fact sheet overview of the Mesa Top Photovoltaic Array project implemented by the Department of Energy Golden Office and National Renewable Energy Laboratory.

  19. Recording of SERC Monitoring Technologies- Solar Photovoltaics

    Broader source: Energy.gov [DOE]

    This document provides a transcript of the of SERC Monitoring Technologies - Solar Photovoltaics webinar, presented on 10/20/2011 by Peter McNutt.

  20. SERC Photovoltaics for Residential Buildings Webinar Transcript

    Broader source: Energy.gov [DOE]

    A presentation sponsored by the U.S. Department of Energy about using solar photovoltaics (PV) systems to provide electricity for homes.

  1. Western Wind and Solar Integration Study (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01

    Initiated in 2007 to examine the operational impact of up to 35% penetration of wind, photovoltaic (PV), and concentrating solar power (CSP) energy on the electric power system, the Western Wind and Solar Integration Study (WWSIS) is one of the largest regional wind and solar integration studies to date. The goal is to understand the effects of variability and uncertainty of wind, PV, and CSP on the grid. In the Western Wind and Solar Integration Study Phase 1, solar penetration was limited to 5%. Utility-scale PV was not included because of limited capability to model sub-hourly, utility-scale PV output . New techniques allow the Western Wind and Solar Integration Study Phase 2 to include high penetrations of solar - not only CSP and rooftop PV but also utility-scale PV plants.

  2. Wind Tunnel 

    E-Print Network [OSTI]

    Unknown

    2011-08-17

    Simulation of Cooling Effect of Wind Tower on Passively Ventilated Building John Seryak Kelly Kissock Project Engineer Associate Professor Department of Mechanical and Aerospace Engineering University of Dayton... Dayton, Ohio ABSTRACT Traditional buildings are cooled and ventilated by mechanically induced drafts. Natural ventilation aspires to cool and ventilate a building by natural means, such as cross ventilation or wind towers, without mechanical...

  3. FEMP Offers New Training on Photovoltaic Operations and Maintenance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FEMP Offers New Training on Photovoltaic Operations and Maintenance Best Practices FEMP Offers New Training on Photovoltaic Operations and Maintenance Best Practices November 4,...

  4. EA-1638: Solyndra, Inc. Photovoltaic Manufacturing Facility in...

    Office of Environmental Management (EM)

    8: Solyndra, Inc. Photovoltaic Manufacturing Facility in Fremont, CA EA-1638: Solyndra, Inc. Photovoltaic Manufacturing Facility in Fremont, CA March 2, 2009 EA-1638: Final...

  5. EA-1827: Suniva, Inc.'s ARTisun Photovoltaic Manufacturing Project...

    Office of Environmental Management (EM)

    7: Suniva, Inc.'s ARTisun Photovoltaic Manufacturing Project in Saginaw, MI EA-1827: Suniva, Inc.'s ARTisun Photovoltaic Manufacturing Project in Saginaw, MI February 1, 2010...

  6. Kyungdong Photovoltaic Energy Corp KPE formerly Photon Semiconductor...

    Open Energy Info (EERE)

    Photovoltaic Energy Corp KPE formerly Photon Semiconductor Energy Jump to: navigation, search Name: Kyungdong Photovoltaic Energy Corp (KPE) (formerly Photon Semiconductor &...

  7. Solar Photovoltaic Financing: Deployment on Public Property by...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Photovoltaic Financing: Deployment on Public Property by State and Local Governments Solar Photovoltaic Financing: Deployment on Public Property by State and Local...

  8. Sandia Energy - Sandia and EMCORE: Solar Photovoltaics, Fiber...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EMCORE: Solar Photovoltaics, Fiber Optics, MODE, and Energy Efficiency Home Renewable Energy Energy Partnership Concentrating Solar Power Photovoltaic Research & Capabilities Solar...

  9. Solar Photovoltaic Installation Market Trends | OpenEI Community

    Open Energy Info (EERE)

    Solar Photovoltaic Installation Market Trends Home John55364's picture Submitted by John55364(95) Contributor 14 May, 2015 - 02:24 Global Solar Photovoltaic (PV) Installation...

  10. Agua Caliente, World's Largest Solar Photovoltaic Plant, Helps...

    Office of Environmental Management (EM)

    Agua Caliente, World's Largest Solar Photovoltaic Plant, Helps Advance America's Solar Leadership Agua Caliente, World's Largest Solar Photovoltaic Plant, Helps Advance America's...

  11. Solar Junction Develops World Record Setting Concentrated Photovoltaic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Junction Develops World Record Setting Concentrated Photovoltaic Solar Cell Solar Junction Develops World Record Setting Concentrated Photovoltaic Solar Cell April 18, 2013 -...

  12. Cost and Potential of Monolithic CIGS Photovoltaic Modules (Presentati...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cost and Potential of Monolithic CIGS Photovoltaic Modules IEEE Photovoltaic Specialists Conference, New Orleans Kelsey A. W. Horowitz and Michael Woodhouse June 17, 2015 NREL...

  13. Offshore Wind Power USA

    Broader source: Energy.gov [DOE]

    The Offshore Wind Power USA conference provides the latest offshore wind market updates and forecasts.

  14. NREL: Photovoltaics Research - Photovoltaic Manufacturing R&D Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof EnergyY-12Working withPhotoPhotovoltaic Manufacturing

  15. Wind Energy Leasing Handbook

    E-Print Network [OSTI]

    Balasundaram, Balabhaskar "Baski"

    Wind Energy Leasing Handbook Wind Energy Leasing Handbook E-1033 Oklahoma Cooperative Extension?..................................................................................................................... 31 What do wind developers consider in locating wind energy projects?............................................................................................ 37 How do companies and individuals invest in wind energy projects?....................................................................

  16. Fabrication and Characterization of Organic/Inorganic Photovoltaic Devices

    E-Print Network [OSTI]

    Guvenc, Ali Bilge

    2012-01-01

    such as; hydropower, wind power, geothermal heat, solarbetween 2011 and 2035. [4] Wind Power: Wind is simply air inlocations for wind farms. Wind power has the second largest

  17. Solar Photovoltaics development -Status and perspectives

    E-Print Network [OSTI]

    Solar Photovoltaics development - Status and perspectives Jørgen Fenhann Risø National Laboratory for the development of solar photovoltaics, contributing to the Macro Task E1 on production cost for fusion.S. with 53 MWp followed by Japan and EU. Until now off-grid installation have dominated the solar PV market

  18. Photovoltaic Installations at Williams College Ruth Aronoff

    E-Print Network [OSTI]

    Aalberts, Daniel P.

    generation using solar power. Photovoltaic (PV) panel installations are a simple way for the College facilities, it is now evaluating in detail the environmental impact of these actions. In addition to making1 Photovoltaic Installations at Williams College Ruth Aronoff Williams Luce Project SUMMARY

  19. Photovoltaic olar nergy Development on Landfills

    E-Print Network [OSTI]

    of a selfballasting photovoltaic solar racking system will affect a closed landfills dirt cap. The effects areas of remote and Photovoltaic solar panels with a self-ballasting system. Source: www to generate up to 7,000 megawatts of solar energy while avoiding sensitive biological resources. The data

  20. National Center for Photovoltaics at NREL

    ScienceCinema (OSTI)

    VanSant, Kaitlyn; Wilson, Greg; Berry, Joseph; Al-Jassim, Mowafak; Kurtz, Sarah

    2014-06-10

    The National Center for Photovoltaics at the National Renewable Energy Laboratory (NREL) focuses on technology innovations that drive industry growth in U.S. photovoltaic (PV) manufacturing. The NCPV is a central resource for our nation's capabilities in PV research, development, deployment, and outreach.

  1. The Solar Photovoltaics Technology Conflict between

    E-Print Network [OSTI]

    Deutch, John

    A Duel in the Sun The Solar Photovoltaics Technology Conflict between China and the United States A REPORT FOR THE MIT FUTURE OF SOLAR ENERGY STUDY #12;#12;A REPORT FOR THE MIT FUTURE OF SOLAR ENERGY STUDY A Duel in the Sun The Solar Photovoltaics Technology Conflict between China and the United States1 John

  2. The Solar Photovoltaics Technology Conflict between

    E-Print Network [OSTI]

    Deutch, John

    A Duel in the Sun The Solar Photovoltaics Technology Conflict between China and the United States A REPORT FOR THE MIT FUTURE OF SOLAR ENERGY STUDY #12;#12;A REPORT fOR THE MIT fUTURE Of SOLAR ENERGY STUDY A Duel in the Sun The Solar Photovoltaics Technology Conflict between China and the United States1 John

  3. National Center for Photovoltaics at NREL

    SciTech Connect (OSTI)

    VanSant, Kaitlyn; Wilson, Greg; Berry, Joseph; Al-Jassim, Mowafak; Kurtz, Sarah

    2013-11-07

    The National Center for Photovoltaics at the National Renewable Energy Laboratory (NREL) focuses on technology innovations that drive industry growth in U.S. photovoltaic (PV) manufacturing. The NCPV is a central resource for our nation's capabilities in PV research, development, deployment, and outreach.

  4. DOE/NREL supported wind energy activities in Indonesia

    SciTech Connect (OSTI)

    Drouilhet, S.

    1997-12-01

    This paper describes three wind energy related projects which are underway in Indonesia. The first is a USAID/Winrock Wind for Island and Nongovernmental Development (WIND) project. The objectives of this project are to train local nongovernmental organizations (NGOs) in the siting, installation, operation, and maintenance of small wind turbines. Then to install up to 20 wind systems to provide electric power for productive end uses while creating micro-enterprises which will generate enough revenue to sustain the wind energy systems. The second project is a joint Community Power Corporation/PLN (Indonesian National Electric Utility) case study of hybrid power systems in village settings. The objective is to evaluate the economic viability of various hybrid power options for several different situations involving wind/photovoltaics/batteries/diesel. The third project is a World Bank/PLN preliminary market assessment for wind/diesel hybrid systems. The objective is to estimate the size of the total potential market for wind/diesel hybrid power systems in Indonesia. The study will examine both wind retrofits to existing diesel mini-grids and new wind-diesel plants in currently unelectrified villages.

  5. Integrated Photovoltaics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:on OpeneiAlbanian Centre for EnergyTorcuato DiPhotovoltaics

  6. Apparatus for mounting photovoltaic power generating systems on buildings

    DOE Patents [OSTI]

    Russell, Miles C. (Lincoln, MA)

    2009-08-18

    Rectangular photovoltaic (PV) modules are mounted on a building roof by mounting stands that are distributed in rows and columns. Each stand comprises a base plate and first and second different height brackets attached to opposite ends of the base plate. Each first and second bracket comprises two module-support members. One end of each module is pivotally attached to and supported by a first module-support member of a first bracket and a second module-support member of another first bracket. At its other end each module rests on but is connected by flexible tethers to module-support members of two different second brackets. The tethers are sized to allow the modules to pivot up away from the module-support members on which they rest to a substantially horizontal position in response to wind uplift forces.

  7. The renewable energy contribution from waste across Europe.

    E-Print Network [OSTI]

    Biomass Energy Plants incineration,gasification Collected & sorted waste wood BEP Steam -> Electr. & Heat from waste is a much cheaper source of RE than from most other RE sources (solar, wind, biomass (LFG) For dedicated Biomass Energy Plants (BEP) (waste wood) For WtE thermally treating MSW

  8. Editorial: Photovoltaic Materials and Devices

    SciTech Connect (OSTI)

    Sopori, B.; Tan, T.; Rupnowski, P.

    2012-01-01

    As the global energy needs grow, there is increasing interest in the generation of electricity by photovoltaics (PVs) devices or solar cells - devices that convert sunlight to electricity. Solar industry has seen an enormous growth during the last decade. The sale of PV modules has exceeded 27 GW in 2011, with significant contributions to the market share from all technologies. While the silicon technology continues to have the dominant share, the other thin film technologies (CdTe, CIGS, a-Si, and organic PV) are experiencing fast growth. Increased production of silicon modules has led to a very rapid reduction in their price and remains as benchmark for other technologies. The PV industry is in full gear to commercialize new automated equipment for solar cell and module production, instrumentation for process monitoring technologies, and for implementation of other cost-reduction approaches, and extensive research continues to be carried out in many laboratories to improve the efficiency of solar cells and modules without increasing the production costs. A large variety of solar cells, which differ in the material systems used, design, PV structure, and even the principle of PV conversion, are designed to date. This special issue contains peer-reviewed papers in the recent developments in research related to broad spectrum of photovoltaic materials and devices. It contains papers on many aspects of solar cells-the growth and deposition, characterization, and new material development.

  9. The Design and Implementation of Solar Power with Photovoltaics

    E-Print Network [OSTI]

    Lavaei, Javad

    The Design and Implementation of Solar Power with Photovoltaics E4511 Power Systems Analysis Final Project Victor Campbell vfc2106 #12;2 Table of Contents 1. Introduction 2. Solar Cells 2.1 Photovoltaic of solar energy is the design of solar, or photovoltaic, cells. Photovoltaic cells are semiconductor

  10. Online Fault Detection and Tolerance for Photovoltaic Energy Harvesting Systems

    E-Print Network [OSTI]

    Pedram, Massoud

    Online Fault Detection and Tolerance for Photovoltaic Energy Harvesting Systems Xue Lin 1 , Yanzhi, yanzhiwa, dizhu, pedram}@usc.edu, 2 naehyuck@elpl.snu.ac.kr ABSTRACT Photovoltaic energy harvesting systems, Performance, Reliability. Keywords Photovoltaic System, Fault Detection, Fault Tolerance, Photovoltaic Panel

  11. EPJ Photovoltaics 2, 20301 (2011) www.epj-pv.org

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    2011-01-01

    EPJ Photovoltaics 2, 20301 (2011) www.epj-pv.org DOI: 10.1051/epjpv/2011001 c Owned by the authors, published by EDP Sciences, 2011 EPJ PhotovoltaicsEPJ Photovoltaics Geometrical optimization and electrical online: 1 April 2011 Abstract This article investigates the optimal efficiency of a photovoltaic system

  12. Wind Vision: Impacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Vision: Impacts Rich Tusing New West Technologies, LLC For EERE's Wind and Water Power Technologies Office July 15, 2015 2 | Wind and Water Power Technologies Office...

  13. Wind Program News

    SciTech Connect (OSTI)

    2012-01-06

    Stay current on the news about the wind side of the Wind and Water Power Program and important wind energy events around the U.S.

  14. Wind Power Link

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Power Links These other web sites may provide additional information of interest: American Wind Energy Association Idaho Department of Energy Wind Power Information Utah...

  15. Energy 101: Wind Turbines

    ScienceCinema (OSTI)

    None

    2013-05-29

    See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

  16. Energy 101: Wind Turbines

    SciTech Connect (OSTI)

    None

    2011-01-01

    See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

  17. Vandenberg_Wind_Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Force and other branches of the Department of Defense for several years doing wind data collection and assessment, wind power feasibility studies, and wind farm design....

  18. Request for Information on Photovoltaic Module Recycling

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy SunShot Initiative requests feedback from industry, academia, research laboratories, government agencies, and other stakeholders on issues related to photovoltaic (PV) module recycling technology. SunShot intends to understand the current state of recycling technology and the areas of research that could lead to impactful recycling technologies to support the developing PV industry. The intent of this request for information is to generate discussion related to planning for the end of life of photovoltaic modules and to create a list of high impact research topics in photovoltaics recycling.

  19. Low-Cost Photovoltaics: Luminescent Solar Concentrators And Colloidal Quantum Dot Solar Cells

    E-Print Network [OSTI]

    Leow, Shin Woei

    2014-01-01

    Organic Solar Concentrators for Photovoltaics,” Science,Polymer Photovoltaics for Solar Energy Conversion,” Adv.solar concentrators for building integrated photovoltaics,”

  20. The Effects of Non-Uniform Electronic Properties on Thin Film Photovoltaics

    E-Print Network [OSTI]

    Brown, Gregory Ferguson

    2011-01-01

    Generation  Photovoltaics:  Advanced  Solar  Energy  be  achieved  through  photovoltaics  (solar  cells).    Photovoltaics     There  are  two  requirements  for  designing  a  high  efficiency  solar  

  1. Photovoltaic performance of ultra-small PbSe quantum dots

    E-Print Network [OSTI]

    Ma, Wanli

    2014-01-01

    Y; Alivisatos, AP, Photovoltaic Devices Employing TernaryPhotovoltaic performance of ultra-small PbSe quantum dotsquantum dot, solar cell, photovoltaic, quantum size effect

  2. An Analysis of the Effects of Photovoltaic Energy Systems on Residential Selling Prices in California.

    E-Print Network [OSTI]

    Cappers, Peter

    2012-01-01

    Effects of Residential Photovoltaic Energy Systems on Homeof homes with existing photovoltaic (PV) energy systems havegrid-connected solar photovoltaic (PV) energy systems were

  3. Solar energy storage through the homogeneous electrocatalytic reduction of carbon dioxide : photoelectrochemical and photovoltaic approaches

    E-Print Network [OSTI]

    Sathrum, Aaron John

    2011-01-01

    electricity from photovoltaic cells to convert CO 2 intoSolar Energy Anode Photovoltaic Cell Cathode PP Mesh SpacerCoupling a Photovoltaic Solar Cell with a Homogeneous

  4. Low-Cost Photovoltaics: Luminescent Solar Concentrators And Colloidal Quantum Dot Solar Cells

    E-Print Network [OSTI]

    Leow, Shin Woei

    2014-01-01

    using front-facing photovoltaic cell luminescent solarwith front-facing photovoltaic cells using weighted Montefor tandem photovoltaic cells,” Thin Solid Films, vol. 516,

  5. Nanopillar Photovoltaics: Photon Management and Junction Engineering for Next-Generation Solar Cells

    E-Print Network [OSTI]

    Mariani, Giacomo

    2013-01-01

    for efficient photovoltaic cells, Nat. Nanotechnol. 6, 568-for efficient photovoltaic cells, Nat. Nanotechnol. 6, 568-trapping in thin-film photovoltaic cells, Opt. Express 8,

  6. Temperature-Dependent Polarization in Field-Effect Transport and Photovoltaic Measurements of Methylammonium Lead Iodide

    E-Print Network [OSTI]

    2015-01-01

    Two-­?Layer Organic Photovoltaic Cell. Appl Phys Lett 1986,Sensitizers for Photovoltaic Cells. J Am Chem Soc 2009, 131,transistor, capacitor and photovoltaic cell measurements all

  7. Rational Design and Preparation of Organic Semiconductors for use in Field Effect Transistors and Photovoltaic Cells

    E-Print Network [OSTI]

    Mauldin, Clayton Edward

    2010-01-01

    Effect Transistors and Photovoltaic Cells By Clayton EdwardEffect Transistors and Photovoltaic Cells By Clayton Edwardin thin film organic photovoltaic cells (OPVs) is presented.

  8. Using Self-Assembly to Control Nanoscale Morphology in Semiconducting Polymers for Application in Organic Photovoltaics

    E-Print Network [OSTI]

    Ferreira, Amy Susan

    2015-01-01

    Fullerene Organic Photovoltaic Cells. Nat Commun 2013, 4. (Bulk- Heterojunction Photovoltaic Cells. Appl. Phys. Lett.C60 Heterojunction Photovoltaic Cell. Appl. Phys. Lett.

  9. Valuing the Time-Varying Electricity Production of Solar Photovoltaic Cells

    E-Print Network [OSTI]

    Borenstein, Severin

    2005-01-01

    Production of Solar Photovoltaic Cells Severin BorensteinProduction of Solar Photovoltaic Cells Severin Borenstein 1concerns is so- lar photovoltaic cells (PVs), which capture

  10. Producer-Focused Life Cycle Assessment of Thin-Film Silicon Photovoltaic Systems

    E-Print Network [OSTI]

    Zhang, Teresa Weirui

    2011-01-01

    microcrystalline- silicon photovoltaic cell, B) range ofpayback of roof mounted photovoltaic cells. Boustead, I. andmicrocrystalline-silicon photovoltaic cell, B) range of

  11. A Cradle to Grave Framework for Environmental Assessment of Photovoltaic Systems

    E-Print Network [OSTI]

    Zhang, Teresa; Dornfeld, David

    2010-01-01

    impacts and costs of photovoltaic systems: Current state ofEnergy Payback Time for Photovoltaic Modules,” ProceedingsLife-cycle assessment of photovoltaic modules: Comparison of

  12. Producer-Focused Life Cycle Assessment of Thin-Film Silicon Photovoltaic Systems

    E-Print Network [OSTI]

    Zhang, Teresa Weirui

    2011-01-01

    installed power from photovoltaic systems worldwide fromBest research photovoltaic efficiencies (Kazmerski,as a function of time for numerous types of photovoltaic

  13. Do Photovoltaic Energy Systems Effect Residential Selling Prices? Results from a California Statewide Investigation.

    E-Print Network [OSTI]

    Hoen, Ben

    2012-01-01

    DO PHOTOVOLTAIC ENERGY SYSTEMS AFFECT RESIDENTIAL SELLINGopportunity employer. DO PHOTOVOLTAIC ENERGY SYSTEMS AFFECTin the U.S. have sold with photovoltaic (PV) energy systems

  14. Rational Design and Preparation of Organic Semiconductors for use in Field Effect Transistors and Photovoltaic Cells

    E-Print Network [OSTI]

    Mauldin, Clayton Edward

    2010-01-01

    in thin film organic photovoltaic cells (OPVs) is presented.Effect Transistors and Photovoltaic Cells By Clayton EdwardEffect Transistors and Photovoltaic Cells By Clayton Edward

  15. Photovoltaic Devices Employing Ternary PbSxSe1-x Nanocrystals

    E-Print Network [OSTI]

    Alivisatos, A. Paul

    2009-01-01

    Photovoltaic Devices Employing Ternary PbS x Se 1-xalloy nanoparticles. Photovoltaic devices made using ternaryInformation for Efficient Photovoltaic Devices Employing

  16. Residential Photovoltaic Energy Systems in California: The Effect on Home Sales Prices

    E-Print Network [OSTI]

    Hoen, Ben

    2013-01-01

    Residential Photovoltaic Energy Systems in California: Thethe marginal impacts of photovoltaic (PV) energy systems ons largest market for photovoltaic solar (PV), with nearly

  17. Spectroscopy of Photovoltaic Materials: Charge-Transfer Complexes and Titanium Dioxide

    E-Print Network [OSTI]

    Dillon, Robert

    2013-01-01

    RIVERSIDE Spectroscopy of Photovoltaic Materials: Charge-DISSERTATION Spectroscopy of Photovoltaic Materials: Charge-function of photovoltaic (PV) and photocatalytic (PC)

  18. Solar energy storage through the homogeneous electrocatalytic reduction of carbon dioxide : photoelectrochemical and photovoltaic approaches

    E-Print Network [OSTI]

    Sathrum, Aaron John

    2011-01-01

    Hydrogen Generation using Photovoltaic-Electrolysis Devices.6128-6141. Gratzel, M. Photovoltaic and PhotoelectrochemicalHydrogen Generation Using Photovoltaic?Electrolysis Devices.

  19. The Potential Impact of Increased Renewable Energy Penetrations on Electricity Bill Savings from Residential Photovoltaic Systems

    E-Print Network [OSTI]

    Barbose, Galen

    2013-01-01

    California’s Solar Photovoltaic Subsidies? Center for thefrom Residential Photovoltaic Systems Naïm R. Darghouth,FROM RESIDENTIAL PHOTOVOLTAIC SYSTEMS Naïm R. Darghouth

  20. Temperature-Dependent Polarization in Field-Effect Transport and Photovoltaic Measurements of Methylammonium Lead Iodide

    E-Print Network [OSTI]

    2015-01-01

    High- Performance Photovoltaic Perovskite Layers Fabricatedand Its Relation to Photovoltaic Performance. The Journal ofJ. Giant Switchable Photovoltaic Effect in Organometal

  1. Modeling Variability and Uncertainty of Photovoltaic Generation: A Hidden State Spatial Statistical Approach

    E-Print Network [OSTI]

    Tabone, Michaelangelo D; Callaway, Duncan S

    2015-01-01

    AND UNCERTAINTY OF PHOTOVOLTAIC GENERATION [9] M. Milligan,for grid-connected photovoltaic system based on advancedand uncertainty in solar photovoltaic generation at multiple

  2. Producer-Focused Life Cycle Assessment of Thin-Film Silicon Photovoltaic Systems

    E-Print Network [OSTI]

    Zhang, Teresa Weirui

    2011-01-01

    of pv systems. Progress in Photovoltaics: Research andpv system flatcon. Progress in Photovoltaics: Research andmw pv installation. Progress in Photovoltaics: Research and

  3. The Effects of Non-Uniform Electronic Properties on Thin Film Photovoltaics

    E-Print Network [OSTI]

    Brown, Gregory Ferguson

    2011-01-01

    Third   Generation  Photovoltaics:  Advanced  Solar  R.   Noufi,  Prog.  Photovoltaics  16,  235-­?239  (2008).  M.  Green,  Prog.  Photovoltaics  17,  183-­?189  (2009).  

  4. Low-Cost Photovoltaics: Luminescent Solar Concentrators And Colloidal Quantum Dot Solar Cells

    E-Print Network [OSTI]

    Leow, Shin Woei

    2014-01-01

    for building integrated photovoltaics,” 2013, vol. 8821, pp.of building integrated photovoltaics,” Sol. Energy, vol. 85,of building-integrated photovoltaics,” Energy, vol. 26, no.

  5. Using Self-Assembly to Control Nanoscale Morphology in Semiconducting Polymers for Application in Organic Photovoltaics

    E-Print Network [OSTI]

    Ferreira, Amy Susan

    2015-01-01

    of Polymer-Based Photovoltaics. J. Polym. Sci. Part B Polym.Heterojunction Organic Photovoltaics: Correlating EfficiencyFullerene Quasi-Bilayer Photovoltaics. J. Phys. Chem. Lett.

  6. Laser Assisted Nanomanufacturing with Solution Processed Nanoparticles for Low-cost Electronics and Photovoltaics

    E-Print Network [OSTI]

    Pan, Heng

    2009-01-01

    Electronics and Photovoltaics by Heng Pan A dissertationcost Electronics and Photovoltaics Copyright © 2009 By HengLow-cost Electronics and Photovoltaics by Heng Pan Doctor of

  7. PbS and Ge Nanocrystals: A Pathway Towards Third Generation Photovoltaics

    E-Print Network [OSTI]

    Church, Carena

    2014-01-01

    Towards Third Generation Photovoltaics by Carena PuameliChurch Third-generation photovoltaics offer a way around theJ. Nozik. Third generation photovoltaics based on multiple

  8. Do Photovoltaic Energy Systems Effect Residential Selling Prices? Results from a California Statewide Investigation.

    E-Print Network [OSTI]

    Hoen, Ben

    2012-01-01

    DO PHOTOVOLTAIC ENERGY SYSTEMS AFFECT RESIDENTIAL SELLINGemployer. DO PHOTOVOLTAIC ENERGY SYSTEMS AFFECT RESIDENTIALhave sold with photovoltaic (PV) energy systems installed at

  9. Modeling Variability and Uncertainty of Photovoltaic Generation: A Hidden State Spatial Statistical Approach

    E-Print Network [OSTI]

    Tabone, Michaelangelo D; Callaway, Duncan S

    2015-01-01

    for grid-connected photovoltaic system based on advancedof many photovoltaic power generation systems dis- persed inSYSTEMS Modeling Variability and Uncertainty of Photovoltaic

  10. The Potential Impact of Increased Renewable Energy Penetrations on Electricity Bill Savings from Residential Photovoltaic Systems

    E-Print Network [OSTI]

    Barbose, Galen

    2013-01-01

    from Residential Photovoltaic Systems Naïm R. Darghouth,FROM RESIDENTIAL PHOTOVOLTAIC SYSTEMS Naïm R. DarghouthABSTRACT Residential photovoltaic (PV) systems in the US are

  11. Electricity Bill Savings from Residential Photovoltaic Systems: Sensitivities to Changes in Future Electricity Market Conditions

    E-Print Network [OSTI]

    Darghouth, Naim

    2014-01-01

    Margolis, R. , 2004. Are Photovoltaic Systems Worth More toeconomics of commercial photovoltaic systems in California.a grid-connected photovoltaic system. Renewable Energy 32,

  12. The Impact of Retail Rate Structures on the Economics of Commercial Photovoltaic Systems in California

    E-Print Network [OSTI]

    Mills, Andrew

    2009-01-01

    R. Margolis. 2004. “Are Photovoltaic Systems Worth More to1993. “Distributed photovoltaic system evaluation by Arizonaof Commercial Photovoltaic Systems in California. ” LBNL-

  13. The Impact of Retail Rate Structures on the Economics of Commercial Photovoltaic Systems in California

    E-Print Network [OSTI]

    Wiser, Ryan; Mills, Andrew; Barbose, Galen; Golove, William

    2007-01-01

    R. Margolis. 2004. “Are Photovoltaic Systems Worth More to1993. “Distributed photovoltaic system evaluation by Arizonaof Commercial Photovoltaic Systems in California Ryan Wiser,

  14. A Cradle to Grave Framework for Environmental Assessment of Photovoltaic Systems

    E-Print Network [OSTI]

    Zhang, Teresa; Dornfeld, David

    2010-01-01

    impacts and costs of photovoltaic systems: Current state ofAssessment of Photovoltaic Systems Teresa W. Zhang and Davidassessment of photovoltaic systems is a rich field, with

  15. Third-Party Finance for Commercial Photovoltaic Systems: The Rise of the PPA

    E-Print Network [OSTI]

    Bolinger, Mark A

    2009-01-01

    Economics of Commercial Photovoltaic Systems in California,Finance for Commercial Photovoltaic Systems: The Rise of theof grid-connected photovoltaic (PV) systems in the United

  16. The impact of retail rate structures on the economics of commercial photovoltaic systems in California

    E-Print Network [OSTI]

    Mills, Andrew D.

    2009-01-01

    R. Margolis. 2004. “Are Photovoltaic Systems Worth More to1993. “Distributed photovoltaic system evaluation by Arizonaof Commercial Photovoltaic Systems in California. ” ”LBNL-

  17. Low-Cost Photovoltaics: Luminescent Solar Concentrators And Colloidal Quantum Dot Solar Cells

    E-Print Network [OSTI]

    Leow, Shin Woei

    2014-01-01

    concentrators for building integrated photovoltaics,” 2013,the performance of building integrated photovoltaics,” Sol.evaluation of building-integrated photovoltaics,” Energy,

  18. PbS and Ge Nanocrystals: A Pathway Towards Third Generation Photovoltaics

    E-Print Network [OSTI]

    Church, Carena

    2014-01-01

    A Pathway Towards Third Generation Photovoltaics by CarenaPuameli Church Third-generation photovoltaics offer a wayJ. Nozik. Third generation photovoltaics based on multiple

  19. Nanocrystal Photovoltaics: The Case of Cu2S-CdS

    E-Print Network [OSTI]

    Rivest, Jessica Louis Baker

    2011-01-01

    Green, M. A. Third generation photovoltaics: Ultra-highthe perspective of third-generation photovoltaics: Verticalphotovoltaics. Third generation photovoltaics have been

  20. Wind turbine

    DOE Patents [OSTI]

    Cheney, Jr., Marvin C. (Glastonbury, CT)

    1982-01-01

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  1. Photovoltaic module and module arrays

    DOE Patents [OSTI]

    Botkin, Jonathan; Graves, Simon; Lenox, Carl J. S.; Culligan, Matthew; Danning, Matt

    2013-08-27

    A photovoltaic (PV) module including a PV device and a frame, The PV device has a PV laminate defining a perimeter and a major plane. The frame is assembled to and encases the laminate perimeter, and includes leading, trailing, and side frame members, and an arm that forms a support face opposite the laminate. The support face is adapted for placement against a horizontal installation surface, to support and orient the laminate in a non-parallel or tilted arrangement. Upon final assembly, the laminate and the frame combine to define a unitary structure. The frame can orient the laminate at an angle in the range of 3.degree.-7.degree. from horizontal, and can be entirely formed of a polymeric material. Optionally, the arm incorporates integral feature(s) that facilitate interconnection with corresponding features of a second, identically formed PV module.

  2. Photovoltaic module and module arrays

    DOE Patents [OSTI]

    Botkin, Jonathan (El Cerrito, CA); Graves, Simon (Berkeley, CA); Lenox, Carl J. S. (Oakland, CA); Culligan, Matthew (Berkeley, CA); Danning, Matt (Oakland, CA)

    2012-07-17

    A photovoltaic (PV) module including a PV device and a frame. The PV device has a PV laminate defining a perimeter and a major plane. The frame is assembled to and encases the laminate perimeter, and includes leading, trailing, and side frame members, and an arm that forms a support face opposite the laminate. The support face is adapted for placement against a horizontal installation surface, to support and orient the laminate in a non-parallel or tilted arrangement. Upon final assembly, the laminate and the frame combine to define a unitary structure. The frame can orient the laminate at an angle in the range of 3.degree.-7.degree. from horizontal, and can be entirely formed of a polymeric material. Optionally, the arm incorporates integral feature(s) that facilitate interconnection with corresponding features of a second, identically formed PV module.

  3. Wind Program: Wind Vision | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Wind Vision: A New Era for Wind Power in the United States With more than 4.5% of the nation's electricity supplied by wind energy today, the Department of Energy has collaborated...

  4. Wind | Department of Energy

    Office of Environmental Management (EM)

    Science & Innovation Energy Sources Renewable Energy Wind Wind Wind The United States is home to one of the largest and fastest growing wind markets in the world. To stay...

  5. Residential photovoltaic worth : a summary assessment

    E-Print Network [OSTI]

    Dinwoodie, Thomas L.

    1982-01-01

    Two critical perspectives have been addressed by the analyses of residential photovoltaic worth. For the researcher and designer have been established allowable costs. For the homeowner and institutional decision-makers ...

  6. Sandia Energy - Microsystems Enabled Photovoltaics (MEPV)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of microsystem-enabled photovoltaic (MEPV) cells (497 downloads) Microscale c-Si (C)PV Cells for Low-Cost Power (259 downloads) Flexible MEPV Publications Ultrablade Fabrics...

  7. Poudre Valley REA- Photovoltaic Rebate Program

    Broader source: Energy.gov [DOE]

    Poudre Valley REA (PVREA) is providing rebates to their residential customers who install photovoltaic (PV) systems on their homes. The consumer agrees to assign all Renewable Energy Credits (RECs)...

  8. Central Georgia EMC- Photovoltaic Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    In June 2008, Central Georgia Electric Membership Corporation (CGEMC) began offering a rebate of $450 per kilowatt (kW) to residential members who install photovoltaic (PV) systems that are...

  9. GreyStone Power- Photovoltaic Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    GreyStone Power, an electricity cooperative in Georgia, offers a rebate for solar photovoltaic (PV) systems to members. The one-time rebate is offered for PV installations that are interconnected...

  10. Photovoltaic Online Training Course for Code Officials

    Broader source: Energy.gov [DOE]

    The Photovoltaic Online Training Course for Code Officials is a free online training tool for those officials who conduct reviews and inspections of residential PV systems. Throughout the course's...

  11. Practical Roadmap and Limits to Nanostructured Photovoltaics

    E-Print Network [OSTI]

    Lunt, Richard R.

    The significant research interest in the engineering of photovoltaic (PV) structures at the nanoscale is directed toward enabling reductions in PV module fabrication and installation costs as well as improving cell power ...

  12. Applications of nanoimprinted structures to organic photovoltaics

    E-Print Network [OSTI]

    Flores, Eletha J

    2013-01-01

    Small-molecule organic photovoltaic cells (OPVs) have the potential to be a low-cost, flexible power conversion solution to many energy problems. These OPVs take advantage of an extremely thin active layer which enables ...

  13. Low-Cost Installation of Concentrating Photovoltaic

    E-Print Network [OSTI]

    allow for minimal disturbance of soil and ecosystem, and comprehensive full system delivery: April 2009 to March 2012 For more information, please contact: · Placing concentrating photovoltaic for this information or the researc

  14. Time-Resolved Photoluminescence and Photovoltaics

    SciTech Connect (OSTI)

    Metzger, W. K.; Ahrenkiel, R. K.; Dippo, P.; Geisz, J.; Wanlass, M. W.; Kurtz, S.

    2005-01-01

    The time-resolved photoluminescence (TRPL) technique and its ability to characterize recombination in bulk photovoltaic semiconductor materials are reviewed. Results from a variety of materials and a few recent studies are summarized and compared.

  15. Silicon cast wafer recrystallization for photovoltaic applications

    E-Print Network [OSTI]

    Hantsoo, Eerik T. (Eerik Torm)

    2008-01-01

    Current industry-standard methods of manufacturing silicon wafers for photovoltaic (PV) cells define the electrical properties of the wafer in a first step, and then the geometry of the wafer in a subsequent step. The ...

  16. Sawnee EMC- Solar Photovoltaic Rebate Program

    Broader source: Energy.gov [DOE]

    Sawnee EMC offers a rebate of $300 per kilowatt (kW) to residential customers who install photovoltaic (PV) systems that meet the cooperative's [http://www.sawnee.com/Rate%20Pdfs/NEM%20Rider.pdf...

  17. Wind Integration National Dataset (WIND) Toolkit

    Office of Energy Efficiency and Renewable Energy (EERE)

    For utility companies, grid operators and other stakeholders interested in wind energy integration, collecting large quantities of high quality data on wind energy resources is vitally important....

  18. Matter & Energy Wind Energy

    E-Print Network [OSTI]

    Shepelyansky, Dima

    intuitive experience of a small wind not creating a storm, and that wind needs to reach a certain threshold

  19. Photovoltaic concentrator assembly with optically active cover

    DOE Patents [OSTI]

    Plesniak, Adam P

    2014-01-21

    A photovoltaic concentrator assembly that includes a housing that defines an internal volume and includes a rim, wherein the rim defines an opening into the internal volume, a photovoltaic cell positioned in the internal volume, and an optical element that includes an optically active body and a flange extending outward from the body, wherein the flange is sealingly engaged with the rim of the housing to enclose the internal volume.

  20. Request for Information: Photovoltaic Research and Development

    Office of Energy Efficiency and Renewable Energy (EERE)

    Manufacturing costs associated with photovoltaic module production have decreased dramatically over the past decade, but further improvements are still needed. Cell and module developments that maximize efficiency, service lifetime, and total energy output while minimizing installation material and labor costs are critical to the future of commercial photovoltaic technologies. Continued innovation in these areas will play a vital role in achieving a levelized cost of energy that is low enough to drive widespread deployment for decades to come.

  1. Effects of Metastabilities on CIGS Photovoltaic Modules

    Broader source: Energy.gov [DOE]

    This poster describes a SunShot Initiative solar project led by a team from Nexcis Photovoltaic Technology entitled "Effects of Metastabilities on CIGS Photovoltaic Modules." The team studied the driving force of the mechanisms which governs the different observed phases during storage, light exposition and annealing. The aim of this study is to obtain a better understanding of this phenomenon and hence a better evaluation of its impact on solar panel reliability.

  2. List of Wind Incentives | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervarLeeds, UnitedLiberty PowerLineLiquafactionPhotovoltaicsWind

  3. US Photovoltaic Patents, 1988--1990

    SciTech Connect (OSTI)

    Not Available

    1991-12-01

    This document contains US patents on terrestrial photovoltaic (PV) power applications, including systems, components, and materials, as well as manufacturing and support functions. The patent entries in this document were issued from 1988 through 1990. The entries were located by searching USPA, the data base of the US Patent Office. The final search retrieved all patents under the class ``Batteries, Thermoelectric and Photoelectric`` and the subclasses ``Photoelectric,`` ``Testing,`` and ``Applications.`` The search also located patents that contained the words ``photovoltaic(s)`` or ``solar cell(s)`` and their derivatives. A manual search of the patents in the Solar Energy Research Institute (SERI) patent file augmented the data base search. After the initial list was compiled, most of the patents on the following subjects were excluded: space photovoltaic technology, use of the photovoltaic effect for detectors and subjects only peripherally concerned with photovoltaics. Some patents on these three subjects were included when it appeared that those inventions might be of use in terrestrial PV power technologies.

  4. US Photovoltaic Patents, 1988--1990

    SciTech Connect (OSTI)

    Not Available

    1991-12-01

    This document contains US patents on terrestrial photovoltaic (PV) power applications, including systems, components, and materials, as well as manufacturing and support functions. The patent entries in this document were issued from 1988 through 1990. The entries were located by searching USPA, the data base of the US Patent Office. The final search retrieved all patents under the class Batteries, Thermoelectric and Photoelectric'' and the subclasses Photoelectric,'' Testing,'' and Applications.'' The search also located patents that contained the words photovoltaic(s)'' or solar cell(s)'' and their derivatives. A manual search of the patents in the Solar Energy Research Institute (SERI) patent file augmented the data base search. After the initial list was compiled, most of the patents on the following subjects were excluded: space photovoltaic technology, use of the photovoltaic effect for detectors and subjects only peripherally concerned with photovoltaics. Some patents on these three subjects were included when it appeared that those inventions might be of use in terrestrial PV power technologies.

  5. NREL Photovoltaic Program FY 1996 Annual Report

    SciTech Connect (OSTI)

    Not Available

    1997-08-01

    This report summarizes the in-house and subcontract research and development (R&D) activities under the National Renewable Energy Laboratory (NREL) Photovoltaics (PV) Program from October 1, 1995 through September 30, 1996 (fiscal year [FY] 1996). The NREL PV Program is part of the U.S. Department of Energy's (DOE) National Photovoltaics Program, as described in the DOE Photovoltaics Program Plan, FY 1991 - FY 1995. The mission of the DOE National Photovoltaics Program is to: "Work in partnership with U.S. industry to develop and deploy photovoltaic technology for generating economically competitive electric power, making photovoltaics an important contributor to the nation's and the world's energy use and environmental improvement. The two primary goals of the national program are to (1) maintain the U.S. PV industry's world leadership in research and technology development and (2) help the U.S. industry remain a major, profitable force in the world market. The NREL PV Program provides leadership and support to the national program toward achieving its mission and goals.

  6. SIXTH QUARTERLY REPORT OF RESEARCH ON CuxS - (Cd,Zn)S PHOTOVOLTAIC SOLAR ENERGY CONVERTERS

    E-Print Network [OSTI]

    Chin, B.L.

    2011-01-01

    for use in experimental photovoltaic cells. Hall mobilityvacuum method for photovoltaic cell fabrication" However,

  7. Dynamic Reconfiguration of Photovoltaic Energy Harvesting System in Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Pedram, Massoud

    Dynamic Reconfiguration of Photovoltaic Energy Harvesting System in Hybrid Electric Vehicles Yanzhi, xuelin, pedram}@usc.edu, 2 {naehyuck}@elpl.snu.ac.kr ABSTRACT Photovoltaic (PV) energy harvesting system. Keywords Photovoltaic System, Hybrid Electric Vehicle, Photovoltaic Array Reconfiguration, Dynamic

  8. Graphene-based photovoltaic cells for near-field thermal energy conversion

    E-Print Network [OSTI]

    Riccardo Messina; Philippe Ben-Abdallah

    2012-07-05

    Thermophotovoltaic devices are energy-conversion systems generating an electric current from the thermal photons radiated by a hot body. In far field, the efficiency of these systems is limited by the thermodynamic Schockley-Queisser limit corresponding to the case where the source is a black body. On the other hand, in near field, the heat flux which can be transferred to a photovoltaic cell can be several orders of magnitude larger because of the contribution of evanescent photons. This is particularly true when the source supports surface polaritons. Unfortunately, in the infrared where these systems operate, the mismatch between the surface-mode frequency and the semiconductor gap reduces drastically the potential of this technology. Here we show that graphene-based hybrid photovoltaic cells can significantly enhance the generated power paving the way to a promising technology for an intensive production of electricity from waste heat.

  9. Photovoltaics Program: utility interface southwest regional workshop proceedings

    SciTech Connect (OSTI)

    1981-04-01

    This was the first of a series of regional workshops that will focus on the photovoltaic and utility interface, and the use of photovoltaics as a cogeneration option by utilities. The needs and constraints of the utilities are defined and an understanding is established of the capabilities and limitations of photovoltaic systems as an alternative electricity generation option by utilities. Utilities' viewpoints regarding large-scale central systems and small-scale, interconnected, distributed systems are given. The Public Utility Regulatory Policies Act and other economic, legislative, and regulatory factors affecting photovoltaic systems are discussed. Current status of photovoltaic systems with respect to the Department of Energy Photovoltaic Program is given. (LEW)

  10. Presented at the 28th IEEE Photovoltaic Specialists Conference / Sept. 17-22, 2000

    E-Print Network [OSTI]

    Sites, James R.

    Presented at the 28th IEEE Photovoltaic Specialists Conference / Sept. 17-22, 2000 LOCAL Photovoltaic Specialists C

  11. An Analysis of the Effects of Residential Photovoltaic Energy Systems on Home Sales Prices in California

    E-Print Network [OSTI]

    Hoen, Ben

    2011-01-01

    Residential Photovoltaic Energy Systems on Home Sales PricesResidential Photovoltaic Energy Systems on Home Sales Prices

  12. The Impact of Retail Rate Structures on the Economics of Commercial Photovoltaic Systems in California

    E-Print Network [OSTI]

    Mills, Andrew

    2009-01-01

    of Solar: Prices and Output from Distributed PhotovoltaicPhotovoltaic Energy Availability During Periods of Peak Power Prices. ”

  13. The Impact of Retail Rate Structures on the Economics of Commercial Photovoltaic Systems in California

    E-Print Network [OSTI]

    Wiser, Ryan; Mills, Andrew; Barbose, Galen; Golove, William

    2007-01-01

    of Solar: Prices and Ouput from Distributed PhotovoltaicPhotovoltaic Energy Availability During Periods of Peak Power Prices. ”

  14. The impact of retail rate structures on the economics of commercial photovoltaic systems in California

    E-Print Network [OSTI]

    Mills, Andrew D.

    2009-01-01

    of Solar: Prices and Output from Distributed PhotovoltaicPhotovoltaic Energy Availability During Periods of Peak Power Prices. ”

  15. Apparatus for making photovoltaic devices

    DOE Patents [OSTI]

    Foote, James B. (Toledo, OH); Kaake, Steven A. F. (Perrysburg, OH); Meyers, Peter V. (Bowling Green, OH); Nolan, James F. (Sylvania, OH)

    1994-12-13

    A process and apparatus (70) for making a large area photovoltaic device (22) that is capable of generating low cost electrical power. The apparatus (70) for performing the process includes an enclosure (126) providing a controlled environment in which an oven (156) is located. At least one and preferably a plurality of deposition stations (74,76,78) provide heated vapors of semiconductor material within the oven (156) for continuous elevated temperature deposition of semiconductor material on a sheet substrate (24) including a glass sheet (26) conveyed within the oven. The sheet substrate (24) is conveyed on a roller conveyor (184) within the oven (156) and the semiconductor material whose main layer (82) is cadmium telluride is deposited on an upwardly facing surface (28) of the substrate by each deposition station from a location within the oven above the roller conveyor. A cooling station (86) rapidly cools the substrate (24) after deposition of the semiconductor material thereon to strengthen the glass sheet of the substrate.

  16. Quantum well multijunction photovoltaic cell

    DOE Patents [OSTI]

    Chaffin, Roger J. (Albuquerque, NM); Osbourn, Gordon C. (Albuquerque, NM)

    1987-01-01

    A monolithic, quantum well, multilayer photovoltaic cell comprises a p-n junction comprising a p-region on one side and an n-region on the other side, each of which regions comprises a series of at least three semiconductor layers, all p-type in the p-region and all n-type in the n-region; each of said series of layers comprising alternating barrier and quantum well layers, each barrier layer comprising a semiconductor material having a first bandgap and each quantum well layer comprising a semiconductor material having a second bandgap when in bulk thickness which is narrower than said first bandgap, the barrier layers sandwiching each quantum well layer and each quantum well layer being sufficiently thin that the width of its bandgap is between said first and second bandgaps, such that radiation incident on said cell and above an energy determined by the bandgap of the quantum well layers will be absorbed and will produce an electrical potential across said junction.

  17. Biomonitoring for the photovoltaics industry

    SciTech Connect (OSTI)

    Bernholc, N.M.; Moskowitz, P.D.

    1995-07-01

    Biomonitoring often is used as a method for estimating the dose to an individual. Therefore, a parameter of measurement, or biomarkers must be identified. The purpose of this paper is to give an overview of biomonitoring protocols for metals used in the photovoltaics industry. Special attention is given to areas that often are skimmed over, to gain insights into some of the problems that may arise when these tasks are carried out. Biological monitoring can be used to determine current human exposures to chemicals, as well as to detect past exposures, and the effects that these exposures may have on human health. It is used in conjunction with environmental monitoring to describe more completely worker`s exposures to, and absorption of, chemicals in the workplace. Biological specimens (e.g., blood, hair or urine) are analyzed for chemical agents, metabolites, or for some specific effect on the person (Lowry 1994). Biomonitoring can assess a workers exposure to industrial chemicals by all routes including skin absorption and ingestion. Although the methodology still is in its infancy, in cases where the procedures have been developed, it can be an invaluable component of an ongoing program of industrial hygiene monitoring. Like any technology, there are limitations to its effectiveness because of a lack of knowledge, contamination of specimens, and the introduction of errors.

  18. Interdigitated photovoltaic power conversion device

    DOE Patents [OSTI]

    Ward, James Scott (Englewood, CO); Wanlass, Mark Woodbury (Golden, CO); Gessert, Timothy Arthur (Conifer, CO)

    1999-01-01

    A photovoltaic power conversion device has a top surface adapted to receive impinging radiation. The device includes at least two adjacent, serially connected cells. Each cell includes a semi-insulating substrate and a lateral conductivity layer of a first doped electrical conductivity disposed on the substrate. A base layer is disposed on the lateral conductivity layer and has the same electrical charge conductivity thereof. An emitter layer of a second doped electrical conductivity of opposite electrical charge is disposed on the base layer and forms a p-n junction therebetween. A plurality of spaced channels are formed in the emitter and base layers to expose the lateral conductivity layer at the bottoms thereof. A front contact grid is positioned on the top surface of the emitter layer of each cell. A first current collector is positioned along one outside edge of at least one first cell. A back contact grid is positioned in the channels at the top surface of the device for engagement with the lateral conductivity layer. A second current collector is positioned along at least one outside edge of at least one oppositely disposed second cell. Finally, an interdigitation mechanism is provided for serially connecting the front contact grid of one cell to the back contact grid of an adjacent cell at the top surface of the device.

  19. Interdigitated photovoltaic power conversion device

    DOE Patents [OSTI]

    Ward, J.S.; Wanlass, M.W.; Gessert, T.A.

    1999-04-27

    A photovoltaic power conversion device has a top surface adapted to receive impinging radiation. The device includes at least two adjacent, serially connected cells. Each cell includes a semi-insulating substrate and a lateral conductivity layer of a first doped electrical conductivity disposed on the substrate. A base layer is disposed on the lateral conductivity layer and has the same electrical charge conductivity thereof. An emitter layer of a second doped electrical conductivity of opposite electrical charge is disposed on the base layer and forms a p-n junction therebetween. A plurality of spaced channels are formed in the emitter and base layers to expose the lateral conductivity layer at the bottoms thereof. A front contact grid is positioned on the top surface of the emitter layer of each cell. A first current collector is positioned along one outside edge of at least one first cell. A back contact grid is positioned in the channels at the top surface of the device for engagement with the lateral conductivity layer. A second current collector is positioned along at least one outside edge of at least one oppositely disposed second cell. Finally, an interdigitation mechanism is provided for serially connecting the front contact grid of one cell to the back contact grid of an adjacent cell at the top surface of the device. 15 figs.

  20. Quantum well multijunction photovoltaic cell

    DOE Patents [OSTI]

    Chaffin, R.J.; Osbourn, G.C.

    1983-07-08

    A monolithic, quantum well, multilayer photovoltaic cell comprises a p-n junction comprising a p-region on one side and an n-region on the other side, each of which regions comprises a series of at least three semiconductor layers, all p-type in the p-region and all n-type in the n-region; each of said series of layers comprising alternating barrier and quantum well layers, each barrier layer comprising a semiconductor material having a first bandgap and each quantum well layer comprising a semiconductor material having a second bandgap when in bulk thickness which is narrower than said first bandgap, the barrier layers sandwiching each quantum well layer and each quantum well layer being sufficiently thin that the width of its bandgap is between said first and second bandgaps, such that radiation incident on said cell and above an energy determined by the bandgap of the quantum well layers will be absorbed and will produce an electrical potential across said junction.

  1. Planar photovoltaic solar concentrator module

    DOE Patents [OSTI]

    Chiang, C.J.

    1992-12-01

    A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor. 5 figs.

  2. Planar photovoltaic solar concentrator module

    DOE Patents [OSTI]

    Chiang, Clement J. (New Brunswick, NJ)

    1992-01-01

    A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor.

  3. Wind Technologies & Evolving Opportunities (Presentation)

    SciTech Connect (OSTI)

    Robichaud, R.

    2014-07-01

    This presentation covers opportunities for wind technology; wind energy market trends; an overview of the National Wind Technology Center near Boulder, Colorado; wind energy price and cost trends; wind turbine technology improvements; and wind resource characterization improvements.

  4. Sandia Energy - Grid System Planning for Wind: Wind Generator...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid System Planning for Wind: Wind Generator Modeling Home Stationary Power Energy Conversion Efficiency Wind Energy Siting and Barrier Mitigation Grid System Planning for Wind:...

  5. 2015 Iowa Wind Power Conference and Iowa Wind Energy Association...

    Office of Environmental Management (EM)

    2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional Energy Job Fair 2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional...

  6. Wind tunnel performance data for the Darrieus wind turbine with...

    Office of Scientific and Technical Information (OSTI)

    Wind tunnel performance data for the Darrieus wind turbine with NACA 0012 blades Citation Details In-Document Search Title: Wind tunnel performance data for the Darrieus wind...

  7. A National Offshore Wind Strategy: Creating an Offshore Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in...

  8. 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology...

    Office of Environmental Management (EM)

    - Chapter 2: Wind Turbine Technology Summary Slides 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology Summary Slides Summary slides for wind turbine technology, its...

  9. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01

    AWEA). 2009b. AWEA Small Wind Turbine Global Market Study:will ultimately benefit wind. Small Wind ITC: EESA 2008

  10. Evaluation of the commercial potential of novel organic photovoltaic technologies

    E-Print Network [OSTI]

    Barr, Jonathan (Jonathan Allan)

    2005-01-01

    Photovoltaic cells based on organic semiconducting materials have the potential to compete with the more mature crystalline and thin film based photovoltaic technologies in the future primarily due to the expectation of ...

  11. Theoretical investigations of the electronic processes in organic photovoltaics

    E-Print Network [OSTI]

    Yost, Shane Robert

    2013-01-01

    The design of more efficient organic photovoltaics starts with an increase in understanding of the fundamental processes related to organic photovoltaics, such as the charge separation processes at the organic/organic ...

  12. III-V High-Efficiency Multijunction Photovoltaics (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-06-01

    Capabilities fact sheet that includes scope, core competencies and capabilities, and contact/web information for III-V High-Efficiency Multijunction Photovoltaics at the National Center for Photovoltaics.

  13. Photovoltaic (PV) Pricing Trends: Historical, Recent, and Near-Term

    E-Print Network [OSTI]

    Photovoltaic (PV) Pricing Trends: Historical, Recent, and Near-Term Projections November 2012 #12;Photovoltaic (PV) Pricing Trends: Historical, Recent, and Near-Term Projections David Feldman1 , Galen Barbose2........................................................................................................................................... 1 2. Historical and Recent Reported Prices

  14. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    Public Service Wind Integration Cost Impact Study. Preparedequipment-related wind turbine costs, the overall importinstalled wind power project costs, wind turbine transaction

  15. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01

    Public Service Wind Integration Cost Impact Study. Preparedequipment-related wind turbine costs, the overall importinstalled wind power project costs, wind turbine transaction

  16. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    land- based wind energy technology. 2009 Wind TechnologiesRenewable Energy 2009 WIND TECHNOLOGIES MARKET REPORT AUGUSTfor a variety of energy technologies, including wind energy.

  17. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01

    land-based wind energy technology. 2011 Wind Technologiesfor a variety of energy technologies, including wind energy.Renewable Energy Laboratory’s National Wind Technology

  18. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01

    land-based wind energy technology. 2010 Wind Technologiesfor a variety of energy technologies, including wind energy.2010 Wind Technologies Market Report Federal Energy

  19. 2012 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01

    land-based wind energy technology. 2012 Wind Technologiesfor a variety of energy technologies, including wind energy.of Energy (DOE) Wind & Water Power Technology Office team

  20. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    wind power project costs, wind turbine transaction prices,increases in the cost of wind turbines over the last severaland components and wind turbine costs. Excluded from all