National Library of Energy BETA

Sample records for waste water treatment

  1. Biological waste-water treatment of azo dyes

    SciTech Connect (OSTI)

    Shaul, G.M.; Dempsey, C.R.; Dostal, K.A.

    1988-05-01

    The U.S. Environmental Protection Agency's (EPA) Office of Toxic Substances evaluates existing chemicals under Section 4 of the Toxic Substances Control Act (TSCA) and Premanufacture Notification (PMN) submissions under Section 5 of TSCA. Azo dyes constitute a significant portion of these PMN submissions and specific azo dyes have recently been added to the priority list for considerations in the development of test rules under Section 4. Azo dyes are of concern because some of the dyes, dye precurors, and/or their degradation products such as aromatic amines (which are also dye precurors) have been shown to be, or are suspected to be, carcinogenic. The fate of azo dyes in biological waste-water treatment systems was studied to aid in the review of PMN submissions and to assist in the possible development of test rules. Results from extensive pilot-scale activated-sludge process testing for 18 azo dyes are presented. Results from fate studies of C.I. Disperse Blue 79 in aerobic and anaerobic waste-water treatment will also be presented.

  2. WasteWater Treatment And Heavy Metals Removal In The A-01 Constructed Wetland 2003 Report

    SciTech Connect (OSTI)

    ANNA, KNOX

    2004-08-01

    The A-01 wetland treatment system (WTS) was designed to remove metals from the effluent at the A-01 NPDES outfall. The purpose of research conducted during 2003 was to evaluate (1) the ability of the A-01 wetland treatment system to remediate waste water, (2) retention of the removed contaminants in wetland sediment, and (3) the potential remobilization of these contaminants from the sediment into the water column. Surface water and sediment samples were collected and analyzed in this study.

  3. Water treatment capacity of forward osmosis systems utilizing power plant waste heat

    SciTech Connect (OSTI)

    Zhou, Xingshi; Gingerich, Daniel B.; Mauter, Meagan S.

    2015-06-11

    Forward osmosis (FO) has the potential to improve the energy efficiency of membrane-based water treatment by leveraging waste heat from steam electric power generation as the primary driving force for separation. In this study, we develop a comprehensive FO process model, consisting of membrane separation, heat recovery, and draw solute regeneration (DSR) models. We quantitatively characterize three alternative processes for DSR: distillation, steam stripping, and air stripping. We then construct a mathematical model of the distillation process for DSR that incorporates hydrodynamics, mass and heat transport resistances, and reaction kinetics, and we integrate this into a model for the full FO process. Finally, we utilize this FO process model to derive a first-order approximation of the water production capacity given the rejected heat quantity and quality available at U.S. electric power facilities. We find that the upper bound of FO water treatment capacity using low-grade heat sources at electric power facilities exceeds process water treatment demand for boiler water make-up and flue gas desulfurization wastewater systems.

  4. Water treatment capacity of forward osmosis systems utilizing power plant waste heat

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Xingshi; Gingerich, Daniel B.; Mauter, Meagan S.

    2015-06-11

    Forward osmosis (FO) has the potential to improve the energy efficiency of membrane-based water treatment by leveraging waste heat from steam electric power generation as the primary driving force for separation. In this study, we develop a comprehensive FO process model, consisting of membrane separation, heat recovery, and draw solute regeneration (DSR) models. We quantitatively characterize three alternative processes for DSR: distillation, steam stripping, and air stripping. We then construct a mathematical model of the distillation process for DSR that incorporates hydrodynamics, mass and heat transport resistances, and reaction kinetics, and we integrate this into a model for the fullmore » FO process. Finally, we utilize this FO process model to derive a first-order approximation of the water production capacity given the rejected heat quantity and quality available at U.S. electric power facilities. We find that the upper bound of FO water treatment capacity using low-grade heat sources at electric power facilities exceeds process water treatment demand for boiler water make-up and flue gas desulfurization wastewater systems.« less

  5. Treatment of organic waste

    DOE Patents [OSTI]

    Grantham, LeRoy F.

    1979-01-01

    An organic waste containing at least one element selected from the group consisting of strontium, cesium, iodine and ruthenium is treated to achieve a substantial reduction in the volume of the waste and provide for fixation of the selected element in an inert salt. The method of treatment comprises introducing the organic waste and a source of oxygen into a molten salt bath maintained at an elevated temperature to produce solid and gaseous reaction products. The gaseous reaction products comprise carbon dioxide and water vapor, and the solid reaction products comprise the inorganic ash constituents of the organic waste and the selected element which is retained in the molten salt. The molten salt bath comprises one or more alkali metal carbonates, and may optionally include from 1 to about 25 wt.% of an alkali metal sulfate.

  6. Wetland treatment of oil and gas well waste waters. Final report

    SciTech Connect (OSTI)

    Kadlec, R.; Srinivasan, K.

    1995-08-01

    Constructed wetlands are small on-site systems that possess three of the most desirable components of an industrial waste water treatment scheme: low cost, low maintenance and upset resistance. The main objective of the present study is to extend the knowledge base of wetland treatment systems to include processes and substances of particular importance to small, on-site systems receiving oil and gas well wastewaters. A list of the most relevant and comprehensive publications on the design of wetlands for water quality improvement was compiled and critically reviewed. Based on our literature search and conversations with researchers in the private sector, toxic organics such as Phenolics and b-naphthoic acid, (NA), and metals such as CU(II) and CR(VI) were selected as target adsorbates. A total of 90 lysimeters equivalent to a laboratory-scale wetland were designed and built to monitor the uptake and transformation of toxic organics and the immobilization of metal ions. Studies on the uptake of toxic organics such as phenol and b-naphthoic acid (NA) and heavy metals such as Cu(II) and Cr(VI), the latter two singly or as non-stoichiometric mixtures by laboratory-type wetlands (LWs) were conducted. These LWs were designed and built during the first year of this study. A road map and guidelines for a field-scale implementation of a wetland system for the treatment of oil and gas wastewaters have been suggested. Two types of wetlands, surface flow (SF) and sub surface flow (SSF), have been considered, and the relative merits of each configuration have been reviewed.

  7. Waste water filtration enhancement

    SciTech Connect (OSTI)

    Martin, H.L.

    1989-01-01

    Removal of submicron particles from process solutions and waste water is now economically achievable using a new Tyvek{reg sign} media in conventional filtration equipment. This new product greatly enhances filtration and allows use of the much improved filter aids and polymers which were recently developed. It has reduced operating costs and ensures a clean effluent discharge to the environment. This significant technical development is especially important to those who discharge to a small stream with low 7Q10 flow and must soon routinely pass the Toxicity tests that are being required by many States for NPDES permit renewal. The Savannah River Plant produces special nuclear materials for the US Government. Aluminum forming and metal finishing operations in M-Area, that manufacture fuel and target assemblies for the nuclear reactors, discharge to a waste water treatment facility using BAT hydroxide precipitation and filtration. The new Tyvek{reg sign} media and filter aids have achieved 55% less solids in the filtrate discharged to Tims Branch Creek, 15% less hazardous waste (dry filter cake), 150%-370% more filtration capacity, 74% lower materials purchase cost, 10% lower total M-Area manufacturing cost, and have improved safety. Performance with the improved polymers is now being evaluated.

  8. Recovery of solid fuel from municipal solid waste by hydrothermal treatment using subcritical water

    SciTech Connect (OSTI)

    Hwang, In-Hee; Aoyama, Hiroya; Matsuto, Toshihiko; Nakagishi, Tatsuhiro; Matsuo, Takayuki

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Hydrothermal treatment using subcritical water was studied to recover solid fuel from MSW. Black-Right-Pointing-Pointer More than 75% of carbon in MSW was recovered as char. Black-Right-Pointing-Pointer Heating value of char was comparable to that of brown coal and lignite. Black-Right-Pointing-Pointer Polyvinyl chloride was decomposed at 295 Degree-Sign C and 8 MPa and was removed by washing. - Abstract: Hydrothermal treatments using subcritical water (HTSW) such as that at 234 Degree-Sign C and 3 MPa (LT condition) and 295 Degree-Sign C and 8 MPa (HT condition) were investigated to recover solid fuel from municipal solid waste (MSW). Printing paper, dog food (DF), wooden chopsticks, and mixed plastic film and sheets of polyethylene, polypropylene, and polystyrene were prepared as model MSW components, in which polyvinylchloride (PVC) powder and sodium chloride were used to simulate Cl sources. While more than 75% of carbon in paper, DF, and wood was recovered as char under both LT and HT conditions, plastics did not degrade under either LT or HT conditions. The heating value (HV) of obtained char was 13,886-27,544 kJ/kg and was comparable to that of brown coal and lignite. Higher formation of fixed carbon and greater oxygen dissociation during HTSW were thought to improve the HV of char. Cl atoms added as PVC powder and sodium chloride to raw material remained in char after HTSW. However, most Cl originating from PVC was found to converse into soluble Cl compounds during HTSW under the HT condition and could be removed by washing. From these results, the merit of HTSW as a method of recovering solid fuel from MSW is considered to produce char with minimal carbon loss without a drying process prior to HTSW. In addition, Cl originating from PVC decomposes into soluble Cl compound under the HT condition. The combination of HTSW under the HT condition and char washing might improve the quality of char as alternative fuel.

  9. WATER TREATMENT

    DOE Patents [OSTI]

    Pitman, R.W.; Conley, W.R. Jr.

    1962-12-01

    An automated system for adding clarifying chemicals to water in a water treatment plant is described. To a sample of the floc suspension polyacrylamide or similar filter aid chemicals are added, and the sample is then put through a fast filter. The resulting filtrate has the requisite properties for monitoring in an optical turbidimeter to control the automated system. (AEC)

  10. Enterprise Assessments Operational Awareness Record, Waste Treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    waste system of the Waste Treatment and Immobilization Plant Low Activity Waste Facility. ... Operational Awareness Record, Waste Treatment and Immobilization Plant - December 2014 ...

  11. Independent Activity Report, Waste Treatment and Immobilization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Treatment and Immobilization Plant - March 2013 Independent Activity Report, Waste Treatment and Immobilization Plant - March 2013 March 2013 Follow-up of Waste Treatment and...

  12. Waste Treatment Plant - 12508

    SciTech Connect (OSTI)

    Harp, Benton; Olds, Erik

    2012-07-01

    The Waste Treatment Plant (WTP) will immobilize millions of gallons of Hanford's tank waste into solid glass using a proven technology called vitrification. The vitrification process will turn the waste into a stable glass form that is safe for long-term storage. Our discussion of the WTP will include a description of the ongoing design and construction of this large, complex, first-of-a-kind project. The concept for the operation of the WTP is to separate high-level and low-activity waste fractions, and immobilize those fractions in glass using vitrification. The WTP includes four major nuclear facilities and various support facilities. Waste from the Tank Farms is first pumped to the Pretreatment Facility at the WTP through an underground pipe-in-pipe system. When construction is complete, the Pretreatment Facility will be 12 stories high, 540 feet long and 215 feet wide, making it the largest of the four major nuclear facilities that compose the WTP. The total size of this facility will be more than 490,000 square feet. More than 8.2 million craft hours are required to construct this facility. Currently, the Pretreatment Facility is 51 percent complete. At the Pretreatment Facility the waste is pumped to the interior waste feed receipt vessels. Each of these four vessels is 55-feet tall and has a 375,000 gallon capacity, which makes them the largest vessels inside the Pretreatment Facility. These vessels contain a series of internal pulse-jet mixers to keep incoming waste properly mixed. The vessels are inside the black-cell areas, completely enclosed behind thick steel-laced, high strength concrete walls. The black cells are designed to be maintenance free with no moving parts. Once hot operations commence the black-cell area will be inaccessible. Surrounded by black cells, is the 'hot cell canyon'. The hot cell contains all the moving and replaceable components to remove solids and extract liquids. In this area, there is ultrafiltration equipment, cesium

  13. Waste Treatment Plant Overview

    Office of Environmental Management (EM)

    Waste Isolation Pilot Plant Waste Isolation Pilot Plant Waste Isolation Pilot Plant | June 2007 Salt Disposal Investigations Waste Isolation Pilot Plant | June 2007 Salt Disposal Investigations The mission of the Waste Isolation Pilot Plant site is to provide permanent, underground disposal of TRU and TRU-mixed wastes (wastes that also have hazardous chemical components). TRU waste consists of clothing, tools, and debris left from the research and production of nuclear weapons. TRU waste is

  14. Enterprise Assessments Operational Awareness Record, Waste Treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    systems of the Waste Treatment and Immobilization Plant Low Activity Waste Facility. ... Operational Awareness Record, Waste Treatment and Immobilization Plant - December 2014 ...

  15. Independent Oversight Review, Sodium Bearing Waste Treatment...

    Office of Environmental Management (EM)

    Independent Oversight Review, Sodium Bearing Waste Treatment Project - Contractor - June 2012 June 2012 Review of the Sodium Bearing Waste Treatment Project - Integrated Waste ...

  16. Waste Treatment and Immobilization Plant HLW Waste Vitrification Facility |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy HLW Waste Vitrification Facility Waste Treatment and Immobilization Plant HLW Waste Vitrification Facility Full Document and Summary Versions are available for download Waste Treatment and Immobilization Plant HLW Waste Vitrification Facility (742.54 KB) Summary - WTP HLW Waste Vitrification Facility (137.99 KB) More Documents & Publications Waste Treatment and Immobilization Plant (WTP) Analytical Laboratory (LAB), Balance of Facilities (BOF) and Low-Activity Waste

  17. PNNL Supports Hanford Waste Treatment

    SciTech Connect (OSTI)

    2015-06-16

    For more than 40 years, technical assistance from PNNL has supported the operations and processing of Hanford tank waste. Our expertise in tank waste chemistry, fluid dynamics and scaling, waste forms, and safety bases has helped to shape the site’s waste treatment baseline and solve operational challenges. The historical knowledge and unique scientific and technical expertise at PNNL are essential to the success of the Hanford mission.

  18. Handbook of industrial and hazardous wastes treatment. 2nd ed.

    SciTech Connect (OSTI)

    Lawrence Wang; Yung-Tse Hung; Howard Lo; Constantine Yapijakis

    2004-06-15

    This expanded Second Edition offers 32 chapters of industry- and waste-specific analyses and treatment methods for industrial and hazardous waste materials - from explosive wastes to landfill leachate to wastes produced by the pharmaceutical and food industries. Key additional chapters cover means of monitoring waste on site, pollution prevention, and site remediation. Including a timely evaluation of the role of biotechnology in contemporary industrial waste management, the Handbook reveals sound approaches and sophisticated technologies for treating: textile, rubber, and timber wastes; dairy, meat, and seafood industry wastes; bakery and soft drink wastes; palm and olive oil wastes; pesticide and livestock wastes; pulp and paper wastes; phosphate wastes; detergent wastes; photographic wastes; refinery and metal plating wastes; and power industry wastes. This final chapter, entitled 'Treatment of power industry wastes' by Lawrence K. Wang, analyses the stream electric power generation industry, where combustion of fossil fuels coal, oil, gas, supplies heat to produce stream, used then to generate mechanical energy in turbines, subsequently converted to electricity. Wastes include waste waters from cooling water systems, ash handling systems, wet-scrubber air pollution control systems, and boiler blowdown. Wastewaters are characterized and waste treatment by physical and chemical systems to remove pollutants is presented. Plant-specific examples are provided.

  19. Enterprise Assessments Operational Awareness Record, Waste Treatment...

    Office of Environmental Management (EM)

    Enterprise Assessments Operational Awareness Record, Waste Treatment and Immobilization Plant - March 2015 March 2015 Enterprise Assessments Operational Awareness Record, Waste ...

  20. Independent Oversight Review, Advanced Mixed Waste Treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Mixed Waste Treatment Project - April 2013 Independent Oversight Review, Advanced Mixed Waste Treatment Project - April 2013 April 2013 Review of Radiation Protection...

  1. Independent Oversight Review, Sodium Bearing Waste Treatment...

    Office of Environmental Management (EM)

    This report documents the results of an independent review of the Sodium Bearing Waste Treatment Project-Integrated Waste Treatment Unit Federal Operational Readiness Review. ...

  2. Independent Oversight Activity Report, Hanford Waste Treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    July 2013 Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant - July 2013 July 2013 Operational Awareness of Waste Treatment and Immobilization...

  3. Independent Oversight Activity Report, Hanford Waste Treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    June 2013 Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant - June 2013 June 2013 Hanford Waste Treatment and Immobilization Plant Low...

  4. Waste Treatment and Immobilation Plant Pretreatment Facility...

    Office of Environmental Management (EM)

    Pretreatment Facility Waste Treatment and Immobilation Plant Pretreatment Facility Full Document and Summary Versions are available for download Waste Treatment and Immobilation ...

  5. Independent Oversight Review, Waste Treatment and Immobilization...

    Office of Environmental Management (EM)

    Independent Oversight Review, Waste Treatment and Immobilization Plant Project - October 2010 October 2010 Review of Nuclear Safety Culture at the Hanford Site Waste Treatment and ...

  6. Independent Oversight Review, Waste Treatment and Immobilization...

    Office of Environmental Management (EM)

    January 2013 Independent Oversight Review, Waste Treatment and Immobilization Plant - January 2013 January 2013 Review of the Hanford Waste Treatment and Immobilization Plant ...

  7. Independent Oversight Activity Report, Hanford Waste Treatment...

    Office of Environmental Management (EM)

    Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant - ... Conducted in Support of Hanford Site Waste Treatment and Immobilization Plant Select ...

  8. Enterprise Assessments Operational Awareness Record, Waste Treatment...

    Office of Environmental Management (EM)

    Awareness Record, Waste Treatment and Immobilization Plant - December 2014 December 2014 Operational Awareness Record for the Observation of Waste Treatment and ...

  9. Independent Oversight Review, Waste Treatment and Immobilization...

    Office of Environmental Management (EM)

    October 2012 Independent Oversight Review, Waste Treatment and Immobilization Plant - October 2012 October 2012 Review of the Hanford Site Waste Treatment and Immobilization Plant ...

  10. Independent Oversight Assessment, Waste Treatment and Immobilization...

    Office of Environmental Management (EM)

    Waste Treatment and Immobilization Plant - January 2012 Independent Oversight Assessment, Waste Treatment and Immobilization Plant - January 2012 January 2012 Assessment of the ...

  11. Independent Oversight Review, Waste Treatment and Immobilization...

    Office of Environmental Management (EM)

    May 2013 Independent Oversight Review, Waste Treatment and Immobilization Plant - May 2013 May 2013 Review of the Hanford Site Waste Treatment and Immobilization Plant Construction ...

  12. Independent Oversight Review, Waste Treatment and Immobilization...

    Office of Environmental Management (EM)

    August 2012 Independent Oversight Review, Waste Treatment and Immobilization Plant - August 2012 August 2012 Review of the Hanford Site Waste Treatment and Immobilization Plant ...

  13. Waste Treatment and Immobilation Plant Pretreatment Facility

    Office of Environmental Management (EM)

    7 Technology Readiness Assessment for the Waste Treatment and Immobilization Plant (WTP) ... Technology Readiness Assessment for the Waste Treatment and Immobilization Plant (WTP) ...

  14. Independent Oversight Activity Report, Hanford Waste Treatment...

    Office of Environmental Management (EM)

    Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant and Tank Farm - January 2014 January 2014 Hanford Waste Treatment and Immobilization Plant ...

  15. Independent Oversight Review, Waste Treatment and Immobilization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Independent Oversight Review, Waste Treatment and Immobilization Plant - March 2012 March 2012 Review of the Hanford Site Waste Treatment and Immobilization Plant Project ...

  16. Independent Oversight Review, Waste Treatment and Immobilization...

    Broader source: Energy.gov (indexed) [DOE]

    Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality ... construction quality at the Hanford Site Waste Treatment and Immobilization Plant (WTP). ...

  17. Treatment of mercury containing waste

    DOE Patents [OSTI]

    Kalb, Paul D.; Melamed, Dan; Patel, Bhavesh R; Fuhrmann, Mark

    2002-01-01

    A process is provided for the treatment of mercury containing waste in a single reaction vessel which includes a) stabilizing the waste with sulfur polymer cement under an inert atmosphere to form a resulting mixture and b) encapsulating the resulting mixture by heating the mixture to form a molten product and casting the molten product as a monolithic final waste form. Additional sulfur polymer cement can be added in the encapsulation step if needed, and a stabilizing additive can be added in the process to improve the leaching properties of the waste form.

  18. Anaerobic treatment of food wastes

    SciTech Connect (OSTI)

    Criner, G. )

    1991-04-01

    This article describes a research project at the University of Maine in which food wastes from the University cafeteria salad bar are processed in the anaerobic facility which normally treats only animal wastes. The project has benefited the University in several ways: avoidance of waste disposal fees; increased electricity co-generated from the biogas process; and use of the residual as fertilizer. An economic analysis indicated that the estimated cost of anaerobic treatment of the salad bar wastes was $4520/yr and benefits were $4793/yr. Since the digester was already in use, this cost was not factored into the analysis. Further studies are being planned.

  19. The waste water free coke plant

    SciTech Connect (OSTI)

    Schuepphaus, K.; Brink, N.

    1995-12-01

    Apart from coke which is the actual valuable material a coke oven plant also produces a substantial volume of waste water. These effluent water streams are burdened with organic components (e.g. phenols) and inorganic salts (e.g. NH{sub 4}Cl); due to the concentration of the constituents contained therein these effluent waters must be subjected to a specific treatment before they can be introduced into public waters. For some years a lot of separation tasks have been solved successfully by applying the membrane technology. It was especially the growing number of membrane facilities for cleaning of landfill leakage water whose composition can in fact be compared with that of coking plant waste waters (organic constituents, high salt fright, ammonium compounds) which gave Thyssen Still Otto Anlagentechnik the idea for developing a process for coke plant effluent treatment which contains the membrane technology as an essential component.

  20. Report: EM Tank Waste Subcommittee Full Report for Waste Treatment...

    Office of Environmental Management (EM)

    Triay: As discussed during our September 15th public meeting, enclosed please find the Environmental Management Advisory Board EM Tank Waste Subcommittee Report for Waste Treatment ...

  1. Waste Treatment and Immobilation Plant HLW Waste Vitrification...

    Office of Environmental Management (EM)

    6 Technology Readiness Assessment for the Waste Treatment and Immobilization Plant (WTP) HLW Waste Vitrification Facility L. Holton D. Alexander C. Babel H. Sutter J. Young August ...

  2. Water treatment method

    DOE Patents [OSTI]

    Martin, Frank S.; Silver, Gary L.

    1991-04-30

    A method for reducing the concentration of any undesirable metals dissolved in contaminated water, such as waste water. The method involves uniformly reacting the contaminated water with an excess amount of solid particulate calcium sulfite to insolubilize the undesirable metal ions, followed by removal thereof and of the unreacted calcium sulfite.

  3. Water treatment method

    DOE Patents [OSTI]

    Martin, F.S.; Silver, G.L.

    1991-04-30

    A method is described for reducing the concentration of any undesirable metals dissolved in contaminated water, such as waste water. The method involves uniformly reacting the contaminated water with an excess amount of solid particulate calcium sulfite to insolubilize the undesirable metal ions, followed by removal thereof and of the unreacted calcium sulfite.

  4. Waste Treatment & Immobilization Plant - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Waste Treatment & Immobilization Plant Office of River Protection About ORP ORP Projects & Facilities Tank Farms Waste Treatment & Immobilization Plant 242-A Evaporator 222-S Laboratory Newsroom Contracts & Procurements Contact ORP Waste Treatment & Immobilization Plant Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size Waste Treatment Plant Overview Waste Treatment and Immobilization Plant Background Information The Hanford Site, located in

  5. A perspective of hazardous waste and mixed waste treatment technology at the Savannah River Site

    SciTech Connect (OSTI)

    England, J.L.; Venkatesh, S.; Bailey, L.L.; Langton, C.A.; Hay, M.S.; Stevens, C.B.; Carroll, S.J.

    1991-12-31

    Treatment technologies for the preparation and treatment of heavy metal mixed wastes, contaminated soils, and mixed mercury wastes are being considered at the Savannah River Site (SRS), a DOE nuclear material processing facility operated by Westinghouse Savannah River Company (WSRC). The proposed treatment technologies to be included at the Hazardous Waste/Mixed Waste Treatment Building at SRS are based on the regulatory requirements, projected waste volumes, existing technology, cost effectiveness, and project schedule. Waste sorting and size reduction are the initial step in the treatment process. After sorting/size reduction the wastes would go to the next applicable treatment module. For solid heavy metal mixed wastes the proposed treatment is macroencapsulation using a thermoplastic polymer. This process reduces the leachability of hazardous constituents from the waste and allows easy verification of the coating integrity. Stabilization and solidification in a cement matrix will treat a wide variety of wastes (i.e. soils, decontamination water). Some pretreatments may be required (i.e. Ph adjustment) before stabilization. Other pretreatments such as soil washing can reduce the amount of waste to be stabilized. Radioactive contaminated mercury waste at the SRS comes in numerous forms (i.e. process equipment, soils, and lab waste) with the required treatment of high mercury wastes being roasting/retorting and recovery. Any unrecyclable radioactive contaminated elemental mercury would be amalgamated, utilizing a batch system, before disposal.

  6. A perspective of hazardous waste and mixed waste treatment technology at the Savannah River Site

    SciTech Connect (OSTI)

    England, J.L.; Venkatesh, S.; Bailey, L.L.; Langton, C.A.; Hay, M.S.; Stevens, C.B.; Carroll, S.J.

    1991-01-01

    Treatment technologies for the preparation and treatment of heavy metal mixed wastes, contaminated soils, and mixed mercury wastes are being considered at the Savannah River Site (SRS), a DOE nuclear material processing facility operated by Westinghouse Savannah River Company (WSRC). The proposed treatment technologies to be included at the Hazardous Waste/Mixed Waste Treatment Building at SRS are based on the regulatory requirements, projected waste volumes, existing technology, cost effectiveness, and project schedule. Waste sorting and size reduction are the initial step in the treatment process. After sorting/size reduction the wastes would go to the next applicable treatment module. For solid heavy metal mixed wastes the proposed treatment is macroencapsulation using a thermoplastic polymer. This process reduces the leachability of hazardous constituents from the waste and allows easy verification of the coating integrity. Stabilization and solidification in a cement matrix will treat a wide variety of wastes (i.e. soils, decontamination water). Some pretreatments may be required (i.e. Ph adjustment) before stabilization. Other pretreatments such as soil washing can reduce the amount of waste to be stabilized. Radioactive contaminated mercury waste at the SRS comes in numerous forms (i.e. process equipment, soils, and lab waste) with the required treatment of high mercury wastes being roasting/retorting and recovery. Any unrecyclable radioactive contaminated elemental mercury would be amalgamated, utilizing a batch system, before disposal.

  7. Closed Fuel Cycle Waste Treatment Strategy

    SciTech Connect (OSTI)

    Vienna, J. D.; Collins, E. D.; Crum, J. V.; Ebert, W. L.; Frank, S. M.; Garn, T. G.; Gombert, D.; Jones, R.; Jubin, R. T.; Maio, V. C.; Marra, J. C.; Matyas, J.; Nenoff, T. M.; Riley, B. J.; Sevigny, G. J.; Soelberg, N. R.; Strachan, D. M.; Thallapally, P. K.; Westsik, J. H.

    2015-02-01

    This study is aimed at evaluating the existing waste management approaches for nuclear fuel cycle facilities in comparison to the objectives of implementing an advanced fuel cycle in the U.S. under current legal, regulatory, and logistical constructs. The study begins with the Global Nuclear Energy Partnership (GNEP) Integrated Waste Management Strategy (IWMS) (Gombert et al. 2008) as a general strategy and associated Waste Treatment Baseline Study (WTBS) (Gombert et al. 2007). The tenets of the IWMS are equally valid to the current waste management study. However, the flowsheet details have changed significantly from those considered under GNEP. In addition, significant additional waste management technology development has occurred since the GNEP waste management studies were performed. This study updates the information found in the WTBS, summarizes the results of more recent technology development efforts, and describes waste management approaches as they apply to a representative full recycle reprocessing flowsheet. Many of the waste management technologies discussed also apply to other potential flowsheets that involve reprocessing. These applications are occasionally discussed where the data are more readily available. The report summarizes the waste arising from aqueous reprocessing of a typical light-water reactor (LWR) fuel to separate actinides for use in fabricating metal sodium fast reactor (SFR) fuel and from electrochemical reprocessing of the metal SFR fuel to separate actinides for recycle back into the SFR in the form of metal fuel. The primary streams considered and the recommended waste forms include; Tritium in low-water cement in high integrity containers (HICs); Iodine-129: As a reference case, a glass composite material (GCM) formed by the encapsulation of the silver Mordenite (AgZ) getter material in a low-temperature glass is assumed. A number of alternatives with distinct advantages are also considered including a fused silica waste form

  8. Overview of Integrated Waste Treatment Unit

    Office of Environmental Management (EM)

    Integrated Waste Treatment Unit Overview Overview for the DOE High Level Waste Corporate Board March 5, 2009 safety performance cleanup closure M E Environmental ...

  9. Independent Oversight Review, Waste Treatment and Immobilization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    December 2012 Review of the Hanford Site Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity The Office of Enforcement and...

  10. Process and system for treating waste water

    DOE Patents [OSTI]

    Olesen, Douglas E.; Shuckrow, Alan J.

    1978-01-01

    A process of treating raw or primary waste water using a powdered, activated carbon/aerated biological treatment system is disclosed. Effluent turbidities less than 2 JTU (Jackson turbidity units), zero TOC (total organic carbon) and in the range of 10 mg/l COD (chemical oxygen demand) can be obtained. An influent stream of raw or primary waste water is contacted with an acidified, powdered, activated carbon/alum mixture. Lime is then added to the slurry to raise the pH to about 7.0. A polyelectrolyte flocculant is added to the slurry followed by a flocculation period -- then sedimentation and filtration. The separated solids (sludge) are aerated in a stabilization sludge basin and a portion thereof recycled to an aerated contact basin for mixing with the influent waste water stream prior to or after contact of the influent stream with the powdered, activated carbon/alum mixture.

  11. SECONDARY WASTE MANAGEMENT STRATEGY FOR EARLY LOW ACTIVITY WASTE TREATMENT

    SciTech Connect (OSTI)

    TW, CRAWFORD

    2008-07-17

    This study evaluates parameters relevant to River Protection Project secondary waste streams generated during Early Low Activity Waste operations and recommends a strategy for secondary waste management that considers groundwater impact, cost, and programmatic risk. The recommended strategy for managing River Protection Project secondary waste is focused on improvements in the Effiuent Treatment Facility. Baseline plans to build a Solidification Treatment Unit adjacent to Effluent Treatment Facility should be enhanced to improve solid waste performance and mitigate corrosion of tanks and piping supporting the Effiuent Treatment Facility evaporator. This approach provides a life-cycle benefit to solid waste performance and reduction of groundwater contaminants.

  12. Preliminary design of a biological treatment facility for trench water from a low-level radioactive waste disposal area at West Valley, New York

    SciTech Connect (OSTI)

    Rosten, R.; Malkumus, D.; Sonntag, T.; Sundquist, J.

    1993-03-01

    The New York State Energy Research and Development Authority (NYSERDA) owns and manages a State-Licensed Low-Level Radioactive Waste Disposal Area (SDA) at West Valley, New York. Water has migrated into the burial trenches at the SDA and collected there, becoming contaminated with radionuclides and organic compounds. The US Environmental Protection Agency issued an order to NYSERDA to reduce the levels of water in the trenches. A treatability study of the contaminated trench water (leachate) was performed and determined the best available technology to treat the leachate and discharge the effluent. This paper describes the preliminary design of the treatment facility that incorporates the bases developed in the leachate treatability study.

  13. Multimedia strategy considers waste treatment

    SciTech Connect (OSTI)

    Phillips, J.B.

    1995-05-01

    The advent of multimedia pollution prevention programs has raised some interesting and challenging questions on the subject of facility operations. First and foremost is the goal of a multimedia pollution prevention program: how can industrial streams in an operating facility be treated to prevent pollutants from escaping in a particular effluent or waste streams without transferring the same pollutants to another medium? Once this is resolved, the next issue to be addressed is the fate of pollutants removed from effluent streams. EPA is moving toward discouraging destruction as an acceptable means of waste treatment. The strategies are presented for handling pollutants from one media without contaminating another.

  14. Waste stream recycling: Its effect on water quality

    SciTech Connect (OSTI)

    Cornwell, D.A. ); Lee, R.G. )

    1994-11-01

    Waste streams recycled to the influent of a water treatment plant typically contain contaminants at concentrations that are of concern. These contaminants may include giardia and Cryptosporidium, trihalomethanes, manganese, and assimilable organic carbon. This research shows that proper management--treatment, equalization, and monitoring--of the waste streams can render them suitable for recycling in many situations.

  15. Water_Treatment.cdr

    Office of Legacy Management (LM)

    than 290 million gallons of contaminated water have been treated and released into the Missouri River from two similar water treatment facilities at the site and the nearby Quarry. ...

  16. Waste Treatment Plant Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plant Project Waste Treatment Plant Project Presentation from the 2015 DOE National Cleanup Workshop by Peggy McCullough, Project Manager-WTP, Bechtel National. Waste Treatment Plant Project (669.27 KB) More Documents & Publications Waste Treatment Plant and Tank Farm Program Managing Large Capital Projects EIS-0391: Draft Environmental Impact Statement

  17. Evaluation of biological treatment of pharmaceutical waste water with PAC (powdered activated carbon) addition. Volume 1. Final report

    SciTech Connect (OSTI)

    Gardner, D.A.; Osantowski, R.A.

    1988-05-01

    A lack of information on applicable removal technologies for total chemical oxygen demand (TCOD) prevented promulgation of best available technology economically achievable (BAT) limitations and new source performance standards (NSPS) for TCOD for pharmaceutical manufacturing plants in 1983 (EPA/440/1-83/084). One technology that was evaluated was powdered activated carbon (PAC) addition to an activated-sludge system (PACT*). A viscous floating mass of mixed-liquor solids (VFMLS) developed in the PACT units and resulted in premature termination of the study. The purposes of the study were to: (1) attempt to find the cause of the formation of the VFMLS; (2) generate additional research data for TCOD removal from pharmaceutical waste water using the PACT process; (3) evaluate the efficiency of PACT in removing specific organics; (4) evaluate the effectiveness of PACT in reducing effluent aquatic toxicity and (5) evaluate the use of a selector to improve the settleability of the mixed liquor. One control unit, two PACT units and a unit equipped with a series of selector basins for improving the settling characteristics of the mixed-liquor suspended solids were operated.

  18. Waste Treatment and Immobilation Plant HLW Waste Vitrification Facility

    Office of Environmental Management (EM)

    6 Technology Readiness Assessment for the Waste Treatment and Immobilization Plant (WTP) HLW Waste Vitrification Facility L. Holton D. Alexander C. Babel H. Sutter J. Young August 2007 Prepared by the U.S. Department of Energy Office of River Protection Richland, Washington, 99352 07-DESIGN-046 Technology Readiness Assessment for the Waste Treatment and Immobilization Plant (WTP) HLW Waste Vitrification Facility L. Holton D. Alexander C. Babel H. Sutter J. Young August 2007 Prepared by the U.S.

  19. decreasing water input and waste generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    decreasing water input and waste generation - Sandia Energy Energy Search Icon Sandia Home ... Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ...

  20. Mixed waste characterization, treatment & disposal focus area

    SciTech Connect (OSTI)

    1996-08-01

    The mission of the Mixed Waste Characterization, Treatment, and Disposal Focus Area (referred to as the Mixed Waste Focus Area or MWFA) is to provide treatment systems capable of treating DOE`s mixed waste in partnership with users, and with continual participation of stakeholders, tribal governments, and regulators. The MWFA deals with the problem of eliminating mixed waste from current and future storage in the DOE complex. Mixed waste is waste that contains both hazardous chemical components, subject to the requirements of the Resource Conservation and Recovery Act (RCRA), and radioactive components, subject to the requirements of the Atomic Energy Act. The radioactive components include transuranic (TRU) and low-level waste (LLW). TRU waste primarily comes from the reprocessing of spent fuel and the use of plutonium in the fabrication of nuclear weapons. LLW includes radioactive waste other than uranium mill tailings, TRU, and high-level waste, including spent fuel.

  1. EIS-0287: Notice of Preferred Sodium Bearing Waste Treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Preferred Sodium Bearing Waste Treatment Technology EIS-0287: Notice of Preferred Sodium Bearing Waste Treatment Technology Idaho High-Level Waste (HLW) and Facilities Disposition...

  2. Hanford Tank Waste - Near Source Treatment of Low Activity Waste

    SciTech Connect (OSTI)

    Ramsey, William Gene

    2013-08-15

    Abstract only. Treatment and disposition of Hanford Site waste as currently planned consists of 100+ waste retrievals, waste delivery through up to 8+ miles of dedicated, in-ground piping, centralized mixing and blending operations- all leading to pre-treatment combination and separation processes followed by vitrification at the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The sequential nature of Tank Farm and WTP operations requires nominally 15-20 years of continuous operations before all waste can be retrieved from many Single Shell Tanks (SSTs). Also, the infrastructure necessary to mobilize and deliver the waste requires significant investment beyond that required for the WTP. Treating waste as closely as possible to individual tanks or groups- as allowed by the waste characteristics- is being investigated to determine the potential to 1) defer, reduce, and/or eliminate infrastructure requirements, and 2) significantly mitigate project risk by reducing the potential and impact of single point failures. The inventory of Hanford waste slated for processing and disposition as LAW is currently managed as high-level waste (HLW), i.e., the separation of fission products and other radionuclides has not commenced. A significant inventory of this waste (over 20M gallons) is in the form of precipitated saltcake maintained in single shell tanks, many of which are identified as potential leaking tanks. Retrieval and transport (as a liquid) must be staged within the waste feed delivery capability established by site infrastructure and WTP. Near Source treatment, if employed, would provide for the separation and stabilization processing necessary for waste located in remote farms (wherein most of the leaking tanks reside) significantly earlier than currently projected. Near Source treatment is intended to address the currently accepted site risk and also provides means to mitigate future issues likely to be faced over the coming decades. This paper

  3. Independent Oversight Review, Waste Treatment and Immobilization...

    Broader source: Energy.gov (indexed) [DOE]

    Hanford Site Waste Treatment and Immobilization Plant Project Construction Quality This report documents the results of an independent oversight review of selected aspects of...

  4. Washington Environmental Permit Handbook - Dangerous Waste Treatment...

    Open Energy Info (EERE)

    Dangerous Waste Treatment Storage Disposal Facility New Permit Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Washington Environmental Permit Handbook...

  5. Independent Oversight Review, Waste Treatment and Immobilization...

    Broader source: Energy.gov (indexed) [DOE]

    Plant Construction Quality This report documents the results of an independent oversight review of Construction Quality at the Hanford Site Waste Treatment and Immobilization Plant ...

  6. Nuclear waste treatment program: Annual report for FY 1987

    SciTech Connect (OSTI)

    Brouns, R.A.; Powell, J.A.

    1988-09-01

    Two of the US Department of Energy's (DOE) nuclear waste management-related goals are to ensure that waste management is not an obstacle to the further development of light-water reactors and the closure of the nuclear fuel cycle and to fulfill its institutional responsibility for providing safe storage and disposal of existing and future nuclear wastes. As part of its approach to achieving these goals, the Office of Remedial Action and Waste Technology of DOE established what is now called the Nuclear Waste Treatment Program (NWTP) at the Pacific Northwest Laboratory during the second half of FY 1982. To support DOE's attainment of its goals, the NWTP is to provide technology necessary for the design and operation of nuclear waste treatment facilities by commercial enterprises as part of a licensed waste management system and problem-specific treatment approaches, waste form and treatment process adaptations, equipment designs, and trouble-shooting assistance, as required to treat existing wastes. This annual report describes progress during FY 1987 towards meeting these two objectives. 24 refs., 59 figs., 24 tabs.

  7. Waste Treatment and Immobilization Plant Progress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Waste Treatment and Immobilization Plant Progress Hanford Advisory Board requested action:  Based on progress discussions, the Hanford Advisory Board will develop and advocate an effective public communication strategy for use by the Waste Treatment and Immobilization Plant Assistant Manager/Federal Project Director Progress discussions on the following:  High-level waste (HLW) authorization to proceed with full production engineering:  HLW Safety Design Strategy approval and

  8. Independent Oversight Review, Waste Treatment and Immobilization Plant- December 2012

    Broader source: Energy.gov [DOE]

    Review of the Hanford Site Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity

  9. Enterprise Assessments Targeted Assessment of the Waste Treatment...

    Office of Environmental Management (EM)

    Assessment of the Waste Treatment and Immobilization Plant High-Level Waste Facility Radioactive Liquid Waste Disposal System Safety Basis Change Package - May 2016 Enterprise ...

  10. Enterprise Assessments Targeted Assessment of the Waste Treatment...

    Office of Environmental Management (EM)

    Targeted Assessment of the Waste Treatment and Immobilization Plant High-Level Waste Facility Radioactive Liquid Waste Disposal System Safety Basis Change Package May 2016 Office ...

  11. Life cycle assessment of electronic waste treatment

    SciTech Connect (OSTI)

    Hong, Jinglan; Shi, Wenxiao; Wang, Yutao; Chen, Wei; Li, Xiangzhi

    2015-04-15

    Highlights: • Life cycle assessment of electronic waste recycling is quantified. • Key factors for reducing the overall environmental impact are indentified. • End-life disposal processes provide significant environmental benefits. • Efficiently reduce the improper disposal amount of e-waste is highly needed. • E-waste incineration can generate significant environmental burden. - Abstract: Life cycle assessment was conducted to estimate the environmental impact of electronic waste (e-waste) treatment. E-waste recycling with an end-life disposal scenario is environmentally beneficial because of the low environmental burden generated from human toxicity, terrestrial ecotoxicity, freshwater ecotoxicity, and marine ecotoxicity categories. Landfill and incineration technologies have a lower and higher environmental burden than the e-waste recycling with an end-life disposal scenario, respectively. The key factors in reducing the overall environmental impact of e-waste recycling are optimizing energy consumption efficiency, reducing wastewater and solid waste effluent, increasing proper e-waste treatment amount, avoiding e-waste disposal to landfill and incineration sites, and clearly defining the duties of all stakeholders (e.g., manufacturers, retailers, recycling companies, and consumers)

  12. Working with SRNL - Our Facilities- Waste Treatment Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Waste Treatment Laboratories Working with SRNL Our Facilities - Waste Treatment Laboratories The Waste Treatment Laboratories is a collection of laboratories for research and development using nonradioactive simulants as well as shielded facilities for work with radioactive materials

  13. Integrated Waste Treatment Facility Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Management » Tank Waste and Waste Processing » Integrated Waste Treatment Facility Fact Sheet Integrated Waste Treatment Facility Fact Sheet The Integrated Waste Treatment Unit is a newly constructed facility that is designed to treat 900,000 gallons of radioactive liquid waste stored in underground tanks at a former Cold War spent nuclear fuel reprocessing facility located at DOE's Idaho Site. IWTU at Idaho Fact Sheet (355.08 KB) More Documents & Publications Integrated Waste

  14. Coal mine wastes. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    The bibliography contains citations concerning coal mining wastes, refuse dumps, and spoil. The disposal, environmental impact, waste treatment, utilization, and pollution control of these wastes are discussed. The revegetation of mined lands using waste water sludge is also considered. (Contains a minimum of 138 citations and includes a subject term index and title list.)

  15. Voluntary Protection Program Onsite Review, Waste Treatment Project...

    Office of Environmental Management (EM)

    Treatment Project - May 2006 Voluntary Protection Program Onsite Review, Waste Treatment Project - May 2006 May 2006 Evaluation of Intermech, Inc. activities at the Hanford Waste...

  16. Independent Oversight Review, Hanford Waste Treatment and Immobilizati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    March 2014 Independent Oversight Review, Hanford Waste Treatment and Immobilization Plant - March 2014 March 2014 Review of the Hanford Site Waste Treatment and Immobilization...

  17. Independent Oversight Review, Hanford Site Waste Treatment and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Treatment and Immobilization Plant, August 2013 Independent Oversight Review, Hanford Site Waste Treatment and Immobilization Plant, August 2013 August 2013 Review of the ...

  18. Enterprise Assessments Review, Hanford Waste Treatment and Immobilizat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hanford Waste Treatment and Immobilization Plant - January 2015 Enterprise Assessments Review, Hanford Waste Treatment and Immobilization Plant - January 2015 January, 2015 Review ...

  19. Enterprise Assessments Review, Hanford Site Waste Treatment and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review, Hanford Site Waste Treatment and Immobilization Plant - September 2014 Enterprise Assessments Review, Hanford Site Waste Treatment and Immobilization Plant - September 2014...

  20. Review of the Sodium Bearing Waste Treatment Project - Integrated...

    Office of Environmental Management (EM)

    Verification Review IWTU Integrated Waste Treatment Unit LCO Limiting Condition for ... Analysis Report SBWTP Sodium Bearing Waste Treatment Project SMP Safety Management ...

  1. SRS Tank 48H Waste Treatment Project Technology Readiness Assessment...

    Office of Environmental Management (EM)

    SRS Tank 48H Waste Treatment Project Technology Readiness Assessment SRS Tank 48H Waste Treatment Project Technology Readiness Assessment Full Document and Summary Versions are ...

  2. Advanced Mixed Waste Treatment Project Achieves Impressive Safety...

    Office of Environmental Management (EM)

    Advanced Mixed Waste Treatment Project Achieves Impressive Safety and Production Marks Advanced Mixed Waste Treatment Project Achieves Impressive Safety and Production Marks June ...

  3. Hanford Tank Waste Retrieval, Treatment and Disposition Framework...

    Office of Environmental Management (EM)

    Hanford Tank Waste Retrieval, Treatment and Disposition Framework Hanford Tank Waste Retrieval, Treatment and Disposition Framework Completing the Office of River Protection (ORP) ...

  4. Idaho Waste Treatment Facility Improves Worker Safety and Efficiency...

    Office of Environmental Management (EM)

    Waste Treatment Facility Improves Worker Safety and Efficiency, Saves Taxpayer Dollars Idaho Waste Treatment Facility Improves Worker Safety and Efficiency, Saves Taxpayer Dollars ...

  5. Engineers Go Mobile with Tablets, Bring Benefits to Waste Treatment...

    Energy Savers [EERE]

    Engineers Go Mobile with Tablets, Bring Benefits to Waste Treatment Plant Project Engineers Go Mobile with Tablets, Bring Benefits to Waste Treatment Plant Project June 15, 2016 - ...

  6. Hanford ETR Tank Waste Treatment and Immobilization Plant - Hanford...

    Office of Environmental Management (EM)

    ETR Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - External Flowsheet Review Team (Technical) Report ...

  7. Independent Oversight Review, Hanford Site Waste Treatment and...

    Energy Savers [EERE]

    Waste Treatment and Immobilization Plant - June 2014 Independent Oversight Review, Hanford Site Waste Treatment and Immobilization Plant - June 2014 June 2014 Review of the Hanford ...

  8. Flexible Distributed Energy & Water from Waste for the Food ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributed Energy & Water from Waste for the Food & Beverage Industry - Presentation by GE Global Research, June 2011 Flexible Distributed Energy & Water from Waste for the Food & ...

  9. Flexible Distributed Energy and Water from Waste for the Food...

    Energy Savers [EERE]

    Flexible Distributed Energy and Water from Waste for the Food and Beverage Industry - Fact Sheet, 2014 Flexible Distributed Energy and Water from Waste for the Food and Beverage ...

  10. Waste Treatment and Immobilation Plant Pretreatment Facility

    Office of Environmental Management (EM)

    7 Technology Readiness Assessment for the Waste Treatment and Immobilization Plant (WTP) Pretreatment Facility L. Holton D. Alexander M. Johnson H. Sutter August 2007 Prepared by the U.S. Department of Energy Office of River Protection Richland, Washington, 99352 07-DESIGN-047 Technology Readiness Assessment for the Waste Treatment and Immobilization Plant (WTP) Pretreatment Facilities L. Holton D. Alexander M. Johnson H. Sutter August 2007 Prepared by the U.S. Department of Energy Office of

  11. Enterprise Assessments Targeted Assessment of the Waste Treatment and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Immobilization Plant High-Level Waste Facility Radioactive Liquid Waste Disposal System Safety Basis Change Package - May 2016 | Department of Energy Assessment of the Waste Treatment and Immobilization Plant High-Level Waste Facility Radioactive Liquid Waste Disposal System Safety Basis Change Package - May 2016 Enterprise Assessments Targeted Assessment of the Waste Treatment and Immobilization Plant High-Level Waste Facility Radioactive Liquid Waste Disposal System Safety Basis Change

  12. Water treatment facilities (excluding wastewater facilities). (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-07-01

    The bibliography contains citations concerning the design, construction, costs, and operation of water treatment facilities. Facilities covered include those that provide drinking water, domestic water, and water for industrial use. Types of water treatment covered include reverse osmosis, chlorination, filtration, and ozonization. Waste water treatment facilities are excluded from this bibliography. (Contains 250 citations and includes a subject term index and title list.)

  13. TREATMENT OF FISSION PRODUCT WASTE

    DOE Patents [OSTI]

    Huff, J.B.

    1959-07-28

    A pyrogenic method of separating nuclear reactor waste solutions containing aluminum and fission products as buring petroleum coke in an underground retort, collecting the easily volatile gases resulting as the first fraction, he uminum chloride as the second fraction, permitting the coke bed to cool and ll contain all the longest lived radioactive fission products in greatly reduced volume.

  14. IDAHO SITE TO PROVIDE WASTE TREATMENT FOR OTHER DOE SITES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 7, 2008 IDAHO SITE TO PROVIDE WASTE TREATMENT FOR OTHER DOE SITES Plan won't impact DOE commitment to removing all stored waste from Idaho Site Idaho's Advanced Mixed Waste Treatment Facility offers state of the art waste characterization, treatment and packaging capabilities. Click on image to enlarge The U.S. Department of Energy (DOE) is amending the Record of Decision for the Waste Management Program: Treatment and Storage of Transuranic Waste, originally issued in 1998. The amendment

  15. Waste Treatment and Immobilization Plant Pretreatment Facility | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Pretreatment Facility Waste Treatment and Immobilization Plant Pretreatment Facility Full Document and Summary Versions are available for download Waste Treatment and Immobilization Plant Pretreatment Facility (1.68 MB) Summary - WTP Pretreatment Facility (109.88 KB) More Documents & Publications Waste Treatment and Immobilization Plant HLW Waste Vitrification Facility Compilation of TRA Summaries Hanford ETR Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste

  16. Low temperature thermal treatment for petroleum refinery waste sludges

    SciTech Connect (OSTI)

    Ayen, R.J.; Swanstrom, C.P. )

    1992-05-01

    Treatment requirements for waste sludges generated by petroleum refinery operations and designated as waste codes K048, K049, K050, K051 and K052 under the Resource Conservation and Recovery Act (RCRA) became effective in November, 1990 under the Landban regulations. An experimental program evaluated low temperature thermal treatment of filter cakes produced from these sludges using laboratory and pilot-scale equipment. One set of experiments on waste samples from two different refineries demonstrated the effective removal of organics of concern from the sludges to meet the RCRA Best Demonstrated Available Technology (BDAT) treatment standards. Cyanides were also within the acceptable limit. Combined with stabilization of heavy metals in the treatment residues, low temperature thermal treatment therefore provides an effective and efficient means of treating refinery sludges, with most hydrocarbons recovered and recycled to the refinery. A milder thermal treatment was used to remove the bulk of the water from a previously filtered waste sludge, providing effective waste minimization through a 40% decrease in the mass of sludge to be disposed. The heating value of the sludge was increased simultaneously by one-third, thereby producing a residue of greater value in an alternative fuels program. A process based on this approach was successfully designed and commercialized.

  17. Independent Oversight Review, Sodium Bearing Waste Treatment Project- Federal- June 2012

    Broader source: Energy.gov [DOE]

    Review of the Sodium Bearing Waste Treatment Project - Integrated Waste Treatment Unit Federal Operational Readiness Review

  18. Independent Oversight Review, Sodium Bearing Waste Treatment Project- Contractor- June 2012

    Broader source: Energy.gov [DOE]

    Review of the Sodium Bearing Waste Treatment Project - Integrated Waste Treatment Unit Contractor Operational Readiness Review

  19. Waste form development for use with ORNL waste treatment facility sludge

    SciTech Connect (OSTI)

    Abotsi, G.M.K.; Bostick, W.D.

    1996-05-01

    A sludge that simulates Water Softening Sludge number 5 (WSS number 5 filtercake) at Oak Ridge National Laboratory was prepared and evaluated for its thermal behavior, volume reduction, stabilization, surface area and compressive strength properties. Compaction of the surrogate waste and the calcium oxide (produced by calcination) in the presence of paraffin resulted in cylindrical molds with various degrees of stability. This work has demonstrated that surrogate WSS number 5 at ORNL can be successfully stabilized by blending it with about 35 percent paraffin and compacting the mixture at 8000 psi. This compressive strength of the waste form is sufficient for temporary storage of the waste while long-term storage waste forms are developed. Considering the remarkable similarity between the surrogate and the actual filtercake, the findings of this project should be useful for treating the sludge generated by the waste treatment facility at ORNL.

  20. 'Chemistry Summit' Aids Idaho Waste Treatment Facility Startup |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 'Chemistry Summit' Aids Idaho Waste Treatment Facility Startup 'Chemistry Summit' Aids Idaho Waste Treatment Facility Startup February 25, 2016 - 12:30pm Addthis The Integrated Waste Treatment Unit at DOE's Idaho Site. The Integrated Waste Treatment Unit at DOE's Idaho Site. IDAHO FALLS, Idaho - DOE recently convened a "Chemistry Summit" of scientific experts to aid its efforts to safely and effectively start up the Integrated Waste Treatment Unit (IWTU). The

  1. The 100K West Reactor Water Treatment Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    demolition (D&D) work at the 100K West Reactor Water Treatment Facilities at the Hanford ... facilities and waste sites that supported reactor operations from the 1950s to the 1970s. ...

  2. Surrogate formulations for thermal treatment of low-level mixed waste, Part II: Selected mixed waste treatment project waste streams

    SciTech Connect (OSTI)

    Bostick, W.D.; Hoffmann, D.P.; Chiang, J.M.; Hermes, W.H.; Gibson, L.V. Jr.; Richmond, A.A.; Mayberry, J.; Frazier, G.

    1994-01-01

    This report summarizes the formulation of surrogate waste packages, representing the major bulk constituent compositions for 12 waste stream classifications selected by the US DOE Mixed Waste Treatment Program. These waste groupings include: neutral aqueous wastes; aqueous halogenated organic liquids; ash; high organic content sludges; adsorbed aqueous and organic liquids; cement sludges, ashes, and solids; chloride; sulfate, and nitrate salts; organic matrix solids; heterogeneous debris; bulk combustibles; lab packs; and lead shapes. Insofar as possible, formulation of surrogate waste packages are referenced to authentic wastes in inventory within the DOE; however, the surrogate waste packages are intended to represent generic treatability group compositions. The intent is to specify a nonradiological synthetic mixture, with a minimal number of readily available components, that can be used to represent the significant challenges anticipated for treatment of the specified waste class. Performance testing and evaluation with use of a consistent series of surrogate wastes will provide a means for the initial assessment (and intercomparability) of candidate treatment technology applicability and performance. Originally the surrogate wastes were intended for use with emerging thermal treatment systems, but use may be extended to select nonthermal systems as well.

  3. Water Monitoring & Treatment Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  4. Enterprise Assessments Review of the Hanford Site Waste Treatment...

    Broader source: Energy.gov (indexed) [DOE]

    Waste Treatment and Immobilization Plant Hazards Analysis Report for the Low-Activity Waste Facility Reagent Systems July 2015 Office of Nuclear Safety and Environmental...

  5. Enterprise Assessments Review of the Hanford Site Waste Treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enterprise Assessments Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality - June 2015 Enterprise Assessments Review of the Hanford Site Waste...

  6. Enterprise Assessments Review of the Hanford Site Waste Treatment...

    Office of Environmental Management (EM)

    Hanford Site Waste Treatment and Immobilization Plant Project Engineering Processes ... Design Description HLW High-Level Waste HMH HLW Melter Handling ITS Important to ...

  7. Enterprise Assessments Review of the Hanford Site Waste Treatment...

    Office of Environmental Management (EM)

    Low-Activity Waste Facility Hazards Analysis Reports for the Melter and Melter Offgas Systems - September 2015 Enterprise Assessments Review of the Hanford Site Waste Treatment and ...

  8. Independent Activity Report, Waste Treatment and Immobilization Plant- March 2013

    Broader source: Energy.gov [DOE]

    Follow-up of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity Review [HIAR-WTP-2013-03-18

  9. Waste Treatment and Immobilization Plant (WTP) Analytical Laboratory...

    Office of Environmental Management (EM)

    Readiness Assessment for the Waste Treatment and Immobilization Plant (WTP) Analytical Laboratory, Balance of Facilities and LAW Waste Vitrification Facilities L. Holton D. ...

  10. CARBON BED MERCURY EMISSIONS CONTROL FOR MIXED WASTE TREATMENT...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: CARBON BED MERCURY EMISSIONS CONTROL FOR MIXED WASTE TREATMENT Citation Details In-Document Search Title: CARBON BED MERCURY EMISSIONS CONTROL FOR MIXED WASTE ...

  11. Medical waste treatment and decontamination system

    DOE Patents [OSTI]

    Wicks, George G.; Schulz, Rebecca L.; Clark, David E.

    2001-01-01

    The invention discloses a tandem microwave system consisting of a primary chamber in which hybrid microwave energy is used for the controlled combustion of materials. A second chamber is used to further treat the off-gases from the primary chamber by passage through a susceptor matrix subjected to additional hybrid microwave energy. The direct microwave radiation and elevated temperatures provide for significant reductions in the qualitative and quantitative emissions of the treated off gases. The tandem microwave system can be utilized for disinfecting wastes, sterilizing materials, and/or modifying the form of wastes to solidify organic or inorganic materials. The simple design allows on-site treatment of waste by small volume waste generators.

  12. Method of treating waste water

    DOE Patents [OSTI]

    Deininger, James P.; Chatfield, Linda K.

    1995-01-01

    A process of treating water to remove metal ion contaminants contained therein, said metal ion contaminants selected from the group consisting of metals in Groups 8, 1b, 2b, 4a, 5a, or 6a of the periodic table, lanthanide metals, and actinide metals including transuranic element metals, by adjusting the pH of a metal ion contaminant-containing water source to within the range of about 6.5 to about 14.0, admixing the water source with a mixture of an alkali or alkaline earth ferrate and a water soluble salt, e.g., a zirconium salt, in an amount sufficient to form a precipitate within the water source, the amount the mixture of ferrate and water soluble salt effective to reduce the metal ion contaminant concentration in the water source, permitting the precipitate in the admixture to separate and thereby yield a supernatant liquid having a reduced metal ion contaminant concentration, and separating the supernatant liquid having the reduced metal ion contaminant concentration from the admixture is provided. A composition of matter including an alkali or alkaline earth ferrate and a water soluble salt, e.g., a zirconium salt, is also provided.

  13. Pump station for radioactive waste water

    DOE Patents [OSTI]

    Whitton, John P.; Klos, Dean M.; Carrara, Danny T.; Minno, John J.

    2003-11-18

    A pump station for transferring radioactive particle containing waste water, includes: (a.) an enclosed sump having a vertically elongated right frusto conical wall surface and a bottom surface and (b.) a submersible volute centrifugal pump having a horizontally rotating impeller and a volute exterior surface. The sump interior surface, the bottom surface and the volute exterior surface are made of stainless steel having a 30 Ra or finer surface finish. A 15 Ra finish has been found to be most cost effective. The pump station is used for transferring waste water, without accumulation of radioactive fines.

  14. Zinc Bromide Waste Solution Treatment Options

    SciTech Connect (OSTI)

    Langston, C.A.

    2001-01-16

    The objective of this effort was to identify treatment options for 20,000 gallons of low-level radioactively contaminated zinc bromide solution currently stored in C-Area. These options will be relevant when the solutions are declared waste.

  15. Waste Treatment Technology Process Development Plan For Hanford Waste Treatment Plant Low Activity Waste Recycle

    SciTech Connect (OSTI)

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.

    2013-08-29

    The purpose of this Process Development Plan is to summarize the objectives and plans for the technology development activities for an alternative path for disposition of the recycle stream that will be generated in the Hanford Waste Treatment Plant Low Activity Waste (LAW) vitrification facility (LAW Recycle). This plan covers the first phase of the development activities. The baseline plan for disposition of this stream is to recycle it to the WTP Pretreatment Facility, where it will be concentrated by evaporation and returned to the LAW vitrification facility. Because this stream contains components that are volatile at melter temperatures and are also problematic for the glass waste form, they accumulate in the Recycle stream, exacerbating their impact on the number of LAW glass containers. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and reducing the halides in the Recycle is a key component of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, this stream does not have a proven disposition path, and resolving this gap becomes vitally important. This task seeks to examine the impact of potential future disposition of this stream in the Hanford tank farms, and to develop a process that will remove radionuclides from this stream and allow its diversion to another disposition path, greatly decreasing the LAW vitrification mission duration and quantity of glass waste. The origin of this LAW Recycle stream will be from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover or precipitates of scrubbed components (e.g. carbonates). The soluble

  16. Method of treating waste water

    DOE Patents [OSTI]

    Deininger, J. Paul; Chatfield, Linda K.

    1991-01-01

    A process of treating water to remove transuranic elements contained therein by adjusting the pH of a transuranic element-containing water source to within the range of about 6.5 to about 14.0, admixing the water source with an alkali or alkaline earth ferrate in an amount sufficient to form a precipitate within the water source, the amount of ferrate effective to reduce the transuranic element concentration in the water source, permitting the precipitate in the admixture to separate and thereby yield a supernatant liquid having a reduced transuranic element concentration, and separating the supernatant liquid having the reduced transuranic element concentration from the admixture is provided. Additionally, a water soluble salt, e.g., a zirconium salt, can be added with the alkali or alkaline earth ferrate in the process to provide greater removal efficiencies. A composition of matter including an alkali or alkaline earth ferrate and a water soluble salt, e.g., a zirconium salt, is also provided.

  17. Voluntary Protection Program Onsite Review, Waste Treatment Project - May

    Office of Environmental Management (EM)

    2006 | Department of Energy Treatment Project - May 2006 Voluntary Protection Program Onsite Review, Waste Treatment Project - May 2006 May 2006 Evaluation of Intermech, Inc. activities at the Hanford Waste Treatment Project This report summarizes the team's findings from the evaluation of Intermech, Inc. activities at the Hanford Waste Treatment Project during the week of May 1-2, 2006. Voluntary Protection Program Onsite Review, Waste Treatment Project - May 2006 (204.33 KB) More Documents

  18. Missouri Water Treatment Plant Upgraded

    Broader source: Energy.gov [DOE]

    The city of St. Peters, Missouri obtains its water from one of the best known rivers. Eight pumps from underground wells in the Mississippi River floodplain send water to a lime-softening water treatment plant where it is prepared for drinking water purposes. But because the demand for clean water exists at all times, the plant consumes noticeably large amounts of money and energy.

  19. POOL WATER TREATMENT AND COOLING SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect (OSTI)

    V. King

    2000-06-19

    The Pool Water Treatment and Cooling System is located in the Waste Handling Building (WHB), and is comprised of various process subsystems designed to support waste handling operations. This system maintains the pool water temperature within an acceptable range, maintains water quality standards that support remote underwater operations and prevent corrosion, detects leakage from the pool liner, provides the capability to remove debris from the pool, controls the pool water level, and helps limit radiological exposure to personnel. The pool structure and liner, pool lighting, and the fuel staging racks in the pool are not within the scope of the Pool Water Treatment and Cooling System. Pool water temperature control is accomplished by circulating the pool water through heat exchangers. Adequate circulation and mixing of the pool water is provided to prevent localized thermal hotspots in the pool. Treatment of the pool water is accomplished by a water treatment system that circulates the pool water through filters, and ion exchange units. These water treatment units remove radioactive and non-radioactive particulate and dissolved solids from the water, thereby providing the water clarity needed to conduct waste handling operations. The system also controls pool water chemistry to prevent advanced corrosion of the pool liner, pool components, and fuel assemblies. Removal of radioactivity from the pool water contributes to the project ALARA (as low as is reasonably achievable) goals. A leak detection system is provided to detect and alarm leaks through the pool liner. The pool level control system monitors the water level to ensure that the minimum water level required for adequate radiological shielding is maintained. Through interface with a demineralized water system, adequate makeup is provided to compensate for loss of water inventory through evaporation and waste handling operations. Interface with the Site Radiological Monitoring System provides continuous

  20. Waste Treatment Plant Liquid Effluent Treatability Evaluation

    SciTech Connect (OSTI)

    LUECK, K.J.

    2001-06-07

    Bechtel National, Inc. (BNI) provided a forecast of the radioactive, dangerous liquid effluents expected to be generated by the Waste Treatment Plant (WTP). The forecast represents the liquid effluents generated from the processing of 25 distinct batches of tank waste through the WTP. The WTP liquid effluents will be stored, treated, and disposed of in the Liquid Effluent Retention Facility (LERF) and the Effluent Treatment Facility (ETF). Fluor Hanford, Inc. (FH) evaluated the treatability of the WTP liquid effluents in the LERFIETF. The evaluation was conducted by comparing the forecast to the LERFIETF treatability envelope, which provides information on the items that determine if a liquid effluent is acceptable for receipt and treatment at the LERFIETF. The WTP liquid effluent forecast is outside the current LERFlETF treatability envelope. There are several concerns that must be addressed before the WTP liquid effluents can be accepted at the LERFIETF.

  1. Office of River Protection Prepares for Critical Waste Treatment...

    Office of Environmental Management (EM)

    Prepares for Critical Waste Treatment Plant Testing Office of River Protection Prepares for Critical Waste Treatment Plant Testing May 16, 2016 - 12:40pm Addthis Workers remove the ...

  2. DOE Holds New Workshops to Aid Idaho Waste Treatment Facility...

    Office of Environmental Management (EM)

    Holds New Workshops to Aid Idaho Waste Treatment Facility Startup DOE Holds New Workshops to Aid Idaho Waste Treatment Facility Startup April 27, 2016 - 12:55pm Addthis The ...

  3. SRS Tank 48H Waste Treatment Project Technology Readiness Assessment

    Office of Environmental Management (EM)

    Savannah River Site Tank 48H Waste Treatment Project Technology Readiness Assessment Harry ... Energy Aiken, South Carolina SRS Tank 48H Waste Treatment Project SPD-07-195 Technology ...

  4. Waste Treatment Plant and Tank Farm Program | Department of Energy

    Office of Environmental Management (EM)

    Treatment Plant and Tank Farm Program Waste Treatment Plant and Tank Farm Program This ... The Low-Activity Waste Facility is in the background. Click the link below for an overview ...

  5. Commercial waste treatment program annual progress report for FY 1983

    SciTech Connect (OSTI)

    McElroy, J.L.; Burkholder, H.C. (comps.)

    1984-02-01

    This annual report describes progress during FY 1983 relating to technologies under development by the Commercial Waste Treatment Program, including: development of glass waste form and vitrification equipment for high-level wastes (HLW); waste form development and process selection for transuranic (TRU) wastes; pilot-scale operation of a radioactive liquid-fed ceramic melter (LFCM) system for verifying the reliability of the reference HLW treatment proces technology; evaluation of treatment requirements for spent fuel as a waste form; second-generation waste form development for HLW; and vitrification process control and product quality assurance technologies.

  6. Independent Oversight Review, Advanced Mixed Waste Treatment Project- April 2013

    Office of Energy Efficiency and Renewable Energy (EERE)

    Review of Radiation Protection Program Implementation at the Advanced Mixed Waste Treatment Project of the Idaho Site

  7. Voluntary Protection Program Onsite Review, Waste Treatment Plant...

    Office of Environmental Management (EM)

    More Documents & Publications Voluntary Protection Program Onsite Review, Intermech Inc., Waste Treatment Plant Construction Site - November 2013 Voluntary Protection Program...

  8. Radioactive Liquid Waste Treatment Facility Discharges in 2014

    SciTech Connect (OSTI)

    Del Signore, John C.

    2015-07-14

    This report documents radioactive discharges from the TA50 Radioactive Liquid Waste Treatment Facilities (RLWTF) during calendar 2014.

  9. Independent Oversight Review, Hanford Site Waste Treatment and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Immobilization Plant - June 2014 | Department of Energy Waste Treatment and Immobilization Plant - June 2014 Independent Oversight Review, Hanford Site Waste Treatment and Immobilization Plant - June 2014 June 2014 Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality This report documents the results of an independent oversight review of selected aspects of construction quality at the Hanford Site Waste Treatment and Immobilization Plant. The review, which

  10. Idaho Site Launches Startup of Waste Treatment Facility Following Federal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inspection, DOE Milestone | Department of Energy Launches Startup of Waste Treatment Facility Following Federal Inspection, DOE Milestone Idaho Site Launches Startup of Waste Treatment Facility Following Federal Inspection, DOE Milestone April 23, 2012 - 12:00pm Addthis A controlled, phased startup of the Integrated Waste Treatment Unit began today after the facility passed a federal inspection. A controlled, phased startup of the Integrated Waste Treatment Unit began today after the

  11. DOE Selects Seven Contractors for Waste Treatment Basic Ordering Agreements

    Office of Energy Efficiency and Renewable Energy (EERE)

    Cincinnati – The U.S. Department of Energy (DOE) issued seven Basic Ordering Agreements (BOAs) for the treatment of Low-Level Waste (LLW) and Mixed Low-Level Waste (MLLW). The LLW MLLW treatment services also include the treatment of liquid and solid Toxic Substances Control Act (TSCA) regulated waste, such as polychlorinated biphenyls (PCBs) and asbestos.

  12. Department of Energy Idaho - Advanced Mixed Waste Treatment Project...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    > AMWTP Contract Idaho Treatment Group, LLC (ITG) Advanced Mixed Waste Treatment Project Contract Basic Contract Contract Modifications Last Updated: 10052015 Privacy Statement...

  13. Waste Treatment and Immobilization Plant (WTP) Analytical Laboratory (LAB),

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Balance of Facilities (BOF) and Low-Activity Waste Vitrification Facilities (LAW) | Department of Energy (WTP) Analytical Laboratory (LAB), Balance of Facilities (BOF) and Low-Activity Waste Vitrification Facilities (LAW) Waste Treatment and Immobilization Plant (WTP) Analytical Laboratory (LAB), Balance of Facilities (BOF) and Low-Activity Waste Vitrification Facilities (LAW) Full Document and Summary Versions are available for download Waste Treatment and Immobilization Plant (WTP)

  14. Lessons Learned for Construction and Waste Water Management at Radioactive Waste Closure Site

    SciTech Connect (OSTI)

    Anderson, K.D.

    2008-07-01

    was to manage and discharge waste water under a due diligence process to New York State General Permit No. GP-02-01. For the third site, the Middlesex Sampling Plant in Middlesex, New Jersey, the options was to manage and discharge waste water to the Publicly Owned Treatment Works (POTW). Each option has resulted in a safe, cost-effective, and compliant approach to managing discharging waste waters from the site closure activities. (authors)

  15. Arsenic in water treatment.

    SciTech Connect (OSTI)

    Siegel, Malcolm Dean

    2004-12-01

    Sandia National Laboratories (SNL) is collaborating with the Awwa Research Foundation (AwwaRF) and WERC (A Consortium for Environmental Education and Technology Development) in a program for the development and testing of innovative technologies that have the potential to substantially reduce the costs associated with arsenic removal from drinking water. Sandia National Laboratories will administer contracts placed with AwwaRF and WERC to carry out bench scale studies and economic analyses/outreach activities, respectively. The elements of the AwwaRF program include (1) identification of new technologies, (2) proof-of-concept laboratory studies and, (3) a research program that will meet the other needs of small utilities by providing solutions to small utilities so that they may successfully meet the new arsenic MCL. WERC's activities will include development of an economic analysis tool for Pilot Scale Demonstrations and development of educational training and technical assistance tools. The objective of the Sandia Program is the field demonstration testing of innovative technologies. The primary deliverables of the Sandia program will be engineering analyses of candidate technologies; these will be contained in preliminary reports and final analysis reports. Projected scale-up costs will be generated using a cost model provided by WERC or another suitable model.

  16. DOE Extends Advanced Mixed Waste Treatment Project Contract | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Advanced Mixed Waste Treatment Project Contract DOE Extends Advanced Mixed Waste Treatment Project Contract September 29, 2015 - 6:00pm Addthis Media Contact Danielle Miller, 208-526-5709 Idaho Falls, ID - The U.S. Department of Energy's Office of Environmental Management (EM) today announced it is extending its contract for the Advanced Mixed Waste Treatment Project at the Idaho Site for a period of 6 months. The contract period for the current contractor, Idaho Treatment Group

  17. Final Hanford Offsite Waste Shipment Leaves Idaho Treatment Facility

    Broader source: Energy.gov [DOE]

    IDAHO FALLS, Idaho – The Advanced Mixed Waste Treatment Project (AMWTP) recently completed the last of 25 shipments of waste bound for permanent disposal in New Mexico and Nevada, six months ahead of a regulatory deadline.

  18. Remote handling equipment at the hanford waste treatment plant

    SciTech Connect (OSTI)

    Bardal, M.A.; Roach, J.D.

    2007-07-01

    Cold war plutonium production led to extensive amounts of radioactive waste stored in tanks at the Department of Energy's Hanford Waste Treatment Plant. The storage tanks could potentially leak into the ground water and into the Columbia River. The solution for this risk of the leaking waste is vitrification. Vitrification is a process of mixing molten glass with radioactive waste to form a stable condition for storage. The Department of Energy has contracted Bechtel National, Inc. to build facilities at the Hanford site to process the waste. The waste will be separated into high and low level waste. Four major systems will process the waste, two pretreatment and two high level. Due to the high radiation levels, high integrity custom cranes have been designed to remotely maintain the hot cells. Several critical design parameters were implemented into the remote machinery design, including radiation limitations, remote operations, Important to Safety features, overall equipment effectiveness, minimum wall approaches, seismic constraints, and recovery requirements. Several key pieces of equipment were designed to meet these design requirements - high integrity crane bridges, trolleys, main hoists, mast hoists, slewing hoists, a monorail hoist, and telescoping mast deployed tele-robotic manipulator arms. There were unique and challenging design features and equipment needed to provide the remotely operated high integrity crane/manipulator systems for the Hanford Waste Treatment Plant. The cranes consist of a double girder bridge with various main hoist capacities ranging from one to thirty ton and are used for performing routine maintenance. A telescoping mast mounted tele-robotic manipulator arm with a one-ton hook is deployed from the trolley to perform miscellaneous operations in-cell. A dual two-ton slewing jib hoist is mounted to the bottom of the trolley and rotates 360 degrees around the mast allowing the closest hook wall approaches. Each of the two hoists on

  19. Hanford Tank Waste Retrieval, Treatment, and Disposition Framework |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Hanford Tank Waste Retrieval, Treatment, and Disposition Framework Hanford Tank Waste Retrieval, Treatment, and Disposition Framework Forty years of plutonium production at the Hanford Site has yielded a challenging nuclear waste legacy approximately 56 million gallons of radioactive and chemical wastes stored in 177 underground tanks (tank farms) located on Hanford's Central Plateau. The mission of the U.S. Department of Energy (DOE) Office of River Protection (ORP) is

  20. Enterprise Assessments Operational Awareness Record, Waste Treatment and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Immobilization Plant - December 2014 | Department of Energy December 2014 Enterprise Assessments Operational Awareness Record, Waste Treatment and Immobilization Plant - December 2014 December 2014 Operational Awareness Record for the Observation of Waste Treatment and Immobilization Plant High Level Waste Facility Radioactive Liquid Waste Disposal System Hazards Analysis Activities (EA-WTP-HLW-2014-08-18(a)) The Office of Nuclear Safety and Environmental Assessments, within the U.S.

  1. Mixed and low-level waste treatment facility project. Volume 3, Waste treatment technologies (Draft)

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    The technology information provided in this report is only the first step toward the identification and selection of process systems that may be recommended for a proposed mixed and low-level waste treatment facility. More specific information on each technology will be required to conduct the system and equipment tradeoff studies that will follow these preengineering studies. For example, capacity, maintainability, reliability, cost, applicability to specific waste streams, and technology availability must be further defined. This report does not currently contain all needed information; however, all major technologies considered to be potentially applicable to the treatment of mixed and low-level waste are identified and described herein. Future reports will seek to improve the depth of information on technologies.

  2. Waste Treatment Facility Passes Federal Inspection, Completes Final

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Milestone, Begins Startup | Department of Energy Waste Treatment Facility Passes Federal Inspection, Completes Final Milestone, Begins Startup Waste Treatment Facility Passes Federal Inspection, Completes Final Milestone, Begins Startup April 23, 2012 - 12:00pm Addthis Media Contact Erik Simpson, 208-390-9464 Danielle Miller, 208-526-5709 The Idaho site today initiated the controlled, phased startup of a new waste treatment facility scheduled to begin treating 900,000 gallons of radioactive

  3. Hanford Waste Treatment Plant Support Task Order Modified | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Waste Treatment Plant Support Task Order Modified Hanford Waste Treatment Plant Support Task Order Modified March 11, 2013 - 12:00pm Addthis Media Contact Lynette Chafin, 513-246-0461 Lynette.Chafin@emcbc.doe.gov Cincinnati - The Department of Energy (DOE) today awarded a modification to a task order to Aspen Resources Limited, Inc. of Boulder, Colorado for support of the Waste Treatment and Immobilization Plant (WTP) at the Hanford Site. The modification increased the value of the

  4. Idaho waste treatment facility startup testing suspended to evaluate system

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    response | Department of Energy Idaho waste treatment facility startup testing suspended to evaluate system response Idaho waste treatment facility startup testing suspended to evaluate system response June 20, 2012 - 12:00pm Addthis Media Contacts Brad Bugger 208-526-0833 Danielle Miller 208-526-5709 IDAHO FALLS, ID- On Saturday, June 16, startup testing was suspended at the Integrated Waste Treatment Unit (IWTU) located at the U.S. Department of Energy's Idaho Site. Testing and plant

  5. Independent Oversight Assessment, Waste Treatment and Immobilization Plant

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - January 2012 | Department of Energy Assessment, Waste Treatment and Immobilization Plant - January 2012 Independent Oversight Assessment, Waste Treatment and Immobilization Plant - January 2012 January 2012 Assessment of the Nuclear Safety Culture and Management of Nuclear Safety Concerns at the Hanford Site Waste Treatment and Immobilization Plant The U.S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and

  6. Enterprise Assessments Review of the Hanford Site Waste Treatment and

    Office of Environmental Management (EM)

    Immobilization Plant Construction Quality - December 2015 | Department of Energy December 2015 Enterprise Assessments Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality - December 2015 December 2015 Review of Construction Quality at the Hanford Site Waste Treatment and Immobilization Plant The U.S. Department of Energy Office of Enterprise Assessments (EA) conducted a review of construction quality at the Hanford Site Waste Treatment and Immobilization

  7. Enterprise Assessments Review of the Hanford Site Waste Treatment and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Immobilization Plant Construction Quality - December 2015 | Department of Energy December 2015 Enterprise Assessments Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality - December 2015 December 2015 Review of Construction Quality at the Hanford Site Waste Treatment and Immobilization Plant The U.S. Department of Energy Office of Enterprise Assessments (EA) conducted a review of construction quality at the Hanford Site Waste Treatment and Immobilization

  8. Enterprise Assessments Review of the Hanford Site Waste Treatment and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Immobilization Plant Construction Quality - June 2015 | Department of Energy Construction Quality - June 2015 Enterprise Assessments Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality - June 2015 June 2015 Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality The U.S. Department of Energy Office of Enterprise Assessments (EA) conducted a review of construction quality at the Hanford Site Waste Treatment and

  9. Idaho Waste Treatment Facility Startup Testing Suspended To Evaluate System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Idaho Waste Treatment Facility Startup Testing Suspended To Evaluate System IDAHO FALLS, ID- On Saturday, June 16, startup testing was suspended at the Integrated Waste Treatment Unit (IWTU) located at the U.S. Department of Energy's Idaho Site. Testing and plant heat-up was suspended to allow detailed evaluation of a system pressure event observed during testing on Saturday. Integrated Waste Treatment Unit (IWTU) Facility startup testing has been ongoing for the past month, evaluating system

  10. Independent Oversight Review, Waste Treatment and Immobilization Plant

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project - October 2010 | Department of Energy Project - October 2010 Independent Oversight Review, Waste Treatment and Immobilization Plant Project - October 2010 October 2010 Review of Nuclear Safety Culture at the Hanford Site Waste Treatment and Immobilization Plant Project The U.S. Department of Energy (DOE) Office of Health, Safety and Security (HSS) conducted an independent review of the nuclear safety culture at the Waste Treatment and Immobilization Plant (WTP) project at the Hanford

  11. Independent Oversight Review, Waste Treatment and Immobilization Plant -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    August 2012 | Department of Energy August 2012 Independent Oversight Review, Waste Treatment and Immobilization Plant - August 2012 August 2012 Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality This report documents the results of an independent oversight review of Construction Quality at the Hanford Site Waste Treatment and Immobilization Plant (WTP). The review was performed February 6-10, 2012, and April 30 - May 4, 2012, by the U.S. Department of

  12. Independent Oversight Review, Waste Treatment and Immobilization Plant -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    March 2012 | Department of Energy March 2012 Independent Oversight Review, Waste Treatment and Immobilization Plant - March 2012 March 2012 Review of the Hanford Site Waste Treatment and Immobilization Plant Project Construction Quality This report documents the results of an independent oversight review of Construction Quality at the Hanford Site Waste Treatment and Immobilization Plant (WTP). The review was performed November 14-17, 2011, by the U.S. Department of Energy's (DOE) Office of

  13. Independent Oversight Review, Waste Treatment and Immobilization Plant -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    May 2013 | Department of Energy May 2013 Independent Oversight Review, Waste Treatment and Immobilization Plant - May 2013 May 2013 Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality The U.S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight) within the Office of Health, Safety and Security (HSS) conducted an independent review of selected aspects of construction quality at the Hanford Site Waste Treatment and

  14. Independent Oversight Review, Waste Treatment and Immobilization Plant -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    October 2012 | Department of Energy October 2012 Independent Oversight Review, Waste Treatment and Immobilization Plant - October 2012 October 2012 Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality This report documents the results of an independent review of selected aspects of construction quality at the Department of Energy's (DOE) Hanford Site Waste Treatment and Immobilization Plant. The review was conducted August 6-10, 2012, by the DOE Office of

  15. Treatment of halogen-containing waste and other waste materials

    DOE Patents [OSTI]

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1997-03-18

    A process is described for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes. 3 figs.

  16. Treatment of halogen-containing waste and other waste materials

    DOE Patents [OSTI]

    Forsberg, Charles W.; Beahm, Edward C.; Parker, George W.

    1997-01-01

    A process for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes.

  17. Enterprise Assessments Review of the Hanford Site Waste Treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    One of the targeted oversight activities is the DOE Office of River Protection Waste Treatment and Immobilization Plant, managed by Bechtel National, Inc. Currently, EA is ...

  18. Enterprise Assessments Review of the Hanford Site Waste Treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... C-1 ii Acronyms BNI Bechtel National, Inc. BOF Balance of Facilities C5 Confinement Zone 5 ... Protection Waste Treatment and Immobilization Plant, managed by Bechtel National, Inc. ...

  19. Enterprise Assessments Review of the Hanford Site Waste Treatment...

    Energy Savers [EERE]

    Enterprise Assessments Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality - December 2015 December 2015 Review of Construction Quality at the ...

  20. Review of the Hanford Site Waste Treatment and Immobilization...

    Broader source: Energy.gov (indexed) [DOE]

    Hanford Site Waste Treatment and Immobilization Plant Construction Quality May 2011 August ... AISC American Institute of Steel Construction ASME American Society of Mechanical ...

  1. Hazardous Waste Generator Treatment Permit by Rule | Open Energy...

    Open Energy Info (EERE)

    LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Hazardous Waste Generator Treatment Permit by RulePermittingRegulatory GuidanceGuideHandbook...

  2. Oregon Procedure and Criteria for Hazardous Waste Treatment,...

    Open Energy Info (EERE)

    Procedure and Criteria for Hazardous Waste Treatment, Storage or Disposal Permits Fact Sheet Jump to: navigation, search OpenEI Reference LibraryAdd to library Permitting...

  3. Review of the Hanford Site Waste Treatment and Immobilization...

    Office of Environmental Management (EM)

    Independent Oversight Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality May 2011 October 2012 Office of Safety and Emergency Management...

  4. Enterprise Assessments Review of the Hanford Site Waste Treatment...

    Energy Savers [EERE]

    Plant Project Engineering Processes - October 2015 October 2015 Review of Engineering Processes at the Hanford Site Waste Treatment and Immobilization Plant Project The ...

  5. Process for removing sulfate anions from waste water

    DOE Patents [OSTI]

    Nilsen, David N.; Galvan, Gloria J.; Hundley, Gary L.; Wright, John B.

    1997-01-01

    A liquid emulsion membrane process for removing sulfate anions from waste water is disclosed. The liquid emulsion membrane process includes the steps of: (a) providing a liquid emulsion formed from an aqueous strip solution and an organic phase that contains an extractant capable of removing sulfate anions from waste water; (b) dispersing the liquid emulsion in globule form into a quantity of waste water containing sulfate anions to allow the organic phase in each globule of the emulsion to extract and absorb sulfate anions from the waste water and (c) separating the emulsion including its organic phase and absorbed sulfate anions from the waste water to provide waste water containing substantially no sulfate anions.

  6. Global Nuclear Energy Partnership Waste Treatment Baseline

    SciTech Connect (OSTI)

    Dirk Gombert; William Ebert; James Marra; Robert Jubin; John Vienna

    2008-05-01

    The Global Nuclear Energy Partnership program (GNEP) is designed to demonstrate a proliferation-resistant and sustainable integrated nuclear fuel cycle that can be commercialized and used internationally. Alternative stabilization concepts for byproducts and waste streams generated by fuel recycling processes were evaluated and a baseline of waste forms was recommended for the safe disposition of waste streams. Waste forms are recommended based on the demonstrated or expected commercial practicability and technical maturity of the processes needed to make the waste forms, and performance of the waste form materials when disposed. Significant issues remain in developing technologies to process some of the wastes into the recommended waste forms, and a detailed analysis of technology readiness and availability may lead to the choice of a different waste form than what is recommended herein. Evolving regulations could also affect the selection of waste forms.

  7. Hanford Site waste treatment/storage/disposal integration

    SciTech Connect (OSTI)

    MCDONALD, K.M.

    1999-02-24

    In 1998 Waste Management Federal Services of Hanford, Inc. began the integration of all low-level waste, mixed waste, and TRU waste-generating activities across the Hanford site. With seven contractors, dozens of generating units, and hundreds of waste streams, integration was necessary to provide acute waste forecasting and planning for future treatment activities. This integration effort provides disposition maps that account for waste from generation, through processing, treatment and final waste disposal. The integration effort covers generating facilities from the present through the life-cycle, including transition and deactivation. The effort is patterned after the very successful DOE Complex EM Integration effort. Although still in the preliminary stages, the comprehensive onsite integration effort has already reaped benefits. These include identifying significant waste streams that had not been forecast, identifying opportunities for consolidating activities and services to accelerate schedule or save money; and identifying waste streams which currently have no path forward in the planning baseline. Consolidation/integration of planned activities may also provide opportunities for pollution prevention and/or avoidance of secondary waste generation. A workshop was held to review the waste disposition maps, and to identify opportunities with potential cost or schedule savings. Another workshop may be held to follow up on some of the long-term integration opportunities. A change to the Hanford waste forecast data call would help to align the Solid Waste Forecast with the new disposition maps.

  8. Radioactive Liquid Waste Treatment Facility Discharges in 2011

    SciTech Connect (OSTI)

    Del Signore, John C.

    2012-05-16

    This report documents radioactive discharges from the TA50 Radioactive Liquid Waste Treatment Facilities (RLWTF) during calendar 2011. During 2011, three pathways were available for the discharge of treated water to the environment: discharge as water through NPDES Outfall 051 into Mortandad Canyon, evaporation via the TA50 cooling towers, and evaporation using the newly-installed natural-gas effluent evaporator at TA50. Only one of these pathways was used; all treated water (3,352,890 liters) was fed to the effluent evaporator. The quality of treated water was established by collecting a weekly grab sample of water being fed to the effluent evaporator. Forty weekly samples were collected; each was analyzed for gross alpha, gross beta, and tritium. Weekly samples were also composited at the end of each month. These flow-weighted composite samples were then analyzed for 37 radioisotopes: nine alpha-emitting isotopes, 27 beta emitters, and tritium. These monthly analyses were used to estimate the radioactive content of treated water fed to the effluent evaporator. Table 1 summarizes this information. The concentrations and quantities of radioactivity in Table 1 are for treated water fed to the evaporator. Amounts of radioactivity discharged to the environment through the evaporator stack were likely smaller since only entrained materials would exit via the evaporator stack.

  9. Waste-to-Energy Biomass Digester with Decreased Water Consumption...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Waste-to-Energy Biomass Digester with Decreased Water Consumption Colorado State University Contact ...

  10. Sodium-Bearing Waste Treatment Alternatives Implementation Study

    SciTech Connect (OSTI)

    Charles M. Barnes; James B. Bosley; Clifford W. Olsen

    2004-07-01

    The purpose of this document is to discuss issues related to the implementation of each of the five down-selected INEEL/INTEC radioactive liquid waste (sodium-bearing waste - SBW) treatment alternatives and summarize information in three main areas of concern: process/technical, environmental permitting, and schedule. Major implementation options for each treatment alternative are also identified and briefly discussed. This report may touch upon, but purposely does not address in detail, issues that are programmatic in nature. Examples of these include how the SBW will be classified with respect to the Nuclear Waste Policy Act (NWPA), status of Waste Isolation Pilot Plant (WIPP) permits and waste storage availability, available funding for implementation, stakeholder issues, and State of Idaho Settlement Agreement milestones. It is assumed in this report that the SBW would be classified as a transuranic (TRU) waste suitable for disposal at WIPP, located in New Mexico, after appropriate treatment to meet transportation requirements and waste acceptance criteria (WAC).

  11. Activated sludge process: Waste treatment. (Latest citations from the Biobusiness database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    The bibliography contains citations concerning the use of the activated sludge process in waste and wastewater treatment. Topics include biochemistry of the activated sludge process, effects of various pollutants on process activity, effects of environmental variables such as oxygen and water levels, and nutrient requirements of microorganisms employed in activated sludge processes. The citations also explore use of the process to treat specific wastes, such as halocarbons, metallic wastes, and petrochemical effluents; and wastes from pharmaceutical and dairy processes. (Contains 250 citations and includes a subject term index and title list.)

  12. Activated sludge process: Waste treatment. (Latest citations from the Biobusiness database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-07-01

    The bibliography contains citations concerning the use of the activated sludge process in waste and wastewater treatment. Topics include biochemistry of the activated sludge process, effects of various pollutants on process activity, effects of environmental variables such as oxygen and water levels, and nutrient requirements of microorganisms employed in activated sludge processes. The citations also explore use of the process to treat specific wastes, such as halocarbons, metallic wastes, and petrochemical effluents; and wastes from pharmaceutical and dairy processes. (Contains 250 citations and includes a subject term index and title list.)

  13. Activated-sludge process: Waste treatment. (Latest citations from the biobusiness database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1992-07-01

    The bibliography contains citations concerning the use of the activated sludge process in waste and wastewater treatment. Topics include biochemistry of the activated sludge process, effects of various pollutants on process activity, effects of environmental variables such as oxygen and water levels, and nutrient requirements of microorganisms employed in activated sludge processes. The citations also explore use of the process to treat specific wastes, such as halocarbons, metallic wastes, and petrochemical effluents; and wastes from pharmaceutical and dairy processes. (Contains 250 citations and includes a subject term index and title list.)

  14. Metal-ion recycle technology for metal electroplating waste waters

    SciTech Connect (OSTI)

    Sauer, N.N.; Smith, B.F.

    1993-06-01

    As a result of a collaboration with Boeing Aerospace, the authors have begun a program to identify suitable treatments or to develop new treatments for electroplating baths. The target baths are mixed-metal or alloy baths that are being integrated into the Boeing electroplating complex. These baths, which are designed to replace highly toxic chromium and cadmium baths, contain mixtures of two metals, either nickel-tungsten, nickel-zinc, or zinc-tin. This report reviews the literature and details currently available on emerging technologies that could affect recovery of metals from electroplating baths under development by Boeing Aerospace. This literature survey summarizes technologies relevant to the recovery of metals from electroplating processes. The authors expanded the scope to investigate single metal ion recovery technologies that could be applied to metal ion recovery from alloy baths. This review clearly showed that the electroplating industry has traditionally relied on precipitation and more recently on electrowinning as its waste treatment methods. Despite the almost ubiquitous use of precipitation to remove contaminant metal ions from waste electroplating baths and rinse waters, this technology is clearly no longer feasible for the electroplating industry for several reasons. First, disposal of unstabilized sludge is no longer allowed by law. Second, these methods are no longer adequate as metal-removal techniques because they cannot meet stringent new metal discharge limits. Third, precious resources are being wasted or discarded because these methods do not readily permit recovery of the target metal ions. As a result, emerging technologies for metal recovery are beginning to see application to electroplating waste recycle. This report summarizes current research in these areas. Included are descriptions of various membrane technologies, such as reverse osmosis and ultrafiltration, ion exchange and chelating polymer technology, and electrodialysis.

  15. Waste treatment facility passes federal inspection, completes final

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    milestone, begins startup 23, 2012 Media Contact: Danielle Miller, 208-526-5709 Erik Simpson, 208-390-9464 Waste treatment facility passes federal inspection, completes final milestone, begins startup The Idaho site today initiated the controlled, phased startup of a new waste treatment facility scheduled to begin treating 900,000 gallons of radioactive liquid waste stored in underground tanks at a former Cold War spent nuclear fuel reprocessing facility next month. An exterior view of the

  16. Enterprise Assessments Review of the Hanford Site Waste Treatment and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Immobilization Plant Construction Quality - October 2015 | Department of Energy October 2015 Enterprise Assessments Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality - October 2015 October 2015 Enterprise Assessments Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality - October 2015 The U.S. Department of Energy Office of Enterprise Assessments (EA) conducted a review of construction quality at the Hanford Site Waste

  17. Idaho Site Launches Corrective Actions Before Restarting Waste Treatment Facility

    Office of Energy Efficiency and Renewable Energy (EERE)

    IDAHO FALLS, Idaho – The Idaho site and its cleanup contractor have launched a series of corrective actions they will complete before safely resuming startup operations at the Integrated Waste Treatment Unit (IWTU) following an incident in June that caused the new waste treatment facility to shut down.

  18. Method for aqueous radioactive waste treatment

    DOE Patents [OSTI]

    Bray, L.A.; Burger, L.L.

    1994-03-29

    Plutonium, strontium, and cesium found in aqueous waste solutions resulting from nuclear fuel processing are removed by contacting the waste solutions with synthetic zeolite incorporating up to about 5 wt % titanium as sodium titanate in an ion exchange system. More than 99.9% of the plutonium, strontium, and cesium are removed from the waste solutions. 3 figures.

  19. Method for aqueous radioactive waste treatment

    DOE Patents [OSTI]

    Bray, Lane A.; Burger, Leland L.

    1994-01-01

    Plutonium, strontium, and cesium found in aqueous waste solutions resulting from nuclear fuel processing are removed by contacting the waste solutions with synthetic zeolite incorporating up to about 5 wt % titanium as sodium titanate in an ion exchange system. More than 99.9% of the plutonium, strontium, and cesium are removed from the waste solutions.

  20. 300 Area waste acid treatment system closure plan

    SciTech Connect (OSTI)

    LUKE, S.N.

    1999-05-17

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOERL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion includes closure plan documentation submitted for individual, treatment, storage, and/or disposal units undergoing closure, such as the 300 Area Waste Acid Treatment System. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Whenever appropriate, 300 Area Waste Acid Treatment System documentation makes cross-reference to the General Information Portion, rather than duplicating text. This 300 Area Waste Acid Treatment System Closure Plan (Revision 2) includes a Hanford Facility Dangerous Waste Permit Application, Part A, Form 3. Information provided in this closure plan is current as of April 1999.

  1. Flexible Distributed Energy & Water from Waste for the Food ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    COD reduction * Meetimprove discharge water quality (COD, NH 3 , NO 3 ) * Reduce ... UASB EGSB Gas UASB UASB EGSB EGSB Gas Waste Water Effluent Digester AS MBR 3 State of ...

  2. Evaluation of alternative treatments for spent fuel rod consolidation wastes and other miscellaneous commercial transuranic wastes

    SciTech Connect (OSTI)

    Ross, W.A.; Schneider, K.J.; Oma, K.H.; Smith, R.I.; Bunnell, L.R.

    1986-05-01

    Eight alternative treatments (and four subalternatives) are considered for both existing commercial transuranic wastes and future wastes from spent fuel consolidation. Waste treatment is assumed to occur at a hypothetical central treatment facility (a Monitored Retrieval Storage facility was used as a reference). Disposal in a geologic repository is also assumed. The cost, process characteristics, and waste form characteristics are evaluated for each waste treatment alternative. The evaluation indicates that selection of a high-volume-reduction alternative can save almost $1 billion in life-cycle costs for the management of transuranic and high-activity wastes from 70,000 MTU of spent fuel compared to the reference MRS process. The supercompaction, arc pyrolysis and melting, and maximum volume reduction alternatives are recommended for further consideration; the latter two are recommended for further testing and demonstration.

  3. Decommissioning and Dismantling of Liquid Waste Storage and Liquid Waste Treatment Facility from Paldiski Nuclear Site, Estonia

    SciTech Connect (OSTI)

    Varvas, M.; Putnik, H.; Johnsson, B.

    2006-07-01

    The Paldiski Nuclear Facility in Estonia, with two nuclear reactors was owned by the Soviet Navy and was used for training the navy personnel to operate submarine nuclear reactors. After collapse of Soviet Union the Facility was shut down and handed over to the Estonian government in 1995. In co-operation with the Paldiski International Expert Reference Group (PIERG) decommission strategy was worked out and started to implement. Conditioning of solid and liquid operational waste and dismantling of contaminated installations and buildings were among the key issues of the Strategy. Most of the liquid waste volume, remained at the Facility, was processed in the frames of an Estonian-Finnish co-operation project using a mobile wastewater purification unit NURES (IVO International OY) and water was discharged prior to the site take-over. In 1999-2002 ca 120 m{sup 3} of semi-liquid tank sediments (a mixture of ion exchange resins, sand filters, evaporator and flocculation slurry), remained after treatment of liquid waste were solidified in steel containers and stored into interim storage. The project was carried out under the Swedish - Estonian co-operation program on radiation protection and nuclear safety. Contaminated installations in buildings, used for treatment and storage of liquid waste (Liquid Waste Treatment Facility and Liquid Waste Storage) were then dismantled and the buildings demolished in 2001-2004. (authors)

  4. Performance Enhancements to the Hanford Waste Treatment and Immobilization Plant Low-Activity Waste Vitrification System

    SciTech Connect (OSTI)

    Hamel, W. F. [Office of River Protection, U.S. Department of Energy, 2400 Stevens Drive, Richland, WA 99354 (United States); Gerdes, K. [U.S. Department of Energy, 19901 Germantown Road, Germantown, MD 20874 (United States); Holton, L. K. [Pacific Northwest National Laboratory, PO Box 999, Richland, WA 99352 (United States); Pegg, I.L. [Vitreous State Laboratory, The Catholic University of America, 620 Michigan Avenue NE, Washington, DC 20064 (United States); Bowan, B.W. [Duratek, Inc., 10100 Old Columbia Road, Columbia, Maryland 21046 (United States)

    2006-07-01

    The U.S Department of Energy Office of River Protection (DOE-ORP) is constructing a Waste Treatment and Immobilization Plant (WTP) for the treatment and vitrification of underground tank wastes stored at the Hanford Site in Washington State. The WTP comprises four major facilities: a pretreatment facility to separate the tank waste into high level waste (HLW) and low-activity waste (LAW) process streams, a HLW vitrification facility to immobilize the HLW fraction; a LAW vitrification facility to immobilize the LAW fraction, and an analytical laboratory to support the operations of all four treatment facilities. DOE has established strategic objectives to optimize the performance of the WTP facilities and the LAW and HLW waste forms to reduce the overall schedule and cost for treatment and vitrification of the Hanford tank wastes. This strategy has been implemented by establishing performance expectations in the WTP contract for the facilities and waste forms. In addition, DOE, as owner-operator of the WTP facilities, continues to evaluate 1) the design, to determine the potential for performance above the requirements specified in the WTP contract; and 2) improvements in production of the LAW and HLW waste forms. This paper reports recent progress directed at improving production of the LAW waste form. DOE's initial assessment, which is based on the work reported in this paper, is that the treatment rate of the WTP LAW vitrification facility can be increased by a factor of 2 to 4 with a combination of revised glass formulations, modest increases in melter glass operating temperatures, and a second-generation LAW melter with a larger surface area. Implementing these improvements in the LAW waste immobilization capability can benefit the LAW treatment mission by reducing the cost of waste treatment. (authors)

  5. Independent Oversight Activity Report, Hanford Waste Treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    waste (LAW) Melter Off-gas system; observed a portion of the HA activities; and met with responsible Bechtel National, Incorporated (BNI) personnel to discuss observations. ...

  6. Independent Oversight Activity Report, Hanford Waste Treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    low activity waste facility (LA3W) heating, ventilation, and air conditioning systems and met with responsible Bechtel National, Incorporated (BNI) personnel to discuss comments. ...

  7. Hanford Tank Waste Treatment and Immobilization Plant (WTP) Waste Feed Qualification Program Development Approach - 13114

    SciTech Connect (OSTI)

    Markillie, Jeffrey R.; Arakali, Aruna V.; Benson, Peter A.; Halverson, Thomas G.; Adamson, Duane J.; Herman, Connie C.; Peeler, David K.

    2013-07-01

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is a nuclear waste treatment facility being designed and constructed for the U.S. Department of Energy by Bechtel National, Inc. and subcontractor URS Corporation (under contract DE-AC27-01RV14136 [1]) to process and vitrify radioactive waste that is currently stored in underground tanks at the Hanford Site. A wide range of planning is in progress to prepare for safe start-up, commissioning, and operation. The waste feed qualification program is being developed to protect the WTP design, safety basis, and technical basis by assuring acceptance requirements can be met before the transfer of waste. The WTP Project has partnered with Savannah River National Laboratory to develop the waste feed qualification program. The results of waste feed qualification activities will be implemented using a batch processing methodology, and will establish an acceptable range of operator controllable parameters needed to treat the staged waste. Waste feed qualification program development is being implemented in three separate phases. Phase 1 required identification of analytical methods and gaps. This activity has been completed, and provides the foundation for a technically defensible approach for waste feed qualification. Phase 2 of the program development is in progress. The activities in this phase include the closure of analytical methodology gaps identified during Phase 1, design and fabrication of laboratory-scale test apparatus, and determination of the waste feed qualification sample volume. Phase 3 will demonstrate waste feed qualification testing in support of Cold Commissioning. (authors)

  8. Westinghouse Cementation Facility of Solid Waste Treatment System - 13503

    SciTech Connect (OSTI)

    Jacobs, Torsten; Aign, Joerg

    2013-07-01

    During NPP operation, several waste streams are generated, caused by different technical and physical processes. Besides others, liquid waste represents one of the major types of waste. Depending on national regulation for storage and disposal of radioactive waste, solidification can be one specific requirement. To accommodate the global request for waste treatment systems Westinghouse developed several specific treatment processes for the different types of waste. In the period of 2006 to 2008 Westinghouse awarded several contracts for the design and delivery of waste treatment systems related to the latest CPR-1000 nuclear power plants. One of these contracts contains the delivery of four Cementation Facilities for waste treatment, s.c. 'Follow on Cementations' dedicated to three locations, HongYanHe, NingDe and YangJiang, of new CPR-1000 nuclear power stations in the People's Republic of China. Previously, Westinghouse delivered a similar cementation facility to the CPR-1000 plant LingAo II, in Daya Bay, PR China. This plant already passed the hot functioning tests successfully in June 2012 and is now ready and released for regular operation. The 'Follow on plants' are designed to package three 'typical' kind of radioactive waste: evaporator concentrates, spent resins and filter cartridges. The purpose of this paper is to provide an overview on the Westinghouse experience to design and execution of cementation facilities. (authors)

  9. Successful Waste Treatment Methods at Sandia National Laboratories

    SciTech Connect (OSTI)

    Rast, D.M.; Thompson, J.J.; Cooper, T.W.; Stockham, D.J

    2007-07-01

    During the remediation of the waste landfills at Sandia National Laboratory in Albuquerque, New Mexico nine drums of mock high explosives were generated. This mixed waste stream was proposed to several offsite vendors for treatment and prices ranged from $2.50 to $10 per gram a total cost estimated to be in excess of $2 million dollars. This cost represents more than 30 percent of the annual budget for the Sandia Waste Management Operations. Concentrated solutions of common oxidizers, such as nitrates, nitrites, and peroxides, will also act as oxidizers and will give positive results in the Hazard Categorization oxidizer test. These solutions carry an EPA Hazardous Waste Number D001, Ignitable Waste, and Oxidizer as defined in 49 CFR 173.151. Sandia decided that given budget and time constraints to meet a Federal Facilities Compliance Act milestone, a process for onsite treatment should be evaluated. Clean samples of mock high explosive materials were obtained from Pantex excess inventory and treatability studies initiated to develop a treatment formula and process. The following process was developed and implemented in the summer of 2006: - Size reduction to allow for dissolution of the barium nitrate in water; - Dissolution of the Mock HE in water; - Deactivation of the oxidizer; - Stabilization of the barium and the cadmium contamination present as an underlying hazardous constituent. This project was completed and the treatment milestone achieved for less than $300,000. The Disassembly Sanitization Operation (DSO) is a process that was implemented to support weapon disassembly and disposition using recycling and waste minimization while achieving the demilitarization mission. The Department of Energy is faced with disassembling and disposition of a huge inventory of retired weapons, components, training equipment, spare parts, and weapon maintenance equipment. Environmental regulations have caused a dramatic increase for information needed to support the

  10. Waste Treatment and Immobilization Plant Communications Approach Tools and Techniques

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Waste Treatment and Immobilization Plant Communications Approach Author: Suyama, Mattson, Niles, Hudson, Catrell Originating Committee: Tank Waste Version: 1 Revision Date: 3/29/16 Summary The Hanford Advisory Board, following discussions conducted by the Board's committees on Tank Waste, and Public Involvement and Communication along with the U.S. Department of Energy, Office of River Protection (DOE), prepared this assessment and these recommendations for a communications approach regarding

  11. Novel Americium Treatment Process for Surface Water and Dust Suppression Water

    SciTech Connect (OSTI)

    Tiepel, E.W.; Pigeon, P.; Nesta, S.; Anderson, J.

    2006-07-01

    The Rocky Flats Environmental Technology Site (RFETS), a former nuclear weapons production plant, has been remediated under CERCLA and decommissioned to become a National Wildlife Refuge. The site conducted this cleanup effort under the Rocky Flats Cleanup Agreement (RFCA) that established limits for the discharge of surface and process waters from the site. At the end of 2004, while a number of process buildings were undergoing decommissioning, routine monitoring of a discharge pond (Pond A-4) containing approximately 28 million gallons of water was discovered to have been contaminated with a trace amount of Americium-241 (Am-241). While the amount of Am-241 in the pond waters was very low (0.5 - 0.7 pCi/l), it was above the established Colorado stream standard of 0.15 pCi/l for release to off site drainage waters. The rapid successful treatment of these waters to the regulatory limit was important to the site for two reasons. The first was that the pond was approaching its hold-up limit. Without rapid treatment and release of the Pond A-4 water, typical spring run-off would require water management actions to other drainages onsite or a mass shuttling of water for disposal. The second reason was that this type of contaminated water had not been treated to the stringent stream standard at Rocky Flats before. Technical challenges in treatment could translate to impacts on water and secondary waste management, and ultimately, cost impacts. All of the technical challenges and specific site criteria led to the conclusion that a different approach to the treatment of this problem was necessary and a crash treatability program to identify applicable treatment techniques was undertaken. The goal of this program was to develop treatment options that could be implemented very quickly and would result in the generation of no high volume secondary waste that would be costly to dispose. A novel chemical treatment system was developed and implemented at the RFETS to treat Am

  12. Apparatus and process for water treatment

    DOE Patents [OSTI]

    Phifer, Mark A.; Nichols, Ralph L.

    2001-01-01

    An apparatus is disclosed utilizing permeable treatment media for treatment of contaminated water, along with a method for enhanced passive flow of contaminated water through the treatment media. The apparatus includes a treatment cell including a permeable structure that encloses the treatment media, the treatment cell may be located inside a water collection well, exterior to a water collection well, or placed in situ within the pathway of contaminated groundwater. The passive flow of contaminated water through the treatment media is maintained by a hydraulic connection between a collecting point of greater water pressure head, and a discharge point of lower water pressure head. The apparatus and process for passive flow and groundwater treatment utilizes a permeable treatment media made up of granular metal, bimetallics, granular cast iron, activated carbon, cation exchange resins, and/or additional treatment materials. An enclosing container may have an outer permeable wall for passive flow of water into the container and through the enclosed treatment media to an effluent point. Flow of contaminated water is attained without active pumping of water through the treatment media. Remediation of chlorinated hydrocarbons and other water contaminants to acceptable regulatory concentration levels is accomplished without the costs of pumping, pump maintenance, and constant oversight by personnel.

  13. Treatability study of absorbent polymer waste form for mixed waste treatment

    SciTech Connect (OSTI)

    Herrmann, S. D.; Lehto, M. A.; Stewart, N. A.; Croft, A. D.; Kern, P. W.

    2000-02-10

    A treatability study was performed to develop and characterize an absorbent polymer waste form for application to low level (LLW) and mixed low level (MLLW) aqueous wastes at Argonne National Laboratory-West (ANL-W). In this study absorbent polymers proved effective at immobilizing aqueous liquid wastes in order to meet Land Disposal Restrictions for subsurface waste disposal. Treatment of aqueous waste with absorbent polymers provides an alternative to liquid waste solidification via high-shear mixing with clays and cements. Significant advantages of absorbent polymer use over clays and cements include ease of operations and waste volume minimization. Absorbent polymers do not require high-shear mixing as do clays and cements. Granulated absorbent polymer is poured into aqueous solutions and forms a gel which passes the paint filter test as a non-liquid. Pouring versus mixing of a solidification agent not only eliminates the need for a mixing station, but also lessens exposure to personnel and the potential for spread of contamination from treatment of radioactive wastes. Waste minimization is achieved as significantly less mass addition and volume increase is required of and results from absorbent polymer use than that of clays and cements. Operational ease and waste minimization translate into overall cost savings for LLW and MLLW treatment.

  14. Radiological Monitoring of Waste Treatment Plant

    SciTech Connect (OSTI)

    Amin, Y. M.; Nik, H. W.

    2011-03-30

    Scheduled waste in West Malaysia is handled by Concession Company and is stored and then is incinerated. It is known that incineration process may result in naturally occurring radioactive materials (NORM) to be concentrated. In this study we have measured three samples consist of by-product from the operation process such as slag, filter cake and fly ash. Other various environmental media such as air, surface water, groundwater and soil within and around the plant have also been analysed for their radioactivity levels. The concentration of Ra-226, Ac-228 and K-40 in slag are 0.062 Bq/g, 0.016 Bq/g and 0.19 Bq/g respectively. The total activity (Ra{sub eq}) in slag is 99.5 Bq/kg. The concentration in fly ash is 0.032 Bq/g, 0.16 Bq/g and 0.34 Bq/g for Ra-226, Ac-228 and K-40 respectively resulting in Raeq of 287.0 Bq/kg. For filter cake, the concentration is 0.13 Bq/g, 0.031 Bq/g and 0.33 Bq/g for Ra-226, Ac-228 and K-40 respectively resulting in Raeq of 199.7 Bq/kg. The external radiation level ranges from 0.08 {mu}Sv/h (Administrative building) to 0.35 {mu}Sv/h (TENORM storage area). The concentration level of radon and thoron progeny varies from 0.0001 to 0.0016 WL and 0.0006 WL to 0.002 WL respectively. For soil samples, the activity ranges from 0.11 Bq/g to 0.29 Bq/g, 0.06 Bq/g to 0.18 Bq/g and 0.065 Bq/g to 0.38 Bq/g for Ra-226, Ac-228 and K-40 respectively. While activity in water, except for a trace of K-40, it is non-detectable.

  15. Waste and Water Top 2013 Accomplishments for Los Alamos EM Program...

    Office of Environmental Management (EM)

    Waste and Water Top 2013 Accomplishments for Los Alamos EM Program December 24, 2013 - ... biggest environmental cleanup accomplishments during 2013 centered around waste and water. ...

  16. Independent Oversight Activity Report, Hanford Waste Treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste (LAW) Facility Melter and Off-gas systems; observed a portion of the HA activities; and met with Bechtel National, Incorporated (BNI) personnel to discuss HE table comments. ...

  17. 300 Area waste acid treatment system closure plan. Revision 1

    SciTech Connect (OSTI)

    1996-03-01

    This section provides a description of the Hanford Site, identifies the proposed method of 300 Area Waste Acid Treatment System (WATS) closure, and briefly summarizes the contents of each chapter of this plan.

  18. ORS 466 - Storage, Treatment, and Disposal of Hazardous Waste...

    Open Energy Info (EERE)

    ORS 466 - Storage, Treatment, and Disposal of Hazardous Waste and Materials Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: ORS...

  19. Employees Achieve Certified Success at Idaho Site's Waste Treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... as a regional waste treatment plant for DOE, and allows AMWTP to react quickly to any shipping demands once WIPP resumes operations," DOE-Idaho Deputy Manager Jack Zimmerman said. ...

  20. Startup of Idaho Waste Treatment Facility Benefits From Experts' Advice |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Startup of Idaho Waste Treatment Facility Benefits From Experts' Advice Startup of Idaho Waste Treatment Facility Benefits From Experts' Advice June 30, 2016 - 12:35pm Addthis Samples of IWTU product from the November 2015 (left) and May 2016 (right) simulant runs. The May 2016 sample represents the desired results of the designed process. Samples of IWTU product from the November 2015 (left) and May 2016 (right) simulant runs. The May 2016 sample represents the desired

  1. Waste Treatment Facility Saves Taxpayers Nearly $20 Million | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Waste Treatment Facility Saves Taxpayers Nearly $20 Million Waste Treatment Facility Saves Taxpayers Nearly $20 Million December 11, 2012 - 1:40pm Addthis A new enclosure for processing radioactive casks has put Oak Ridge on a path to finishing cleanup work two years ahead of schedule, saving nearly $20 million. | Photo courtesy of the Office of Environmental Management. A new enclosure for processing radioactive casks has put Oak Ridge on a path to finishing cleanup work two years

  2. Independent Oversight Review, Waste Treatment and Immobilization Plant -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    January 2013 | Department of Energy January 2013 Independent Oversight Review, Waste Treatment and Immobilization Plant - January 2013 January 2013 Review of the Hanford Waste Treatment and Immobilization Plant Black-Cell and Hard-To-Reach Pipe Spools Procurement Process and the Office of River Protection Audit of That Process The Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security (HSS), conducted a concurrent independent review with

  3. DOE Chooses Idaho Treatment Group, LLC to Disposition Waste at the Advanced Mixed Waste Treatment Project: Contract will continue cleanup and waste operations at the Idaho Site

    Office of Energy Efficiency and Renewable Energy (EERE)

    Idaho Falls – In order to further meet the U.S. Department of Energy’s commitments to the citizens of the state of Idaho, the DOE today announced that it has selected Idaho Treatment Group, LLC (ITG) to perform waste processing at the Advanced Mixed Waste Treatment Project (AMWTP) at DOE’s Idaho Site near Idaho Falls.

  4. Thermal Treatment of Solid Wastes Using the Electric Arc Furnace

    SciTech Connect (OSTI)

    O'Connor, W.K.; Turner, P.C.

    1999-09-01

    A thermal waste treatment facility has been developed at the Albany Research Center (ARC) over the past seven years to process a wide range of heterogeneous mixed wastes, on a scale of 227 to 907 kg/h (500 to 2,000 lb/h). The current system includes a continuous feed system, a 3-phase AC, 0.8 MW graphite electrode arc furnace, and a dedicated air pollution control system (APCS) which includes a close-coupled thermal oxidizer, spray cooler, baghouse, and wet scrubber. The versatility of the complete system has been demonstrated during 5 continuous melting campaigns, ranging from 11 to 25 mt (12 to 28 st) of treated wastes per campaign, which were conducted on waste materials such as (a) municipal incinerator ash, (b) simulated low-level radioactive, high combustible-bearing mixed wastes, (c) simulated low-level radioactive liquid tank wastes, (d) heavy metal contaminated soils, and (e) organic-contaminated dredging spoils. In all cases, the glass or slag products readily passed the U.S. Environmental Protection Agency (EPA) Toxicity Characteristic Leachability Program (TCLP) test. Additional studies are currently under way on electric utility wastes, steel and aluminum industry wastes, as well as zinc smelter residues. Thermal treatment of these solid waste streams is intended to produce a metallic product along with nonhazardous glass or slag products.

  5. Treatment studies of paint stripping waste from plastic media blasting

    SciTech Connect (OSTI)

    Spence, R.D.

    1995-12-31

    Blasting with plastic media is used to strip paint and decontaminate surfaces. For disposal the plastic media is pulverized into a plastic dust. About 10 wt % of the waste from plastic media blasting is pulverized paint, which makes the waste a characteristically hazardous waste because of the presence of barium, cadmium, chromium and lead in the paint pigments. Four separate treatments of this hazardous waste were studied: (1) density separation to remove the paint, (2) self-encapsulation of the mix of plastic and paint dust into plastic pellets, (3) solidification/stabilization (S/S) into cementitious waste forms, and (4) low-temperature ashing to destroy the large mass of nonhazardous polymer. Two types of plast blasting wastes were studied: a urea formaldehyde thermoset polymer and an acrylic thermoplastic polymer (polymethylmethacrylate). Toxicity Characteristic Leach Procedure (TCLP) extraction concentrations for the treated and untreated wastes are listed. Density separation failed to adequately separate the paint with an aqueous carbonate solution. Self-encapsulation reduced the waste volume by about 50%, but did not meet TCLP criteria. Cementitious solidification gave the lowest TCLP concentrations, but increased the waste volume by about 50%. Low-temperature ashing at 600 C resulted in a mass decrease of 93 to 98% for the wastes; the metals remaining in the ash could be stabilized with cementitious solidification and still result in a volume decrease of 75 to 95 volume percent.

  6. Water Monitoring & Treatment Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Heating Water Heating Low-flow fixtures will help you reduce your hot water use and save money on your water heating bills. | Photo courtesy of Huntington Veterans Medical Ctr. Low-flow fixtures will help you reduce your hot water use and save money on your water heating bills. | Photo courtesy of Huntington Veterans Medical Ctr. Water heating accounts for about 18% of your home's energy use. Reducing your hot water use, employing energy-saving strategies, and choosing an energy efficient

  7. Acid mine water aeration and treatment system

    DOE Patents [OSTI]

    Ackman, Terry E.; Place, John M.

    1987-01-01

    An in-line system is provided for treating acid mine drainage which basically comprises the combination of a jet pump (or pumps) and a static mixer. The jet pump entrains air into the acid waste water using a Venturi effect so as to provide aeration of the waste water while further aeration is provided by the helical vanes of the static mixer. A neutralizing agent is injected into the suction chamber of the jet pump and the static mixer is formed by plural sections offset by 90 degrees.

  8. The Carver-Greenfield Process: dehydration/solvent extraction technology for waste treatment

    SciTech Connect (OSTI)

    Trowbridge, T.D.; Holcombe, T.C.

    1996-12-31

    A combination dehydration/solvent extraction treatment technology, the proprietary Carver-Greenfield (C-G) Process, can be used to separate solid/liquid waste materials into three separate product streams convenient for reuse or disposal: (1) clean, dry solids suitable for fixation of nonhazardous landfilling; (2) water virtually free of solids and oils which can be processed in an industrial or public wastewater treatment facility; and, (3) oil indigenous to the feed, a mixture of extracted hydrocarbon-soluble compounds which typically includes any hazardous contaminants which are present. As normally practices, this dehydration/solvent extraction technology involves slurrying water-wet waste in a hydrocarbon solvent which extracts indigenous oil from contaminated solid particles and concentrates it in the solvent phase. Dehydration also takes place during the treatment; water is evaporated and condensed as a separate product. Dry solids are reslurried in fresh solvent one or more additional times depending on the degree of extraction required. Extracted solids are centrifuged away from the solvent and residual solvent in the centrifuge cake vaporized off the final product solids stream in a desolventizer. Indigenous oil from the waste is separated from the solvent by distillation with recovered solvent being recycled to the process. This paper discusses the C-G Process flexibility and economics as applied to various hazardous waste examples including PCB contaminated sediments, soils and sludges, spent drilling fluids (US EPA SITE Program), refinery wastes, manufactured gas plant (MGP) sites, etc. 8 refs., 1 fig., 9 tabs.

  9. Membrane Treatment of Liquid Salt Bearing Radioactive Wastes

    SciTech Connect (OSTI)

    Dmitriev, S. A.; Adamovich, D. V.; Demkin, V. I.; Timofeev, E. M.

    2003-02-25

    The main fields of introduction and application of membrane methods for preliminary treatment and processing salt liquid radioactive waste (SLRW) can be nuclear power stations (NPP) and enterprises on atomic submarines (AS) utilization. Unlike the earlier developed technology for the liquid salt bearing radioactive waste decontamination and concentrating this report presents the new enhanced membrane technology for the liquid salt bearing radioactive waste processing based on the state-of-the-art membrane unit design, namely, the filtering units equipped with the metal-ceramic membranes of ''TruMem'' brand, as well as the electrodialysis and electroosmosis concentrators. Application of the above mentioned units in conjunction with the pulse pole changer will allow the marked increase of the radioactive waste concentrating factor and the significant reduction of the waste volume intended for conversion into monolith and disposal. Besides, the application of the electrodialysis units loaded with an ion exchange material at the end polishing stage of the radioactive waste decontamination process will allow the reagent-free radioactive waste treatment that meets the standards set for the release of the decontaminated liquid radioactive waste effluents into the natural reservoirs of fish-farming value.

  10. Glass Development for Treatment of LANL Evaporator Bottoms Waste

    SciTech Connect (OSTI)

    DE Smith; GF Piepel; GW Veazey; JD Vienna; ML Elliott; RK Nakaoka; RP Thimpke

    1998-11-20

    Vitrification is an attractive treatment option for meeting the stabilization and final disposal requirements of many plutonium (Pu) bearing materials and wastes at the Los Alamos National Laboratory (LANL) TA-55 facility, Rocky Flats Environmental Technology Site (RFETS), Hanford, and other Department of Energy (DOE) sites. The Environmental Protection Agency (EPA) has declared that vitrification is the "best demonstrated available technology" for high- level radioactive wastes (HLW) (Federal Register 1990) and has produced a handbook of vitriilcation technologies for treatment of hazardous and radioactive waste (US EPA, 1992). This technology has been demonstrated to convert Pu-containing materials (Kormanos, 1997) into durable (Lutze, 1988) and accountable (Forsberg, 1995) waste. forms with reduced need for safeguarding (McCulhun, 1996). The composition of the Evaporator Bottoms Waste (EVB) at LANL, like that of many other I%-bearing materials, varies widely and is generally unpredictable. The goal of this study is to optimize the composition of glass for EVB waste at LANL, and present the basic techniques and tools for developing optimized glass compositions for other Pu-bearing materials in the complex. This report outlines an approach for glass formulation with fixed property restrictions, using glass property-composition databases. This approach is applicable to waste glass formulation for many variable waste streams and vitrification technologies.. Also reported are the preliminary property data for simulated evaporator bottom glasses, including glass viscosity and glass leach resistance using the Toxicity Characteristic Leaching Procedure (TCLP).

  11. Independent Oversight Assessment, Idaho Cleanup Project Sodium Bearing Waste Treatment Project- November 2012

    Broader source: Energy.gov [DOE]

    Assessment of Nuclear Safety Culture at the Idaho Cleanup Project Sodium Bearing Waste Treatment Project

  12. Mixed and Low-Level Waste Treatment Facility Project

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report documents those studies so the project can continue with an evaluation of programmatic options, system tradeoff studies, and the conceptual design phase of the project. This report, appendix B, comprises the engineering design files for this project study. The engineering design files document each waste steam, its characteristics, and identified treatment strategies.

  13. Innovative Process for Comprehensive Treatment of Liquid Radioactive Waste - 12551

    SciTech Connect (OSTI)

    Penzin, R.A.; Sarychev, G.A.

    2012-07-01

    the necessity to take emergency measures and to use marine water for cooling of reactor zone in contravention of the technological regulations. In these cases significant amount of liquid radioactive wastes of complex physicochemical composition is being generated, the purification of which by traditional methods is close to impossible. According to the practice of elimination of the accident after-effects at NPP 'Fukushima' there are still no technical means for the efficient purification of liquid radioactive wastes of complex composition like marine water from radionuclides. Therefore development of state-of-the-art highly efficient facilities capable of fast and safe purification of big amounts of liquid radioactive wastes of complex physicochemical composition from radionuclides turns to be utterly topical problem. Cesium radionuclides, being extremely dangerous for the environment, present over 90% of total radioactivity contained in liquid radioactive wastes left as a result of accidents at nuclear power objects. For the purpose of radiation accidents aftereffects liquidation VNIIHT proposes to create a plant for LRW reprocessing, consisting of 4 major technological modules: Module of LRW pretreatment to remove mechanical and organic impurities including oil products; Module of sorption purification of LWR by means of selective inorganic sorbents; Module of reverse osmotic purification and desalination; Module of deep evaporation of LRW concentrates. The first free modules are based on completed technological and designing concepts implemented by VNIIHT in the framework of LLRW Project in the period of 2000-2001 in Russia for comprehensive treatment of LWR of atomic fleet. These industrial plants proved to be highly efficient and secure during their long operation life. Module of deep evaporation is a new technological development. It will ensure conduction of evaporation and purification of LRW of different physicochemical composition, including those

  14. Bench-scale treatability testing of biological, UV oxidation, distillation, and ion-exchange treatment of trench water from a low-level radioactive waste disposal area at West Valley, New York

    SciTech Connect (OSTI)

    Sundquist, J.A.; Gillings, J.C.; Sonntag, T.L.; Denault, R.P.

    1993-03-01

    Ecology and Environment, Inc. (E and E), under subcontract to Pacific Nuclear Services (PNS), conducted for the New York State Energy Research and Development Authority (NYSERDA) treatability tests to support the selection and design of a treatment system for leachate from Trench 14 of the West Valley State-Licensed, Low-Level Radioactive Waste Disposal Area (SDA). In this paper E and E presents and discusses the treatability test results and provides recommendations for the design of the full-scale treatment system.

  15. Mixed and Low-Level Waste Treatment Facility project

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report, Appendix A, Environmental Regulatory Planning Documentation, identifies the regulatory requirements that would be imposed on the operation or construction of a facility designed to process the INEL's waste streams. These requirements are contained in five reports that discuss the following topics: (1) an environmental compliance plan and schedule, (2) National Environmental Policy Act requirements, (3) preliminary siting requirements, (4) regulatory justification for the project, and (5) health and safety criteria.

  16. Linking ceragenins to water-treatment membranes to minimize biofouling.

    SciTech Connect (OSTI)

    Hibbs, Michael R.; Altman, Susan Jeanne; Feng, Yanshu; Savage, Paul B.; Pollard, Jacob; Branda, Steven S.; Goeres, Darla; Buckingham-Meyer, Kelli; Stafslien, Shane; Marry, Christopher; Jones, Howland D. T.; Lichtenberger, Alyssa; Kirk, Matthew F.; McGrath, Lucas K.

    2012-01-01

    Ceragenins were used to create biofouling resistant water-treatment membranes. Ceragenins are synthetically produced antimicrobial peptide mimics that display broad-spectrum bactericidal activity. While ceragenins have been used on bio-medical devices, use of ceragenins on water-treatment membranes is novel. Biofouling impacts membrane separation processes for many industrial applications such as desalination, waste-water treatment, oil and gas extraction, and power generation. Biofouling results in a loss of permeate flux and increase in energy use. Creation of biofouling resistant membranes will assist in creation of clean water with lower energy usage and energy with lower water usage. Five methods of attaching three different ceragenin molecules were conducted and tested. Biofouling reduction was observed in the majority of the tests, indicating the ceragenins are a viable solution to biofouling on water treatment membranes. Silane direct attachment appears to be the most promising attachment method if a high concentration of CSA-121a is used. Additional refinement of the attachment methods are needed in order to achieve our goal of several log-reduction in biofilm cell density without impacting the membrane flux. Concurrently, biofilm forming bacteria were isolated from source waters relevant for water treatment: wastewater, agricultural drainage, river water, seawater, and brackish groundwater. These isolates can be used for future testing of methods to control biofouling. Once isolated, the ability of the isolates to grow biofilms was tested with high-throughput multiwell methods. Based on these tests, the following species were selected for further testing in tube reactors and CDC reactors: Pseudomonas ssp. (wastewater, agricultural drainage, and Colorado River water), Nocardia coeliaca or Rhodococcus spp. (wastewater), Pseudomonas fluorescens and Hydrogenophaga palleronii (agricultural drainage), Sulfitobacter donghicola, Rhodococcus fascians, Rhodobacter

  17. Radioactive waste management treatments: A selection for the Italian scenario

    SciTech Connect (OSTI)

    Locatelli, G. [Univ. of Lincoln, Lincoln School of Engineering, Brayford Pool - Lincoln LN6 7TS (United Kingdom); Mancini, M. [Politecnico di Milano, Dept. of Management, Economics and Industrial Engineering, Via Lambruschini 4/B, Milano (Italy); Sardini, M. [Politecnico di Milano, Dept. of Energy, Via Lambruschini 4, Milano (Italy)

    2012-07-01

    The increased attention for radioactive waste management is one of the most peculiar aspects of the nuclear sector considering both reactors and not power sources. The aim of this paper is to present the state-of-art of treatments for radioactive waste management all over the world in order to derive guidelines for the radioactive waste management in the Italian scenario. Starting with an overview on the international situation, it analyses the different sources, amounts, treatments, social and economic impacts looking at countries with different industrial backgrounds, energetic policies, geography and population. It lists all these treatments and selects the most reasonable according to technical, economic and social criteria. In particular, a double scenario is discussed (to be considered in case of few quantities of nuclear waste): the use of regional, centralized, off site processing facilities, which accept waste from many nuclear plants, and the use of mobile systems, which can be transported among multiple nuclear sites for processing campaigns. At the end the treatments suitable for the Italian scenario are presented providing simplified work-flows and guidelines. (authors)

  18. Full Focus Needed on Finishing Hanford's Waste Treatment Plant - 12196

    SciTech Connect (OSTI)

    Dahl, Suzanne; Biyani, Rabindra; Holmes, Erika

    2012-07-01

    The United States Department of Energy's (US DOE's) Hanford Nuclear Site has 177 underground waste storage tanks located 19 to 24 km (12 to 15 miles) from the Columbia River in south-central Washington State. Hanford's tanks now hold about 212,000 cu m (56 million gallons) of highly radioactive and chemically hazardous waste. Sixty-seven tanks have leaked an estimated 3,785 cu m (1 million gallons) of this waste into the surrounding soil. Further releases to soil, groundwater, and the Columbia River are the inevitable result of the tanks continuing to age. The risk from this waste is recognized as a threat to the Northwest by both State and Federal governments. US DOE and Bechtel National, Inc., are building the Waste Treatment and Immobilization Plant (WTP) to treat and vitrify (immobilize in glass) the waste from Hanford's tanks. As is usual for any groundbreaking project, problems have arisen that must be resolved as they occur if treatment is to take place as specified in the court-enforceable Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) and the Consent Decree, entered into by US DOE, the U.S. Environmental Protection Agency, and the Washington State Department of Ecology (Ecology). At times, US DOE's approach to solving these critical issues seems to have caused undue wastes of time, energy, and, ultimately, public funds. Upon reviewing the history of Hanford's tank waste treatment project, Ecology hopes that constructive criticism of past failures and praise of successes will inspire US DOE to consider changing practices, be more transparent with regulatory agencies and the public, and take a 'lean production' approach to successfully completing this project. All three Tri-Party Agreement agencies share the goal of completing WTP on time, ensuring it is operational and in compliance with safety standards. To do this, Ecology believes US DOE should: - Maintain focus on the primary goal of completing the five major facilities of

  19. Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant- June 2013

    Broader source: Energy.gov [DOE]

    Hanford Waste Treatment and Immobilization Plant Low Activity Waste Melter Off-gas Process System Hazards Analysis Activity Observation [HIAR-WTP-2013-05-13

  20. Enterprise Assessments Operational Awareness Record, Waste Treatment and Immobilization Plant – December 2014

    Broader source: Energy.gov [DOE]

    Operational Awareness Record for the Waste Treatment and Immobilization Plant Low Activity Waste Facility Reagents Systems Hazards Analysis Activity Observation (EA-WTP-LAW-2014-06-02)

  1. Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant – July 2013

    Broader source: Energy.gov [DOE]

    Operational Awareness of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity [HIAR-WTP-2013-07-31

  2. Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant – February 2014

    Broader source: Energy.gov [DOE]

    Hanford Waste Treatment and Immobilization Plant Low Activity Waste Facility Off-gas Systems Hazards Analysis Activities [HIAR-WTP-2014-01-27

  3. Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant – February 2014

    Broader source: Energy.gov [DOE]

    Observation of the Waste Treatment and Immobilization Plant Low Activity Waste Facility Heating, Ventilation, and Air Conditioning Systems Hazards Analysis Activities [HIAR-WTP-2014-01-27

  4. Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant – October 2013

    Broader source: Energy.gov [DOE]

    Observation of Waste Treatment and Immobilization Plant Low Activity Waste Melter and Melter Off-gas Process System Hazards Analysis Activities [HIAR-WTP-2013-10-21

  5. Water recovery using waste heat from coal fired power plants.

    SciTech Connect (OSTI)

    Webb, Stephen W.; Morrow, Charles W.; Altman, Susan Jeanne; Dwyer, Brian P.

    2011-01-01

    The potential to treat non-traditional water sources using power plant waste heat in conjunction with membrane distillation is assessed. Researchers and power plant designers continue to search for ways to use that waste heat from Rankine cycle power plants to recover water thereby reducing water net water consumption. Unfortunately, waste heat from a power plant is of poor quality. Membrane distillation (MD) systems may be a technology that can use the low temperature waste heat (<100 F) to treat water. By their nature, they operate at low temperature and usually low pressure. This study investigates the use of MD to recover water from typical power plants. It looks at recovery from three heat producing locations (boiler blow down, steam diverted from bleed streams, and the cooling water system) within a power plant, providing process sketches, heat and material balances and equipment sizing for recovery schemes using MD for each of these locations. It also provides insight into life cycle cost tradeoffs between power production and incremental capital costs.

  6. How to select a water treatment supplier

    SciTech Connect (OSTI)

    Keister, T.E.

    1995-06-01

    This paper is a continuation of one first presented in 1984 at the International Water Conference. Since that time many things have changed, not the least of which is my means of earning a living. While my prospective upon the world has changed due to conversion from user to supplier, the industrial world today is also much different than that of ten years ago. Major factors driving change are the explosion in computer technology, new environmental realities and restrictions, and a radically different world from both the political and economic standpoints. All of these areas directly impact upon water treatment and the selection of a supplier. Your attention is called to the sponsor of this paper, the Association of Water Technologies (AWT). The AWT is the trade association representing {open_quotes}small{close_quotes} water treatment companies, which presently control at least 21% of the US market in water treatment services. This 21% plus market share is greater than that of any single water treatment supplier. Growth of the AWT has been quite remarkable since its founding nine short years ago, membership now stands at approximately 370 companies. The growth of the Association is a good indication that the individual small water treatment suppliers, making up 74% of the membership, are also growing. Given the huge marketing budgets of the six major water treatment companies, it is sometimes difficult to realize that there are approximately 800 other water treatment companies in the market. Many of these smaller companies can oftentimes provide a better water treatment program than a major company can due to better service, closer customer contact, superior technology, and lower overhead costs. Selection of a water treatment supplier, be it a major or one of the smaller companies, should be made upon a firm foundation of facts, not marketing {open_quotes}hype{close_quotes}.

  7. Hanford Waste Treatment Plant Sets Massive Protective Shield door in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pretreatment Facility | Department of Energy Waste Treatment Plant Sets Massive Protective Shield door in Pretreatment Facility Hanford Waste Treatment Plant Sets Massive Protective Shield door in Pretreatment Facility January 12, 2011 - 12:00pm Addthis The carbon steel doors come together to form an upside-down L-shape. The 102-ton door was set on top of the 85-ton door that was installed at the end of December. The carbon steel doors come together to form an upside-down L-shape. The

  8. Office of River Protection Prepares for Critical Waste Treatment Plant

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing | Department of Energy Prepares for Critical Waste Treatment Plant Testing Office of River Protection Prepares for Critical Waste Treatment Plant Testing May 16, 2016 - 12:40pm Addthis Workers remove the old test vessel from the Full-Scale Vessel Test Facility. Workers remove the old test vessel from the Full-Scale Vessel Test Facility. RICHLAND, Wash. - EM's Office of River Protection (ORP) removed a 30-ton stainless steel vessel to make way for a new one to fulfill a critical role

  9. Waste characterization for the F/H Effluent Treatment Facility in support of waste certification

    SciTech Connect (OSTI)

    Brown, D.F.

    1994-10-17

    The Waste Acceptance Criteria (WAC) procedures define the rules concerning packages of solid Low Level Waste (LLW) that are sent to the E-area vaults (EAV). The WACs tabulate the quantities of 22 radionuclides that require manifesting in waste packages destined for each type of vault. These quantities are called the Package Administrative Criteria (PAC). If a waste package exceeds the PAC for any radionuclide in a given vault, then specific permission is needed to send to that vault. To avoid reporting insignificant quantities of the 22 listed radionuclides, the WAC defines the Minimum Reportable Quantity (MRQ) of each radionuclide as 1/1000th of the PAC. If a waste package contains less than the MRQ of a particular radionuclide, then the package`s manifest will list that radionuclide as zero. At least one radionuclide has to be reported, even if all are below the MRQ. The WAC requires that the waste no be ``hazardous`` as defined by SCDHEC/EPA regulations and also lists several miscellaneous physical/chemical requirements for the packages. This report evaluates the solid wastes generated within the F/H Effluent Treatment Facility (ETF) for potential impacts on waste certification.

  10. Evaluation of tubular reactor designs for supercritical water oxidation of U.S. Department of Energy mixed waste

    SciTech Connect (OSTI)

    Barnes, C.M.

    1994-12-01

    Supercritical water oxidation (SCWO) is an emerging technology for industrial waste treatment and is being developed for treatment of the US Department of Energy (DOE) mixed hazardous and radioactive wastes. In the SCWO process, wastes containing organic material are oxidized in the presence of water at conditions of temperature and pressure above the critical point of water, 374 C and 22.1 MPa. DOE mixed wastes consist of a broad spectrum of liquids, sludges, and solids containing a wide variety of organic components plus inorganic components including radionuclides. This report is a review and evaluation of tubular reactor designs for supercritical water oxidation of US Department of Energy mixed waste. Tubular reactors are evaluated against requirements for treatment of US Department of Energy mixed waste. Requirements that play major roles in the evaluation include achieving acceptable corrosion, deposition, and heat removal rates. A general evaluation is made of tubular reactors and specific reactors are discussed. Based on the evaluations, recommendations are made regarding continued development of supercritical water oxidation reactors for US Department of Energy mixed waste.

  11. Solid waste energy recovery for brackish water desalination

    SciTech Connect (OSTI)

    Bailie, R.E.

    1982-07-01

    Introduced is the concept of combining solid-waste energy recovery with brackish water desalination for water supply improvement. The history of such plants is briefly detailed, and performance and operating cost data of several existing desalination plants is given. It is concluded that the combination of solid waste energy recovery utilizing modular combustion units and brackish water desalination using the reverse osmosis process can cancel out the energy-related negative aspects of both technologies. Furthermore, with innovative planning and adequate political, financial and technical leadership, communities that meet criteria outlined in the report can convert a waste disposal problem into a resource for the betterment of the community and its surrounding neighbors.

  12. Radiological, physical, and chemical characterization of additional alpha contaminated and mixed low-level waste for treatment at the advanced mixed waste treatment project

    SciTech Connect (OSTI)

    Hutchinson, D.P.

    1995-07-01

    This document provides physical, chemical, and radiological descriptive information for a portion of mixed waste that is potentially available for private sector treatment. The format and contents are designed to provide treatment vendors with preliminary information on the characteristics and properties for additional candidate portions of the Idaho National Engineering Laboratory (INEL) and offsite mixed wastes not covered in the two previous characterization reports for the INEL-stored low-level alpha-contaminated and transuranic wastes. This report defines the waste, provides background information, briefly reviews the requirements of the Federal Facility Compliance Act (P.L. 102-386), and relates the Site Treatment Plans developed under the Federal Facility Compliance Act to the waste streams described herein. Each waste is summarized in a Waste Profile Sheet with text, charts, and tables of waste descriptive information for a particular waste stream. A discussion of the availability and uncertainty of data for these waste streams precedes the characterization descriptions.

  13. Treatment method for emulsified petroleum wastes

    DOE Patents [OSTI]

    Sealock, Jr., L. John; Baker, Eddie G.; Elliott, Douglas C.

    1990-01-01

    An improved reclamation process for treating petroleum oil and water emulsions derived from producing or processing crude oil is disclosed. The process comprises heating the emulsion to a predetermined temperature at or above about 300.degree. C. and pressurizing the emulsion to a predetermined pressure above the vapor pressure of water at the predetermined temperature. The emulsion is broken by containing the heated and pressurized fluid within a vessel at the predetermined temperature and pressure for a predetermined period of time to effectively separate the emulsion into substantially distinct first, second and third phases. The three phases are then separately withdrawn from the vessel, preferably without any appreciable reduction in temperature and pressure, and at least above a withdraw temperature of about 300.degree. and above the vapor pressure of water at the withdraw temperature.

  14. Sodium-Bearing Waste Treatment, Applied Technology Plan

    SciTech Connect (OSTI)

    Lance Lauerhass; Vince C. Maio; S. Kenneth Merrill; Arlin L. Olson; Keith J. Perry

    2003-06-01

    Settlement Agreement between the Department of Energy and the State of Idaho mandates treatment of sodium-bearing waste at the Idaho Nuclear Technology and Engineering Center within the Idaho National Engineering and Environmental Laboratory. One of the requirements of the Settlement Agreement is to complete treatment of sodium-bearing waste by December 31, 2012. Applied technology activities are required to provide the data necessary to complete conceptual design of four identified alternative processes and to select the preferred alternative. To provide a technically defensible path forward for the selection of a treatment process and for the collection of needed data, an applied technology plan is required. This document presents that plan, identifying key elements of the decision process and the steps necessary to obtain the required data in support of both the decision and the conceptual design. The Sodium-Bearing Waste Treatment Applied Technology Plan has been prepared to provide a description/roadmap of the treatment alternative selection process. The plan details the results of risk analyzes and the resulting prioritized uncertainties. It presents a high-level flow diagram governing the technology decision process, as well as detailed roadmaps for each technology. The roadmaps describe the technical steps necessary in obtaining data to quantify and reduce the technical uncertainties associated with each alternative treatment process. This plan also describes the final products that will be delivered to the Department of Energy Idaho Operations Office in support of the office's selection of the final treatment technology.

  15. Verification and validation of the decision analysis model for assessment of tank waste remediation system waste treatment strategies

    SciTech Connect (OSTI)

    Awadalla, N.G.; Eaton, S.C.F.

    1996-09-04

    This document is the verification and validation final report for the Decision Analysis Model for Assessment of Tank Waste Remediation System Waste Treatment Strategies. This model is also known as the INSIGHT Model.

  16. Mixed and low-level waste treatment facility project

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    The technology information provided in this report is only the first step toward the identification and selection of process systems that may be recommended for a proposed mixed and low-level waste treatment facility. More specific information on each technology will be required to conduct the system and equipment tradeoff studies that will follow these preengineering studies. For example, capacity, maintainability, reliability, cost, applicability to specific waste streams, and technology availability must be further defined. This report does not currently contain all needed information; however, all major technologies considered to be potentially applicable to the treatment of mixed and low-level waste are identified and described herein. Future reports will seek to improve the depth of information on technologies.

  17. Army Reserve Expands Net Zero Energy, Water, Waste

    SciTech Connect (OSTI)

    Solana, Amy E.

    2015-04-14

    In 2012, the Army initiated a Net Zero (NZ) program to establish NZ energy, water, and/or waste goals at installations across the U.S. In 2013, the U.S. Army Reserve expanded this program to cover all three categories at different types of Reserve Centers (RCs) across 5 regions. Projects identified at 10 pilot sites resulted in an average savings potential from recommended measures of 90% for energy, 60% for water, and 83% for waste. This article provides results of these efforts.

  18. Enterprise Assessments Operational Awareness Record, Waste Treatment and Immobilization Plant – December 2014

    Broader source: Energy.gov [DOE]

    Operational Awareness Record for the Waste Treatment and Immobilization Plant Low Activity Waste Facility Waste Handling Systems Hazard Analysis Activities Observation (EA-WTP-LAW-2014-08-18(b))

  19. Mixed and Low-Level Treatment Facility Project. Appendix B, Waste stream engineering files, Part 1, Mixed waste streams

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    This appendix contains the mixed and low-level waste engineering design files (EDFS) documenting each low-level and mixed waste stream investigated during preengineering studies for Mixed and Low-Level Waste Treatment Facility Project. The EDFs provide background information on mixed and low-level waste generated at the Idaho National Engineering Laboratory. They identify, characterize, and provide treatment strategies for the waste streams. Mixed waste is waste containing both radioactive and hazardous components as defined by the Atomic Energy Act and the Resource Conservation and Recovery Act, respectively. Low-level waste is waste that contains radioactivity and is not classified as high-level waste, transuranic waste, spent nuclear fuel, or 11e(2) byproduct material as defined by DOE 5820.2A. Test specimens of fissionable material irradiated for research and development only, and not for the production of power or plutonium, may be classified as low-level waste, provided the concentration of transuranic is less than 100 nCi/g. This appendix is a tool that clarifies presentation format for the EDFS. The EDFs contain waste stream characterization data and potential treatment strategies that will facilitate system tradeoff studies and conceptual design development. A total of 43 mixed waste and 55 low-level waste EDFs are provided.

  20. Combination gas producing and waste-water disposal well

    DOE Patents [OSTI]

    Malinchak, Raymond M.

    1984-01-01

    The present invention is directed to a waste-water disposal system for use in a gas recovery well penetrating a subterranean water-containing and methane gas-bearing coal formation. A cased bore hole penetrates the coal formation and extends downwardly therefrom into a further earth formation which has sufficient permeability to absorb the waste water entering the borehole from the coal formation. Pump means are disposed in the casing below the coal formation for pumping the water through a main conduit towards the water-absorbing earth formation. A barrier or water plug is disposed about the main conduit to prevent water flow through the casing except for through the main conduit. Bypass conduits disposed above the barrier communicate with the main conduit to provide an unpumped flow of water to the water-absorbing earth formation. One-way valves are in the main conduit and in the bypass conduits to provide flow of water therethrough only in the direction towards the water-absorbing earth formation.

  1. Nuclear Waste Treatment Program: Qualification of commercial high-level waste forms: Approach and status

    SciTech Connect (OSTI)

    Brouns, R.A.; Kuhn, W.L.

    1986-12-01

    In this document, the Nuclear Waste Treatment Program (NWTP) proposes an approach for demonstrating compliance with acceptance specifications. The proposed approach relies first on developing models of the process (vitrification) and product (waste form) to relate measurable process variables to the product quality, and then on using process control and sampling of melter feed input as the quality control method. Coordinated test programs, using pilot-scale nonradioactive and radioactive tests, will be used to establish these models at the confidence level needed to assure compliance to waste acceptance specifications. The test programs are broadly focused to encompass the range of anticipated future wastes, but the results should also be equally applicable to current wastes as well. Demonstration of waste form compliance by some other method would likely require extensive product testing, including glass sampling during production and routine destructive examination of canisters. The process and product modeling approach eliminates the need for this type of testing and should result in a very high level of statistical confidence that the individual waste forms are acceptable for disposal.

  2. Clean option: Berkeley Pit water treatment and resource recovery strategy

    SciTech Connect (OSTI)

    Gerber, M.A.; Orth, R.J.; Elmore, M.R.; Monzyk, B.F.

    1995-09-01

    The US Department of Energy (DOE), Office of Technology Development, established the Resource Recovery Project (RRP) in 1992 as a five-year effort to evaluate and demonstrate multiple technologies for recovering water, metals, and other industrial resources from contaminated surface and groundwater. Natural water resources located throughout the DOE complex and the and western states have been rendered unusable because of contamination from heavy metals. The Berkeley Pit, a large, inactive, open pit copper mine located in Butte, Montana, along with its associated groundwater system, has been selected by the RRP for use as a feedstock for a test bed facility located there. The test bed facility provides the infrastructure needed to evaluate promising technologies at the pilot plant scale. Data obtained from testing these technologies was used to assess their applicability for similar mine drainage water applications throughout the western states and at DOE. The objective of the Clean Option project is to develop strategies that provides a comprehensive and integrated approach to resource recovery using the Berkeley Pit water as a feedstock. The strategies not only consider the immediate problem of resource recovery from the contaminated water, but also manage the subsequent treatment of all resulting process streams. The strategies also employ the philosophy of waste minimization to optimize reduction of the waste volume requiring disposal, and the recovery and reuse of processing materials.

  3. Feed Composition for Sodium-Bearing Waste Treatment Process

    SciTech Connect (OSTI)

    Barnes, C.M.

    2000-10-30

    Treatment of sodium-bearing waste (SBW) at the Idaho Nuclear Technology and Engineering Center (INTEC) within the Idaho National Engineering and Environmental Laboratory is mandated by a Settlement Agreement between the Department of Energy and the State of Idaho. One of the requirements of the Settlement Agreement is to complete treatment of SBW by December 31, 2012. To support both design and development studies for the SBW treatment process, detailed feed compositions are needed. This report contains the expected compositions of these feed streams and the sources and methods used in obtaining these compositions.

  4. Waste treatment by reverse osmosis and membrane processes: industrial. January 1976-June 1989 (Citations from the COMPENDEX data base). Report for January 1976-June 1989

    SciTech Connect (OSTI)

    Not Available

    1989-06-01

    This bibliography contains citations concerning the use of membranes to treat industrial waste water. Reverse osmosis, ion exchange, electrodialysis, and ultrafiltration processes are described. Removal of metals, sodium compounds, nitrates, flourides, dyes, and radioactive waste using membranes is examined. Waste-water treatment for chemical, pulp, textile, and steel mills using this technology is included. (This updated bibliography contains 281 citations, 35 of which are new entries to the previous edition.)

  5. Waste treatment by reverse osmosis and membrane processes: Industrial. November 1976-October 1989 (Citations from the COMPENDEX data base). Report for November 1976-October 1989

    SciTech Connect (OSTI)

    Not Available

    1989-12-01

    This bibliography contains citations concerning the use of membranes to treat industrial waste water. Reverse osmosis, ion exchange, electrodialysis, and ultrafiltration processes are described. Removal of metals, sodium compounds, nitrates, flourides, dyes, and radioactive waste using membranes is examined. Waste-water treatment for chemical, pulp, textile, and steel mills using this technology is included. (This updated bibliography contains 294 citations, 13 of which are new entries to the previous edition.)

  6. Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant and Tank Farm – January 2014

    Broader source: Energy.gov [DOE]

    Hanford Waste Treatment and Immobilization Plant Engineering Activities and Tank Farm Operations [HIAR-HANFORD-2014-01-13

  7. Process for treating waste water having low concentrations of metallic contaminants

    DOE Patents [OSTI]

    Looney, Brian B; Millings, Margaret R; Nichols, Ralph L; Payne, William L

    2014-12-16

    A process for treating waste water having a low level of metallic contaminants by reducing the toxicity level of metallic contaminants to an acceptable level and subsequently discharging the treated waste water into the environment without removing the treated contaminants.

  8. Chelating water-soluble polymers for waste minimization

    SciTech Connect (OSTI)

    Smith, B.; Cournoyer, M.; Duran, B.; Ford, D.; Gibson, R.; Lin, M.; Meck, A.; Robinson, P.; Robison, T.

    1996-11-01

    Within the DOE complex and in industry there is a tremendous need for advanced metal ion recovery and waste minimization techniques. This project sought to employ capabilities for ligand-design and separations chemistry in which one can develop and evaluate water- soluble chelating polymers for recovering actinides and toxic metals from various process streams. Focus of this work was (1) to develop and select a set of water-soluble polymers suitable for a selected waste stream and (2) demonstrate this technology in 2 areas: removal of (a) actinides and toxic RCRA metals from waste water and (b) recovery of Cu and other precious metals from industrial process streams including from solid catalysts and aqueous waste streams. The R&D was done in 4 phases for each of the 2 target areas: polymer synthesis for scaleup, equipment assembly, process demonstration at a DOE or industrial site, and advanced ligand/polymer synthesis. The TA- 50 site at Los Alamos was thought to be appropriate due to logistics and to its being representative of similar problems throughout the DOE complex.

  9. Engineered photocatalysts for detoxification of waste water

    SciTech Connect (OSTI)

    Majumder, S.A.; Prairie, M.R.; Shelnutt, J.A.; Khan, S.U.M.

    1996-12-01

    This report describes progress on the development of engineered photocatalysts for the detoxification of water polluted with toxic organic compounds and heavy metals. We examined a range of different oxide supports (titania, alumina, magnesia and manganese dioxide) for tin uroporphyrin and investigated the efficacy of a few different porphyrins. A water-soluble octaacetic-acid-tetraphenylporphyrin and its derivatives have been synthesized and characterized in an attempt to design a porphyrin catalyst with a larger binding pocket. We have also investigated photocatalytic processes on both single crystal and powder forms of semiconducting SiC with an ultimate goal of developing a dual-semiconductor system combining TiO{sub 2} and SiC. Mathematical modeling was also performed to identify parameters that can improve the efficiency of SiC-based photocatalytic systems. Although the conceptual TiO{sub 2}/SiC photodiode shows some promises for photoreduction processes, SiC itself was found to be an inefficient photocatalyst when combined with TiO{sub 2}. Alternative semiconductors with bandgap and band potentials similar to SiC should be tested in the future for further development and a practical utilization of the dual photodiode concept.

  10. Method of draining water through a solid waste site without leaching

    DOE Patents [OSTI]

    Treat, R.L.; Gee, G.W.; Whyatt, G.A.

    1993-02-02

    The present invention is a method of preventing water from leaching solid waste sites by preventing atmospheric precipitation from contacting waste as the water flows through a solid waste site. The method comprises placing at least one drain hole through the solid waste site. The drain hole is seated to prevent waste material from entering the drain hole, and the solid waste site cover material is layered and graded to direct water to flow toward the drain hole and to soil beneath the waste site.

  11. Method of draining water through a solid waste site without leaching

    DOE Patents [OSTI]

    Treat, Russell L.; Gee, Glendon W.; Whyatt, Greg A.

    1993-01-01

    The present invention is a method of preventing water from leaching solid waste sites by preventing atmospheric precipitation from contacting waste as the water flows through a solid waste site. The method comprises placing at least one drain hole through the solid waste site. The drain hole is seated to prevent waste material from entering the drain hole, and the solid waste site cover material is layered and graded to direct water to flow toward the drain hole and to soil beneath the waste site.

  12. Sodium Recycle Economics for Waste Treatment Plant Operations

    SciTech Connect (OSTI)

    Sevigny, Gary J.; Poloski, Adam P.; Fountain, Matthew S.

    2008-08-31

    Sodium recycle at the Hanford Waste Treatment Plant (WTP) would reduce the number of glass canisters produced, and has the potential to significantly reduce the cost to the U.S. Department of Energy (DOE) of treating the tank wastes by hundreds of millions of dollars. The sodium, added in the form of sodium hydroxide, was originally added to minimize corrosion of carbon-steel storage tanks from acidic reprocessing wastes. In the baseline Hanford treatment process, sodium hydroxide is required to leach gibbsite and boehmite from the high level waste (HLW) sludge. In turn, this reduces the amount of HLW glass produced. Currently, a significant amount of additional sodium hydroxide will be added to the process to maintain aluminate solubility at ambient temperatures during ion exchange of cesium. The vitrification of radioactive waste is limited by sodium content, and this additional sodium mass will increase low-activity waste-glass mass. An electrochemical salt-splitting process, based on sodium-ion selective ceramic membranes, is being developed to recover and recycle sodium hydroxide from high-salt radioactive tank wastes in DOEs complex. The ceramic membranes are from a family of materials known as sodium (Na)super-ionic conductors (NaSICON)and the diffusion of sodium ions (Na+) is allowed, while blocking other positively charged ions. A cost/benefit evaluation was based on a strategy that involves a separate caustic-recycle facility based on the NaSICON technology, which would be located adjacent to the WTP facility. A Monte Carlo approach was taken, and several thousand scenarios were analyzed to determine likely economic results. The cost/benefit evaluation indicates that 10,00050,000 metric tons (MT) of sodium could be recycled, and would allow for the reduction of glass production by 60,000300,000 MT. The cost of the facility construction and operation was scaled to the low-activity waste (LAW) vitrification facility, showing cost would be roughly $150

  13. Review of Nuclear Safety Culture at the Hanford Site Waste Treatment...

    Energy Savers [EERE]

    Treatment and Immobilization Plant Project, October 2010 Review of Nuclear Safety Culture at the Hanford Site Waste Treatment and Immobilization Plant Project, October 2010 October ...

  14. ACTIVATED CARBON FROM LIGNITE FOR WATER TREATMENT (Technical...

    Office of Scientific and Technical Information (OSTI)

    ACTIVATED CARBON FROM LIGNITE FOR WATER TREATMENT Citation Details In-Document Search Title: ACTIVATED CARBON FROM LIGNITE FOR WATER TREATMENT You are accessing a document from...

  15. A molecular basis for advanced materials in water treatment....

    Office of Scientific and Technical Information (OSTI)

    A molecular basis for advanced materials in water treatment. Citation Details In-Document Search Title: A molecular basis for advanced materials in water treatment. Authors: Rempe, ...

  16. Cooling tower water treatment and reuse. (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Cooling tower water treatment and reuse. Citation Details In-Document Search Title: Cooling tower water treatment and reuse. No abstract prepared. Authors: Brady, Patrick Vane ; ...

  17. Hazardous Waste/Mixed Waste Treatment Building Safety Information Document (SID)

    SciTech Connect (OSTI)

    Fatell, L.B.; Woolsey, G.B.

    1993-04-15

    This Safety Information Document (SID) provides a description and analysis of operations for the Hazardous Waste/Mixed Waste Disposal Facility Treatment Building (the Treatment Building). The Treatment Building has been classified as a moderate hazard facility, and the level of analysis performed and the methodology used are based on that classification. Preliminary design of the Treatment Building has identified the need for two separate buildings for waste treatment processes. The term Treatment Building applies to all these facilities. The evaluation of safety for the Treatment Building is accomplished in part by the identification of hazards associated with the facility and the analysis of the facility`s response to postulated events involving those hazards. The events are analyzed in terms of the facility features that minimize the causes of such events, the quantitative determination of the consequences, and the ability of the facility to cope with each event should it occur. The SID presents the methodology, assumptions, and results of the systematic evaluation of hazards associated with operation of the Treatment Building. The SID also addresses the spectrum of postulated credible events, involving those hazards, that could occur. Facility features important to safety are identified and discussed in the SID. The SID identifies hazards and reports the analysis of the spectrum of credible postulated events that can result in the following consequences: Personnel exposure to radiation; Radioactive material release to the environment; Personnel exposure to hazardous chemicals; Hazardous chemical release to the environment; Events leading to an onsite/offsite fatality; and Significant damage to government property. The SID addresses the consequences to the onsite and offsite populations resulting from postulated credible events and the safety features in place to control and mitigate the consequences.

  18. Waste Treatment and Immobilization Plant Communications Approach Tools and Techniques

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Processing Waste Processing Workers process and repackage waste at the Transuranic Waste Processing Center’s Cask Processing Enclosure. Workers process and repackage waste at the Transuranic Waste Processing Center's Cask Processing Enclosure. Transuranic waste, or TRU, is one of several types of waste handled by Oak Ridge's EM program. This waste contains manmade elements heavier than uranium, hence the name "trans" or "beyond" uranium. Transuranic waste material

  19. Implementation of Treatment Systems for Low and Intermediate Radioactive Waste at Site Radwaste Treatment Facility (SRTF), PR China - 12556

    SciTech Connect (OSTI)

    Lohmann, Peter; Nasarek, Ralph; Aign, Joerg

    2012-07-01

    The AP1000 reactors being built in the People's Republic of China require a waste treatment facility to process the low and intermediate radioactive waste produced by these nuclear power stations. Westinghouse Electric Germany GmbH was successful in being awarded a contract as to the planning, delivery and commissioning of such a waste treatment facility. The Site Radwaste Treatment Facility (SRTF) is a waste treatment facility that can meet the AP1000 requirements and it will become operational in the near future. The SRTF is situated at the location of Sanmen, People's Republic of China, next to one of the AP1000 and is an adherent building to the AP1000 comprising different waste treatment processes for radioactive spent filter cartridges, ion-exchange resins and radioactive liquid and solid waste. The final product of the SRTF-treatment is a 200 l drum with cemented waste or grouted waste packages for storage in a local storage facility. The systems used in the SRTF are developed for these special requirements, based on experience from similar systems in the German nuclear industry. The main waste treatment systems in the SRTF are: - Filter Cartridge Processing System (FCS); - HVAC-Filter and Solid Waste Treatment Systems (HVS); - Chemical Liquid Treatment Systems (CTS); - Spent Resin Processing Systems (RES); - Mobile Treatment System (MBS). (authors)

  20. Enterprise Assessments Targeted Assessment of the Waste Treatment and Immobilization Plant High-Level Waste Facility Radioactive Liquid Waste Disposal System Safety Basis Change Package … May 2016

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessment of the Waste Treatment and Immobilization Plant High-Level Waste Facility Radioactive Liquid Waste Disposal System Safety Basis Change Package May 2016 Office of Nuclear Safety and Environmental Assessments Office of Environment, Safety and Health Assessments Office of Enterprise Assessments U.S. Department of Energy i Table of Contents Acronyms

  1. Secondary Low-Level Waste Treatment Strategy Analysis

    SciTech Connect (OSTI)

    D.M. LaRue

    1999-05-25

    The objective of this analysis is to identify and review potential options for processing and disposing of the secondary low-level waste (LLW) that will be generated through operation of the Monitored Geologic Repository (MGR). An estimate of annual secondary LLW is generated utilizing the mechanism established in ''Secondary Waste Treatment Analysis'' (Reference 8.1) and ''Secondary Low-Level Waste Generation Rate Analysis'' (Reference 8.5). The secondary LLW quantities are based on the spent fuel and high-level waste (HLW) arrival schedule as defined in the ''Controlled Design Assumptions Document'' (CDA) (Reference 8.6). This analysis presents estimates of the quantities of LLW in its various forms. A review of applicable laws, codes, and standards is discussed, and a synopsis of those applicable laws, codes, and standards and their impacts on potential processing and disposal options is presented. The analysis identifies viable processing/disposal options in light of the existing laws, codes, and standards, and then evaluates these options in regard to: (1) Process and equipment requirements; (2) LLW disposal volumes; and (3) Facility requirements.

  2. Enterprise Assessments Review of the Hanford Site Waste Treatment and Immobilization Plant Hazards Analysis Report for the Low-Activity Waste Facility Reagent Systems – July 2015

    Office of Energy Efficiency and Renewable Energy (EERE)

    Review of the Hanford Site Waste Treatment and Immobilization Plant Hazards Analysis Report for the Low-Activity Waste Facility Reagent Systems

  3. Characterization of the solid low level mixed waste inventory for the solid waste thermal treatment activity - III

    SciTech Connect (OSTI)

    Place, B.G., Westinghouse Hanford

    1996-09-24

    The existing thermally treatable, radioactive mixed waste inventory is characterized to support implementation of the commercial, 1214 thermal treatment contract. The existing thermally treatable waste inventory has been identified using a decision matrix developed by Josephson et al. (1996). Similar to earlier waste characterization reports (Place 1993 and 1994), hazardous materials, radionuclides, physical properties, and waste container data are statistically analyzed. In addition, the waste inventory data is analyzed to correlate waste constituent data that are important to the implementation of the commercial thermal treatment contract for obtaining permits and for process design. The specific waste parameters, which were analyzed, include the following: ``dose equivalent`` curie content, polychlorinated biphenyl (PCB) content, identification of containers with PA-related mobile radionuclides (14C, 12 79Se, 99Tc, and U isotopes), tritium content, debris and non-debris content, container free liquid content, fissile isotope content, identification of dangerous waste codes, asbestos containers, high mercury containers, beryllium dust containers, lead containers, overall waste quantities, analysis of container types, and an estimate of the waste compositional split based on the thermal treatment contractor`s proposed process. A qualitative description of the thermally treatable mixed waste inventory is also provided.

  4. Karlsruhe Database for Radioactive Wastes (KADABRA) - Accounting and Management System for Radioactive Waste Treatment - 12275

    SciTech Connect (OSTI)

    Himmerkus, Felix; Rittmeyer, Cornelia [WAK Rueckbau- und Entsorgungs- GmbH, 76339 Eggenstein-Leopoldshafen (Germany)

    2012-07-01

    The data management system KADABRA was designed according to the purposes of the Cen-tral Decontamination Department (HDB) of the Wiederaufarbeitungsanlage Karlsruhe Rueckbau- und Entsorgungs-GmbH (WAK GmbH), which is specialized in the treatment and conditioning of radioactive waste. The layout considers the major treatment processes of the HDB as well as regulatory and legal requirements. KADABRA is designed as an SAG ADABAS application on IBM system Z mainframe. The main function of the system is the data management of all processes related to treatment, transfer and storage of radioactive material within HDB. KADABRA records the relevant data concerning radioactive residues, interim products and waste products as well as the production parameters relevant for final disposal. Analytical data from the laboratory and non destructive assay systems, that describe the chemical and radiological properties of residues, production batches, interim products as well as final waste products, can be linked to the respective dataset for documentation and declaration. The system enables the operator to trace the radioactive material through processing and storage. Information on the actual sta-tus of the material as well as radiological data and storage position can be gained immediately on request. A variety of programs accessed to the database allow the generation of individual reports on periodic or special request. KADABRA offers a high security standard and is constantly adapted to the recent requirements of the organization. (authors)

  5. Fate of metals contained in waste electrical and electronic equipment in a municipal waste treatment process

    SciTech Connect (OSTI)

    Oguchi, Masahiro; Sakanakura, Hirofumi; Terazono, Atsushi; Takigami, Hidetaka

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer The fate of 55 metals during shredding and separation of WEEE was investigated. Black-Right-Pointing-Pointer Most metals were mainly distributed to the small-grain fraction. Black-Right-Pointing-Pointer Much of metals in WEEE being treated as municipal waste in Japan end up in landfills. Black-Right-Pointing-Pointer Pre-sorting of small digital products reduces metals to be landfilled at some level. Black-Right-Pointing-Pointer Consideration of metal recovery from other middle-sized WEEE is still important. - Abstract: In Japan, waste electrical and electronic equipment (WEEE) that is not covered by the recycling laws are treated as municipal solid waste. A part of common metals are recovered during the treatment; however, other metals are rarely recovered and their destinations are not clear. This study investigated the distribution ratios and substance flows of 55 metals contained in WEEE during municipal waste treatment using shredding and separation techniques at a Japanese municipal waste treatment plant. The results revealed that more than half of Cu and most of Al contained in WEEE end up in landfills or dissipate under the current municipal waste treatment system. Among the other metals contained in WEEE, at least 70% of the mass was distributed to the small-grain fraction through the shredding and separation and is to be landfilled. Most kinds of metals were concentrated several fold in the small-grain fraction through the process and therefore the small-grain fraction may be a next target for recovery of metals in terms of both metal content and amount. Separate collection and pre-sorting of small digital products can work as effective way for reducing precious metals and less common metals to be landfilled to some extent; however, much of the total masses of those metals would still end up in landfills and it is also important to consider how to recover and utilize metals contained in other WEEE such as audio

  6. Solubility effects in waste-glass/demineralized-water systems

    SciTech Connect (OSTI)

    Fullam, H.T.

    1981-06-01

    Aqueous systems involving demineralized water and four glass compositions (including standins for actinides and fission products) at temperatures of up to 150/sup 0/C were studied. Two methods were used to measure the solubility of glass components in demineralized water. One method involved approaching equilibrium from subsaturation, while the second method involved approaching equilibrium from supersaturation. The aqueous solutions were analyzed by induction-coupled plasma spectrometry (ICP). Uranium was determined using a Scintrex U-A3 uranium analyzer and zinc and cesium were determined by atomic absorption. The system that results when a waste glass is contacted with demineralized water is a complex one. The two methods used to determine the solubility limits gave very different results, with the supersaturation method yielding much higher solution concentrations than the subsaturation method for most of the elements present in the waste glasses. The results show that it is impossible to assign solubility limits to the various glass components without thoroughly describing the glass-water systems. This includes not only defining the glass type and solution temperature, but also the glass surface area-to-water volume ratio (S/V) of the system and the complete thermal history of the system. 21 figures, 22 tables. (DLC)

  7. Design of electrochemical processes for treatment of unusual waste streams

    SciTech Connect (OSTI)

    Farmer, J.C.

    1998-01-01

    UCRL- JC- 129438 PREPRINT This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising or product endorsement purposes. Introduction. An overview of work done on the development of three electrochemical processes that meet the specific needs of low- level waste treatment is presented. These technologies include: mediated electrochemical oxidation [I- 4]; bipolar membrane electrodialysis [5]; and electrosorption of carbon aerogel electrodes [6- 9]. Design strategies are presented to assess the suitability of these electrochemical processes for Mediated electrochemical oxidation. Mixed wastes include both hazardous and radioactive components. It is desirable to reduce the overall volume of the waste before immobilization and disposal in repositories. While incineration is an attractive technique for the destruction of organic fractions of mixed wastes, such high-temperature thermal processes pose the threat of volatilizing various radionuclides. By destroying organics in the aqueous phase at low temperature and ambient pressure, the risk of volatilization can be reduced. One approach that is

  8. TREATMENT OF PRODUCED OIL AND GAS WATERS WITH SURFACTANT-MODIFIED ZEOLITE

    SciTech Connect (OSTI)

    Lynn E. Katz; R.S. Bowman; E.J. Sullivan

    2003-11-01

    Co-produced water from the oil and gas industry accounts for a significant waste stream in the United States. It is by some estimates the largest single waste stream in the country, aside from nonhazardous industrial wastes. Characteristics of produced water include high total dissolved solids content, dissolved organic constituents such as benzene and toluene, an oil and grease component, and chemicals added during the oil-production process. While most of the produced water is disposed via reinjection, some must be treated to remove organic constituents before the water is discharged. Current treatment options are successful in reducing the organic content; however, they cannot always meet the levels of current or proposed regulations for discharged water. Therefore, an efficient, cost-effective treatment technology is needed. Surfactant-modified zeolite (SMZ) has been used successfully to treat contaminated ground water for organic and inorganic constituents. In addition, the low cost of natural zeolites makes their use attractive in water-treatment applications. This report summarizes the work and results of this four-year project. We tested the effectiveness of surfactant-modified zeolite (SMZ) for removal of BTEX with batch and column experiments using waters with BTEX concentrations that are comparable to those of produced waters. The data from our experimental investigations showed that BTEX sorption to SMZ can be described by a linear isotherm model, and competitive effects between compounds were not significant. The SMZ can be readily regenerated using air stripping. We field-tested a prototype SMZ-based water treatment system at produced water treatment facilities and found that the SMZ successfully removes BTEX from produced waters as predicted by laboratory studies. When compared to other existing treatment technologies, the cost of the SMZ system is very competitive. Furthermore, the SMZ system is relatively compact, does not require the storage of

  9. Stabilization Using Phosphate Bonded Ceramics. Salt Containing Mixed Waste Treatment. Mixed Waste Focus Area. OST Reference #117

    SciTech Connect (OSTI)

    None, None

    1999-09-01

    Throughout the Department of Energy (DOE) complex there are large inventories of homogeneous mixed waste solids, such as wastewater treatment residues, fly ashes, and sludges that contain relatively high concentrations (greater than 15% by weight) of salts. The inherent solubility of salts (e.g., nitrates, chlorides, and sulfates) makes traditional treatment of these waste streams difficult, expensive, and challenging. One alternative is low-temperature stabilization by chemically bonded phosphate ceramics (CBPCs). The process involves reacting magnesium oxide with monopotassium phosphate with the salt waste to produce a dense monolith. The ceramic makes a strong environmental barrier, and the metals are converted to insoluble, low-leaching phosphate salts. The process has been tested on a variety of surrogates and actual mixed waste streams, including soils, wastewater, flyashes, and crushed debris. It has also been demonstrated at scales ranging from 5 to 55 gallons. In some applications, the CBPC technology provides higher waste loadings and a more durable salt waste form than the baseline method of cementitious grouting. Waste form test specimens were subjected to a variety of performance tests. Results of waste form performance testing concluded that CBPC forms made with salt wastes meet or exceed both RCRA and recommended Nuclear Regulatory Commission (NRC) low-level waste (LLW) disposal criteria. Application of a polymer coating to the CBPC may decrease the leaching of salt anions, but continued waste form evaluations are needed to fully assess the deteriorating effects of this leaching, if any, over time.

  10. Sodium-bearing Waste Treatment Technology Evaluation Report

    SciTech Connect (OSTI)

    Charles M. Barnes; Arlin L. Olson; Dean D. Taylor

    2004-05-01

    Sodium-bearing waste (SBW) disposition is one of the U.S. Department of Energy (DOE) Idaho Operation Office’s (NE-ID) and State of Idaho’s top priorities at the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL has been working over the past several years to identify a treatment technology that meets NE-ID and regulatory treatment requirements, including consideration of stakeholder input. Many studies, including the High-Level Waste and Facilities Disposition Environmental Impact Statement (EIS), have resulted in the identification of five treatment alternatives that form a short list of perhaps the most appropriate technologies for the DOE to select from. The alternatives are (a) calcination with maximum achievable control technology (MACT) upgrade, (b) steam reforming, (c) cesium ion exchange (CsIX) with immobilization, (d) direct evaporation, and (e) vitrification. Each alternative has undergone some degree of applied technical development and preliminary process design over the past four years. This report presents a summary of the applied technology and process design activities performed through February 2004. The SBW issue and the five alternatives are described in Sections 2 and 3, respectively. Details of preliminary process design activities for three of the alternatives (steam reforming, CsIX, and direct evaporation) are presented in three appendices. A recent feasibility study provides the details for calcination. There have been no recent activities performed with regard to vitrification; that section summarizes and references previous work.

  11. WASTE TREATMENT PLANT (WTP) LIQUID EFFLUENT TREATABILITY EVALUATION

    SciTech Connect (OSTI)

    LUECK, K.J.

    2004-10-18

    A forecast of the radioactive, dangerous liquid effluents expected to be produced by the Waste Treatment Plant (WTP) was provided by Bechtel National, Inc. (BNI 2004). The forecast represents the liquid effluents generated from the processing of Tank Farm waste through the end-of-mission for the WTP. The WTP forecast is provided in the Appendices. The WTP liquid effluents will be stored, treated, and disposed of in the Liquid Effluent Retention Facility (LERF) and the Effluent Treatment Facility (ETF). Both facilities are located in the 200 East Area and are operated by Fluor Hanford, Inc. (FH) for the US. Department of Energy (DOE). The treatability of the WTP liquid effluents in the LERF/ETF was evaluated. The evaluation was conducted by comparing the forecast to the LERF/ETF treatability envelope (Aromi 1997), which provides information on the items which determine if a liquid effluent is acceptable for receipt and treatment at the LERF/ETF. The format of the evaluation corresponds directly to the outline of the treatability envelope document. Except where noted, the maximum annual average concentrations over the range of the 27 year forecast was evaluated against the treatability envelope. This is an acceptable approach because the volume capacity in the LERF Basin will equalize the minimum and maximum peaks. Background information on the LERF/ETF design basis is provided in the treatability envelope document.

  12. Laboratory Evaporation Testing Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    SciTech Connect (OSTI)

    Adamson, Duane J.; Nash, Charles A.; McCabe, Daniel J.; Crawford, Charles L.; Wilmarth, William R.

    2014-01-27

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream, LAW Off-Gas Condensate, from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of canistered glass waste forms. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to be within acceptable concentration ranges in the LAW glass. Diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the impact of potential future disposition of this stream in the Hanford tank farms, and investigates auxiliary evaporation to enable another disposition path. Unless an auxiliary evaporator is used, returning the stream to the tank farms would require evaporation in the 242-A evaporator. This stream is expected to be unusual because it will be very high in corrosive species that are volatile in the melter

  13. Characterization of Defense Nuclear Waste Using Hazardous Waste Guidance: Applications to Hanford Site Accelerated High-Level Waste Treatment and Disposal Mission

    SciTech Connect (OSTI)

    Hamel, William F.; Huffman, Lori A.; Lerchen, Megan E.; Wiemers, Karyn D.

    2003-02-24

    Federal hazardous waste regulations were developed for management of industrial waste. These same regulations are also applicable for much of the nation's defense nuclear wastes. At the U.S. Department of Energy’s (DOE) Hanford Site in southeast Washington State, one of the nation’s largest inventories of nuclear waste remains in storage in large underground tanks. The waste's regulatory designation and its composition and form constrain acceptable treatment and disposal options. Obtaining detailed knowledge of the tank waste composition presents a significant portion of the many challenges in meeting the regulatory-driven treatment and disposal requirements for this waste. Key in applying the hazardous waste regulations to defense nuclear wastes is defining the appropriate and achievable quality for waste feed characterization data and the supporting evidence demonstrating that applicable requirements have been met at the time of disposal. Application of a performance-based approach to demonstrating achievable quality standards will be discussed in the context of the accelerated high-level waste treatment and disposal mission at the Hanford Site.

  14. Employees Achieve Certified Success at Idaho Site’s Waste Treatment Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    IDAHO FALLS, Idaho – Employees at EM’s Advanced Mixed Waste Treatment Project (AMWTP) at the Idaho Site have finished preparing 7,231 certified waste drums so they’re at the ready to be shipped for disposal.

  15. Enterprise Assessments Operational Awareness Record, Waste Treatment and Immobilization Plant- March 2015

    Broader source: Energy.gov [DOE]

    Operational Awareness Record for the Observation of the Waste Treatment and Immobilization Plant High Level Waste Facility Concentrate Receipt/Melter Feed/Glass Formers Reagent Hazards Analysis and Review of the Radioactive Liquid Disposal Hazards Analysis Event Tables.

  16. Sampling and Analysis Plan - Waste Treatment Plant Seismic Boreholes Project

    SciTech Connect (OSTI)

    Reidel, Steve P.

    2006-05-26

    This sampling and analysis plan (SAP) describes planned data collection activities for four entry boreholes through the sediment overlying the basalt, up to three new deep rotary boreholes through the basalt and sedimentary interbeds, and one corehole through the basalt and sedimentary interbeds at the Waste Treatment Plant (WTP) site. The SAP will be used in concert with the quality assurance plan for the project to guide the procedure development and data collection activities needed to support borehole drilling, geophysical measurements, and sampling. This SAP identifies the American Society of Testing Materials standards, Hanford Site procedures, and other guidance to be followed for data collection activities.

  17. ANAEROBIC BIOLOGICAL TREATMENT OF PRODUCED WATER

    SciTech Connect (OSTI)

    John R. Gallagher

    2001-07-31

    During the production of oil and gas, large amounts of water are brought to the surface and must be disposed of in an environmentally sensitive manner. This is an especially difficult problem in offshore production facilities where space is a major constraint. The chief regulatory criterion for produced water is oil and grease. Most facilities have little trouble meeting this criterion using conventional oil-water separation technologies. However, some operations have significant amounts of naphthenic acids in the water that behave as oil and grease but are not well removed by conventional technologies. Aerobic biological treatment of naphthenic acids in simulated-produced water has been demonstrated by others; however, the system was easily overloaded by the large amounts of low-molecular-weight organic acids often found in produced waters. The objective of this research was to determine the ability of an anaerobic biological system to treat these organic acids in a simulated produced water and to examine the potential for biodegradation of the naphthenic acids in the anaerobic environment. A small fixed-film anaerobic biological reactor was constructed and adapted to treat a simulated produced water. The bioreactor was tubular, with a low-density porous glass packing material. The inocula to the reactor was sediment from a produced-water holding pond from a municipal anaerobic digester and two salt-loving methanogenic bacteria. During start-up, the feed to the reactor contained glucose as well as typical produced-water components. When glucose was used, rapid gas production was observed. However, when glucose was eliminated and the major organic component was acetate, little gas was generated. Methane production from acetate may have been inhibited by the high salt concentrations, by sulfide, or because of the lack, despite seeding, of microbes capable of converting acetate to methane. Toluene, a minor component of the produced water (0.1 g/L) was removed in the

  18. Enterprise Assessments Review of the Hanford Site Waste Treatment and Immobilization Plant Project Engineering Processes – October 2015

    Office of Energy Efficiency and Renewable Energy (EERE)

    Review of Engineering Processes at the Hanford Site Waste Treatment and Immobilization Plant Project

  19. Best Demonstrated Available Technology (BDAT) for pollution control and waste treatment. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    The bibliography contains citations concerning the most advanced equipment and processes for pollution control and waste treatment according to the guidelines set by the Environmental Protection Agency (EPA). Citations discuss biological, thermal, physical, and chemical prosesses for the technology innovation, economic productivity, and environmental protection. Standards and regulations for gaseous, liquid, and solid pollution are included. Also discussed are water pollution control, food and pharmaceutical wastes, effluent treatment, and materials recovery. (Contains a minimum of 184 citations and includes a subject term index and title list.)

  20. Assessment of incineration and melting treatment technologies for RWMC buried waste

    SciTech Connect (OSTI)

    Geimer, R.; Hertzler, T.; Gillins, R.; Anderson, G.L.

    1992-02-01

    This report provides an identification, description, and ranking evaluation of the available thermal treatment technologies potentially capable of treating the Idaho National Engineering Laboratory Radioactive Waste Management Complex (RWMC) buried mixed waste. The ranking evaluation focused separately upon incinerators for treatment of combustible wastes and melters for noncombustible wastes. The highest rank incinerators are rotary kilns and controlled air furnaces, while the highest rank melters are the hearth configuration plasma torch, graphite electrode arc, and joule-heated melters. 4 refs.

  1. Destruction of Representative Navy Wastes Using Supercritical Water Oxidation. Final report

    SciTech Connect (OSTI)

    Rice, S.F.; Steeper, R.R.; LaJeunesse, C.A.

    1993-10-01

    Supercritical water oxidation (SCWO) is a rapidly emerging technology that presents potential as a hazardous waste treatment method for a wide variety of industrial chemicals ranging from common organic solvents to complex formulations such as paints, lubricating oils, and degreasers. The Naval Civil Engineering Laboratory is contributing to the development of this technology for application to waste materials generated at naval shipyards and bases. These wastes include paint stripping and changeout fluids generated from equipment service procedures as well as herbicides, pesticides, paint, and numerous other materials associated with base facility maintenance. An important design consideration in the development of SCWO systems centers on choosing a reactor operating temperature such that the destruction of the waste organic is sufficiently complete. This report examines the temperature dependence of the oxidation in supercritical water of seven common organic compounds and three industrial commercial materials over the temperature range of 430{degree}C to 585{degree}C and reaction times ranging from seven to thirty seconds at a pressure of 27.5 MPa (4000 psi). The materials studies are methanol, phenol, methyl ethyl ketone, ethylene glycol, acetic acid, methylene chloride, 1,1,1-tichloroethane (TCA), latex paint, motor oil, and Roundup, a commercial general purpose herbicide. The results indicate that for most materials, temperatures over 530{degree}C and residence times near 20 seconds afford destruction efficiencies of greater than 99.95%

  2. Tank waste remediation system optimized processing strategy with an altered treatment scheme

    SciTech Connect (OSTI)

    Slaathaug, E.J.

    1996-03-01

    This report provides an alternative strategy evolved from the current Hanford Site Tank Waste Remediation System (TWRS) programmatic baseline for accomplishing the treatment and disposal of the Hanford Site tank wastes. This optimized processing strategy with an altered treatment scheme performs the major elements of the TWRS Program, but modifies the deployment of selected treatment technologies to reduce the program cost. The present program for development of waste retrieval, pretreatment, and vitrification technologies continues, but the optimized processing strategy reuses a single facility to accomplish the separations/low-activity waste (LAW) vitrification and the high-level waste (HLW) vitrification processes sequentially, thereby eliminating the need for a separate HLW vitrification facility.

  3. Thermophilic slurry-phase treatment of petroleum hydrocarbon waste sludges

    SciTech Connect (OSTI)

    Castaldi, F.J.; Bombaugh, K.J.; McFarland, B.

    1995-12-31

    Chemoheterotrophic thermophilic bacteria were used to achieve enhanced hydrocarbon degradation during slurry-phase treatment of oily waste sludges from petroleum refinery operations. Aerobic and anaerobic bacterial cultures were examined under thermophilic conditions to assess the effects of mode of metabolism on the potential for petroleum hydrocarbon degradation. The study determined that both aerobic and anaerobic thermophilic bacteria are capable of growth on petroleum hydrocarbons. Thermophilic methanogenesis is feasible during the degradation of hydrocarbons when a strict anaerobic condition is achieved in a slurry bioreactor. Aerobic thermophilic bacteria achieved the largest apparent reduction in chemical oxygen demand, freon extractable oil, total and volatile solid,s and polycyclic aromatic hydrocarbons (PAHs) when treating oily waste sludges. The observed shift with time in the molecular weight distribution of hydrocarbon material was more pronounced under aerobic metabolic conditions than under strict anaerobic conditions. The changes in the hydrocarbon molecular weight distribution, infrared spectra, and PAH concentrations during slurry-phase treatment indicate that the aerobic thermophilic bioslurry achieved a higher degree of hydrocarbon degradation than the anaerobic thermophilic bioslurry during the same time period.

  4. Integrated Waste Treatment Unit GFSI Risk Management Plan

    SciTech Connect (OSTI)

    W. A. Owca

    2007-06-21

    This GFSI Risk Management Plan (RMP) describes the strategy for assessing and managing project risks for the Integrated Waste Treatment Unit (IWTU) that are specifically within the control and purview of the U.S. Department of Energy (DOE), and identifies the risks that formed the basis for the DOE contingency included in the performance baseline. DOE-held contingency is required to cover cost and schedule impacts of DOE activities. Prior to approval of the performance baseline (Critical Decision-2) project cost contingency was evaluated during a joint meeting of the Contractor Management Team and the Integrated Project Team for both contractor and DOE risks to schedule and cost. At that time, the contractor cost and schedule risk value was $41.3M and the DOE cost and schedule risk contingency value is $39.0M. The contractor cost and schedule risk value of $41.3M was retained in the performance baseline as the contractor's management reserve for risk contingency. The DOE cost and schedule risk value of $39.0M has been retained in the performance baseline as the DOE Contingency. The performance baseline for the project was approved in December 2006 (Garman 2006). The project will continue to manage to the performance baseline and change control thresholds identified in PLN-1963, ''Idaho Cleanup Project Sodium-Bearing Waste Treatment Project Execution Plan'' (PEP).

  5. Enterprise Assessments Review, Hanford Waste Treatment and Immobilizat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... (1000 volts) LAB Analytical Laboratory LAW Low-Activity Waste MCC Motor Control Center ... on elevation 48 in the Low-Activity Waste (LAW) Facility and examined electrical ...

  6. Hanford Tank Waste Retrieval, Treatment, and Disposition Framework...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    nuclear waste legacyapproximately 56 million gallons of radioactive and chemical wastes stored in 177 underground tanks (tank farms) located on Hanford's Central Plateau. ...

  7. Treatment of contaminated waste-site runoff at the Seymour Recycling Site, Seymour, Indiana

    SciTech Connect (OSTI)

    Traver, R.P.

    1985-01-01

    The Environmental Emergency Response Unit (EERU) is the U.S. Environmental Protection Agency's (EPA) hazardous-material-spill response and control organization for situations where the use of complex cleanup equipment and techniques are required. EERU is engaged in the shakedown and field demonstration of protypical equipment and techniques developed under the direction and sponsorship of EPA's Hazardous Waste Engineering Research Laboratory (HWERL). In March 1983, EERU was requested by the EPA Region V On-Scene-Coordinator to provide an on-site water-treatment system at the Seymour Recycling Site, Seymour, Indiana, the largest uncontrolled waste site in the state. The system was to be on-site and operational by April 1983. A few of the limiting factors in choosing a system were speed of mobilization, plus short-term and intermittent use.

  8. CAST STONE TECHNOLOGY FOR TREATMENT & DISPOSAL OF IODINE RICH CAUSTIC WASTE DEMONSTRATION FINAL REPORT

    SciTech Connect (OSTI)

    LOCKREM, L.L.

    2005-07-14

    CH2M HILL is working to develop, design, and construct low-activity waste (LAW) treatment and imcholization systems to supplement the LAW capacity provided by the Waste Treatment and Immobilization Plant. CH2M HILL is investigating use of cast stone technology for treatment and immobilization of caustic solutions containing high concentrations of radioactive Iodine-129.

  9. Review of Nuclear Safety Culture at the Hanford Site Waste Treatment and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Immobilization Plant Project, October 2010 | Department of Energy Review of Nuclear Safety Culture at the Hanford Site Waste Treatment and Immobilization Plant Project, October 2010 Review of Nuclear Safety Culture at the Hanford Site Waste Treatment and Immobilization Plant Project, October 2010 October 2010 Report for independent review of the nuclear safety culture at the Waste Treatment and Immobilization Plant (WTP) project at DOE's Hanford Site. This report provides the results of a

  10. Biofilm treatment of soil for waste containment and remediation

    SciTech Connect (OSTI)

    Turner, J.P.; Dennis, M.L.; Osman, Y.A.; Chase, J.; Bulla, L.A.

    1997-12-31

    This paper examines the potential for creating low-permeability reactive barriers for waste treatment and containment by treating soils with Beijerinckia indica, a bacterium which produces an exopolysaccharide film. The biofilm adheres to soil particles and causes a decrease in soil hydraulic conductivity. In addition, B. Indica biodegrades a variety of polycyclic aromatic hydrocarbons and chemical carcinogens. The combination of low soil hydraulic conductivity and biodegradation capabilities creates the potential for constructing reactive biofilm barriers from soil and bacteria. A laboratory study was conducted to evaluate the effects of B. Indica on the hydraulic conductivity of a silty sand. Soil specimens were molded with a bacterial and nutrient solution, compacted at optimum moisture content, permeated with a nutrient solution, and tested for k{sub sat} using a flexible-wall permeameter. Saturated hydraulic conductivity (k{sub sat}) was reduced from 1 x 10{sup -5} cm/sec to 2 x 10{sup -8} cm/sec: by biofilm treatment. Permeation with saline, acidic, and basic solutions following formation of a biofilm was found to have negligible effect on the reduced k{sub sat}, for up to three pore volumes of flow. Applications of biofilm treatment for creating low-permeability reactive barriers are discussed, including compacted liners for bottom barriers and caps and creation of vertical barriers by in situ treatment.

  11. Disaggregating Hot Water Use and Predicting Hot Water Waste in Five Test Homes

    SciTech Connect (OSTI)

    Henderson, Hugh; Wade, Jeremy

    2014-04-01

    While it is important to make the equipment (or "plant") in a residential hot water system more efficient, the hot water distribution system also affects overall system performance and energy use. Energy wasted in heating water that is not used is estimated to be on the order of 10%-30% of total domestic hot water (DHW) energy use. This field monitoring project installed temperature sensors on the distribution piping (on trunks and near fixtures) in five houses near Syracuse, NY, and programmed a data logger to collect data at 5 second intervals whenever there was a hot water draw. This data was used to assign hot water draws to specific end uses in the home as well as to determine the portion of each hot water that was deemed useful (i.e., above a temperature threshold at the fixture). Overall, the procedures to assign water draws to each end use were able to successfully assign about 50% of the water draws, but these assigned draws accounted for about 95% of the total hot water use in each home. The amount of hot water deemed as useful ranged from low of 75% at one house to a high of 91% in another. At three of the houses, new water heaters and distribution improvements were implemented during the monitoring period and the impact of these improvements on hot water use and delivery efficiency were evaluated.

  12. Disaggregating Hot Water Use and Predicting Hot Water Waste in Five Test Homes

    SciTech Connect (OSTI)

    Henderson, H.; Wade, J.

    2014-04-01

    While it is important to make the equipment (or 'plant') in a residential hot water system more efficient, the hot water distribution system also affects overall system performance and energy use. Energy wasted in heating water that is not used is estimated to be on the order of 10 to 30 percent of total domestic hot water (DHW) energy use. This field monitoring project installed temperature sensors on the distribution piping (on trunks and near fixtures) and programmed a data logger to collect data at 5 second intervals whenever there was a hot water draw. This data was used to assign hot water draws to specific end uses in the home as well as to determine the portion of each hot water that was deemed useful (i.e., above a temperature threshold at the fixture). Five houses near Syracuse NY were monitored. Overall, the procedures to assign water draws to each end use were able to successfully assign about 50% of the water draws, but these assigned draws accounted for about 95% of the total hot water use in each home. The amount of hot water deemed as useful ranged from low of 75% at one house to a high of 91% in another. At three of the houses, new water heaters and distribution improvements were implemented during the monitoring period and the impact of these improvements on hot water use and delivery efficiency were evaluated.

  13. DOE Chooses Idaho Treatment Group, LLC to Disposition Waste at the Advanced

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mixed Waste Treatment Project Media Contact: Brad Bugger (208) 526-0833 For Immediate Release: Friday, May 27, 2011 DOE Chooses Idaho Treatment Group, LLC to Disposition Waste at the Advanced Mixed Waste Treatment Project Contract will continue cleanup and waste operations at the Idaho Site Idaho Falls � In order to further meet the U.S. Department of Energy�s commitments to the citizens of the state of Idaho, the DOE today announced that it has selected Idaho Treatment Group, LLC (ITG)

  14. Voluntary Protection Program Onsite Review, Waste Treatment Plant Hanford Site- June 2010

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether the Waste Treatment Plant Hanford Site is continuing to perform at a level deserving DOE-VPP Star recognition.

  15. EIS-0290: Idaho National Engineering and Environmental Laboratory Advanced Mixed Waste Treatment Project (AMWTP)

    Broader source: Energy.gov [DOE]

    The AMWTP Final EIS assesses the potential environmental impacts associated with alternatives related to the construction and operation of a proposed waste treatment facility at the Idaho National...

  16. Voluntary Protection Program Onsite Review, Bechtel National Inc., Waste Treatment Plant Construction Site – November 2013

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether Bechtel National Inc., Waste Treatment Plant Construction Site is performing at a level deserving DOE-VPP Star recognition.

  17. Voluntary Protection Program Onsite Review, Advanced Mixed Waste Treatment Project- May 2009

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether Advanced Mixed Waste Treatment Project is continuing to perform at a level deserving DOE-VPP Star recognition.

  18. DOE Issues Draft RFP for Waste Treatment Services | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Draft RFP for Waste Treatment Services DOE Issues Draft RFP for Waste Treatment Services October 31, 2014 - 12:00pm Addthis Media Contact Lynette Chafin, 513-246-046, Lynette.Chafin@emcbc.doe.gov Cincinnati -- The U.S. Department of Energy (DOE) today issued a Draft Request for Proposal (DRFP) for Low-Level Waste (LLW) and Mixed-Low Level Waste (MLLW) treatment services that may result in the issuance of one or more Basic Ordering Agreements (BOAs). The RFP is for the treatment of LLW and MLLW

  19. Voluntary Protection Program Onsite Review, Waste Treatment Plant Construction Project- June 2010

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether Waste Treatment Plant Construction Project is continuing to perform at a level deserving DOE-VPP Star recognition.

  20. Evaluation of prospective hazardous waste treatment technologies for use in processing low-level mixed wastes at Rocky Flats

    SciTech Connect (OSTI)

    McGlochlin, S.C.; Harder, R.V.; Jensen, R.T.; Pettis, S.A.; Roggenthen, D.K.

    1990-09-18

    Several technologies for destroying or decontaminating hazardous wastes were evaluated (during early 1988) as potential processes for treating low-level mixed wastes destined for destruction in the Fluidized Bed Incinerator. The processes that showed promise were retained for further consideration and placed into one (or more) of three categories based on projected availability: short, intermediate, and long-term. Three potential short-term options were identified for managing low-level mixed wastes generated or stored at the Rocky Flats Plant (operated by Rockwell International in 1988). These options are: (1) Continue storing at Rocky Flats, (2) Ship to Nevada Test Site for landfill disposal, or (3) Ship to the Idaho National Engineering Laboratory for incineration in the Waste Experimental Reduction Facility. The third option is preferable because the wastes will be destroyed. Idaho National Engineering Laboratory has received interim status for processing solid and liquid low-level mixed wastes. However, low-level mixed wastes will continue to be stored at Rocky Flats until the Department of Energy approval is received to ship to the Nevada Test Site or Idaho National Engineering Laboratory. Potential intermediate and long-term processes were identified; however, these processes should be combined into complete waste treatment systems'' that may serve as alternatives to the Fluidized Bed Incinerator. Waste treatment systems will be the subject of later work. 59 refs., 2 figs.

  1. Treatment of Difficult Waters: Arsenic Removal Silica Control...

    Office of Scientific and Technical Information (OSTI)

    of Difficult Waters: Arsenic Removal Silica Control Carbon Capture and Enhanced Oil Recovery. Citation Details In-Document Search Title: Treatment of Difficult Waters:...

  2. Water Treatment System Cleans Marcellus Shale Wastewater | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Washington, DC - A water treatment system that can turn wastewater into clean water has been shown to reduce potential environmental impacts associated with producing natural gas ...

  3. FERRATES: SYNTHESIS, PROPERTIES AND APPLICATIONS IN WATER AND WASTEWATER TREATMENT.

    SciTech Connect (OSTI)

    CABELLI, D.E.; SHARMA, V.K.

    2006-05-19

    The higher oxidation states of iron (Fe(VI) and Fe(V) in particular) have been shown to be strongly oxidizing in enzymatic systems, where they can carry out aliphatic hydrogen abstraction. In addition, they have been postulated as intermediates in Fenton-type systems. Fe(VI) itself is relatively stable and has been shown to have potential as an oxidant in the so-called ''green'' treatment of polluted waters. By contrast, Fe(V) is a relatively short-lived transient when produced in aqueous solution in the absence of strongly bonding ligands other than hydroxide, a feature that has limited studies of its reactivity. Fe(VI) has been proposed to be useful in battery design and a very interesting study suggested that ferrate may be able to oxidize insoluble chromium to chromate and thus serve to remove chromium contamination in the Hanford radioactive waste tanks.

  4. Minimizing Waste from the Oil Industry: Scale Treatment and Scrap Recycling

    SciTech Connect (OSTI)

    Lindberg, M.

    2002-02-26

    Naturally occurring radioactive material is technologically concentrated in the piping in systems in the oil and gas industry, especially in the offshore facilities. The activity, mainly Ra-226, in the scales in the systems are often at levels classified as low level radioactive waste (LSA) in the industry. When the components and pipes are descaled for maintenance or recycling purposes, usually by high-pressure water jetting, the LSA scales arising constitute a significant quantity of radioactive waste for disposal. A new process is under development for the treatment of scales, where the radioactive solids are separated from the inactive. This would result in a much smaller fraction to be deposited as radioactive waste. The radioactive part recovered from the scales will be reduced to a stable non-metallic salt and because the volume is significantly smaller then the original material, will minimize the cost for disposal. The pipes, that have been cleaned by high pressure water jetting can either be reused or free released by scrapping and melting for recycling.

  5. RADIOACTIVE DEMONSTRATIONS OF FLUIDIZED BED STEAM REFORMING AS A SUPPLEMENTARY TREATMENT FOR HANFORD'S LOW ACTIVITY WASTE AND SECONDARY WASTES

    SciTech Connect (OSTI)

    Jantzen, C.; Crawford, C.; Cozzi, A.; Bannochie, C.; Burket, P.; Daniel, G.

    2011-02-24

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP's LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as Cs-137, I-129, Tc-99, Cl, F, and SO4 that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap. The current waste disposal path for the WTP-SW is to recycle it to the supplemental LAW treatment to avoid a large steady state accumulation in the pretreatment-vitrification loop. Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750 C) continuous method by which LAW and/or WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides

  6. Flexible Distributed Energy & Water from Waste for the Food & Beverage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industry - Presentation by GE Global Research, June 2011 | Department of Energy Distributed Energy & Water from Waste for the Food & Beverage Industry - Presentation by GE Global Research, June 2011 Flexible Distributed Energy & Water from Waste for the Food & Beverage Industry - Presentation by GE Global Research, June 2011 Presentation on Flexible Distributed Energy & Water from Waste for the Food & Beverage Industry, given by Aditya Kumar of GE Global Research, at

  7. Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant – March 31 – April 10, 2014

    Broader source: Energy.gov [DOE]

    Observation of the Hanford Waste Treatment and Immobilization Plant Low Activity Waste Facility Hazards Analysis Activities [IAR-WTP-2014-03-31

  8. Plasma-chemical waste treatment of acid gases

    SciTech Connect (OSTI)

    Harkness, J.B.L.; Doctor, R.D.; Daniels, E.J.

    1993-09-01

    The research to date has shown that a H{sub 2}S waste-treatment process based on plasma-chemical dissociation technology is compatible with refinery and high-carbon-oxide acid-gas streams. The minor amounts of impurities produced in the plasma-chemical reactor should be treatable by an internal catalytic reduction step. Furthermore, the plasma-chemical technology appears to be more efficient and more economical than the current technology. The principal key to achieving high conversions with relatively low energies of dissociation is the concept of the high-velocity, cyclonic-flow pattern in the plasma reaction zone coupled with the recycling of unconverted hydrogen sulfide. Future work will include testing the effects of components that might be carried over to the plasma reactor by ``upset`` conditions in the amine purification system of a plant and testing the plasma-chemical process on other industrial wastes streams that contain potentially valuable chemical reagents. The strategy for the commercialization of this technology is to form a Cooperative Research and Development Agreement with the Institute of Hydrogen Energy and Plasma Technology of the Russian Scientific Center/Kurchatov Institute and with an American start-up company to develop an ``American`` version of the process and to build a commercial-scale demonstration unit in the United States. The timetable proposed would involve building a ``field test`` facility which would test the plasma-chemical reactor and sulfur recovery unit operations on an industrial hydrogen sulfide waste s at a scale large enough to obtain the energy and material balance data required for a final analysis of the commercial potential of this technology. The field test would then be followed by construction of a commercial demonstration unit in two to three years. The commercial demonstration unit would be a fully integrated plant consisting of one commercial-scale module.

  9. Technetium Incorporation in Glass for the Hanford Tank Waste Treatment and Immobilization Plant

    SciTech Connect (OSTI)

    Kruger, Albert A.; Kim, Dong Sang

    2015-01-14

    A priority of the United States Department of Energy (U.S. DOE) is to dispose of nuclear wastes accumulated in 177 underground tanks at the Hanford Nuclear Reservation in eastern Washington State. These nuclear wastes date from the Manhattan Project of World War II and from plutonium production during the Cold War. The DOE plans to separate high-level radioactive wastes from low activity wastes and to treat each of the waste streams by vitrification (immobilization of the nuclides in glass) for disposal. The immobilized low-activity waste will be disposed of here at Hanford and the immobilized high-level waste at the national geologic repository. Included in the inventory of highly radioactive wastes is large volumes of 99Tc (~9 × 10E2 TBq or ~2.5 × 104 Ci or ~1500 kg). A problem facing safe disposal of Tc-bearing wastes is the processing of waste feed into in a chemically durable waste form. Technetium incorporates poorly into silicate glass in traditional glass melting. It readily evaporates during melting of glass feeds and out of the molten glass, leading to a spectrum of high-to-low retention (ca. 20 to 80%) in the cooled glass product. DOE-ORP currently has a program at Pacific Northwest National Laboratory (PNNL), in the Department of Materials Science and Engineering at Rutgers University and in the School of Mechanical and Materials Engineering at Washington State University that seeks to understand aspects of Tc retention by means of studying Tc partitioning, molten salt formation, volatilization pathways, and cold cap chemistry. Another problem involves the stability of Tc in glass in both the national geologic repository and on-site disposal after it has been immobilized. The major environmental concern with 99Tc is its high mobility in addition to a long half-life (2.1×105 yrs). The pertechnetate ion (TcO4-) is highly soluble in water and does not adsorb well onto the surface of minerals and so migrates nearly at the same velocity as groundwater

  10. Radioactive Water Treatment at a United States Environmental Protection Agency Superfund Site - 12322

    SciTech Connect (OSTI)

    Beckman, John C.

    2012-07-01

    A water treatment system at a United States Environmental Protection Agency (USEPA) Superfund site impacted by radiological contaminants is used to treat water entering the site. The United States Army Corps of Engineers (USACE) is actively managing the remedial action for the USEPA using contracts to support the multiple activities on site. The site is where former gas mantle production facilities operated around the turn of the century. The manufacturing facilities used thorium ores to develop the mantles and disposed of off-specification mantles and ore residuals in the surrounding areas. During Site remedial actions, both groundwater and surface water comes into contact with contaminated soils and must be collected and treated at an on-site treatment facility. The radionuclides thorium and radium with associated progeny are the main concern for treatment. Suspended solids, volatile organic compounds, and select metals are also monitored during water treatment. The water treatment process begins were water is pumped to a collection tank where debris and grit settle out. Stored water is pumped to a coagulant tank containing poly-aluminum chloride to collect dissolved solids. The water passes into a reaction tube where aspirated air is added or reagent added to remove Volatile Organic Compounds (VOC'S) by mass transfer and convert dissolved iron to a solid. The water enters the flocculent polymer tank to drop solids out. The flocculated water overflows to a fluidized bed contact chamber to increase precipitation. Flocculation is where colloids of material drop out of suspension and settle. The settled solids are periodically removed and disposed of as radioactive waste. The water is passed through filters and an ion exchange process to extract the radionuclides. Several million liters of water are processed each year from two water treatment plants servicing different areas of the remediation site. Ion exchange resin and filter material are periodically replaced

  11. Optimized alumina coagulants for water treatment

    DOE Patents [OSTI]

    Nyman, May D.; Stewart, Thomas A.

    2012-02-21

    Substitution of a single Ga-atom or single Ge-atom (GaAl.sub.12 and GeAl.sub.12 respectively) into the center of an aluminum Keggin polycation (Al.sub.13) produces an optimal water-treatment product for neutralization and coagulation of anionic contaminants in water. GaAl.sub.12 consistently shows .about.1 order of magnitude increase in pathogen reduction, compared to Al.sub.13. At a concentration of 2 ppm, GaAl.sub.12 performs equivalently to 40 ppm alum, removing .about.90% of the dissolved organic material. The substituted GaAl.sub.12 product also offers extended shelf-life and consistent performance. We also synthesized a related polyaluminum chloride compound made of pre-hydrolyzed dissolved alumina clusters of [GaO.sub.4Al.sub.12(OH).sub.24(H.sub.2O).sub.12].sup.7+.

  12. Water Treatment in Oil and Gas Production | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Treatment and Reuse in Unconventional Gas Production Click to email this to a friend ... Water Treatment and Reuse in Unconventional Gas Production A key challenge in tapping vast ...

  13. Options assessment report: Treatment of nitrate salt waste at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Robinson, Bruce Alan; Stevens, Patrice Ann

    2015-09-16

    This report documents the methodology used to select a method of treatment for the remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The method selected should treat the containerized waste in a manner that renders the waste safe and suitable for transport and final disposal in the Waste Isolation Pilot Plant (WIPP) repository, under specifications listed in the WIPP Waste Acceptance Criteria (DOE/CBFO, 2013). LANL recognized that the results must be thoroughly vetted with the New Mexico Environment Department (NMED) and the a modification to the LANL Hazardous Waste Facility Permit is a necessary step before implementation of this or any treatment option. Likewise, facility readiness and safety basis approvals must be received from the Department of Energy (DOE). This report presents LANL's preferred option, and the documentation of the process for reaching the recommended treatment option for RNS and UNS waste, and is presented for consideration by NMED and DOE.

  14. Joint Assessment of Renewable Energy and Water Desalination Research Center (REWDC) Program Capabilities and Facilities In Radioactive Waste Management

    SciTech Connect (OSTI)

    Bissani, M; Fischer, R; Kidd, S; Merrigan, J

    2006-04-03

    The primary goal of this visit was to perform a joint assessment of the Renewable Energy and Water Desalination Center's (REWDC) program in radioactive waste management. The visit represented the fourth technical and scientific interaction with Libya under the DOE/NNSA Sister Laboratory Arrangement. Specific topics addressed during the visit focused on Action Sheet P-05-5, ''Radioactive Waste Management''. The Team, comprised of Mo Bissani (Team Lead), Robert Fischer, Scott Kidd, and Jim Merrigan, consulted with REWDC management and staff. The team collected information, discussed particulars of the technical collaboration and toured the Tajura facility. The tour included the waste treatment facility, waste storage/disposal facility, research reactor facility, hot cells and analytical labs. The assessment team conducted the first phase of Task A for Action Sheet 5, which involved a joint assessment of the Radioactive Waste Management Program. The assessment included review of the facilities dedicated to the management of radioactive waste at the Tourja site, the waste management practices, proposed projects for the facility and potential impacts on waste generation and management.

  15. The possibility of garbage, medical and other toxic waste treatment by plasma chemical method

    SciTech Connect (OSTI)

    Rutberg, P.G.; Safronov, A.A.; Bratsev, A.N.; Kuznetsov, V.E.

    1998-12-31

    This paper describes the creation of plasma facility for treatment of toxic waste. All industrialized countries are greatly interested in plasma chemical technology application for the destruction of different types of industrial, building, purification works toxic waste and waste of plants for garbage treatment. On the basis of three-phase plasma generators with power 0.1--1 MW intended for work in air a row of pilot facilities were created for carrying out of experiments on destruction of medical waste and fluorine-chlorine containing substances. The obtained results allow to design and create pilot-commercial plants with treatment productivity of 200 t/24 hours.

  16. Community Water Pump and Treatment Facility PV Solar Power Project

    Office of Environmental Management (EM)

    200,000 kWhyear PROJECT LOCATION SITE DETAILS Water Pump and Treatment Facility Sole provider of water to Pueblo and its 5,000 residents 1 pump house, 2 water ...

  17. Idaho’s Advanced Mixed Waste Treatment Project Details 2013 Accomplishments

    Broader source: Energy.gov [DOE]

    IDAHO FALLS, Idaho – EM and its contractor, Idaho Treatment Group (ITG), safely and compliantly met all of their production and shipping targets in the Advanced Mixed Waste Treatment Project (AMWTP) at the Idaho site in 2013.

  18. Idaho's Advanced Mixed Waste Treatment Project Details 2013Accomplish...

    Office of Environmental Management (EM)

    (MLLW). The defense-related TRU waste is sent to the Waste Isolation Pilot Plant in New Mexico, and the MLLW is sent to other federal and commercial disposal sites. AMWTP is the...

  19. Summary - System Planning for Low-Activity Waste Treatment at Hanford

    Office of Environmental Management (EM)

    Hanford EM Project: WTP ETR Report Date: November 2008 ETR-18 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of System Planning for Low-Activity Waste Treatment at Hanford Why DOE-EM Did This Review Construction of the facilities of the Hanford site's Waste Treatment Plant (WTP) are scheduled for completion in 2017, with radioactive waste processing scheduled to begin in 2019. An estimated 23 to 35 years will then be required to complete

  20. State waste discharge permit application: 400 Area secondary cooling water

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    This document constitutes the Washington Administrative Code 173-216 State Waste Discharge Permit Application that serves as interim compliance as required by the Consent Order DE 91NM-177, for the 400 Area Secondary Cooling Water stream. As part of the Hanford Federal Facility Agreement and Consent Order negotiations, the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affect groundwater or have the potential to affect groundwater would be subject to permitting under the structure of Chapter 173-216 (or 173-218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permitting Program. As a result of this decision, the Washington State Department of Ecology and the US Department of Energy, Richland Operations Office entered in to Consent Order DE 91NM-177. The Consent Order DE 91NM-177 requires a series of permitting activities for liquid effluent discharges.

  1. Waste treatment process for removal of contaminants from aqueous, mixed-waste solutions using sequential chemical treatment and crossflow microfiltration, followed by dewatering

    DOE Patents [OSTI]

    Vijayan, S.; Wong, C.F.; Buckley, L.P.

    1994-11-22

    In processes of this invention aqueous waste solutions containing a variety of mixed waste contaminants are treated to remove the contaminants by a sequential addition of chemicals and adsorption/ion exchange powdered materials to remove the contaminants including lead, cadmium, uranium, cesium-137, strontium-85/90, trichloroethylene and benzene, and impurities including iron and calcium. Staged conditioning of the waste solution produces a polydisperse system of size enlarged complexes of the contaminants in three distinct configurations: water-soluble metal complexes, insoluble metal precipitation complexes, and contaminant-bearing particles of ion exchange and adsorbent materials. The volume of the waste is reduced by separation of the polydisperse system by cross-flow microfiltration, followed by low-temperature evaporation and/or filter pressing. The water produced as filtrate is discharged if it meets a specified target water quality, or else the filtrate is recycled until the target is achieved. 1 fig.

  2. Waste treatment process for removal of contaminants from aqueous, mixed-waste solutions using sequential chemical treatment and crossflow microfiltration, followed by dewatering

    DOE Patents [OSTI]

    Vijayan, Sivaraman; Wong, Chi F.; Buckley, Leo P.

    1994-01-01

    In processes of this invention aqueous waste solutions containing a variety of mixed waste contaminants are treated to remove the contaminants by a sequential addition of chemicals and adsorption/ion exchange powdered materials to remove the contaminants including lead, cadmium, uranium, cesium-137, strontium-85/90, trichloroethylene and benzene, and impurities including iron and calcium. Staged conditioning of the waste solution produces a polydisperse system of size enlarged complexes of the contaminants in three distinct configurations: water-soluble metal complexes, insoluble metal precipitation complexes, and contaminant-bearing particles of ion exchange and adsorbent materials. The volume of the waste is reduced by separation of the polydisperse system by cross-flow microfiltration, followed by low-temperature evaporation and/or filter pressing. The water produced as filtrate is discharged if it meets a specified target water quality, or else the filtrate is recycled until the target is achieved.

  3. A preliminary evaluation of alternatives for treatment of INEL Low-Level Waste and low-level mixed waste

    SciTech Connect (OSTI)

    Smith, T.H.; Roesener, W.S.; Jorgensen-Waters, M.J.; Edinborough, C.R.

    1992-06-01

    The Mixed and Low-Level Waste Treatment Facility (MLLWTF) project was established in 1991 by the US Department of Energy Idaho Field Office to provide treatment capabilities for Idaho National Engineering Laboratory (INEL) low-level mixed waste and low-level waste. This report identifies and evaluates the alternatives for treating that waste. Twelve treatment alternatives, ranging from ``no-action`` to constructing and operating the MLLWTF, are identified and evaluated. Evaluations include facility performance, environmental, safety, institutional, schedule, and rough order-of-magnitude cost comparisons. The performance of each alternative is evaluated against lists of ``musts`` and ``wants.`` Also included is a discussion of other key considerations for decision making. Analysis of results indicated further study is necessary to obtain the best estimate of future waste volumes and characteristics from the expanded INEL Decontamination and Decommissioning Program. It is also recommended that conceptual design begin as scheduled on the MLLWTF, maximum treatment alternative while re-evaluating the waste volume projections.

  4. Method and apparatus for waste destruction using supercritical water oxidation

    DOE Patents [OSTI]

    Haroldsen, Brent Lowell; Wu, Benjamin Chiau-pin

    2000-01-01

    The invention relates to an improved apparatus and method for initiating and sustaining an oxidation reaction. A hazardous waste, is introduced into a reaction zone within a pressurized containment vessel. An oxidizer, preferably hydrogen peroxide, is mixed with a carrier fluid, preferably water, and the mixture is heated until the fluid achieves supercritical conditions of temperature and pressure. The heating means comprise cartridge heaters placed in closed-end tubes extending into the center region of the pressure vessel along the reactor longitudinal axis. A cooling jacket surrounds the pressure vessel to remove excess heat at the walls. Heating and cooling the fluid mixture in this manner creates a limited reaction zone near the center of the pressure vessel by establishing a steady state density gradient in the fluid mixture which gradually forces the fluid to circulate internally. This circulation allows the fluid mixture to oscillate between supercritical and subcritical states as it is heated and cooled.

  5. Removal of Radionuclides from Waste Water at Fukushima Daiichi Nuclear Power Plant: Desalination and Adsorption Methods - 13126

    SciTech Connect (OSTI)

    Kani, Yuko; Kamosida, Mamoru; Watanabe, Daisuke; Asano, Takashi; Tamata, Shin

    2013-07-01

    Waste water containing high levels of radionuclides due to the Fukushima Daiichi Nuclear Power Plant accident, has been treated by the adsorption removal and reverse-osmosis (RO) desalination to allow water re-use for cooling the reactors. Radionuclides in the waste water are collected in the adsorbent medium and the RO concentrate (RO brine) in the water treatment system currently operated at the Fukushima Daiichi site. In this paper, we have studied the behavior of radionuclides in the presently applied RO desalination system and the removal of radionuclides in possible additional adsorption systems for the Fukushima Daiichi waste water treatment. Regarding the RO desalination system, decontamination factors (DFs) of the elements present in the waste water were obtained by lab-scale testing using an RO unit and simulated waste water with non-radioactive elements. The results of the lab-scale testing using representative elements showed that the DF for each element depended on its hydrated ionic radius: the larger the hydrated ionic radius of the element, the higher its DF is. Thus, the DF of each element in the waste water could be estimated based on its hydrated ionic radius. For the adsorption system to remove radionuclides more effectively, we studied adsorption behavior of typical elements, such as radioactive cesium and strontium, by various kinds of adsorbents using batch and column testing. We used batch testing to measure distribution coefficients (K{sub d}s) for cesium and strontium onto adsorbents under different brine concentrations that simulated waste water conditions at the Fukushima Daiichi site. For cesium adsorbents, K{sub d}s with different dependency on the brine concentration were observed based on the mechanism of cesium adsorption. As for strontium, K{sub d}s decreased as the brine concentration increased for any adsorbents which adsorbed strontium by intercalation and by ion exchange. The adsorbent titanium oxide had higher K{sub d}s and it

  6. Recycled Water Reuse Permit Renewal Application for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    SciTech Connect (OSTI)

    No Name

    2014-10-01

    ABSTRACT This renewal application for the Industrial Wastewater Reuse Permit (IWRP) WRU-I-0160-01 at Idaho National Laboratory (INL), Materials and Fuels Complex (MFC) Industrial Waste Ditch (IWD) and Industrial Waste Pond (IWP) is being submitted to the State of Idaho, Department of Environmental Quality (DEQ). This application has been prepared in compliance with the requirements in IDAPA 58.01.17, Recycled Water Rules. Information in this application is consistent with the IDAPA 58.01.17 rules, pre-application meeting, and the Guidance for Reclamation and Reuse of Municipal and Industrial Wastewater (September 2007). This application is being submitted using much of the same information contained in the initial permit application, submitted in 2007, and modification, in 2012. There have been no significant changes to the information and operations covered in the existing IWRP. Summary of the monitoring results and operation activity that has occurred since the issuance of the WRP has been included. MFC has operated the IWP and IWD as regulated wastewater land treatment facilities in compliance with the IDAPA 58.01.17 regulations and the IWRP. Industrial wastewater, consisting primarily of continuous discharges of nonhazardous, nonradioactive, routinely discharged noncontact cooling water and steam condensate, periodic discharges of industrial wastewater from the MFC facility process holdup tanks, and precipitation runoff, are discharged to the IWP and IWD system from various MFC facilities. Wastewater goes to the IWP and IWD with a permitted annual flow of up to 17 million gallons/year. All requirements of the IWRP are being met. The Operations and Maintenance Manual for the Industrial Wastewater System will be updated to include any new requirements.

  7. RADIOACTIVE DEMONSTRATION OF FINAL MINERALIZED WASTE FORMS FOR HANFORD WASTE TREATMENT PLANT SECONDARY WASTE BY FLUIDIZED BED STEAM REFORMING USING THE BENCH SCALE REFORMER PLATFORM

    SciTech Connect (OSTI)

    Crawford, C.; Burket, P.; Cozzi, A.; Daniel, W.; Jantzen, C.; Missimer, D.

    2012-02-02

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as {sup 137}Cs, {sup 129}I, {sup 99}Tc, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW. FBSR offers a moderate temperature (700-750 C) continuous method by which WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic

  8. Laboratory optimization tests of technetium decontamination of Hanford Waste Treatment Plant low activity waste melter off-gas condensate simulant

    SciTech Connect (OSTI)

    Taylor-Pashow, Kathryn M.L.; McCabe, Daniel J.

    2015-11-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable simplified operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste.

  9. Strategies for the cost effective treatment of Oak Ridge legacy wastes

    SciTech Connect (OSTI)

    Compere, A.L.; Griffith, W.L.; Huxtable, W.P.; Wilson, D.F.

    1998-03-01

    Research and development treatment strategies for treatment or elimination of several Oak Ridge plant liquid, solid, and legacy wastes are detailed in this report. Treatment strategies for volumetrically contaminated nickel; enriched uranium-contaminated alkali metal fluorides; uranium-contaminated aluminum compressor blades; large, mercury-contaminated lithium isotope separations equipment; lithium process chlorine gas streams; high-concentration aluminum nitrate wastes, and high-volume, low-level nitrate wastes are discussed. Research needed to support engineering development of treatment processes is detailed.

  10. The Energy-Water Nexus: State and Local Roles in Efficiency & Water and Wastewater Treatment Plants

    Broader source: Energy.gov [DOE]

    This webinar, held on Sept. 11, 2013, covers the energy water nexus for state and local water and wastewater treatment plants.

  11. Microwave energy for post-calcination treatment of high-level nuclear wastes

    SciTech Connect (OSTI)

    Gombert, D.; Priebe, S.J.; Berreth, J.R.

    1980-01-01

    High-level radioactive wastes generated from nuclear fuel reprocessing require treatment for effective long-term storage. Heating by microwave energy is explored in processing of two possible waste forms: (1) drying of a pelleted form of calcined waste; and (2) vitrification of calcined waste. It is shown that residence times for these processes can be greatly reduced when using microwave energy rather than conventional heating sources, without affecting product properties. Compounds in the waste and in the glass frit additives couple very well with the 2.45 GHz microwave field so that no special microwave absorbers are necessary.

  12. DEMONSTRATION OF SIMULATED WASTE TRANSFERS FROM TANK AY-102 TO THE HANFORD WASTE TREATMENT FACILITY

    SciTech Connect (OSTI)

    Adamson, D.; Poirier, M.; Steeper, T.

    2009-12-03

    In support of Hanford's AY-102 Tank waste certification and delivery of the waste to the Waste Treatment and Immobilization Plant (WTP), Savannah River National Laboratory (SRNL) was tasked by the Washington River Protection Solutions (WRPS) to evaluate the effectiveness of mixing and transferring the waste in the Double Shell Tank (DST) to the WTP Receipt Tank. This work is a follow-on to the previous 'Demonstration of Internal Structures Impacts on Double Shell Tank Mixing Effectiveness' task conducted at SRNL 1. The objective of these transfers was to qualitatively demonstrate how well waste can be transferred out of a mixed DST tank and to provide insights into the consistency between the batches being transferred. Twelve (12) different transfer demonstrations were performed, varying one parameter at a time, in the Batch Transfer Demonstration System. The work focused on visual comparisons of the results from transferring six batches of slurry from a 1/22nd scale (geometric by diameter) Mixing Demonstration Tank (MDT) to six Receipt Tanks, where the consistency of solids in each batch could be compared. The simulant used in this demonstration was composed of simulated Hanford Tank AZ-101 supernate, gibbsite particles, and silicon carbide particles, the same simulant/solid particles used in the previous mixing demonstration. Changing a test parameter may have had a small impact on total solids transferred from the MDT on a given test, but the data indicates that there is essentially no impact on the consistency of solids transferred batch to batch. Of the multiple parameters varied during testing, it was found that changing the nozzle velocity of the Mixer Jet Pumps (MJPs) had the biggest impact on the amount of solids transferred. When the MJPs were operating at 8.0 gpm (22.4 ft/s nozzle velocity, U{sub o}D=0.504 ft{sup 2}/s), the solid particles were more effectively suspended, thus producing a higher volume of solids transferred. When the MJP flow rate was

  13. Mixed and Low-Level Waste Treatment Facility Project. Appendix B, Waste stream engineering files: Part 2, Low-level waste streams

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report documents those studies so the project can continue with an evaluation of programmatic options, system tradeoff studies, and the conceptual design phase of the project. This report, appendix B, comprises the engineering design files for this project study. The engineering design files document each waste steam, its characteristics, and identified treatment strategies.

  14. Bear Creek Valley characterization area mixed wastes passive in situ treatment technology demonstration project - status report

    SciTech Connect (OSTI)

    Watson, D.; Leavitt, M.; Moss, D.

    1997-03-01

    Historical waste disposal activities within the Bear Creek Valley (BCV) Characterization Area (CA), at the U.S. Department of Energy (DOE) Oak Ridge Y-12 plant, have contaminated groundwater and surface water above human health risk levels and impacted the ecology of Bear Creek. Contaminates include nitrate, radioisotopes, metals, volatile organic chemicals (VOCS), and common ions. This paper provides a status report on a technology demonstration project that is investigating the feasibility of using passive in situ treatment systems to remove these contaminants. Although this technology may be applicable to many locations at the Oak Ridge Y-12 Plant, the project focuses on collecting the information needed to take CERCLA removal actions in 1998 at the S-3 Disposal Ponds site. Phase 1 has been completed and included site characterization, laboratory screening of treatment media (sorbents; and iron), and limited field testing of biological treatment systems. Batch tests using different Y-12 Plant waters were conducted to evaluate the removal efficiencies of most of the media. Phase 1 results suggest that the most promising treatment media are Dowex 21 k resin, peat moss, zero-valent iron, and iron oxides. Phase 2 will include in-field column testing of these media to assess loading rates, and concerns with clogging, by-products, and long-term treatment efficiency and media stability. Continued testing of wetlands and algal mats (MATs) will be conducted to determine if they can be used for in-stream polishing of surface water. Hydraulic testing of a shallow trench and horizontal well will also be completed during Phase 2. 4 refs., 3 tabs.

  15. Sampling and Analysis Plan Waste Treatment Plant Seismic Boreholes Project.

    SciTech Connect (OSTI)

    Brouns, Thomas M.

    2007-07-15

    This sampling and analysis plan (SAP) describes planned data collection activities for four entry boreholes through the sediment overlying the Saddle Mountains Basalt, up to three new deep rotary boreholes through the Saddle Mountains Basalt and sedimentary interbeds, and one corehole through the Saddle Mountains Basalt and sedimentary interbeds at the Waste Treatment Plant (WTP) site. The SAP will be used in concert with the quality assurance plan for the project to guide the procedure development and data collection activities needed to support borehole drilling, geophysical measurements, and sampling. This SAP identifies the American Society of Testing Materials standards, Hanford Site procedures, and other guidance to be followed for data collection activities. Revision 3 incorporates all interim change notices (ICN) that were issued to Revision 2 prior to completion of sampling and analysis activities for the WTP Seismic Boreholes Project. This revision also incorporates changes to the exact number of samples submitted for dynamic testing as directed by the U.S. Army Corps of Engineers. Revision 3 represents the final version of the SAP.

  16. DOE Issues RFP for Waste Treatment Services | Department of Energy

    Office of Environmental Management (EM)

    Greater-Than-Class C Waste | Department of Energy Final Environmental Impact Statement for Disposal of Greater-Than-Class C Waste DOE Issues Final Environmental Impact Statement for Disposal of Greater-Than-Class C Waste February 25, 2016 - 3:30pm Addthis WASHINGTON, D.C. - The U.S. Department of Energy (DOE) today issued a Final Environmental Impact Statement (EIS) that evaluates the potential environmental impacts associated with the proposed development, operation, and long-term

  17. Advanced waste form and Melter development for treatment of troublesome high-level wastes

    SciTech Connect (OSTI)

    Marra, James; Kim, Dong -Sang; Maio, Vincent

    2015-10-01

    A number of waste components in US defense high level radioactive wastes (HLW) have proven challenging for current Joule heated ceramic melter (JHCM) operations and have limited the ability to increase waste loadings beyond already realized levels. Many of these “troublesome" waste species cause crystallization in the glass melt that can negatively impact product quality or have a deleterious effect on melter processing. Recent efforts at US Department of Energy laboratories have focused on understanding crystallization behavior within HLW glass melts and investigating approaches to mitigate the impacts of crystallization so that increases in waste loading can be realized. Advanced glass formulations have been developed to highlight the unique benefits of next-generation melter technologies such as the Cold Crucible Induction Melter (CCIM). Crystal-tolerant HLW glasses have been investigated to allow sparingly soluble components such as chromium to crystallize in the melter but pass out of the melter before accumulating.The Hanford site AZ-101 tank waste composition represents a waste group that is waste loading limited primarily due to high concentrations of Fe2O3 (also with high Al2O3 concentrations). Systematic glass formulation development utilizing slightly higher process temperatures and higher tolerance to spinel crystals demonstrated that an increase in waste loading of more than 20% could be achieved for this waste composition, and by extension higher loadings for wastes in the same group. An extended duration CCIM melter test was conducted on an AZ-101 waste simulant using the CCIM platform at the Idaho National Laboratory (INL). The melter was continually operated for approximately 80 hours demonstrating that the AZ-101 high waste loading glass composition could be readily processed using the CCIM technology. The resulting glass was close to the targeted composition and exhibited excellent durability in both

  18. Flexible Distributed Energy and Water from Waste for the Food and Beverage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industry - Fact Sheet, 2014 | Department of Energy Flexible Distributed Energy and Water from Waste for the Food and Beverage Industry - Fact Sheet, 2014 Flexible Distributed Energy and Water from Waste for the Food and Beverage Industry - Fact Sheet, 2014 GE Global Research, in collaboration with GE Water & Process Technologies, GE Intelligent Platforms, SRA International, and Anheuser-Busch, developed a systematic plant-wide automation for online monitoring and supervisory control. The

  19. DOE names Bechtel BWXT Idaho and the Advanced Mixed Waste Treatment Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    as a VPP Star Site names Bechtel BWXT Idaho and the Advanced Mixed Waste Treatment Project as a VPP Star Site Rick Provencher of DOE-ID, Jeff Mousseau of BBWI and co-safety chairs Tracy Anderson and Josh Wallace raise the VPP flag indicating the Advanced Mixed Waste Treatment Project is a Star site. View larger image here. The U.S. Department of Energy today announced it has recognized Bechtel BWXT Idaho at the Advanced Mixed Waste Treatment Project as a Star site in its Voluntary Protection

  20. Optimization of biological recycling of plant nutrients in livestock waste by utilizing waste heat from cooling water. Final report May 75-Sep 81

    SciTech Connect (OSTI)

    Maddox, J.J.; Behrends, L.L.; Burch, D.W.; Kingsley, J.B.; Waddell, E.L. Jr

    1982-05-01

    The report summarizes a 5-year study of the beneficial uses of waste heat from condenser cooling water from steam-electric generating plants. The major effort addressed the recovery of plant nutrients in swine manure by aquatic farming of selected fish and Chinese waterchestnuts. Another effort included biogas production from swine manure in an anaerobic digester and the use of the digester waste to fertilize the aquatic farming system. Optimum recovery of plant nutrients resulted from operation of an integrated fish and waterchestnut system. Flowing water systems were 30-50% more productive than static systems. Annual fish yields of 5000-7000 lb/acre are projected for a properly stocked system over a 150-180 day growing period. Similarly, waterchestnut yields of nearly 17.8 tons/acre and dry hay yields of 6.7 tons/acre from sand-bed filters would be expected when fed wastewater from the fish system. The quality of the water leaving the sand beds would meet tertiary wastewater treatment standards during the growing season. An estimated 2000-head swine facility with a $400,000 investment would annually produce a 20% rate of return, save 360,000 bbl of oil through waste heat utilization, and produce biogas equivalent to 3000 bbl of oil.

  1. Modeling Hydrogen Generation Rates in the Hanford Waste Treatment and Immobilization Plant

    SciTech Connect (OSTI)

    Camaioni, Donald M.; Bryan, Samuel A.; Hallen, Richard T.; Sherwood, David J.; Stock, Leon M.

    2004-03-29

    This presentation describes a project in which Hanford Site and Environmental Management Science Program investigators addressed issues concerning hydrogen generation rates in the Hanford waste treatment and immobilization plant. The hydrogen generation rates of radioactive wastes must be estimated to provide for safe operations. While an existing model satisfactorily predicts rates for quiescent wastes in Hanford underground storage tanks, pretreatment operations will alter the conditions and chemical composition of these wastes. Review of the treatment process flowsheet identified specific issues requiring study to ascertain whether the model would provide conservative values for waste streams in the plant. These include effects of adding hydroxide ion, alpha radiolysis, saturation with air (oxygen) from pulse-jet mixing, treatment with potassium permanganate, organic compounds from degraded ion exchange resins and addition of glass-former chemicals. The effects were systematically investigated through literature review, technical analyses and experimental work.

  2. Mixed Waste Treatment Cost Analysis for a Range of GeoMelt Vitrification Process Configurations

    SciTech Connect (OSTI)

    Thompson, L. E.

    2002-02-27

    GeoMelt is a batch vitrification process used for contaminated site remediation and waste treatment. GeoMelt can be applied in several different configurations ranging from deep subsurface in situ treatment to aboveground batch plants. The process has been successfully used to treat a wide range of contaminated wastes and debris including: mixed low-level radioactive wastes; mixed transuranic wastes; polychlorinated biphenyls; pesticides; dioxins; and a range of heavy metals. Hypothetical cost estimates for the treatment of mixed low-level radioactive waste were prepared for the GeoMelt subsurface planar and in-container vitrification methods. The subsurface planar method involves in situ treatment and the in-container vitrification method involves treatment in an aboveground batch plant. The projected costs for the subsurface planar method range from $355-$461 per ton. These costs equate to 18-20 cents per pound. The projected cost for the in-container method is $1585 per ton. This cost equates to 80 cents per pound. These treatment costs are ten or more times lower than the treatment costs for alternative mixed waste treatment technologies according to a 1996 study by the US Department of Energy.

  3. One System Integrated Project Team: Retrieval and Delivery of Hanford Tank Wastes for Vitrification in the Waste Treatment Plant - 13234

    SciTech Connect (OSTI)

    Harp, Benton J.; Kacich, Richard M.; Skwarek, Raymond J.

    2013-07-01

    The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety-conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enable the earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the tank

  4. One System Integrated Project Team: Retrieval And Delivery Of The Hanford Tank Wastes For Vitrification In The Waste Treatment Plant

    SciTech Connect (OSTI)

    Harp, Benton J.; Kacich, Richard M.; Skwarek, Raymond J.

    2012-12-20

    The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enable the earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the tank

  5. Biological Information Document, Radioactive Liquid Waste Treatment Facility

    SciTech Connect (OSTI)

    Biggs, J.

    1995-12-31

    This document is intended to act as a baseline source material for risk assessments which can be used in Environmental Assessments and Environmental Impact Statements. The current Radioactive Liquid Waste Treatment Facility (RLWTF) does not meet current General Design Criteria for Non-reactor Nuclear Facilities and could be shut down affecting several DOE programs. This Biological Information Document summarizes various biological studies that have been conducted in the vicinity of new Proposed RLWTF site and an Alternative site. The Proposed site is located on Mesita del Buey, a mess top, and the Alternative site is located in Mortandad Canyon. The Proposed Site is devoid of overstory species due to previous disturbance and is dominated by a mixture of grasses, forbs, and scattered low-growing shrubs. Vegetation immediately adjacent to the site is a pinyon-juniper woodland. The Mortandad canyon bottom overstory is dominated by ponderosa pine, willow, and rush. The south-facing slope was dominated by ponderosa pine, mountain mahogany, oak, and muhly. The north-facing slope is dominated by Douglas fir, ponderosa pine, and oak. Studies on wildlife species are limited in the vicinity of the proposed project and further studies will be necessary to accurately identify wildlife populations and to what extent they utilize the project area. Some information is provided on invertebrates, amphibians and reptiles, and small mammals. Additional species information from other nearby locations is discussed in detail. Habitat requirements exist in the project area for one federally threatened wildlife species, the peregrine falcon, and one federal candidate species, the spotted bat. However, based on surveys outside of the project area but in similar habitats, these species are not expected to occur in either the Proposed or Alternative RLWTF sites. Habitat Evaluation Procedures were used to evaluate ecological functioning in the project area.

  6. Geology of the Waste Treatment Plant Seismic Boreholes

    SciTech Connect (OSTI)

    Barnett, D. BRENT; Bjornstad, Bruce N.; Fecht, Karl R.; Lanigan, David C.; Reidel, Steve; Rust, Colleen F.

    2007-02-28

    In 2006, DOE-ORP initiated the Seismic Boreholes Project (SBP) to emplace boreholes at the Waste Treatment Plant (WTP) site in order to obtain direct Vs measurements and other physical property measurements in Columbia River basalt and interbedded sediments of the Ellensburg Formation. The goal was to reduce the uncertainty in the response spectra and seismic design basis, and potentially recover design margin for the WTP. The characterization effort within the deep boreholes included 1) downhole measurements of the velocity properties of the suprabasalt, basalt, and sedimentary interbed sequences, 2) downhole measurements of the density of the subsurface basalt and sediments, and 3) confirmation of the geometry of the contact between the various basalt and interbedded sediments through examination of retrieved core from the corehole and data collected through geophysical logging of each borehole. This report describes the results of the geologic studies from three mud-rotary boreholes and one cored borehole at the WTP. All four boreholes penetrated the entire Saddle Mountains Basalt and the upper part of the Wanapum Basalt where thick sedimentary interbeds occur between the lava flows. The basalt flows penetrated in Saddle Mountains Basalt included the Umatilla Member, Esquatzel Member, Pomona Member and the Elephant Mountain Member. The underlying Priest Rapids Member of the Wanapum Basalt was also penetrated. The Ellensburg Formation sediments consist of the Mabton Interbed, the Cold Creek Interbed, the Selah Interbed and the Rattlesnake Ridge Interbed; the Byron Interbed occurs between two flows of the Priest Rapids Member. The Mabton Interbed marks the contact between the Wanapum and Saddle Mountains Basalts. The thicknesses of the basalts and interbedded sediments were within expected limits. However, a small reverse fault was found in the Pomona Member flow top. This fault has three periods of movement and less than 15 feet of repeated section. Most of the

  7. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 1, Waste streams and treatment technologies

    SciTech Connect (OSTI)

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01

    This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

  8. K West integrated water treatment system subproject safety analysis document

    SciTech Connect (OSTI)

    SEMMENS, L.S.

    1999-02-24

    This Accident Analysis evaluates unmitigated accident scenarios, and identifies Safety Significant and Safety Class structures, systems, and components for the K West Integrated Water Treatment System.

  9. U.S. Department of Energy (DOE) initiated performance enhancements to the Hanford waste treatment and immobilization plant (WTP) high-level waste vitrification (HLW) system

    SciTech Connect (OSTI)

    Bowan, Bradley [Energy Solutions, LLC (United States); Gerdes, Kurt [United States Department of Energy (United States); Pegg, Ian [Vitreous State Laboratory, Catholic University of America, 400 Hannan Hall 620 Michigan Avenue, NE Washington, DC 20064 (United States); Holton, Langdon [Pacific Northwest National Laboratory, PO Box 999, Richland WA 99352 (United States)

    2007-07-01

    Available in abstract form only. Full text of publication follows: The U.S Department of Energy is currently constructing, at the Hanford, Washington Site, a Waste Treatment and Immobilization Plant (WTP) for the treatment and immobilization, by vitrification, of stored underground tank wastes. The WTP is comprised of four major facilities: a Pretreatment facility to separate the tank waste into high level waste (HLW) and low activity waste (LAW); a HLW vitrification facility to immobilize the HLW fraction; a LAW vitrification facility to immobilize the LAW fraction and an analytical Laboratory to support the treatment facilities. DOE has strategic objectives to optimize the performance of the WTP facilities, and waste forms, in order to reduce the overall schedule and cost for the treatment of the Hanford tank wastes. One key part of this strategy is to maximize the loading of inorganic waste components in the final glass product (waste loading). For the Hanford tank wastes, this is challenging because of the compositional diversity of the wastes generated over several decades. This paper presents the results of an initial series of HLW waste loading enhancement tests, using diverse HLW compositions that are projected for treatment at the WTP. Specifically, results of glass formulation development and melter testing with simulated Hanford HLW containing high concentrations of troublesome components such as bismuth, aluminum, aluminum-sodium, and chromium will be presented. (authors)

  10. Project Execution Plan for the River Protection Project Waste Treatment & Immobilization Plant

    SciTech Connect (OSTI)

    MELLINGER, G.B.

    2003-05-03

    The Waste Treatment and Immobilization Plant (WTP), Project W-530, is the cornerstone in the mission of the Hanford Site's cleanup of more than 50 million gallons of highly toxic, high-level radioactive waste contained in aging underground storage tanks.

  11. EIS-0133: Decontamination and Waste Treatment Facility for the Lawrence Livermore National Laboratory, Livermore, California

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy’s San Francisco Operations Office developed this draft environmental impact statement to analyze the potential environmental and socioeconomic impacts of alternatives for constructing and operating a Decontamination and Waste Treatment Facility for nonradioactive (hazardous and nonhazardous) mixed and radioactive wastes at Lawrence Livermore National Laboratory.

  12. Proposal of an environmental performance index to assess solid waste treatment technologies

    SciTech Connect (OSTI)

    Goulart Coelho, Hosmanny Mauro; Lange, Lisete Celina; Coelho, Lineker Max Goulart

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer Proposal of a new concept in waste management: Cleaner Treatment. Black-Right-Pointing-Pointer Development of an index to assess quantitatively waste treatment technologies. Black-Right-Pointing-Pointer Delphi Method was carried out so as to define environmental indicators. Black-Right-Pointing-Pointer Environmental performance evaluation of waste-to-energy plants. - Abstract: Although the concern with sustainable development and environment protection has considerably grown in the last years it is noted that the majority of decision making models and tools are still either excessively tied to economic aspects or geared to the production process. Moreover, existing models focus on the priority steps of solid waste management, beyond waste energy recovery and disposal. So, in order to help the lack of models and tools aiming at the waste treatment and final disposal, a new concept is proposed: the Cleaner Treatment, which is based on the Cleaner Production principles. This paper focuses on the development and validation of the Cleaner Treatment Index (CTI), to assess environmental performance of waste treatment technologies based on the Cleaner Treatment concept. The index is formed by aggregation (summation or product) of several indicators that consists in operational parameters. The weights of the indicator were established by Delphi Method and Brazilian Environmental Laws. In addition, sensitivity analyses were carried out comparing both aggregation methods. Finally, index validation was carried out by applying the CTI to 10 waste-to-energy plants data. From sensitivity analysis and validation results it is possible to infer that summation model is the most suitable aggregation method. For summation method, CTI results were superior to 0.5 (in a scale from 0 to 1) for most facilities evaluated. So, this study demonstrates that CTI is a simple and robust tool to assess and compare the environmental performance of different

  13. Pyrolysis Autoclave Technology Demonstration Program for Treatment of DOE Solidified Organic Wastes

    SciTech Connect (OSTI)

    Roesener, W.S.; Mason, J.B.; Ryan, K.; Bryson, S.; Eldredge, H.B.

    2006-07-01

    In the summer of 2005, MSE Technologies Applications, Inc. (MSE) and THOR Treatment Technologies, LLC (TTT) conducted a demonstration test of the Thermal Organic Reduction (THOR{sup sm}) in-drum pyrolysis autoclave system under contract to the Department of Energy. The purpose of the test was to demonstrate that the THOR{sup sm} pyrolysis autoclave system could successfully treat solidified organic waste to remove organics from the waste drums. The target waste was created at Rocky Flats and currently resides at the Radioactive Waste Management Complex (RWMC) at the Idaho National Laboratory (INL). Removing the organics from these drums would allow them to be shipped to the Waste Isolation Pilot Plant for disposal. Two drums of simulated organic setup waste were successfully treated. The simulated waste was virtually identical to the expected waste except for the absence of radioactive components. The simulated waste included carbon tetrachloride, trichloroethylene, perchloroethylene, Texaco Regal oil, and other organics mixed with calcium silicate and Portland cement stabilization agents. The two-stage process consisted of the THOR{sup sm} electrically heated pyrolysis autoclave followed by the MSE off gas treatment system. The treatment resulted in a final waste composition that meets the requirements for WIPP transportation and disposal. There were no detectable volatile organic compounds in the treated solid residues. The destruction and removal efficiency (DRE) for total organics in the two drums ranged from >99.999% to >99.9999%. The operation of the process proved to be easily controllable using the pyrolysis autoclave heaters. Complete treatment of a fully loaded surrogate waste drum including heat-up and cooldown took place over a two-day period. This paper discusses the results of the successful pyrolysis autoclave demonstration testing. (authors)

  14. Summary - System Planning for Low-Activity Waste Treatment at...

    Office of Environmental Management (EM)

    However, vitrification of low-activity waste (LAW) may extend the WTP mission duration by decades more if supplemental LAW processing beyond the capacity of the present facility is ...

  15. Independent Activity Report, Office of River Protection Waste Treatment Plant and Tank Farms- February 2013

    Broader source: Energy.gov [DOE]

    Site Familiarization and Introduction of New Office of Safety and Emergency Management Evaluations Site Lead for the Office of River Protection Waste Treatment Plant and Tank Farms [HIAR-HANFORD-2013-02-25

  16. EA-1189: Non-thermal Treatment of Hanford Site Low-level Mixed Waste, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to demonstrate the feasibility of commercial treatment of contact-handled low-level mixed waste to meet existing Federal and State...

  17. EA-1292: On-site Treatment of Low Level Mixed Waste, Golden, Colorado

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to evaluate the proposed treatment of low level mixed waste at the U.S. Department of Energy's Rocky Flats Environmental Technology Site.

  18. Department of Energy treatment capabilities for greater-than-Class C low-level radioactive waste

    SciTech Connect (OSTI)

    Morrell, D.K.; Fischer, D.K.

    1995-01-01

    This report provides brief profiles for 26 low-level and high-level waste treatment capabilities available at the Idaho National Engineering Laboratory (INEL), Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), Pacific Northwest Laboratory (PNL), Rocky Flats Plant (RFP), Savannah River Site (SRS), and West Valley Demonstration Plant (WVDP). Six of the treatments have potential use for greater-than-Class C low-level waste (GTCC LLW). They include: (a) the glass ceramic process and (b) the Waste Experimental Reduction Facility incinerator at INEL; (c) the Super Compaction and Repackaging Facility and (d) microwave melting solidification at RFP; (e) the vitrification plant at SRS; and (f) the vitrification plant at WVDP. No individual treatment has the capability to treat all GTCC LLW streams. It is recommended that complete physical and chemical characterizations be performed for each GTCC waste stream, to permit using multiple treatments for GTCC LLW.

  19. Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant – November 2013

    Office of Energy Efficiency and Renewable Energy (EERE)

    Catholic University of America Vitreous State Laboratory Tour and Discussion of Experiments Conducted in Support of Hanford Site Waste Treatment and Immobilization Plant Select Systems Design [HIAR-VSL-2013-11-18

  20. Advanced waste form and melter development for treatment of troublesome high-level wastes

    SciTech Connect (OSTI)

    Marra, James; Kim, Dong -Sang; Maio, Vincent

    2015-09-02

    A number of waste components in US defense high level radioactive wastes (HLW) have proven challenging for current Joule heated ceramic melter (JHCM) operations and have limited the ability to increase waste loadings beyond already realized levels. Many of these "troublesome" waste species cause crystallization in the glass melt that can negatively impact product quality or have a deleterious effect on melter processing. Recent efforts at US Department of Energy laboratories have focused on understanding crystallization behavior within HLW glass melts and investigating approached to mitigate the impacts of crystallization so that increases in waste loading can be realized. Advanced glass formulations have been developed to highlight the unique benefits of next-generation melter technologies such as the Cold Crucible Induction Melter (CCIM). Crystal-tolerant HLW glasses have been investigated to allow sparingly soluble components such as chromium to crystallize in the melter but pass out of the melter before accumulating.

  1. Treatment of Asbestos Wastes Using the GeoMelt Vitrification Process

    SciTech Connect (OSTI)

    Finucane, K.G. [AMEC Nuclear Holdings Ltd., GeoMelt Div., Richland, WA (United States); Thompson, L.E. [Capto Group LLC, Dallas, TX (United States); Abuku, T. [ISV Japan Ltd., Yokohama-city (Japan); Nakauchi, H. [Mie Chuo Kaihatsu Co. Ltd., Hachiya, Iga City (Japan)

    2008-07-01

    The disposal of waste asbestos from decommissioning activities is becoming problematic in countries which have limited disposal space. A particular challenge is the disposal of asbestos wastes from the decommissioning of nuclear sites because some of it is radioactively contaminated or activated and disposal space for such wastes is limited. GeoMelt{sup R} vitrification is being developed as a treatment method for volume and toxicity minimization and radionuclide immobilization for UK radioactive asbestos mixed waste. The common practice to date for asbestos wastes is disposal in licensed landfills. In some cases, compaction techniques are used to minimize the disposal space requirements. However, such practices are becoming less practical. Social pressures have resulted in changes to disposal regulations which, in turn, have resulted in the closure of some landfills and increased disposal costs. In the UK, tens of thousands of tonnes of asbestos waste will result from the decommissioning of nuclear sites over the next 20 years. In Japan, it is estimated that over 40 million tonnes of asbestos materials used in construction will require disposal. Methods for the safe and cost effective volume reduction of asbestos wastes are being evaluated for many sites. The GeoMelt{sup R} vitrification process is being demonstrated at full-scale in Japan for the Japan Ministry of Environment and plans are being developed for the GeoMelt treatment of UK nuclear site decommissioning-related asbestos wastes. The full-scale treatment operations in Japan have also included contaminated soils and debris. The GeoMelt{sup R} vitrification process result in the maximum possible volume reduction, destroys the asbestos fibers, treats problematic debris associated with asbestos wastes, and immobilizes radiological contaminants within the resulting glass matrix. Results from recent full-scale treatment operations in Japan are discussed and plans for GeoMelt treatment of UK nuclear site

  2. Probabilistic cost estimation methods for treatment of water extracted during CO2 storage and EOR

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Graham, Enid J. Sullivan; Chu, Shaoping; Pawar, Rajesh J.

    2015-08-08

    Extraction and treatment of in situ water can minimize risk for large-scale CO2 injection in saline aquifers during carbon capture, utilization, and storage (CCUS), and for enhanced oil recovery (EOR). Additionally, treatment and reuse of oil and gas produced waters for hydraulic fracturing will conserve scarce fresh-water resources. Each treatment step, including transportation and waste disposal, generates economic and engineering challenges and risks; these steps should be factored into a comprehensive assessment. We expand the water treatment model (WTM) coupled within the sequestration system model CO2-PENS and use chemistry data from seawater and proposed injection sites in Wyoming, to demonstratemore » the relative importance of different water types on costs, including little-studied effects of organic pretreatment and transportation. We compare the WTM with an engineering water treatment model, utilizing energy costs and transportation costs. Specific energy costs for treatment of Madison Formation brackish and saline base cases and for seawater compared closely between the two models, with moderate differences for scenarios incorporating energy recovery. Transportation costs corresponded for all but low flow scenarios (<5000 m3/d). Some processes that have high costs (e.g., truck transportation) do not contribute the most variance to overall costs. Other factors, including feed-water temperature and water storage costs, are more significant contributors to variance. These results imply that the WTM can provide good estimates of treatment and related process costs (AACEI equivalent level 5, concept screening, or level 4, study or feasibility), and the complex relationships between processes when extracted waters are evaluated for use during CCUS and EOR site development.« less

  3. The Department of Energy's $12.2 Billion Waste Treatment and Immobilization Plant - Quality Assurance Issues

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Department of Energy's $12.2 Billion Waste Treatment and Immobilization Plant - Quality Assurance Issues - Black Cell Vessels DOE/IG-0863 April 2012 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 April 25, 2012 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Audit Report on "The Department of Energy's $12.2 Billion Waste Treatment and Immobilization Plant -

  4. Mechanical-biological waste treatment and the associated occupational hygiene in Finland

    SciTech Connect (OSTI)

    Tolvanen, Outi K. . E-mail: outolvan@bytl.jyu.fi; Haenninen, Kari I.

    2006-07-01

    A special feature of waste management in Finland has been the emphasis on the source separation of kitchen biowaste (catering waste); more than two-thirds of the Finnish population participates in this separation. Source-separated biowaste is usually treated by composting. The biowaste of about 5% of the population is handled by mechanical-biological treatment. A waste treatment plant at Mustasaari is the only plant in Finland using digestion for kitchen biowaste. For the protection of their employees, the plant owners commissioned a study on environmental factors and occupational hygiene in the plant area. During 1998-2000 the concentrations of dust, microbes and endotoxins and noise levels were investigated to identify possible problems at the plant. Three different work areas were investigated: the pre-processing and crushing hall, the bioreactor hall and the drying hall. Employees were asked about work-related health problems. Some problems with occupational hygiene were identified: concentrations of microbes and endotoxins may increase to levels harmful to health during waste crushing and in the bioreactor hall. Because employees complained of symptoms such as dry cough and rash or itching appearing once or twice a month, it is advisable to use respirator masks (class P3) during dusty working phases. The noise level in the drying hall exceeded the Finnish threshold value of 85 dBA. Qualitatively harmful factors for the health of employees are similar in all closed waste treatment plants in Finland. Quantitatively, however, the situation at the Mustasaari treatment plant is better than at some Finnish dry waste treatment plants. Therefore is reasonable to conclude that mechanical sorting, which produces a dry waste fraction for combustion and a biowaste fraction for anaerobic treatment, is in terms of occupational hygiene better for employees than combined aerobic treatment and dry waste treatment.

  5. Waste treatment by dialysis. (Latest citations from Pollution abstracts). Published Search

    SciTech Connect (OSTI)

    1996-02-01

    The bibliography contains citations concerning the use of dialysis in the treatment of wastewaters. Techniques for the removal of metals, ammonia, waste acids, nitrates, and phosphates are described. Special attention is given to the desalination of liquid wastes. Applications of this technology to the treatment of effluent from the agrochemical, petrochemical, tanning, and electroplating industries are discussed. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  6. Mixed waste treatment using the ChemChar thermolytic detoxification technique

    SciTech Connect (OSTI)

    Kuchynka, D.

    1995-10-01

    The diversity of mixed waste matrices contained at Department of Energy sites that require treatment preclude a single, universal treatment technology capable of handling sludges, solids, heterogeneous debris, aqueous and organic liquids and soils. This report describes the ChemChar thermolytic detoxification process. The process is a thermal, chemically reductive technology that converts the organic portion of mixed wastes to a synthesis gas, while simultaneously absorbing volatile inorganics on a carbon-based char.

  7. The Radioactive Liquid Waste Treatment Facility Replacement Project at Los Alamos National Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Radioactive Liquid Waste Treatment Facility Replacement Project at Los Alamos National Laboratory OAS-L-13-15 September 2013 Department of Energy Washington, DC 20585 September 26, 2013 MEMORANDUM FOR THE ASSOCIATE ADMINISTRATOR FOR ACQUISITION AND PROJECT MANAGEMENT MANAGER LOS ALAMOS FIELD OFFICE FROM: David Sedillo Western Audits Division Office of Inspector General SUBJECT: INFORMATION: Audit Report on "The Radioactive Liquid Waste Treatment Facility Replacement Project at Los Alamos

  8. Waste treatment by dialysis. (Latest citations from Pollution abstracts). Published Search

    SciTech Connect (OSTI)

    1995-01-01

    The bibliography contains citations concerning the use of dialysis in the treatment of wastewaters. Techniques for the removal of metals, ammonia, waste acids, nitrates, and phosphates are described. Special attention is given to the desalination of liquid wastes. Applications of this technology to the treatment of effluent from the agrochemical, petrochemical, tanning, and electroplating industries are discussed. (Contains a minimum of 60 citations and includes a subject term index and title list.)

  9. A practical application for the chemical treatment of Southern California`s reclaimed, Title 22 water for use as makeup water for recirculating cooling water systems

    SciTech Connect (OSTI)

    Zakrzewski, J.; Cosulich, J.; Bartling, E.

    1998-12-31

    Pilot cooling water studies conducted at a Southern California landfill/cogeneration station demonstrated a successful chemical treatment program for recirculating cooling water that used unnitrified, reclaimed, Title 22 water as the primary makeup water source. The constituents in the reclaimed water are supplied by variety of residential and waste water sources resulting in a water quality that may vary to a greater degree than domestic water supplies. This water contains high concentrations of orthophosphate, ammonia, chlorides and suspended solids. The impact of which, under cycled conditions is calcium orthophosphate scaling, high corrosion of yellow metal and mild steel, stress cracking of copper alloys and stainless steel and rapidly growing biological activity. A mobile cooling water testing laboratory with two pilot recirculating water systems modeled the cogeneration station`s cooling tower operating conditions and parameters. The tube and shell, tube side cooling heat exchangers were fitted with 443 admiralty, 90/10 copper nickel, 316 stainless steel and 1202 mild steel heat exchanger tubes. Coupons and Corrater electrodes were also installed. A chemical treatment program consisting of 60/40 AA/AMPS copolymer for scale, deposits and dispersion, sodium tolyltriazole for yellow metal corrosion, and a bromination program to control the biological activity was utilized in the pilot systems. Recirculating water orthophosphate concentrations reached levels of 70 mg/L as PO, and ammonia concentrations reached levels of 35 mg/L, as total NH3. The study successfully demonstrated a chemical treatment program to control scale and deposition, minimize admiralty, 90/10 copper nickel and carbon steel corrosion rates, prevent non-heat transfer yellow metal and stainless steel stress cracking, and control the biological activity in this high nutrient water.

  10. Final Report: Fiscal Year 1997 demonstration of omnivorous non-thermal mixed waste treatment: Direct chemical oxidation of organic solids and liquids using peroxydisulfate

    SciTech Connect (OSTI)

    Cooper, J.F.

    1998-01-01

    Direct Chemical Oxidation (DCO) is a non-thermal, ambient pressure, aqueous-based technology for the oxidative destruction of the organic components of hazardous or mixed waste streams. The process has been developed for applications in waste treatment, chemical demilitarization and decontamination at LLNL since 1992. The process uses solutions of the peroxydisulfate ion (typically sodium or ammonium salts) to completely mineralize the organics to carbon dioxide and water. The expended oxidant may be electrolytically regenerated to minimize secondary waste. The paper briefly describes: free radical and secondary oxidant formation; electrochemical regeneration; offgas stream; and throughput.

  11. WATER ACTIVITY DATA ASSESSMENT TO BE USED IN HANFORD WASTE SOLUBILITY CALCULATIONS

    SciTech Connect (OSTI)

    DISSELKAMP RS

    2011-01-06

    The purpose of this report is to present and assess water activity versus ionic strength for six solutes:sodium nitrate, sodium nitrite, sodium chloride, sodium carbonate, sodium sulfate, and potassium nitrate. Water activity is given versus molality (e.g., ionic strength) and temperature. Water activity is used to estimate Hanford crystal hydrate solubility present in the waste.

  12. Flexible Distributed Energy and Water from Waste for the Food and Beverage Industry

    Broader source: Energy.gov [DOE]

    Waste-to-value is a promising and comprehensive wastewater processing solution being pursued by GE that recovers valuable energy and purified water from the abundant wastewater generated and...

  13. Geology of the Waste Treatment Plant Seismic Boreholes

    SciTech Connect (OSTI)

    Barnett, D. Brent; Fecht, Karl R.; Reidel, Stephen P.; Bjornstad, Bruce N.; Lanigan, David C.; Rust, Colleen F.

    2007-05-11

    In 2006, the U.S. Department of Energy initiated the Seismic Boreholes Project (SBP) to emplace boreholes at the Waste Treatment Plant (WTP) site in order to obtain direct shear wave velocity (Vs) measurements and other physical property measurements in Columbia River basalt and interbedded sediments of the Ellensburg Formation. The goal was to reduce the uncertainty in the response spectra and seismic design basis, and potentially recover design margin for the WTP. The characterization effort within the deep boreholes included 1) downhole measurements of the velocity properties of the suprabasalt, basalt, and sedimentary interbed sequences, 2) downhole measurements of the density of the subsurface basalt and sediments, and 3) geologic studies to confirm the geometry of the contact between the various basalt and interbedded sediments through examination of retrieved core from the core hole and data collected through geophysical logging of each borehole. This report describes the results of the geologic studies from three mud-rotary boreholes and one cored borehole at the WTP. All four boreholes penetrated the entire Saddle Mountains Basalt and the upper part of the Wanapum Basalt where thick sedimentary interbeds occur between the lava flows. The basalt flows penetrated in Saddle Mountains Basalt included the Umatilla Member, Esquatzel Member, Pomona Member, and the Elephant Mountain Member. The underlying Priest Rapids Member of the Wanapum Basalt also was penetrated. The Ellensburg Formation sediments consist of the Mabton Interbed, the Cold Creek Interbed, the Selah Interbed, and the Rattlesnake Ridge Interbed; the Byron Interbed occurs between two flows of the Priest Rapids Member. The Mabton Interbed marks the contact between the Wanapum and Saddle Mountains Basalts. The thicknesses of the basalts and interbedded sediments were within expected limits. However, a small reverse fault was found in the Pomona Member flow top. This fault has three periods of

  14. Life Cycle Analysis for Treatment and Disposal of PCB Waste at Ashtabula and Fernald

    SciTech Connect (OSTI)

    Morris, M.I.

    2001-01-11

    This report presents the use of the life cycle analysis (LCA) system developed at Oak Ridge National Laboratory (ORNL) to assist two U.S. Department of Energy (DOE) sites in Ohio--the Ashtabula Environmental Management Project near Cleveland and the Fernald Environmental Management Project near Cincinnati--in assessing treatment and disposal options for polychlorinated biphenyl (PCB)-contaminated low-level radioactive waste (LLW) and mixed waste. We will examine, first, how the LCA process works, then look briefly at the LCA system's ''toolbox,'' and finally, see how the process was applied in analyzing the options available in Ohio. As DOE nuclear weapons facilities carry out planned decontamination and decommissioning (D&D) activities for site closure and progressively package waste streams, remove buildings, and clean up other structures that have served as temporary waste storage locations, it becomes paramount for each waste stream to have a prescribed and proven outlet for disposition. Some of the most problematic waste streams throughout the DOE complex are PCB low-level radioactive wastes (liquid and solid) and PCB low-level Resource Conservation and Recovery Act (RCRA) liquid and solid wastes. Several DOE Ohio Field Office (OH) sites have PCB disposition needs that could have an impact on the critical path of the decommissioning work of these closure sites. The Ashtabula Environmental Management Project (AEMP), an OH closure site, has an urgent problem with disposition of soils contaminated by PCB and low-level waste at the edge of the site. The Fernald Environmental Management Project (FEMP), another OH closure site, has difficulties in timely disposition of its PCB-low-level sludges and its PCB low-level RCRA sludges in order to avoid impacting the critical path of its D&D activities. Evaluation of options for these waste streams is the subject of this report. In the past a few alternatives for disposition of PCB low-level waste and PCB low-level RCRA

  15. INL Bettis Water Treatment Project Report

    SciTech Connect (OSTI)

    Not Available

    2009-06-01

    Bechtel Bettis Atomic Power Laboratory (Bettis), West Mifflin, PA, requested that the Idaho National Laboratory (INL) (Battelle Energy Alliance) perform tests using water simulants and three specified media to determine if those ion-exchange (IX) resins will be effective at removing the plutonium contamination from water. This report details the testing and results of the tests to determine the suitability of the media to treat plutonium contaminated water at near nuetral pH.

  16. Ground-water monitoring compliance plan for the Hanford Site Solid Waste Landfill

    SciTech Connect (OSTI)

    Fruland, R.M.

    1986-10-01

    Washington state regulations required that solid waste landfill facilities have ground-water monitoring programs in place by May 27, 1987. This document describes the well locations, installation, characterization studies and sampling and analysis plan to be followed in implementing the ground-water monitoring program at the Hanford Site Solid Waste Landfill (SWL). It is based on Washington Administrative Code WAC 173-304-490. 11 refs., 19 figs., 4 tabs.

  17. Optimization of biological recycling of plant nutrients in livestock waste by utilizing waste heat from cooling water

    SciTech Connect (OSTI)

    Maddox, J.J.; Behrends, L.L.; Burch, D.W.; Kingsley, J.B.; Waddell, E.L. Jr.

    1982-05-01

    Results are presented from a 5-year study to develop aquatic methods which beneficially use condenser cooling water from electric generating power plants. A method is proposed which uses a system for aquatic farming. Livestock waste is used to fertilize planktonic algae production and filter-feeding fish are used to biologically harvest the algae, condenser cooling water (simulated) is used to add waste heat to the system, and emergent aquatic plants are used in a flow through series as a bio-filter to improve the water quality and produce an acceptable discharge. Two modes of operation were tested; one uses untreated swine manure as the source of aquatic fertilizer and the other uses anaerobic digester waste as a means of pretreating the manure to produce an organic fertilizer. A set of operating conditions (temperature, retention time, fish stocking rate, fertilizer rates, land and water requirements, suggested fish and plant species, and facility design) were developed from these results. The integrated system allows continual use of power plant condenser cooling water from plants in the southeastern United States.

  18. Survey of carbonization facilities for municipal solid waste treatment in Japan

    SciTech Connect (OSTI)

    Hwang, In-Hee; Kawamoto, Katsuya

    2010-07-15

    The operations of carbonization facilities for municipal solid waste treatment in Japan were examined. Input waste, system processes, material flows, quality of char and its utilization, fuel and chemical consumption, control of facility emissions, and trouble areas in facility operation were investigated and analyzed. Although carbonization is a technically available thermochemical conversion method for municipal solid waste treatment, problems of energy efficiency and char utilization must be solved for carbonization to be competitive. Possible solutions include (1) optimizing the composition of input waste, treatment scale, organization of unit processes, operational methods, and quality and yield of char on the basis of analysis and feedback of long-term operating data of present operating facilities and (2) securing stable char demands by linking with local industries such as thermal electric power companies, iron manufacturing plants, and cement production plants.

  19. Choosing solidification or vitrification for low-level radioactive and mixed waste treatment

    SciTech Connect (OSTI)

    Gimpel, R.F.

    1992-02-14

    Solidification (making concrete) and vitrification (making glass) are frequently the treatment methods recommended for treating inorganic or radioactive wastes. Solidification is generally perceived as the most economical treatment method. Whereas, vitrification is considered (by many) as the most effective of all treatment methods. Unfortunately, vitrification has acquired the stigma that it is too expensive to receive further consideration as an alternative to solidification in high volume treatment applications. Ironically, economic studies, as presented in this paper, show that vitrification may be more competitive in some high volume applications. Ex-situ solidification and vitrification are the competing methods for treating in excess of 450 000m{sup 3} of low-level radioactive and mixed waste at the Fernald Environmental Management Project (FEMP or simply, Fernald) located near Cincinnati, Ohio. This paper summarizes how Fernald is choosing between solidification and vitrification as the primary waste treatment method.

  20. Summary - Savannah River Site Tank 48H Waste Treatment Project

    Office of Environmental Management (EM)

    S Wet Air Savan contain liquid w contain potent to the option tank w Bed S condu be pur The as Techn Techn as liste * W o o The Ele Site: S roject: S P Report Date: J ited States Savanna Why DOE r Oxidation Proc nnah River Tan ning approxima waste. The wa ns tetraphenylb tially flammable tank head spa s have been id waste: Wet Air O team Reformin cted to aid in d rsued for treatin What th ssessment team ology Element ology Readine ed below: Wet Air Oxidatio Reactor sys Offgas Trea To view the

  1. Nanofiltration/reverse osmosis for treatment of coproduced waters

    SciTech Connect (OSTI)

    Mondal, S.; Hsiao, C.L.; Wickramasinghe, S.R. [Colorado State University, Ft Collins, CO (United States)

    2008-07-15

    Current high oil and gas prices have lead to renewed interest in exploration of nonconventional energy sources such as coal bed methane, tar sand, and oil shale. However oil and gas production from these nonconventional sources has lead to the coproduction of large quantities of produced water. While produced water is a waste product from oil and gas exploration it is a very valuable natural resource in the arid Western United States. Thus treated produced water could be a valuable new source of water. Commercially available nanofiltration and low pressure reverse osmosis membranes have been used to treat three produced waters. The results obtained here indicate that the permeate could be put to beneficial uses such as crop and livestock watering. However minimizing membrane fouling will be essential for the development of a practical process. Field Emission Scanning Electron Microscopy imaging may be used to observe membrane fouling.

  2. EA-1106: Explosive Waste Treatment Facility at Site 300, Lawrence Livermore National Laboratory, San Joaquin County, California

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to build, permit, and operate the Explosive Waste Treatment Facility to treat explosive waste at the U.S. Department of Energy's Lawrence...

  3. Options Assessment Report: Treatment of Nitrate Salt Waste at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Robinson, Bruce Alan; Stevens, Patrice Ann

    2015-12-17

    This report documents the methodology used to select a method of treatment for the remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The method selected should treat the containerized waste in a manner that renders the waste safe and suitable for transport and final disposal in the Waste Isolation Pilot Plant (WIPP) repository, under specifications listed in the WIPP Waste Acceptance Criteria (DOE/CBFO, 2013). LANL recognizes that the results must be thoroughly vetted with the New Mexico Environment Department (NMED) and that a modification to the LANL Hazardous Waste Facility Permit is a necessary step before implementation of this or any treatment option. Likewise, facility readiness and safety basis approvals must be received from the Department of Energy (DOE). This report presents LANL’s preferred option, and the documentation of the process for reaching the recommended treatment option for RNS and UNS waste, and is presented for consideration by NMED and DOE.

  4. Advanced Mixed Waste Treatment Project melter system preliminary design technical review meeting

    SciTech Connect (OSTI)

    Eddy, T.L.; Raivo, B.D.; Soelberg, N.R.; Wiersholm, O.

    1995-02-01

    The Idaho National Engineering Laboratory Advanced Mixed Waste Treatment Project sponsored a plasma are melter technical design review meeting to evaluate high-temperature melter system configurations for processing heterogeneous alpha-contaminated low-level radioactive waste (ALLW). Thermal processing experts representing Department of Energy contractors, the Environmental Protection Agency, and private sector companies participated in the review. The participants discussed issues and evaluated alternative configurations for three areas of the melter system design: plasma torch melters and graphite arc melters, offgas treatment options, and overall system configuration considerations. The Technical Advisory Committee for the review concluded that graphite arc melters are preferred over plasma torch melters for processing ALLW. Initiating involvement of stakeholders was considered essential at this stage of the design. For the offgas treatment system, the advisory committee raised the question whether to a use wet-dry or a dry-wet system. The committee recommended that the waste stream characterization, feed preparation, and the control system are essential design tasks for the high-temperature melter treatment system. The participants strongly recommended that a complete melter treatment system be assembled to conduct tests with nonradioactive surrogate waste material. A nonradioactive test bed would allow for inexpensive design and operational changes prior to assembling a system for radioactive waste treatment operations.

  5. The Energy-Water Nexus: State and Local Roles in Efficiency & Water and Wastewater Treatment Plants

    Broader source: Energy.gov [DOE]

    This presentation, given through the DOE's Technical Assitance Program (TAP), provides information on the Energy-Water Nexus: State and Local Roles in Efficiency & Water and Wastewater Treatment Plants.

  6. Integrated demonstration of molten salt oxidation with salt recycle for mixed waste treatment

    SciTech Connect (OSTI)

    Hsu, P.C.

    1997-11-01

    Molten Salt Oxidation (MSO) is a thermal, nonflame process that has the inherent capability of completely destroying organic constituents of mixed wastes, hazardous wastes, and energetic materials while retaining inorganic and radioactive constituents in the salt. For this reason, MSO is considered a promising alternative to incineration for the treatment of a variety of organic wastes. Lawrence Livermore National Laboratory (LLNL) has prepared a facility and constructed an integrated pilot-scale MSO treatment system in which tests and demonstrations are performed under carefully controlled (experimental) conditions. The system consists of a MSO processor with dedicated off-gas treatment, a salt recycle system, feed preparation equipment, and equipment for preparing ceramic final waste forms. This integrated system was designed and engineered based on laboratory experience with a smaller engineering-scale reactor unit and extensive laboratory development on salt recycle and final forms preparation. In this paper we present design and engineering details of the system and discuss its capabilities as well as preliminary process demonstration data. A primary purpose of these demonstrations is identification of the most suitable waste streams and waste types for MSO treatment.

  7. High Level Waste Remote Handling Equipment in the Melter Cave Support Handling System at the Hanford Waste Treatment Plant

    SciTech Connect (OSTI)

    Bardal, M.A.; Darwen, N.J.

    2008-07-01

    Cold war plutonium production led to extensive amounts of radioactive waste stored in tanks at the Department of Energy's (DOE) Hanford site. Bechtel National, Inc. is building the largest nuclear Waste Treatment Plant in the world located at the Department of Energy's Hanford site to immobilize the millions of gallons of radioactive waste. The site comprises five main facilities; Pretreatment, High Level Waste vitrification, Low Active Waste vitrification, an Analytical Lab and the Balance of Facilities. The pretreatment facilities will separate the high and low level waste. The high level waste will then proceed to the HLW facility for vitrification. Vitrification is a process of utilizing a melter to mix molten glass with radioactive waste to form a stable product for storage. The melter cave is designated as the High Level Waste Melter Cave Support Handling System (HSH). There are several key processes that occur in the HSH cell that are necessary for vitrification and include: feed preparation, mixing, pouring, cooling and all maintenance and repair of the process equipment. Due to the cell's high level radiation, remote handling equipment provided by PaR Systems, Inc. is required to install and remove all equipment in the HSH cell. The remote handling crane is composed of a bridge and trolley. The trolley supports a telescoping tube set that rigidly deploys a TR 4350 manipulator arm with seven degrees of freedom. A rotating, extending, and retracting slewing hoist is mounted to the bottom of the trolley and is centered about the telescoping tube set. Both the manipulator and slewer are unique to this cell. The slewer can reach into corners and the manipulator's cross pivoting wrist provides better operational dexterity and camera viewing angles at the end of the arm. Since the crane functions will be operated remotely, the entire cell and crane have been modeled with 3-D software. Model simulations have been used to confirm operational and maintenance

  8. Oak Ridge National Lebroatory Liquid&Gaseous Waste Treatment System Strategic Plan

    SciTech Connect (OSTI)

    Van Hoesen, S.D.

    2003-09-09

    Excellence in Laboratory operations is one of the three key goals of the Oak Ridge National Laboratory (ORNL) Agenda. That goal will be met through comprehensive upgrades of facilities and operational approaches over the next few years. Many of ORNL's physical facilities, including the liquid and gaseous waste collection and treatment systems, are quite old, and are reaching the end of their safe operating life. The condition of research facilities and supporting infrastructure, including the waste handling facilities, is a key environmental, safety and health (ES&H) concern. The existing infrastructure will add considerably to the overhead costs of research due to increased maintenance and operating costs as these facilities continue to age. The Liquid Gaseous Waste Treatment System (LGWTS) Reengineering Project is a UT-Battelle, LLC (UT-B) Operations Improvement Program (OIP) project that was undertaken to develop a plan for upgrading the ORNL liquid and gaseous waste systems to support ORNL's research mission.

  9. Desalting and water treatment membrane manual: A guide to membranes for municipal water treatment. Water treatment technology program report No. 1

    SciTech Connect (OSTI)

    Chapman-Wilbert, M.

    1993-09-01

    The Bureau of Reclamation prepared this manual to provide an overview of microfiltration, ultrafiltration, nanofiltration, reverse osmosis, and electrodialysis processes as they are used for water treatment. Membrane composition, the chemical processes, and the physical processes involved with each membrane type are described and compared. Because care and maintenance of water treatment membranes are vital to their performance and life expectancy, pretreatment, cleaning, and storage requirements are discussed in some detail. Options for concentrate disposal, also a problematic feature of membrane processes, are discussed. The culmination of this wealth of knowledge is an extensive comparison of water treatment membranes commercially available at this time. The tables cover physical characteristics, performance data, and operational tolerances.

  10. INITIAL SELECTION OF SUPPLEMENTAL TREATMENT TECHNOLOGIES FOR HANFORDS LOW ACTIVITY TANK WASTE

    SciTech Connect (OSTI)

    RAYMOND, R.E.

    2004-02-20

    In 2002, the U.S. Department of Energy (DOE) documented a plan for accelerating cleanup of the Hanford Site, located in southeastern Washington State, by at least 35 years. A key element of the plan was acceleration of the tank waste program and completion of ''tank waste treatment by 2028 by increasing the capacity of the planned Waste Treatment Plant (WTP) and using supplemental technologies for waste treatment and immobilization.'' The plan identified specific technologies to be evaluated for supplemental treatment of as much as 70% of the low-activity waste (LAW). In concert with this acceleration plan, DOE, the U.S. Environmental Protection Agency, and the Washington State Department of Ecology proposed to accelerate--from 2014 to 2006--the Hanford Federal Facility Agreement and Consent Order milestone (M-62-11) associated with a final decision on the balance of tank waste that is beyond the capacity of the WTP. The DOE Office of River Protection tank farm contractor, CH2M HILL Hanford Group, Inc. (CH2M HILL), was tasked with testing and evaluating selected supplemental technologies to support final decisions on tank waste treatment. Three technologies and corresponding vendors were selected to support an initial technology selection in 2003. The three technologies were containerized grout called cast stone (Fluor Federal Services); bulk vitrification (AMEC Earth and Environmental, Inc.); and steam reforming (THOR Treatment Technologies, LLC.). The cast stone process applies an effective grout waste formulation to the LAW and places the cement-based product in a large container for solidification and disposal. Unlike the WTP LAW treatment, which applies vitrification within continuous-fed joule-heated ceramic melters, bulk vitrification produces a glass waste form using batch melting within the disposal container. Steam reforming produces a granular denitrified mineral waste form using a high-temperature fluidized bed process. An initial supplemental

  11. State waste discharge permit application for cooling water and condensate discharges

    SciTech Connect (OSTI)

    Haggard, R.D.

    1996-08-12

    The following presents the Categorical State Waste Discharge Permit (SWDP) Application for the Cooling Water and Condensate Discharges on the Hanford Site. This application is intended to cover existing cooling water and condensate discharges as well as similar future discharges meeting the criteria set forth in this document.

  12. RCRA information on hazardous wastes for publicly owned treatment works. Technical report

    SciTech Connect (OSTI)

    Not Available

    1985-09-01

    The guidance manual provides guidance to municipal personnel in understanding hazardous waste requirements of the Resource Conservation and Recovery Act (RCRA) and the implications of these RCRA requirements for the wastewater treatment plant operated by your municipality, for your local pretreatment program, and for local industries served by the treatment plant. The primary purpose of the manual is the RCRA notification requirement specified in the General Pretreatment Regulations. The manual focuses on Subtitle C requirements. (Subtitle C is directly applicable to industries since this program regulates generators, transporters, and disposers of hazardous waste). The manual also provides a general understanding of how federal RCRA requirements for hazardous waste affect industrial users. The manual also will be helpful in complying with any applicable federal requirements incumbent upon your POTW under Subtitle C of RCRA. The appendices contain lists of hazardous wastes regulated by federal requirements; selected EPA-approved forms for hazardous waste facilities to use; RCRA information brochure which briefly outlines the Act's impact on industries that generate or transport hazardous wastes; and EPA pamphlets summarizing information for generators of small quantities of hazardous waste.

  13. MX-2500 thermal processor for the treatment of petroleum refining wastes and contaminated soils

    SciTech Connect (OSTI)

    Swanberg, C. )

    1993-05-01

    Separation and Recovery Systems, Inc. (SRS) of Irvine, California is the market leader in supplying hazardous waste and secondary material dewatering and drying services to the petroleum refining industry. In late 1991, SRS introduced the new generation of dryer technology, the MX-2500. The MX-2500 is an electrically heated dryer system that recovers virtually all of the hydrocarbon value of refinery wastes and secondary materials, while producing a solid residue meeting EPA Land Disposal Restriction (LDR) treatment levels which allows the refinery to land dispose of the solids, thereby realizing two objectives: waste minimization and oil recovery/recycling. 2 figs., 3 tabs.

  14. Pollution-control equipment (Brazil). Industrial waste-treatment equipment, September 1991. Export trade information

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    The Brazilian market for both solid and liquid industrial waste treatment equipment is promising in view of the expected growth in demand during the next 5 years. The estimated market demand in 1991 is US $243 million and is projected to grow 15% per year reaching US $370 million in 1994. The market for liquid waste equipment is about 85% of the total market for industrial waste equipment. Currently imports of pollution control equipment account for about 13% of the total market. Due to the recent import liberalization program implemented by the Government, local sources forecast the import share will increase to 20% by 1994.

  15. The Treatment of Mixed Waste with GeoMelt In-Container Vitrification

    SciTech Connect (OSTI)

    Finucane, K.G.; Campbell, B.E.

    2006-07-01

    AMEC's GeoMelt{sup R} In-Container Vitrification (ICV){sup TM} has been used to treat diverse types of mixed low-level radioactive waste. ICV is effective in the treatment of mixed wastes containing polychlorinated biphenyls (PCBs) and other semi-volatile organic compounds, volatile organic compounds (VOCs) and heavy metals. The GeoMelt vitrification process destroys organic compounds and immobilizes metals and radionuclides in an extremely durable glass waste form. The process is flexible allowing for treatment of aqueous, oily, and solid mixed waste, including contaminated soil. In 2004, ICV was used to treat mixed radioactive waste sludge containing PCBs generated from a commercial cleanup project regulated by the Toxic Substances Control Act (TSCA), and to treat contaminated soil from Rocky Flats Environmental Technology Site. The Rocky Flats soil contained cadmium, PCBs, and depleted uranium. In 2005, AMEC completed a treatability demonstration of the ICV technology on Mock High Explosive from Sandia National Laboratories. This paper summarizes results from these mixed waste treatment projects. (authors)

  16. Treatment of Bottled Liquid Waste During Remediation of the Hanford 618-10 Burial Ground - 13001

    SciTech Connect (OSTI)

    Faulk, Darrin E.; Pearson, Chris M.; Vedder, Barry L.; Martin, David W.

    2013-07-01

    A problematic waste form encountered during remediation of the Hanford Site 618-10 burial ground consists of bottled aqueous waste potentially contaminated with regulated metals. The liquid waste requires stabilization prior to landfill disposal. Prior remediation activities at other Hanford burial grounds resulted in a standard process for sampling and analyzing liquid waste using manual methods. Due to the highly dispersible characteristics of alpha contamination, and the potential for shock sensitive chemicals, a different method for bottle processing was needed for the 618-10 burial ground. Discussions with the United States Department of Energy (DOE) and United States Environmental Protection Agency (EPA) led to development of a modified approach. The modified approach involves treatment of liquid waste in bottles, up to one gallon per bottle, in a tray or box within the excavation of the remediation site. Bottles are placed in the box, covered with soil and fixative, crushed, and mixed with a Portland cement grout. The potential hazards of the liquid waste preclude sampling prior to treatment. Post treatment verification sampling is performed to demonstrate compliance with land disposal restrictions and disposal facility acceptance criteria. (authors)

  17. Mixed-waste treatment -- What about the residuals? A comparative analysis of MSO and incineration

    SciTech Connect (OSTI)

    1993-06-01

    This report examines the issues concerning final waste forms, or residuals, that result from the treatment of mixed waste in molten salt oxidation (MSO) and incinerator systems. MSO is a technology with the potential to treat a certain segment of the waste streams at US Department of Energy (DOE) sites. MSO was compared with incineration because incineration is the best demonstrated available technology (BDAT) for the same waste streams. The Grand Junction Projects Office (GJPO) and Oak Ridge National Laboratory (ORNL) prepared this report for the DOE Office of Environmental Restoration (OER). The goals of this study are to objectively evaluate the anticipated residuals from MSO and incineration, examine regulatory issues for these final waste forms, and determine secondary treatment options. This report, developed to address concerns that MSO residuals present unique disposal difficulties, is part of a larger effort to successfully implement MSO as a treatment technology for mixed and hazardous waste. A Peer Review Panel reviewed the MSO technology in November 1991, and the implementation effort is ongoing under the guidance of the MSO Task Force.

  18. Treatment of M-area mixed wastes at the Savannah River Site

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    The Department of Energy has prepared this environmental assessment, DOE/EA-0918, to assess the potential environmental impacts of the treatment of mixed wastes currently stored in the M-Area at the Savannah River Site, near Aiken, South Carolina. DOE is proposing to treat and stabilize approximately 700,000 gallons of mixed waste currently stored in the Interim Treatment/Storage Facility (IT/SF) and Mixed Waste Storage Shed (MWSS). This waste material is proposed to be stabilized using a vitrification process and temporarily stored until final disposal is available by the year 2005. This document has been prepared to assess the potential environmental impacts attributable to the treatment and stabilization of M-area mixed wastes, the closure of the interim storage area, and storage of the vitrified waste until disposal in onsite RCRA vaults. Based on the analyses in the environmental assessment, the Department of Energy has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement is not required, and the Department of Energy is issuing this finding of no significant impact.

  19. MODIFIED REVERSE OSMOSIS SYSTEM FOR TREATMENT OF PRODUCED WATERS

    SciTech Connect (OSTI)

    T.M. Whitworth; Liangxiong Li

    2002-09-15

    This report describes work performed during the first year of the project ''Modified Reverse Osmosis System for Treatment of Produced Waters.'' This research project has two objectives. The first objective is to test the use of clay membranes in the treatment of produced waters by reverse osmosis. The second objective is to test the ability of a system patented by the New Mexico Tech Research Foundation to remove salts from reverse osmosis waste streams as a solid. We performed 12 experiments using clay membranes in cross-flow experimental cells. We found that, due to dispersion in the porous frit used adjacent to the membrane, the concentration polarization layer seems to be completely (or nearly completely) destroyed at low flow rates. This observation suggests that clay membranes used with porous frit material many reach optimum rejection rates at lower pumping rates than required for use with synthetic membranes. The solute rejection efficiency decreases with increasing solution concentration. For the membranes and experiments reported here, the rejection efficiency ranged from 71% with 0.01 M NaCl solution down to 12% with 2.3 M NaCl solution. More compacted clay membranes will have higher rejection capabilities. The clay membranes used in our experiments were relatively thick (approximately 0.5 mm). The active layer of most synthetic membranes is only 0.04 {micro}m (0.00004 mm), approximately 1250 times thinner than the clay membranes used in these experiments. Yet clay membranes as thin as 12 {micro}m have been constructed (Fritz and Eady, 1985). Since Darcy's law states that the flow through a material of constant permeability is inversely proportional to it's the material's thickness, then, based on these experimental observations, a very thin clay membrane would be expected to have much higher flow rates than the ones used in these experiments. Future experiments will focus on testing very thin clay membranes. The membranes generally exhibited reasonable

  20. Review of the Hanford Site Waste Treatment and Immobilization...

    Broader source: Energy.gov (indexed) [DOE]

    Treatment and Immobilization Plant Construction Quality May 2013 Office of Safety and ... BNI Bechtel National, Incorporated CDR Construction Deficiency Report CFR Code of Federal ...

  1. Hazardous Waste Treatment, Storage and Disposal Facilities (TSDF...

    Open Energy Info (EERE)

    Treatment, Storage and Disposal Facilities (TSDF) Guidance Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook:...

  2. Characterization of oil and gas waste disposal practices and assessment of treatment costs. Yearly report, July 1, 1992--June 30, 1993

    SciTech Connect (OSTI)

    Bedient, P.B.

    1993-07-30

    The project consists of 3 tasks: (1) Developing a Production Environmental Database (PED) with the purpose of investigating the current industry waste storage and disposal practices by different regions, states and types of waste and investigating the environmental impacts associated with these practices; (2) Evaluating the suitability of available and developing technologies for treating produced water and identifying applicable unit process configurations; and (3) Evaluating the costs associated with various degrees of treatment achievable by different configurations. Records of wells drilled during the years 1986 through 1991 were compiled from industry reports. Overall, drilling has decreased from an average of 60,000 wells/yr for the period 1981 through 1985 to 20,000/yr during 1986 through 1991. A produced water database was developed from data and information provided by the various state and federal agencies. Currently, the database has information on the production of oil, gas and brines from 24 states. The data from the produced water database indicate that for the most part, Class II Injection seemed to be the common disposal method. Other methods included evaporation, surface disposal via NPDES permit, road spreading, hauling out-of-state, and annular disposal. A survey of oil and gas operators has been developed, reviewed and edited. The survey is divided-by topic into three sections. (1) drilling wastes; (2) associated wastes; and (3) produced water. The objective of the survey is to develop more current information on the waste volumes and disposal methods used during 1986 through 1991. The possible treatment scenarios for produced water have been identified. Organic and inorganic contaminant removal, liquid/solid separation and liquid/emulsified oil separation have been identified as the main objectives of the treatment of produced water.

  3. Online Produced Water Treatment Catalog and Decision Tool

    SciTech Connect (OSTI)

    J. Arthur

    2012-03-31

    The objective of this project was to create an internet-based Water Treatment Technology Catalog and Decision Tool that will increase production, decrease costs and enhance environmental protection. This is to be accomplished by pairing an operator's water treatment cost and capacity needs to specific water treatments. This project cataloged existing and emerging produced water treatment technologies and allows operators to identify the most cost-effective approaches for managing their produced water. The tool captures the cost and capabilities of each technology and the disposal and beneficial use options for each region. The tool then takes location, chemical composition, and volumetric data for the operator's water and identifies the most cost effective treatment options for that water. Regulatory requirements or limitations for each location are also addressed. The Produced Water Treatment Catalog and Decision Tool efficiently matches industry decision makers in unconventional natural gas basins with: 1) appropriate and applicable water treatment technologies for their project, 2) relevant information on regulatory and legal issues that may impact the success of their project, and 3) potential beneficial use demands specific to their project area. To ensure the success of this project, it was segmented into seven tasks conducted in three phases over a three year period. The tasks were overseen by a Project Advisory Council (PAC) made up of stakeholders including state and federal agency representatives and industry representatives. ALL Consulting has made the catalog and decision tool available on the Internet for the final year of the project. The second quarter of the second budget period, work was halted based on the February 18, 2011 budget availability; however previous project deliverables were submitted on time and the deliverables for Task 6 and 7 were completed ahead of schedule. Thus the application and catalog were deployed to the public Internet

  4. Constructed wetlands for municipal solid waste landfill leachate treatment. Final report

    SciTech Connect (OSTI)

    Peverly, J.; Sanford, W.E.; Steenhuis, T.S.

    1993-11-01

    In 1989, the US Geological Survey and Cornell University, in cooperation with the New York State Energy Research and Development Authority and the Tompkins County Solid Waste Department, began a three-year study at a municipal solid-waste landfill near Ithaca, New York, to test the effectiveness of leachate treatment with constructed wetlands and to examine the associated treatment processes. Specific objectives of the study were to examine: treatment efficiency as function of substrate composition and grain size, degree of plant growth, and seasonal changes in evapotranspiration rates and microbial activity; effects of leachate and plant growth on the hydraulic characteristics of the substrate; and chemical, biological, and physical processes by which nutrients, metals, and organic compounds are removed from leachate as it flows through the substrate. A parallel study at a municipal solid-waste landfill near Fenton, New York was conducted by researchers at Cornell University, Ithaca College, and Hawk Engineering (Trautmann and others, 1989). Results are described.

  5. Integrated gasification and plasma cleaning for waste treatment: A life cycle perspective

    SciTech Connect (OSTI)

    Evangelisti, Sara; Tagliaferri, Carla; Clift, Roland; Lettieri, Paola; Taylor, Richard; Chapman, Chris

    2015-09-15

    Highlights: • A life cycle assessment of an advanced two-stage process is undertaken. • A comparison of the impacts of the process when fed with 7 feedstock is presented. • Sensitivity analysis on the system is performed. • The treatment of RDF shows the lowest impact in terms of both GWP and AP. • The plasma shows a small contribution to the overall impact of the plant. - Abstract: In the past, almost all residual municipal waste in the UK was landfilled without treatment. Recent European waste management directives have promoted the uptake of more sustainable treatment technologies, especially for biodegradable waste. Local authorities have started considering other options for dealing with residual waste. In this study, a life cycle assessment of a future 20 MWe plant using an advanced two-stage gasification and plasma technology is undertaken. This plant can thermally treat waste feedstocks with different composition and heating value to produce electricity, steam and a vitrified product. The objective of the study is to analyse the environmental impacts of the process when fed with seven different feedstocks (including municipal solid waste, solid refuse fuel, reuse-derived fuel, wood biomass and commercial & industrial waste) and identify the process steps which contribute more to the environmental burden. A scenario analysis on key processes, such as oxygen production technology, metal recovery and the appropriate choice for the secondary market aggregate material, is performed. The influence of accounting for the biogenic carbon content in the waste from the calculations of the global warming potential is also shown. Results show that the treatment of the refuse-derived fuel has the lowest impact in terms of both global warming potential and acidification potential because of its high heating value. For all the other impact categories analysed, the two-stage gasification and plasma process shows a negative impact for all the waste streams

  6. EECBG Success Story: Missouri Water Treatment Plant Upgraded

    Broader source: Energy.gov [DOE]

    The city of St. Peters, Missouri is installing a water reservoir pump at the water treatment plant and replace seven pump motors with premium efficiency motors on the high service and backwash pumping systems, thanks to an Energy Efficiency and Conservation Block Grant (EECBG). Learn more.

  7. Particle count monitoring of reverse osmosis water treatment for removal of low-level radionuclides

    SciTech Connect (OSTI)

    Moritz, E.J.; Hoffman, C.R.; Hergert, T.R.

    1995-03-01

    Laser diode particle counting technology and analytical measurements were used to evaluate a pilot-scale reverse osmosis (RO) water treatment system for removal of particulate matter and sub-picocurie low-level radionuclides. Stormwater mixed with Waste Water Treatment Plant (WWTP) effluent from the Rocky Flats Environmental Technology Site (RFETS), formerly a Department of Energy (DOE) nuclear weapons production facility, were treated. No chemical pretreatment of the water was utilized during this study. The treatment system was staged as follows: multimedia filtration, granular activated carbon adsorption, hollow tube ultrafiltration, and reverse osmosis membrane filtration. Various recovery rates and two RO membrane models were tested. Analytical measurements included total suspended solids (TSS), total dissolved solids (TDS), gross alpha ({alpha}) and gross beta ({beta}) activity, uranium isotopes {sup 233/234}U and {sup 238}U, plutonium {sup 239/240}Pu, and americium {sup 241}Am. Particle measurement between 1--150 microns ({mu}) included differential particle counts (DPC), and total particle counts (TPC) before and after treatment at various sampling points throughout the test. Performance testing showed this treatment system produced a high quality effluent in clarity and purity. Compared to raw water levels, TSS was reduced to below detection of 5 milligrams per liter (mg/L) and TDS reduced by 98%. Gross {alpha} was essentially removed 100%, and gross {beta} was reduced an average of 94%. Uranium activity was reduced by 99%. TPC between 1-150{mu} were reduced by an average 99.8% to less than 1,000 counts per milliliter (mL), similar in purity to a good drinking water treatment plant. Raw water levels of {sup 239/240}Pu and {sup 241}Am were below reliable quantitation limits and thus no removal efficiencies could be determined for these species.

  8. Improvement of the management of residual waste in areas without thermal treatment facilities: A life cycle analysis of an Italian management district

    SciTech Connect (OSTI)

    Di Maria, Francesco; Micale, Caterina; Morettini, Emanuela; Sisani, Luciano; Damiano, Roberto

    2015-10-15

    Highlights: • LCA analysis of two option for residual waste management. • Exploitation of mechanical physical sorting facility for extracting recyclable from RMSW. • Processing the mechanically sorted organic fraction in bioreactor landfill. • Sensitivity analysis demonstrate high influence for impact assessment of substitution ratio for recycle materials. - Abstract: Starting from an existing waste management district without thermal treatment facilities, two different management scenarios for residual waste were compared by life cycle assessment (LCA). The adoption of a bioreactor landfill for managing the mechanically sorted organic fraction instead of bio-stabilization led to reduction of global warming and fresh water eutrophication by 50% and 10%, respectively. Extraction of recyclables from residual waste led to avoided emissions for particulate matter, acidification and resource depletion impact categories. Marginal energy and the amount of energy recovered from landfill gas marginally affected the LCA results. On the contrary the quality of the recyclables extracted can significantly modify the eco profile of the management schemes.

  9. Advances in the Glass Formulations for the Hanford Tank Waste Treatment and Immobilization Plant

    SciTech Connect (OSTI)

    Kruger, Albert A.; Vienna, John D.; Kim, Dong Sang

    2015-01-14

    The Department of Energy-Office of River Protection (DOE-ORP) is constructing the Hanford Tank Waste Treatment and Immobilization Plant (WTP) to treat radioactive waste currently stored in underground tanks at the Hanford site in Washington. The WTP that is being designed and constructed by a team led by Bechtel National, Inc. (BNI) will separate the tank waste into High Level Waste (HLW) and Low Activity Waste (LAW) fractions with the majority of the mass (~90%) directed to LAW and most of the activity (>95%) directed to HLW. The pretreatment process, envisioned in the baseline, involves the dissolution of aluminum-bearing solids so as to allow the aluminum salts to be processed through the cesium ion exchange and report to the LAW Facility. There is an oxidative leaching process to affect a similar outcome for chromium-bearing wastes. Both of these unit operations were advanced to accommodate shortcomings in glass formulation for HLW inventories. A by-product of this are a series of technical challenges placed upon materials selected for the processing vessels. The advances in glass formulation play a role in revisiting the flow sheet for the WTP and hence, the unit operations that were being imposed by minimal waste loading requirements set forth in the contract for the design and construction of the plant. Another significant consideration to the most recent revision of the glass models are the impacts on resolution of technical questions associated with current efforts for design completion.

  10. US DOE Initiated Performance Enhancements to the Hanford Waste Treatment and Immobilization Plant (WTP) Low-activity Waste Vitrification (LAW) System

    SciTech Connect (OSTI)

    Hamel, William F.; Gerdes, Kurt D.; Holton, Langdon K.; Pegg, Ian L.; Bowen, Brad W.

    2006-03-03

    The U.S Department of Energy Office of River Protection (DOE-ORP) is constructing a Waste Treatment and Immobilization Plant (WTP) for the treatment and vitrification of underground tank wastes stored at the Hanford Site in Washington State. The WTP comprises four major facilities: a pretreatment facility to separate the tank waste into high level waste (HLW) and low-activity waste (LAW) process streams, a HLW vitrification facility to immobilize the HLW fraction; a LAW vitrification facility to immobilize the LAW fraction, and an analytical laboratory to support the operations of all four treatment facilities. DOE has established strategic objectives to optimize the performance of the WTP facilities and the LAW and HLW waste forms to reduce the overall schedule and cost for treatment and vitrification of the Hanford tank wastes. This strategy has been implemented by establishing performance expectations in the WTP contract for the facilities and waste forms. In addition, DOE, as owner-operator of the WTP facilities, continues to evaluate 1) the design, to determine the potential for performance above the requirements specified in the WTP contract; and 2) improvements in production of the LAW and HLW waste forms. This paper reports recent progress directed at improving production of the LAW waste form. DOEs initial assessment, which is based on the work reported in this paper, is that the capacity of the WTP LAW vitrification facility can be increased by a factor of 2 to 4 with a combination of revised glass formulations, modest increases in melter glass operating temperatures, and a second-generation LAW melter with a larger surface area. Implementing these improvements in the LAW waste immobilization capability can benefit the LAW treatment mission by reducing both processing time and cost.

  11. Setting and stiffening of cementitious components in Cast Stone waste form for disposal of secondary wastes from the Hanford waste treatment and immobilization plant

    SciTech Connect (OSTI)

    Chung, Chul-Woo; Chun, Jaehun, E-mail: jaehun.chun@pnnl.gov; Um, Wooyong; Sundaram, S.K.; Westsik, Joseph H.

    2013-04-01

    Cast Stone is a cementitious waste form, a viable option to immobilize secondary nuclear liquid wastes generated from the Hanford Waste Treatment and Immobilization Plant. However, no study has been performed to understand the flow and stiffening behavior, which is essential to ensure proper workability and is important to safety in a nuclear waste field-scale application. X-ray diffraction, rheology, and ultrasonic wave reflection methods were used to understand the specific phase formation and stiffening of Cast Stone. Our results showed a good correlation between rheological properties of the fresh mixture and phase formation in Cast Stone. Secondary gypsum formation was observed with low concentration simulants, and the formation of gypsum was suppressed in high concentration simulants. A threshold concentration for the drastic change in stiffening was found at 1.56 M Na concentration. It was found that the stiffening of Cast Stone was strongly dependent on the concentration of simulant. Highlights: A combination of XRD, UWR, and rheology gives a better understanding of Cast Stone. Stiffening of Cast Stone was strongly dependent on the concentration of simulant. A drastic change in stiffening of Cast Stone was found at 1.56 M Na concentration.

  12. Evaluation of the three-phase, electric arc melting furnace for treatment of simulated, thermally oxidized radioactive and mixed wastes. Part 1: Design criteria and description of integrated waste treatment facility

    SciTech Connect (OSTI)

    Oden, L.L.; O`Connor, W.K.; Turner, P.C.; Hartman, A.D.

    1995-06-01

    The US Bureau of Mines and the Department of Energy (DOE), through its contractor EG and G Idaho Inc., are collaborating on a multiyear research project to evaluate the applicability of three-phase, electric-arc furnace melting technology to vitrify materials simulating low-level radioactive and mixed wastes buried or stored at the Idaho National Engineering Laboratory and other DOE sites. The melter is sealed, 1-t (1.1-st), three-phase, 800-kV {center_dot} A electric arc melting furnace with 10.2-cm- (4-in-) diameter graphite electrodes, water-cooled roof and sidewalls, and four water-cooled feed tubes. A water-cooled copper fixture provides for continuous tapping of slag. An instrumented air pollution control system (APCS) with access ports for analysis and a feeder based on screw conveyors and a bucket elevator are dedicated to the facility. Test data are provided by an arc furnace analyzer and by sensors indicating feed rate; slag temperature; and temperature, pressure, and velocity in the APCS. These data are received by a data logger, digitized, and transmitted to a personal computer for storage and display. This unique waste treatment facility is available for public and private use on a cost-sharing basis.

  13. Produced Water Treatment Using Microbial Fuel Cell Technology

    SciTech Connect (OSTI)

    Borole, A. P.; Campbell, R.

    2011-05-20

    ORNL has developed a treatment for produced water using a combination of microbial fuel cells and electrosorption. A collaboration between Campbell Applied Physics and ORNL was initiated to further investigate development of the technology and apply it to treatment of field produced water. The project successfully demonstrated the potential of microbial fuel cells to generate electricity from organics in produced water. A steady voltage was continuously generated for several days using the system developed in this study. In addition to the extraction of electrical energy from the organic contaminants, use of the energy at the representative voltage was demonstrated for salts removal or desalination of the produced water. Thus, the technology has potential to remove organic as well as ionic contaminants with minimal energy input using this technology. This is a novel energy-efficient method to treat produced water. Funding to test the technology at larger scale is being pursued to enable application development.

  14. Waste heat from kitchen cuts hot water electricity 23%

    SciTech Connect (OSTI)

    Barber, J.

    1984-05-21

    Heat recovered from the Hamburger Hamlet's kitchen in Bethesada, Maryland and used to pre-heat the million gallons of hot water used annually reduced hot water costs 23% and paid off the investment in 1.5 years. Potomac Electric initiated the installation of an air-to-water heat pump in the restaurant kitchen above the dishwasher at a cost of about $5300, with the restaurant obliged to reimburse the utility if performance was satisfactory. Outside water recirculates through storage tanks and the ceiling heat pump until it reaches the required 140/sup 0/F. The amount of electricity needed to bring the preheated water to that temperature was $3770 lower after the installation. Cooled air exhausted from the heat pump circulates throughout the kitchen.

  15. Waste Treatment & Immobilization Plant Project - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Treatment Plant About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S Laboratory 242-A Evaporator 300 Area 324 Building 325 Building 400 Area/Fast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim Storage Area Canyon Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility Environmental Restoration Disposal Facility F Reactor

  16. Savannah River Site mixed waste Proposed Site Treatment Plan (PSTP). Volumes 1 and 2 and reference document: Revision 2

    SciTech Connect (OSTI)

    Helmich, E.; Noller, D.K.; Wierzbicki, K.S.; Bailey, L.L.

    1995-07-13

    The DOE is required by the Resource Conservation and Recovery Act to prepare site treatment plans describing the development of treatment capacities and technologies for treating mixed waste. This proposed plan contains Savannah River Site`s preferred options and schedules for constructing new facilities, and otherwise obtaining treatment for mixed wastes. The proposed plan consists of 2 volumes. Volume 1, Compliance Plan, identifies the capacity to be developed and the schedules as required. Volume 2, Background, provides a detailed discussion of the preferred options with technical basis, plus a description of the specific waste streams. Chapters are: Introduction; Methodology; Mixed low level waste streams; Mixed transuranic waste; High level waste; Future generation of mixed waste streams; Storage; Process for evaluation of disposal issues in support of the site treatment plans discussions; Treatment facilities and treatment technologies; Offsite waste streams for which SRS treatment is the Preferred Option (Naval reactor wastes); Summary information; and Acronyms and glossary. This revision does not contain the complete revised report, but only those pages that have been revised.

  17. Proceedings of the international water conference

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    This book presents the papers given at a conference on water treatment methods for power plants. Topics considered at the conference included the counter-current regeneration system at the Avon Lake Station, dissolved hydrogen monitors for pressurized water reactors, vanadium removal from oil-fired powered plant waste waters, EPRI guidelines of fossil plant water chemistry, ash transport systems, a waste water treatment system for a coal-fired generation station, an inorganic cation exchange for the purification of nuclear waste streams, water chemistry studies using an online ion chromatographic analyzer, dissolved oxygen control, a liquid waste treatment system, and water treatment facilities for cogeneration plants.

  18. Volatilization of selected organic compounds from a creosote-waste land-treatment facility. Master's thesis

    SciTech Connect (OSTI)

    Scott, E.J.

    1989-01-01

    The purpose of this research was to evaluate the emissions of volatile and semi-volatile compounds which are constituents of a complex creosote waste from laboratory simulations of a land treatment system to assess the potential human exposure to hazardous compounds from this source. In addition, the Thibodeaux-Hwang Air Emission Release Rate (AERR) model was evaluated for its use in predicting emission rates of hazardous constituents of creosote wood preservative waste from land treatment facilities. A group of hazardous volatile and semi-volatile constituents present in the creosote waste was selected for evaluation in this study and included a variety of polynuclear aromatic hydrocarbons (PNA's), phenol, and chlorinated and substituted phenols.

  19. The newest achievements of studies on the reutilization, treatment, and disposal technology of hazardous wastes

    SciTech Connect (OSTI)

    Liu Peizhe

    1996-12-31

    From 1991 to 1996, key studies on the reutilization, treatment, and disposal technology of hazardous wastes have been incorporated into the national plan for environmental protection science and technology. At present, the research achievements have been accomplished, have passed national approval, and have been accepted. The author of this paper, as leader of the national group for this research work, expounds the newest achievements of the studies involving four parts: (1) the reutilization technology of electroplating sludge, including the ion-exchange process for recovering the sludge and waste liquor for producing chromium tanning agent and extracting chromium and colloidal protein from tanning waste residue; on the recovery of heavy metals from the electroplating waste liquor with microbic purification; on the demonstration project of producing modified plastics from the sludge and the waste plastics; and on the demonstration of the recovery of heavy metals from waste electroplating sludge by using the ammonia-leaching process; (2) the demonstrative research of reutilization technology of chromium waste residues, including production of self-melting ore and smelting of chromium-containing pig iron, and of pyrolytic detoxification of the residue with cyclone furnace; (3) the incineration technology of hazardous wastes with successful results of the industrial incinerator system for polychlorinated biphenyls; and (4) the safety landfill technology for disposal of hazardous wastes, with a complete set of technology for pretreatment, selection of the site, development of the antipercolating materials, and design and construction of the landfill. Only a part of the achievements is introduced in this paper, most of which has been built and is being operated for demonstration to further spreading application and accumulate experience. 6 refs., 7 figs., 6 tabs.

  20. Analysis of accident sequences and source terms at treatment and storage facilities for waste generated by US Department of Energy waste management operations

    SciTech Connect (OSTI)

    Mueller, C.; Nabelssi, B.; Roglans-Ribas, J.; Folga, S.; Policastro, A.; Freeman, W.; Jackson, R.; Mishima, J.; Turner, S.

    1996-12-01

    This report documents the methodology, computational framework, and results of facility accident analyses performed for the US Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies assessed, and the resultant radiological and chemical source terms evaluated. A personal-computer-based computational framework and database have been developed that provide these results as input to the WM PEIS for the calculation of human health risk impacts. The WM PEIS addresses management of five waste streams in the DOE complex: low-level waste (LLW), hazardous waste (HW), high-level waste (HLW), low-level mixed waste (LLMW), and transuranic waste (TRUW). Currently projected waste generation rates, storage inventories, and treatment process throughputs have been calculated for each of the waste streams. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated, and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. Key assumptions in the development of the source terms are identified. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also discuss specific accident analysis data and guidance used or consulted in this report.

  1. Combination gas-producing and waste-water disposal well. [DOE patent application

    DOE Patents [OSTI]

    Malinchak, R.M.

    1981-09-03

    The present invention is directed to a waste-water disposal system for use in a gas recovery well penetrating a subterranean water-containing and methane gas-bearing coal formation. A cased bore hole penetrates the coal formation and extends downwardly therefrom into a further earth formation which has sufficient permeability to absorb the waste water entering the borehole from the coal formation. Pump means are disposed in the casing below the coal formation for pumping the water through a main conduit towards the water-absorbing earth formation. A barrier or water plug is disposed about the main conduit to prevent water flow through the casing except for through the main conduit. Bypass conduits disposed above the barrier communicate with the main conduit to provide an unpumped flow of water to the water-absorbing earth formation. One-way valves are in the main conduit and in the bypass conduits to provide flow of water therethrough only in the direction towards the water-absorbing earth formation.

  2. Conceptual Evaluation for the Installation of Treatment Capability for Mixed Low Level Waste at the Nevada National Security Site

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2010-11-24

    National Security Technologies, LLC, initiated an evaluation of treatment technologies that they would manage and operate as part of the mixed low-level waste (MLLW) disposal facilities at the Nevada National Security Site (NNSS). The NNSS Disposal Facility has been receiving radioactive waste from the U.S. Department of Energy (DOE) complex since the 1960s, and since 2005 the NNSS Disposal Facility has been receiving radioactive and MLLW for disposal only. In accordance with the Resource Conservation and Recovery Act (RCRA), all mixed waste must meet land disposal restrictions (LDRs) prior to disposal. Compliance with LDRs is attained through treatment of the waste to mitigate the characteristics of the listed waste hazard. Presently, most generators utilize commercial capacity for waste treatment prior to shipment to the NNSS Disposal Facility. The objectives of this evaluation are to provide a conceptual study of waste treatment needs (i.e., demand), identify potential waste treatment technologies to meet demand, and analyze implementation considerations for initiating MLLW treatment capacity at the NNSS Disposal Facility. A review of DOE complex waste generation forecast data indicates that current and future Departmental demand for mixed waste treatment capacity will remain steady and strong. Analysis and screening of over 30 treatment technologies narrowed the field of treatment technologies to four: Macroencapsulation Stabilization/microencapsulation Sort and segregation Bench-scale mercury amalgamation The analysis of treatment technologies also considered existing permits, current the NNSS Disposal Facility infrastructure such as utilities and procedures, and past experiences such as green-light and red-light lessons learned. A schedule duration estimate has been developed for permitting, design, and construction of onsite treatment capability at the NNSS Disposal Facility. Treatment capability can be ready in 20 months.

  3. The Evolution of Privatization at Hanford Tank Waste Treatment Complex

    SciTech Connect (OSTI)

    BROWN, N.R.

    2001-02-01

    Privatization acquisition strategies embody substantial contract reform principles-private financing and ownership, competition, fixed prices, and payment only upon delivery of services-which in time became the recipe for privatization of Department of Energy (DOE) Environmental Management (EM) cleanup projects. Privatization changes the federal government's approach from traditional cost-plus contracting, where the federal government pays the contractor as the project progresses, to a strategy where the federal government pays for products or services as they are delivered. To be successful, the privatization requires additional risk taking by the contractor. This paper focuses on why the Tank Waste Remediation System (TWRS) pursued privatization, how the TWRS Privatization Project matured, and why the privatization project moved to an alternate path. The paper is organized as follows: a description of the TWRS-Privatization framework, how the project changed from the original request for proposal through the decision not to proceed to Part B-2, and the lessons learned during evolution of the effort, including what worked as well as what went wrong and how such negative outcomes might be prevented in the future.

  4. Innovative Treatment Technologies for Natural Waters and Wastewaters

    SciTech Connect (OSTI)

    Childress, Amy E.

    2011-07-01

    The research described in this report focused on the development of novel membrane contactor processes (in particular, forward osmosis (FO), pressure retarded osmosis (PRO), and membrane distillation (MD)) in low energy desalination and wastewater treatment applications and in renewable energy generation. FO and MD are recently gaining national and international attention as viable, economic alternatives for removal of both established and emerging contaminants from natural and process waters; PRO is gaining worldwide attention as a viable source of renewable energy. The interrelationship of energy and water are at the core of this study. Energy and water are inextricably bound; energy usage and production must be considered when evaluating any water treatment process for practical application. Both FO and MD offer the potential for substantial energy and resource savings over conventional treatment processes and PRO offers the potential for renewable energy or energy offsets in desalination. Combination of these novel technologies with each other, with existing technologies (e.g., reverse osmosis (RO)), and with existing renewable energy sources (e.g., salinity gradient solar ponds) may enable much less expensive water production and also potable water production in remote or distributed locations. Two inter-related projects were carried out in this investigation. One focused on membrane bioreactors for wastewater treatment and PRO for renewable energy generation; the other focused on MD driven by a salinity gradient solar pond.

  5. Method and apparatus for treating gaseous effluents from waste treatment systems

    DOE Patents [OSTI]

    Flannery, Philip A.; Kujawa, Stephan T.

    2000-01-01

    Effluents from a waste treatment operation are incinerated and oxidized by passing the gases through an inductively coupled plasmas arc torch. The effluents are transformed into plasma within the torch. At extremely high plasma temperatures, the effluents quickly oxidize. The process results in high temperature oxidation of the gases without addition of any mass flow for introduction of energy.

  6. CAST STONE TECHNOLOGY FOR THE TREATMENT AND IMMOBILIZATION OF LOW-ACTIVITY WASTE

    SciTech Connect (OSTI)

    MINWALL HJ

    2011-04-08

    Cast stone technology is being evaluated for potential application in the treatment and immobilization of Hanford low-activity waste. The purpose of this document is to provide background information on cast stone technology. The information provided in the report is mainly based on a pre-conceptual design completed in 2003.

  7. Borehole Summary Report for Core Hole C4998 Waste Treatment Plant Seismic Boreholes Project

    SciTech Connect (OSTI)

    Barnett, D. BRENT; Garcia, Benjamin J.

    2006-12-15

    Seismic borehole C4998 was cored through the upper portion of the Columbia River Basalt Group and Ellensburg Formation to provide detailed lithologic information and intact rock samples that represent the geology at the Waste Treatment Plant. This report describes the drilling of borehole C4998 and documents the geologic data collected during the drilling of the cored portion of the borehole.

  8. Advanced Mixed Waste Treatment Project Achieves Impressive Safety and Production Marks

    Broader source: Energy.gov [DOE]

    IDAHO FALLS, Idaho – 14M50K is the new, genuinely unique vanity plate that only the 620 employees at EM’s Advanced Mixed Waste Treatment Project (AMWTP) at the Idaho site have earned the right to put on their vehicles.

  9. Idaho Waste Treatment Facility Improves Worker Safety and Efficiency, Saves Taxpayer Dollars

    Broader source: Energy.gov [DOE]

    IDAHO FALLS, Idaho – Continual operations improvements are integral to the mission of the Idaho site’s Advanced Mixed Waste Treatment Project (AMWTP). Two recent developments in retrieval operations save taxpayer dollars and illustrate advancements in employee safety and efficiency.

  10. Surrogate formulations for thermal treatment of low-level mixed waste. Part 1: Radiological surrogates

    SciTech Connect (OSTI)

    Stockdale, J.A.D.; Bostick, W.D.; Hoffmann, D.P.; Lee, H.T.

    1994-01-01

    The evaluation and comparison of proposed thermal treatment systems for mixed wastes can be expedited by tests in which the radioactive components of the wastes are replaced by surrogate materials chosen to mimic, as far as is possible, the chemical and physical properties of the radioactive materials of concern. In this work, sponsored by the Mixed Waste Integrated Project of the US Department of Energy, the authors have examined reported experience with such surrogates and suggest a simplified standard list of materials for use in tests of thermal treatment systems. The chief radioactive nuclides of concern in the treatment of mixed wastes are {sup 239}Pu, {sup 238}U, {sup 235}U, {sup 137}Cs, {sup 103}Ru, {sup 99}Tc, and {sup 90}Sr. These nuclides are largely by-products of uranium enrichment, reactor fuel reprocessing, and weapons program activities. Cs, Ru, and Sr all have stable isotopes that can be used as perfect surrogates for the radioactive forms. Technetium exists only in radioactive form, as do plutonium and uranium. If one wishes to preclude radioactive contamination of the thermal treatment system under trial burn, surrogate elements must be chosen for these three. For technetium, the authors suggest the use of natural ruthenium, and for both plutonium and uranium, they recommend cerium. The seven radionuclides listed can therefore be simulated by a surrogate package containing stable isotopes of ruthenium, strontium, cesium, and cerium.

  11. Environmental Assessment Offsite Thermal Treatment of Low-Level Mixed Waste

    SciTech Connect (OSTI)

    N /A

    1999-05-06

    The U.S. Department of Energy (DOE), Richland Operations Office (RL) needs to demonstrate the economics and feasibility of offsite commercial treatment of contact-handled low-level mixed waste (LLMW), containing polychlorinated biphenyls (PCBS) and other organics, to meet existing regulatory standards for eventual disposal.

  12. A review of technologies and performances of thermal treatment systems for energy recovery from waste

    SciTech Connect (OSTI)

    Lombardi, Lidia; Carnevale, Ennio; Corti, Andrea

    2015-03-15

    Highlights: • The topic of energy recovery from waste by thermal treatment is reviewed. • Combustion, gasification and pyrolysis were considered. • Data about energy recovery performances were collected and compared. • Main limitations to high values of energy performances were illustrated. • Diffusion of energy recovery from waste in EU, USA and other countries was discussed. - Abstract: The aim of this work is to identify the current level of energy recovery through waste thermal treatment. The state of the art in energy recovery from waste was investigated, highlighting the differences for different types of thermal treatment, considering combustion/incineration, gasification and pyrolysis. Also different types of wastes – Municipal Solid Waste (MSW), Refuse Derived Fuel (RDF) or Solid Refuse Fuels (SRF) and some typologies of Industrial Waste (IW) (sludge, plastic scraps, etc.) – were included in the analysis. The investigation was carried out mainly reviewing papers, published in scientific journals and conferences, but also considering technical reports, to gather more information. In particular the goal of this review work was to synthesize studies in order to compare the values of energy conversion efficiencies measured or calculated for different types of thermal processes and different types of waste. It emerged that the dominant type of thermal treatment is incineration associated to energy recovery in a steam cycle. When waste gasification is applied, the produced syngas is generally combusted in a boiler to generate steam for energy recovery in a steam cycle. For both the possibilities – incineration or gasification – cogeneration is the mean to improve energy recovery, especially for small scale plants. In the case of only electricity production, the achievable values are strongly dependent on the plant size: for large plant size, where advanced technical solutions can be applied and sustained from an economic point of view, net

  13. Treatment of metal-laden hazardous wastes with advanced clean coal technology by-products. Quarterly report, December 30, 1996--March 30, 1997

    SciTech Connect (OSTI)

    1997-12-31

    The objective of this project is to utilize coal ashes to process hazardous materials such as industrial waste water treatment residues, contaminated soils, and air pollution control dusts from the metal industry and municipal waste incineration. This report describes the activities of the project team during the reporting period. The principal work has focused upon continuing evaluation of aged samples from Phase 1, planning supportive laboratory studies for Phase 2, completing scholarly work, reestablishing MAX Environmental Technologies, Inc., as the subcontractor for the field work of Phase 2, proposing two presentations for later in 1997, and making and responding to several outside contacts.

  14. Elimination of liquid discharge to the environment from the TA-50 Radioactive Liquid Waste Treatment Facility

    SciTech Connect (OSTI)

    Moss, D.; Williams, N.; Hall, D.; Hargis, K.; Saladen, M.; Sanders, M.; Voit, S.; Worland, P.; Yarbro, S.

    1998-06-01

    Alternatives were evaluated for management of treated radioactive liquid waste from the radioactive liquid waste treatment facility (RLWTF) at Los Alamos National Laboratory. The alternatives included continued discharge into Mortandad Canyon, diversion to the sanitary wastewater treatment facility and discharge of its effluent to Sandia Canyon or Canada del Buey, and zero liquid discharge. Implementation of a zero liquid discharge system is recommended in addition to two phases of upgrades currently under way. Three additional phases of upgrades to the present radioactive liquid waste system are proposed to accomplish zero liquid discharge. The first phase involves minimization of liquid waste generation, along with improved characterization and monitoring of the remaining liquid waste. The second phase removes dissolved salts from the reverse osmosis concentrate stream to yield a higher effluent quality. In the final phase, the high-quality effluent is reused for industrial purposes within the Laboratory or evaporated. Completion of these three phases will result in zero discharge of treated radioactive liquid wastewater from the RLWTF.

  15. Treatment of high-level wastes from the IFR fuel cycle

    SciTech Connect (OSTI)

    Johnson, T.R.; Lewis, M.A.; Newman, A.E.; Laidler, J.J.

    1992-08-01

    The Integral Fast Reactor (IFR) is being developed as a future commercial power source that promises to have important advantages over present reactors, including improved resource conservation and waste management. The spent metal alloy fuels from an IFR will be processed in an electrochemical cell operating at 500{degree}C with a molten chloride salt electrolyte and cadmium metal anode. After the actinides have been recovered from several batches of core and blanket fuels, the salt cadmium in this electrorefiner will be treated to separate fission products from residual transuranic elements. This treatment produces a waste salt that contains the alkali metal, alkaline earth, and halide fission products; some of the rare earths; and less than 100 nCi/g of alpha activity. The treated metal wastes contain the rest of the fission products (except T, Kr, and Xe) small amounts of uranium, and only trace amounts of transuranic elements. The current concept for the salt waste form is an aluminosilicate matrix, and the concept for the metal waste form is a corrosion-resistant metal alloy. The processes and equipment being developed to treat and immobilize the salt and metal wastes are described.

  16. Treatment of high-level wastes from the IFR fuel cycle

    SciTech Connect (OSTI)

    Johnson, T.R.; Lewis, M.A.; Newman, A.E.; Laidler, J.J.

    1992-01-01

    The Integral Fast Reactor (IFR) is being developed as a future commercial power source that promises to have important advantages over present reactors, including improved resource conservation and waste management. The spent metal alloy fuels from an IFR will be processed in an electrochemical cell operating at 500{degree}C with a molten chloride salt electrolyte and cadmium metal anode. After the actinides have been recovered from several batches of core and blanket fuels, the salt cadmium in this electrorefiner will be treated to separate fission products from residual transuranic elements. This treatment produces a waste salt that contains the alkali metal, alkaline earth, and halide fission products; some of the rare earths; and less than 100 nCi/g of alpha activity. The treated metal wastes contain the rest of the fission products (except T, Kr, and Xe) small amounts of uranium, and only trace amounts of transuranic elements. The current concept for the salt waste form is an aluminosilicate matrix, and the concept for the metal waste form is a corrosion-resistant metal alloy. The processes and equipment being developed to treat and immobilize the salt and metal wastes are described.

  17. RADIOACTIVE DEMONSTRATIONS OF FLUIDIZED BED STEAM REFORMING WITH ACUTAL HANFORD LOW ACTIVITY WASTES VERIFYING FBSR AS A SUPPLEMENTARY TREATMENT

    SciTech Connect (OSTI)

    Jantzen, C.; Crawford, C.; Burket, P.; Bannochie, C.; Daniel, G.; Nash, C.; Cozzi, A.; Herman, C.

    2012-01-12

    The U.S. Department of Energy's Office of River Protection is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level waste (HLW) and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the cleanup mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA). Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. Fluidized Bed Steam Reforming (FBSR) is one of the supplementary treatments being considered. FBSR offers a moderate temperature (700-750 C) continuous method by which LAW and other secondary wastes can be processed irrespective of whether they contain organics, nitrates/nitrites, sulfates/sulfides, chlorides, fluorides, and/or radio-nuclides like I-129 and Tc-99. Radioactive testing of Savannah River LAW (Tank 50) shimmed to resemble Hanford LAW and actual Hanford LAW (SX-105 and AN-103) have produced a ceramic (mineral) waste form which is the same as the non-radioactive waste simulants tested at the engineering scale. The radioactive testing demonstrated that the FBSR process can retain the volatile radioactive components that cannot be contained at vitrification temperatures. The radioactive and nonradioactive mineral waste forms that were produced by co-processing waste with kaolin clay in an FBSR process are shown to be as durable as LAW glass.

  18. TREATMENT OF PRODUCED WATERS USING A SURFACTANT MODIFIED ZEOLITE/VAPOR PHASE BIOREATOR SYSTEM

    SciTech Connect (OSTI)

    LYNN E. KATZ; KERRY A. KINNEY; R.S. BOWMAN; E.J. SULLIVAN

    2003-10-01

    Co-produced water from the oil and gas industry is by some estimates the largest single waste stream in the country, aside from nonhazardous industrial wastes. Characteristics of produced water include high total dissolved solids content, dissolved organic constituents such as benzene and toluene, an oil and grease component, and chemicals added during the oil-production process. While most of the produced water is disposed via reinjection, some of them must be treated to remove organic constituents before the water is discharged. An efficient, cost-effective treatment technology is needed to remove these constituents. Surfactant-modified zeolite (SMZ) has been used successfully to treat contaminated ground water for organic and inorganic constituents. In addition, the low cost of natural zeolites makes their use attractive in water-treatment applications. Our previous DOE research work (DE-AC26-99BC15221) demonstrated that SMZ could successfully remove BTEX compounds from the produced water. In addition, SMZ could be regenerated through a simple air sparging process. The primary goal of this project is to develop a robust SMZ/VPB treatment system to efficiently remove the organic constituents from produced water in a cost-effective manner. This report summarizes work of this project from March 2003 through September 2003. We have continued our investigation of SMZ regeneration from our previous DOE project. Ten saturation/stripping cycles have been completed for SMZ columns saturated with BTEX compounds. The results suggest that BTEX sorption capacity is not lost after ten saturation/regeneration cycles. The composition of produced water from a site operated by Crystal Solutions Ltd. in Wyoming has been characterized and was used to identify key semi-volatile components. Isotherms with selected semi-volatile components have been initiated and preliminary results have been obtained. The experimental vapor phase bioreactors for this project have been designed and

  19. US Department of Energy interim mixed waste inventory report: Waste streams, treatment capacities and technologies: Volume 4, Site specific---Ohio through South Carolina

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    The Department of Energy (DOE) has prepared this report to provide an inventory of its mixed wastes and treatment capacities and technologies in response to Section 105(a) of the Federal Facility Compliance Act (FFCAct) of 1992 (Pub. L. No. 102-386). As required by the FFCAct-1992, this report provides site-specific information on DOE`s mixed waste streams and a general review of available and planned treatment facilities for mixed wastes at the following five Ohio facilities: Battelle Columbus Laboratories; Fernald Environmental Management Project; Mound Plant; Portsmouth Gaseous Diffusion Plant; and RMI, Titanium Company.

  20. Integrated Treatment and Storage Solutions for Solid Radioactive Waste at the Russian Shipyard Near Polyarny

    SciTech Connect (OSTI)

    Griffith, A.; Engoy, T.; Endregard, M.; Busmundrud, O.; Schwab, P.; Nazarian, A.; Krumrine, P.; Backe, S.; Gorin, S.; Evans, B.

    2002-02-27

    Russian Navy Yard No. 10 (Shkval), near the city of Murmansk, has been designated as the recipient for Solid Radioactive Waste (SRW) pretreatment and storage facilities under the Arctic Military Environmental Cooperation (AMEC) Program. This shipyard serves the Northern Fleet by servicing, repairing, and dismantling naval vessels. Specifically, seven nuclear submarines of the first and second generation and Victor class are laid up at this shipyard, awaiting defueling and dismantlement. One first generation nuclear submarine has already been dismantled there, but recently progress on dismantlement has slowed because all the available storage space is full. SRW has been placed in metal storage containers, which have been moved outside of the actual storage site, which increases the environmental risks. AMEC is a cooperative effort between the Russian Federation, Kingdom of Norway and the United States. AMEC Projects 1.3 and 1.4 specifically address waste treatment and storage issues. Various waste treatment options have been assessed, technologies selected, and now integrated facilities are being designed and constructed to address these problems. Treatment technologies that are being designed and constructed include a mobile pretreatment facility comprising waste assay, segregation, size reduction, compaction and repackaging operations. Waste storage technologies include metal and concrete containers, and lightweight modular storage buildings. This paper focuses on the problems and challenges that are and will be faced at the Polyarninsky Shipyard. Specifically, discussion of the waste quantities, types, and conditions and various site considerations versus the various technologies that are to be employed will be provided. A systems approach at the site is being proposed by the Russian partners, therefore integration with other ongoing and planned operations at the site will also be discussed.

  1. Operating cost guidelines for benchmarking DOE thermal treatment systems for low-level mixed waste

    SciTech Connect (OSTI)

    Salmon, R.; Loghry, S.L.; Hermes, W.H.

    1994-11-01

    This report presents guidelines for estimating operating costs for use in benchmarking US Department of Energy (DOE) low-level mixed waste thermal treatment systems. The guidelines are based on operating cost experience at the DOE Toxic Substances Control Act (TSCA) mixed waste incinerator at the K-25 Site at Oak Ridge. In presenting these guidelines, it should be made clear at the outset that it is not the intention of this report to present operating cost estimates for new technologies, but only guidelines for estimating such costs.

  2. Evaluation of the transport and resuspension of a simulated nuclear waste slurry: Nuclear Waste Treatment Program

    SciTech Connect (OSTI)

    Carleson, T.E.; Drown, D.C.; Hart, R.E.; Peterson, M.E.

    1987-09-01

    The Department of Chemical Engineering at the University of Idaho conducted research on the transport and resuspension of a simulated high-level nuclear waste slurry. In the United States, the reference process for treating both defense and civilian HLLW is vitrification using the liquid-fed ceramic melter process. The non-Newtonian behavior of the slurry complicates the evaluation of the transport and resuspension characteristics of the slurry. The resuspension of a simulated (nonradioactive) melter feed slurry was evaluated using a slurry designated as WV-205. The simulated slurry was developed for the West Valley Demonstration Project and was used during a pilot-scale ceramic melter (PSCM) experiment conducted at PNL in July 1985 (PSCM-21). This study involved determining the transport characteristics of a fully suspended slurry and the resuspension characteristics of settled solids in a pilot-scale pipe loop. The goal was to predict the transport and resuspension of a full-scale system based on rheological data for a specific slurry. The rheological behavior of the slurry was evaluated using a concentric cylinder rotational viscometer, a capillary tube viscometer, and the pilot-scale pipe loop. The results obtained from the three approaches were compared. 40 refs., 74 figs., 15 tabs.

  3. Decontamination of Nuclear Liquid Wastes Status of CEA and AREVA R and D: Application to Fukushima Waste Waters - 12312

    SciTech Connect (OSTI)

    Fournel, B.; Barre, Y.; Lepeytre, C.; Peycelon, H.; Grandjean, A.; Prevost, T.; Valery, J.F.; Shilova, E.; Viel, P.

    2012-07-01

    Liquid wastes decontamination processes are mainly based on two techniques: Bulk processes and the so called Cartridges processes. The first technique has been developed for the French nuclear fuel reprocessing industry since the 60's in Marcoule and La Hague. It is a proven and mature technology which has been successfully and quickly implemented by AREVA at Fukushima site for the processing of contaminated waters. The second technique, involving cartridges processes, offers new opportunities for the use of innovative adsorbents. The AREVA process developed for Fukushima and some results obtained on site will be presented as well as laboratory scale results obtained in CEA laboratories. Examples of new adsorbents development for liquid wastes decontamination are also given. A chemical process unit based on co-precipitation technique has been successfully and quickly implemented by AREVA at Fukushima site for the processing of contaminated waters. The asset of this technique is its ability to process large volumes in a continuous mode. Several chemical products can be used to address specific radioelements such as: Cs, Sr, Ru. Its drawback is the production of sludge (about 1% in volume of initial liquid volume). CEA developed strategies to model the co-precipitation phenomena in order to firstly minimize the quantity of added chemical reactants and secondly, minimize the size of co-precipitation units. We are on the way to design compact units that could be mobilized very quickly and efficiently in case of an accidental situation. Addressing the problem of sludge conditioning, cementation appears to be a very attractive solution. Fukushima accident has focused attention on optimizations that should be taken into account in future studies: - To better take account for non-typical aqueous matrixes like seawater; - To enlarge the spectrum of radioelements that can be efficiently processed and especially short lives radioelements that are usually less present in

  4. Overview of mineral waste form development for the electrometallurgical treatment of spent nuclear fuel

    SciTech Connect (OSTI)

    Pereira, C.; Lewis, M.A.; Ackerman, J.P.

    1996-05-01

    Argonne is developing a method to treat spent nuclear fuel in a molten salt electrorefiner. Wastes from this treatment will be converted into metal and mineral forms for geologic disposal. A glass-bonded zeolite is being developed to serve as the mineral waste form that will contain the fission products that accumulate in the electrorefiner salt. Fission products are ion exchanged from the salt into the zeolite A structure. The crystal structure of the zeolite after ion exchange is filled with salt ions. The salt-loaded zeolite A is mixed with glass frit and hot pressed. During hot pressing, the zeolite A may be converted to sodalite which also retains the waste salt. The glass-bonded zeolite is leach resistant. MCC-1 testing has shown that it has a release rate below 1 g/(m{sup 2}day) for all elements.

  5. Nuclear Waste Treatment Program annual report for FY 1988

    SciTech Connect (OSTI)

    Brouns, R.A.; Powell, J.A.

    1989-11-01

    Much emphasis continues to be on the transfer of remote design technology for components integral to the West Valley Demonstration Project's (WVDP) vitrification process. In addition to preparing equipment specifications and drawings, Pacific Northwest Laboratory (PNL) staff also participated in numerous design coordination meetings and reviews of drawings prepared by other WVDP contractors. Nearly 200 jumper drawings for the vitrification cell were prepared by this program in FY 1988. The remote jumpers connect vessels in the cell to each other for the transfer of solutions and provide for the flow of materials, instrumentation signals, and power from outside the cell. Analysis required in preparing the jumper designs involved balance, thermal stress, seismic, set-down stress, and displacement calculations. Design efforts were begun on the canister decontamination and swipe station and on the remote maintenance station. Equipment selection and layouts of the vitrification off-gas treatment system, including a reamer to remotely clean the melter off-gas line, were finalized. Also finalized were the designs for the high-efficiency particulate air (HEPA) filter assemblies for heating, cooling and air conditioning of the vitrification cell.

  6. AN NDA Technique for the Disposition of Mixed Low Level Waste at the Advanced Mixed Waste Treatment Project

    SciTech Connect (OSTI)

    M.J. Clapham; J.V. Seamans; R.E. Arbon

    2006-05-16

    The AMWTP is aggressively characterizing and shipping transuranic (TRU) waste to meet the DOE-IDs goal of 6000m3 of TRU waste to the Waste Isolation Pilot Plant (WIPP). The AMWTP shipping schedule requires streamlined waste movements and efficient waste characterization. Achieving this goal is complicated by the presence of waste that cannot be shipped to WIPP. A large amount of this waste is non-shippable due to the fact that no measurable TRU activity is identified during non-destructive assay (NDA).

  7. PERFORMANCE IMPROVEMENT OF CROSS-FLOW FILTRATION FOR HIGH LEVEL WASTE TREATMENT

    SciTech Connect (OSTI)

    Duignan, M.; Nash, C.; Poirier, M.

    2011-01-12

    In the interest of accelerating waste treatment processing, the DOE has funded studies to better understand filtration with the goal of improving filter fluxes in existing cross-flow equipment. The Savannah River National Laboratory (SRNL) was included in those studies, with a focus on start-up techniques, filter cake development, the application of filter aids (cake forming solid precoats), and body feeds (flux enhancing polymers). This paper discusses the progress of those filter studies. Cross-flow filtration is a key process step in many operating and planned waste treatment facilities to separate undissolved solids from supernate slurries. This separation technology generally has the advantage of self-cleaning through the action of wall shear stress created by the flow of waste slurry through the filter tubes. However, the ability of filter wall self-cleaning depends on the slurry being filtered. Many of the alkaline radioactive wastes are extremely challenging to filtration, e.g., those containing compounds of aluminum and iron, which have particles whose size and morphology reduce permeability. Unfortunately, low filter flux can be a bottleneck in waste processing facilities such as the Savannah River Modular Caustic Side Solvent Extraction Unit and the Hanford Waste Treatment Plant. Any improvement to the filtration rate would lead directly to increased throughput of the entire process. To date increased rates are generally realized by either increasing the cross-flow filter axial flowrate, limited by pump capacity, or by increasing filter surface area, limited by space and increasing the required pump load. SRNL set up both dead-end and cross-flow filter tests to better understand filter performance based on filter media structure, flow conditions, filter cleaning, and several different types of filter aids and body feeds. Using non-radioactive simulated wastes, both chemically and physically similar to the actual radioactive wastes, the authors performed

  8. Utilization of solid wastes from the gasification of coal-water slurries

    SciTech Connect (OSTI)

    M.Y. Shpirt; N.P. Goryunova

    2009-07-01

    It was found that only fly and bottom ashes are the solid wastes of water-coal slurry gasification in a direct-flow gasifier. The yields and chemical compositions of fly and bottom ashes obtained after the gasification of water-coal slurries prepared using brown (B) and long-flame (D) coals from the Berezovskii and Mokhovskii strip mines (Kansk-Achinsk and Kuznetsk Basins, respectively) were characterized. Based on an analysis of currently available information, the areas of utilization of fly and bottom ashes after water-coal slurry gasification with dry ash removal were summarized. The use of these wastes in the construction of high-ways and earthwork structures (for the parent coals of B and D grades) and in the manufacture of ash concrete (for the parent coal of D grade) is most promising.

  9. Environmental assessment for the treatment of Class A low-level radioactive waste and mixed low-level waste generated by the West Valley Demonstration Project

    SciTech Connect (OSTI)

    1995-11-01

    The U.S. Department of Energy (DOE) is currently evaluating low-level radioactive waste management alternatives at the West Valley Demonstration Project (WVDP) located on the Western New York Nuclear Service Center (WNYNSC) near West Valley, New York. The WVDP`s mission is to vitrify high-level radioactive waste resulting from commercial fuel reprocessing operations that took place at the WNYNSC from 1966 to 1972. During the process of high-level waste vitrification, low-level radioactive waste (LLW) and mixed low-level waste (MILLW) will result and must be properly managed. It is estimated that the WVDP`s LLW storage facilities will be filled to capacity in 1996. In order to provide sufficient safe storage of LLW until disposal options become available and partially fulfill requirements under the Federal Facilities Compliance Act (FFCA), the DOE is proposing to use U.S. Nuclear Regulatory Commission-licensed and permitted commercial facilities in Oak Ridge, Tennessee; Clive, Utah; and Houston, Texas to treat (volume-reduce) a limited amount of Class A LLW and MLLW generated from the WVDP. Alternatives for ultimate disposal of the West Valley LLW are currently being evaluated in an environmental impact statement. This proposed action is for a limited quantity of waste, over a limited period of time, and for treatment only; this proposal does not include disposal. The proposed action consists of sorting, repacking, and loading waste at the WVDP; transporting the waste for commercial treatment; and returning the residual waste to the WVDP for interim storage. For the purposes of this assessment, environmental impacts were quantified for a five-year operating period (1996 - 2001). Alternatives to the proposed action include no action, construction of additional on-site storage facilities, construction of a treatment facility at the WVDP comparable to commercial treatment, and off-site disposal at a commercial or DOE facility.

  10. Low-level liquid radioactive waste treatment at Murmansk, Russia: Technical design and review of facility upgrade and expansion

    SciTech Connect (OSTI)

    Dyer, R.S.; Diamante, J.M.; Duffey, R.B.

    1996-07-01

    The governments of Norway and the US have committed their mutual cooperation and support the Murmansk Shipping Company (MSCo) to expand and upgrade the Low-Level Liquid Radioactive Waste (LLRW) treatment system located at the facilities of the Russian company RTP Atomflot, in Murmansk, Russia. RTP Atomflot provides support services to the Russian icebreaker fleet operated by the MSCo. The objective is to enable Russia to permanently cease disposing of this waste in Arctic waters. The proposed modifications will increase the facility`s capacity from 1,200 m{sup 3} per year to 5,000 m{sup 3} per year, will permit the facility to process high-salt wastes from the Russian Navy`s Northern fleet, and will improve the stabilization and interim storage of the processed wastes. The three countries set up a cooperative review of the evolving design information, conducted by a joint US and Norwegian technical team from April through December, 1995. To ensure that US and Norwegian funds produce a final facility which will meet the objectives, this report documents the design as described by Atomflot and the Russian business organization, ASPECT, both in design documents and orally. During the detailed review process, many questions were generated, and many design details developed which are outlined here. The design is based on the adsorption of radionuclides on selected inorganic resins, and desalination and concentration using electromembranes. The US/Norwegian technical team reviewed the available information and recommended that the construction commence; they also recommended that a monitoring program for facility performance be instituted.

  11. Simulation of integrated pollutant removal (IPR) water-treatment system using ASPEN Plus

    SciTech Connect (OSTI)

    Harendra, Sivaram; Oryshcyhn, Danylo [U.S. DOE Ochs, Thomas [U.S. DOE Gerdemann, Stephen; Clark, John

    2013-01-01

    Capturing CO2 from fossil fuel combustion provides an opportunity for tapping a significant water source which can be used as service water for a capture-ready power plant and its peripherals. Researchers at the National Energy Technology Laboratory (NETL) have patented a process—Integrated Pollutant Removal (IPR®)—that uses off-the-shelf technology to produce a sequestration ready CO2 stream from an oxy-combustion power plant. Water condensed from oxy-combustion flue gas via the IPR system has been analyzed for composition and an approach for its treatment—for in-process reuse and for release—has been outlined. A computer simulation model in ASPEN Plus has been developed to simulate water treatment of flue gas derived wastewater from IPR systems. At the field installation, water condensed in the IPR process contains fly ash particles, sodium (largely from spray-tower buffering) and sulfur species as well as heavy metals, cations, and anions. An IPR wastewater treatment system was modeled using unit operations such as equalization, coagulation and flocculation, reverse osmosis, lime softening, crystallization, and pH correction. According to the model results, 70% (by mass) of the inlet stream can be treated as pure water, the other 20% yields as saleable products such as gypsum (CaSO4) and salt (NaCl) and the remaining portion is the waste. More than 99% of fly ash particles are removed in the coagulation and flocculation unit and these solids can be used as filler materials in various applications with further treatment. Results discussed relate to a slipstream IPR installation and are verified experimentally in the coagulation/flocculation step.

  12. Recent Improvements In Interface Management For Hanfords Waste Treatment And Immobilization Plant - 13263

    SciTech Connect (OSTI)

    Arm, Stuart T.; Pell, Michael J.; Van Meighem, Jeffery S.; Duncan, Garth M.; Harrington, Christopher C.

    2012-11-20

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) is responsible for management and completion of the River Protection Project (RPP) mission, which comprises both the Hanford Site tank farms operations and the Waste Treatment and Immobilization Plant (WTP). The RPP mission is to store, retrieve and treat Hanford's tank waste; store and dispose of treated wastes; and close the tank farm waste management areas and treatment facilities by 2047. The WTP is currently being designed and constructed by Bechtel National Inc. (BNI) for DOE-ORP. BNI relies on a number oftechnical services from other Hanford contractors for WTP's construction and commissioning. These same services will be required of the future WTP operations contractor. The WTP interface management process has recently been improved through changes in organization and technical issue management documented in an Interface Management Plan. Ten of the thirteen active WTP Interface Control Documents (ICDs) have been revised in 2012 using the improved process with the remaining three in progress. The value of the process improvements is reflected by the ability to issue these documents on schedule.

  13. Treatment of EBR-I NaK mixed waste at Argonne National Laboratory and subsequent land disposal at the Idaho National Engineering and Environmental Laboratory.

    SciTech Connect (OSTI)

    Herrmann, S. D.; Buzzell, J. A.; Holzemer, M. J.

    1998-02-03

    Sodium/potassium (NaK) liquid metal coolant, contaminated with fission products from the core meltdown of Experimental Breeder Reactor I (EBR-I) and classified as a mixed waste, has been deactivated and converted to a contact-handled, low-level waste at Argonne's Sodium Component Maintenance Shop and land disposed at the Radioactive Waste Management Complex. Treatment of the EBR-I NaK involved converting the sodium and potassium to its respective hydroxide via reaction with air and water, followed by conversion to its respective carbonate via reaction with carbon dioxide. The resultant aqueous carbonate solution was solidified in 55-gallon drums. Challenges in the NaK treatment involved processing a mixed waste which was incompletely characterized and difficult to handle. The NaK was highly radioactive, i.e. up to 4.5 R/hr on contact with the mixed waste drums. In addition, the potential existed for plutonium and toxic characteristic metals to be present in the NaK, resultant from the location of the partial core meltdown of EBR-I in 1955. Moreover, the NaK was susceptible to degradation after more than 40 years of storage in unmonitored conditions. Such degradation raised the possibility of energetic exothermic reactions between the liquid NaK and its crust, which could have consisted of potassium superoxide as well as hydrated sodium/potassium hydroxides.

  14. Energy implications of mechanical and mechanical–biological treatment compared to direct waste-to-energy

    SciTech Connect (OSTI)

    Cimpan, Ciprian Wenzel, Henrik

    2013-07-15

    Highlights: • Compared systems achieve primary energy savings between 34 and 140 MJ{sub primary}/100 MJ{sub input} {sub waste.} • Savings magnitude is foremost determined by chosen primary energy and materials production. • Energy consumption and process losses can be upset by increased technology efficiency. • Material recovery accounts for significant shares of primary energy savings. • Direct waste-to-energy is highly efficient if cogeneration (CHP) is possible. - Abstract: Primary energy savings potential is used to compare five residual municipal solid waste treatment systems, including configurations with mechanical (MT) and mechanical–biological (MBT) pre-treatment, which produce waste-derived fuels (RDF and SRF), biogas and/or recover additional materials for recycling, alongside a system based on conventional mass burn waste-to-energy and ash treatment. To examine the magnitude of potential savings we consider two energy efficiency levels (state-of-the-art and best available technology), the inclusion/exclusion of heat recovery (CHP vs. PP) and three different background end-use energy production systems (coal condensing electricity and natural gas heat, Nordic electricity mix and natural gas heat, and coal CHP energy quality allocation). The systems achieved net primary energy savings in a range between 34 and 140 MJ{sub primary}/100 MJ{sub input} {sub waste}, in the different scenario settings. The energy footprint of transportation needs, pre-treatment and reprocessing of recyclable materials was 3–9.5%, 1–18% and 1–8% respectively, relative to total energy savings. Mass combustion WtE achieved the highest savings in scenarios with CHP production, nonetheless, MBT-based systems had similarly high performance if SRF streams were co-combusted with coal. When RDF and SRF was only used in dedicated WtE plants, MBT-based systems totalled lower savings due to inherent system losses and additional energy costs. In scenarios without heat

  15. Lessons Learned In Technology Development for Supplemental Treatment of Low-Activity Waste at Hanford

    SciTech Connect (OSTI)

    Biyani, R.K. [Washington State Department of Ecology, Richland, WA (United States)

    2008-07-01

    Hanford needs supplemental technology treatment of low-activity waste (LAW) in addition to the Waste Treatment Plant (WTP). The Washington State Department of Ecology requires that supplemental technology provide the same protection to human health and the environment as WTP LAW glass. In 2002, the U.S. Department of Energy (US DOE) evaluated supplemental treatment technologies for LAW treatment and looked more closely at three: bulk vitrification (BV), steam reforming, and tailored cementitious stabilization. US DOE with Ecology's support chose to design and test BV because it believed BV would offer rapid deployment, low cost, and waste stream versatility. This paper will describe the path taken in choosing and developing technologies for additional LAW treatment capacity and, more importantly, the lessons learned along the way. In conclusion: Contractors' off-the-shelf vitrification technology that worked elsewhere may not apply easily to Hanford's waste challenges. The BV development process could have been improved by first identifying and then focusing on primary areas of concern. Continuing integrated tests at the Horn Rapids facility offers a convenient option to test both the dryer and the SMF. But the plan for development of the SMF must be short term with well defined success criteria. US DOE has the responsibility to carefully evaluate each proposal and make critical decisions that will make optimum use of limited funds. The ERP provided valuable technical guidance on improving BV's design. This must be complemented by a similar study of cost effectiveness of a process. We must have a better understanding of life cycle costs before a path for supplemental treatment is chosen. US DOE has now gained five years of experience in developing BV. It is time for US DOE to make defensible economic evaluations before further funding towards developing supplemental treatment. It must reevaluate if the projected advantages of rapid deployment, low cost, and waste

  16. Flexible Distributed Energy & Water from Waste for Food and Beverage Industry

    SciTech Connect (OSTI)

    Shi, Ruijie

    2013-12-30

    Food and beverage plants inherently consume a large quantity of water and generate a high volume of wastewater rich in organic content. On one hand, water discharge regulations are getting more stringent over the time, necessitating the use of different technologies to reduce the amount of wastewater and improve the effluent water quality. On the other hand, growing energy and water costs are driving the plants to extract and reuse valuable energy and water from the wastewater stream. An integrated waste-tovalue system uses a combination of anaerobic digester (AD), reciprocating gas engine/boiler, membrane bioreactor (MBR), and reverse osmosis (RO) to recover valuable energy as heat and/or electricity as well as purify the water for reuse. While individual anaerobic digestion and membrane bioreactors are being used in increasing numbers, there is a growing need to integrate them together in a waste-to-value system for enhanced energy and water recovery. However, currently operation of these systems relies heavily on the plant operator to perform periodic sampling and off-line lab analysis to monitor the system performance, detect any abnormal condition due to variations in the wastewater and decide on appropriate remedial action needed. This leads to a conservative design and operation of these systems to avoid any potential upsets that can destabilize the system.

  17. Low-level waste inventory, characteristics, generation, and facility assessment for treatment, storage, and disposal alternatives considered in the US Department of Energy waste management programmatic environmental impact statement

    SciTech Connect (OSTI)

    Goyette, M.L.; Dolak, D.A.

    1996-12-01

    This report provides technical support information for use in analyzing environmental impacts associated with U.S. Department of Energy (DOE) low-level radioactive waste (LLW) management alternatives in the Waste-Management (WM) Programmatic Environmental Impact Statement (PEIS). Waste loads treated and disposed of for each of the LLW alternatives considered in the DOE WM PEIS are presented. Waste loads are presented for DOE Waste Management (WM) wastes, which are generated from routine operations. Radioactivity concentrations and waste quantities for treatment and disposal under the different LLW alternatives are described for WM waste. 76 refs., 14 figs., 42 tabs.

  18. Treatment of produced waters by electrocoagulation and reverse osmosis

    SciTech Connect (OSTI)

    Tuggle, K.; Humenick, M.; Barker, F.

    1992-08-01

    Two oil field produced waters and one coal bed methane produced water from Wyoming were treated with electrocoagulation and reverse osmosis. All three produced waters would require treatment to meet the new Wyoming Department of Environmental Quality requirements for effluent discharge into a class III or IV stream. The removal of radium 226 and oil and grease was the primary focus of the study. Radium 226 and oil and grease were removed from the produced waters with electrocoagulation. The best removal of radium 226 (>84%) was achieved with use of a non-sacrificial anode (titanium). The best removal of oil and grease (>93%) was achieved using a sacrificial anode (aluminum). By comparison, reverse osmosis removed up to 87% of the total dissolved solids and up to 95% of the radium 226.

  19. Review of private sector treatment, storage, and disposal capacity for radioactive waste. Revision 1

    SciTech Connect (OSTI)

    Smith, M.; Harris, J.G.; Moore-Mayne, S.; Mayes, R.; Naretto, C.

    1995-04-14

    This report is an update of a report that summarized the current and near-term commercial and disposal of radioactive and mixed waste. This report was capacity for the treatment, storage, dating and written for the Idaho National Engineering Laboratory (INEL) with the objective of updating and expanding the report entitled ``Review of Private Sector Treatment, Storage, and Disposal Capacity for Radioactive Waste``, (INEL-95/0020, January 1995). The capacity to process radioactively-contaminated protective clothing and/or respirators was added to the list of private sector capabilities to be assessed. Of the 20 companies surveyed in the previous report, 14 responded to the request for additional information, five did not respond, and one asked to be deleted from the survey. One additional company was identified as being capable of performing LLMW treatability studies and six were identified as providers of laundering services for radioactively-contaminated protective clothing and/or respirators.

  20. Dewatering Treatment Scale-up Testing Results of Hanford Tank Wastes

    SciTech Connect (OSTI)

    Tedeschi, A.R.; May, T.H.; Bryan, W.E.

    2008-07-01

    This report documents CH2M HILL Hanford Group Inc. (CH2M HILL) 2007 dryer testing results in Richland, WA at the AMEC Nuclear Ltd., GeoMelt Division (AMEC) Horn Rapids Test Site. It provides a discussion of scope and results to qualify the dryer system as a viable unit-operation in the continuing evaluation of the bulk vitrification process. A 10,000 liter (L) dryer/mixer was tested for supplemental treatment of Hanford tank low activity wastes, drying and mixing a simulated non-radioactive salt solution with glass forming minerals. Testing validated the full scale equipment for producing dried product similar to smaller scale tests, and qualified the dryer system for a subsequent integrated dryer/vitrification test using the same simulant and glass formers. The dryer system is planned for installation at the Hanford tank farms to dry/mix radioactive waste for final treatment evaluation of the supplemental bulk vitrification process. (authors)

  1. DEWATERING TREATMENT SCALE-UP TESTING RESULTS OF HANFORD TANK WASTES

    SciTech Connect (OSTI)

    TEDESCHI AR

    2008-01-23

    This report documents CH2M HILL Hanford Group Inc. (CH2M HILL) 2007 dryer testing results in Richland, WA at the AMEC Nuclear Ltd., GeoMelt Division (AMEC) Horn Rapids Test Site. It provides a discussion of scope and results to qualify the dryer system as a viable unit-operation in the continuing evaluation of the bulk vitrification process. A 10,000 liter (L) dryer/mixer was tested for supplemental treatment of Hanford tank low-activity wastes, drying and mixing a simulated non-radioactive salt solution with glass forming minerals. Testing validated the full scale equipment for producing dried product similar to smaller scale tests, and qualified the dryer system for a subsequent integrated dryer/vitrification test using the same simulant and glass formers. The dryer system is planned for installation at the Hanford tank farms to dry/mix radioactive waste for final treatment evaluation of the supplemental bulk vitrification process.

  2. Guideline for benchmarking thermal treatment systems for low-level mixed waste

    SciTech Connect (OSTI)

    Hoffman, D.P.; Gibson, L.V. Jr.; Hermes, W.H.; Bastian, R.E.; Davis, W.T.

    1994-01-01

    A process for benchmarking low-level mixed waste (LLMW) treatment technologies has been developed. When used in conjunction with the identification and preparation of surrogate waste mixtures, and with defined quality assurance and quality control procedures, the benchmarking process will effectively streamline the selection of treatment technologies being considered by the US Department of Energy (DOE) for LLMW cleanup and management. Following the quantitative template provided in the benchmarking process will greatly increase the technical information available for the decision-making process. The additional technical information will remove a large part of the uncertainty in the selection of treatment technologies. It is anticipated that the use of the benchmarking process will minimize technology development costs and overall treatment costs. In addition, the benchmarking process will enhance development of the most promising LLMW treatment processes and aid in transferring the technology to the private sector. To instill inherent quality, the benchmarking process is based on defined criteria and a structured evaluation format, which are independent of any specific conventional treatment or emerging process technology. Five categories of benchmarking criteria have been developed for the evaluation: operation/design; personnel health and safety; economics; product quality; and environmental quality. This benchmarking document gives specific guidance on what information should be included and how it should be presented. A standard format for reporting is included in Appendix A and B of this document. Special considerations for LLMW are presented and included in each of the benchmarking categories.

  3. Laboratory Scoping Tests Of Decontamination Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    SciTech Connect (OSTI)

    Taylor-Pashow, Kathryn M.; Nash, Charles A.; Crawford, Charles L.; McCabe, Daniel J.; Wilmarth, William R.

    2014-01-21

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task seeks to examine the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also

  4. Coalbed Methane Procduced Water Treatment Using Gas Hydrate Formation at the Wellhead

    SciTech Connect (OSTI)

    BC Technologies

    2009-12-30

    Water associated with coalbed methane (CBM) production is a significant and costly process waste stream, and economic treatment and/or disposal of this water is often the key to successful and profitable CBM development. In the past decade, advances have been made in the treatment of CBM produced water. However, produced water generally must be transported in some fashion to a centralized treatment and/or disposal facility. The cost of transporting this water, whether through the development of a water distribution system or by truck, is often greater than the cost of treatment or disposal. To address this economic issue, BC Technologies (BCT), in collaboration with Oak Ridge National Laboratory (ORNL) and International Petroleum Environmental Consortium (IPEC), proposed developing a mechanical unit that could be used to treat CBM produced water by forming gas hydrates at the wellhead. This process involves creating a gas hydrate, washing it and then disassociating hydrate into water and gas molecules. The application of this technology results in three process streams: purified water, brine, and gas. The purified water can be discharged or reused for a variety of beneficial purposes and the smaller brine can be disposed of using conventional strategies. The overall objectives of this research are to develop a new treatment method for produced water where it could be purified directly at the wellhead, to determine the effectiveness of hydrate formation for the treatment of produced water with proof of concept laboratory experiments, to design a prototype-scale injector and test it in the laboratory under realistic wellhead conditions, and to demonstrate the technology under field conditions. By treating the water on-site, producers could substantially reduce their surface handling costs and economically remove impurities to a quality that would support beneficial use. Batch bench-scale experiments of the hydrate formation process and research conducted at ORNL

  5. Probabilistic cost estimation methods for treatment of water extracted during CO2 storage and EOR

    SciTech Connect (OSTI)

    Graham, Enid J. Sullivan; Chu, Shaoping; Pawar, Rajesh J.

    2015-08-08

    Extraction and treatment of in situ water can minimize risk for large-scale CO2 injection in saline aquifers during carbon capture, utilization, and storage (CCUS), and for enhanced oil recovery (EOR). Additionally, treatment and reuse of oil and gas produced waters for hydraulic fracturing will conserve scarce fresh-water resources. Each treatment step, including transportation and waste disposal, generates economic and engineering challenges and risks; these steps should be factored into a comprehensive assessment. We expand the water treatment model (WTM) coupled within the sequestration system model CO2-PENS and use chemistry data from seawater and proposed injection sites in Wyoming, to demonstrate the relative importance of different water types on costs, including little-studied effects of organic pretreatment and transportation. We compare the WTM with an engineering water treatment model, utilizing energy costs and transportation costs. Specific energy costs for treatment of Madison Formation brackish and saline base cases and for seawater compared closely between the two models, with moderate differences for scenarios incorporating energy recovery. Transportation costs corresponded for all but low flow scenarios (<5000 m3/d). Some processes that have high costs (e.g., truck transportation) do not contribute the most variance to overall costs. Other factors, including feed-water temperature and water storage costs, are more significant contributors to variance. These results imply that the WTM can provide good estimates of treatment and related process costs (AACEI equivalent level 5, concept screening, or level 4, study or feasibility), and the complex relationships between processes when extracted waters are evaluated for use during CCUS and EOR site development.

  6. METHODS FOR DETERMINING AGITATOR MIXING REQUIREMENTS FOR A MIXING & SAMPLING FACILITY TO FEED WTP (WASTE TREATMENT PLANT)

    SciTech Connect (OSTI)

    GRIFFIN PW

    2009-08-27

    The following report is a summary of work conducted to evaluate the ability of existing correlative techniques and alternative methods to accurately estimate impeller speed and power requirements for mechanical mixers proposed for use in a mixing and sampling facility (MSF). The proposed facility would accept high level waste sludges from Hanford double-shell tanks and feed uniformly mixed high level waste to the Waste Treatment Plant. Numerous methods are evaluated and discussed, and resulting recommendations provided.

  7. Cost Transfers at the Department's Sodium Bearing Waste Treatment Facility Construction Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Office of Inspector General Office of Audits and Inspections Audit Report Cost Transfers at the Department's Sodium Bearing Waste Treatment Facility Construction Project OAS-M-13-03 August 2013 Department of Energy Washington, DC 20585 August 8, 2013 MEMORANDUM FOR THE SENIOR ADVISOR FOR ENVIRONMENTAL MANAGEMENT FROM: Rickey R. Hass Deputy Inspector General for Audits and Inspections Office of Inspector General SUBJECT: INFORMATION: Audit Report on "Cost Transfers at

  8. Hanford Waste Treatment Plant places first complex piping module in Pretreatment Facility

    Office of Energy Efficiency and Renewable Energy (EERE)

    Crews at the Hanford Waste Treatment Plant, also known as the "Vit Plant," placed a 19-ton piping module inside the Pretreatment Facility. The module was lifted over 98-foot-tall walls and lowered into a space that provided less than two inches of clearance on each side and just a few feet on each end. It was set 56 feet above the ground.

  9. Borehole Gravity Meter Surveys at the Waste Treatment Plant, Hanford, Washington.

    SciTech Connect (OSTI)

    MacQueen, Jeffrey D.; Mann, Ethan

    2007-04-06

    Microg-LaCoste (MGL) was contracted by Pacfic Northwest National Laboratories (PNNL) to record borehole gravity density data in 3 wells at the HanfordWaste Treatment Plant (WTP) site. The survey was designed to provide highly accurate density information for use in seismic modeling. The borehole gravity meter (BHGM) tool has a very large depth of investigation (hundreds of feet) compared to other density tools so it is not influenced by casing or near welbore effects, such as washouts.

  10. Treatment methods for breaking certain oil and water emulsions

    DOE Patents [OSTI]

    Sealock, Jr., L. John; Baker, Eddie G.; Elliott, Douglas C.

    1992-01-01

    Disclosed are treatment methods for breaking emulsions of petroleum oil and salt water, fatty oil and water, and those resulting from liquefication of organic material. The emulsions are broken by heating to a predetermined temperature at or above about 200.degree. C. and pressurizing to a predetermined pressure above the vapor pressure of water at the predetermined temperature to produce a heated and pressurized fluid. The heated and pressurized fluid is contained in a single vessel at the predetermined temperature and pressure for a predetermined period of time to effectively separate the emulsion into substantially distinct first and second phases, the first phase comprising primarily the petroleum oil, the second phase comprising primarily the water. The first and second phases are separately withdrawn from the vessel at a withdraw temperature between about 200.degree. C. and 374.degree. C. and a withdraw pressure above the vapor pressure of water at the withdraw temperature. Where solids are present in the certain emulsions, the above described treatment may also effectively separate the certain emulsion into a substantially distinct third phase comprising primarily the solids.

  11. Laboratory Optimization Tests of Technetium Decontamination of Hanford Waste Treatment Plant Direct Feed Low Activity Waste Melter Off-Gas Condensate Simulant

    SciTech Connect (OSTI)

    Taylor-Pashow, K.; McCabe, D.

    2015-12-23

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste.

  12. Environmental assessment for the Explosive Waste Treatment Facility at Site 300, Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    1995-11-01

    Lawrence Livermore National Laboratory proposes to build, permit, and operate the Explosive Waste Treatment Facility (EWTF) to treat explosive waste at LLNL`s Experimental Test Site, Site 300. It is also proposed to close the EWTF at the end of its useful life in accordance with the regulations. The facility would replace the existing Building 829 Open Burn Facility (B829) and would treat explosive waste generated at the LLNL Livermore Site and at Site 300 either by open burning or open detonation, depending on the type of waste. The alternatives addressed in the 1992 sitewide EIS/EIR are reexamined in this EA. These alternatives included: (1) the no-action alternative which would continue open burning operations at B829; (2) continuation of only open burning at a new facility (no open detonation); (3) termination of open burning operations with shipment of explosive waste offsite; and (4) the application of alternative treatment technologies. This EA examines the impact of construction, operation, and closure of the EWTF. Construction of the EWTF would result in the clearing of a small amount of previously disturbed ground. No adverse impact is expected to any state or federal special status plant or animal species (special status species are classified as threatened, endangered, or candidate species by either state or federal legislation). Operation of the EWTF is expected to result in a reduced threat to involved workers and the public because the proposed facility would relocate existing open burning operations to a more remote area and would incorporate design features to reduce the amount of potentially harmful emissions. No adverse impacts were identified for activities necessary to close the EWTF at the end of its useful life.

  13. Comparison of alternative treatment systems for DOE mixed low-level waste

    SciTech Connect (OSTI)

    Schwinkendorf, W.E.

    1997-03-01

    From 1993 to 1996, the Department of Energy, Environmental Management, Office of Science and Technology (OST), has sponsored a series of systems analyses to guide its future research and development (R&D) programs for the treatment of mixed low-level waste (MLLW) stored in the DOE complex. The two original studies were of 20 mature and innovative thermal systems. As a result of a technical review of these thermal system studies, a similar study of five innovative nonthermal systems was conducted in which unit operations are limited to temperatures less than 350{degrees}C to minimize volatilization of heavy metals and radionuclides, and de novo production of dioxins and furans in the offgas. Public involvement in the INTS study was established through a working group of 20 tribal and stakeholder representatives to provide input to the INTS studies and identify principles against which the systems should be designed and evaluated. Pre-conceptual designs were developed for all systems to treat the same waste input (2927 lbs/hr) in a single centralized facility operating 4032 hours per year for 20 years. This inventory consisted of a wide range of combustible and non-combustible materials such as paper, plastics, metals, concrete, soils, sludges, liquids, etc., contaminated with trace quantities of radioactive materials and RCRA regulated wastes. From this inventory, an average waste profile was developed for simulated treatment using ASPEN PLUS{copyright} for mass balance calculations. Seven representative thermal systems were selected for comparison with the five nonthermal systems. This report presents the comparisons against the TSWG principles, of total life cycle cost (TLCC), and of other system performance indicators such as energy requirements, reagent requirements, land use, final waste volume, aqueous and gaseous effluents, etc.

  14. Determination of hexabromocyclododecane in waste waters with a bromide-selective electrode

    SciTech Connect (OSTI)

    Paama, L.A.; Kokk, K.Y.

    1985-11-01

    This paper presents a method for the determination of microquantities of hexabromocyclodecane (HBCD), an antipyrene for the reduction of the flammability of frothing polystyrene in industrial waste waters. The method is based on the extraction of HBCD from waste waters with chloroform, evaporation of the chloroform from the extracts in a stream of air, mineralization of the dry residues, and determination of the bromide ions with a bromine-selective electrode. One of the simpler approaches is given as based on alkaline hydrolysis with dimethyl formamide or in the presence of metallic cadmium. The dry residues after evaporation of the chloroform were decomposed by boiling in a KOH solution in the presence of metallic zinc.

  15. Advanced Energy and Water Recovery Technology from Low Grade Waste Heat

    SciTech Connect (OSTI)

    Dexin Wang

    2011-12-19

    The project has developed a nanoporous membrane based water vapor separation technology that can be used for recovering energy and water from low-temperature industrial waste gas streams with high moisture contents. This kind of exhaust stream is widely present in many industrial processes including the forest products and paper industry, food industry, chemical industry, cement industry, metal industry, and petroleum industry. The technology can recover not only the sensible heat but also high-purity water along with its considerable latent heat. Waste heats from such streams are considered very difficult to recover by conventional technology because of poor heat transfer performance of heat-exchanger type equipment at low temperature and moisture-related corrosion issues. During the one-year Concept Definition stage of the project, the goal was to prove the concept and technology in the laboratory and identify any issues that need to be addressed in future development of this technology. In this project, computational modeling and simulation have been conducted to investigate the performance of a nanoporous material based technology, transport membrane condenser (TMC), for waste heat and water recovery from low grade industrial flue gases. A series of theoretical and computational analyses have provided insight and support in advanced TMC design and experiments. Experimental study revealed condensation and convection through the porous membrane bundle was greatly improved over an impermeable tube bundle, because of the membrane capillary condensation mechanism and the continuous evacuation of the condensate film or droplets through the membrane pores. Convection Nusselt number in flue gas side for the porous membrane tube bundle is 50% to 80% higher than those for the impermeable stainless steel tube bundle. The condensation rates for the porous membrane tube bundle also increase 60% to 80%. Parametric study for the porous membrane tube bundle heat transfer

  16. Treatment of DOE and commercial mixed waste by the private sector

    SciTech Connect (OSTI)

    Garrison, T.W.; Apel, M.L.; Owens, C.M.

    1993-03-01

    This paper presents a conceptual approach for private sector treatment of mixed low-level radioactive waste generated by the US Department of Energy and commercial industries. This approach focuses on MLLW treatment technologies and capacities available through the private sector in the near term. Wastestream characterization data for 108 MLLW streams at the Idaho National Engineering Laboratory (INEL) were collected and combined with similar data for MLLWs generated through commercial practices. These data were then provided to private treatment facilities and vendors to determine if, and to what extent, they could successfully treat these wastes. Data obtained from this project have provided an initial assessment of private sector capability and capacity to treat a variety of MLLW streams. This information will help formulate plans for future treatment of these and similar wastestreams at DOE facilities. This paper presents details of the MLLW data-gathering efforts used in this research, private sector assessment methods employed, and results of this assessment. Advantages of private sector treatment, as well as barriers to its present use, are also addressed.

  17. Environmental impact of APC residues from municipal solid waste incineration: Reuse assessment based on soil and surface water protection criteria

    SciTech Connect (OSTI)

    Quina, Margarida J.; Bordado, Joao C.M.; Quinta-Ferreira, Rosa M.

    2011-09-15

    Highlights: > The Dutch Building Material Decree (BMD) was used to APC residues from MSWI. > BMD is a straightforward tool to calculate expectable loads to the environment of common pollutants. > Chloride load to the environment lead to classification of building material not allowed. > At least a pre-treatment (e.g. washing) is required in order to remove soluble salts. > The stabilization with phosphates or silicates eliminate the problem of heavy metals. - Abstract: Waste management and environmental protection are mandatory requirements of modern society. In our study, air pollution control (APC) residues from municipal solid waste incinerators (MSWI) were considered as a mixture of fly ash and fine particulate solids collected in scrubbers and fabric filters. These are hazardous wastes and require treatment before landfill. Although there are a number of treatment options, it is highly recommended to find practical applications rather than just dump them in landfill sites. In general, for using a construction material, beyond technical specifications also soil and surface water criteria may be used to ensure environmental protection. The Dutch Building Materials Decree (BMD) is a valuable tool in this respect and it was used to investigate which properties do not meet the threshold criteria so that APC residues can be further used as secondary building material. To this end, some scenarios were evaluated by considering release of inorganic species from unmoulded and moulded applications. The main conclusion is that the high amount of soluble salts makes the APC residues a building material prohibited in any of the conditions tested. In case of moulding materials, the limits of heavy metals are complied, and their use in Category 1 would be allowed. However, also in this case, the soluble salts lead to the classification of 'building material not allowed'. The treatments with phosphates or silicates are able to solve the problem of heavy metals, but

  18. Risk assessment of CST-7 proposed waste treatment and storage facilities Volume I: Limited-scope probabilistic risk assessment (PRA) of proposed CST-7 waste treatment & storage facilities. Volume II: Preliminary hazards analysis of proposed CST-7 waste storage & treatment facilities

    SciTech Connect (OSTI)

    Sasser, K.

    1994-06-01

    In FY 1993, the Los Alamos National Laboratory Waste Management Group [CST-7 (formerly EM-7)] requested the Probabilistic Risk and Hazards Analysis Group [TSA-11 (formerly N-6)] to conduct a study of the hazards associated with several CST-7 facilities. Among these facilities are the Hazardous Waste Treatment Facility (HWTF), the HWTF Drum Storage Building (DSB), and the Mixed Waste Receiving and Storage Facility (MWRSF), which are proposed for construction beginning in 1996. These facilities are needed to upgrade the Laboratory`s storage capability for hazardous and mixed wastes and to provide treatment capabilities for wastes in cases where offsite treatment is not available or desirable. These facilities will assist Los Alamos in complying with federal and state requlations.

  19. Electrodialysis-based separation process for salt recovery and recycling from waste water

    DOE Patents [OSTI]

    Tsai, Shih-Perng

    1997-01-01

    A method for recovering salt from a process stream containing organic contaminants is provided, comprising directing the waste stream to a desalting electrodialysis unit so as to create a concentrated and purified salt permeate and an organic contaminants containing stream, and contacting said concentrated salt permeate to a water-splitting electrodialysis unit so as to convert the salt to its corresponding base and acid.

  20. Electrodialysis-based separation process for salt recovery and recycling from waste water

    DOE Patents [OSTI]

    Tsai, S.P.

    1997-07-08

    A method for recovering salt from a process stream containing organic contaminants is provided, comprising directing the waste stream to a desalting electrodialysis unit so as to create a concentrated and purified salt permeate and an organic contaminants-containing stream, and contacting said concentrated salt permeate to a water-splitting electrodialysis unit so as to convert the salt to its corresponding base and acid. 6 figs.

  1. Analysis of the suitability of DOE facilities for treatment of commercial low-level radioactive mixed waste

    SciTech Connect (OSTI)

    1996-02-01

    This report evaluates the capabilities of the United States Department of Energy`s (DOE`s) existing and proposed facilities to treat 52 commercially generated low-level radioactive mixed (LLMW) waste streams that were previously identified as being difficult-to-treat using commercial treatment capabilities. The evaluation was performed by comparing the waste matrix and hazardous waste codes for the commercial LLMW streams with the waste acceptance criteria of the treatment facilities, as identified in the following DOE databases: Mixed Waste Inventory Report, Site Treatment Plan, and Waste Stream and Technology Data System. DOE facility personnel also reviewed the list of 52 commercially generated LLMW streams and provided their opinion on whether the wastes were technically acceptable at their facilities, setting aside possible administrative barriers. The evaluation tentatively concludes that the DOE is likely to have at least one treatment facility (either existing or planned) that is technically compatible for most of these difficult-to-treat commercially generated LLMW streams. This conclusion is tempered, however, by the limited amount of data available on the commercially generated LLMW streams, by the preliminary stage of planning for some of the proposed DOE treatment facilities, and by the need to comply with environmental statutes such as the Clean Air Act.

  2. Evaluation of density separation and other treatment methods for plastic media blasting (PMB) waste

    SciTech Connect (OSTI)

    Spence, R.D.; Morgan, I.L.; Trotter, D.R.

    1995-05-01

    The United States Air Force has developed plastic media blasting (PMB) to replace solvent paint stripping of its aircraft. This paint blasting operation generates a waste stream of mainly pulverized plastic, but the stream also contains enough paint pigments to make the PMB waste RCRA hazardous. A Phase I study identified density separation as the preferred treatment alternative to land disposal of the entire PMB waste stream in a hazardous landfill. This study found density separation to be a less attractive alternative to self-encapsulation, solidification/stabilization (S/S), and low-temperature ashing. Self-encapsulation resulted in a volume decrease but only moderate improvement in Toxicity Characteristic Leaching Procedure (TCLP) performance Solidification/Stabilization (S/S) into cementiaous waste for resulted in excellent TCLP performances, but volume increases. Low-temperature ashing resulted in dramatic volume decreases, but off-gas control is required to contain all the RCRA metals. The resulting ash must be stabilized (e.g., S/S) to meet TCLP limits.

  3. Characterization of Irradiated Metal Waste from the Pyrometallurgical Treatment of Used EBR-II Fuel

    SciTech Connect (OSTI)

    B.R. Westphal; K.C. Marsden; W.M. McCartin; S.M. Frank; D.D. Keiser, Jr.; T.S. Yoo; D. Vaden; D.G. Cummings; K.J. Bateman; J. J. Giglio; T. P. O'Holleran; P. A. Hahn; M. N. Patterson

    2013-03-01

    As part of the pyrometallurgical treatment of used Experimental Breeder Reactor-II fuel, a metal waste stream is generated consisting primarily of cladding hulls laden with fission products noble to the electrorefining process. Consolidation by melting at high temperature [1873 K (1600 degrees C)] has been developed to sequester the noble metal fission products (Zr, Mo, Tc, Ru, Rh, Te, and Pd) which remain in the iron-based cladding hulls. Zirconium from the uranium fuel alloy (U-10Zr) is also deposited on the hulls and forms Fe-Zr intermetallics which incorporate the noble metals as well as residual actinides during processing. Hence, Zr has been chosen as the primary indicator for consistency of the metal waste. Recently, the first production-scale metal waste ingot was generated and sampled to monitor Zr content for Fe-Zr intermetallic phase formation and validation of processing conditions. Chemical assay of the metal waste ingot revealed a homogeneous distribution of the noble metal fission products as well as the primary fuel constituents U and Zr. Microstructural characterization of the ingot confirmed the immobilization of the noble metals in the Fe-Zr intermetallic phase.

  4. Phase 2 THOR Steam Reforming Tests for Sodium Bearing Waste Treatment

    SciTech Connect (OSTI)

    Nicholas R. Soelberg

    2004-01-01

    About one million gallons of acidic, hazardous, and radioactive sodium-bearing waste is stored in stainless steel tanks at the Idaho Nuclear Technology and Engineering Center (INTEC), which is a major operating facility of the Idaho National Engineering and Environmental Laboratory. Steam reforming is a candidate technology being investigated for converting the waste into a road ready waste form that can be shipped to the Waste Isolation Pilot Plant in New Mexico for interment. A steam reforming technology patented by Studsvik, Inc., and licensed to THOR Treatment Technologies has been tested in two phases using a Department of Energy-owned fluidized bed test system located at the Science Applications International Corporation (SAIC) Science and Technology Applications Research Center located in Idaho Falls, Idaho. The Phase 1 tests were reported earlier in 2003. The Phase 2 tests are reported here. For Phase 2, the process feed rate, stoichiometry, and chemistry were varied to identify and demonstrate process operation and product characteristics under different operating conditions. Two test series were performed. During the first series, the process chemistry was designed to produce a sodium carbonate product. The second series was designed to produce a more leach-resistant, mineralized sodium aluminosilicate product. The tests also demonstrated the performance of a MACT-compliant off-gas system.

  5. An ecological engineering approach for keeping water from reaching interred wastes in arid or semiarid regions

    SciTech Connect (OSTI)

    Anderson, J.E.

    1997-12-31

    This paper describes application of a soil-plant cover system (SPCS) to preclude water from reaching interred wastes in arid and semiarid regions. Where potential evapotranspiration far exceeds precipitation, water can be kept from reaching buried wastes by (1) providing a sufficiently deep cap of soil to store precipitation that falls while plants are dormant and (2) maintaining plant cover to deplete soil moisture during the growing season, thereby emptying the storage reservoir. Research at the Idaho National Engineering Laboratory (INEL) has shown that 2 m of soil is adequate to store moisture from snowmelt and spring rains. Healthy stands of perennial grasses and shrubs adapted to the INEL climate use all available soil moisture, even during a very wet growing season. However, burrowing by small mammals or ants may affect the performance of a SPCS by increasing infiltration of water. Intrusion barriers of gravel and cobble can be used to restrict burrowing, but emplacement of such barriers affects soil moisture storage and plant rooting depths. A replicated field experiment to investigate the implications of those effects is in progress. Incorporation of an SPCS should be considered in the design of isolation barriers for shallow land burial of hazardous wastes in and regions.

  6. Enterprise Assessments Operational Awareness Record for the Review of the Waste Treatment and Immobilization Plant High-Level Waste Facility Concentrate Receipt/Melter Feed/Glass Formers Reagent Hazards Analysis Event Tables – June 2015

    Broader source: Energy.gov [DOE]

    Operational Awareness Record for the Review of the Waste Treatment and Immobilization Plant High-Level Waste Facility Concentrate Receipt/Melter Feed/Glass Formers Reagent Hazards Analysis Event Tables

  7. Radioactive demonstration of final mineralized waste forms for Hanford waste treatment plant secondary waste (WTP-SW) by fluidized bed steam reforming (FBSR) using the bench scale reformer platform

    SciTech Connect (OSTI)

    Crawford, C.; Burket, P.; Cozzi, A.; Daniel, G.; Jantzen, C.; Missimer, D.

    2014-08-01

    The U.S. Department of Energy’s Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford’s tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as 137Cs, 129I, 99Tc, Cl, F, and SO4 that volatilize at the vitrification temperature of 1150°C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW.

  8. Proposed Use of a Constructed Wetland for the Treatment of Metals in the S-04 Outfall of the Defense Waste Processing Facility at the Savannah River Site

    SciTech Connect (OSTI)

    Glover, T.

    1999-11-23

    The DWPF is part of an integrated waste treatment system at the SRS to treat wastes containing radioactive contaminants. In the early 1980s the DOE recognized that there would be significant safety and cost advantages associated with immobilizing the radioactive waste in a stable solid form. The Defense Waste Processing Facility was designed and constructed to accomplish this task.

  9. Safety Culture at the WTP White Paper: Potential Attachment for Advice on Waste Treatment Plant Safety Culture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    29/2011 Page 1 of 6 Safety Culture at the WTP White Paper: Potential Attachment for Advice on Waste Treatment Plant Safety Culture Introduction This white paper provides context for the Hanford Advisory Board's (HAB) concerns regarding safety culture at the Waste Treatment Plant (WTP). This document is intended to clarify terminology associated with "safety culture" and to provide background about its conception, application, and development. The HAB has advised that a rigorous safety

  10. Vitrification treatment options for disposal of greater-than-Class-C low-level waste in a deep geologic repository

    SciTech Connect (OSTI)

    Fullmer, K.S.; Fish, L.W.; Fischer, D.K.

    1994-11-01

    The Department of Energy (DOE), in keeping with their responsibility under Public Law 99-240, the Low-Level Radioactive Waste Policy Amendments Act of 1985, is investigating several disposal options for greater-than-Class C low-level waste (GTCC LLW), including emplacement in a deep geologic repository. At the present time vitrification, namely borosilicate glass, is the standard waste form assumed for high-level waste accepted into the Civilian Radioactive Waste Management System. This report supports DOE`s investigation of the deep geologic disposal option by comparing the vitrification treatments that are able to convert those GTCC LLWs that are inherently migratory into stable waste forms acceptable for disposal in a deep geologic repository. Eight vitrification treatments that utilize glass, glass ceramic, or basalt waste form matrices are identified. Six of these are discussed in detail, stating the advantages and limitations of each relative to their ability to immobilize GTCC LLW. The report concludes that the waste form most likely to provide the best composite of performance characteristics for GTCC process waste is Iron Enriched Basalt 4 (IEB4).

  11. Environmental assessment for liquid waste treatment at the Nevada Test Site, Nye County, Nevada

    SciTech Connect (OSTI)

    1997-01-01

    This environmental assessment (EA) examines the potential impacts to the environment from treatment of low-level radioactive liquid and low-level mixed liquid and semi-solid wastes generated at the Nevada Test Site (NTS). The potential impacts of the proposed action and alternative actions are discussed herein in accordance with the National Environmental Policy Act (NEPA) of 1969, as amended in Title 42 U.S.C. (4321), and the US Department of Energy (DOE) policies and procedures set forth in Title 10 Code of Federal Regulations (CFR) Part 1021 and DOE Order 451.1, ``NEPA Compliance Program.`` The potential environmental impacts of the proposed action, construction and operation of a centralized liquid waste treatment facility, were addressed in the Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada. However, DOE is reevaluating the need for a centralized facility and is considering other alternative treatment options. This EA retains a centralized treatment facility as the proposed action but also considers other feasible alternatives.

  12. Reduction of carbon content in waste-tire combustion ashes by bio-thermal treatment

    SciTech Connect (OSTI)

    Chen, C.C.; Lee, W.J.; Shih, S.I.; Mou, J.L.

    2009-07-01

    Application of bio-catalyst (NOE-7F) in thermal treatment can adequately dispose dark-black fly ashes from co-combustion of both waste tires and coal. After thermal treatment of fly ashes by adding 10% NOE-7F, the carbon contents reduced by 37.6% and the weight losses increased by 405%, compared with the fly ashes without mixing with NOE-7F. The combustion behaviors of wasted tires combustion fly ashes with NOE-7F were also investigated by both thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The results verify that NOE-7F has positive effects on the combustion of residual carbon and toxic polycyclic aromatic hydrocarbons (PAHs) enhance the energy release and reduce the toxicity during the process of thermal treatment. Furthermore, using NOE-7F to dispose high-carbon content fly ashes did improve the compressive strength of fly ashes and concrete mixtures. Therefore, NOE-7F is a promising additive which could decrease treatment cost of high-carbon content fly ashes and reduce the amount of survival toxic PAHs.

  13. LABORATORY OPTIMIZATION TESTS OF TECHNETIUM DECONTAMINATION OF HANFORD WASTE TREATMENT PLANT LOW ACTIVITY WASTE OFF-GAS CONDENSATE SIMULANT

    SciTech Connect (OSTI)

    Taylor-Pashow, K.; Nash, C.; McCabe, D.

    2014-09-29

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also

  14. An Integrated Water Treatment Technology Solution for Sustainable Water Resource Management in the Marcellus Shale

    SciTech Connect (OSTI)

    Matthew Bruff; Ned Godshall; Karen Evans

    2011-04-30

    This Final Scientific/ Technical Report submitted with respect to Project DE-FE0000833 titled 'An Integrated Water Treatment Technology Solution for Sustainable Water Resource Management in the Marcellus Shale' in support of final reporting requirements. This final report contains a compilation of previous reports with the most current data in order to produce one final complete document. The goal of this research was to provide an integrated approach aimed at addressing the increasing water resource challenges between natural gas production and other water stakeholders in shale gas basins. The objective was to demonstrate that the AltelaRain{reg_sign} technology could be successfully deployed in the Marcellus Shale Basin to treat frac flow-back water. That objective has been successfully met.

  15. Technology for Treatment of Liquid Radioactive Waste Generated during Uranium and Plutonium Chemical and Metallurgical Manufacturing in FSUE PO Mayak - 13616

    SciTech Connect (OSTI)

    Adamovich, D. [SUE MosSIA Radon, 2/14 7th Rostovsky lane, Moscow, 119121 (Russian Federation)] [SUE MosSIA Radon, 2/14 7th Rostovsky lane, Moscow, 119121 (Russian Federation); Batorshin, G.; Logunov, M.; Musalnikov, A. [FSUE 'PO Mayak', 31 av. Lenin, Ozyorsk, Chelyabinsk region, 456780 (Russian Federation)] [FSUE 'PO Mayak', 31 av. Lenin, Ozyorsk, Chelyabinsk region, 456780 (Russian Federation)

    2013-07-01

    Created technological scheme for treatment of liquid radioactive waste generated while uranium and plutonium chemical and metallurgical manufacturing consists of: - Liquid radioactive waste (LRW) purification from radionuclides and its transfer into category of manufacturing waste; - Concentration of suspensions containing alpha-nuclides and their further conversion to safe dry state (calcinate) and moving to long controlled storage. The following technologies are implemented in LRW treatment complex: - Settling and filtering technology for treatment of liquid intermediate-level waste (ILW) with volume about 1500m{sup 3}/year and alpha-activity from 10{sup 6} to 10{sup 8} Bq/dm{sup 3} - Membrane and sorption technology for processing of low-level waste (LLW) of radioactive drain waters with volume about 150 000 m{sup 3}/year and alpha-activity from 10{sup 3} to 10{sup 4} Bq/dm{sup 3}. Settling and filtering technology includes two stages of ILW immobilization accompanied with primary settling of radionuclides on transition metal hydroxides with the following flushing and drying of the pulp generated; secondary deep after settling of radionuclides on transition metal hydroxides with the following solid phase concentration by the method of tangential flow ultrafiltration. Besides, the installation capacity on permeate is not less than 3 m{sup 3}/h. Concentrates generated are sent to calcination on microwave drying (MW drying) unit. Membrane and sorption technology includes processing of averaged sewage flux by the method of tangential flow ultrafiltration with total capacity of installations on permeate not less than 18 m{sup 3}/h and sorption extraction of uranium from permeate on anionite. According to radionuclide contamination level purified solution refers to general industrial waste. Concentrates generated during suspension filtering are evaporated in rotary film evaporator (RFE) in order to remove excess water, thereafter they are dried on infrared heating

  16. Significance of water fluxes in a deep arid-region vadose zone to waste disposal strategies

    SciTech Connect (OSTI)

    Johnejack, K.R.; Blout, D.O.; Sully, M.J.; Emer, D.F.; Hammermeister, D.P. [Reynolds Electrical and Engineering Co., Inc., Las Vegas, NV (United States); Dever, L.G.; O`Neill, L.J. [DOE Nevada Operations Office, Las Vegas, NV (United States). Waste Management Div.; Tyler, S.W. [Desert Research Institute, Reno, NV (United States). Water Resources Center; Chapman, J. [Desert Research Institute, Las Vegas, NV (United States). Water Resources Center

    1994-03-01

    Recently collected subsurface site characterization data have led to the development of a conceptual model of water movement beneath the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS) that differs significantly from the conceptual model of water movement inherent in Resource Conservation and Recovery Act (RCRA) regulations. At the Area 5 RWMS, water fluxes in approximately the upper 75 m (250 ft) of the vadose zone point in the upward direction (rather than downward) which effectively isolates this region from the deep (approximately 250 m (820 ft)) uppermost aquifer. Standard RCRA approaches for detection and containment (groundwater monitoring and double liners/leachate collection/leak detection systems) are not able to fulfill their intended function in this rather unique hydrogeologic environment. In order to better fulfill the waste detection and containment intentions of RCRA for mixed waste disposal at the Area 5 RWMS, the Department of Energy, Nevada Operations Office (DOE/NV) is preparing a single petition for both a waiver from groundwater monitoring and an exemption from double liners with leachate collection/leak detection. DOE/NV proposes in this petition that the containment function of liners and leachate collection is better accomplished by the natural hydrogeologic processes operating in the upper vadose zone; and the detection function of groundwater monitoring and the leak detection system in liners is better fulfilled by an alternative vadose zone monitoring system. In addition, an alternative point of compliance is proposed that will aid in early detection, as well as limit the extent of potential contamination before detection. Finally, special cell design features and operation practices will be implemented to limit leachate formation, especially while the cell is open to the atmosphere during waste emplacement.

  17. SECONDARY WASTE/ETF (EFFLUENT TREATMENT FACILITY) PRELIMINARY PRE-CONCEPTUAL ENGINEERING STUDY

    SciTech Connect (OSTI)

    MAY TH; GEHNER PD; STEGEN GARY; HYMAS JAY; PAJUNEN AL; SEXTON RICH; RAMSEY AMY

    2009-12-28

    This pre-conceptual engineering study is intended to assist in supporting the critical decision (CD) 0 milestone by providing a basis for the justification of mission need (JMN) for the handling and disposal of liquid effluents. The ETF baseline strategy, to accommodate (WTP) requirements, calls for a solidification treatment unit (STU) to be added to the ETF to provide the needed additional processing capability. This STU is to process the ETF evaporator concentrate into a cement-based waste form. The cementitious waste will be cast into blocks for curing, storage, and disposal. Tis pre-conceptual engineering study explores this baseline strategy, in addition to other potential alternatives, for meeting the ETF future mission needs. Within each reviewed case study, a technical and facility description is outlined, along with a preliminary cost analysis and the associated risks and benefits.

  18. XRF and leaching characterization of waste glasses derived from wastewater treatment sludges

    SciTech Connect (OSTI)

    Ragsdale, R.G., Jr

    1994-12-01

    Purpose of this study was to investigate use of XRF (x-ray fluorescence spectrometry) as a near real-time method to determine melter glass compositions. A range of glasses derived from wastewater treatment sludges associated with DOE sites was prepared. They were analyzed by XRF and wet chemistry digestion with atomic absorption/inductively coupled emission spectrometry. Results indicated good correlation between these two methods. A rapid sample preparation and analysis technique was developed and demonstrated by acquiring a sample from a pilot-scale simulated waste glass melter and analyzing it by XRF within one hour. From the results, XRF shows excellent potential as a process control tool for waste glass vitrification. Glasses prepared for this study were further analyzed for durability by toxicity characteristic leaching procedure and product consistency test and results are presented.

  19. Scaled Testing to Evaluate Pulse Jet Mixer Performance in Waste Treatment Plant Mixing Vessels

    SciTech Connect (OSTI)

    Fort, James A.; Meyer, Perry A.; Bamberger, Judith A.; Enderlin, Carl W.; Scott, Paul A.; Minette, Michael J.; Gauglitz, Phillip A.

    2010-03-07

    The Waste Treatment and Immobilization Plant (WTP) at Hanford is being designed and built to pre-treat and vitrify the waste in Hanfords 177 underground waste storage tanks. Numerous process vessels will hold waste at various stages in the WTP. These vessels have pulse jet mixer (PJM) systems. A test program was developed to evaluate the adequacy of mixing system designs in the solids-containing vessels in the WTP. The program focused mainly on non-cohesive solids behavior. Specifically, the program addressed the effectiveness of the mixing systems to suspend settled solids off the vessel bottom, and distribute the solids vertically. Experiments were conducted at three scales using various particulate simulants. A range of solids loadings and operational parameters were evaluated, including jet velocity, pulse volume, and duty cycle. In place of actual PJMs, the tests used direct injection from tubes with suction at the top of the tank fluid. This gave better control over the discharge duration and duty cycle and simplified the facility requirements. The mixing system configurations represented in testing varied from 4 to 12 PJMs with various jet nozzle sizes. In this way the results collected could be applied to the broad range of WTP vessels with varying geometrical configurations and planned operating conditions. Data for just-suspended velocity, solids cloud height, and solids concentration vertical profile were collected, analyzed, and correlated. The correlations were successfully benchmarked against previous large-scale test results, then applied to the WTP vessels using reasonable assumptions of anticipated waste properties to evaluate adequacy of the existing mixing system designs.

  20. Information related to low-level mixed waste inventory, characteristics, generation, and facility assessment for treatment, storage, and disposal alternatives considered in the U.S. Department of Energy Waste Management Programmatic Environmental Impact Statement

    SciTech Connect (OSTI)

    Wilkins, B.D.; Dolak, D.A.; Wang, Y.Y.; Meshkov, N.K.

    1996-12-01

    This report was prepared to support the analysis of risks and costs associated with the proposed treatment of low-level mixed waste (LLMW) under management of the US Department of Energy (DOE). The various waste management alternatives for treatment of LLMW have been defined in the DOE`s Office of Waste Management Programmatic Environmental Impact Statement. This technical memorandum estimates the waste material throughput expected at each proposed LLMW treatment facility and analyzes potential radiological and chemical releases at each DOE site resulting from treatment of these wastes. Models have been developed to generate site-dependent radiological profiles and waste-stream-dependent chemical profiles for these wastes. Current site-dependent inventories and estimates for future generation of LLMW have been obtained from DOE`s 1994 Mixed Waste Inventory Report (MWIR-2). Using treatment procedures developed by the Mixed Waste Treatment Project, the MWIR-2 database was analyzed to provide waste throughput and emission estimates for each of the different waste types assessed in this report. Uncertainties in the estimates at each site are discussed for waste material throughputs and radiological and chemical releases.