Powered by Deep Web Technologies
Note: This page contains sample records for the topic "waste treatment facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Explosive Waste Treatment Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

106 106 Environment a 1 Assessment for th.e Explosive Waste Treatment Facility at Site 300 Lawrence Livermore National Laboratory MASTER November 1995 U.S. Department of Energy Office of Environmental Restoration and Waste Management Washington, DOC. 20585 Portions of this document maly be illegible in electronic image products. Images are produced from the best available original document. Table of Contents 1 . 0 2.0 3 . 0 4.0 5 . 0 6.0 7 . 0 8 . 0 Document Summary .............................................................. 1 Purpose and Need for Agency Action ............................................. 3 Description of the Proposed Action and Alternatives ............................ 4 3.1.1 Location ............................................................. 4

2

Integrated Waste Treatment Facility Fact Sheet | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Management Tank Waste and Waste Processing Integrated Waste Treatment Facility Fact Sheet Integrated Waste Treatment Facility Fact Sheet Waste Management Nuclear...

3

Final Hanford Offsite Waste Shipment Leaves Idaho Treatment Facility...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Final Hanford Offsite Waste Shipment Leaves Idaho Treatment Facility Final Hanford Offsite Waste Shipment Leaves Idaho Treatment Facility August 18, 2011 - 12:00pm Addthis Idaho...

4

Idaho Waste Treatment Facility Improves Worker Safety and Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment Facility Improves Worker Safety and Efficiency, Saves Taxpayer Dollars Idaho Waste Treatment Facility Improves Worker Safety and Efficiency, Saves Taxpayer Dollars...

5

Idaho Waste Treatment Facility Startup Testing Suspended To Evaluate...  

NLE Websites -- All DOE Office Websites (Extended Search)

Idaho Waste Treatment Facility Startup Testing Suspended To Evaluate System IDAHO FALLS, ID- On Saturday, June 16, startup testing was suspended at the Integrated Waste Treatment...

6

Waste Treatment and Immobilation Plant Pretreatment Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 7 Technology Readiness Assessment for the Waste Treatment and Immobilization Plant (WTP) Pretreatment Facility L. Holton D. Alexander M. Johnson H. Sutter August 2007 Prepared by the U.S. Department of Energy Office of River Protection Richland, Washington, 99352 07-DESIGN-047 Technology Readiness Assessment for the Waste Treatment and Immobilization Plant (WTP) Pretreatment Facilities L. Holton D. Alexander M. Johnson H. Sutter August 2007 Prepared by the U.S. Department of Energy Office of River Protection under Contract DE-AC05-76RL01830 07-DESIGN-047 iii Summary The U.S. Department of Energy (DOE), Office of River Protection (ORP) and the DOE Office of Environmental Management (EM), Office of Project Recovery has completed a Technology Readiness

7

Idaho Site Launches Startup of Waste Treatment Facility Following Federal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Launches Startup of Waste Treatment Facility Following Launches Startup of Waste Treatment Facility Following Federal Inspection, DOE Milestone Idaho Site Launches Startup of Waste Treatment Facility Following Federal Inspection, DOE Milestone April 23, 2012 - 12:00pm Addthis A controlled, phased startup of the Integrated Waste Treatment Unit began today after the facility passed a federal inspection. A controlled, phased startup of the Integrated Waste Treatment Unit began today after the facility passed a federal inspection. A view of the interior of the Integrated Waste Treatment Unit. A view of the interior of the Integrated Waste Treatment Unit. A controlled, phased startup of the Integrated Waste Treatment Unit began today after the facility passed a federal inspection. A view of the interior of the Integrated Waste

8

Idaho Site Launches Startup of Waste Treatment Facility Following Federal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho Site Launches Startup of Waste Treatment Facility Following Idaho Site Launches Startup of Waste Treatment Facility Following Federal Inspection, DOE Milestone Idaho Site Launches Startup of Waste Treatment Facility Following Federal Inspection, DOE Milestone April 23, 2012 - 12:00pm Addthis A controlled, phased startup of the Integrated Waste Treatment Unit began today after the facility passed a federal inspection. A controlled, phased startup of the Integrated Waste Treatment Unit began today after the facility passed a federal inspection. A view of the interior of the Integrated Waste Treatment Unit. A view of the interior of the Integrated Waste Treatment Unit. A controlled, phased startup of the Integrated Waste Treatment Unit began today after the facility passed a federal inspection. A view of the interior of the Integrated Waste

9

Waste Treatment and Immobilation Plant HLW Waste Vitrification Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 6 Technology Readiness Assessment for the Waste Treatment and Immobilization Plant (WTP) HLW Waste Vitrification Facility L. Holton D. Alexander C. Babel H. Sutter J. Young August 2007 Prepared by the U.S. Department of Energy Office of River Protection Richland, Washington, 99352 07-DESIGN-046 Technology Readiness Assessment for the Waste Treatment and Immobilization Plant (WTP) HLW Waste Vitrification Facility L. Holton D. Alexander C. Babel H. Sutter J. Young August 2007 Prepared by the U.S. Department of Energy Office of River Protection under Contract DE-AC05-76RL01830 07-DESIGN-046 iii Summary The U.S. Department of Energy (DOE), Office of River Protection (ORP) and the DOE Office of Environmental and Radioactive Waste Management (EM), Office of Project Recovery have completed a

10

Idaho waste treatment facility startup testing suspended to evaluate system  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

waste treatment facility startup testing suspended to waste treatment facility startup testing suspended to evaluate system response Idaho waste treatment facility startup testing suspended to evaluate system response June 20, 2012 - 12:00pm Addthis Media Contacts Brad Bugger 208-526-0833 Danielle Miller 208-526-5709 IDAHO FALLS, ID- On Saturday, June 16, startup testing was suspended at the Integrated Waste Treatment Unit (IWTU) located at the U.S. Department of Energy's Idaho Site. Testing and plant heat-up was suspended to allow detailed evaluation of a system pressure event observed during testing on Saturday. Facility startup testing has been ongoing for the past month, evaluating system and component operation and response during operating conditions. No radioactive or hazardous waste has been introduced into the facility,

11

Waste Treatment Facility Passes Federal Inspection, Completes Final  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment Facility Passes Federal Inspection, Completes Final Waste Treatment Facility Passes Federal Inspection, Completes Final Milestone, Begins Startup Waste Treatment Facility Passes Federal Inspection, Completes Final Milestone, Begins Startup April 23, 2012 - 12:00pm Addthis Media Contact Erik Simpson, 208-390-9464 Danielle Miller, 208-526-5709 The Idaho site today initiated the controlled, phased startup of a new waste treatment facility scheduled to begin treating 900,000 gallons of radioactive liquid waste stored in underground tanks at a former Cold War spent nuclear fuel reprocessing facility next month. A U.S. Department of Energy (DOE) operational readiness review team (made up of Subject Matter Experts across the country) in early April identified a dozen issues for the cleanup contractor CH2M-WG Idaho, LLC (CWI) to

12

Mixed and Low-Level Waste Treatment Facility project  

SciTech Connect

Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. The engineering studies, initiated in July 1991, identified 37 mixed waste streams, and 55 low-level waste streams. This report documents the waste stream information and potential treatment strategies, as well as the regulatory requirements for the Department of Energy-owned treatment facility option. The total report comprises three volumes and two appendices. This report consists of Volume 1, which explains the overall program mission, the guiding assumptions for the engineering studies, and summarizes the waste stream and regulatory information, and Volume 2, the Waste Stream Technical Summary which, encompasses the studies conducted to identify the INEL's waste streams and their potential treatment strategies.

1992-04-01T23:59:59.000Z

13

Waste treatment facility passes federal inspection, completes final  

NLE Websites -- All DOE Office Websites (Extended Search)

23, 2012 23, 2012 Media Contact: Danielle Miller, 208-526-5709 Erik Simpson, 208-390-9464 Waste treatment facility passes federal inspection, completes final milestone, begins startup The Idaho site today initiated the controlled, phased startup of a new waste treatment facility scheduled to begin treating 900,000 gallons of radioactive liquid waste stored in underground tanks at a former Cold War spent nuclear fuel reprocessing facility next month. An exterior view of the Integrated Waste Treatment Unit A U.S. Department of Energy (DOE) operational readiness review team (made up of Subject Matter Experts across the country) in early April identified a dozen issues for the cleanup contractor CH2M-WG Idaho, LLC (CWI) to resolve before the 53,000-square-foot Integrated Waste Treatment Unit

14

Final Hanford Offsite Waste Shipment Leaves Idaho Treatment Facility |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Final Hanford Offsite Waste Shipment Leaves Idaho Treatment Final Hanford Offsite Waste Shipment Leaves Idaho Treatment Facility Final Hanford Offsite Waste Shipment Leaves Idaho Treatment Facility August 18, 2011 - 12:00pm Addthis Idaho State Patrol Troopers Rick Stouse and Tony Anderson inspected the TRUPACTS, containers which contain TRU waste, and trailer containing the final shipment of Hanford offsite waste. The Idaho State Patrol officers have played an important role in AMWTP's success by inspecting every one of AMWTP's nearly 3,900 shipments. Idaho State Patrol Troopers Rick Stouse and Tony Anderson inspected the TRUPACTS, containers which contain TRU waste, and trailer containing the final shipment of Hanford offsite waste. The Idaho State Patrol officers have played an important role in AMWTP's success by inspecting every one of

15

Idaho Waste Treatment Facility Improves Worker Safety and Efficiency, Saves  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment Facility Improves Worker Safety and Waste Treatment Facility Improves Worker Safety and Efficiency, Saves Taxpayer Dollars Idaho Waste Treatment Facility Improves Worker Safety and Efficiency, Saves Taxpayer Dollars August 27, 2013 - 12:00pm Addthis The box retrieval forklift carriage is used to lift a degraded box as retrieval personnel monitor progress. The box retrieval forklift carriage is used to lift a degraded box as retrieval personnel monitor progress. The new soft-sided overpack is placed for shipment for treatment and repackaging. The new soft-sided overpack is placed for shipment for treatment and repackaging. The box retrieval forklift carriage is used to lift a degraded box as retrieval personnel monitor progress. The new soft-sided overpack is placed for shipment for treatment and repackaging.

16

Advanced Mixed Waste Treatment: Results of Mixed Waste Treatment at the M-4 Facility  

Science Conference Proceedings (OSTI)

Processing alternatives for commercial nuclear plant mixed wastes are limited. In order to expand potential treatment options, EPRI entered a collaborative research agreement to process mixed wastes at an environmental facility. This report documents the success of that effort to date.

1997-12-31T23:59:59.000Z

17

Waste Treatment Facility Saves Taxpayers Nearly $20 Million | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment Facility Saves Taxpayers Nearly $20 Million Waste Treatment Facility Saves Taxpayers Nearly $20 Million Waste Treatment Facility Saves Taxpayers Nearly $20 Million December 11, 2012 - 1:40pm Addthis A new enclosure for processing radioactive casks has put Oak Ridge on a path to finishing cleanup work two years ahead of schedule, saving nearly $20 million. | Photo courtesy of the Office of Environmental Management. A new enclosure for processing radioactive casks has put Oak Ridge on a path to finishing cleanup work two years ahead of schedule, saving nearly $20 million. | Photo courtesy of the Office of Environmental Management. Erin Szulman Erin Szulman Special Assistant, Office of Environmental Management What Are The Two Types of Waste? One is contact-handled, which has lower radioactivity and can be

18

Waste Treatment Facility Saves Taxpayers Nearly $20 Million | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment Facility Saves Taxpayers Nearly $20 Million Waste Treatment Facility Saves Taxpayers Nearly $20 Million Waste Treatment Facility Saves Taxpayers Nearly $20 Million December 11, 2012 - 1:40pm Addthis A new enclosure for processing radioactive casks has put Oak Ridge on a path to finishing cleanup work two years ahead of schedule, saving nearly $20 million. | Photo courtesy of the Office of Environmental Management. A new enclosure for processing radioactive casks has put Oak Ridge on a path to finishing cleanup work two years ahead of schedule, saving nearly $20 million. | Photo courtesy of the Office of Environmental Management. Erin Szulman Erin Szulman Special Assistant, Office of Environmental Management What Are The Two Types of Waste? One is contact-handled, which has lower radioactivity and can be

19

Mixed and Low-Level Waste Treatment Facility project  

SciTech Connect

Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report, Appendix A, Environmental Regulatory Planning Documentation, identifies the regulatory requirements that would be imposed on the operation or construction of a facility designed to process the INEL's waste streams. These requirements are contained in five reports that discuss the following topics: (1) an environmental compliance plan and schedule, (2) National Environmental Policy Act requirements, (3) preliminary siting requirements, (4) regulatory justification for the project, and (5) health and safety criteria.

1992-04-01T23:59:59.000Z

20

Radioactive Liquid Waste Treatment Facility: Environmental Information Document  

Science Conference Proceedings (OSTI)

At Los Alamos National Laboratory (LANL), the treatment of radioactive liquid waste is an integral function of the LANL mission: to assure U.S. military deterrence capability through nuclear weapons technology. As part of this mission, LANL conducts nuclear materials research and development (R&D) activities. These activities generate radioactive liquid waste that must be handled in a manner to ensure protection of workers, the public, and the environment. Radioactive liquid waste currently generated at LANL is treated at the Radioactive Liquid Waste Treatment Facility (RLWTF), located at Technical Area (TA)-50. The RLWTF is 30 years old and nearing the end of its useful design life. The facility was designed at a time when environmental requirements, as well as more effective treatment technologies, were not inherent in engineering design criteria. The evolution of engineering design criteria has resulted in the older technology becoming less effective in treating radioactive liquid wastestreams in accordance with current National Pollutant Discharge Elimination System (NPDES) and Department of Energy (DOE) regulatory requirements. Therefore, to support ongoing R&D programs pertinent to its mission, LANL is in need of capabilities to efficiently treat radioactive liquid waste onsite or to transport the waste off site for treatment and/or disposal. The purpose of the EID is to provide the technical baseline information for subsequent preparation of an Environmental Impact Statement (EIS) for the RLWTF. This EID addresses the proposed action and alternatives for meeting the purpose and need for agency action.

Haagenstad, H.T.; Gonzales, G.; Suazo, I.L. [Los Alamos National Lab., NM (United States)

1993-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste treatment facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Mixed and Low-Level Waste Treatment Facility Project  

SciTech Connect

Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report documents those studies so the project can continue with an evaluation of programmatic options, system tradeoff studies, and the conceptual design phase of the project. This report, appendix B, comprises the engineering design files for this project study. The engineering design files document each waste steam, its characteristics, and identified treatment strategies.

1992-04-01T23:59:59.000Z

22

Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility  

Science Conference Proceedings (OSTI)

The 200 Area Effluent Treatment Facility Dangerous Waste Permit Application documentation consists of both Part A and a Part B permit application documentation. An explanation of the Part A revisions associated with this treatment and storage unit, including the current revision, is provided at the beginning of the Part A section. Once the initial Hanford Facility Dangerous Waste Permit is issued, the following process will be used. As final, certified treatment, storage, and/or disposal unit-specific documents are developed, and completeness notifications are made by the US Environmental Protection Agency and the Washington State Department of Ecology, additional unit-specific permit conditions will be incorporated into the Hanford Facility Dangerous Waste Permit through the permit modification process. All treatment, storage, and/or disposal units that are included in the Hanford Facility Dangerous Waste Permit Application will operate under interim status until final status conditions for these units are incorporated into the Hanford Facility Dangerous Waste Permit. The Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility contains information current as of May 1, 1993.

Not Available

1993-08-01T23:59:59.000Z

23

Mixed and low-level waste treatment facility project  

SciTech Connect

The technology information provided in this report is only the first step toward the identification and selection of process systems that may be recommended for a proposed mixed and low-level waste treatment facility. More specific information on each technology will be required to conduct the system and equipment tradeoff studies that will follow these preengineering studies. For example, capacity, maintainability, reliability, cost, applicability to specific waste streams, and technology availability must be further defined. This report does not currently contain all needed information; however, all major technologies considered to be potentially applicable to the treatment of mixed and low-level waste are identified and described herein. Future reports will seek to improve the depth of information on technologies.

Not Available

1992-04-01T23:59:59.000Z

24

Mixed and low-level waste treatment facility project. Volume 3, Waste treatment technologies (Draft)  

SciTech Connect

The technology information provided in this report is only the first step toward the identification and selection of process systems that may be recommended for a proposed mixed and low-level waste treatment facility. More specific information on each technology will be required to conduct the system and equipment tradeoff studies that will follow these preengineering studies. For example, capacity, maintainability, reliability, cost, applicability to specific waste streams, and technology availability must be further defined. This report does not currently contain all needed information; however, all major technologies considered to be potentially applicable to the treatment of mixed and low-level waste are identified and described herein. Future reports will seek to improve the depth of information on technologies.

1992-04-01T23:59:59.000Z

25

EA-1106: Explosive Waste Treatment Facility at Site 300, Lawrence Livermore  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

106: Explosive Waste Treatment Facility at Site 300, Lawrence 106: Explosive Waste Treatment Facility at Site 300, Lawrence Livermore National Laboratory, San Joaquin County, California EA-1106: Explosive Waste Treatment Facility at Site 300, Lawrence Livermore National Laboratory, San Joaquin County, California SUMMARY This EA evaluates the environmental impacts of the proposal to build, permit, and operate the Explosive Waste Treatment Facility to treat explosive waste at the U.S. Department of Energy's Lawrence Livermore National Laboratory Experimental Test Site, Site 300. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD April 16, 1996 EA-1106: Finding of No Significant Impact Explosive Waste Treatment Facility at Site 300, Lawrence Livermore National Laboratory April 16, 1996

26

Biological Information Document, Radioactive Liquid Waste Treatment Facility  

SciTech Connect

This document is intended to act as a baseline source material for risk assessments which can be used in Environmental Assessments and Environmental Impact Statements. The current Radioactive Liquid Waste Treatment Facility (RLWTF) does not meet current General Design Criteria for Non-reactor Nuclear Facilities and could be shut down affecting several DOE programs. This Biological Information Document summarizes various biological studies that have been conducted in the vicinity of new Proposed RLWTF site and an Alternative site. The Proposed site is located on Mesita del Buey, a mess top, and the Alternative site is located in Mortandad Canyon. The Proposed Site is devoid of overstory species due to previous disturbance and is dominated by a mixture of grasses, forbs, and scattered low-growing shrubs. Vegetation immediately adjacent to the site is a pinyon-juniper woodland. The Mortandad canyon bottom overstory is dominated by ponderosa pine, willow, and rush. The south-facing slope was dominated by ponderosa pine, mountain mahogany, oak, and muhly. The north-facing slope is dominated by Douglas fir, ponderosa pine, and oak. Studies on wildlife species are limited in the vicinity of the proposed project and further studies will be necessary to accurately identify wildlife populations and to what extent they utilize the project area. Some information is provided on invertebrates, amphibians and reptiles, and small mammals. Additional species information from other nearby locations is discussed in detail. Habitat requirements exist in the project area for one federally threatened wildlife species, the peregrine falcon, and one federal candidate species, the spotted bat. However, based on surveys outside of the project area but in similar habitats, these species are not expected to occur in either the Proposed or Alternative RLWTF sites. Habitat Evaluation Procedures were used to evaluate ecological functioning in the project area.

Biggs, J.

1995-12-31T23:59:59.000Z

27

Radioactive Liquid Waste Treatment Facility Discharges in 2011  

Science Conference Proceedings (OSTI)

This report documents radioactive discharges from the TA50 Radioactive Liquid Waste Treatment Facilities (RLWTF) during calendar 2011. During 2011, three pathways were available for the discharge of treated water to the environment: discharge as water through NPDES Outfall 051 into Mortandad Canyon, evaporation via the TA50 cooling towers, and evaporation using the newly-installed natural-gas effluent evaporator at TA50. Only one of these pathways was used; all treated water (3,352,890 liters) was fed to the effluent evaporator. The quality of treated water was established by collecting a weekly grab sample of water being fed to the effluent evaporator. Forty weekly samples were collected; each was analyzed for gross alpha, gross beta, and tritium. Weekly samples were also composited at the end of each month. These flow-weighted composite samples were then analyzed for 37 radioisotopes: nine alpha-emitting isotopes, 27 beta emitters, and tritium. These monthly analyses were used to estimate the radioactive content of treated water fed to the effluent evaporator. Table 1 summarizes this information. The concentrations and quantities of radioactivity in Table 1 are for treated water fed to the evaporator. Amounts of radioactivity discharged to the environment through the evaporator stack were likely smaller since only entrained materials would exit via the evaporator stack.

Del Signore, John C. [Los Alamos National Laboratory

2012-05-16T23:59:59.000Z

28

Sanitary Waste Water Treatment System for the Hanford Decontamination Laundry Facility  

SciTech Connect

This is an engineering report for the Decontamination Laundry Facility (DLF) which will be located in the 200 East Area of the Hanford Site. The proposed Sanitary Waste Treatment System is new and does not involve interfacing with existing sanitary waste treatment systems. It will utilize a subsurface soil absorption system (SSAS), which are frequently used to dispose of sanitary waste water from facilities at the Hanford Site, since a majority of its` facilities are located in remote areas. Construction of the DLF is scheduled to start in 1992 and startup of the DLF is planned during the summer of 1994.

Yanochko, R.M.

1992-09-01T23:59:59.000Z

29

Sanitary Waste Water Treatment System for the Hanford Decontamination Laundry Facility  

SciTech Connect

This is an engineering report for the Decontamination Laundry Facility (DLF) which will be located in the 200 East Area of the Hanford Site. The proposed Sanitary Waste Treatment System is new and does not involve interfacing with existing sanitary waste treatment systems. It will utilize a subsurface soil absorption system (SSAS), which are frequently used to dispose of sanitary waste water from facilities at the Hanford Site, since a majority of its' facilities are located in remote areas. Construction of the DLF is scheduled to start in 1992 and startup of the DLF is planned during the summer of 1994.

Yanochko, R.M.

1992-09-01T23:59:59.000Z

30

Mixed and Low-Level Treatment Facility Project. Appendix B, Waste stream engineering files, Part 1, Mixed waste streams  

SciTech Connect

This appendix contains the mixed and low-level waste engineering design files (EDFS) documenting each low-level and mixed waste stream investigated during preengineering studies for Mixed and Low-Level Waste Treatment Facility Project. The EDFs provide background information on mixed and low-level waste generated at the Idaho National Engineering Laboratory. They identify, characterize, and provide treatment strategies for the waste streams. Mixed waste is waste containing both radioactive and hazardous components as defined by the Atomic Energy Act and the Resource Conservation and Recovery Act, respectively. Low-level waste is waste that contains radioactivity and is not classified as high-level waste, transuranic waste, spent nuclear fuel, or 11e(2) byproduct material as defined by DOE 5820.2A. Test specimens of fissionable material irradiated for research and development only, and not for the production of power or plutonium, may be classified as low-level waste, provided the concentration of transuranic is less than 100 nCi/g. This appendix is a tool that clarifies presentation format for the EDFS. The EDFs contain waste stream characterization data and potential treatment strategies that will facilitate system tradeoff studies and conceptual design development. A total of 43 mixed waste and 55 low-level waste EDFs are provided.

1992-04-01T23:59:59.000Z

31

The Radioactive Liquid Waste Treatment Facility Replacement Project at Los Alamos National Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radioactive Liquid Waste Radioactive Liquid Waste Treatment Facility Replacement Project at Los Alamos National Laboratory OAS-L-13-15 September 2013 Department of Energy Washington, DC 20585 September 26, 2013 MEMORANDUM FOR THE ASSOCIATE ADMINISTRATOR FOR ACQUISITION AND PROJECT MANAGEMENT MANAGER LOS ALAMOS FIELD OFFICE FROM: David Sedillo Western Audits Division Office of Inspector General SUBJECT: INFORMATION: Audit Report on "The Radioactive Liquid Waste Treatment Facility Replacement Project at Los Alamos National Laboratory" BACKGROUND The Department of Energy's Los Alamos National Laboratory (Los Alamos) is a Government- owned, contractor operated Laboratory that is part of the National Nuclear Security Administration's (NNSA) nuclear weapons complex. Los Alamos' primary responsibility is to

32

Pilot studies to achieve waste minimization and enhance radioactive liquid waste treatment at the Los Alamos National Laboratory Radioactive Liquid Waste Treatment Facility  

SciTech Connect

The Radioactive and Industrial Wastewater Science Group manages and operates the Radioactive Liquid Waste Treatment Facility (RLWTF) at the Los Alamos National Laboratory (LANL). The RLWTF treats low-level radioactive liquid waste generated by research and analytical facilities at approximately 35 technical areas throughout the 43-square-mile site. The RLWTF treats an average of 5.8 million gallons (21.8-million liters) of liquid waste annually. Clarifloculation and filtration is the primary treatment technology used by the RLWTF. This technology has been used since the RLWTF became operable in 1963. Last year the RLWTF achieved an average of 99.7% removal of gross alpha activity in the waste stream. The treatment process requires the addition of chemicals for the flocculation and subsequent precipitation of radionuclides. The resultant sludge generated during this process is solidified in drums and stored or disposed of at LANL.

Freer, J.; Freer, E.; Bond, A. [and others

1996-07-01T23:59:59.000Z

33

Audit of the radioactive liquid waste treatment facility operations at the Los Alamos National Laboratory  

SciTech Connect

Los Alamos National Laboratory (Los Alamos) generates radioactive and liquid wastes that must be treated before being discharged to the environment. Presently, the liquid wastes are treated in the Radioactive Liquid Waste Treatment Facility (Treatment Facility), which is over 30 years old and in need of repair or replacement. However, there are various ways to satisfy the treatment need. The objective of the audit was to determine whether Los Alamos cost effectively managed its Treatment Facility operations. The audit determined that Los Alamos` treatment costs were significantly higher when compared to similar costs incurred by the private sector. This situation occurred because Los Alamos did not perform a complete analysis of privatization or prepare a {open_quotes}make-or-buy{close_quotes} plan for its treatment operations, although a {open_quotes}make-or-buy{close_quotes} plan requirement was incorporated into the contract in 1996. As a result, Los Alamos may be spending $2.15 million more than necessary each year and could needlessly spend $10.75 million over the next five years to treat its radioactive liquid waste. In addition, Los Alamos has proposed to spend $13 million for a new treatment facility that may not be needed if privatization proves to be a cost effective alternative. We recommended that the Manager, Albuquerque Operations Office (Albuquerque), (1) require Los Alamos to prepare a {open_quotes}make-or-buy{close_quotes} plan for its radioactive liquid waste treatment operations, (2) review the plan for approval, and (3) direct Los Alamos to select the most cost effective method of operations while also considering other factors such as mission support, reliability, and long-term program needs. Albuquerque concurred with the recommendations.

1997-11-19T23:59:59.000Z

34

Environmental assessment for the Waste Water Treatment Facility at the West Valley Demonstration Project and finding of no significant impact  

SciTech Connect

The possible environmental impacts from the construction and operation of a waste water treatment facility for the West Valley Demonstration Project are presented. The West Valley Project is a demonstration project on the solidification of high-level radioactive wastes. The need for the facility is the result of a rise in the work force needed for the project which rendered the existing sewage treatment plant incapable of meeting the nonradioactive waste water treatment needs.

1992-12-31T23:59:59.000Z

35

Risk assessment of CST-7 proposed waste treatment and storage facilities Volume I: Limited-scope probabilistic risk assessment (PRA) of proposed CST-7 waste treatment & storage facilities. Volume II: Preliminary hazards analysis of proposed CST-7 waste storage & treatment facilities  

Science Conference Proceedings (OSTI)

In FY 1993, the Los Alamos National Laboratory Waste Management Group [CST-7 (formerly EM-7)] requested the Probabilistic Risk and Hazards Analysis Group [TSA-11 (formerly N-6)] to conduct a study of the hazards associated with several CST-7 facilities. Among these facilities are the Hazardous Waste Treatment Facility (HWTF), the HWTF Drum Storage Building (DSB), and the Mixed Waste Receiving and Storage Facility (MWRSF), which are proposed for construction beginning in 1996. These facilities are needed to upgrade the Laboratory`s storage capability for hazardous and mixed wastes and to provide treatment capabilities for wastes in cases where offsite treatment is not available or desirable. These facilities will assist Los Alamos in complying with federal and state requlations.

Sasser, K.

1994-06-01T23:59:59.000Z

36

Idaho Waste Vitrification Facilities Project Vitrified Waste Interim Storage Facility  

SciTech Connect

This feasibility study report presents a draft design of the Vitrified Waste Interim Storage Facility (VWISF), which is one of three subprojects of the Idaho Waste Vitrification Facilities (IWVF) project. The primary goal of the IWVF project is to design and construct a treatment process system that will vitrify the sodium-bearing waste (SBW) to a final waste form. The project will consist of three subprojects that include the Waste Collection Tanks Facility, the Waste Vitrification Facility (WVF), and the VWISF. The Waste Collection Tanks Facility will provide for waste collection, feed mixing, and surge storage for SBW and newly generated liquid waste from ongoing operations at the Idaho Nuclear Technology and Engineering Center. The WVF will contain the vitrification process that will mix the waste with glass-forming chemicals or frit and turn the waste into glass. The VWISF will provide a shielded storage facility for the glass until the waste can be disposed at either the Waste Isolation Pilot Plant as mixed transuranic waste or at the future national geological repository as high-level waste glass, pending the outcome of a Waste Incidental to Reprocessing determination, which is currently in progress. A secondary goal is to provide a facility that can be easily modified later to accommodate storage of the vitrified high-level waste calcine. The objective of this study was to determine the feasibility of the VWISF, which would be constructed in compliance with applicable federal, state, and local laws. This project supports the Department of Energys Environmental Management missions of safely storing and treating radioactive wastes as well as meeting Federal Facility Compliance commitments made to the State of Idaho.

Bonnema, Bruce Edward

2001-09-01T23:59:59.000Z

37

Cost Transfers at the Department's Sodium Bearing Waste Treatment Facility Construction Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Audit Report Cost Transfers at the Department's Sodium Bearing Waste Treatment Facility Construction Project OAS-M-13-03 August 2013 Department of Energy Washington, DC 20585 August 8, 2013 MEMORANDUM FOR THE SENIOR ADVISOR FOR ENVIRONMENTAL MANAGEMENT FROM: Rickey R. Hass Deputy Inspector General for Audits and Inspections Office of Inspector General SUBJECT: INFORMATION: Audit Report on "Cost Transfers at the Department's Sodium Bearing Waste Treatment Facility Construction Project" BACKGROUND In 2005, the Department of Energy (Department) awarded the Idaho Cleanup Project contract to CH2M ♦ WG Idaho, LLC (CWI) to remediate the Idaho National Laboratory. The Sodium

38

New Waste Calcining Facility (NWCF) Waste Streams  

SciTech Connect

This report addresses the issues of conducting debris treatment in the New Waste Calcine Facility (NWCF) decontamination area and the methods currently being used to decontaminate material at the NWCF.

K. E. Archibald

1999-08-01T23:59:59.000Z

39

Analysis of the suitability of DOE facilities for treatment of commercial low-level radioactive mixed waste  

SciTech Connect

This report evaluates the capabilities of the United States Department of Energy`s (DOE`s) existing and proposed facilities to treat 52 commercially generated low-level radioactive mixed (LLMW) waste streams that were previously identified as being difficult-to-treat using commercial treatment capabilities. The evaluation was performed by comparing the waste matrix and hazardous waste codes for the commercial LLMW streams with the waste acceptance criteria of the treatment facilities, as identified in the following DOE databases: Mixed Waste Inventory Report, Site Treatment Plan, and Waste Stream and Technology Data System. DOE facility personnel also reviewed the list of 52 commercially generated LLMW streams and provided their opinion on whether the wastes were technically acceptable at their facilities, setting aside possible administrative barriers. The evaluation tentatively concludes that the DOE is likely to have at least one treatment facility (either existing or planned) that is technically compatible for most of these difficult-to-treat commercially generated LLMW streams. This conclusion is tempered, however, by the limited amount of data available on the commercially generated LLMW streams, by the preliminary stage of planning for some of the proposed DOE treatment facilities, and by the need to comply with environmental statutes such as the Clean Air Act.

1996-02-01T23:59:59.000Z

40

Hanford Facility Dangerous Waste Closure Plan - Plutonium Finishing Plant Treatment Unit Glovebox HA-20MB  

Science Conference Proceedings (OSTI)

This closure plan describes the planned activities and performance standards for closing the Plutonium Finishing Plant (PFP) glovebox HA-20MB that housed an interim status ''Resource Conservation and Recovery Act'' (RCRA) of 1976 treatment unit. This closure plan is certified and submitted to Ecology for incorporation into the Hanford Facility RCRA Permit (HF RCRA Permit) in accordance with Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement; TPA) Milestone M-83-30 requiring submittal of a certified closure plan for ''glovebox HA-20MB'' by July 31, 2003. Glovebox HA-20MB is located within the 231-5Z Building in the 200 West Area of the Hanford Facility. Currently glovebox HA-20MB is being used for non-RCRA analytical purposes. The schedule of closure activities under this plan supports completion of TPA Milestone M-83-44 to deactivate and prepare for dismantlement the above grade portions of the 234-5Z and ZA, 243-Z, and 291-Z and 291-Z-1 stack buildings by September 30, 2015. Under this closure plan, glovebox HA-20MB will undergo clean closure to the performance standards of Washington Administrative Code (WAC) 173-303-610 with respect to all dangerous waste contamination from glovebox HA-20MB RCRA operations. Because the intention is to clean close the PFP treatment unit, postclosure activities are not applicable to this closure plan. To clean close the unit, it will be demonstrated that dangerous waste has not been left at levels above the closure performance standard for removal and decontamination. If it is determined that clean closure is not possible or is environmentally impractical, the closure plan will be modified to address required postclosure activities. Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. Any information on radionuclides is provided only for general knowledge. Clearance form only sent to RHA.

PRIGNANO, A.L.

2003-06-25T23:59:59.000Z

Note: This page contains sample records for the topic "waste treatment facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Mixed and Low-Level Waste Treatment Facility project. Executive summary: Volume 1, Program summary information; Volume 2, Waste stream technical summary: Draft  

SciTech Connect

Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. The engineering studies, initiated in July 1991, identified 37 mixed waste streams, and 55 low-level waste streams. This report documents the waste stream information and potential treatment strategies, as well as the regulatory requirements for the Department of Energy-owned treatment facility option. The total report comprises three volumes and two appendices. This report consists of Volume 1, which explains the overall program mission, the guiding assumptions for the engineering studies, and summarizes the waste stream and regulatory information, and Volume 2, the Waste Stream Technical Summary which, encompasses the studies conducted to identify the INEL`s waste streams and their potential treatment strategies.

1992-04-01T23:59:59.000Z

42

Mixed and Low-Level Waste Treatment Facility Project. Appendix B, Waste stream engineering files: Part 2, Low-level waste streams  

SciTech Connect

Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report documents those studies so the project can continue with an evaluation of programmatic options, system tradeoff studies, and the conceptual design phase of the project. This report, appendix B, comprises the engineering design files for this project study. The engineering design files document each waste steam, its characteristics, and identified treatment strategies.

1992-04-01T23:59:59.000Z

43

SEISMIC DESIGN REQUIREMENTS SELECTION METHODOLOGY FOR THE SLUDGE TREATMENT & M-91 SOLID WASTE PROCESSING FACILITIES PROJECTS  

SciTech Connect

In complying with direction from the U.S. Department of Energy (DOE), Richland Operations Office (RL) (07-KBC-0055, 'Direction Associated with Implementation of DOE-STD-1189 for the Sludge Treatment Project,' and 08-SED-0063, 'RL Action on the Safety Design Strategy (SDS) for Obtaining Additional Solid Waste Processing Capabilities (M-91 Project) and Use of Draft DOE-STD-I 189-YR'), it has been determined that the seismic design requirements currently in the Project Hanford Management Contract (PHMC) will be modified by DOE-STD-1189, Integration of Safety into the Design Process (March 2007 draft), for these two key PHMC projects. Seismic design requirements for other PHMC facilities and projects will remain unchanged. Considering the current early Critical Decision (CD) phases of both the Sludge Treatment Project (STP) and the Solid Waste Processing Facilities (M-91) Project and a strong intent to avoid potentially costly re-work of both engineering and nuclear safety analyses, this document describes how Fluor Hanford, Inc. (FH) will maintain compliance with the PHMC by considering both the current seismic standards referenced by DOE 0 420.1 B, Facility Safety, and draft DOE-STD-1189 (i.e., ASCE/SEI 43-05, Seismic Design Criteria for Structures, Systems, and Components in Nuclear Facilities, and ANSI!ANS 2.26-2004, Categorization of Nuclear Facility Structures, Systems and Components for Seismic Design, as modified by draft DOE-STD-1189) to choose the criteria that will result in the most conservative seismic design categorization and engineering design. Following the process described in this document will result in a conservative seismic design categorization and design products. This approach is expected to resolve discrepancies between the existing and new requirements and reduce the risk that project designs and analyses will require revision when the draft DOE-STD-1189 is finalized.

RYAN GW

2008-04-25T23:59:59.000Z

44

The Design and Construction of the Advanced Mixed Waste Treatment Facility  

SciTech Connect

The Advanced Mixed Treatment Project (AMWTP) privatized contract was awarded to BNFL Inc. in December 1996 and construction of the main facility commenced in August 2000. The purpose of the advanced mixed waste treatment facility is to safely treat plutonium contaminated waste, currently stored in drums and boxes, for final disposal at the Waste Isolation Pilot Plant (WIPP). The plant is being built at the Idaho National Engineering and Environmental Laboratory. Construction was completed in 28 months, to satisfy the Settlement Agreement milestone of December 2002. Commissioning of the related retrieval and characterization facilities is currently underway. The first shipment of pre-characterized waste is scheduled for March 2003, with AMWTP characterized and certified waste shipments from June 2003. To accommodate these challenging delivery targets BNFL adopted a systematic and focused construction program that included the use of a temporary structure to allow winter working, proven design and engineering principles and international procurement policies to help achieve quality and schedule. The technology involved in achieving the AMWTP functional requirements is primarily based upon a BNFL established pedigree of plant and equipment; applied in a manner that suits the process and waste. This technology includes the use of remotely controlled floor mounted and overhead power manipulators, a high power shredder and a 2000-ton force supercompactor with the attendant glove box suite, interconnections and automated material handling. The characterization equipment includes real-time radiography (RTR) units, drum and box assay measurement systems, drum head space gas sampling / analysis and drum venting, drum coring and sampling capabilities. The project adopted a particularly stringent and intensive pre-installation testing philosophy to ensure that equipment would work safely and reliably at the required throughput. This testing included the complete off site integration of functional components or glove boxes, with the attendant integrated control system and undertaking continuous, non-stop, operational effectiveness proof tests. This paper describes the process, plant and technology used within the AMWTP and provides an outline of the associated design, procurement, fabrication, testing and construction.

Harrop, G.

2003-02-27T23:59:59.000Z

45

SECONDARY WASTE/ETF (EFFLUENT TREATMENT FACILITY) PRELIMINARY PRE-CONCEPTUAL ENGINEERING STUDY  

Science Conference Proceedings (OSTI)

This pre-conceptual engineering study is intended to assist in supporting the critical decision (CD) 0 milestone by providing a basis for the justification of mission need (JMN) for the handling and disposal of liquid effluents. The ETF baseline strategy, to accommodate (WTP) requirements, calls for a solidification treatment unit (STU) to be added to the ETF to provide the needed additional processing capability. This STU is to process the ETF evaporator concentrate into a cement-based waste form. The cementitious waste will be cast into blocks for curing, storage, and disposal. Tis pre-conceptual engineering study explores this baseline strategy, in addition to other potential alternatives, for meeting the ETF future mission needs. Within each reviewed case study, a technical and facility description is outlined, along with a preliminary cost analysis and the associated risks and benefits.

MAY TH; GEHNER PD; STEGEN GARY; HYMAS JAY; PAJUNEN AL; SEXTON RICH; RAMSEY AMY

2009-12-28T23:59:59.000Z

46

DEMONSTRATION OF SIMULATED WASTE TRANSFERS FROM TANK AY-102 TO THE HANFORD WASTE TREATMENT FACILITY  

SciTech Connect

In support of Hanford's AY-102 Tank waste certification and delivery of the waste to the Waste Treatment and Immobilization Plant (WTP), Savannah River National Laboratory (SRNL) was tasked by the Washington River Protection Solutions (WRPS) to evaluate the effectiveness of mixing and transferring the waste in the Double Shell Tank (DST) to the WTP Receipt Tank. This work is a follow-on to the previous 'Demonstration of Internal Structures Impacts on Double Shell Tank Mixing Effectiveness' task conducted at SRNL 1. The objective of these transfers was to qualitatively demonstrate how well waste can be transferred out of a mixed DST tank and to provide insights into the consistency between the batches being transferred. Twelve (12) different transfer demonstrations were performed, varying one parameter at a time, in the Batch Transfer Demonstration System. The work focused on visual comparisons of the results from transferring six batches of slurry from a 1/22nd scale (geometric by diameter) Mixing Demonstration Tank (MDT) to six Receipt Tanks, where the consistency of solids in each batch could be compared. The simulant used in this demonstration was composed of simulated Hanford Tank AZ-101 supernate, gibbsite particles, and silicon carbide particles, the same simulant/solid particles used in the previous mixing demonstration. Changing a test parameter may have had a small impact on total solids transferred from the MDT on a given test, but the data indicates that there is essentially no impact on the consistency of solids transferred batch to batch. Of the multiple parameters varied during testing, it was found that changing the nozzle velocity of the Mixer Jet Pumps (MJPs) had the biggest impact on the amount of solids transferred. When the MJPs were operating at 8.0 gpm (22.4 ft/s nozzle velocity, U{sub o}D=0.504 ft{sup 2}/s), the solid particles were more effectively suspended, thus producing a higher volume of solids transferred. When the MJP flow rate was reduced to 5 gpm (14 ft/s nozzle velocity, U{sub o}D = 0.315 ft{sup 2}/s) to each pump, dead zones formed in the tank, resulting in fewer solids being transferred in each batch to the Receipt Tanks. The larger, denser particles were displaced (preferentially to the smaller particles) to one of the two dead zones and not re-suspended for the duration of the test. As the liquid level dropped in the MDT, re-suspending the particles became less effective (6th batch). The poor consistency of the solids transferred in the 6th batch was due to low liquid level in the MDT, thus poor mixing by the MJPs. Of the twelve tests conducted the best transfer of solids occurred during Test 6 and 8 where the MJP rotation was reduced to 1.0 rpm.

Adamson, D.; Poirier, M.; Steeper, T.

2009-12-03T23:59:59.000Z

47

PLUTONIUM FINISHING PLANT (PFP) 241-Z LIQUID WASTE TREATMENT FACILITY DEACTIVATION AND DEMOLITION  

Science Conference Proceedings (OSTI)

Fluor Hanford, Inc. (FH) is proud to submit the Plutonium Finishing Plant (PFP) 241-Z liquid Waste Treatment Facility Deactivation and Demolition (D&D) Project for consideration by the Project Management Institute as Project of the Year for 2008. The decommissioning of the 241-Z Facility presented numerous challenges, many of which were unique with in the Department of Energy (DOE) Complex. The majority of the project budget and schedule was allocated for cleaning out five below-grade tank vaults. These highly contaminated, confined spaces also presented significant industrial safety hazards that presented some of the most hazardous work environments on the Hanford Site. The 241-Z D&D Project encompassed diverse tasks: cleaning out and stabilizing five below-grade tank vaults (also called cells), manually size-reducing and removing over three tons of process piping from the vaults, permanently isolating service utilities, removing a large contaminated chemical supply tank, stabilizing and removing plutonium-contaminated ventilation ducts, demolishing three structures to grade, and installing an environmental barrier on the demolition site . All of this work was performed safely, on schedule, and under budget. During the deactivation phase of the project between November 2005 and February 2007, workers entered the highly contaminated confined-space tank vaults 428 times. Each entry (or 'dive') involved an average of three workers, thus equaling approximately 1,300 individual confined -space entries. Over the course of the entire deactivation and demolition period, there were no recordable injuries and only one minor reportable skin contamination. The 241-Z D&D Project was decommissioned under the provisions of the 'Hanford Federal Facility Agreement and Consent Order' (the Tri-Party Agreement or TPA), the 'Resource Conservation and Recovery Act of 1976' (RCRA), and the 'Comprehensive Environmental Response, Compensation, and Liability Act of 1980' (CERCLA). The project completed TPA Milestone M-083-032 to 'Complete those activities required by the 241-Z Treatment and Storage Unit's RCRA Closure Plan' four years and seven months ahead of this legally enforceable milestone. In addition, the project completed TPA Milestone M-083-042 to 'Complete transition and dismantlement of the 241-2 Waste Treatment Facility' four years and four months ahead of schedule. The project used an innovative approach in developing the project-specific RCRA closure plan to assure clear integration between the 241-Z RCRA closure activities and ongoing and future CERCLA actions at PFP. This approach provided a regulatory mechanism within the RCRA closure plan to place segments of the closure that were not practical to address at this time into future actions under CERCLA. Lessons learned from th is approach can be applied to other closure projects within the DOE Complex to control scope creep and mitigate risk. A paper on this topic, entitled 'Integration of the 241-Z Building D and D Under CERCLA with RCRA Closure at the PFP', was presented at the 2007 Waste Management Conference in Tucson, Arizona. In addition, techniques developed by the 241-Z D&D Project to control airborne contamination, clean the interior of the waste tanks, don and doff protective equipment, size-reduce plutonium-contaminated process piping, and mitigate thermal stress for the workers can be applied to other cleanup activities. The project-management team developed a strategy utilizing early characterization, targeted cleanup, and close coordination with PFP Criticality Engineering to significantly streamline the waste- handling costs associated with the project . The project schedule was structured to support an early transition to a criticality 'incredible' status for the 241-Z Facility. The cleanup work was sequenced and coordinated with project-specific criticality analysis to allow the fissile material waste being generated to be managed in a bulk fashion, instead of individual waste packages. This approach negated the need for real-time assay of individ

JOHNSTON GA

2008-01-15T23:59:59.000Z

48

Mixed Waste Treatment Study  

Science Conference Proceedings (OSTI)

As part of an ongoing integrated mixed waste program, EPRI has documented nuclear utility industry experience in the on-site treatment of mixed waste. This report reviews all available exclusions/exceptions to EPA permitting requirements for environmentally responsible on-site management of mixed waste. Included is a description of emerging mixed waste treatment technologies along with a detailed evaluation of off-site treatment/disposal facilities.

1996-01-31T23:59:59.000Z

49

Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 1, Waste streams and treatment technologies  

SciTech Connect

This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

Neupauer, R.M.; Thurmond, S.M.

1992-09-01T23:59:59.000Z

50

Mixed and Low-Level Waste Treatment Facility project. Appendix A, Environmental and regulatory planning and documentation: Draft  

SciTech Connect

Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report, Appendix A, Environmental & Regulatory Planning & Documentation, identifies the regulatory requirements that would be imposed on the operation or construction of a facility designed to process the INEL`s waste streams. These requirements are contained in five reports that discuss the following topics: (1) an environmental compliance plan and schedule, (2) National Environmental Policy Act requirements, (3) preliminary siting requirements, (4) regulatory justification for the project, and (5) health and safety criteria.

1992-04-01T23:59:59.000Z

51

Analysis of accident sequences and source terms at treatment and storage facilities for waste generated by US Department of Energy waste management operations  

SciTech Connect

This report documents the methodology, computational framework, and results of facility accident analyses performed for the US Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies assessed, and the resultant radiological and chemical source terms evaluated. A personal-computer-based computational framework and database have been developed that provide these results as input to the WM PEIS for the calculation of human health risk impacts. The WM PEIS addresses management of five waste streams in the DOE complex: low-level waste (LLW), hazardous waste (HW), high-level waste (HLW), low-level mixed waste (LLMW), and transuranic waste (TRUW). Currently projected waste generation rates, storage inventories, and treatment process throughputs have been calculated for each of the waste streams. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated, and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. Key assumptions in the development of the source terms are identified. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also discuss specific accident analysis data and guidance used or consulted in this report.

Mueller, C.; Nabelssi, B.; Roglans-Ribas, J.; Folga, S.; Policastro, A.; Freeman, W.; Jackson, R.; Mishima, J.; Turner, S.

1996-12-01T23:59:59.000Z

52

Proposed Use of a Constructed Wetland for the Treatment of Metals in the S-04 Outfall of the Defense Waste Processing Facility at the Savannah River Site  

SciTech Connect

The DWPF is part of an integrated waste treatment system at the SRS to treat wastes containing radioactive contaminants. In the early 1980s the DOE recognized that there would be significant safety and cost advantages associated with immobilizing the radioactive waste in a stable solid form. The Defense Waste Processing Facility was designed and constructed to accomplish this task.

Glover, T.

1999-11-23T23:59:59.000Z

53

Ecological survey for the siting of the Mixed and Low-Level Waste Treatment Facility and the Idaho Waste Processing Facility  

SciTech Connect

This report summarizes the results of field ecological surveys conducted by the Center for Integrated Environmental Technologies (CIET) on the Idaho National Engineering Laboratory (INEL) at four candidate locations for the siting of the Mixed and Low-Level Waste Treatment Facility (MLLWTF) and the Idaho Waste Processing Facility (IWPF). The purpose of these surveys was to comply with all Federal laws and Executive Orders to identify and evaluate any potential environmental impacts because of the project. The boundaries of the candidate location were marked with blaze-orange lath survey marker stakes by the project management. Global Positioning System (GPS) measurements of the marker stakes were made, and input to the Arc/Info{reg_sign} geographic information system (GIS). Field surveys were conducted to assess any potential impact to any important species, important habitats, and to any environmental study areas. The GIS location data was overlayed onto the INEL vegetation map and an analysis of vegetation classes on the locations was done. Results of the field surveys indicate use of Candidate Location {number_sign}1 by pygmy rabbits (Sylvilagus idahoensis) and expected use by them of Candidate Locations {number_sign}3 and {number_sign}9. Pygmy rabbits are categorized as a C2 species by the US Fish and Wildlife Service (USFWS). Two other C2 species, the ferruginous hawk (Buteo regalis) and the loggerhead shrike (Lanius ludovicianus) would also be expected to frequent the candidate locations. Candidate Location {number_sign}5 at the north end of the INEL is in the winter range of a large number of pronghorn antelope (Antilocapra americana).

Hoskinson, R.L.

1994-05-01T23:59:59.000Z

54

Nevada Waste Leaves Idaho Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Media Contacts: Media Contacts: Danielle Miller, 208-526-5709 Brad Bugger, 208-526-0833 For Immediate Release: Date: March 02, 2010 Nevada Waste Leaves Idaho Facility (Note: This is a reissue of a press release originally sent last week to ensure all intended recipients receive a copy after technical glitch may have kept it from reaching some of them) It may have looked like just another shipment of transuranic radioactive waste leaving Idaho, but the shipment heading south on U.S. Interstate 15 the afternoon of January 26 actually contained waste from another DOE site in Nevada. The shipment demonstrated the capacity of the U.S. Department of Energy�s Advanced Mixed Waste Treatment Project to be a hub where the Department�s transuranic radioactive waste can be safely and compliantly

55

Waste Management Facilities Cost Information Report  

Science Conference Proceedings (OSTI)

The Waste Management Facility Cost Information (WMFCI) Report, commissioned by the US Department of Energy (DOE), develops planning life-cycle cost (PLCC) estimates for treatment, storage, and disposal facilities. This report contains PLCC estimates versus capacity for 26 different facility cost modules. A procedure to guide DOE and its contractor personnel in the use of estimating data is also provided. Estimates in the report apply to five distinctive waste streams: low-level waste, low-level mixed waste, alpha contaminated low-level waste, alpha contaminated low-level mixed waste, and transuranic waste. The report addresses five different treatment types: incineration, metal/melting and recovery, shredder/compaction, solidification, and vitrification. Data in this report allows the user to develop PLCC estimates for various waste management options.

Feizollahi, F.; Shropshire, D.

1992-10-01T23:59:59.000Z

56

Supplemental Power for the town of Browning Waste-Water Treatment Facility  

Science Conference Proceedings (OSTI)

This final report is issued for the "Supplemental power for the Town of Browning waste-water treatment facility" under the Field Verification Program for Small Wind Turbines Grant. The grant application was submitted on April 16, 1999 wherein the full description of this project is outlined. The project was initially designed to test the Bergy small wind turbines, 10 kW, applicability to residential and commercial applications. The objectives of the project were the following: 1. To verify the performance of the BWC Excel-S/E model wind turbine in an operational application in the fierce winds and severe weather conditions of the Class V winds of the Blackfeet Indian Reservation of Northern Montana. 2. To open up the Blackfeet reservation and northern Montana, to government sponsored, regionally distributed wind generation programs. 3. To examine the natural partnership of wind/electric with water pumping and water purification applications whose requirements parallel the variably available nature of energy produced by wind. 4. To provide data and hands-on experience to citizens, scientists, political leaders, utility operators and Tribal planners with regard to the potential uses of small-capacity, distributed-array wind turbines on the Blackfeet Reservation and in other areas of northern Montana. This project has not been without a few, which were worked out and at the time of this report continue to be worked on with the installation of two new Trace Technologies invertors and a rebuilt one with new technology inside. For the most part when the system has worked it produced power that was used within the wastewater system as was the purpose of this project.

William Morris; Dennis Fitzpatrick

2005-12-20T23:59:59.000Z

57

Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory  

Science Conference Proceedings (OSTI)

This report contains health and safety information relating to the chemicals that have been identified in the mixed waste streams at the Waste Treatment Facility at the Idaho National Engineering Laboratory. Information is summarized in two summary sections--one for health considerations and one for safety considerations. Detailed health and safety information is presented in material safety data sheets (MSDSs) for each chemical.

Neupauer, R.M.; Thurmond, S.M.

1992-09-01T23:59:59.000Z

58

Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 2, Chemical constituents  

Science Conference Proceedings (OSTI)

This report contains health and safety information relating to the chemicals that have been identified in the mixed waste streams at the Waste Treatment Facility at the Idaho National Engineering Laboratory. Information is summarized in two summary sections--one for health considerations and one for safety considerations. Detailed health and safety information is presented in material safety data sheets (MSDSs) for each chemical.

Neupauer, R.M.; Thurmond, S.M.

1992-09-01T23:59:59.000Z

59

Waste Treatment and Immobilization Plant (WTP) Analytical Laboratory (LAB),  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Immobilization Plant (WTP) Analytical Immobilization Plant (WTP) Analytical Laboratory (LAB), Balance of Facilities (BOF) and Low-Activity Waste Vitrification Facilities (LAW) Waste Treatment and Immobilization Plant (WTP) Analytical Laboratory (LAB), Balance of Facilities (BOF) and Low-Activity Waste Vitrification Facilities (LAW) Full Document and Summary Versions are available for download Waste Treatment and Immobilization Plant (WTP) Analytical Laboratory (LAB), Balance of Facilities (BOF) and Low-Activity Waste Vitrification Facilities (LAW) Summary - WTP Analytical Lab, BOF and LAW Waste Vitrification Facilities More Documents & Publications Waste Treatment and Immobilation Plant HLW Waste Vitrification Facility Waste Treatment and Immobilation Plant Pretreatment Facility Compilation of TRA Summaries

60

Readiness Assessment for MF-628 Drum Treatment Facility - Advanced Mixed Waste Treatment Project … 5-07  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NUCLEAR SAFETY (NS) NUCLEAR SAFETY (NS) Objective: NS.1 Facility safety documentation is in place and has been implemented that describes the "safety envelope" of the facility. (CR 7) Criterion: An unreviewed safety question (USQ) screen/evaluation has been completed and approved for the installation and use of the DTF for drum treatment in the DTF. Objective: NS.2 The facility systems and procedures, for the DTF and drum treatment activities, are consistent with the description of the facility, procedures, and accident analysis included in the safety basis. (CR9) Criterion: The DTF and drum treatment activities are adequately described in the documented safety analysis (DSA) or changes have been identified for inclusion in the next annual update.

Note: This page contains sample records for the topic "waste treatment facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Certification plan transuranic waste: Hazardous Waste Handling Facility  

SciTech Connect

The purpose of this plan is to describe the organization and methodology for the certification of transuranic (TRU) waste handled in the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory (LBL). The plan incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Quality Assurance Implementing Management Plan (QAIMP) for the HWBF; and a list of the current and planned implementing procedures used in waste certification.

1992-06-01T23:59:59.000Z

62

Readiness Assessment for MF-628 Drum Treatment Facility - Advanced Mixed Waste Treatment Project … 5-07  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conduct of Operations (OP) Conduct of Operations (OP) OBJECTIVE OP.1 Resources are effectively allocated to address environmental, safety, health, and quality (ESH&Q), programmatic, and operational considerations required for commencing AR Project II activities to meet the following criteria: CRITERIA: OP.1.1. There are sufficient numbers of trained/qualified operations personnel to conduct and support the activity. OP. 1.2 There are adequate facilities and equipment available to ensure operational support is adequate for the activity. (Such support services include operations, training, maintenance, waste management, environmental protection, industrial safety and hygiene, radiological protection and health physics, emergency preparedness, fire protection, quality assurance, criticality safety, and

63

Chapter 47 Solid Waste Facilities (Kentucky)  

Energy.gov (U.S. Department of Energy (DOE))

This chapter establishes the permitting standards for solid waste sites or facilities, the standards applicable to all solid waste sites or facilities, and the standards for certification of...

64

Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory  

SciTech Connect

This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

Neupauer, R.M.; Thurmond, S.M.

1992-09-01T23:59:59.000Z

65

Certification Plan, low-level waste Hazardous Waste Handling Facility  

SciTech Connect

The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. This plan provides guidance from the HWHF to waste generators, waste handlers, and the Waste Certification Specialist to enable them to conduct their activities and carry out their responsibilities in a manner that complies with the requirements of WHC-WAC. Waste generators have the primary responsibility for the proper characterization of LLW. The Waste Certification Specialist verifies and certifies that LBL LLW is characterized, handled, and shipped in accordance with the requirements of WHC-WAC. Certification is the governing process in which LBL personnel conduct their waste generating and waste handling activities in such a manner that the Waste Certification Specialist can verify that the requirements of WHC-WAC are met.

Albert, R.

1992-06-30T23:59:59.000Z

66

Analysis of accident sequences and source terms at waste treatment and storage facilities for waste generated by U.S. Department of Energy Waste Management Operations, Volume 3: Appendixes C-H  

Science Conference Proceedings (OSTI)

This report contains the Appendices for the Analysis of Accident Sequences and Source Terms at Waste Treatment and Storage Facilities for Waste Generated by the U.S. Department of Energy Waste Management Operations. The main report documents the methodology, computational framework, and results of facility accident analyses performed as a part of the U.S. Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies are assessed, and the resultant radiological and chemical source terms are evaluated. A personal computer-based computational framework and database have been developed that provide these results as input to the WM PEIS for calculation of human health risk impacts. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also provide discussion of specific accident analysis data and guidance used or consulted in this report.

Mueller, C.; Nabelssi, B.; Roglans-Ribas, J. [and others

1995-04-01T23:59:59.000Z

67

Analysis of accident sequences and source terms at waste treatment and storage facilities for waste generated by U.S. Department of Energy Waste Management Operations, Volume 1: Sections 1-9  

SciTech Connect

This report documents the methodology, computational framework, and results of facility accident analyses performed for the U.S. Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies are assessed, and the resultant radiological and chemical source terms are evaluated. A personal computer-based computational framework and database have been developed that provide these results as input to the WM PEIS for calculation of human health risk impacts. The methodology is in compliance with the most recent guidance from DOE. It considers the spectrum of accident sequences that could occur in activities covered by the WM PEIS and uses a graded approach emphasizing the risk-dominant scenarios to facilitate discrimination among the various WM PEIS alternatives. Although it allows reasonable estimates of the risk impacts associated with each alternative, the main goal of the accident analysis methodology is to allow reliable estimates of the relative risks among the alternatives. The WM PEIS addresses management of five waste streams in the DOE complex: low-level waste (LLW), hazardous waste (HW), high-level waste (HLW), low-level mixed waste (LLMW), and transuranic waste (TRUW). Currently projected waste generation rates, storage inventories, and treatment process throughputs have been calculated for each of the waste streams. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also provide discussion of specific accident analysis data and guidance used or consulted in this report.

Mueller, C.; Nabelssi, B.; Roglans-Ribas, J. [and others

1995-04-01T23:59:59.000Z

68

Certification Plan, Radioactive Mixed Waste Hazardous Waste Handling Facility  

SciTech Connect

The purpose of this plan is to describe the organization and methodology for the certification of radioactive mixed waste (RMW) handled in the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory (LBL). RMW is low-level radioactive waste (LLW) or transuranic (TRU) waste that is co-contaminated with dangerous waste as defined in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and the Washington State Dangerous Waste Regulations, 173-303-040 (18). This waste is to be transferred to the Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington. This plan incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF (Section 4); and a list of the current and planned implementing procedures used in waste certification.

Albert, R.

1992-06-30T23:59:59.000Z

69

Hanford Facility Annual Dangerous Waste Report Calendar Year 2002  

Science Conference Proceedings (OSTI)

Hanford CY 2002 dangerous waste generation and management forms. The Hanford Facility Annual Dangerous Waste Report (ADWR) is prepared to meet the requirements of Washington Administrative Code Sections 173-303-220, Generator Reporting, and 173-303-390, Facility Reporting. In addition, the ADWR is required to meet Hanford Facility RCRA Permit Condition I.E.22, Annual Reporting. The ADWR provides summary information on dangerous waste generation and management activities for the Calendar Year for the Hanford Facility EPA ID number assigned to the Department of Energy for RCRA regulated waste, as well as Washington State only designated waste and radioactive mixed waste. The Solid Waste Information and Tracking System (SWITS) database is utilized to collect and compile the large array of data needed for preparation of this report. Information includes details of waste generated on the Hanford Facility, waste generated offsite and sent to Hanford for management, and other waste management activities conducted at Hanford, including treatment, storage, and disposal. Report details consist of waste descriptions and weights, waste codes and designations, and waste handling codes. In addition, for waste shipped to Hanford for treatment and/or disposal, information on manifest numbers, the waste transporter, the waste receiving facility, and the original waste generators are included. In addition to paper copies, electronic copies of the report are also transmitted to the regulatory agency.

FREEMAN, D.A.

2003-02-01T23:59:59.000Z

70

Supplemental analysis of accident sequences and source terms for waste treatment and storage operations and related facilities for the US Department of Energy waste management programmatic environmental impact statement  

SciTech Connect

This report presents supplemental information for the document Analysis of Accident Sequences and Source Terms at Waste Treatment, Storage, and Disposal Facilities for Waste Generated by US Department of Energy Waste Management Operations. Additional technical support information is supplied concerning treatment of transuranic waste by incineration and considering the Alternative Organic Treatment option for low-level mixed waste. The latest respirable airborne release fraction values published by the US Department of Energy for use in accident analysis have been used and are included as Appendix D, where respirable airborne release fraction is defined as the fraction of material exposed to accident stresses that could become airborne as a result of the accident. A set of dominant waste treatment processes and accident scenarios was selected for a screening-process analysis. A subset of results (release source terms) from this analysis is presented.

Folga, S.; Mueller, C.; Nabelssi, B.; Kohout, E.; Mishima, J.

1996-12-01T23:59:59.000Z

71

HANFORD FACILITY ANNUAL DANGEROUS WASTE REPORT CY2005  

Science Conference Proceedings (OSTI)

The Hanford Facility Annual Dangerous Waste Report (ADWR) is prepared to meet the requirements of Washington Administrative Code Sections 173-303-220, Generator Reporting, and 173-303-390, Facility Reporting. In addition, the ADWR is required to meet Hanford Facility RCR4 Permit Condition I.E.22, Annual Reporting. The ADWR provides summary information on dangerous waste generation and management activities for the Calendar Year for the Hanford Facility EPA ID number assigned to the Department of Energy for RCRA regulated waste, as well as Washington State only designated waste and radioactive mixed waste. An electronic database is utilized to collect and compile the large array of data needed for preparation of this report. Information includes details of waste generated on the Hanford Facility, waste generated offsite and sent to Hanford for management, and other waste management activities conducted at Hanford, including treatment, storage, and disposal. Report details consist of waste descriptions and weights, waste codes and designations, and waste handling codes, In addition, for waste shipped to Hanford for treatment and/or disposal, information on manifest numbers, the waste transporter, the waste receiving facility, and the original waste generators are included. In addition to paper copies, the report is also transmitted electronically to a web site maintained by the Washington State Department of Ecology.

SKOLRUD, J.O.

2006-02-15T23:59:59.000Z

72

Los Alamos National Laboratory opens new waste repackaging facility  

NLE Websites -- All DOE Office Websites (Extended Search)

LANL opens new waste repackaging facility Los Alamos National Laboratory opens new waste repackaging facility The Laboratory has brought a third waste repackaging facility online...

73

Waste Treatment  

Science Conference Proceedings (OSTI)

...rates, and batch collection volume requirements Water conservation possibilities What is required to meet discharge limits Availability and type of treatment chemicals How sludge will be dewatered, dried, and disposed...

74

Overview of Integrated Waste Treatment Unit  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Integrated Waste Treatment Unit Overview Integrated Waste Treatment Unit Overview Overview for the DOE High Level Waste Corporate Board March 5, 2009 safety  performance  cleanup  closure M E Environmental Management Environmental Management 2 2 Integrated Waste Treatment Unit Mission * Mission - Project mission is to provide treatment of approximately 900,000 gallons of tank farm waste - referred to as sodium bearing waste (SBW) - stored at the Idaho Tank Farm Facility to a stable waste form suitable for disposition at the Waste Isolation Pilot Plant (WIPP). - Per the Idaho Cleanup Project contract, the resident Integrated Waste Treatment Unit (IWTU) facility, shall have the capability for future packaging and shipping of the existing high level waste (HLW) calcine to the geologic

75

Readiness Assessment for MF-628 Drum Treatment Facility - Advanced Mixed Waste Treatment Project … 5-07  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CRITICALITY SAFETY CRITICALITY SAFETY OBJECTIVE CS.1 Facility safety documentation that describes the "safety envelope" for the AR Project II activities is in place and has been implemented and administrative and engineering controls to prevent and mitigate hazards associated with commencing the AR Project II activities are tailored to the work being performed and the associated hazards to meet the following criteria: CRITERIA: CS. 1.1 Criticality safety requirements are current, approved, and properly controlled. CS. 1.2 Facility safety and criticality requirements have been incorporated into applicable procedures and documents. REVIEW APPROACH: Document Reviews: * Review applicable CSEs for identification of facility hazards and development

76

Kent County Waste to Energy Facility Biomass Facility | Open Energy  

Open Energy Info (EERE)

Kent County Waste to Energy Facility Biomass Facility Kent County Waste to Energy Facility Biomass Facility Jump to: navigation, search Name Kent County Waste to Energy Facility Biomass Facility Facility Kent County Waste to Energy Facility Sector Biomass Facility Type Municipal Solid Waste Location Kent County, Michigan Coordinates 43.0097027°, -85.520024° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0097027,"lon":-85.520024,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

77

Documented Safety Analysis for the Waste Storage Facilities March 2010  

SciTech Connect

This Documented Safety Analysis (DSA) for the Waste Storage Facilities was developed in accordance with 10 CFR 830, Subpart B, 'Safety Basis Requirements,' and utilizes the methodology outlined in DOE-STD-3009-94, Change Notice 3. The Waste Storage Facilities consist of Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area portion of the DWTF complex. These two areas are combined into a single DSA, as their functions as storage for radioactive and hazardous waste are essentially identical. The B695 Segment of DWTF is addressed under a separate DSA. This DSA provides a description of the Waste Storage Facilities and the operations conducted therein; identification of hazards; analyses of the hazards, including inventories, bounding releases, consequences, and conclusions; and programmatic elements that describe the current capacity for safe operations. The mission of the Waste Storage Facilities is to safely handle, store, and treat hazardous waste, transuranic (TRU) waste, low-level waste (LLW), mixed waste, combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL (as well as small amounts from other DOE facilities).

Laycak, D T

2010-03-05T23:59:59.000Z

78

Documented Safety Analysis for the Waste Storage Facilities  

Science Conference Proceedings (OSTI)

This documented safety analysis (DSA) for the Waste Storage Facilities was developed in accordance with 10 CFR 830, Subpart B, 'Safety Basis Requirements', and utilizes the methodology outlined in DOE-STD-3009-94, Change Notice 3. The Waste Storage Facilities consist of Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area portion of the DWTF complex. These two areas are combined into a single DSA, as their functions as storage for radioactive and hazardous waste are essentially identical. The B695 Segment of DWTF is addressed under a separate DSA. This DSA provides a description of the Waste Storage Facilities and the operations conducted therein; identification of hazards; analyses of the hazards, including inventories, bounding releases, consequences, and conclusions; and programmatic elements that describe the current capacity for safe operations. The mission of the Waste Storage Facilities is to safely handle, store, and treat hazardous waste, transuranic (TRU) waste, low-level waste (LLW), mixed waste, combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL (as well as small amounts from other DOE facilities).

Laycak, D

2008-06-16T23:59:59.000Z

79

FINAL REPORT FOR THE REDUCTION OF CHROME (VI) TO CHROME (III) IN THE SECONDARY WASTE STREAM OF THE EFFLUENT TREATMENT FACILITY  

SciTech Connect

This report documents the laboratory results of RPP-PLAN-35958, Test Plan for the Effluent Treatment Facility to Reduce Chrome (VI) to Chrome (III) in the Secondary Waste Stream With the exception of the electrochemical corrosion scans, all work was carried out at the Center for Laboratory Science (CLS) located at the Columbia Basin College. This document summarizes the work carried out at CLS and includes the electrochemical scans and associated corrosion rates for 304 and 316L stainless steel.

DUNCAN JB; GUTHRIE MD

2008-08-29T23:59:59.000Z

80

Hanford ETR Tank Waste Treatment and Immobilization Plant - Hanford Tank  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ETR Tank Waste Treatment and Immobilization Plant - Hanford ETR Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - External Flowsheet Review Team (Technical) Report Hanford ETR Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - External Flowsheet Review Team (Technical) Report Full Document and Summary Versions are available for download Hanford ETR Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - External Flowsheet Review Team (Technical) Report Summary - Flowsheet for the Hanford Waste Treatment Plant More Documents & Publications Waste Treatment and Immobilation Plant HLW Waste Vitrification Facility

Note: This page contains sample records for the topic "waste treatment facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Report of exploratory trenching for the Decontamination and Waste Treatment Facility at Lawrence Livermore National Laboratory, Livermore, California  

Science Conference Proceedings (OSTI)

Three exploratory trenches, totaling about 1,300 ft in length were excavated and logged across the site of a proposed Decontamination and Waste Treatment Facility (DWTF), to assess whether or not active Greenville fault zone, located about 4100 ft to the northeast, pass through or within 200 ft of the site. The layout of the trenches (12-16 ft deep) was designed to provide continuous coverage across the DWTF site and an area within 200 ft northeast and southwest of the site. Deposits exposed in the trench walls are primarily of clay, and are typical of weakly cemented silty sand to sandy silt with the alluvial deposits in the area. Several stream channels were encountered that appear to have an approximated east-west orintation. The channel deposits consist of well-sorted, medium to coarse-grained sand and gravel. A well-developed surface soil is laterally continuous across all three trenches. The soil reportedly formed during late Pleistocene time (about 35,000 to 40,000 yr before present) based on soil stratigraphic analyses. A moderately to well-developed buried soil is laterally continuous in all three trenches, except locally where it has been removed by channelling. This buried soil apparently formed about 100,000 yr before present. At least one older, discontinuous soil is present below the 100,000-yr-old soil in some locations. The age of the older soil is unknown. At several locations, two discontinuous buried soils were observed between the surface soil and the 100,000-yr-old soil. Various overlapping stratigraphic units could be traced across the trenches providing a continuous datum of at least 100,000 yr to assess the presence or absence of faulting. The continuity of stratigraphic units in all the trenches demonstrated that no active faults pass through or within 200 ft of the proposed DWTF site.

Dresen, M.D.; Weiss, R.B.

1985-12-01T23:59:59.000Z

82

Technical Safety Requirements for the Waste Storage Facilities  

SciTech Connect

This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 612 (A612) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analysis for the Waste Storage Facilities (DSA) (LLNL 2006). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., drum crushing, size reduction, and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A612 is located in the southeast quadrant of LLNL. The A612 fenceline is approximately 220 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A612 and the DWTF Storage Area are subdivided into various facilities and storage areas, consisting of buildings, tents, other structures, and open areas as described in Chapter 2 of the DSA. Section 2.4 of the DSA provides an overview of the buildings, structures, and areas in the WASTE STORAGE FACILITIES, including construction details such as basic floor plans, equipment layout, construction materials, controlling dimensions, and dimensions significant to the hazard and accident analysis. Chapter 5 of the DSA documents the derivation of the TSRs and develops the operational limits that protect the safety envelope defined for the WASTE STORAGE FACILITIES. This TSR document is applicable to the handling, storage, and treatment of hazardous waste, TRU WASTE, LLW, mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste received or generated in the WASTE STORAGE FACILITIES. Section 5, Administrative Controls, contains those Administrative Controls necessary to ensure safe operation of the WASTE STORAGE FACILITIES. Programmatic Administrative Controls are in Section 5.6. This Introduction to the WASTE STORAGE FACILITIES TSRs is not part of the TSR limits or conditions and contains no requirements related to WASTE STORAGE FACILITIES operations or to the safety analyses of the DSA.

Larson, H L

2007-09-07T23:59:59.000Z

83

Quality Services: Solid Wastes, Part 360: Solid Waste Management Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0: Solid Waste Management 0: Solid Waste Management Facilities (New York) Quality Services: Solid Wastes, Part 360: Solid Waste Management Facilities (New York) < Back Eligibility Agricultural Commercial Fuel Distributor Industrial Institutional Investor-Owned Utility Multi-Family Residential Municipal/Public Utility Rural Electric Cooperative Transportation Utility Program Info State New York Program Type Environmental Regulations Provider NY Department of Environmental Conservation These regulations apply to all solid wastes with the exception of hazardous or radioactive waste. Proposed solid waste processing facilities are required to obtain permits prior to construction, and the regulations provide details about permitting, construction, registration, and operation requirements. The regulations contain specific guidance for land

84

Readiness Assessment for MF-628 Drum Treatment Facility - Advanced Mixed Waste Treatment Project … 5-07  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CONDUCT OF OPERATIONS (OP) CONDUCT OF OPERATIONS (OP) Objective: OP.1 Adequate and correct procedures and safety limits are in place for operating the DTF ventilation system and conducting treatment activities. (CR1, CR-10) Criteria: a. All required procedures, AMOWs, PTWs, and work orders have been prepared, validated, and approved for all routine treatment and support activities. b. Procedures include actions for anticipated abnormal or emergency conditions. c. Workers have demonstrated their familiarity and knowledge of the procedures during interviews and mockup operations. Objective: OP.2 Routine drills have been prepared and conducted for the DTF drum treatment activities. (CR11) Criteria; a. Drills have been prepared that address the anticipated abnormal and

85

Solid Waste Regulation No. 8 - Solid Waste Composting Facilities (Rhode  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regulation No. 8 - Solid Waste Composting Facilities Regulation No. 8 - Solid Waste Composting Facilities (Rhode Island) Solid Waste Regulation No. 8 - Solid Waste Composting Facilities (Rhode Island) < Back Eligibility Commercial Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Rhode Island Program Type Environmental Regulations Provider Department of Environmental Management Facilities which compost putrescible waste and/or leaf and yard waste are subject to these regulations. The regulations establish permitting, registration, and operational requirements for composting facilities. Operational requirements for putrescible waste facilities include siting, distance, and buffer requirements, as well as standards for avoiding harm to endangered species and contamination of air and water sources. Specific

86

Readiness Assessment for MF-628 Drum Treatment Facility - Advanced Mixed Waste Treatment Project … 5-07  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RADIATION PROTECTION (RP) RADIATION PROTECTION (RP) Objective: RP.1 Adequate and correct contamination control procedures and safety limits are in place for operating the DTF ventilation system and conducting drum treatment operations in the DTF. (CR1, CR10) a. A thorough hazard analysis addressing contamination control and radiation protection has been completed for drum treatment activities in the DTF. b. The design of the DTF and ventilation system is adequate to prevent the spread of contamination. The adequacy has been demonstrated by testing and mockup operations. c. Appropriate limits, contamination control methods, and radiation protection practices have been identified and included in the applicable AMOW, PTW and procedures. d. Adequate radiation monitoring instruments are installed and properly located

87

Waste minimization plan, T plant facilities  

SciTech Connect

This document contains the waste minimization plan for the T Plant facilities, located in the 200 West Area of the Hanford Site in south central Washington State. A waste minimization plan is one part of a multi-faceted waste management program; this waste minimization plan documents the goals and techniques of the waste minimization program, identifies methods for evaluating the program and ensuring quality assurance, and establishes the current baseline waste generation volume estimates.

Kover, K.K.

1997-01-01T23:59:59.000Z

88

Technical Safety Requirements for the Waste Storage Facilities  

SciTech Connect

This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analysis for the Waste Storage Facilities (DSA) (LLNL 2009). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A625 is located in the southeast quadrant of LLNL. The A625 fenceline is approximately 225 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A625 and the DWTF Storage Area are subdivided into various facilities and storage areas, consisting of buildings, tents, other structures, and open areas as described in Chapter 2 of the DSA. Section 2.4 of the DSA provides an overview of the buildings, structures, and areas in the WASTE STORAGE FACILITIES, including construction details such as basic floor plans, equipment layout, construction materials, controlling dimensions, and dimensions significant to the hazard and accident analysis. Chapter 5 of the DSA documents the derivation of the TSRs and develops the operational limits that protect the safety envelope defined for the WASTE STORAGE FACILITIES. This TSR document is applicable to the handling, storage, and treatment of hazardous waste, TRU WASTE, LLW, mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste received or generated in the WASTE STORAGE FACILITIES. Section 5, Administrative Controls, contains those Administrative Controls necessary to ensure safe operation of the WASTE STORAGE FACILITIES. Programmatic Administrative Controls are in Section 5.4.

Laycak, D T

2010-03-05T23:59:59.000Z

89

Technical Safety Requirements for the Waste Storage Facilities  

SciTech Connect

This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the 'Documented Safety Analysis for the Waste Storage Facilities' (DSA) (LLNL 2008). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A625 is located in the southeast quadrant of LLNL. The A625 fenceline is approximately 225 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A625 and the DWTF Storage Area are subdivided into various facilities and storage areas, consisting of buildings, tents, other structures, and open areas as described in Chapter 2 of the DSA. Section 2.4 of the DSA provides an overview of the buildings, structures, and areas in the WASTE STORAGE FACILITIES, including construction details such as basic floor plans, equipment layout, construction materials, controlling dimensions, and dimensions significant to the hazard and accident analysis. Chapter 5 of the DSA documents the derivation of the TSRs and develops the operational limits that protect the safety envelope defined for the WASTE STORAGE FACILITIES. This TSR document is applicable to the handling, storage, and treatment of hazardous waste, TRU WASTE, LLW, mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste received or generated in the WASTE STORAGE FACILITIES. Section 5, Administrative Controls, contains those Administrative Controls necessary to ensure safe operation of the WASTE STORAGE FACILITIES. Programmatic Administrative Controls are in Section 5.6.

Laycak, D T

2008-06-16T23:59:59.000Z

90

Environmental Management Waste Management Facility (EMWMF) at...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Skip to main content Energy.gov Office of Environmental Management Search form Search Office of Environmental Management Services Waste Management Site & Facility Restoration...

91

Massachusetts Hazardous Waste Facility Siting Act (Massachusetts) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Massachusetts Hazardous Waste Facility Siting Act (Massachusetts) Massachusetts Hazardous Waste Facility Siting Act (Massachusetts) Massachusetts Hazardous Waste Facility Siting Act (Massachusetts) < Back Eligibility Commercial Fed. Government Fuel Distributor Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Tribal Government Utility Program Info State Massachusetts Program Type Siting and Permitting Provider Department of Environmental Protection This Act establishes the means by which developers of proposed hazardous waste facilities will work with the community in which they wish to construct a facility. When the intent to construct, maintain, and/or operate a hazardous waste facility in a city or town is demonstrated, a local assessment committee will be established by that community. The

92

Waste treatment at the La Hague and Marcoule sites  

SciTech Connect

In this report, an overview of waste treatment and solidification facilities located at the La Hague and Marcoule sites, which are owned and/or operated by Cogema, provided. The La Hague facilities described in this report include the following: The STE3 liquid effluent treatment facility (in operation); the AD2 solid waste processing facility (also in operation); and the UCD alpha waste treatment facility (under construction). The Marcoule facilities described in this report, both of which are in operation, include the following: The STEL-EVA liquid effluent treatment facilities for the entire site; and the alpha waste incinerator of the UPI plant. This report is organized into four sections: this introduction, low-level waste treatment at La Hague, low-level waste treatment at Marcoule, and new process development. including the solvent pyrolysis process currently in the development stage for Cogema`s plants.

1995-04-01T23:59:59.000Z

93

Treatment of Waste Soils / Solids  

Science Conference Proceedings (OSTI)

About the 1996 International Symposium on Extraction and Processing for the Treatment and Minimization of Wastes: Treatment of Waste Soils / Solids...

94

DOE mixed waste treatment capacity analysis  

SciTech Connect

This initial DOE-wide analysis compares the reported national capacity for treatment of mixed wastes with the calculated need for treatment capacity based on both a full treatment of mixed low-level and transuranic wastes to the Land Disposal Restrictions and on treatment of transuranic wastes to the WIPP waste acceptance criteria. The status of treatment capacity is reported based on a fifty-element matrix of radiation-handling requirements and functional treatment technology categories. The report defines the classifications for the assessment, describes the models used for the calculations, provides results from the analysis, and includes appendices of the waste treatment facilities data and the waste stream data used in the analysis.

Ross, W.A.; Wehrman, R.R.; Young, J.R.; Shaver, S.R.

1994-06-01T23:59:59.000Z

95

Development of a pilot safety information document (PSID) for the replacement of radioactive liquid waste treatment facility at Los Alamos National Laboratory  

E-Print Network (OSTI)

Based on recent decisions made by Los Alamos National Laboratory concerning the development of site-wide National Environmental Policy Act documents, an effort was undertaken to develop a Pilot Safety Information Document (PSID) for the replacement Radioactive Liquid Waste Treatment Facility. The PSID documents risk analysis for the proposed facility and some of the alternatives, accident analysis, radioactive and hazardous material doses to off-site individuals, and the cumulative safety risk from adjacent facilities. In addition, this study also compared two methods for calculating the consequences of a radioactive spill. The methods compared were the Superfund model and the release fraction model. It was determined that the release fraction model gives a more realistic estimate of the doses incurred as the result of an accident, and that the Superfund model should be used for estimating the dose before and during the remediation effort. The cumulative safety risk was determined by calculating the exceedance probability if the individual dose from four geographically related facilities. The risk for cancer fatalities was determined to be within the DOE's Nuclear Safety Policy Goals.

Selvage, Ronald Derek

1995-01-01T23:59:59.000Z

96

D11 WASTE DISPOSAL FACILITIES FOR TRANSURANIC WASTE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10 CFR Ch. X (1-1-12 Edition) Pt. 1022 D11 WASTE DISPOSAL FACILITIES FOR TRANSURANIC WASTE Siting, construction or expansion, and op- eration of disposal facilities for transuranic (TRU) waste and TRU mixed waste (TRU waste also containing hazardous waste as designated in 40 CFR part 261). D12 INCINERATORS Siting, construction, and operation of in- cinerators, other than research and develop- ment incinerators or incinerators for non- hazardous solid waste (as designated in 40 CFR 261.4(b)). PART 1022-COMPLIANCE WITH FLOODPLAIN AND WETLAND EN- VIRONMENTAL REVIEW REQUIRE- MENTS Subpart A-General Sec. 1022.1 Background. 1022.2 Purpose and scope. 1022.3 Policy. 1022.4 Definitions. 1022.5 Applicability. 1022.6 Public inquiries. Subpart B-Procedures for Floodplain and

97

HUMAN MACHINE INTERFACE (HMI) EVALUATION OF ROOMS TA-50-1-60/60A AT THE RADIOACTIVE LIQUID WASTE TREATMENT FACILITY (RLWTF)  

Science Conference Proceedings (OSTI)

This effort addressed an evaluation of human machine interfaces (HMIs) in Room TA-50-1-60/60A of the Radioactive Liquid Waste Treatment Facility (RLWTF). The evaluation was performed in accordance with guidance outlined in DOE-STD-3009, DOE Standard Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses, 2006 [DOE 2006]. Specifically, Chapter 13 of DOE 2006 highlights the 10 CFR 830, Nuclear Safety Management, 2012, [CFR 2012] and DOE G 421.1-2 [DOE 2001a] requirements as they relate to the human factors process and, in this case, the safety of the RLWTF. The RLWTF is a Hazard Category 3 facility and, consequently, does not have safety-class (SSCs). However, safety-significant SSCs are identified. The transuranic (TRU) wastewater tanks and associated piping are the only safety-significant SSCs in Rooms TA-50-1-60/60A [LANL 2010]. Hence, the human factors evaluation described herein is only applicable to this particular assemblage of tanks and piping.

Gilmore, Walter E. [Los Alamos National Laboratory; Stender, Kerith K. [Los Alamos National Laboratory

2012-08-29T23:59:59.000Z

98

Pollution prevention/waste minimization guidelines for facility design  

SciTech Connect

The mission of the 560 square mile (1450 sq Km) Hanford site, located in south eastern Washington, was changed from defense production to environmental restoration and waste management in 1989. The Tri-Party Agreement (TPA) signed in 1989 between DOE, EPA and Washington State, agreed to clean up most of the Hanford site within 30 years. To accomplish the clean-up and comply with the schedule established in the TPA, a number of treatment and support facilities will have to be built. While these facilities are designed to treat wastes that have already been generated, the routine operation and maintenance of these facilities will generate their own wastes. With careful planning, new facilities or modifications to existing facilities can be designed in a manor such that little pollution or waste is generated through normal operation and maintenance. The project the author is working on is concerned with avoiding or reducing the generation of new waste by assuring that pollution prevention and waste minimization are considered in the design phase of these facilities.

Encke, D.B.

1993-04-01T23:59:59.000Z

99

GRR/Elements/18-CA-c.1 - What Level of Hazardous Waste Facility Permit Does  

Open Energy Info (EERE)

GRR/Elements/18-CA-c.1 - What Level of Hazardous Waste Facility Permit Does GRR/Elements/18-CA-c.1 - What Level of Hazardous Waste Facility Permit Does the Facility Require < GRR‎ | Elements Jump to: navigation, search Edit 18-CA-b.1 - What Level of Hazardous Waste Facility Permit Does the Facility Require California employs a five-tier permitting program which imposes regulatory requirements matching the degree of risk posed by the level of hazardous waste: * The Full Permit Tier includes all facilities requiring a RCRA permit as well as selected non-RCRA activities under Title 22 California Code of Regulations. * The Standardized Permit Tier includes facilities that manage waste not regulated by RCRA, but regulated as hazardous waste in California. * Onsite Treatment Permits (3-Tiered) includes onsite treatment of non-RCRA waste regulated in California.

100

Waste Treatment Plant Overview  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Site, located in southeastern Washington state, Hanford Site, located in southeastern Washington state, was the largest of three defense production sites in the U.S. Over the span of 40 years, it was used to produce 64 metric tons of plutonium, helping end World War II and playing a major role in military defense efforts during the Cold War. As a result, 56 million gallons of radioactive and chemical wastes are now stored in 177 underground tanks on the Hanford Site. To address this challenge, the U.S. Department of Energy contracted Bechtel National, Inc., to design and build the world's largest radioactive waste treatment plant. The Waste Treatment and Immobilization Plant (WTP), also known as the "Vit Plant," will use vitrification to immobilize most of Hanford's dangerous tank waste.

Note: This page contains sample records for the topic "waste treatment facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Review of Documented Safety Analysis Development for the Hanford Site Waste Treatment and Immobilization Plant (LBL Facilities), April 23, 2013 (HSS CRAD 45-58, Rev. 0)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of U.S. Department of Energy Subject: Review of Documented Safety Analysis Development for the Hanford Site Waste Treatment and Immob ilization Plant (LBL Facilities) - C riteria and Review Approach D oc um~ HS: HSS CRAD 45-58 Rev: 0 Eff. Date: April 23, 2013 Office of Safety and Emergency Management Evaluations Acting Di rec or, Office of Safety and Emergency Nltanagement Evaluations Date: Apri l 23 , 20 13 Criteria and Review Approach Document ~~ trd,James Low Date: April 23 , 20 13 1.0 PURPOSE Within the Office of H.ealth, Safety and Security (HSS), the Office of Enforcement and Overs ight, Office of Safety and Emergency Management Evaluations (HS-45) miss io n is to assess the effectiveness of the environment, safety, health, and emergency management systems and practices used by line and

102

Idaho Site Launches Corrective Actions Before Restarting Waste Treatment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Corrective Actions Before Restarting Waste Corrective Actions Before Restarting Waste Treatment Facility Idaho Site Launches Corrective Actions Before Restarting Waste Treatment Facility September 13, 2012 - 12:00pm Addthis Pictured here is the Integrated Waste Treatment Unit's off-gas filter following the June incident. Pictured here is the Integrated Waste Treatment Unit's off-gas filter following the June incident. A view of the process piping installations prior to startup of the Integrated Waste Treatment Unit. A view of the process piping installations prior to startup of the Integrated Waste Treatment Unit. Pictured here is the Integrated Waste Treatment Unit's off-gas filter following the June incident. A view of the process piping installations prior to startup of the Integrated Waste Treatment Unit.

103

CRAD, Management - Idaho MF-628 Drum Treatment Facility | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho MF-628 Drum Treatment Facility Idaho MF-628 Drum Treatment Facility CRAD, Management - Idaho MF-628 Drum Treatment Facility May 2007 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a May, 2007 readiness assessment of the Management at the MF-628 Drum Treatment Facility at the Idaho National Laboratory, Advanced Mixed Waste Treatment Project. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Management - Idaho MF-628 Drum Treatment Facility More Documents & Publications CRAD, Engineering - Idaho MF-628 Drum Treatment Facility CRAD, Occupational Safety & Health - Idaho MF-628 Drum Treatment Facility

104

CRAD, Training - Idaho MF-628 Drum Treatment Facility | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho MF-628 Drum Treatment Facility Idaho MF-628 Drum Treatment Facility CRAD, Training - Idaho MF-628 Drum Treatment Facility May 2007 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a May 2007 readiness assessment of the Training Program at the MF-628 Drum Treatment Facility at the Idaho National Laboratory Advanced Mixed Waste Treatment Project. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Training - Idaho MF-628 Drum Treatment Facility More Documents & Publications CRAD, Quality Assurance - Idaho MF-628 Drum Treatment Facility CRAD, Engineering - Idaho MF-628 Drum Treatment Facility

105

Treatment of organic waste  

DOE Patents (OSTI)

An organic waste containing at least one element selected from the group consisting of strontium, cesium, iodine and ruthenium is treated to achieve a substantial reduction in the volume of the waste and provide for fixation of the selected element in an inert salt. The method of treatment comprises introducing the organic waste and a source of oxygen into a molten salt bath maintained at an elevated temperature to produce solid and gaseous reaction products. The gaseous reaction products comprise carbon dioxide and water vapor, and the solid reaction products comprise the inorganic ash constituents of the organic waste and the selected element which is retained in the molten salt. The molten salt bath comprises one or more alkali metal carbonates, and may optionally include from 1 to about 25 wt.% of an alkali metal sulfate.

Grantham, LeRoy F. (Calabasas, CA)

1979-01-01T23:59:59.000Z

106

EIS-0287: Notice of Preferred Sodium Bearing Waste Treatment Technology |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Preferred Sodium Bearing Waste Treatment Preferred Sodium Bearing Waste Treatment Technology EIS-0287: Notice of Preferred Sodium Bearing Waste Treatment Technology Idaho High-Level Waste (HLW) and Facilities Disposition In October 2002, the U.S. Department of Energy (DOE or the Department) issued the Final Idaho High-Level Waste (HLW) and Facilities Disposition Environmental Impact Statement (DOE/EIS-0287 (Final EIS)). The Final EIS contains an evaluation of reasonable alternatives for the management of mixed transuranic waste/sodium bearing waste (SBW),1 mixed HLW calcine, and associated low-level waste (LLW), as well as disposition alternatives for HLW facilities when their missions are completed. DOE/EIS-0287, Notice of Preferred Sodium Bearing Waste Treatment Technology, Office of Environmental Management, Idaho, 70 FR 44598 (August

107

Waste Encapsulation Storage Facility, January 2011  

NLE Websites -- All DOE Office Websites (Extended Search)

February 11, 2011 February 11, 2011 Site Visit Report Waste Encapsulation Storage Facility, January 2011 INTRODUCTION This report documents the results of a review conducted by the Office of Health, Safety and Security (HSS) of the Waste Encapsulation Storage Facility (WESF) documented safety analysis (DSA) at the Hanford Site. During discussions with the U.S. Department of Energy Richland Operations Office (DOE- RL), the review of WESF was jointly selected by HSS and DOE-RL based on the high hazards of the facility and the need to periodically evaluate the facility and DSA by independent reviewers. SCOPE The scope of the review was to evaluate the WESF safety and support systems in detecting, preventing and mitigating analyzed events as described in the facility's DSA, PRC-EDC-10-45190, 2010, Executive

108

Waste Encapsulation Storage Facility, January 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 11, 2011 February 11, 2011 Site Visit Report Waste Encapsulation Storage Facility, January 2011 INTRODUCTION This report documents the results of a review conducted by the Office of Health, Safety and Security (HSS) of the Waste Encapsulation Storage Facility (WESF) documented safety analysis (DSA) at the Hanford Site. During discussions with the U.S. Department of Energy Richland Operations Office (DOE- RL), the review of WESF was jointly selected by HSS and DOE-RL based on the high hazards of the facility and the need to periodically evaluate the facility and DSA by independent reviewers. SCOPE The scope of the review was to evaluate the WESF safety and support systems in detecting, preventing and mitigating analyzed events as described in the facility's DSA, PRC-EDC-10-45190, 2010, Executive

109

HANFORD FACILITY ANNUAL DANGEROUS WASTE REPORT CY2003 [SEC 1 & 2  

Science Conference Proceedings (OSTI)

The Hanford Facility Annual Dangerous Waste Report (ADWR) is prepared to meet the requirements of Washington Administrative Code Sections 173-303-220, Generator Reporting, and 173-303-390, Facility Reporting. In addition, the ADWR is required to meet Hanford Facility RCRA Permit Condition I.E.22, Annual Reporting. The ADWR provides summary information on dangerous waste generation and management activities for the Calendar Year for the Hanford Facility EPA ID number assigned to the Department of Energy for RCRA regulated waste, as well as Washington State only designated waste and radioactive mixed waste. The Solid Waste Information and Tracking System (SWITS) database is utilized to collect and compile the large array of data needed for preparation of this report. Information includes details of waste generated on the Hanford Facility, waste generated offsite and sent to Hanford for management, and other waste management activities conducted at Hanford, including treatment, storage, and disposal. Report details consist of waste descriptions and weights, waste codes and designations, and waste handling codes. In addition, for waste shipped to Hanford for treatment and or disposal, information on manifest numbers, the waste transporter, the waste receiving facility, and the original waste generators are included. In addition to paper copies, the report is also transmitted electronically to a web site maintained by the Washington State Department of Ecology.

FREEMAN, D.A.

2004-02-17T23:59:59.000Z

110

WIPP Hazardous Waste Facility Permit - 2008 Update  

Science Conference Proceedings (OSTI)

Important new changes to the Hazardous Waste Facility Permit (HWFP) were implemented during 2007. The challenge was to implement these changes without impacting shipping schedules. Many of the changes required advanced preparation and coordination in order to transition to the new waste analysis paradigm, both at the generator sites and at the WIPP without interrupting the flow of waste to the disposal facility. Not only did aspects of waste characterization change, but also a new Permittees' confirmation program was created. Implementing the latter change required that new equipment and facilities be obtained, personnel hired, trained and qualified, and operating procedures written and approved without interruption to the contact-handled (CH) transuranic (TRU) waste shipping schedule. This was all accomplished successfully with no delayed or cancelled shipments. Looking forward to 2008 and beyond, proposed changes that will deal with waste in the DOE TRU waste complex is larger than the TRUPACT-IIs can handle. Size reduction of the waste would lead to unnecessary exposure risk and ultimately create more waste. The WIPP is working to have the Nuclear Regulatory Commission (NRC) certify the TRUPACT-III. The TRUPACT-III will be able to accommodate larger sized TRU mixed waste. Along with this new NRC-certified shipping cask, a new disposal container, the Standard Large Box, must be proposed in a permit modification. Containers for disposal of TRU mixed waste at the WIPP must meet the DOT 7A standards and be filtered. Additionally, as the TRUPACT-III/Standard Large Box loads and unloads from the end of the shipping cask, the proposed modification will add horizontal waste handling techniques to WIPP's vertical CH TRU waste handling operations. Another major focus will be the Hazardous Waste Facility Permit reapplication. The WIPP received its HWFP in October of 1999 for a term of ten years. The regulations and the HWFP require that a new permit application be submitted 180-days before the expiration date of the HWFP. At that time, the WIPP will request only one significant change, the permitting of Panel 8 to receive TRU mixed waste. (author)

Kehrman, R.F.; Most, W.A. [Washington Regulatory and Environmental Services, Carlsbad, New Mexico (United States)

2008-07-01T23:59:59.000Z

111

Salt Waste Processing Facility Fact Sheet | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Waste Management » Tank Waste and Waste Processing » Services » Waste Management » Tank Waste and Waste Processing » Salt Waste Processing Facility Fact Sheet Salt Waste Processing Facility Fact Sheet Nuclear material production operations at SRS resulted in the generation of liquid radioactive waste that is being stored, on an interim basis, in 49 underground waste storage tanks in the F- and H-Area Tank Farms. SWPF Fact Sheet More Documents & Publications EIS-0082-S2: Amended Record of Decision Savannah River Site Salt Waste Processing Facility Technology Readiness Assessment Report EIS-0082-S2: Record of Decision Waste Management Nuclear Materials & Waste Tank Waste and Waste Processing Waste Disposition Packaging and Transportation Site & Facility Restoration Deactivation & Decommissioning (D&D)

112

The mixed waste management facility: Cost-benefit for the Mixed Waste Management Facility at Lawrence Livermore National Laboratory  

SciTech Connect

The Mixed Waste Management Facility, or MWMF, has been proposed as a national testbed facility for the demonstration and evaluation of technologies that are alternatives to incineration for the treatment of mixed low-level waste. The facility design will enable evaluation of technologies at pilot scale, including all aspects of the processes, from receiving and feed preparation to the preparation of final forms for disposal. The MWMF will reduce the risk of deploying such technologies by addressing the following: (1) Engineering development and scale-up. (2) Process integration and activation of the treatment systems. (3) Permitting and stakeholder issues. In light of the severe financial constraints imposed on the DOE and federal programs, DOE/HQ requested a study to assess the cost benefit for the MWMF given other potential alternatives to meet waste treatment needs. The MVVMF Project was asked to consider alternatives specifically associated with commercialization and privatization of the DOE site waste treatment operations and the acceptability (or lack of acceptability) of incineration as a waste treatment process. The result of this study will be one of the key elements for a DOE decision on proceeding with the MWMF into Final Design (KD-2) vs. proceeding with other options.

Brinker, S.D.; Streit, R.D.

1996-04-01T23:59:59.000Z

113

Idaho Waste Retrieval Facility Begins New Role | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho Waste Retrieval Facility Begins New Role Idaho Waste Retrieval Facility Begins New Role Idaho Waste Retrieval Facility Begins New Role December 27, 2012 - 12:00pm Addthis Idaho Waste Retrieval Facility Begins New Role A waste retrieval facility constructed over a former buried radioactive waste disposal cell known as Pit 9 at the Idaho site has been repurposed for treating 6,000 drums of sludge waste left over from the Cold War weapons program. A waste retrieval facility constructed over a former buried radioactive waste disposal cell known as Pit 9 at the Idaho site has been repurposed for treating 6,000 drums of sludge waste left over from the Cold War weapons program. Workers review procedure for the sludge repack project. Workers review procedure for the sludge repack project. Idaho Waste Retrieval Facility Begins New Role

114

CRAD, Engineering - Idaho MF-628 Drum Treatment Facility | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MF-628 Drum Treatment Facility MF-628 Drum Treatment Facility CRAD, Engineering - Idaho MF-628 Drum Treatment Facility May 2007 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a May 2007 readiness assessment of the Engineering program at the MF-628 Drum Treatment Facility at the Idaho National Laboratory Advanced Mixed Waste Treatment Project. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Engineering - Idaho MF-628 Drum Treatment Facility More Documents & Publications CRAD, Occupational Safety & Health - Idaho MF-628 Drum Treatment Facility

115

CRAD, Quality Assurance - Idaho MF-628 Drum Treatment Facility | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Quality Assurance - Idaho MF-628 Drum Treatment Facility Quality Assurance - Idaho MF-628 Drum Treatment Facility CRAD, Quality Assurance - Idaho MF-628 Drum Treatment Facility May 2007 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a May 2007 readiness assessment of the Quality Assurance Program at the MF-628 Drum Treatment Facility at the Idaho National Laboratory Advanced Mixed Waste Treatment Project. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Quality Assurance - Idaho MF-628 Drum Treatment Facility More Documents & Publications CRAD, Engineering - Idaho MF-628 Drum Treatment Facility

116

Overview of Fiscal Year 2002 Research and Development for Savannah River Site's Salt Waste Processing Facility  

SciTech Connect

The Department of Energy's (DOE) Savannah River Site (SRS) high-level waste program is responsible for storage, treatment, and immobilization of high-level waste for disposal. The Salt Processing Program (SPP) is the salt (soluble) waste treatment portion of the SRS high-level waste effort. The overall SPP encompasses the selection, design, construction and operation of treatment technologies to prepare the salt waste feed material for the site's grout facility (Saltstone) and vitrification facility (Defense Waste Processing Facility). Major constituents that must be removed from the salt waste and sent as feed to Defense Waste Processing Facility include actinides, strontium, cesium, and entrained sludge. In fiscal year 2002 (FY02), research and development (R&D) on the actinide and strontium removal and Caustic-Side Solvent Extraction (CSSX) processes transitioned from technology development for baseline process selection to providing input for conceptual design of the Salt Waste Processing Facility. The SPP R&D focused on advancing the technical maturity, risk reduction, engineering development, and design support for DOE's engineering, procurement, and construction (EPC) contractors for the Salt Waste Processing Facility. Thus, R&D in FY02 addressed the areas of actual waste performance, process chemistry, engineering tests of equipment, and chemical and physical properties relevant to safety. All of the testing, studies, and reports were summarized and provided to the DOE to support the Salt Waste Processing Facility, which began conceptual design in September 2002.

H. D. Harmon, R. Leugemors, PNNL; S. Fink, M. Thompson, D. Walker, WSRC; P. Suggs, W. D. Clark, Jr

2003-02-26T23:59:59.000Z

117

ENVIRONMENTAL ASSESSMENT FOR HAZARDOUS WASTE STAGING FACILITY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HAZARDOUS WASTE STAGING FACILITY HAZARDOUS WASTE STAGING FACILITY Project 39GF71024-GPDI21000000 . PANTEX PLANT AMARILLO, TEXAS DOE/EA-0688 JUNE 1993 MASTER DiSTRiBUTiON OF THIS DOCUMENT IS UNLIMITEI) ffrl TABLE OF CONTENTS Section Page 1.0 Need for Action 1 2.0 Description of Proposed Facility Action 3.0 Location of the Action 8 4.0 Alternatives to Proposed Action 9 4.1 No Action 9 4.2 Redesign and Modify Existing staging Facilities 9 4.3 Use Other Existing Space at Pantex Plant 9 4.4 Use Temporary Structures 9 4.5 Stage Waste at Other Sites 10 4.6 Stage Wastes Separately 10 5.0 Environmental Impacts of Proposed Action 10 5.1 Archeology 10 5.2 FloodplainlW etlands 10 5.3 Threatened and Endangered Species 10 5.4 Surrounding La,nd Use 11 5.5 Construction 11 5.6 Air Emissions 11

118

Idaho Waste Retrieval Facility Begins New Role | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Retrieval Facility Begins New Role Retrieval Facility Begins New Role Idaho Waste Retrieval Facility Begins New Role December 27, 2012 - 12:00pm Addthis Idaho Waste Retrieval Facility Begins New Role A waste retrieval facility constructed over a former buried radioactive waste disposal cell known as Pit 9 at the Idaho site has been repurposed for treating 6,000 drums of sludge waste left over from the Cold War weapons program. A waste retrieval facility constructed over a former buried radioactive waste disposal cell known as Pit 9 at the Idaho site has been repurposed for treating 6,000 drums of sludge waste left over from the Cold War weapons program. Workers review procedure for the sludge repack project. Workers review procedure for the sludge repack project. Idaho Waste Retrieval Facility Begins New Role

119

The necessity for permanence : making a nuclear waste storage facility  

E-Print Network (OSTI)

The United States Department of Energy is proposing to build a nuclear waste storage facility in southern Nevada. This facility will be designed to last 10,000 years. It must prevent the waste from contaminating the ...

Stupay, Robert Irving

1991-01-01T23:59:59.000Z

120

Idaho CERCLA Disposal Facility Complex Waste Acceptance Criteria  

SciTech Connect

The Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility (ICDF) has been designed to accept CERCLA waste generated within the Idaho National Laboratory. Hazardous, mixed, low-level, and Toxic Substance Control Act waste will be accepted for disposal at the ICDF. The purpose of this document is to provide criteria for the quantities of radioactive and/or hazardous constituents allowable in waste streams designated for disposal at ICDF. This ICDF Complex Waste Acceptance Criteria is divided into four section: (1) ICDF Complex; (2) Landfill; (3) Evaporation Pond: and (4) Staging, Storage, Sizing, and Treatment Facility (SSSTF). The ICDF Complex section contains the compliance details, which are the same for all areas of the ICDF. Corresponding sections contain details specific to the landfill, evaporation pond, and the SSSTF. This document specifies chemical and radiological constituent acceptance criteria for waste that will be disposed of at ICDF. Compliance with the requirements of this document ensures protection of human health and the environment, including the Snake River Plain Aquifer. Waste placed in the ICDF landfill and evaporation pond must not cause groundwater in the Snake River Plain Aquifer to exceed maximum contaminant levels, a hazard index of 1, or 10-4 cumulative risk levels. The defined waste acceptance criteria concentrations are compared to the design inventory concentrations. The purpose of this comparison is to show that there is an acceptable uncertainty margin based on the actual constituent concentrations anticipated for disposal at the ICDF. Implementation of this Waste Acceptance Criteria document will ensure compliance with the Final Report of Decision for the Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13. For waste to be received, it must meet the waste acceptance criteria for the specific disposal/treatment unit (on-Site or off-Site) for which it is destined.

W. Mahlon Heileson

2006-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste treatment facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Maintenance Guide for DOE Low-Level Waste Disposal Facility  

Energy.gov (U.S. Department of Energy (DOE))

Maintenance Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Performance Assessments and Composite Analyses

122

Texas facility treats, recycles refinery, petrochemical wastes  

Science Conference Proceedings (OSTI)

A US Gulf Coast environmental services company is treating refinery and petrochemical plant wastes to universal treatment standards (UTS). DuraTherm Inc.`s recycling center uses thermal desorption to treat a variety of refinery wastes and other hazardous materials. The plant is located in San Leon, Tex., near the major Houston/Texas City refining and petrochemical center. DuraTherm`s customers include major US refining companies, plus petrochemical, terminal, pipeline, transportation, and remediation companies. Examples of typical contaminant concentrations and treatment levels for refinery wastes are shown. The paper discusses thermal desorption, the process description and testing.

NONE

1996-09-16T23:59:59.000Z

123

Mixed and Low-Level Treatment Facility Project  

SciTech Connect

This appendix contains the mixed and low-level waste engineering design files (EDFS) documenting each low-level and mixed waste stream investigated during preengineering studies for Mixed and Low-Level Waste Treatment Facility Project. The EDFs provide background information on mixed and low-level waste generated at the Idaho National Engineering Laboratory. They identify, characterize, and provide treatment strategies for the waste streams. Mixed waste is waste containing both radioactive and hazardous components as defined by the Atomic Energy Act and the Resource Conservation and Recovery Act, respectively. Low-level waste is waste that contains radioactivity and is not classified as high-level waste, transuranic waste, spent nuclear fuel, or 11e(2) byproduct material as defined by DOE 5820.2A. Test specimens of fissionable material irradiated for research and development only, and not for the production of power or plutonium, may be classified as low-level waste, provided the concentration of transuranic is less than 100 nCi/g. This appendix is a tool that clarifies presentation format for the EDFS. The EDFs contain waste stream characterization data and potential treatment strategies that will facilitate system tradeoff studies and conceptual design development. A total of 43 mixed waste and 55 low-level waste EDFs are provided.

1992-04-01T23:59:59.000Z

124

Biological treatment of hazardous aqueous wastes  

Science Conference Proceedings (OSTI)

Studies were conducted with a rotating biological conractor (RBC) to evaluate the treatability of leachates from the Stringfellow and New Lyme hazardous-waste sites. The leachates were transported from the waste sites to Cincinnati at the United States Environmental Protection Agency's Testing and Evaluation Facility. A series of batches were run with primary effluent from Cincinnati's Mill Creek Sewage Treatment Facility. The paper reports on the results from these experiments and the effectiveness of an RBC to adequately treat leachates from Superfund sites.

Opatken, E.J.; Howard, H.K.; Bond, J.J.

1987-06-01T23:59:59.000Z

125

Site-specific waste management instruction - radiological screening facility  

DOE Green Energy (OSTI)

This Site-Specific Waste Management Instruction provides guidance for managing waste generated from radiological sample screening operations conducted to support the Environmental Restoration Contractor`s activities. This document applies only to waste generated within the radiological screening facilities.

G. G. Hopkins

1997-12-31T23:59:59.000Z

126

Summary - WTP HLW Waste Vitrification Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

W W HLW W DOE is Immob site's t facilitie Facility to iden the HL to be i norma The as along w Level ( * H * H * H Sy * Pu D The Ele Site: H roject: W Report Date: M ited States Waste T Why DOE Waste Vitrificatio s constructing bilization Plant tank wastes. T es including a H y (HLW). The ntify the critical LW and determ ncorporated in ally requires a T What th ssessment team with each elem (TRL) for the H LW Melter Fee LW Melter Pro LW Melter Offg ystem/Process ulse Jet Mixer isposal System To view the full T http://www.em.doe. objective of a Tech ements (CTEs), usin Hanford/ORP Waste Treatme March 2007 Departmen Treatmen W E-EM Did This n Facility a Waste Treat (WTP) at Hanf The WTP is com High-Level Wa purpose of this technology ele mine if these are to the final WT Technology Re he TRA Team m identified the

127

Hanford facility dangerous waste permit application, general information portion  

SciTech Connect

The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the content of the Part B permit application guidance prepared by the Washington State Department of Ecology (Ecology 1996) and the U.S. Environmental Protection Agency (40 Code of Federal Regulations 270), with additional information needed by the Hazardous and Solid Waste Amendments and revisions of Washington Administrative Code 173-303. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in this report).

Hays, C.B.

1998-05-19T23:59:59.000Z

128

Federal Facility Compliance Act, Proposed Site Treatment Plan: Background Volume. Executive Summary  

SciTech Connect

This Federal Facility Compliance Act Site Treatment Plan discusses the options of radioactive waste management for Ames Laboratory. This is the background volume which discusses: site history and mission; framework for developing site treatment plans; proposed plan organization and related activities; characterization of mixed waste and waste minimization; low level mixed waste streams and the proposed treatment approach; future generation of TRU and mixed wastes; the adequacy of mixed waste storage facilities; and a summary of the overall DOE activity in the area of disposal of mixed waste treatment residuals.

1995-03-24T23:59:59.000Z

129

Construction Begins on New Waste Processing Facility | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Construction Begins on New Waste Processing Facility Construction Begins on New Waste Processing Facility Construction Begins on New Waste Processing Facility February 9, 2012 - 12:00pm Addthis Workers construct a new facility that will help Los Alamos National Laboratory accelerate the shipment of transuranic (TRU) waste to the Waste Isolation Pilot Plant (WIPP) in Carlsbad for permanent disposal. Workers construct a new facility that will help Los Alamos National Laboratory accelerate the shipment of transuranic (TRU) waste to the Waste Isolation Pilot Plant (WIPP) in Carlsbad for permanent disposal. Construction has begun on a new facility that will help Los Alamos National Laboratory accelerate the shipment of transuranic (TRU) waste stored in large boxes at Technical Area 54, Area G. Construction has begun on a new facility that will help Los Alamos National

130

Facility accident analysis for low-level waste management alternatives in the US Department of Energy Waste Management Program  

Science Conference Proceedings (OSTI)

The risk to human health of potential radiological releases resulting from facility accidents constitutes an important consideration in the US Department of Energy (DOE) waste management program. The DOE Office of Environmental Management (EM) is currently preparing a Programmatic Environmental Impact Statement (PEIS) that evaluates the risks associated with managing five types of radiological and chemical wastes in the DOE complex. Several alternatives for managing each of the five waste types are defined and compared in the EM PEIS. The alternatives cover a variety of options for storing, treating, and disposing of the wastes. Several treatment methods and operation locations are evaluated as part of the alternatives. The risk induced by potential facility accidents is evaluated for storage operations (current and projected waste storage and post-treatment storage) and for waste treatment facilities. For some of the five waste types considered, facility accidents cover both radiological and chemical releases. This paper summarizes the facility accident analysis that was performed for low-level (radioactive) waste (LLW). As defined in the EM PEIS, LLW includes all radioactive waste not classified as high-level, transuranic, or spent nuclear fuel. LLW that is also contaminated with chemically hazardous components is treated separately as low-level mixed waste (LLMW).

Roglans-Ribas, J.; Mueller, C.; Nabelssi, B.; Folga, S.; Tompkins, M.

1995-06-01T23:59:59.000Z

131

Transuranic waste inventory, characteristics, generation, and facility assessment for treatment, storage, and disposal alternatives considered in the U.S. Department of Energy Waste Management Programmatic Environmental Impact Statement  

SciTech Connect

Transuranic waste (TRUW) loads and potential contaminant releases at and en route to treatment, storage, and disposal sites in the US Department of Energy (DOE) complex are important considerations in DOE`s Waste Management Programmatic Environmental Impact Statement (WM PEIS). Waste loads are determined in part by the level of treatment the waste has undergone and the complex-wide configuration of origination, treatment, storage, and disposal sites selected for TRUW management. Other elements that impact waste loads are treatment volumes, waste characteristics, and the unit operation parameters of the treatment technologies. Treatment levels and site configurations have been combined into six TRUW management alternatives for study in the WM PEIS. This supplemental report to the WM PEIS gives the projected waste loads and contaminant release profiles for DOE treatment sites under each of the six TRUW management alternatives. It gives TRUW characteristics and inventories for current DOE generation and storage sites, describes the treatment technologies for three proposed levels of TRUW treatment, and presents the representative unit operation parameters of the treatment technologies. The data presented are primary inputs to developing the costs, health risks, and socioeconomic and environmental impacts of treating, packaging, and shipping TRUW for disposal.

Hong, K.; Kotek, T.; Folga, S.; Koebnick, B.; Wang, Y.; Kaicher, C.

1996-12-01T23:59:59.000Z

132

DOE/EA-1308; Environmental Assessment for the Offsite Transportation of Certain Low-Level and Mixed Radioactive Waste from the Savannah River Site for Treatment and Disposal at Commercial and Government Facilities (February 2001)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

08 08 ENVIRONMENTAL ASSESSMENT FOR THE OFFSITE TRANSPORTATION OF CERTAIN LOW-LEVEL AND MIXED RADIOACTIVE WASTE FROM THE SAVANNAH RIVER SITE FOR TREATMENT AND DISPOSAL AT COMMERCIAL AND GOVERNMENT FACILITIES FEBRUARY 2001 U. S. DEPARTMENT OF ENERGY SAVANNAH RIVER OPERATIONS OFFICE SAVANNAH RIVER SITE i ii This page is intentionally left blank iii TABLE OF CONTENTS Page 1.0 INTRODUCTION 1 1.1 Background 1 1.2 Purpose and Need for Action 6 2.0 PROPOSED ACTION AND ALTERNATIVES 6 2.1 Proposed Action 6 2.2 Alternatives to the Proposed Action 11 2.2.1 No Action, Continue to Store These Waste Forms at SRS 11 2.2.2 Construct and Operate Onsite Treatment and Disposal Facilities 11 3.0 ENVIRONMENTAL CONSEQUENCES OF THE PROPOSED ACTION AND ALTERNATIVES 12 3.1 Onsite Loading Operations 12 3.2 Transportation Impacts

133

Chapter 47 Solid Waste Facilities (Kentucky) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chapter 47 Solid Waste Facilities (Kentucky) Chapter 47 Solid Waste Facilities (Kentucky) Chapter 47 Solid Waste Facilities (Kentucky) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Kentucky Program Type Environmental Regulations Fees Siting and Permitting Provider Kentucky Division of Waste Management This chapter establishes the permitting standards for solid waste sites or facilities, the standards applicable to all solid waste sites or

134

New Facility Saves $20 Million, Accelerates Waste Processing | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facility Saves $20 Million, Accelerates Waste Processing Facility Saves $20 Million, Accelerates Waste Processing New Facility Saves $20 Million, Accelerates Waste Processing August 15, 2012 - 12:00pm Addthis The new Cask Processing Enclosure (CPE) facility is located at the Transuranic Waste Processing Center (TWPC). The Transuranic Waste Processing Center (TWPC) processes, repackages, and ships the site's legacy TRU waste offsite. OAK RIDGE, Tenn. - Oak Ridge's EM program recently began operations at a newly constructed facility that will accelerate the completion of remote-handled transuranic (TRU) waste processing at the site by two years and save taxpayers more than $20 million. The new Cask Processing Enclosure (CPE) facility is located at the Transuranic Waste Processing Center (TWPC). TWPC processes, repackages, and

135

EA-0688: Hazardous Waste Staging Facility, Pantex Plant, Amarillo, Texas |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

688: Hazardous Waste Staging Facility, Pantex Plant, Amarillo, 688: Hazardous Waste Staging Facility, Pantex Plant, Amarillo, Texas EA-0688: Hazardous Waste Staging Facility, Pantex Plant, Amarillo, Texas SUMMARY This EA evaluates the environmental impacts of a proposal to construct the Hazardous Waste Staging Facility that would help to alleviate capacity problems as well as provide a single compliant facility to stage wastes at the U.S. Department of Energy's Pantex Plant in Amarillo, Texas. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD January 29, 1993 EA-0688: Finding of No Significant Impact Hazardous Waste Staging Facility, Pantex Plant, Amarillo, Texas January 29, 1993 EA-0688: Final Environmental Assessment Hazardous Waste Staging Facility, Pantex Plant, Amarillo, Texas

136

EM Opens New Waste Repackaging Facility at Laboratory | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Opens New Waste Repackaging Facility at Laboratory Opens New Waste Repackaging Facility at Laboratory EM Opens New Waste Repackaging Facility at Laboratory March 7, 2013 - 12:00pm Addthis A view of the new facility where transuranic waste will be repackaged at Los Alamos National Laboratory. A view of the new facility where transuranic waste will be repackaged at Los Alamos National Laboratory. EM Deputy Assistant Secretary for Waste Management Frank Marcinowski, left, talks with LANL’s Oversized Container Disposition Project Manager Mike Romero while on a tour of the 375 box line facility in late February. EM Deputy Assistant Secretary for Waste Management Frank Marcinowski, left, talks with LANL's Oversized Container Disposition Project Manager Mike Romero while on a tour of the 375 box line facility in late February.

137

Waste management facilities cost information for transuranic waste  

SciTech Connect

This report contains preconceptual designs and planning level life-cycle cost estimates for managing transuranic waste. The report`s information on treatment and storage modules can be integrated to develop total life-cycle costs for various waste management options. A procedure to guide the U.S. Department of Energy and its contractor personnel in the use of cost estimation data is also summarized in this report.

Shropshire, D.; Sherick, M.; Biagi, C.

1995-06-01T23:59:59.000Z

138

Hanford Tank Waste Retrieval, Treatment and Disposition Framework |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Tank Waste Retrieval, Treatment and Disposition Framework Hanford Tank Waste Retrieval, Treatment and Disposition Framework Hanford Tank Waste Retrieval, Treatment and Disposition Framework Completing the Office of River Protection (ORP) mission of stabilizing 56 million gallons of chemical and radioactive waste stored in Hanford's 177 tanks is one of the Energy Department's highest priorities. This Framework document outlines a phased approach for beginning tank waste treatment while continuing to resolve technical issues with the Pretreatment and High-Level Waste Facilities. Hanford Tank Waste Retrieval, Treatment and Disposition Framework More Documents & Publications EIS-0391: Draft Environmental Impact Statement Waste Treatment Plant and Tank Farm Program EIS-0356: Notice of Intent to Prepare an Environmental Impact Statement

139

Hanford Tank Waste Retrieval, Treatment and Disposition Framework |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Tank Waste Retrieval, Treatment and Disposition Framework Hanford Tank Waste Retrieval, Treatment and Disposition Framework Hanford Tank Waste Retrieval, Treatment and Disposition Framework Completing the Office of River Protection (ORP) mission of stabilizing 56 million gallons of chemical and radioactive waste stored in Hanford's 177 tanks is one of the Energy Department's highest priorities. This Framework document outlines a phased approach for beginning tank waste treatment while continuing to resolve technical issues with the Pretreatment and High-Level Waste Facilities. Hanford Tank Waste Retrieval, Treatment and Disposition Framework More Documents & Publications EIS-0391: Draft Environmental Impact Statement Waste Treatment Plant and Tank Farm Program EIS-0356: Notice of Intent to Prepare an Environmental Impact Statement

140

Waste Calcining Facility remote inspection report  

SciTech Connect

The purpose of the Waste Calcining Facility (WCF) remote inspections was to evaluate areas in the facility which are difficult to access due to high radiation fields. The areas inspected were the ventilation exhaust duct, waste hold cell, adsorber manifold cell, off-gas cell, calciner cell and calciner vessel. The WCF solidified acidic, high-level mixed waste generated during nuclear fuel reprocessing. Solidification was accomplished through high temperature oxidation and evaporation. Since its shutdown in 1981, the WCFs vessels, piping systems, pumps, off-gas blowers and process cells have remained contaminated. Access to the below-grade areas is limited due to contamination and high radiation fields. Each inspection technique was tested with a mock-up in a radiologically clean area before the equipment was taken to the WCF for the actual inspection. During the inspections, essential information was obtained regarding the cleanliness, structural integrity, in-leakage of ground water, indications of process leaks, indications of corrosion, radiation levels and the general condition of the cells and equipment. In general, the cells contain a great deal of dust and debris, as well as hand tools, piping and miscellaneous equipment. Although the building appears to be structurally sound, the paint is peeling to some degree in all of the cells. Cracking and spalling of the concrete walls is evident in every cell, although the east wall of the off-gas cell is the worst. The results of the completed inspections and lessons learned will be used to plan future activities for stabilization and deactivation of the facility. Remote clean-up of loose piping, hand tools, and miscellaneous debris can start immediately while information from the inspections is factored into the conceptual design for deactivating the facility.

Patterson, M.W.; Ison, W.M.

1994-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste treatment facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Solid Waste Facilities Regulations (Massachusetts) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solid Waste Facilities Regulations (Massachusetts) Solid Waste Facilities Regulations (Massachusetts) Solid Waste Facilities Regulations (Massachusetts) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Massachusetts Program Type Environmental Regulations Provider Department of Environmental Protection This chapter of the Massachusetts General Laws governs the operation of solid waste facilities. It seeks to encourage sustainable waste management

142

November 8, 1983: Defense Waste Processing Facility | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 8, 1983: Defense Waste Processing Facility November 8, 1983: Defense Waste Processing Facility November 8, 1983: Defense Waste Processing Facility November 8, 1983: Defense Waste Processing Facility November 8, 1983 The Department begins construction of the Defense Waste Processing Facility (DWPF) at the Savannah River Plant in South Carolina. DWPF is designed to make high-level nuclear waste into a glass-like substance, which will then be shipped to a repository. DWPF will mix borosilicate glass with the waste, heat it to 2000 degrees F, and pour the mixture into stainless steel canisters. The mixture will cool into solid glass that can be permanently stored. DWPF will immobilize the more than 34 million gallons of liquid high-level waste that have accumulated from producing defense-related nuclear materials

143

Hight-Level Waste & Facilities Disposition  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Level Waste (HLW) and Facilities Disposition Final High-Level Waste (HLW) and Facilities Disposition Final Environmental Impact Statement You are here: DOE-ID Home > Environmental Management > Idaho High-Level Waste (HLW) Table of Contents Documents are in the Adobe® PDF format and require the Adobe® Reader to access them. If you do not currently have the Acrobat Reader, you can download the Free Adobe Reader at http://get.adobe.com/reader/ Icon link to Free Adobe Acrobat Reader software * Large chapters broken down into sections Summary* Cover [ Adobe Acrobat File Size 1.48 MB] Section, 1.0 [ Adobe Acrobat File Size 612 KB] Section, 2.0 [ Adobe Acrobat File Size 251 KB] Sections, 3.0 - 3.2.1a [ Adobe Acrobat File Size 1.4 MB] Section, 3.2.1b [ Adobe Acrobat File Size 2.0 MB] Sections, 3.2.2 - 4.0 [ Adobe Acrobat File Size 1.4 MB]

144

Liquid Waste Processing Facilities (LWPF) Reliability and Availability and Maintainability (RAM) Analysis  

SciTech Connect

A reliability, availability, and maintainability (RAM) analysis was prepared for the liquid effluents support being provided to the River Protection Project Waste Treatment Plant (WTP). The availability of liquid effluents services to the WTP was determined. Recommendations are provided on improvements and upgrades to increase the availability of the Liquid Waste Processing Facilities treatment and disposal systems.

LOWE, S.S.

2001-02-20T23:59:59.000Z

145

Finding of No Significant Impact for the Offsite Transportation of Certain Low-Level and Mixed Radioactive Waste from Savannah River Site for Treatment and Disposal at Commercial and Government Facilities, DOE/EA-1308 (02/15/01)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Finding of No Significant Impact Finding of No Significant Impact for the Offsite Transportation of Certain Low-level and Mixed Radioactive Waste from the Savannah River Site for Treatment and Disposal at Commercial and Government Facilities Agency: U. S. Department of Energy Action: Finding of No Significant Impact Summary: The Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-1308) to analyze the potential environmental impacts associated with the proposed offsite transportation of certain low-level radioactive waste (LLW) and mixed (i.e., hazardous and radioactive) low-level radioactive waste (MLLW) from the Savannah River Site (SRS), located near Aiken, South Carolina. Based on the analyses in the EA, DOE has determined that the action is not a major Federal action significantly affecting

146

Summary - System Planning for Low-Activity Waste Treatment at...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(DOE-EM) External Technical Review of System Planning for Low-Activity Waste Treatment at Hanford Why DOE-EM Did This Review Construction of the facilities of the Hanford site's...

147

MacArthur Waste to Energy Facility Biomass Facility | Open Energy  

Open Energy Info (EERE)

MacArthur Waste to Energy Facility Biomass Facility MacArthur Waste to Energy Facility Biomass Facility Jump to: navigation, search Name MacArthur Waste to Energy Facility Biomass Facility Facility MacArthur Waste to Energy Facility Sector Biomass Facility Type Municipal Solid Waste Location Suffolk County, New York Coordinates 40.9848784°, -72.6151169° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.9848784,"lon":-72.6151169,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

148

Independent Oversight Assessment, Salt Waste Processing Facility Project -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Salt Waste Processing Facility Salt Waste Processing Facility Project - January 2013 Independent Oversight Assessment, Salt Waste Processing Facility Project - January 2013 January 2013 Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project The U.S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security (HSS), conducted an independent assessment of nuclear safety culture at the Salt Waste Processing Facility (SWPF) Project. The primary objective of the evaluation was to provide information regarding the status of the safety culture at the SWPF Project. The data collection phase of the assessment occurred during August - September 2012. Independent Oversight Assessment, Salt Waste Processing Facility Project -

149

RETRIEVAL & TREATMENT OF HANFORD TANK WASTE  

SciTech Connect

The Hanford Tank Farms contain 53 million gal of radioactive waste accumulated during over 50 years of operations. The waste is stored in 177 single-shell and double-shell tanks in the Hanford 200 Areas. The single-shell tanks were put into operation from the early 1940s through the 1960s with wastes received from several generations of processing facilities for the recovery of plutonium and uranium, and from laboratories and other ancillary facilities. The overall hanford Tank Farm system represents one of the largest nuclear legacies in the world driving towards completion of retrieval and treatment in 2028 and the associated closure activity completion by 2035. Remote operations, significant radiation/contamination levels, limited access, and old facilities are just some of the challenges faced by retrieval and treatment systems. These systems also need to be able to successfully remove 99% or more of the waste, and support waste treatment, and tank closure. The Tank Farm retrieval program has ramped up dramatically in the past three years with design, fabrication, installation, testing, and operations ongoing on over 20 of the 149 single-shell tanks. A variety of technologies are currently being pursued to retrieve different waste types, applications, and to help establish a baseline for recovery/operational efficiencies. The paper/presentation describes the current status of retrieval system design, fabrication, installation, testing, readiness, and operations, including: (1) Saltcake removal progress in Tanks S-102, S-109, and S-112 using saltcake dissolution, modified sluicing, and high pressure water lancing techniques; (2) Sludge vacuum retrieval experience from Tanks C-201, C-202, C-203, and C-204; (3) Modified sluicing experience in Tank C-103; (4) Progress on design and installation of the mobile retrieval system for sludge in potentially leaking single-shell tanks, particularly Tank C-101; and (5) Ongoing installation of various systems in the next generation of tanks to be retrieved.

EACKER, J.A.; SPEARS, J.A.; STURGES, M.H.; MAUSS, B.M.

2006-01-20T23:59:59.000Z

150

Impacts of Secondary Waste on Near-Surface Disposal Facility ...  

Impacts of Secondary Waste on Near-Surface Disposal Facility at Hanford ... DOE low-level and mixed low-level waste. 1E-06 1E-05 1E-04 1E-03 1E-02 ...

151

Low-Level Waste Disposal Facility Federal Review Group Manual  

Energy.gov (U.S. Department of Energy (DOE))

This Revision 3 of the Low-Level Waste Disposal Facility Federal Review Group (LFRG) Manual was prepared primarily to include review criteria for the review of transuranic (TRU) waste disposal...

152

Hazardous Waste Facility Siting Program (Maryland) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facility Siting Program (Maryland) Facility Siting Program (Maryland) Hazardous Waste Facility Siting Program (Maryland) < Back Eligibility Commercial Construction Industrial Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Transportation Utility Program Info State Maryland Program Type Siting and Permitting Provider Maryland Department of the Environment The Hazardous Waste Facilities Siting Board is responsible for overseeing the siting of hazardous waste facilities in Maryland, and will treat hazardous waste facilities separately from low-level nuclear waste facilities. This legislation describes the factors considered by the Board in making siting decisions. The Board is authorized to enact rules and regulations pertaining to the siting of hazardous and low-level nuclear

153

The Mixed Waste Management Facility. Preliminary design review  

Science Conference Proceedings (OSTI)

This document presents information about the Mixed Waste Management Facility. Topics discussed include: cost and schedule baseline for the completion of the project; evaluation of alternative options; transportation of radioactive wastes to the facility; capital risk associated with incineration; radioactive waste processing; scaling of the pilot-scale system; waste streams to be processed; molten salt oxidation; feed preparation; initial operation to demonstrate selected technologies; floorplans; baseline revisions; preliminary design baseline; cost reduction; and project mission and milestones.

NONE

1995-12-31T23:59:59.000Z

154

Independent Oversight Review, Advanced Mixed Waste Treatment...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Review, Advanced Mixed Waste Treatment Project - April 2013 Independent Oversight Review, Advanced Mixed Waste Treatment Project - April 2013 April 2013 Review of Radiation...

155

Treatment of Light Metal Wastes - TMS  

Science Conference Proceedings (OSTI)

... for the Treatment and Minimization of Wastes: Treatment of Light Metal Wastes ... A Decade of Gestation: S. Street, G. Brooks and H.K. Worner, Materials Eng.

156

Independent Oversight Review, Waste Treatment and Immobilization...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Review, Waste Treatment and Immobilization Plant - May 2013 May 2013 Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality The U.S....

157

Independent Oversight Review, Waste Treatment and Immobilization...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Review, Waste Treatment and Immobilization Plant - March 2013 March 2013 Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality The U.S....

158

Independent Activity Report, Hanford Waste Treatment Plant -...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independent Activity Report, Hanford Waste Treatment Plant - February 2011 February 2011 Hanford Waste Treatment Plant Construction Quality Assurance Review ARPT-WTP-2011-002...

159

Independent Oversight Review, Waste Treatment and Immobilization...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment and Immobilization Plant - October 2012 October 2012 Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality The U. S....

160

Independent Oversight Review, Waste Treatment and Immobilization...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Review, Waste Treatment and Immobilization Plant - March 2012 March 2012 Review of the Hanford Site Waste Treatment and Immobilization Plant Project Construction Quality The...

Note: This page contains sample records for the topic "waste treatment facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Independent Oversight Review, Waste Treatment and Immobilization...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment and Immobilization Plant - November 2011 November 2011 Review of the Hanford Site Waste Treatment and Immobilization Plant Project Construction Quality The...

162

Independent Oversight Review, Waste Treatment and Immobilization...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oversight Review, Waste Treatment and Immobilization Plant - August 2011 August 2011 Hanford Waste Treatment and Immobilization Plant Construction Quality The Office of Safety...

163

West Point Treatment Plant Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Point Treatment Plant Biomass Facility Point Treatment Plant Biomass Facility Jump to: navigation, search Name West Point Treatment Plant Biomass Facility Facility West Point Treatment Plant Sector Biomass Facility Type Non-Fossil Waste Location King County, Washington Coordinates 47.5480339°, -121.9836029° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.5480339,"lon":-121.9836029,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

164

Solid Waste Disposal Facilities (Massachusetts) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solid Waste Disposal Facilities (Massachusetts) Solid Waste Disposal Facilities (Massachusetts) Solid Waste Disposal Facilities (Massachusetts) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Transportation Tribal Government Utility Program Info State Massachusetts Program Type Siting and Permitting Provider Department of Environmental Protection These sections articulate rules for the maintenance and operation of solid waste disposal facilities, as well as site assignment procedures. Applications for site assignment will be reviewed by the Massachusetts Department of Environmental Protection as well as the Department of Public

165

EA-0820: Construction of Mixed Waste Storage RCRA Facilities...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

waste storage facilities (Buildings 7668 and 7669) in accordance with Resource Conservation and Recovery Act requirements. Site preparation and construction activities would...

166

Review of the Savannah River Site Salt Waste Processing Facility...  

NLE Websites -- All DOE Office Websites (Extended Search)

River Site Salt Waste Processing Facility Safety Basis and Design Development May 2011 August 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement...

167

300 Area waste acid treatment system closure plan  

SciTech Connect

The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOERL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion includes closure plan documentation submitted for individual, treatment, storage, and/or disposal units undergoing closure, such as the 300 Area Waste Acid Treatment System. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Whenever appropriate, 300 Area Waste Acid Treatment System documentation makes cross-reference to the General Information Portion, rather than duplicating text. This 300 Area Waste Acid Treatment System Closure Plan (Revision 2) includes a Hanford Facility Dangerous Waste Permit Application, Part A, Form 3. Information provided in this closure plan is current as of April 1999.

LUKE, S.N.

1999-05-17T23:59:59.000Z

168

Treatment of mercury containing waste  

DOE Patents (OSTI)

A process is provided for the treatment of mercury containing waste in a single reaction vessel which includes a) stabilizing the waste with sulfur polymer cement under an inert atmosphere to form a resulting mixture and b) encapsulating the resulting mixture by heating the mixture to form a molten product and casting the molten product as a monolithic final waste form. Additional sulfur polymer cement can be added in the encapsulation step if needed, and a stabilizing additive can be added in the process to improve the leaching properties of the waste form.

Kalb, Paul D. (Wading River, NY); Melamed, Dan (Gaithersburg, MD); Patel, Bhavesh R (Elmhurst, NY); Fuhrmann, Mark (Babylon, NY)

2002-01-01T23:59:59.000Z

169

Standard Guide for Preparing Waste Management Plans for Decommissioning Nuclear Facilities  

E-Print Network (OSTI)

1.1 This guide addresses the development of waste management plans for potential waste streams resulting from decommissioning activities at nuclear facilities, including identifying, categorizing, and handling the waste from generation to final disposal. 1.2 This guide is applicable to potential waste streams anticipated from decommissioning activities of nuclear facilities whose operations were governed by the Nuclear Regulatory Commission (NRC) or Agreement State license, under Department of Energy (DOE) Orders, or Department of Defense (DoD) regulations. 1.3 This guide provides a description of the key elements of waste management plans that if followed will successfully allow for the characterization, packaging, transportation, and off-site treatment or disposal, or both, of conventional, hazardous, and radioactive waste streams. 1.4 This guide does not address the on-site treatment, long term storage, or on-site disposal of these potential waste streams. 1.5 This standard does not purport to address ...

American Society for Testing and Materials. Philadelphia

2010-01-01T23:59:59.000Z

170

Savannah River Site - Salt Waste Processing Facility: Briefing on the Salt Waste Processing Facility Independent Technical Review  

Energy.gov (U.S. Department of Energy (DOE))

This is a presentation outlining the Salt Waste Processing Facility process, major risks, approach for conducting reviews, discussion of the findings, and conclusions.

171

BIO-WASTE COMPOSTING FACILITY AT THE WASTE AUTHORITY OF S.O.W., HOORN/  

E-Print Network (OSTI)

BIO-WASTE COMPOSTING FACILITY AT THE WASTE AUTHORITY OF S.O.W., HOORN/ NETHERLANDS ·· ·· T. SCHUTTE, B. GOGGEL, AND U. MAIRE Buhler Inc. Minneapolis, Minnesota INTRODUCfION Wastes Processed Bio-wastes are predominantly those wastes which are disposed of in the kitchen and are collected separately from the rest

Columbia University

172

Low-Level Radioactive Waste Disposal Regional Facility Act (Pennsylvania) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-Level Radioactive Waste Disposal Regional Facility Act Low-Level Radioactive Waste Disposal Regional Facility Act (Pennsylvania) Low-Level Radioactive Waste Disposal Regional Facility Act (Pennsylvania) < Back Eligibility Utility Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Program Info State Pennsylvania Program Type Environmental Regulations Fees This act establishes a low-level radioactive waste disposal regional facility siting fund that requires nuclear power reactor constructors and operators to pay to the Department of Environmental Resources funds to be utilized for disposal facilities. This act ensures that nuclear facilities and the Department comply with the Low-Level Radioactive Disposal Act. The regional facility siting fund is used for reimbursement of expenses

173

High level waste facilities -- Continuing operation or orderly shutdown  

SciTech Connect

Two options for Environmental Impact Statement No action alternatives describe operation of the radioactive liquid waste facilities at the Idaho Chemical Processing Plant at the Idaho National Engineering and Environmental Laboratory. The first alternative describes continued operation of all facilities as planned and budgeted through 2020. Institutional control for 100 years would follow shutdown of operational facilities. Alternatively, the facilities would be shut down in an orderly fashion without completing planned activities. The facilities and associated operations are described. Remaining sodium bearing liquid waste will be converted to solid calcine in the New Waste Calcining Facility (NWCF) or will be left in the waste tanks. The calcine solids will be stored in the existing Calcine Solids Storage Facilities (CSSF). Regulatory and cost impacts are discussed.

Decker, L.A.

1998-04-01T23:59:59.000Z

174

Central Facilities Area Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables  

SciTech Connect

Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Central Facilities Area facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facilityspecific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

Lisa Harvego; Brion Bennett

2011-11-01T23:59:59.000Z

175

Industrial Solid Waste Landfill Facilities (Ohio) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Solid Waste Landfill Facilities (Ohio) Industrial Solid Waste Landfill Facilities (Ohio) Industrial Solid Waste Landfill Facilities (Ohio) < Back Eligibility Agricultural Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Utility Program Info State Ohio Program Type Environmental Regulations Provider Ohio Environmental Protection Agency This chapter of the law establishes that the Ohio Environmental Protection Agency provides rules and guidelines for landfills, including those that treat waste to generate electricity. The law provides information for permitting, installing, maintaining, monitoring, and closing landfills. There are no special provisions or exemptions for landfills used to generate electricity. However, the law does apply to landfills that do

176

New facility boosts Lab's ability to ship transuranic waste  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab's ability to ship transuranic waste Lab's ability to ship transuranic waste New facility boosts Lab's ability to ship transuranic waste Construction has begun on a new facility that will help Los Alamos accelerate the shipment of transuranic waste stored in large boxes at Technical Area 54. February 9, 2012 Aerial view of Los Alamos National Laboratory Aerial view of Los Alamos National Laboratory. Contact Colleen Curran Communications Office (505) 664-0344 Email "375 Box Line" facility to allow workers to repackage radioactive items stored in large boxes LOS ALAMOS, New Mexico, February 9, 2012-Construction has begun on a new facility that will help Los Alamos National Laboratory accelerate the shipment of transuranic (TRU) waste stored in large boxes at Technical Area 54, Area G. The new "375 Box Line" facility will allow the Laboratory to repackage

177

8-Waste treatment and disposal A. Responsibility for waste management  

E-Print Network (OSTI)

8- Waste treatment and disposal A. Responsibility for waste management 1. Each worker is responsible for correctly bagging and labeling his/her own waste. 2. A BSL3 technician will be responsible for transporting and autoclaving the waste. Waste will be autoclaved once or twice per day, depending on use

178

Lessons Learned from Radioactive Waste Storage and Disposal Facilities  

Science Conference Proceedings (OSTI)

The safety of radioactive waste disposal facilities and the decommissioning of complex sites may be predicated on the performance of engineered and natural barriers. For assessing the safety of a waste disposal facility or a decommissioned site, a performance assessment or similar analysis is often completed. The analysis is typically based on a site conceptual model that is developed from site characterization information, observations, and, in many cases, expert judgment. Because waste disposal facilities are sited, constructed, monitored, and maintained, a fair amount of data has been generated at a variety of sites in a variety of natural systems. This paper provides select examples of lessons learned from the observations developed from the monitoring of various radioactive waste facilities (storage and disposal), and discusses the implications for modeling of future waste disposal facilities that are yet to be constructed or for the development of dose assessments for the release of decommissioning sites. Monitoring has been and continues to be performed at a variety of different facilities for the disposal of radioactive waste. These include facilities for the disposal of commercial low-level waste (LLW), reprocessing wastes, and uranium mill tailings. Many of the lessons learned and problems encountered provide a unique opportunity to improve future designs of waste disposal facilities, to improve dose modeling for decommissioning sites, and to be proactive in identifying future problems. Typically, an initial conceptual model was developed and the siting and design of the disposal facility was based on the conceptual model. After facility construction and operation, monitoring data was collected and evaluated. In many cases the monitoring data did not comport with the original site conceptual model, leading to additional investigation and changes to the site conceptual model and modifications to the design of the facility. The following cases are discussed: commercial LLW disposal facilities; uranium mill tailings disposal facilities; and reprocessing waste storage and disposal facilities. The observations developed from the monitoring and maintenance of waste disposal and storage facilities provide valuable lessons learned for the design and modeling of future waste disposal facilities and the decommissioning of complex sites.

Esh, David W.; Bradford, Anna H. [U.S. Nuclear Regulatory Commission, Two White Flint North, MS T7J8, 11545 Rockville Pike, Rockville, MD 20852 (United States)

2008-01-15T23:59:59.000Z

179

Facility design philosophy: Tank Waste Remediation System Process support and infrastructure definition  

Science Conference Proceedings (OSTI)

This report documents the current facility design philosophy for the Tank Waste Remediation System (TWRS) process support and infrastructure definition. The Tank Waste Remediation System Facility Configuration Study (FCS) initially documented the identification and definition of support functions and infrastructure essential to the TWRS processing mission. Since the issuance of the FCS, the Westinghouse Hanford Company (WHC) has proceeded to develop information and requirements essential for the technical definition of the TWRS treatment processing programs.

Leach, C.E.; Galbraith, J.D. [Westinghouse Hanford Co., Richland, WA (United States); Grant, P.R.; Francuz, D.J.; Schroeder, P.J. [Fluor Daniel, Inc., Richland, WA (United States)

1995-11-01T23:59:59.000Z

180

Safety analysis report for the Waste Storage Facility. Revision 2  

SciTech Connect

This safety analysis report outlines the safety concerns associated with the Waste Storage Facility located in the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The three main objectives of the report are: define and document a safety basis for the Waste Storage Facility activities; demonstrate how the activities will be carried out to adequately protect the workers, public, and environment; and provide a basis for review and acceptance of the identified risk that the managers, operators, and owners will assume.

Bengston, S.J.

1994-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste treatment facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

WIPP Documents - Hazardous Waste Facility Permit (RCRA)  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy to manage, store, and dispose of contact-handled and remote-handled transuranic mixed waste at the Waste Isolation Pilot Plant. Mixed waste contains radioactive and...

182

WASTE TREATMENT TECHNOLOGY PROCESS DEVELOPMENT PLAN FOR HANFORD WASTE TREATMENT PLANT LOW ACTIVITY WASTE RECYCLE  

SciTech Connect

The purpose of this Process Development Plan is to summarize the objectives and plans for the technology development activities for an alternative path for disposition of the recycle stream that will be generated in the Hanford Waste Treatment Plant Low Activity Waste (LAW) vitrification facility (LAW Recycle). This plan covers the first phase of the development activities. The baseline plan for disposition of this stream is to recycle it to the WTP Pretreatment Facility, where it will be concentrated by evaporation and returned to the LAW vitrification facility. Because this stream contains components that are volatile at melter temperatures and are also problematic for the glass waste form, they accumulate in the Recycle stream, exacerbating their impact on the number of LAW glass containers. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and reducing the halides in the Recycle is a key component of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, this stream does not have a proven disposition path, and resolving this gap becomes vitally important. This task seeks to examine the impact of potential future disposition of this stream in the Hanford tank farms, and to develop a process that will remove radionuclides from this stream and allow its diversion to another disposition path, greatly decreasing the LAW vitrification mission duration and quantity of glass waste. The origin of this LAW Recycle stream will be from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover or precipitates of scrubbed components (e.g. carbonates). The soluble components are mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet, and will not be available until the WTP begins operation, causing uncertainty in its composition, particularly the radionuclide content. This plan will provide an estimate of the likely composition and the basis for it, assess likely treatment technologies, identify potential disposition paths, establish target treatment limits, and recommend the testing needed to show feasibility. Two primary disposition options are proposed for investigation, one is concentration for storage in the tank farms, and the other is treatment prior to disposition in the Effluent Treatment Facility. One of the radionuclides that is volatile and expected to be in high concentration in this LAW Recycle stream is Technetium-99 ({sup 99}Tc), a long-lived radionuclide with a half-life of 210,000 years. Technetium will not be removed from the aqueous waste in the Hanford Waste Treatment and Immobilization Plant (WTP), and will primarily end up immobilized in the LAW glass, which will be disposed in the Integrated Disposal Facility (IDF). Because {sup 99}Tc has a very long half-life and is highly mobile, it is the largest dose contributor to the Performance Assessment (PA) of the IDF. Other radionuclides that are also expected to be in appreciable concentration in the LAW Recycle are {sup 129}I, {sup 90}Sr, {sup 137}Cs, and {sup 241}Am. The concentrations of these radionuclides in this stream will be much lower than in the LAW, but they will still be higher than limits for some of the other disposition pathways currently available. Although the baseline process will recycle this stream to the Pretreatment Facility, if the LAW facility begins operation first, this stream will not have a disposition path internal to WTP. One potential solution is to return the stream to the tank farms where it can be evaporated in the 242- A evaporator, or perhaps deploy an auxiliary evaporator to concentrate it prior to return to the tank farms. In either case, testing is needed to evalua

McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.

2013-08-29T23:59:59.000Z

183

Waste Treatment Plant and Tank Farm Program  

Energy.gov (U.S. Department of Energy (DOE))

This photo shows the Pretreatment Facility control room building pad at the Office of River Protection at the Hanford site. The Low-Activity Waste Facility is in the background.

184

IMPACT OF THE SMALL COLUMN ION EXCHANGE PROCESS ON THE DEFENSE WASTE PROCESSING FACILITY - 12112  

SciTech Connect

The Savannah River Site (SRS) is investigating the deployment of a parallel technology to the Salt Waste Processing Facility (SWPF, presently under construction) to accelerate high activity salt waste processing. The proposed technology combines large waste tank strikes of monosodium titanate (MST) to sorb strontium and actinides with two ion exchange columns packed with crystalline silicotitanate (CST) resin to sorb cesium. The new process was designated Small Column Ion Exchange (SCIX), since the ion exchange columns were sized to fit within a waste storage tank riser. Loaded resins are to be combined with high activity sludge waste and fed to the Defense Waste Processing Facility (DWPF) for incorporation into the current glass waste form. Decontaminated salt solution produced by SCIX will be fed to the SRS Saltstone Facility for on-site immobilization as a grout waste form. Determining the potential impact of SCIX resins on DWPF processing was the basis for this study. Accelerated salt waste treatment is projected to produce a significant savings in the overall life cycle cost of waste treatment at SRS.

Koopman, D.; Lambert, D.; Fox, K.; Stone, M.

2011-11-07T23:59:59.000Z

185

Radiological, physical, and chemical characterization of additional alpha contaminated and mixed low-level waste for treatment at the advanced mixed waste treatment project  

SciTech Connect

This document provides physical, chemical, and radiological descriptive information for a portion of mixed waste that is potentially available for private sector treatment. The format and contents are designed to provide treatment vendors with preliminary information on the characteristics and properties for additional candidate portions of the Idaho National Engineering Laboratory (INEL) and offsite mixed wastes not covered in the two previous characterization reports for the INEL-stored low-level alpha-contaminated and transuranic wastes. This report defines the waste, provides background information, briefly reviews the requirements of the Federal Facility Compliance Act (P.L. 102-386), and relates the Site Treatment Plans developed under the Federal Facility Compliance Act to the waste streams described herein. Each waste is summarized in a Waste Profile Sheet with text, charts, and tables of waste descriptive information for a particular waste stream. A discussion of the availability and uncertainty of data for these waste streams precedes the characterization descriptions.

Hutchinson, D.P.

1995-07-01T23:59:59.000Z

186

EIS-0287: Idaho High-Level Waste and Facilities Disposition Final...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement, EIS-0287 (September 2002) EIS-0287: Idaho High-Level Waste and Facilities Disposition Final...

187

Hanford Site waste treatment/storage/disposal integration  

SciTech Connect

In 1998 Waste Management Federal Services of Hanford, Inc. began the integration of all low-level waste, mixed waste, and TRU waste-generating activities across the Hanford site. With seven contractors, dozens of generating units, and hundreds of waste streams, integration was necessary to provide acute waste forecasting and planning for future treatment activities. This integration effort provides disposition maps that account for waste from generation, through processing, treatment and final waste disposal. The integration effort covers generating facilities from the present through the life-cycle, including transition and deactivation. The effort is patterned after the very successful DOE Complex EM Integration effort. Although still in the preliminary stages, the comprehensive onsite integration effort has already reaped benefits. These include identifying significant waste streams that had not been forecast, identifying opportunities for consolidating activities and services to accelerate schedule or save money; and identifying waste streams which currently have no path forward in the planning baseline. Consolidation/integration of planned activities may also provide opportunities for pollution prevention and/or avoidance of secondary waste generation. A workshop was held to review the waste disposition maps, and to identify opportunities with potential cost or schedule savings. Another workshop may be held to follow up on some of the long-term integration opportunities. A change to the Hanford waste forecast data call would help to align the Solid Waste Forecast with the new disposition maps.

MCDONALD, K.M.

1999-02-24T23:59:59.000Z

188

Waste management facilities cost information: System cost model product description. Revision 2  

SciTech Connect

In May of 1994, Lockheed Idaho Technologies Company (LITCO) in Idaho Falls, Idaho and subcontractors developed the System Cost Model (SCM) application. The SCM estimates life-cycle costs of the entire US Department of Energy (DOE) complex for designing; constructing; operating; and decommissioning treatment, storage, and disposal (TSD) facilities for mixed low-level, low-level, transuranic, and mixed transuranic waste. The SCM uses parametric cost functions to estimate life-cycle costs for various treatment, storage, and disposal modules which reflect planned and existing facilities at DOE installations. In addition, SCM can model new facilities based on capacity needs over the program life cycle. The SCM also provides transportation costs for DOE wastes. Transportation costs are provided for truck and rail and include transport of contact-handled, remote-handled, and alpha (transuranic) wastes. The user can provide input data (default data is included in the SCM) including the volume and nature of waste to be managed, the time period over which the waste is to be managed, and the configuration of the waste management complex (i.e., where each installation`s generated waste will be treated, stored, and disposed). Then the SCM uses parametric cost equations to estimate the costs of pre-operations (designing), construction costs, operation management, and decommissioning these waste management facilities.

Lundeen, A.S.; Hsu, K.M.; Shropshire, D.E.

1996-02-01T23:59:59.000Z

189

Alternatives for managing wastes from reactors and post-fission operations in the LWR fuel cycle. Volume 2. Alternatives for waste treatment  

DOE Green Energy (OSTI)

Volume II of the five-volume report is devoted to the description of alternatives for waste treatment. The discussion is presented under the following section titles: fuel reprocessing modifications; high-level liquid waste solidification; treatment and immobilization of chop-leach fuel bundle residues; treatment of noncombustible solid wastes; treatment of combustible wastes; treatment of non-high-level liquid wastes; recovery of transuranics from non-high-level wastes; immobilization of miscellaneous non-high-level wastes; volatile radioisotope recovery and off-gas treatment; immobilization of volatile radioisotopes; retired facilities (decontamination and decommissioning); and, modification and use of selected fuel reprocessing wastes. (JGB)

Not Available

1976-05-01T23:59:59.000Z

190

Waste Heat Recovery in Industrial Facilities  

Science Conference Proceedings (OSTI)

Low-temperature waste heat streams account for the majority of the industrial waste heat inventory. With a reference temperature of 60F (16C), 65% of the waste heat is below 450F (232C) and 99% is below 1,200F (649C). With a reference temperature of 300F (149C), 14% of the waste heat is below 450F, and 96% is below 1,200F. Waste heat is concentrated in a few industrial manufacturing sectors. Based on a review of 21 manufacturing sectors, the top two sectors that produce waste heat are petroleu...

2010-12-20T23:59:59.000Z

191

Hanford facility dangerous waste permit application, PUREX storage tunnels  

SciTech Connect

The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, operating treatment, storage, and/or disposal units, such as the PUREX Storage Tunnels (this document, DOE/RL-90-24). Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the content of the Part B permit application guidance prepared by the Washington State Department of Ecology (Ecology 1996) and the US Environmental Protection Agency (40 Code of Federal Regulations 270), with additional information needs defined by the Hazardous and Solid Waste Amendments and revisions of Washington Administrative Code 173-303. For ease of reference, the Washington State Department of Ecology alpha-numeric section identifiers from the permit application guidance documentation (Ecology 1996) follow, in brackets, the chapter headings and subheadings. A checklist indicating where information is contained in the PUREX Storage Tunnels permit application documentation, in relation to the Washington State Department of Ecology guidance, is located in the Contents Section. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Wherever appropriate, the PUREX Storage Tunnels permit application documentation makes cross-reference to the General Information Portion, rather than duplicating text. Information provided in this PUREX Storage Tunnels permit application documentation is current as of April 1997.

Price, S.M.

1997-09-08T23:59:59.000Z

192

TRAITEMENT DES EFFLUENTS WASTE TREATMENT  

E-Print Network (OSTI)

TRAITEMENT DES EFFLUENTS WASTE TREATMENT Anaerobic digestion of pig manure B. DE LA FARGE Michèle properties of the methanized effluemt are preserved. A trial on anaerobic digestion of untreated pig manure technique du Porc, Station expérimentale, Les Cabrière.l, 12200 Villefranche-de-Rouer/(ue Frctnce Anaerobic

Recanati, Catherine

193

Hazardous Waste Facilities Siting (Connecticut) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facilities Siting (Connecticut) Facilities Siting (Connecticut) Hazardous Waste Facilities Siting (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Connecticut Program Type Siting and Permitting Provider Department of Energy and Environmental Protection These regulations describe the siting and permitting process for hazardous waste facilities and reference rules for construction, operation, closure,

194

Salt Waste Processing Facility Fact Sheet  

Energy.gov (U.S. Department of Energy (DOE))

Nuclear material production operations at SRS resulted in the generation of liquid radioactive waste that is being stored, on an interim basis, in 49 underground waste storage tanks in the F- and H-Area Tank Farms.

195

Thirty-year solid waste generation forecast for facilities at SRS  

SciTech Connect

The information supplied by this 30-year solid waste forecast has been compiled as a source document to the Waste Management Environmental Impact Statement (WMEIS). The WMEIS will help to select a sitewide strategic approach to managing present and future Savannah River Site (SRS) waste generated from ongoing operations, environmental restoration (ER) activities, transition from nuclear production to other missions, and decontamination and decommissioning (D&D) programs. The EIS will support project-level decisions on the operation of specific treatment, storage, and disposal facilities within the near term (10 years or less). In addition, the EIS will provide a baseline for analysis of future waste management activities and a basis for the evaluation of the specific waste management alternatives. This 30-year solid waste forecast will be used as the initial basis for the EIS decision-making process. The Site generates and manages many types and categories of waste. With a few exceptions, waste types are divided into two broad groups-high-level waste and solid waste. High-level waste consists primarily of liquid radioactive waste, which is addressed in a separate forecast and is not discussed further in this document. The waste types discussed in this solid waste forecast are sanitary waste, hazardous waste, low-level mixed waste, low-level radioactive waste, and transuranic waste. As activities at SRS change from primarily production to primarily decontamination and decommissioning and environmental restoration, the volume of each waste s being managed will change significantly. This report acknowledges the changes in Site Missions when developing the 30-year solid waste forecast.

Not Available

1994-07-01T23:59:59.000Z

196

EA-0820: Construction of Mixed Waste Storage RCRA Facilities, Buildings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0: Construction of Mixed Waste Storage RCRA Facilities, 0: Construction of Mixed Waste Storage RCRA Facilities, Buildings 7668 and 7669, Oak Ridge, Tennessee EA-0820: Construction of Mixed Waste Storage RCRA Facilities, Buildings 7668 and 7669, Oak Ridge, Tennessee SUMMARY This EA evaluates the environmental impacts of a proposal to construct and operate two mixed (both radioactive and hazardous) waste storage facilities (Buildings 7668 and 7669) in accordance with Resource Conservation and Recovery Act requirements. Site preparation and construction activities would take place at the U.S. Department of Energy's Oak Ridge National Laboratory in Oak Ridge, Tennessee. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 16, 1994 EA-0820: Finding of No Significant Impact

197

Regional Waste Systems Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Biomass Facility Biomass Facility Jump to: navigation, search Name Regional Waste Systems Biomass Facility Facility Regional Waste Systems Sector Biomass Facility Type Municipal Solid Waste Location Cumberland County, Maine Coordinates 43.8132979°, -70.3870587° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.8132979,"lon":-70.3870587,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

198

Animal Waste Treatment System Loan Program (Missouri)  

Energy.gov (U.S. Department of Energy (DOE))

The purpose of the Animal Waste Treatment System Loan Program is to finance animal waste treatment systems for independent livestock and poultry producers at below conventional interest rates. Loan...

199

Scanned Treatment of Mixed Incin. Waste  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Treatment of Mixed Incinerable Treatment of Mixed Incinerable Waste DOE/IG-0588 March 2003 Page 17 Page 18 Use of Treatment Resources Details of Finding ........................................................................1 Recommendations and Comments ............................................6 Appendices Prior Reports ...............................................................................8 Objective, Scope, and Methodology ...........................................9 Management Comments ...........................................................11 TREATMENT OF MIXED INCINERABLE WASTE TABLE OF CONTENTS Page 1 Waste Stored Rather Than Treated We found the Department of Energy (Department) was not treating its mixed incinerable solid waste expeditiously or cost-effectively.

200

Geothermal waste treatment biotechnology  

DOE Green Energy (OSTI)

Technical feasibility of a biotechnology based on biochemical reactions for detoxification of geothermal brines has been demonstrated. Laboratory-scale studies have shown that the emerging biotechnology is versatile and is applicable to a variety of geothermal sludges and materials with similar geochemical properties. Materials suitable for treatment are those which may contain few or many metals in concentrations exceeding those allowed by regulatory agencies. Comparison of several possible types of bioreactors and processes have led to the conclusion that a number of variables have to be considered in the design and development of a biochemical plant for the detoxification of geothermal type sludges. These include reactor size, effects of agitation, mixed cultures, state of the biomass, pH and dissolved oxygen, concentration of residual sludge, residence time, and temperature. Under optimum conditions, high rates of metal removal can be achieved. Some recent studies, dealing with the process variables and their optimization, will be discussed. 6 refs., 3 figs.

Premuzic, E.T.; Lin, M.S.

1991-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste treatment facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

The Mixed Waste Management Facility. Design basis integrated operations plan (Title I design)  

SciTech Connect

The Mixed Waste Management Facility (MWMF) will be a fully integrated, pilotscale facility for the demonstration of low-level, organic-matrix mixed waste treatment technologies. It will provide the bridge from bench-scale demonstrated technologies to the deployment and operation of full-scale treatment facilities. The MWMF is a key element in reducing the risk in deployment of effective and environmentally acceptable treatment processes for organic mixed-waste streams. The MWMF will provide the engineering test data, formal evaluation, and operating experience that will be required for these demonstration systems to become accepted by EPA and deployable in waste treatment facilities. The deployment will also demonstrate how to approach the permitting process with the regulatory agencies and how to operate and maintain the processes in a safe manner. This document describes, at a high level, how the facility will be designed and operated to achieve this mission. It frequently refers the reader to additional documentation that provides more detail in specific areas. Effective evaluation of a technology consists of a variety of informal and formal demonstrations involving individual technology systems or subsystems, integrated technology system combinations, or complete integrated treatment trains. Informal demonstrations will typically be used to gather general operating information and to establish a basis for development of formal demonstration plans. Formal demonstrations consist of a specific series of tests that are used to rigorously demonstrate the operation or performance of a specific system configuration.

NONE

1994-12-01T23:59:59.000Z

202

Environmental assessment for the construction, operation, and decommissioning of the Waste Segregation Facility at the Savannah River Site  

Science Conference Proceedings (OSTI)

This Environmental Assessment (EA) has been prepared by the Department of Energy (DOE) to assess the potential environmental impacts associated with the construction, operation and decontamination and decommissioning (D&D) of the Waste Segregation Facility (WSF) for the sorting, shredding, and compaction of low-level radioactive waste (LLW) at the Savannah River Site (SRS) located near Aiken, South Carolina. The LLW to be processed consists of two waste streams: legacy waste which is currently stored in E-Area Vaults of SRS and new waste generated from continuing operations. The proposed action is to construct, operate, and D&D a facility to process low-activity job-control and equipment waste for volume reduction. The LLW would be processed to make more efficient use of low-level waste disposal capacity (E-Area Vaults) or to meet the waste acceptance criteria for treatment at the Consolidated Incineration Facility (CIF) at SRS.

NONE

1998-01-01T23:59:59.000Z

203

Savannah River Site Salt Waste Processing Facility Technology Readiness Assessment Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Salt Waste Processing Facility Salt Waste Processing Facility Technology Readiness Assessment Report Kurt D. Gerdes Harry D. Harmon Herbert G. Sutter Major C. Thompson John R. Shultz Sahid C. Smith July 13, 2009 Prepared by the U.S. Department of Energy Washington, D.C. SRS Salt Waste Processing Facility Technology Readiness Assessment July 13, 2009 ii This page intentionally left blank SRS Salt Waste Processing Facility Technology Readiness Assessment July 13, 2009 iii SRS Salt Waste Processing Facility Technology Readiness Assessment July 13, 2009 iii Signatures SRS Salt Waste Processing Facility Technology Readiness Assessment July 13, 2009 iv This page intentionally left blank SRS Salt Waste Processing Facility

204

Hazardous Waste/Mixed Waste Treatment Building Safety Information Document (SID)  

SciTech Connect

This Safety Information Document (SID) provides a description and analysis of operations for the Hazardous Waste/Mixed Waste Disposal Facility Treatment Building (the Treatment Building). The Treatment Building has been classified as a moderate hazard facility, and the level of analysis performed and the methodology used are based on that classification. Preliminary design of the Treatment Building has identified the need for two separate buildings for waste treatment processes. The term Treatment Building applies to all these facilities. The evaluation of safety for the Treatment Building is accomplished in part by the identification of hazards associated with the facility and the analysis of the facility`s response to postulated events involving those hazards. The events are analyzed in terms of the facility features that minimize the causes of such events, the quantitative determination of the consequences, and the ability of the facility to cope with each event should it occur. The SID presents the methodology, assumptions, and results of the systematic evaluation of hazards associated with operation of the Treatment Building. The SID also addresses the spectrum of postulated credible events, involving those hazards, that could occur. Facility features important to safety are identified and discussed in the SID. The SID identifies hazards and reports the analysis of the spectrum of credible postulated events that can result in the following consequences: Personnel exposure to radiation; Radioactive material release to the environment; Personnel exposure to hazardous chemicals; Hazardous chemical release to the environment; Events leading to an onsite/offsite fatality; and Significant damage to government property. The SID addresses the consequences to the onsite and offsite populations resulting from postulated credible events and the safety features in place to control and mitigate the consequences.

Fatell, L.B.; Woolsey, G.B.

1993-04-15T23:59:59.000Z

205

ADVANCED MIXED WASTE TREATMENT PROJECT (AMWTP)  

NLE Websites -- All DOE Office Websites (Extended Search)

ADVANCED MIXED WASTE TREATMENT PROJECT Idaho Treatment Group, LLC (ITG) Contract No. DE-EM0001467 You are here: DOE-ID Home > Contracts, Financial Assistance & Solicitations >...

206

Liquid waste certification plan 340 waste handling facility  

Science Conference Proceedings (OSTI)

This document addresses the discharges from the 340 Facility to the 300 Area Process Sewer and Retention Process Sewer.

HALGREN, D.L.

1999-04-21T23:59:59.000Z

207

The Defense Waste Processing Facility: Two Years of Radioactive Operation  

Science Conference Proceedings (OSTI)

The Defense Waste Processing Facility (DWPF) at the Savannah River Site in Aiken, SC is currently immobilizing high level radioactive sludge waste in borosilicate glass. The DWPF began vitrification of radioactive waste in May, 1996. Prior to that time, an extensive startup test program was completed with simulated waste. The DWPF is a first of its kind facility. The experience gained and data collected during the startup program and early years of operation can provide valuable information to other similar facilities. This experience involves many areas such as process enhancements, analytical improvements, glass pouring issues, and documentation/data collection and tracking. A summary of this experience and the results of the first two years of operation will be presented.

Marra, S.L. [Westinghouse Savannah River Company, AIKEN, SC (United States); Gee, J.T.; Sproull, J.F.

1998-05-01T23:59:59.000Z

208

Savannah River Site - Salt Waste Processing Facility Independent Technical Review  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SALT WASTE PROCESSING FACILITY SALT WASTE PROCESSING FACILITY INDEPENDENT TECHNICAL REVIEW November 22, 2006 Conducted by: Harry Harmon, Team Lead Civil/Structural Sub Team Facility Safety Sub Team Engineering Sub Team Peter Lowry, Lead James Langsted, Lead George Krauter, Lead Robert Kennedy Chuck Negin Art Etchells Les Youd Jerry Evatt Oliver Block Loring Wyllie Richard Stark Tim Adams Tom Anderson Todd LaPointe Stephen Gosselin Carl Costantino Norman Moreau Patrick Corcoran John Christian Ken Cooper Kari McDaniel _____________________________ Harry D. Harmon ITR Team Leader SPD-SWPF-217 SPD-SWPF-217: Salt Waste Processing Facility Independent Technical Review 11/22/2006 ACKNOWLEDGEMENT The ITR Team wishes to thank Shari Clifford of Pacific Northwest National Laboratory for

209

Advanced Off-Gas Control System Design For Radioactive And Mixed Waste Treatment  

SciTech Connect

Treatment of radioactive and mixed wastes is often required to destroy or immobilize hazardous constituents, reduce waste volume, and convert the waste to a form suitable for final disposal. These kinds of treatments usually evolve off-gas. Air emission regulations have become increasingly stringent in recent years. Mixed waste thermal treatment in the United States is now generally regulated under the Hazardous Waste Combustor (HWC) Maximum Achievable Control Technology (MACT) standards. These standards impose unprecedented requirements for operation, monitoring and control, and emissions control. Off-gas control technologies and system designs that were satisfactorily proven in mixed waste operation prior to the implementation of new regulatory standards are in some cases no longer suitable in new mixed waste treatment system designs. Some mixed waste treatment facilities have been shut down rather than have excessively restrictive feed rate limits or facility upgrades to comply with the new standards. New mixed waste treatment facilities in the U. S. are being designed to operate in compliance with the HWC MACT standards. Activities have been underway for the past 10 years at the INL and elsewhere to identify, develop, demonstrate, and design technologies for enabling HWC MACT compliance for mixed waste treatment facilities. Some specific off-gas control technologies and system designs have been identified and tested to show that even the stringent HWC MACT standards can be met, while minimizing treatment facility size and cost.

Nick Soelberg

2005-09-01T23:59:59.000Z

210

Radioactive and mixed waste management plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility  

SciTech Connect

This Radioactive and Mixed Waste Management Plan for the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory is written to meet the requirements for an annual report of radioactive and mixed waste management activities outlined in DOE Order 5820.2A. Radioactive and mixed waste management activities during FY 1994 listed here include principal regulatory and environmental issues and the degree to which planned activities were accomplished.

NONE

1995-01-01T23:59:59.000Z

211

Purex waste facility scope design -- 241-AX  

SciTech Connect

It is planned for the Purex plant to be the base load plant and therefore it will not be effected by small changes in production schedules. It is of utmost importance to have adequate waste storage capacities at Purex to handle all conceivable production demands and to permit flexibility in semi-permanent storage of self-boiling wastes without jeopardizing production schedules, and diminishing safety regulations, or reducing operability. The purpose of this report is to present the design scope and the fundamental requirements for a new Purex waste storage tank farm to be designated as 241-AX.

Stivers, H.W.

1956-06-20T23:59:59.000Z

212

Waste Treatment and Immobilation Plant HLW Waste Vitrification...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

compounds VSL Vitreous State Laboratory of the Catholic University of America WESP Wet Electrostatic Precipitator WGI Washington Group International WTP Waste Treatment and...

213

Preliminary siting activities for new waste handling facilities at the Idaho National Engineering Laboratory  

SciTech Connect

The Idaho Waste Processing Facility, the Mixed and Low-Level Waste Treatment Facility, and the Mixed and Low-Level Waste Disposal Facility are new waste treatment, storage, and disposal facilities that have been proposed at the Idaho National Engineering Laboratory (INEL). A prime consideration in planning for such facilities is the selection of a site. Since spring of 1992, waste management personnel at the INEL have been involved in activities directed to this end. These activities have resulted in the (a) identification of generic siting criteria, considered applicable to either treatment or disposal facilities for the purpose of preliminary site evaluations and comparisons, (b) selection of six candidate locations for siting,and (c) site-specific characterization of candidate sites relative to selected siting criteria. This report describes the information gathered in the above three categories for the six candidate sites. However, a single, preferred site has not yet been identified. Such a determination requires an overall, composite ranking of the candidate sites, which accounts for the fact that the sites under consideration have different advantages and disadvantages, that no single site is superior to all the others in all the siting criteria, and that the criteria should be assigned different weighing factors depending on whether a site is to host a treatment or a disposal facility. Stakeholder input should now be solicited to help guide the final selection. This input will include (a) siting issues not already identified in the siting, work to date, and (b) relative importances of the individual siting criteria. Final site selection will not be completed until stakeholder input (from the State of Idaho, regulatory agencies, the public, etc.) in the above areas has been obtained and a strategy has been developed to make a composite ranking of all candidate sites that accounts for all the siting criteria.

Taylor, D.D.; Hoskinson, R.L.; Kingsford, C.O.; Ball, L.W.

1994-09-01T23:59:59.000Z

214

Nuclear waste treatment program: Annual report for FY 1987  

SciTech Connect

Two of the US Department of Energy's (DOE) nuclear waste management-related goals are to ensure that waste management is not an obstacle to the further development of light-water reactors and the closure of the nuclear fuel cycle and to fulfill its institutional responsibility for providing safe storage and disposal of existing and future nuclear wastes. As part of its approach to achieving these goals, the Office of Remedial Action and Waste Technology of DOE established what is now called the Nuclear Waste Treatment Program (NWTP) at the Pacific Northwest Laboratory during the second half of FY 1982. To support DOE's attainment of its goals, the NWTP is to provide technology necessary for the design and operation of nuclear waste treatment facilities by commercial enterprises as part of a licensed waste management system and problem-specific treatment approaches, waste form and treatment process adaptations, equipment designs, and trouble-shooting assistance, as required to treat existing wastes. This annual report describes progress during FY 1987 towards meeting these two objectives. 24 refs., 59 figs., 24 tabs.

Brouns, R.A.; Powell, J.A. (comps.)

1988-09-01T23:59:59.000Z

215

RCRA Permit for a Hazardous Waste Management Facility Permit Number NEV HW0101 Annual Summary/Waste Minimization Report Calendar Year 2011  

SciTech Connect

This report summarizes the U.S. Environmental Protection Agency (EPA) identification number of each generator from which the Permittee received a waste stream; a description and quantity of each waste stream in tons and cubic feet received at the facility; the method of treatment, storage, and/or disposal for each waste stream; a description of the waste minimization efforts undertaken; a description of the changes in volume and toxicity of waste actually received; any unusual occurrences; and the results of tank integrity assessments. This Annual Summary/Waste Minimization Report is prepared in accordance with Section 2.13.3 of Permit Number NEV HW0101.

NSTec Environmental Restoration

2012-02-16T23:59:59.000Z

216

RCRA Permit for a Hazardous Waste Management Facility Permit Number NEV HW0101 Annual Summary/Waste Minimization Report Calendar Year 2012, Nevada National Security Site, Nevada  

SciTech Connect

This report summarizes the U.S. Environmental Protection Agency (EPA) identification number of each generator from which the Permittee received a waste stream, a description and quantity of each waste stream in tons and cubic feet received at the facility, the method of treatment, storage, and/or disposal for each waste stream, a description of the waste minimization efforts undertaken, a description of the changes in volume and toxicity of waste actually received, any unusual occurrences, and the results of tank integrity assessments. This Annual Summary/Waste Minimization Report is prepared in accordance with Section 2.13.3 of Permit Number NEV HW0101, issued 10/17/10.

,

2013-02-21T23:59:59.000Z

217

Mixed waste characterization, treatment & disposal focus area  

Science Conference Proceedings (OSTI)

The mission of the Mixed Waste Characterization, Treatment, and Disposal Focus Area (referred to as the Mixed Waste Focus Area or MWFA) is to provide treatment systems capable of treating DOE`s mixed waste in partnership with users, and with continual participation of stakeholders, tribal governments, and regulators. The MWFA deals with the problem of eliminating mixed waste from current and future storage in the DOE complex. Mixed waste is waste that contains both hazardous chemical components, subject to the requirements of the Resource Conservation and Recovery Act (RCRA), and radioactive components, subject to the requirements of the Atomic Energy Act. The radioactive components include transuranic (TRU) and low-level waste (LLW). TRU waste primarily comes from the reprocessing of spent fuel and the use of plutonium in the fabrication of nuclear weapons. LLW includes radioactive waste other than uranium mill tailings, TRU, and high-level waste, including spent fuel.

NONE

1996-08-01T23:59:59.000Z

218

DOE Chooses Idaho Treatment Group, LLC to Disposition Waste at...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chooses Idaho Treatment Group, LLC to Disposition Waste at the Advanced Mixed Waste Treatment Project: Contract will continue cleanup and waste operations at the Idaho Site DOE...

219

Low-level radioactive waste disposal facility closure  

Science Conference Proceedings (OSTI)

Part I of this report describes and evaluates potential impacts associated with changes in environmental conditions on a low-level radioactive waste disposal site over a long period of time. Ecological processes are discussed and baselines are established consistent with their potential for causing a significant impact to low-level radioactive waste facility. A variety of factors that might disrupt or act on long-term predictions are evaluated including biological, chemical, and physical phenomena of both natural and anthropogenic origin. These factors are then applied to six existing, yet very different, low-level radioactive waste sites. A summary and recommendations for future site characterization and monitoring activities is given for application to potential and existing sites. Part II of this report contains guidance on the design and implementation of a performance monitoring program for low-level radioactive waste disposal facilities. A monitoring programs is described that will assess whether engineered barriers surrounding the waste are effectively isolating the waste and will continue to isolate the waste by remaining structurally stable. Monitoring techniques and instruments are discussed relative to their ability to measure (a) parameters directly related to water movement though engineered barriers, (b) parameters directly related to the structural stability of engineered barriers, and (c) parameters that characterize external or internal conditions that may cause physical changes leading to enhanced water movement or compromises in stability. Data interpretation leading to decisions concerning facility closure is discussed. 120 refs., 12 figs., 17 tabs.

White, G.J.; Ferns, T.W.; Otis, M.D.; Marts, S.T.; DeHaan, M.S.; Schwaller, R.G.; White, G.J. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

1990-11-01T23:59:59.000Z

220

Hanford Tank Waste - Near Source Treatment of Low Activity Waste  

SciTech Connect

Treatment and disposition of Hanford Site waste as currently planned consists of I 00+ waste retrievals, waste delivery through up to 8+ miles of dedicated, in-ground piping, centralized mixing and blending operations- all leading to pre-treatment combination and separation processes followed by vitrification at the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The sequential nature of Tank Farm and WTP operations requires nominally 15-20 years of continuous operations before all waste can be retrieved from many Single Shell Tanks (SSTs). Also, the infrastructure necessary to mobilize and deliver the waste requires significant investment beyond that required for the WTP. Treating waste as closely as possible to individual tanks or groups- as allowed by the waste characteristics- is being investigated to determine the potential to 1) defer, reduce, and/or eliminate infrastructure requirements, and 2) significantly mitigate project risk by reducing the potential and impact of single point failures. The inventory of Hanford waste slated for processing and disposition as LAW is currently managed as high-level waste (HLW), i.e., the separation of fission products and other radionuclides has not commenced. A significant inventory ofthis waste (over 20M gallons) is in the form of precipitated saltcake maintained in single shell tanks, many of which are identified as potential leaking tanks. Retrieval and transport (as a liquid) must be staged within the waste feed delivery capability established by site infrastructure and WTP. Near Source treatment, if employed, would provide for the separation and stabilization processing necessary for waste located in remote farms (wherein most ofthe leaking tanks reside) significantly earlier than currently projected. Near Source treatment is intended to address the currently accepted site risk and also provides means to mitigate future issues likely to be faced over the coming decades. This paper describes the potential near source treatment and waste disposition options as well as the impact these options could have on reducing infrastructure requirements, project cost and mission schedule.

Ramsey, William Gene

2013-08-15T23:59:59.000Z

Note: This page contains sample records for the topic "waste treatment facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Hanford facility dangerous waste permit application, 616 Nonradioactive dangerous waste storage facility  

Science Conference Proceedings (OSTI)

This chapter provides information on the physical, chemical, and biological characteristics of the waste stored at the 616 NRDWSF. A waste analysis plan is included that describes the methodology used for determining waste types.

Price, S.M.

1997-04-30T23:59:59.000Z

222

Low-Level Waste Disposal Facility Federal Review Group Manual  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LEVEL WASTE DISPOSAL FACILITY FEDERAL REVIEW GROUP MANUAL REVISION 3 JUNE 2008 (This page intentionally left blank) Low-Level JVllsfe Disposal Fllcili~l' Federal Review Group il1allUlli Revision 3, June 200S Concurrence The Low-Level Waste Disposal Facility Federal Review Group Manual, Revision 3, is approved for use as of the most recent date below. Date Chair, Low-Level Waste Disposal Federal Review Group Andrew WalJo, 1II Deputy Director, Otlice of Nuclear Safety, Quality Assurance, and Environment Department of Energy OHlce of Health, Safety, and Security e C. WilJiams Associate Administrator for Infrastructure and Environment National Nuclear Security Administration Low-Level 'Vaste Disposal Facility Federal Review Group J1aJll/ai

223

Maintenance Guide for DOE Low-Level Waste Disposal Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 4 G Approved: XX-XX-XX IMPLEMENTATION GUIDE for use with DOE M 435.1-1 Maintenance Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Performance Assessments and Composite Analyses U.S. DEPARTMENT OF ENERGY DOE G 435.1-4 i (and ii) DRAFT XX-XX-XX LLW Maintenance Guide Revision 0, XX-XX-XX Maintenance Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Performance Assessments and Composite Analyses CONTENTS 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . .

224

WIPP Facility Work Plan for Solid Waste Management Units  

Science Conference Proceedings (OSTI)

This 2001 Facility Work Plan (FWP) has been prepared as required by Module VII, Section VII.M.1 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit, NM4890139088-TSDF (the Permit); (NMED, 1999a), and incorporates comments from the New Mexico Environment Department (NMED) received on December 6, 2000 (NMED, 2000a). This February 2001 FWP describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) specified in the Permit. The permittees are evaluating data from previous investigations of the SWMUs and AOCs against the newest guidance proposed by the NMED. Based on these data, the permittees expect that no further sampling will be required and that a request for No Further Action (NFA) at the SWMUs and AOCs will be submitted to the NMED. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a Facility to exit the schedule of compliance contained in the Facilitys Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can be entered either before or after an RFI Work Plan. According to the NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit.

Washington TRU Solutions LLC

2001-02-25T23:59:59.000Z

225

Mixed waste certification plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility. Revision 1  

SciTech Connect

The purpose of this plan is to describe the organization and methodology for the certification of mixed waste handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan is composed to meet the requirements found in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and follows the suggested outline provided by WHC in the letter of April 26, 1990, to Dr. R.H. Thomas, Occupational Health Division, LBL. Mixed waste is to be transferred to the WHC Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington.

1995-01-01T23:59:59.000Z

226

Waste Receiving and Processing Facility Module 2A: Advanced Conceptual Design Report. Volume 1  

Science Conference Proceedings (OSTI)

This ACDR was performed following completed of the Conceptual Design Report in July 1992; the work encompassed August 1992 to January 1994. Mission of the WRAP Module 2A facility is to receive, process, package, certify, and ship for permanent burial at the Hanford site disposal facilities the Category 1 and 3 contact handled low-level radioactive mixed wastes that are currently in retrievable storage at Hanford and are forecast to be generated over the next 30 years by Hanford, and waste to be shipped to Hanford from about DOE sites. This volume provides an introduction to the ACDR process and the scope of the task along with a project summary of the facility, treatment technologies, cost, and schedule. Major areas of departure from the CDR are highlighted. Descriptions of the facility layout and operations are included.

Not Available

1994-03-01T23:59:59.000Z

227

Water Discharge from Waste Treatment - TMS  

Science Conference Proceedings (OSTI)

Oct 29, 1996 ... TMS Logo. About the 1996 International Symposium on Extraction and Processing for the Treatment and Minimization of Wastes...

228

Independent Oversight Activity Report, Hanford Waste Treatment...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(VSL). Bechtel National, Inc. (BNI) is the contractor responsible for the design and construction of the Hanford Site Waste Treatment and Immobilization Plant (WTP) for the...

229

Hanford Waste Treatment and Immobilization Plant Construction...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

conducted an independent review of selected aspects of construction quality at the Hanford Waste Treatment and Immobilization Project (WTP). The review, which was performed May...

230

Hanford Waste Treatment Plant Construction Quality Review  

NLE Websites -- All DOE Office Websites (Extended Search)

ARPT-WTP-2011-002 Site: DOE Hanford Waste Treatment Plant Subject: Office of Independent Oversight's Office of Environment, Safety and Health Evaluations Activity Report for the...

231

Thermal Treatment of Solid Wastes Using the Electric Arc Furnace  

Science Conference Proceedings (OSTI)

A thermal waste treatment facility has been developed at the Albany Research Center (ARC) over the past seven years to process a wide range of heterogeneous mixed wastes, on a scale of 227 to 907 kg/h (500 to 2,000 lb/h). The current system includes a continuous feed system, a 3-phase AC, 0.8 MW graphite electrode arc furnace, and a dedicated air pollution control system (APCS) which includes a close-coupled thermal oxidizer, spray cooler, baghouse, and wet scrubber. The versatility of the complete system has been demonstrated during 5 continuous melting campaigns, ranging from 11 to 25 mt (12 to 28 st) of treated wastes per campaign, which were conducted on waste materials such as (a) municipal incinerator ash, (b) simulated low-level radioactive, high combustible-bearing mixed wastes, (c) simulated low-level radioactive liquid tank wastes, (d) heavy metal contaminated soils, and (e) organic-contaminated dredging spoils. In all cases, the glass or slag products readily passed the U.S. Environmental Protection Agency (EPA) Toxicity Characteristic Leachability Program (TCLP) test. Additional studies are currently under way on electric utility wastes, steel and aluminum industry wastes, as well as zinc smelter residues. Thermal treatment of these solid waste streams is intended to produce a metallic product along with nonhazardous glass or slag products.

O'Connor, W.K.; Turner, P.C.

1999-09-01T23:59:59.000Z

232

Hanford Site annual dangerous waste report: Volume 4, Waste Management Facility report, Radioactive mixed waste  

SciTech Connect

This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation and amount of waste.

NONE

1994-12-31T23:59:59.000Z

233

Technical Safety Requirements (TSR) for Waste Receiving & Processing (WRAP) facility  

SciTech Connect

These Technical Safety Requirements (TSRs) define the Administrative Controls required to ensure safe operation of the Waste Receiving and Processing Facility (WRAP). As will be shown in the report, Safety Limits, Limiting Control Settings, Limiting Conditions for Operation, and Surveillance Requirements are not required for safe operation of WRAP.

TOMASZEWSKI, T.A.

2001-07-10T23:59:59.000Z

234

MANAGEMENT, OPERATION, AND MAINTENANCE SYSTEMS FOR WASTE FACILITIES  

E-Print Network (OSTI)

MANAGEMENT, OPERATION, AND MAINTENANCE SYSTEMS FOR WASTE FACILITIES DONALD H. GRAHAM Operations. The discussion will focus on the management, operation, and maintenance systems nec essary to support long maintenance management pro gram (j) cost accounting and a record keeping system to provide timely, accurate

Columbia University

235

The mixed waste management facility, FY95 plan  

SciTech Connect

This document contains the Fiscal Year 1995 Plan for the Mixed Waste Management Facility (MWMF) at Lawrence Livermore National Laboratory. Major objectives to be completed during FY 1995 for the MWMF project are listed and described. This report also contains a budget plan, project task summaries, a milestone control log, and a responsibility assignment matrix for the MWMF project.

Streit, R.

1994-12-01T23:59:59.000Z

236

Hanford Waste Simulants Created to Support the Research and Development on the River Protection Project - Waste Treatment Plant  

Science Conference Proceedings (OSTI)

The development of nonradioactive waste simulants to support the River Protection Project - Waste Treatment Plant bench and pilot-scale testing is crucial to the design of the facility. The report documents the simulants development to support the SRTC programs and the strategies used to produce the simulants.

Eibling, R.E.

2001-07-26T23:59:59.000Z

237

Criticality safety considerations for low-level-waste facilities  

SciTech Connect

The nuclear criticality safety for handling and burial of certain special nuclear materials (SNM) at low-level-waste (LLW) facilities is licensed by the US Nuclear Regulatory Commission (NRC). Recently, Oak Ridge National Laboratory (ORNL) staff assisted the NRC Office of Nuclear Material Safety and Safeguards, Low-Level-Waste and Decommissioning Projects Branch, in developing technical specifications for the nuclear criticality safety of {sup 235}U and {sup 235}Pu in LLW facilities. This assistance resulted in a set of nuclear criticality safety criteria that can be uniformly applied to the review of LLW package burial facility license applications. These criteria were developed through the coupling of the historic surface-density criterion with current computational technique to establish safety criteria considering SNM material form and reflector influences. This paper presents a summary of the approach used to establish and to apply the criteria to the licensing review process.

Hopper, C.M.

1995-04-01T23:59:59.000Z

238

Joint Assessment of Renewable Energy and Water Desalination Research Center (REWDC) Program Capabilities and Facilities In Radioactive Waste Management  

SciTech Connect

The primary goal of this visit was to perform a joint assessment of the Renewable Energy and Water Desalination Center's (REWDC) program in radioactive waste management. The visit represented the fourth technical and scientific interaction with Libya under the DOE/NNSA Sister Laboratory Arrangement. Specific topics addressed during the visit focused on Action Sheet P-05-5, ''Radioactive Waste Management''. The Team, comprised of Mo Bissani (Team Lead), Robert Fischer, Scott Kidd, and Jim Merrigan, consulted with REWDC management and staff. The team collected information, discussed particulars of the technical collaboration and toured the Tajura facility. The tour included the waste treatment facility, waste storage/disposal facility, research reactor facility, hot cells and analytical labs. The assessment team conducted the first phase of Task A for Action Sheet 5, which involved a joint assessment of the Radioactive Waste Management Program. The assessment included review of the facilities dedicated to the management of radioactive waste at the Tourja site, the waste management practices, proposed projects for the facility and potential impacts on waste generation and management.

Bissani, M; Fischer, R; Kidd, S; Merrigan, J

2006-04-03T23:59:59.000Z

239

Characterization of decontamination and decommissioning wastes expected from the major processing facilities in the 200 Areas  

SciTech Connect

This study was intended to characterize and estimate the amounts of equipment and other materials that are candidates for removal and subsequent processing in a solid waste facility when the major processing and handling facilities in the 200 Areas of the Hanford Site are decontaminated and decommissioned. The facilities in this study were selected based on processing history and on the magnitude of the estimated decommissioning cost cited in the Surplus Facilities Program Plan; Fiscal Year 1993 (Winship and Hughes 1992). The facilities chosen for this study include B Plant (221-B), T Plant (221-T), U Plant (221-U), the Uranium Trioxide (UO{sub 3}) Plant (224-U and 224-UA), the Reduction Oxidation (REDOX) or S Plant (202-S), the Plutonium Concentration Facility for B Plant (224-B), and the Concentration Facility for the Plutonium Finishing Plant (PFP) and REDOX (233-S). This information is required to support planning activities for current and future solid waste treatment, storage, and disposal operations and facilities.

Amato, L.C.; Franklin, J.D.; Hyre, R.A.; Lowy, R.M.; Millar, J.S.; Pottmeyer, J.A. [Los Alamos Technical Associates, Kennewick, WA (United States); Duncan, D.R. [Westinghouse Hanford Co., Richland, WA (United States)

1994-08-01T23:59:59.000Z

240

Independent Oversight Review, Waste Treatment and Immobilization Plant- December 2012  

Energy.gov (U.S. Department of Energy (DOE))

Review of the Hanford Site Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity

Note: This page contains sample records for the topic "waste treatment facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Summary - WTP Analytical Lab, BOF and LAW Waste Vitrification Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wa Wa Schem DOE is Immob site's t facilitie Balanc Activity of this techno facilitie are su WTP d Readin The as along w Level ( * Tw 1. 2. The Ele Site: H roject: W Report Date: M ited States aste Trea Labo Why DOE matic of Laser Ab s constructing bilization Plant tank wastes. T es including an ces of Facilities y Waste (LAW assessment w ology elements es (LAB, BOF, fficiently matur design, which n ness Level of 6 What th ssessment team with each elem (TRL) for the L wo LAB system . Autosamplin Laser ablati AES/LA-ICP To view the full T http://www.em.doe. objective of a Tech ements (CTEs), usin Hanford/ORP Waste Treatme March 2007 Departmen atment a oratory, B E-EM Did This blation Analytical a Waste Treat (WTP) at Hanf The WTP is com n Analytical Lab s (BOF) operat ) Vitrification F was to identify t s (CTEs) in the

242

Format and Content Guide for DOE Low-Level Waste Disposal Facility Closure Plans  

Energy.gov (U.S. Department of Energy (DOE))

Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans

243

WIPP Remote Handled Waste Facility: Performance Dry Run Operations  

SciTech Connect

The Remote Handled (RH) TRU Waste Handling Facility at the Waste Isolation Pilot Plant (WIPP) was recently upgraded and modified in preparation for handling and disposal of RH Transuranic (TRU) waste. This modification will allow processing of RH-TRU waste arriving at the WIPP site in two different types of shielded road casks, the RH-TRU 72B and the CNS 10-160B. Washington TRU Solutions (WTS), the WIPP Management and Operation Contractor (MOC), conducted a performance dry run (PDR), beginning August 19, 2002 and successfully completed it on August 24, 2002. The PDR demonstrated that the RHTRU waste handling system works as designed and demonstrated the handling process for each cask, including underground disposal. The purpose of the PDR was to develop and implement a plan that would define in general terms how the WIPP RH-TRU waste handling process would be conducted and evaluated. The PDR demonstrated WIPP operations and support activities required to dispose of RH-TRU waste in the WIPP underground.

Burrington, T. P.; Britain, R. M.; Cassingham, S. T.

2003-02-24T23:59:59.000Z

244

The First Recovery Act Funded Waste Shipment depart from the...  

NLE Websites -- All DOE Office Websites (Extended Search)

The First Recovery Act Funded Waste Shipment departs from the Advanced Mixed Waste Treatment Facility A shipment of mixed low-level waste left DOEs Advanced Mixed Waste...

245

Summary - SRS Salt Waste Processing Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SRS Co SRS Co DOE S Proces concen actinid in a se remov adjustm sorben sorben solutio passed separa stream extract sufficie separa (with S vitrifica (DWP Sr/acti federa assure and ha Critica The te (CTE) descrip Readin The Ele Site: S roject: S F Report Date: J ited States Why DOE omposite High Lev Savannah Rive ssing Facility (S ntrate targeted des) from High eries of unit ope ved by contactin ment) with a m nt in a batch m nt (containing S on by cross flow d to a solvent e ated to an aque m. The bulk so tion process, w ently low levels ated high activi Sr and actinide ation in the Def F). Provisions inides adsorpti al project direct e that the plann ave been matu al Decision-3 ap What th eam identified e of the SWPF w ption. All CTE ness Level of 6 To view the full T http://www.em.doe. objective of a Tech ements (CTEs), usin

246

Advanced Mixed Waste Treatment Project, Design, Construction and Start-up  

Science Conference Proceedings (OSTI)

The Advanced Mixed Waste Treatment Project (AMWTP) was awarded to BNG America in December of 1996. In 2005, following discussions between the United States (US) Department of Energy (DOE) and the United Kingdom (UK) Department of Trade and Industry (DTi) the DOE purchased the facilities. DOE awarded Bechtel B and W Idaho (BBWI) a contract to operate the facilities for one year, commencing 1 May 2005. The hand-over of AMWTP included the facility to repackage and super-compact waste (Advanced Mixed Waste Treatment Facility) and the retrieval, characterization, storage and Transuranic Package Transporter (TRUPACT) loading facility. This poster updates the progress of AMWTP from the previous presentations to Waste Management (WM) [1 and 2] to completion of the transition to BBWI in May 2005. (authors)

Dobson, A. [BNG America, 2345 Stevens Drive Suite no. 240, Richland, WA 99354 (United States); Harrop, G.; Holmes, R.G.G. [BNG America, 1920 E. 17th Street Suite no. 200, Idaho Falls, ID 83404 (United States)

2006-07-01T23:59:59.000Z

247

Oak Ridge National Lebroatory Liquid&Gaseous Waste Treatment System Strategic Plan  

SciTech Connect

Excellence in Laboratory operations is one of the three key goals of the Oak Ridge National Laboratory (ORNL) Agenda. That goal will be met through comprehensive upgrades of facilities and operational approaches over the next few years. Many of ORNL's physical facilities, including the liquid and gaseous waste collection and treatment systems, are quite old, and are reaching the end of their safe operating life. The condition of research facilities and supporting infrastructure, including the waste handling facilities, is a key environmental, safety and health (ES&H) concern. The existing infrastructure will add considerably to the overhead costs of research due to increased maintenance and operating costs as these facilities continue to age. The Liquid Gaseous Waste Treatment System (LGWTS) Reengineering Project is a UT-Battelle, LLC (UT-B) Operations Improvement Program (OIP) project that was undertaken to develop a plan for upgrading the ORNL liquid and gaseous waste systems to support ORNL's research mission.

Van Hoesen, S.D.

2003-09-09T23:59:59.000Z

248

Preparation of Safety Basis Documents for Transuranic (TRU) Waste Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5506-2007 5506-2007 April 2007 DOE STANDARD Preparation of Safety Basis Documents for Transuranic (TRU) Waste Facilities U.S. Department of Energy Washington, D.C. 20585 AREA-SAFT DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-5506-2007 ii Available on the Department of Energy Technical Standards Program Web Site at Http://tis.eh.doe.gov/techstds/ DOE-STD-5506-2007 iii Foreword This Standard provides analytical assumptions and methods, as well as hazard controls to be used when developing Safety Basis (SB) documents for transuranic (TRU) waste facilities in the U.S. Department of Energy (DOE) Complex. It also provides supplemental technical

249

Environmental Management Waste Management Facility (EMWMF) at Oak Ridge  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independent Technical Review Report: Oak Ridge Reservation Independent Technical Review Report: Oak Ridge Reservation Review of the Environmental Management Waste Management Facility (EMWMF) at Oak Ridge By Craig H. Benson, PhD, PE; William H. Albright, PhD; David P. Ray, PE; and John Smegal Sponsored by: The Office of Engineering and Technology (EM-20) 1 February 2008 (v3.0) i TABLE OF CONTENTS 1. INTRODUCTION 1 2. OBJECTIVE AND SCOPE 2 3. LINE OF INQUIRY NO. 1 2 4. LINE OF INQUIRY NO. 2 4 4.1 Compaction Testing of Soil and Debris Mixtures 5 4.2 Final Cover Settlement 6 5. LINE OF INQUIRY NO. 3 7 6. SUMMARY OF RECOMMENDATIONS 8 7. ACKNOWLEDGEMENT 10 8. REFERENCES 10 FIGURES 12 1 1. INTRODUCTION The Environmental Management Waste Management Facility (EMWMF) is a land disposal

250

Waste immobilization demonstration program for the Hanford Site`s Mixed Waste Facility  

Science Conference Proceedings (OSTI)

This paper presents an overview of the Waste Receiving and Processing facility, Module 2A> waste immobilization demonstration program, focusing on the cooperation between Hanford Site, commercial, and international participants. Important highlights of the development and demonstration activities is discussed from the standpoint of findings that have had significant from the standpoint of findings that have had significant impact on the evolution of the facility design. A brief description of the future direction of the program is presented, with emphasis on the key aspects of the technologies that call for further detailed investigation.

Burbank, D.A.; Weingardt, K.M.

1994-05-01T23:59:59.000Z

251

WIPP Facility Work Plan for Solid Waste Management Units  

Science Conference Proceedings (OSTI)

This 2002 Facility Work Plan (FWP) has been prepared as required by Module VII, Permit Condition VII.U.3 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit, NM4890139088-TSDF (the Permit) (New Mexico Environment Department [NMED], 1999a), and incorporates comments from the NMED received on December 6, 2000 (NMED, 2000a). This February 2002 FWP describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMU) and Areas of Concern (AOC) specified in the Permit. The Permittees are evaluating data from previous investigations of the SWMUs and AOCs against the most recent guidance proposed by the NMED. Based on these data, and completion of the August 2001 sampling requested by the NMED, the Permittees expect that no further sampling will be required and that a request for No Further Action (NFA) at the SWMUs and AOCs will be submitted to the NMED. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a facility to exit the schedule of compliance contained in the facility's Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA processcan be entered either before or after an RFI Work Plan. According to the NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit. The NMED accepted that the Permittees are using the ACAA in a letter dated April 20, 2000.

Washington TRU Solutions LLC

2002-02-14T23:59:59.000Z

252

WIPP Facility Work Plan for Solid Waste Management Units  

Science Conference Proceedings (OSTI)

This Facility Work Plan (FWP) has been prepared as required by Module VII,Section VII.M.1 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Permit, NM4890139088-TSDF (the Permit); (NMED, 1999a). This work plan describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) specified in the Permit. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current New Mexico Environment Department (NMED) guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a Facility to exit the schedule of compliance contained in the Facilitys Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can be entered either before or after an RFI Work Plan. According to NMEDs guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit. The scope of work for the RFI Work Plan or SAP is being developed by the Permittees. The final content of the RFI Work Plan or SAP will be coordinated with the NMED for submittal on May 24, 2000. Specific project-related planning information will be included in the RFI Work Plan or SAP. The SWMU program at WIPP began in 1994 under U.S. Environmental Protection Agency (EPA) regulatory authority. NMED subsequently received regulatory authority from EPA. A Phase I RFI was completed at WIPP as part of a Voluntary Release Assessment (VRA). The risk-based decision criteria recommended by EPA for the VRA were contained in a proposed Corrective Action rule for SWMUs (EPA, 1990). EPA Region VI has issued new risk-based screening criteria applicable to the WIPP SWMUs and AOCs.

Washington TRU Solutions LLC

2000-02-25T23:59:59.000Z

253

International low level waste disposal practices and facilities  

SciTech Connect

The safe management of nuclear waste arising from nuclear activities is an issue of great importance for the protection of human health and the environment now and in the future. The primary goal of this report is to identify the current situation and practices being utilized across the globe to manage and store low and intermediate level radioactive waste. The countries included in this report were selected based on their nuclear power capabilities and involvement in the nuclear fuel cycle. This report highlights the nuclear waste management laws and regulations, current disposal practices, and future plans for facilities of the selected international nuclear countries. For each country presented, background information and the history of nuclear facilities are also summarized to frame the country's nuclear activities and set stage for the management practices employed. The production of nuclear energy, including all the steps in the nuclear fuel cycle, results in the generation of radioactive waste. However, radioactive waste may also be generated by other activities such as medical, laboratory, research institution, or industrial use of radioisotopes and sealed radiation sources, defense and weapons programs, and processing (mostly large scale) of mineral ores or other materials containing naturally occurring radionuclides. Radioactive waste also arises from intervention activities, which are necessary after accidents or to remediate areas affected by past practices. The radioactive waste generated arises in a wide range of physical, chemical, and radiological forms. It may be solid, liquid, or gaseous. Levels of activity concentration can vary from extremely high, such as levels associated with spent fuel and residues from fuel reprocessing, to very low, for instance those associated with radioisotope applications. Equally broad is the spectrum of half-lives of the radionuclides contained in the waste. These differences result in an equally wide variety of options for the management of radioactive waste. There is a variety of alternatives for processing waste and for short term or long term storage prior to disposal. Likewise, there are various alternatives currently in use across the globe for the safe disposal of waste, ranging from near surface to geological disposal, depending on the specific classification of the waste. At present, there appears to be a clear and unequivocal understanding that each country is ethically and legally responsible for its own wastes, in accordance with the provisions of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management. Therefore the default position is that all nuclear wastes will be disposed of in each of the 40 or so countries concerned with nuclear power generation or part of the fuel cycle. To illustrate the global distribution of radioactive waste now and in the near future, Table 1 provides the regional breakdown, based on the UN classification of the world in regions illustrated in Figure 1, of nuclear power reactors in operation and under construction worldwide. In summary, 31 countries operate 433 plants, with a total capacity of more than 365 gigawatts of electrical energy (GW[e]). A further 65 units, totaling nearly 63 GW(e), are under construction across 15 of these nations. In addition, 65 countries are expressing new interest in, considering, or actively planning for nuclear power to help address growing energy demands to fuel economic growth and development, climate change concerns, and volatile fossil fuel prices. Of these 65 new countries, 21 are in Asia and the Pacific region, 21 are from the Africa region, 12 are in Europe (mostly Eastern Europe), and 11 in Central and South America. However, 31 of these 65 are not currently planning to build reactors, and 17 of those 31 have grids of less than 5 GW, which is said to be too small to accommodate most of the reactor designs available. For the remaining 34 countries actively planning reactors, as of September 2010: 14 indicate a strong intention to precede w

Nutt, W.M. (Nuclear Engineering Division)

2011-12-19T23:59:59.000Z

254

Treatment of Wastes Containing Arsenic, Selenium and Mercury I  

Science Conference Proceedings (OSTI)

TMS Logo. About the 1996 International Symposium on Extraction and Processing for the Treatment and Minimization of Wastes: Treatment of Wastes...

255

Advanced Mixed Waste Treatment Project Achieves Impressive Safety...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Mixed Waste Treatment Project Achieves Impressive Safety and Production Marks Advanced Mixed Waste Treatment Project Achieves Impressive Safety and Production Marks June...

256

Independent Activity Report, Hanford Waste Treatment Plant - February 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Activity Report, Hanford Waste Treatment Plant - Activity Report, Hanford Waste Treatment Plant - February 2011 Independent Activity Report, Hanford Waste Treatment Plant - February 2011 February 2011 Hanford Waste Treatment Plant Construction Quality Assurance Review [ARPT-WTP-2011-002] The purpose of the visit was to perform a review of construction quality assurance at the Waste Treatment Plant (WTP) site activities concurrently with the Department of Energy (DOE) WTP staff. One focus area for this visit was piping and pipe support installations. Independent Activity Report, Hanford Waste Treatment Plant - February 2011 More Documents & Publications Independent Oversight Review, Waste Treatment and Immobilization Plant - August 2011 Independent Oversight Review, Waste Treatment and Immobilization Plant -

257

Independent Oversight Review, Hanford Waste Treatment and Immobilizati...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment and Immobilization Plant - December 2013 December 2013 Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality This report...

258

Independent Oversight Review, Hanford Site Waste Treatment and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment and Immobilization Plant, August 2013 Independent Oversight Review, Hanford Site Waste Treatment and Immobilization Plant, August 2013 August 2013 Review of the...

259

Review of the Hanford Site Waste Treatment and Immobilization...  

NLE Websites -- All DOE Office Websites (Extended Search)

WTP Waste Treatment and Immobilization Plant ii Independent Oversight Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality 1.0 PURPOSE The U....

260

Hanford Tank Waste Treatment and Immobilization Plan Project...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Tank Waste Treatment and Immobilization Plan Project PIA, Richland Operations Office Hanford Tank Waste Treatment and Immobilization Plan Project PIA, Richland Operations...

Note: This page contains sample records for the topic "waste treatment facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Review of the Hanford Site Waste Treatment and Immobilization...  

NLE Websites -- All DOE Office Websites (Extended Search)

WTP Waste Treatment and Immobilization Plant ii Independent Oversight Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality 1.0 PURPOSE The...

262

Review of the Hanford Site Waste Treatment and Immobilization...  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste Treatment and Immobilization Plant Project 1 Independent Oversight Review of the Hanford Site Waste Treatment and Immobilization Plant Project Construction Quality 1.0...

263

Chemical aspects of nuclear waste treatment  

SciTech Connect

The chemical aspects of the treatment of gaseous, liquid, and solid wastes are discussed in overview. The role of chemistry and the chemical reactions in waste treatment are emphasized. Waste treatment methods encompass the chemistry of radioactive elements from every group of the periodic table. In most streams, the radioactive elements are present in relatively low concentrations and are often associated with moderately large amounts of process reagents, or materials. In general, it is desirable that waste treatment methods are based on chemistry that is selective for the concentration of radionuclides and does not require the addition of reagents that contribute significantly to the volume of the treated waste. Solvent extraction, ion exchange, and sorbent chemistry play a major role in waste treatment because of the high selectivity provided for many radionuclides. This paper deals with the chemistry of the onsite treatment methods that is typically used at nuclear installations and is not concerned with the chemistry of the various alternative materials proposed for long-term storage of nuclear wastes. The chemical aspects are discussed from a generic point of view in which the chemistry of important radionuclides is emphasized.

Bond, W.D.

1980-01-01T23:59:59.000Z

264

Major Risk Factors Integrated Facility Disposition Project -...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(Treatment Alternatives For Process Wastewater at ORNL, ORNLCF-0603-R1, November 2007; HFIR and REDC Process Waste Drains and Waste Treatment Plant, ORNL Facilities Development...

265

Request for modification of 200 Area effluent treatment facility final delisting  

SciTech Connect

A Delisting Petition submitted to the U.S. Environmental Protection Agency in August 1993 addressed effluent to be generated at the 200 Area Effluent Treatment Facility from treating Hanford Facility waste streams. This Delisting Petition requested that 71.9 million liters per year of treated effluent, bearing the designation 'F001' through 'F005', and/or 'F039' that is derived from 'F001' through 'F005' waste, be delisted. On June 13, 1995, the U.S. Environmental Protection Agency published the final rule (Final Delisting), which formally excluded 71.9 million liters per year of 200 Area Effluent Treatment Facility effluent from ''being listed as hazardous wastes'' (60 FR 31115 now promulgated in 40 CFR 261). Given the limited scope, it is necessary to request a modification of the Final Delisting to address the management of a more diverse multi-source leachate (F039) at the 200 Area Effluent Treatment Facility. From past operations and current cleanup activities on the Hanford Facility, a considerable amount of both liquid and solid Resource Conservation and Recovery Act of 1976 regulated mixed waste has been and continues to be generated. Ultimately this waste will be treated as necessary to meet the Resource Conservation and Recovery Act Land Disposal Restrictions. The disposal of this waste will be in Resource Conservation and Recovery Act--compliant permitted lined trenches equipped with leachate collection systems. These operations will result in the generation of what is referred to as multi-source leachate. This newly generated waste will receive the listed waste designation of F039. This waste also must be managed in compliance with the provisions of the Resource Conservation and Recovery Act.

BOWMAN, R.C.

1998-11-19T23:59:59.000Z

266

Hazards assessment for the Waste Experimental Reduction Facility  

Science Conference Proceedings (OSTI)

This report documents the hazards assessment for the Waste Experimental Reduction Facility (WERF) located at the Idaho National Engineering Laboratory, which is operated by EG&G Idaho, Inc., for the US Department of Energy (DOE). The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. DOE Order 5500.3A requires that a facility-specific hazards assessment be performed to provide the technical basis for facility emergency planning efforts. This hazards assessment was conducted in accordance with DOE Headquarters and DOE Idaho Operations Office (DOE-ID) guidance to comply with DOE Order 5500.3A. The hazards assessment identifies and analyzes hazards that are significant enough to warrant consideration in a facility`s operational emergency management program. This hazards assessment describes the WERF, the area surrounding WERF, associated buildings and structures at WERF, and the processes performed at WERF. All radiological and nonradiological hazardous materials stored, used, or produced at WERF were identified and screened. Even though the screening process indicated that the hazardous materials could be screened from further analysis because the inventory of radiological and nonradiological hazardous materials were below the screening thresholds specified by DOE and DOE-ID guidance for DOE Order 5500.3A, the nonradiological hazardous materials were analyzed further because it was felt that the nonradiological hazardous material screening thresholds were too high.

Calley, M.B.; Jones, J.L. Jr.

1994-09-19T23:59:59.000Z

267

Savannah River Site - Salt Waste Processing Facility: Briefing on the Salt Waste Processing Facility Independent Technical Review  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Salt Waste Processing Facility Independent Technical Review Harry Harmon January 9, 2007 2 U.S. Department of Energy Outline * SWPF Process Overview * Major Risks * Approach for Conducting Review * Discussion of Findings * Conclusions 3 U.S. Department of Energy Salt Waste Processing Facility 4 U.S. Department of Energy SWPF Process Overview Alpha Finishing Process CSSX Alpha Strike Process MST/ Sludge Cs Strip Effluent DSS 5 U.S. Department of Energy BOTTOM LINE The SWPF Project is ready to move into final design. 6 U.S. Department of Energy Major Risks * Final geotechnical data potentially could result in redesign of the PC-3 CPA base mat and structure. * Cost and schedule impacts arising from the change from ISO-9001 to NQA-1 quality assurance requirements. * The "de-inventory, flush, and then hands-on

268

Defense Waste Processing Facility -- Radioactive operations -- Part 3 -- Remote operations  

SciTech Connect

The Savannah River Site`s Defense Waste Processing Facility (DWPF) near Aiken, South Carolina is the nation`s first and world`s largest vitrification facility. Following a ten year construction period and nearly three years of non-radioactive testing, the DWPF began radioactive operations in March 1996. Radioactive glass is poured from the joule heated melter into the stainless steel canisters. The canisters are then temporarily sealed, decontaminated, resistance welded for final closure, and transported to an interim storage facility. All of these operations are conducted remotely with equipment specially designed for these processes. This paper reviews canister processing during the first nine months of radioactive operations at DWPF. The fundamental design consideration for DWPF remote canister processing and handling equipment are discussed as well as interim canister storage.

Barnes, W.M.; Kerley, W.D.; Hughes, P.D.

1997-06-01T23:59:59.000Z

269

Waste Treatment and Immobilation Plant Pretreatment Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

pressure and vacuum optimum range to minimize air entrainment. - Validation of the TEMPEST CFD model of the PJMs using the data generated in the small tank. A mixing time...

270

Microsoft Word - FINAL 7-12-10 Site Visit Report - LANL Radioactive Liquid Waste Facility FCA.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site Visit Report Facility Centered Assessment of the Los Alamos National Laboratory Radioactive Liquid Waste Treatment Facility - June 2010 This site visit report documents the results of the Office of Health, Safety and Security's (HSS) review of the Facility Centered Assessment (FCA) of the Los Alamos National Laboratory (LANL) Radioactive Liquid Waste Treatment Facility (RLW). This review, conducted June 9-25, 2010, was sponsored by the U.S. Department of Energy (DOE) Los Alamos Site Office (LASO) and LANL, and conducted jointly by HSS, LASO, and LANL staff. The Office of Environment, Safety and Health Evaluations was the overall lead organization for evaluation of the FCA process with the participation of the LASO Facility Representative assigned to RLW.

271

Hanford Treatment Facility Achieves First Gold Ranking for Sustainable  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Treatment Facility Achieves First Gold Ranking for Treatment Facility Achieves First Gold Ranking for Sustainable Design in EM Complex: New groundwater treatment facility will be Hanford's largest, greenest pump-and-treat system Hanford Treatment Facility Achieves First Gold Ranking for Sustainable Design in EM Complex: New groundwater treatment facility will be Hanford's largest, greenest pump-and-treat system May 1, 2012 - 12:00pm Addthis Workers use a lift to access part of the 200 West Groundwater Treatment Facility. Workers use a lift to access part of the 200 West Groundwater Treatment Facility. Pump-and-treat construction managers David Fink (left) and Delise Pargmann (right) review information for the LEED gold certification of the main process building for the 200 West Groundwater Treatment Facility.

272

Drilling Waste Management Fact Sheet: Thermal Treatment  

NLE Websites -- All DOE Office Websites (Extended Search)

range from 75 to 150ton (Bansal and Sugiarto 1999). Many factors can impact treatment costs, including oil and moisture content of the waste, particle size distribution of the...

273

Independent Oversight Review, Waste Treatment and Immobilization...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2013 January 2013 Review of the Hanford Waste Treatment and Immobilization Plant Black-Cell and Hard-To-Reach Pipe Spools Procurement Process and the Office of River...

274

ENVIRONMENTAL ASSESSMENT FOR WASTE WATER TREATMENT MODIFICATIONS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WASTE WATER TREATMENT MODIFICATIONS WASTE WATER TREATMENT MODIFICATIONS FOR IMPROVED EFFLUENT COMPLIANCE BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK BROOKHAVEN SITE OFFICE JUNE 24, 2011 DOE/EA-1854 i Table of Contents 1.0 INTRODUCTION ............................................................................................................... 1 2.0 SUMMARY ........................................................................................................................ 1 3.0 PURPOSE AND NEED ....................................................................................................17 4.0 ALTERNATIVES ..............................................................................................................17 4.1 Alternative 1 - Groundwater Recharge System (Preferred Alternative) .............. 17

275

NORDIC WASTE WATER TREATMENT SLUDGE TREATMENT  

E-Print Network (OSTI)

biogas, electricity and fertilizer from 30 000 tons of annually waste. The plant was opened in March 2008 together it an- nually produces 18,9 GWh biogas and around 10 GWh of elec- tricity. The Cambi THP ­process

276

Hanford Site waste tank farm facilities design reconstitution program plan  

SciTech Connect

Throughout the commercial nuclear industry the lack of design reconstitution programs prior to the mid 1980`s has resulted in inadequate documentation to support operating facilities configuration changes or safety evaluations. As a result, many utilities have completed or have ongoing design reconstitution programs and have discovered that without sufficient pre-planning their program can be potentially very expensive and may result in end-products inconsistent with the facility needs or expectations. A design reconstitution program plan is developed here for the Hanford waste tank farms facility as a consequence of the DOE Standard on operational configuration management. This design reconstitution plan provides for the recovery or regeneration of design requirements and basis, the compilation of Design Information Summaries, and a methodology to disposition items open for regeneration that were discovered during the development of Design Information Summaries. Implementation of this plan will culminate in an end-product of about 30 Design Information Summary documents. These documents will be developed to identify tank farms facility design requirements and design bases and thereby capture the technical baselines of the facility. This plan identifies the methodology necessary to systematically recover documents that are sources of design input information, and to evaluate and disposition open items or regeneration items discovered during the development of the Design Information Summaries or during the verification and validation processes. These development activities will be governed and implemented by three procedures and a guide that are to be developed as an outgrowth of this plan.

Vollert, F.R.

1994-09-06T23:59:59.000Z

277

EIS-0287: Idaho High-Level Waste & Facilities Disposition | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7: Idaho High-Level Waste & Facilities Disposition 7: Idaho High-Level Waste & Facilities Disposition EIS-0287: Idaho High-Level Waste & Facilities Disposition SUMMARY This EIS analyzes the potential environmental consequences of alternatives for managing high-level waste (HLW) calcine, mixed transuranic waste/sodium bearing waste (SBW) and newly generated liquid waste at the Idaho National Engineering and Environmental Laboratory (INEEL) in liquid and solid forms. This EIS also analyzes alternatives for the final disposition of HLW management facilities at the INEEL after their missions are completed. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD January 12, 2010 EIS-0287: Amended Record of Decision Idaho High-Level Waste and Facilities Disposition January 4, 2010

278

EIS-0287: Idaho High-Level Waste and Facilities Disposition Final  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho High-Level Waste and Facilities Disposition Final Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement, EIS-0287 (September 2002) EIS-0287: Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement, EIS-0287 (September 2002) This EIS analyzes the potential environmental consequences of alternatives for managing high-level waste (HLW) calcine, mixed transuranic waste/sodium bearing waste (SBW) and newly generated liquid waste at the Idaho National Engineering and Environmental Laboratory (INEEL) in liquid and solid forms. This EIS also analyzes alternatives for the final disposition of HLW management facilities at the INEEL after their missions are completed. Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement, DOE/EIS-0287 (September 2002)

279

Summary - Salt Waste Processing Facility Design at the Savannah River Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Salt Waste Processing Facility Salt Waste Processing Facility ETR Report Date: November 2006 ETR-4 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Salt Waste Processing Facility Design at the Savannah River Site (SRS) Why DOE-EM Did This Review The Salt Waste Processing Facility (SWPF) is intended to remove and concentrate the radioactive strontium (Sr), actinides, and cesium (Cs) from the bulk salt waste solutions in the SRS high-level waste tanks. The sludge and strip effluent from the SWPF that contain concentrated Sr, actinide, and Cs wastes will be sent to the SRS Defense Waste Processing Facility (DWPF), where they will be vitrified. The decontaminated salt solution (DSS) that is left after removal of the highly

280

Hazardous Waste Management (Oklahoma) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

treatment and storage of such waste. It also mentions the availability of tax credits for waste facilities. Energy recovery from the destruction of a hazardous waste may be...

Note: This page contains sample records for the topic "waste treatment facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Incentives and the siting of radioactive waste facilities  

SciTech Connect

The importance of social and institutional issues in the siting of nuclear waste facilities has been recognized in recent years. Limited evidence from a survey of rural Wisconsin residents in 1980 indicates that incentives may help achieve the twin goals of increasing local support and decreasing local opposition to hosting nuclear waste facilities. Incentives are classified according to functional categories (i.e., mitigation, compensation, and reward) and the conditions which may be prerequisites to the use of incentives are outlined (i.e., guarantee of public health and safety, some measure of local control, and a legitimation of negotiations during siting). Criteria for evaluating the utility of incentives in nuclear waste repository siting are developed. Incentive packages may be more useful than single incentives, and nonmonetary incentives, such as independent monitoring and access to credible information, may be as important in eliciting support as monetary incentives. Without careful attention to prerequisites in the siting process it is not likely that incentives will facilitate the siting process.

Carnes, S.A.; Copenhaver, E.D.; Reed, J.H.; Soderstrom, E.J.; Sorensen, J.H.; Peelle, E.; Bjornstad, D.J.

1982-08-01T23:59:59.000Z

282

Research and Education Campus Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables  

Science Conference Proceedings (OSTI)

U.S. Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory Research and Education Campus facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool to develop the radioactive waste management basis.

L. Harvego; Brion Bennett

2011-11-01T23:59:59.000Z

283

Materials and Security Consolidation Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables  

Science Conference Proceedings (OSTI)

Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Security Consolidation Center facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

Not Listed

2011-09-01T23:59:59.000Z

284

Materials and Fuels Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables  

SciTech Connect

Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Fuels Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

Lisa Harvego; Brion Bennett

2011-09-01T23:59:59.000Z

285

New Facility Aids in Lab's Capability to Ship TRU Waste to WIPP |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facility Aids in Lab's Capability to Ship TRU Waste to WIPP Facility Aids in Lab's Capability to Ship TRU Waste to WIPP New Facility Aids in Lab's Capability to Ship TRU Waste to WIPP December 1, 2011 - 12:00pm Addthis Workers move standard waste boxes to the High-Energy Real Time Radiography facility. Workers move standard waste boxes to the High-Energy Real Time Radiography facility. A standard waste box enters the HE-RTR at Los Alamos National Laboratory. The facility x-rays waste drums that contain high-density items such as motors and pumps and larger containers known as standard waste boxes. A standard waste box enters the HE-RTR at Los Alamos National Laboratory. The facility x-rays waste drums that contain high-density items such as motors and pumps and larger containers known as standard waste boxes. Workers move standard waste boxes to the High-Energy Real Time Radiography facility.

286

RADIOACTIVE DEMONSTRATIONS OF FLUIDIZED BED STEAM REFORMING AS A SUPPLEMENTARY TREATMENT FOR HANFORD'S LOW ACTIVITY WASTE AND SECONDARY WASTES  

SciTech Connect

The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP's LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as Cs-137, I-129, Tc-99, Cl, F, and SO4 that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap. The current waste disposal path for the WTP-SW is to recycle it to the supplemental LAW treatment to avoid a large steady state accumulation in the pretreatment-vitrification loop. Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750 C) continuous method by which LAW and/or WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the Savannah River National Laboratory (SRNL) to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. Radioactive testing commenced in 2010 with a demonstration of Hanford's WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of I-125/129 and Tc-99 to chemically resemble WTP-SW. Ninety six grams of radioactive product were made for testing. The second campaign commenced using SRS LAW chemically trimmed to look like Hanford's LAW. Six hundred grams of radioactive product were made for extensive testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing.

Jantzen, C.; Crawford, C.; Cozzi, A.; Bannochie, C.; Burket, P.; Daniel, G.

2011-02-24T23:59:59.000Z

287

Management plan -- Multi-Function Waste Tank Facility. Revision 1  

SciTech Connect

This Westinghouse Hanford Company (WHC) Multi-Function Waste Tank Facility (MWTF) Management Plan provides guidance for execution WHC MWTF Project activities related to design, procurement, construction, testing, and turnover. This Management Plan provides a discussion of organizational responsibilities, work planning, project management systems, quality assurance (QA), regulatory compliance, personnel qualifications and training, and testing and evaluations. Classified by the US Department of Energy (DOE) as a major systems acquisition (MSA), the MWTF mission is to provide a safe, cost-effective, and environmentally sound method for interim storage of Hanford Site high-level wastes. This Management Plan provides policy guidance and direction to the Project Office for execution of the project activities.

Fritz, R.L.

1995-01-11T23:59:59.000Z

288

Hanford ETR - Tank Waste Treatment and Immobilization Plant - Hanford Tank  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Tank Waste Treatment and Immobilization Plant - - Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - Estimate at Completion (Cost) Report Hanford ETR - Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - Estimate at Completion (Cost) Report This is a comprehensive review ofthe Hanford WTP estimate at completion - assessing the project scope, contract requirements, management execution plant, schedule, cost estimates, and risks. Hanford ETR - Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - Estimate at Completion (Cost) Report More Documents & Publications TBH-0042 - In the Matter of Curtis Hall

289

TREATMENT OF FISSION PRODUCT WASTE  

DOE Patents (OSTI)

A pyrogenic method of separating nuclear reactor waste solutions containing aluminum and fission products as buring petroleum coke in an underground retort, collecting the easily volatile gases resulting as the first fraction, he uminum chloride as the second fraction, permitting the coke bed to cool and ll contain all the longest lived radioactive fission products in greatly reduced volume.

Huff, J.B.

1959-07-28T23:59:59.000Z

290

Conceptual Evaluation for the Installation of Treatment Capability for Mixed Low Level Waste at the Nevada National Security Site  

SciTech Connect

National Security Technologies, LLC, initiated an evaluation of treatment technologies that they would manage and operate as part of the mixed low-level waste (MLLW) disposal facilities at the Nevada National Security Site (NNSS). The NNSS Disposal Facility has been receiving radioactive waste from the U.S. Department of Energy (DOE) complex since the 1960s, and since 2005 the NNSS Disposal Facility has been receiving radioactive and MLLW for disposal only. In accordance with the Resource Conservation and Recovery Act (RCRA), all mixed waste must meet land disposal restrictions (LDRs) prior to disposal. Compliance with LDRs is attained through treatment of the waste to mitigate the characteristics of the listed waste hazard. Presently, most generators utilize commercial capacity for waste treatment prior to shipment to the NNSS Disposal Facility. The objectives of this evaluation are to provide a conceptual study of waste treatment needs (i.e., demand), identify potential waste treatment technologies to meet demand, and analyze implementation considerations for initiating MLLW treatment capacity at the NNSS Disposal Facility. A review of DOE complex waste generation forecast data indicates that current and future Departmental demand for mixed waste treatment capacity will remain steady and strong. Analysis and screening of over 30 treatment technologies narrowed the field of treatment technologies to four: Macroencapsulation Stabilization/microencapsulation Sort and segregation Bench-scale mercury amalgamation The analysis of treatment technologies also considered existing permits, current the NNSS Disposal Facility infrastructure such as utilities and procedures, and past experiences such as green-light and red-light lessons learned. A schedule duration estimate has been developed for permitting, design, and construction of onsite treatment capability at the NNSS Disposal Facility. Treatment capability can be ready in 20 months.

NSTec Environmental Management

2010-11-24T23:59:59.000Z

291

US Department of Energy interim mixed waste inventory report: Waste streams, treatment capacities and technologies: Volume 4, Site specific---Ohio through South Carolina  

SciTech Connect

The Department of Energy (DOE) has prepared this report to provide an inventory of its mixed wastes and treatment capacities and technologies in response to Section 105(a) of the Federal Facility Compliance Act (FFCAct) of 1992 (Pub. L. No. 102-386). As required by the FFCAct-1992, this report provides site-specific information on DOE`s mixed waste streams and a general review of available and planned treatment facilities for mixed wastes at the following five Ohio facilities: Battelle Columbus Laboratories; Fernald Environmental Management Project; Mound Plant; Portsmouth Gaseous Diffusion Plant; and RMI, Titanium Company.

1993-04-01T23:59:59.000Z

292

THE TREATMENT OF LOW ACTIVITY AQUEOUS WASTES  

SciTech Connect

The equipment and treatment methods for processing low-activity aqueous wastes at the Latina nuclear power station are discussed. The effluent treatment plant serves two purposes: purification of cooling pond water and decontamination of aqueous wastes from such outlets as regenerant solutions, active laundry and change houses, decontamination center, coffin washing, and charge machine washing. The treatment process consists of chemical precipitation followed by filtration of the sludges thus produced. The process is then followed by ion exchange on a natural inorganic material such as vermiculite and evaporation. This process produces a decontamination factor of l0/sup 3/ to 10/ sup 4/. (N.W.R.)

Cartwright, A.C.

1962-01-01T23:59:59.000Z

293

Hazards assessment for the Hazardous Waste Storage Facility  

SciTech Connect

This report documents the hazards assessment for the Hazardous Waste Storage Facility (HWSF) located at the Idaho National Engineering Laboratory. The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. The hazards assessment identifies and analyzes hazards that are significant enough to warrant consideration in a facility`s operational emergency management program. The area surrounding HWSF, the buildings and structures at HWSF, and the processes used at HWSF are described in this report. All nonradiological hazardous materials at the HWSF were identified (radiological hazardous materials are not stored at HWSF) and screened against threshold quantities according to DOE Order 5500.3A guidance. Two of the identified hazardous materials exceeded their specified threshold quantity. This report discusses the potential release scenarios and consequences associated with an accidental release for each of the two identified hazardous materials, lead and mercury. Emergency considerations, such as emergency planning zones, emergency classes, protective actions, and emergency action levels, are also discussed based on the analysis of potential consequences. Evaluation of the potential consequences indicated that the highest emergency class for operational emergencies at the HWSF would be a Site Area Emergency.

Knudsen, J.K.; Calley, M.B.

1994-04-01T23:59:59.000Z

294

GRR/Section 18-ID-d - Solid Waste Management Facilities | Open Energy  

Open Energy Info (EERE)

8-ID-d - Solid Waste Management Facilities 8-ID-d - Solid Waste Management Facilities < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-ID-d - Solid Waste Management Facilities 18IDDSolidWasteManagementFacilities (2).pdf Click to View Fullscreen Contact Agencies Idaho Department of Environmental Quality Regulations & Policies IDAPA 58.01.06 Triggers None specified Click "Edit With Form" above to add content 18IDDSolidWasteManagementFacilities (2).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Idaho considers transfer stations, composting operations, incinerators and landfills solid waste management facilities. The state does not require a

295

GRR/Section 18-MT-b - Hazardous Waste Facility Permit | Open Energy  

Open Energy Info (EERE)

GRR/Section 18-MT-b - Hazardous Waste Facility Permit GRR/Section 18-MT-b - Hazardous Waste Facility Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-MT-b - Hazardous Waste Facility Permit 18MTBHazardousWasteFacilityPermit.pdf Click to View Fullscreen Contact Agencies Montana Department of Environmental Quality Regulations & Policies Montana Code Annotated Title 75, Chapter 10, Part 4 Administrative Rules of Montana Title 17, Chapter 53 40 CFR 260 through 40 CFR 270 40 CFR 124 Triggers None specified Click "Edit With Form" above to add content 18MTBHazardousWasteFacilityPermit.pdf 18MTBHazardousWasteFacilityPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

296

Hanford Waste Treatment Plant Sets Massive Protective Shield door in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment Plant Sets Massive Protective Shield door Waste Treatment Plant Sets Massive Protective Shield door in Pretreatment Facility Hanford Waste Treatment Plant Sets Massive Protective Shield door in Pretreatment Facility January 12, 2011 - 12:00pm Addthis The carbon steel doors come together to form an upside-down L-shape. The 102-ton door was set on top of the 85-ton door that was installed at the end of December. The carbon steel doors come together to form an upside-down L-shape. The 102-ton door was set on top of the 85-ton door that was installed at the end of December. The 102-ton shield door measures 52 feet wide and 15 feet tall The 102-ton shield door measures 52 feet wide and 15 feet tall The carbon steel doors come together to form an upside-down L-shape. The 102-ton door was set on top of the 85-ton door that was installed at the end of December.

297

FINAL DETERMINATION, CLASS 2 MODIFICATION REQUEST WIPP HAZARDOUS WASTE FACILITY PERMIT  

E-Print Network (OSTI)

Dear Dr. Moody and Mr. Sharif: The New Mexico Environment Department (NMED) hereby approves with changes the permit modification request (PMR) to the WIPP Hazardous Waste Facility Permit as submitted to the Hazardous Waste Bureau in the following document:

Bill Richardson; Diane Denish; Ron Curry; Sarah Cottrell; David Moody Manager; Farok Sharif

2010-01-01T23:59:59.000Z

298

Assessment of Facilities, Materials, and Wastes Proposed for Transfer to EM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facilities, Materials, and Wastes Proposed for Facilities, Materials, and Wastes Proposed for Transfer to EM Assessment of Facilities, Materials, and Wastes Proposed for Transfer to EM In December 2007 the Assistant Secretary for Environmental Management (EM-1) invited the DOE Program Secretarial Offices (PSOs) of Nuclear Energy (NE), Science (SC), and the National Nuclear Security Administration (NNSA) to propose facilities and legacy waste for transfer to Environmental Management (EM) for final disposition or deactivation and decommissioning (D&D). Assessment of Facilities, Materials, and Wastes Proposed for Transfer to EM More Documents & Publications Assessment of the Integrated Facility Disposition Project at Oak Ridge National Laboratory & Y-12 for Transfer of Facilities & Materials to EM

299

Sludge treatment facility preliminary siting study for the sludge treatment project (A-13B)  

SciTech Connect

This study evaluates various sites in the 100 K area and 200 areas of Hanford for locating a treatment facility for sludge from the K Basins. Both existing facilities and a new standalone facility were evaluated. A standalone facility adjacent to the AW Tank Farm in the 200 East area of Hanford is recommended as the best location for a sludge treatment facility.

WESTRA, A.G.

1999-06-24T23:59:59.000Z

300

Closure End States for Facilities, Waste Sites, and Subsurface Contamination  

Science Conference Proceedings (OSTI)

The United States (U.S.) Department of Energy (DOE) manages the largest groundwater and soil cleanup effort in the world. DOEs Office of Environmental Management (EM) has made significant progress in its restoration efforts at sites such as Fernald and Rocky Flats. However, remaining sites, such as Savannah River Site, Oak Ridge Site, Hanford Site, Los Alamos, Paducah Gaseous Diffusion Plant, Portsmouth Gaseous Diffusion Plant, and West Valley Demonstration Project possess the most complex challenges ever encountered by the technical community and represent a challenge that will face DOE for the next decade. Closure of the remaining 18 sites in the DOE EM Program requires remediation of 75 million cubic yards of contaminated soil and 1.7 trillion gallons of contaminated groundwater, deactivation & decommissioning (D&D) of over 3000 contaminated facilities and thousands of miles of contaminated piping, removal and disposition of millions of cubic yards of legacy materials, treatment of millions of gallons of high level tank waste and disposition of hundreds of contaminated tanks. The financial obligation required to remediate this volume of contaminated environment is estimated to cost more than 7% of the to-go life-cycle cost. Critical in meeting this goal within the current life-cycle cost projections is defining technically achievable end states that formally acknowledge that remedial goals will not be achieved for a long time and that residual contamination will be managed in the interim in ways that are protective of human health and environment. Formally acknowledging the long timeframe needed for remediation can be a basis for establishing common expectations for remedy performance, thereby minimizing the risk of re-evaluating the selected remedy at a later time. Once the expectations for long-term management are in place, remedial efforts can be directed towards near-term objectives (e.g., reducing the risk of exposure to residual contamination) instead of focusing on long-term cleanup requirements. An acknowledgement of the long timeframe for complete restoration and the need for long-term management can also help a site transition from the process of pilot testing different remedial strategies to selecting a final remedy and establishing a long-term management and monitoring approach. This approach has led to cost savings and the more efficient use of resources across the Department of Defense complex and at numerous industrial sites across the U.S. Defensible end states provide numerous benefits for the DOE environmental remediation programs including cost-effective, sustainable long-term monitoring strategies, remediation and site transition decision support, and long-term management of closure sites.

Gerdes, Kurt D.; Chamberlain, Grover S.; Wellman, Dawn M.; Deeb, Rula A.; Hawley, Elizabeth L.; Whitehurst, Latrincy; Marble, Justin

2012-11-21T23:59:59.000Z

Note: This page contains sample records for the topic "waste treatment facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Independent Activity Report, Waste Treatment and Immobilization Plant- March 2013  

Energy.gov (U.S. Department of Energy (DOE))

Follow-up of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity Review [HIAR-WTP-2013-03-18

302

Activity Report for Waste Treatment and Immobilizationi Plant...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Waste Treatment and Immobilization Plant Low Activity Waste Melter Off-gas Process...

303

Audit Report Waste Treatment Plans at the Idaho National Engineering...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Reduction Plans for the Advanced Mixed Waste TreatmentProject at the Idaho National Engineering and EnvironmentalLaboratory, IG-0611 Energy.gov Careers & Internships Hotline...

305

Format and Content Guide for DOE Low-Level Waste Disposal Facility  

Energy.gov (U.S. Department of Energy (DOE))

Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Performance Assessments and Composite Analyses

306

Proposed On-Site Waste Disposal Facility (OSWDF) at the Portsmouth...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2008 ETR-12 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Proposed On-Site Waste Disposal Facility (OSWDF)...

307

GRR/Elements/18-CA-a.12 - Does the Facility Discharge Waste Water...  

Open Energy Info (EERE)

2 - Does the Facility Discharge Waste Water to Wells by Injection < GRR | Elements Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap...

308

Energy-Efficient Industrial Waste Treatment Technologies  

Science Conference Proceedings (OSTI)

Rising energy costs coupled with the continuing need for effective environmental treatment methods have stimulated interest in advanced energy-efficient technologies. EPRI has reviewed a wide variety of electricity-based processes for industrial air pollution control, wastewater treatment, and solid waste treatment along with some closely related competing technologies. These technologies ranged from untested concepts to well-established ones. While most offer process cost savings and improvements over e...

2007-10-31T23:59:59.000Z

309

Hanford Waste Treatment Plant Construction Quality Review  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ARPT-WTP-2011-002 ARPT-WTP-2011-002 Site: DOE Hanford Waste Treatment Plant Subject: Office of Independent Oversight's Office of Environment, Safety and Health Evaluations Activity Report for the Hanford Waste Treatment Plant Construction Quality Review Dates of Activity 02/14/2011 - 02/17/2011 Report Preparer Joseph Lenahan Activity Description/Purpose: The purpose of the visit was to perform a review of construction quality assurance at the Waste Treatment Plant (WTP) site activities concurrently with the Department of Energy (DOE) WTP staff. One focus area for this visit was piping and pipe support installations. The Office of Health, Safety and Security (HSS) attended several Bechtel National Incorporated (BNI) project meetings, reviewed the WTP project quality assurance program, reviewed DOE-WTP inspection reports completed by the DOE-WTP

310

WASTE TREATMENT BUILDING VENTILATION SYSTEM DESCRIPTION DOCUMENT  

SciTech Connect

The Waste Treatment Building Ventilation System provides heating, ventilation, and air conditioning (HVAC) for the contaminated, potentially contaminated, and uncontaminated areas of the Monitored Geologic Repository's (MGR) Waste Treatment Building (WTB). In the uncontaminated areas, the non-confinement area ventilation system maintains the proper environmental conditions for equipment operation and personnel comfort. In the contaminated and potentially contaminated areas, in addition to maintaining the proper environmental conditions for personnel comfort and equipment operation, the contamination confinement area ventilation system directs potentially contaminated air away from personnel in the WTB and confines the contamination within high-efficiency particulate air (HEPA) filtration units. The contamination confinement area ventilation system creates airflow paths and pressure zones to minimize the potential for spreading contamination with the building. The contamination confinement ventilation system also protects the environment and the public by limiting airborne releases of radioactive or other hazardous contaminants from the WTB. The Waste Treatment Building Ventilation System confines the radioactive and hazardous material within the building such that the release rates comply with regulatory limits, The system design, operations, and maintenance activities incorporate ALARA (as low as is reasonably achievable) principles to maintain personnel radiation doses to all occupational workers below regulatory limits and as low as is reasonably achievable. The system provides status of important system parameters and equipment operation, and provides audible and/or visual indication of off-normal conditions and equipment failures. The Waste Treatment Building Ventilation System interfaces with the Waste Treatment Building System by being located in the WTB, and by maintaining specific pressure, temperature, and humidity environments within the building. The system also depends on the WTB for normal electric power supply and the required supply of water for heating, cooling, and humidification. Interface with the Waste Treatment Building System includes the WTB fire protection subsystem for detection of fire and smoke. The Waste Treatment Building Ventilation System interfaces with the Site Radiological Monitoring System for continuous monitoring of the exhaust air and key areas within the WTB, the Monitored Geologic Repository Operations Monitoring and Control System for monitoring and control of system operations, and the Site Generated Radiological Waste Handling System and Site Generated Hazardous, Non-Hazardous & Sanitary Waste Disposal System for routing of pretreated toxic, corrosive, and radiologically contaminated effluent from process equipment to the HEPA filter exhaust ductwork and air-cleaning unit.

P.A. Kumar

2000-06-22T23:59:59.000Z

311

BLENDING ANALYSIS FOR RADIOACTIVE SALT WASTE PROCESSING FACILITY  

SciTech Connect

Savannah River National Laboratory (SRNL) evaluated methods to mix and blend the contents of the blend tanks to ensure the contents are properly blended before they are transferred from the blend tank such as Tank 21 and Tank 24 to the Salt Waste Processing Facility (SWPF) feed tank. The tank contents consist of three forms: dissolved salt solution, other waste salt solutions, and sludge containing settled solids. This paper focuses on developing the computational model and estimating the operation time of submersible slurry pump when the tank contents are adequately blended prior to their transfer to the SWPF facility. A three-dimensional computational fluid dynamics approach was taken by using the full scale configuration of SRS Type-IV tank, Tank 21H. Major solid obstructions such as the tank wall boundary, the transfer pump column, and three slurry pump housings including one active and two inactive pumps were included in the mixing performance model. Basic flow pattern results predicted by the computational model were benchmarked against the SRNL test results and literature data. Tank 21 is a waste tank that is used to prepare batches of salt feed for SWPF. The salt feed must be a homogeneous solution satisfying the acceptance criterion of the solids entrainment during transfer operation. The work scope described here consists of two modeling areas. They are the steady state flow pattern calculations before the addition of acid solution for tank blending operation and the transient mixing analysis during miscible liquid blending operation. The transient blending calculations were performed by using the 95% homogeneity criterion for the entire liquid domain of the tank. The initial conditions for the entire modeling domain were based on the steady-state flow pattern results with zero second phase concentration. The performance model was also benchmarked against the SRNL test results and literature data.

Lee, S.

2012-05-10T23:59:59.000Z

312

Interim report: Waste management facilities cost information for mixed low-level waste  

SciTech Connect

This report contains preconceptual designs and planning level life-cycle cost estimates for treating alpha and nonalpha mixed low-level radioactive waste. This report contains information on twenty-seven treatment, storage, and disposal modules that can be integrated to develop total life cycle costs for various waste management options. A procedure to guide the US Department of Energy and its contractor personnel in the use of estimating data is also summarized in this report.

Feizollahi, F.; Shropshire, D.

1994-03-01T23:59:59.000Z

313

Waste Management Facilities cost information for mixed low-level waste. Revision 1  

Science Conference Proceedings (OSTI)

This report contains preconceptual designs and planning level life-cycle cost estimates for managing mixed low-level waste. The report`s information on treatment, storage, and disposal modules can be integrated to develop total life-cycle costs for various waste management options. A procedure to guide the US Department of Energy and its contractor personnel in the use of cost estimation data is also summarized in this report.

Shropshire, D.; Sherick, M.; Biadgi, C.

1995-06-01T23:59:59.000Z

314

Accident Fault Trees for Defense Waste Processing Facility  

Science Conference Proceedings (OSTI)

The purpose of this report is to document fault tree analyses which have been completed for the Defense Waste Processing Facility (DWPF) safety analysis. Logic models for equipment failures and human error combinations that could lead to flammable gas explosions in various process tanks, or failure of critical support systems were developed for internal initiating events and for earthquakes. These fault trees provide frequency estimates for support systems failures and accidents that could lead to radioactive and hazardous chemical releases both on-site and off-site. Top event frequency results from these fault trees will be used in further APET analyses to calculate accident risk associated with DWPF facility operations. This report lists and explains important underlying assumptions, provides references for failure data sources, and briefly describes the fault tree method used. Specific commitments from DWPF to provide new procedural/administrative controls or system design changes are listed in the ''Facility Commitments'' section. The purpose of the ''Assumptions'' section is to clarify the basis for fault tree modeling, and is not necessarily a list of items required to be protected by Technical Safety Requirements (TSRs).

Sarrack, A.G.

1999-06-22T23:59:59.000Z

315

Waste Encapsulation and Storage Facility mission analysis report  

Science Conference Proceedings (OSTI)

This report defines the mission for the Waste Encapsulation and Storage Facility (WESF). It contains summary information regarding the mission analysis which was performed by holding workshops attended by relevant persons involved in the WESF operations. The scope of the WESF mission is to provide storage of Cesium (Cs) and Strontium (Sr) capsules, previously produced at WESF, until every capsule has been removed from the facility either to another storage location, for disposal or for beneficial use by public or private enterprises. Since the disposition of the capsules has not yet been determined, they may be stored at WESF for many years, even decades. The current condition of the WESF facility must be upgraded and maintained to provide for storage which is safe, cost effective, and fully compliant with DOE direction as well as federal, state, and local laws and regulations. The Cs capsules produced at WESF were originally released to private enterprises for uses such as the sterilization of medical equipment; but because of the leakage of one capsule, all are being returned. The systems, subsystems, and equipment not required for the storage mission will be available for use by other projects or private enterprises. Beyond the storage of the Cs and Sr capsules, no future mission for the WESF has been identified.

Lund, D.P.

1995-05-24T23:59:59.000Z

316

Medical waste treatment and decontamination system  

DOE Patents (OSTI)

The invention discloses a tandem microwave system consisting of a primary chamber in which hybrid microwave energy is used for the controlled combustion of materials. A second chamber is used to further treat the off-gases from the primary chamber by passage through a susceptor matrix subjected to additional hybrid microwave energy. The direct microwave radiation and elevated temperatures provide for significant reductions in the qualitative and quantitative emissions of the treated off gases. The tandem microwave system can be utilized for disinfecting wastes, sterilizing materials, and/or modifying the form of wastes to solidify organic or inorganic materials. The simple design allows on-site treatment of waste by small volume waste generators.

Wicks, George G. (Aiken, SC); Schulz, Rebecca L. (Aiken, SC); Clark, David E. (Gainesville, FL)

2001-01-01T23:59:59.000Z

317

Treatment of Radioactive Reactive Mixed Waste  

Science Conference Proceedings (OSTI)

PacificEcoSolutions, Inc. (PEcoS) has installed a plasma gasification system that was recently modified and used to destroy a trimethyl-aluminum mixed waste stream from Los Alamos National Laboratory (LANL.) The unique challenge in handling reactive wastes like trimethyl-aluminum is their propensity to flame instantly on contact with air and to react violently with water. To safely address this issue, PacificEcoSolutions has developed a new feed system to ensure the safe containment of these radioactive reactive wastes during transfer to the gasification unit. The plasma gasification system safely processed the radioactively contaminated trimethyl-metal compounds into metal oxides. The waste stream came from LANL research operations, and had been in storage for seven years, pending treatment options. (authors)

Colby, S.; Turner, Z.; Utley, D. [Pacific EcoSolutions, Inc., 2025 Battelle Boulevard, Richland, Washington 99354 (United States); Duy, C. [Los Alamos National Laboratory - LA-UR-05-8410, Post Office Box 1663 MS J595, Los Alamos, New Mexico 97545 (United States)

2006-07-01T23:59:59.000Z

318

IDAHO SITE TO PROVIDE WASTE TREATMENT FOR OTHER DOE SITES  

NLE Websites -- All DOE Office Websites (Extended Search)

March 7, 2008 IDAHO SITE TO PROVIDE WASTE TREATMENT FOR OTHER DOE SITES Plan won't impact DOE commitment to removing all stored waste from Idaho Site Idaho's Advanced Mixed Waste...

319

Summary - Environmental Management Waste Management Facility (EMWMF) at Oak Ridge, TN  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oak Ridge, TN Oak Ridge, TN EM Project: EM Waste Management Facility ETR Report Date: February 2008 ETR-11 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of Environmental Management Waste Management Facility (EMWMF) at Oak Ridge, TN Why DOE-EM Did This Review The Environmental Management Waste Management Facility (EMWMF) is a land disposal facility for wastes generated by environmental restoration activities being conducted at the US Department of Energy's (DOE) Oak Ridge Reservation. Low-level radioactive wastes, hazardous wastes (Subtitle C of the Resource Conservation and Recovery Act), and wastes defined by the Toxic Substances Control Act are approved for disposal in the EMWMF. All of the cells are lined with a

320

Department of Energy treatment capabilities for greater-than-Class C low-level radioactive waste  

SciTech Connect

This report provides brief profiles for 26 low-level and high-level waste treatment capabilities available at the Idaho National Engineering Laboratory (INEL), Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), Pacific Northwest Laboratory (PNL), Rocky Flats Plant (RFP), Savannah River Site (SRS), and West Valley Demonstration Plant (WVDP). Six of the treatments have potential use for greater-than-Class C low-level waste (GTCC LLW). They include: (a) the glass ceramic process and (b) the Waste Experimental Reduction Facility incinerator at INEL; (c) the Super Compaction and Repackaging Facility and (d) microwave melting solidification at RFP; (e) the vitrification plant at SRS; and (f) the vitrification plant at WVDP. No individual treatment has the capability to treat all GTCC LLW streams. It is recommended that complete physical and chemical characterizations be performed for each GTCC waste stream, to permit using multiple treatments for GTCC LLW.

Morrell, D.K.; Fischer, D.K.

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste treatment facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

EFFLUENT TREATMENT FACILITY PEROXIDE DESTRUCTION CATALYST TESTING  

SciTech Connect

The 200 Area Effluent Treatment Facility (ETF) main treatment train includes the peroxide destruction module (PDM) where the hydrogen peroxide residual from the upstream ultraviolet light/hydrogen peroxide oxidation unit is destroyed. Removal of the residual peroxide is necessary to protect downstream membranes from the strong oxidizer. The main component of the PDM is two reaction vessels utilizing granular activated carbon (GAC) as the reaction media. The PDM experienced a number of operability problems, including frequent plugging, and has not been utilized since the ETF changed to groundwater as the predominant feed. The unit seemed to be underperforming in regards to peroxide removal during the early periods of operation as well. It is anticipated that a functional PDM will be required for wastewater from the vitrification plant and other future streams. An alternate media or methodology needs to be identified to replace the GAC in the PDMs. This series of bench scale tests is to develop information to support an engineering study on the options for replacement of the existing GAC method for peroxide destruction at the ETF. A number of different catalysts will be compared as well as other potential methods such as strong reducing agents. The testing should lead to general conclusions on the viability of different catalysts and identify candidates for further study and evaluation.

HALGREN DL

2008-07-30T23:59:59.000Z

322

Treatment plan for aqueous/organic/decontamination wastes under the Oak Ridge Reservation FFCA Development, Demonstration, Testing, and Evaluation Program  

SciTech Connect

The U.S. Department of Energy (DOE) Oak Ridge Operations Office and the U.S. Environmental Protection Agency (EPA)-Region IV have entered into a Federal Facility Compliance Agreement (FFCA) which seeks to facilitate the treatment of low-level mixed wastes currently stored at the Oak Ridge Reservation (ORR) in violation of the Resource, Conservation and Recovery Act Land Disposal Restrictions. The FFCA establishes schedules for DOE to identify treatment for wastes, referred to as Appendix B wastes, that current have no identified or existing capacity for treatment. A development, demonstration, testing, and evaluation (DDT&E) program was established to provide the support necessary to identify treatment methods for mixed was meeting the Appendix B criteria. The Program has assembled project teams to address treatment development needs for major categories of the Appendix B wastes based on the waste characteristics and possible treatment technologies. The Aqueous, Organic, and Decontamination (A/O/D) project team was established to identify pretreatment options for aqueous and organic wastes which will render the waste acceptable for treatment in existing waste treatment facilities and to identify the processes to decontaminate heterogeneous debris waste. In addition, the project must also address the treatment of secondary waste generated by other DDT&E projects. This report details the activities to be performed under the A/O/D Project in support of the identification, selection, and evaluation of treatment processes. The goals of this plan are (1) to determine the major aqueous and organic waste streams requiring treatment, (2) to determine the treatment steps necessary to make the aqueous and organic waste acceptable for treatment in existing treatment facilities on the ORR or off-site, and (3) to determine the processes necessary to decontaminate heterogeneous wastes that are considered debris.

Backus, P.M.; Benson, C.E.; Gilbert, V.P.

1994-08-01T23:59:59.000Z

323

Zero-Release Mixed Waste Process Facility Design and Testing  

SciTech Connect

A zero-release offgas cleaning system for mixed-waste thermal treatment processes has been evaluated through experimental scoping tests and process modeling. The principles can possibly be adapted to a fluidized-bed calcination or stream reforming process, a waste melter, a rotarykiln process, and possibly other waste treatment thermal processes. The basic concept of a zero-release offgas cleaning system is to recycle the bulk of the offgas stream to the thermal treatment process. A slip stream is taken off the offgas recycle to separate and purge benign constituents that may build up in the gas, such as water vapor, argon, nitrogen, and CO2. Contaminants are separated from the slip stream and returned to the thermal unit for eventual destruction or incorporation into the waste immobilization media. In the current study, a standard packed-bed scrubber, followed by gas separation membranes, is proposed for removal of contaminants from the offgas recycle slipstream. The scrub solution is continuously regenerated by cooling and precipitating sulfate, nitrate, and other salts that reach a solubility limit in the scrub solution. Mercury is also separated by the scrubber. A miscible chemical oxidizing agent was shown to effectively oxidize mercury and also NO, thus increasing their removal efficiency. The current study indicates that the proposed process is a viable option for reducing offgas emissions. Consideration of the proposed closed-system offgas cleaning loop is warranted when emissions limits are stringent, or when a reduction in the total gas emissions volume is desired. Although the current closed-loop appears to be technically feasible, economical considerations must be also be evaluated on a case-by-case basis.

Richard D. Boardman; John A. Deldebbio; Robert J. Kirkham; Martin K. Clemens; Robert Geosits; Ping Wan

2004-02-01T23:59:59.000Z

324

Biological treatment of refinery wastes  

SciTech Connect

A detailed study of the treatment situation at a Thai refinery that used an API separator with no equalization tank, followed by an activated-sludge system, showed that only 42% of the total COD and 57% of the soluble COD was degradable. In a study of the possibility of additional treatments, an aerated lagoon showed promising results. The wastewater composition of the three main Thai refineries was surveyed.

Mahmud, Z.; Thanh, N.C.

1978-01-01T23:59:59.000Z

325

Summary - System Planning for Low-Activity Waste Treatment at Hanford  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Hanford EM Project: WTP ETR Report Date: November 2008 ETR-18 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of System Planning for Low-Activity Waste Treatment at Hanford Why DOE-EM Did This Review Construction of the facilities of the Hanford site's Waste Treatment Plant (WTP) are scheduled for completion in 2017, with radioactive waste processing scheduled to begin in 2019. An estimated 23 to 35 years will then be required to complete high-level waste (HLW) vitrification. However, vitrification of low-activity waste (LAW) may extend the WTP mission duration by decades more if supplemental LAW processing beyond the capacity of the present facility is not incorporated. The purpose of this independent review was to

326

A preliminary evaluation of alternatives for treatment of INEL Low-Level Waste and low-level mixed waste  

SciTech Connect

The Mixed and Low-Level Waste Treatment Facility (MLLWTF) project was established in 1991 by the US Department of Energy Idaho Field Office to provide treatment capabilities for Idaho National Engineering Laboratory (INEL) low-level mixed waste and low-level waste. This report identifies and evaluates the alternatives for treating that waste. Twelve treatment alternatives, ranging from ``no-action`` to constructing and operating the MLLWTF, are identified and evaluated. Evaluations include facility performance, environmental, safety, institutional, schedule, and rough order-of-magnitude cost comparisons. The performance of each alternative is evaluated against lists of ``musts`` and ``wants.`` Also included is a discussion of other key considerations for decision making. Analysis of results indicated further study is necessary to obtain the best estimate of future waste volumes and characteristics from the expanded INEL Decontamination and Decommissioning Program. It is also recommended that conceptual design begin as scheduled on the MLLWTF, maximum treatment alternative while re-evaluating the waste volume projections.

Smith, T.H.; Roesener, W.S.; Jorgensen-Waters, M.J.; Edinborough, C.R.

1992-06-01T23:59:59.000Z

327

New Groundwater Treatment Facility Begins Operation: Boost in Cleanup  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Groundwater Treatment Facility Begins Operation: Boost in New Groundwater Treatment Facility Begins Operation: Boost in Cleanup Accelerated by Recovery Act Funding New Groundwater Treatment Facility Begins Operation: Boost in Cleanup Accelerated by Recovery Act Funding January 19, 2011 - 12:00pm Addthis Media Contacts Andre Armstrong, CH2M HILL (509)376-6773 Andre_L_Armstrong@rl.gov Geoff Tyree, DOE (509) 376-4171 Geoffrey.Tyree@rl.doe.gov RICHLAND, WASH. - The U.S. Department of Energy (DOE) is boosting its capacity for treating groundwater to remove chromium near the Columbia River by 40 percent with the recent completion of a new treatment facility. Contractor CH2M HILL Plateau Remediation Company (CH2M HILL) finished building and started operating the new 100-DX groundwater treatment facility in December. The facility is located near the D and DR Reactors on

328

RADIOACTIVE DEMONSTRATION OF FINAL MINERALIZED WASTE FORMS FOR HANFORD WASTE TREATMENT PLANT SECONDARY WASTE BY FLUIDIZED BED STEAM REFORMING USING THE BENCH SCALE REFORMER PLATFORM  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as {sup 137}Cs, {sup 129}I, {sup 99}Tc, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW. FBSR offers a moderate temperature (700-750 C) continuous method by which WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage, but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the SRNL to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. BSR testing with WTP SW waste surrogates and associated analytical analyses and tests of granular products (GP) and monoliths began in the Fall of 2009, and then was continued from the Fall of 2010 through the Spring of 2011. Radioactive testing commenced in 2010 with a demonstration of Hanford's WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of {sup 125/129}I and {sup 99}Tc to chemically resemble WTP-SW. Prior to these radioactive feed tests, non-radioactive simulants were also processed. Ninety six grams of radioactive granular product were made for testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing.

Crawford, C.; Burket, P.; Cozzi, A.; Daniel, W.; Jantzen, C.; Missimer, D.

2012-02-02T23:59:59.000Z

329

Waste Heat Recovery from Refrigeration in a Meat Processing Facility  

E-Print Network (OSTI)

A case study is reviewed on a heat recovery system installed in a meat processing facility to preheat water for the plant hot water supply. The system utilizes waste superheat from the facility's 1,350-ton ammonia refrigeration system. The heat recovery system consists of a shell and tube heat exchanger (16"? x 14'0") installed in the compressor hot gas discharge line. Water is recirculated from a 23,000-gallon tempered water storage tank to the heat exchanger by a circulating pump at the rate of 100 gallons per minute. All make-up water to the plant hot water system is supplied from this tempered water storage tank, which is maintained at a constant filled level. Tests to determine the actual rate of heat recovery were conducted from October 3, 1979 to October 12, 1979, disclosing an average usage of 147,000 gallons of hot water daily. These tests illustrated a varied heat recovery of from 0.5 to 1.0 million BTU per hour. The deviations were the result of both changing refrigeration demands and compressor operating modes. An average of 16 million BTU per day was realized, resulting in reduced boiler fuel costs of $30,000 annually, based on the present $.80 per gallon #2 fuel oil price. At the total installed cost of $79,000, including test instrumentation, the project was found to be economically viable. The study has demonstrated the technical and economic feasibility of refrigeration waste heat recovery as a positive energy conservation strategy which has broad applications in industry and commerce.

Murphy, W. T.; Woods, B. E.; Gerdes, J. E.

1980-01-01T23:59:59.000Z

330

Transuranic (Tru) waste volume reduction operations at a plutonium facility  

SciTech Connect

Programmatic operations at the Los Alamos National Laboratory Plutonium Facility (TA 55) involve working with various amounts of plutonium and other highly toxic, alpha-emitting materials. The spread of radiological contamination on surfaces, airborne contamination, and excursions of contaminants into the operator's breathing zone are prevented through use of a variety of gloveboxes (the glovebox, coupled with an adequate negative pressure gradient, provides primary confinement). Size-reduction operations on glovebox equipment are a common activity when a process has been discontinued and the room is being modified to support a new customer. The Actin ide Processing Group at TA-55 uses one-meter-long glass columns to process plutonium. Disposal of used columns is a challenge, since they must be size-reduced to get them out of the glovebox. The task is a high-risk operation because the glass shards that are generated can puncture the bag-out bags, leather protectors, glovebox gloves, and the worker's skin when completing the task. One of the Lessons Learned from these operations is that Laboratory management should critically evaluate each hazard and provide more effective measures to prevent personnel injury. A bag made of puncture-resistant material was one of these enhanced controls. We have investigated the effectiveness of these bags and have found that they safely and effectively permit glass objects to be reduced to small pieces with a plastic or rubber mallet; the waste can then be easily poured into a container for removal from the glove box as non-compactable transuranic (TRU) waste. This size-reduction operation reduces solid TRU waste generation by almost 2% times. Replacing one-time-use bag-out bags with multiple-use glass crushing bags also contributes to reducing generated waste. In addition, significant costs from contamination, cleanup, and preparation of incident documentation are avoided. This effort contributes to the Los Alamos National Laboratory Continuous Improvement Program by improving the efficiency, cost-effectiveness, and formality of glovebox operations. In this report, the technical issues, associated with implementing this process improvement are addressed, the results discussed, effectiveness of Lessons Learned evaluated, and waste savings presented.

Cournoyer, Michael E [Los Alamos National Laboratory; Nixon, Archie E [Los Alamos National Laboratory; Dodge, Robert L [Los Alamos National Laboratory; Fife, Keith W [Los Alamos National Laboratory; Sandoval, Arnold M [Los Alamos National Laboratory; Garcia, Vincent E [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

331

Transuranic (Tru) waste volume reduction operations at a plutonium facility  

SciTech Connect

Programmatic operations at the Los Alamos National Laboratory Plutonium Facility (TA 55) involve working with various amounts of plutonium and other highly toxic, alpha-emitting materials. The spread of radiological contamination on surfaces, airborne contamination, and excursions of contaminants into the operator's breathing zone are prevented through use of a variety of gloveboxes (the glovebox, coupled with an adequate negative pressure gradient, provides primary confinement). Size-reduction operations on glovebox equipment are a common activity when a process has been discontinued and the room is being modified to support a new customer. The Actin ide Processing Group at TA-55 uses one-meter-long glass columns to process plutonium. Disposal of used columns is a challenge, since they must be size-reduced to get them out of the glovebox. The task is a high-risk operation because the glass shards that are generated can puncture the bag-out bags, leather protectors, glovebox gloves, and the worker's skin when completing the task. One of the Lessons Learned from these operations is that Laboratory management should critically evaluate each hazard and provide more effective measures to prevent personnel injury. A bag made of puncture-resistant material was one of these enhanced controls. We have investigated the effectiveness of these bags and have found that they safely and effectively permit glass objects to be reduced to small pieces with a plastic or rubber mallet; the waste can then be easily poured into a container for removal from the glove box as non-compactable transuranic (TRU) waste. This size-reduction operation reduces solid TRU waste generation by almost 2% times. Replacing one-time-use bag-out bags with multiple-use glass crushing bags also contributes to reducing generated waste. In addition, significant costs from contamination, cleanup, and preparation of incident documentation are avoided. This effort contributes to the Los Alamos National Laboratory Continuous Improvement Program by improving the efficiency, cost-effectiveness, and formality of glovebox operations. In this report, the technical issues, associated with implementing this process improvement are addressed, the results discussed, effectiveness of Lessons Learned evaluated, and waste savings presented.

Cournoyer, Michael E [Los Alamos National Laboratory; Nixon, Archie E [Los Alamos National Laboratory; Dodge, Robert L [Los Alamos National Laboratory; Fife, Keith W [Los Alamos National Laboratory; Sandoval, Arnold M [Los Alamos National Laboratory; Garcia, Vincent E [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

332

Preliminary Safety Design Report for Remote Handled Low-Level Waste Disposal Facility  

SciTech Connect

A new onsite, remote-handled low-level waste disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled low-level waste disposal for remote-handled low-level waste from the Idaho National Laboratory and for nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled low-level waste in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This preliminary safety design report supports the design of a proposed onsite remote-handled low-level waste disposal facility by providing an initial nuclear facility hazard categorization, by discussing site characteristics that impact accident analysis, by providing the facility and process information necessary to support the hazard analysis, by identifying and evaluating potential hazards for processes associated with onsite handling and disposal of remote-handled low-level waste, and by discussing the need for safety features that will become part of the facility design.

Timothy Solack; Carol Mason

2012-03-01T23:59:59.000Z

333

Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oversight Assessment of Oversight Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project May 2011 January 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Independent Oversight Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project

334

Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Oversight Assessment of Oversight Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project May 2011 January 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Independent Oversight Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project

335

ENVIRONMENTALLY SOUND DISPOSAL OF RADIOACTIVE MATERIALS AT A RCRA HAZARDOUS WASTE DISPOSAL FACILITY  

SciTech Connect

The use of hazardous waste disposal facilities permitted under the Resource Conservation and Recovery Act (''RCRA'') to dispose of low concentration and exempt radioactive materials is a cost-effective option for government and industry waste generators. The hazardous and PCB waste disposal facility operated by US Ecology Idaho, Inc. near Grand View, Idaho provides environmentally sound disposal services to both government and private industry waste generators. The Idaho facility is a major recipient of U.S. Army Corps of Engineers FUSRAP program waste and received permit approval to receive an expanded range of radioactive materials in 2001. The site has disposed of more than 300,000 tons of radioactive materials from the federal government during the past five years. This paper presents the capabilities of the Grand View, Idaho hazardous waste facility to accept radioactive materials, site-specific acceptance criteria and performance assessment, radiological safety and environmental monitoring program information.

Romano, Stephen; Welling, Steven; Bell, Simon

2003-02-27T23:59:59.000Z

336

SCFA lead lab technical assistance at Oak Ridge Y-12 national security complex: Evaluation of treatment and characterization alternatives of mixed waste soil and debris at disposal area remedial action DARA solids storage facility (SSF)  

E-Print Network (OSTI)

Ploymerization flyer TRU and Mixed Waste Focus Area, U.S.DC Arc Melters flyer TRU and Mixed Waste Focus Area, U.S.team. Maio, Vincent, 1998, Mixed Waste Area Approach for

Hazen, Terry

2002-01-01T23:59:59.000Z

337

The mixed waste management facility. Project baseline revision 1.2  

Science Conference Proceedings (OSTI)

Revision 1.2 to the Project Baseline (PB) for the Mixed Waste Management Facility (MWMF) is in response to DOE directives and verbal guidance to (1) Collocate the Decontamination and Waste Treatment Facility (DWTF) and MWMF into a single complex, integrate certain and overlapping functions as a cost-saving measure; (2) Meet certain fiscal year (FY) new-BA funding objectives ($15.3M in FY95) with lower and roughly balanced funding for out years; (3) Reduce Total Project Cost (TPC) for the MWMF Project; (4) Include costs for all appropriate permitting activities in the project TPC. This baseline revision also incorporates revisions in the technical baseline design for Molten Salt Oxidation (MSO) and Mediated Electrochemical Oxidation (MEO). Changes in the WBS dictionary that are necessary as a result of this rebaseline, as well as minor title changes, at WBS Level 3 or above (DOE control level) are approved as a separate document. For completeness, the WBS dictionary that reflects these changes is contained in Appendix B. The PB, with revisions as described in this document, were also the basis for the FY97 Validation Process, presented to DOE and their reviewers on March 21-22, 1995. Appendix C lists information related to prior revisions to the PB. Several key changes relate to the integration of functions and sharing of facilities between the portion of the DWTF that will house the MWMF and those portions that are used by the Hazardous Waste Management (HWM) Division at LLNL. This collocation has been directed by DOE as a cost-saving measure and has been implemented in a manner that maintains separate operational elements from a safety and permitting viewpoint. Appendix D provides background information on the decision and implications of collocating the two facilities.

Streit, R.D.; Throop, A.L.

1995-04-01T23:59:59.000Z

338

Upgrades to meet LANL SF, 121-2011, hazardous waste facility permit requirements  

Science Conference Proceedings (OSTI)

Members of San IIdefonso have requested information from LANL regarding implementation of the revision to LANL's Hazardous Waste Facility Permit (the RCRA Permit). On January 26, 2011, LANL staff from the Waste Disposition Project and the Environmental Protection Division will provide a status update to Pueblo members at the offices of the San IIdefonso Department of Environmental and Cultural Preservation. The Waste Disposition Project presentation will focus on upgrades and improvements to LANL waste management facilities at TA-50 and TA-54. The New Mexico Environment Department issued LANL's revised Hazardous Waste Facility permit on November 30, 2010 with a 30-day implementation period. The Waste Disposition Project manages and operates four of LANL's permitted facilities; the Waste Characterization, Reduction and Repackaging Facility (WCRRF) at TA-SO, and Area G, Area L and the Radioassay and Nondestructive Testing facility (RANT) at TA-54. By implementing a combination of permanent corrective action activities and shorter-term compensatory measures, WDP was able to achieve functional compliance on December 30, 2010 with new Permit requirements at each of our facilities. One component of WOP's mission at LANL is centralized management and disposition of the Laboratory's hazardous and mixed waste. To support this mission objective, WOP has undertaken a project to upgrade our facilities and equipment to achieve fully compliant and efficient waste management operations. Upgrades to processes, equipment and facilities are being designed to provide defense-in-depth beyond the minimum, regulatory requirements where worker safety and protection of the public and the environment are concerned. Upgrades and improvements to enduring waste management facilities and operations are being designed so as not to conflict with future closure activities at Material Disposal Area G and Material Disposal Area L.

French, Sean B [Los Alamos National Laboratory; Johns - Hughes, Kathryn W [Los Alamos National Laboratory

2011-01-21T23:59:59.000Z

339

Life-Cycle Cost Study for a Low-Level Radioactive Waste Disposal Facility in Texas  

SciTech Connect

This report documents the life-cycle cost estimates for a proposed low-level radioactive waste disposal facility near Sierra Blanca, Texas. The work was requested by the Texas Low-Level Radioactive Waste Disposal Authority and performed by the National Low-Level Waste Management Program with the assistance of Rogers and Associates Engineering Corporation.

B. C. Rogers; P. L. Walter (Rogers and Associates Engineering Corporation); R. D. Baird

1999-08-01T23:59:59.000Z

340

THE NGA-DOE GRANT TO EXAMINE CRITICAL ISSUES RELATED TO RADIOACTIVE WASTE AND MATERIALS DISPOSITION INVOLVING DOE FACILITIES  

SciTech Connect

Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials. Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities. Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites in the complex. Changes to the FFCA site treatment plans as a result of proposals in DOE's Accelerating Cleanup: Paths to Closure strategy and contractor integration analysis. Interstate waste and materials shipments. Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the quarter from December 31, 1997 through April 30, 1998 under the NGA project. The work accomplished by the NGA project team during the past four months can be categorized as follows: maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; and provided ongoing support to state-DOE interactions in preparation for the March 30-31, 1998 NGA Federal Facilities Compliance Task Force Meeting with DOE. maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, DOE's Environmental Management Budget, and DOE's proposed Intersite Discussions.

NONE

1998-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste treatment facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Remote handling equipment at the hanford waste treatment plant  

Science Conference Proceedings (OSTI)

Cold war plutonium production led to extensive amounts of radioactive waste stored in tanks at the Department of Energy's Hanford Waste Treatment Plant. The storage tanks could potentially leak into the ground water and into the Columbia River. The solution for this risk of the leaking waste is vitrification. Vitrification is a process of mixing molten glass with radioactive waste to form a stable condition for storage. The Department of Energy has contracted Bechtel National, Inc. to build facilities at the Hanford site to process the waste. The waste will be separated into high and low level waste. Four major systems will process the waste, two pretreatment and two high level. Due to the high radiation levels, high integrity custom cranes have been designed to remotely maintain the hot cells. Several critical design parameters were implemented into the remote machinery design, including radiation limitations, remote operations, Important to Safety features, overall equipment effectiveness, minimum wall approaches, seismic constraints, and recovery requirements. Several key pieces of equipment were designed to meet these design requirements - high integrity crane bridges, trolleys, main hoists, mast hoists, slewing hoists, a monorail hoist, and telescoping mast deployed tele-robotic manipulator arms. There were unique and challenging design features and equipment needed to provide the remotely operated high integrity crane/manipulator systems for the Hanford Waste Treatment Plant. The cranes consist of a double girder bridge with various main hoist capacities ranging from one to thirty ton and are used for performing routine maintenance. A telescoping mast mounted tele-robotic manipulator arm with a one-ton hook is deployed from the trolley to perform miscellaneous operations in-cell. A dual two-ton slewing jib hoist is mounted to the bottom of the trolley and rotates 360 degrees around the mast allowing the closest hook wall approaches. Each of the two hoists on this slewer is mounted 180 degrees opposite each other. Another system utilizes a single one-ton slewing jib hoist that can extend and retract as well as rotate 270 degrees around the mast. Yet, another system utilizes an under-hung monorail trolley with one-ton hoist capacity mounted to the bottom of the bridge girder. The main, slewer and monorail hoists each have power-rotating hooks for installing and removing equipment in the hot cell. (authors)

Bardal, M.A. [PaR Systems, Inc., Shoreview, MN, (United States); Roach, J.D. [Bechtel National, Inc., Richland, WA (United States)

2007-07-01T23:59:59.000Z

342

Hazardous medical waste generation rates of different categories of health-care facilities  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer We calculated hazardous medical waste generation rates (HMWGR) from 132 hospitals. Black-Right-Pointing-Pointer Based on a 22-month study period, HMWGR were highly skewed to the right. Black-Right-Pointing-Pointer The HMWGR varied from 0.00124 to 0.718 kg bed{sup -1} d{sup -1}. Black-Right-Pointing-Pointer A positive correlation existed between the HMWGR and the number of hospital beds. Black-Right-Pointing-Pointer We used non-parametric statistics to compare rates among hospital categories. - Abstract: Goal of this work was to calculate the hazardous medical waste unit generation rates (HMWUGR), in kg bed{sup -1} d{sup -1}, using data from 132 health-care facilities in Greece. The calculations were based on the weights of the hazardous medical wastes that were regularly transferred to the sole medical waste incinerator in Athens over a 22-month period during years 2009 and 2010. The 132 health-care facilities were grouped into public and private ones, and, also, into seven sub-categories, namely: birth, cancer treatment, general, military, pediatric, psychiatric and university hospitals. Results showed that there is a large variability in the HMWUGR, even among hospitals of the same category. Average total HMWUGR varied from 0.012 kg bed{sup -1} d{sup -1}, for the public psychiatric hospitals, to up to 0.72 kg bed{sup -1} d{sup -1}, for the public university hospitals. Within the private hospitals, average HMWUGR ranged from 0.0012 kg bed{sup -1} d{sup -1}, for the psychiatric clinics, to up to 0.49 kg bed{sup -1} d{sup -1}, for the birth clinics. Based on non-parametric statistics, HMWUGR were statistically similar for the birth and general hospitals, in both the public and private sector. The private birth and general hospitals generated statistically more wastes compared to the corresponding public hospitals. The infectious/toxic and toxic medical wastes appear to be 10% and 50% of the total hazardous medical wastes generated by the public cancer treatment and university hospitals, respectively.

Komilis, Dimitrios, E-mail: dkomilis@env.duth.gr [Laboratory of Solid and Hazardous Waste Management, Dept. of Environmental Engineering, Democritus University of Thrace, Xanthi 671 00 (Greece); Fouki, Anastassia [Hellenic Open University, Patras (Greece); Papadopoulos, Dimitrios [APOTEFROTIRAS S.A., Ano Liossia, 192 00 Elefsina (Greece)

2012-07-15T23:59:59.000Z

343

Report: Findings, Conclusions, and Recommendations Concerning the Waste Treatment and Immobilization Project at Hanford  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EMAB Tank Waste Subcommittee Summary Report 1 EMAB Tank Waste Subcommittee Summary Report 1 Report of Findings, Conclusions, and Recommendations Concerning the Waste Treatment and Immobilization Project (WTP) at Hanford Submitted by the Environmental Management Advisory Board Tank Waste Subcommittee September 15, 2010 Introduction In May 2010, the Department of Energy established the Environmental Management Tank Waste Subcommittee (EM-TWS). The EM-TWS was charged with conducting an independent technical review of liquid waste capital and operations projects related to the Office of Environmental Management (EM) tank waste cleanup programs at Hanford, Washington; the Savannah River Site in South Carolina; the Idaho National Laboratory; and the West Valley Demonstration Project in New York. The EM-TWS's review focused on the facilities being

344

Department of Energy Idaho - Advanced Mixed Waste Treatment Project...  

NLE Websites -- All DOE Office Websites (Extended Search)

> AMWTP Contract Idaho Treatment Group, LLC (ITG) Advanced Mixed Waste Treatment Project Contract Basic Contract Contract Modifications Documents Related to the AMWTP Contract Last...

345

Waste Form Release Data Package for the 2005 Integrated Disposal Facility Performance Assessment  

SciTech Connect

This data package documents the experimentally derived input data on the representative waste glasses; LAWA44, LAWB45, and LAWC22. This data will be used for Subsurface Transport Over Reactive Multi-phases (STORM) simulations of the Integrated Disposal Facility (IDF) for immobilized low-activity waste (ILAW). The STORM code will be used to provide the near-field radionuclide release source term for a performance assessment to be issued in July 2005. Documented in this data package are data related to 1) kinetic rate law parameters for glass dissolution, 2) alkali (Na+)-hydrogen (H+) ion exchange rate, 3) chemical reaction network of secondary phases that form in accelerated weathering tests, and 4) thermodynamic equilibrium constants assigned to these secondary phases. The kinetic rate law and Na+-H+ ion exchange rate were determined from single-pass flow-through experiments. Pressurized unsaturated flow (PUF) and product consistency (PCT) tests where used for accelerated weathering or aging of the glasses in order to determine a chemical reaction network of secondary phases that form. The majority of the thermodynamic data used in this data package were extracted from the thermody-namic database package shipped with the geochemical code EQ3/6, version 8.0. Because of the expected importance of 129I release from secondary waste streams being sent to IDF from various thermal treatment processes, parameter estimates for diffusional release and solubility-controlled release from cementitious waste forms were estimated from the available literature.

Pierce, Eric M.; McGrail, B. Peter; Rodriguez, Elsa A.; Schaef, Herbert T.; Saripalli, Prasad; Serne, R. Jeffrey; Krupka, Kenneth M.; Martin, P. F.; Baum, Steven R.; Geiszler, Keith N.; Reed, Lunde R.; Shaw, Wendy J.

2004-09-01T23:59:59.000Z

346

The performance assessment process for DOE low-level waste disposal facilities  

Science Conference Proceedings (OSTI)

Safety of the low-level waste disposal facilities, as well as al US DOE facilities, is a primary criterion in their design and operation. Safety of low-level waste disposal facilities is evaluated from two perspectives. Operational safety is evaluated based on the perceived level of hazard of the operation. The safety evaluations vary from simple safety assessments to very complex safety analysis reports, depending on the degree of hazard associated with the facility operation. Operational requirements for the Department's low-level waste disposal facilities, including long-term safety are contained in DOE Order 5820.2A, Radioactive Waste Management (1). This paper will focus on the process of conducting long-term performance analyses rather than on operational safety analysis.

Wilhite, E.L.

1992-01-01T23:59:59.000Z

347

The performance assessment process for DOE low-level waste disposal facilities  

Science Conference Proceedings (OSTI)

Safety of the low-level waste disposal facilities, as well as al US DOE facilities, is a primary criterion in their design and operation. Safety of low-level waste disposal facilities is evaluated from two perspectives. Operational safety is evaluated based on the perceived level of hazard of the operation. The safety evaluations vary from simple safety assessments to very complex safety analysis reports, depending on the degree of hazard associated with the facility operation. Operational requirements for the Department`s low-level waste disposal facilities, including long-term safety are contained in DOE Order 5820.2A, Radioactive Waste Management (1). This paper will focus on the process of conducting long-term performance analyses rather than on operational safety analysis.

Wilhite, E.L.

1992-11-01T23:59:59.000Z

348

Office of Inspector General audit report on waste treatment plans at the Idaho National Engineering and Environmental Laboratory  

SciTech Connect

The Idaho National Engineering and Environmental Laboratory (Laboratory) stores nearly 65,000 cubic meters of waste generated on site or brought to the State of Idaho (Idaho) from Department of Energy (DOE) sites across the country since 1970. This represents approximately 62 percent of the stored waste that DOE plans to ship and permanently dispose of at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. In December 1996, DOE met the first milestone by awarding a fixed-price contract to a private company to construct and operate the Advanced Mixed Waste Treatment Facility (Treatment Facility) -- nearly 6 months ahead of schedule. Because the Treatment Facility would not be available to meet the 3,100 cubic meter milestone by December 31, 2002, DOE decided to dispose of untreated waste using the characterization process that was in place in 1989, and adapting it to meet new characterization requirements. The purpose of the audit was to determine whether it is in the best interest of the Government to defer processing the 3,100 cubic meters of waste until the new Treatment Facility can do so. The analysis showed that waiting until the Treatment Facility can process the 3,100 cubic meters of waste would be more economic and reduce the environmental risks to Laboratory employees. Therefore, a compromise between DOE and Idaho officials allowing such a deferral would be in the best interest of the Government.

1999-02-01T23:59:59.000Z

349

Waste management system alternatives for treatment of wastes from spent fuel reprocessing  

SciTech Connect

This study was performed to help identify a preferred TRU waste treatment alternative for reprocessing wastes with respect to waste form performance in a geologic repository, near-term waste management system risks, and minimum waste management system costs. The results were intended for use in developing TRU waste acceptance requirements that may be needed to meet regulatory requirements for disposal of TRU wastes in a geologic repository. The waste management system components included in this analysis are waste treatment and packaging, transportation, and disposal. The major features of the TRU waste treatment alternatives examined here include: (1) packaging (as-produced) without treatment (PWOT); (2) compaction of hulls and other compactable wastes; (3) incineration of combustibles with cementation of the ash plus compaction of hulls and filters; (4) melting of hulls and failed equipment plus incineration of combustibles with vitrification of the ash along with the HLW; (5a) decontamination of hulls and failed equipment to produce LLW plus incineration and incorporation of ash and other inert wastes into HLW glass; and (5b) variation of this fifth treatment alternative in which the incineration ash is incorporated into a separate TRU waste glass. The six alternative processing system concepts provide progressively increasing levels of TRU waste consolidation and TRU waste form integrity. Vitrification of HLW and intermediate-level liquid wastes (ILLW) was assumed in all cases.

McKee, R.W.; Swanson, J.L.; Daling, P.M.; Clark, L.L.; Craig, R.A.; Nesbitt, J.F.; McCarthy, D.; Franklin, A.L.; Hazelton, R.F.; Lundgren, R.A.

1986-09-01T23:59:59.000Z

350

THE NGA-DOE GRANT TO EXAMINE CRITICAL ISSUES RELATED TO RADIOACTIVE WASTE AND MATERIALS DISPOSITION INVOLVING DOE FACILITIES  

SciTech Connect

Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials; Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities; Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites in the complex; Changes to the FFCA site treatment plans as a result of proposals in the Department's Accelerating Cleanup: Paths to Closure plan and contractor integration analysis; Interstate waste and materials shipments; and Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the quarter from May 1, 1999, through July 30, 1999, under the NGA grant. The work accomplished by the NGA project team during the past four months can be categorized as follows: maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, external regulation of DOE; and continued to facilitate interactions between the states and DOE to develop a foundation for an ongoing substantive relationship between the Governors of key states and Secretary Richardson.

Ann M. Beauchesne

1999-07-30T23:59:59.000Z

351

THE NGA-DOE GRANT TO EXAMINE CRITICAL ISSUES RELATED TO RADIOACTIVE WASTE AND MATERIALS DISPOSITION INVOLVING DOE FACILITIES  

Science Conference Proceedings (OSTI)

Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials; Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities; Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites in the complex; Changes to the FFCA site treatment plans as a result of proposals in the Department's Accelerating Cleanup: Paths to Closure plan and contractor integration analysis; Interstate waste and materials shipments; and Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the quarter from February 1, 1999, through April 30, 1999, under the NGA grant. The work accomplished by the NGA project team during the past four months can be categorized as follows: maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, external regulation of DOE; and EM Integration activities; and continued to serve as a liaison between the NGA FFCA Task Force states and the Department.

Ann M. Beauchesne

1999-04-30T23:59:59.000Z

352

THE NGA-DOE GRANT TO EXAMINE CRITICAL ISSUES RELATED TO RADIOACTIVE WASTE AND MATERIALS DISPOSITION INVOLVING DOE FACILITIES  

SciTech Connect

Through the National Governors Association (NGA) project ``Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials; Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities; Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites in the complex; Changes to the FFCA site treatment plans as a result of proposals in the Department's Accelerating Cleanup: Paths to Closure plan and contractor integration analysis; Interstate waste and materials shipments; and Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the period from October 1, 1999 through January 31, 2000, under the NGA grant. The work accomplished by the NGA project team during the past three months can be categorized as follows: maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; convened and facilitated the October 6--8 NGA FFCA Task Force Meeting in Oak Ridge, Tennessee; maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, external regulation of DOE; and continued to facilitate interactions between the states and DOE to develop a foundation for an ongoing substantive relationship between the Governors of key states and the Department.

Ann M. Beauchesne

2000-01-01T23:59:59.000Z

353

THE NGA-DOE GRANT TO EXAMINE CRITICAL ISSUES RELATED TO RADIOACTIVE WASTE AND MATERIALS DISPOSITION INVOLVING DOE FACILITIES  

Science Conference Proceedings (OSTI)

Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials. Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities. Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites in the complex. Changes to the FFCA site treatment plans as a result of proposals in DOE's Accelerating Cleanup: Paths to Closure strategy and contractor integration analysis. Interstate waste and materials shipments. Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the quarter from April 30, 1998 through June 30, 1998 under the NGA project. The work accomplished by the NGA project team during the past four months can be categorized as follows: maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; and provided ongoing support to state-DOE interactions. maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, DOE's Environmental Management Budget, and DOE's proposed Intersite Discussions.

NONE

1998-07-01T23:59:59.000Z

354

THE NGA-DOE GRANT TO EXAMINE CRITICAL ISSUES RELATED TO RADIOACTIVE WASTE AND MATERIALS DISPOSITION INVOLVING DOE FACILITIES  

Science Conference Proceedings (OSTI)

Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: (1) Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials; (2) Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities; (3) Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites in the complex; (4) Changes to the FFCA site treatment plans as a result of proposals in the Department's Accelerating Cleanup: Paths to Closure plan and contractor integration analysis; (5) Interstate waste and materials shipments; and (6) Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the quarter from October 1, 1998 through January 31, 1999, under the NGA grant. The work accomplished by the NGA project team during the past four months can be categorized as follows: (1) maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; (2) maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, external regulation of DOE; and EM Integration activities; and (3) continued to serve as a liaison between the NGA FFCA Task Force states and the Department.

Ann M. Beauchesne

1999-01-31T23:59:59.000Z

355

THE NGA-DOE GRANT TO EXAMINE CRITICAL ISSUES RELATED TO RADIOACTIVE WASTE AND MATERIALS DISPOSITION INVOLVING DOE FACILITIES  

SciTech Connect

Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: (1) Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials; (2) Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities; (3) Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites in the complex; (4) Changes to the FFCA site treatment plans as a result of proposals in the Department's Accelerating Cleanup: Paths to Closure plan and contractor integration analysis; (5) Interstate waste and materials shipments; and (6) Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the quarter from June 1, 1998 through September 30, 1998, under the NGA grant. The work accomplished by the NGA project team during the past four months can be categorized as follows: (1) maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; (2) maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, external regulation of DOE; and EM Integration activities; and (3) continued to serve as a liaison between the NGA FFCA Task Force states and the Department.

Ann B. Beauchesne

1998-09-30T23:59:59.000Z

356

Independent Oversight Review, Sodium Bearing Waste Treatment Project -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sodium Bearing Waste Treatment Sodium Bearing Waste Treatment Project - Federal - June 2012 Independent Oversight Review, Sodium Bearing Waste Treatment Project - Federal - June 2012 June 2012 Review of the Sodium Bearing Waste Treatment Project - Integrated Waste Treatment Unit Federal Operational Readiness Review This report documents the U.S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security (HSS), independent review of the Sodium Bearing Waste Treatment Project-Integrated Waste Treatment Unit (SBWTP-IWTU) DOE (Federal) Operational Readiness Review (D-ORR). The review was performed by the HSS Office of Safety and Emergency Management Evaluations and was intended to assess the effectiveness of the CORR process as implemented for

357

Independent Oversight Review, Sodium Bearing Waste Treatment Project -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sodium Bearing Waste Treatment Sodium Bearing Waste Treatment Project - Contractor - June 2012 Independent Oversight Review, Sodium Bearing Waste Treatment Project - Contractor - June 2012 June 2012 Review of the Sodium Bearing Waste Treatment Project - Integrated Waste Treatment Unit Contractor Operational Readiness Review This report documents the U.S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security (HSS), independent review of the Sodium Bearing Waste Treatment Project-Integrated Waste Treatment Unit (SBWTP-IWTU) contractor Operational Readiness Review (C-ORR). The review was conducted at the Idaho Site from February 27 to March 6, 2012. This report discusses the background, scope, results, and conclusions of the review, as well as

358

{open_quotes}Radon{close_quotes} - the system of Soviet designed regional waste management facilities  

Science Conference Proceedings (OSTI)

The Soviet Union established a system of specialized regional facilities to dispose of radioactive waste generated by sources other than the nuclear fuel cycle. The system had 16 facilities in Russia, 5 in Ukraine, one in each of the other CIS states, and one in each of the Baltic Republics. These facilities are still being used. The major generators of radioactive waste they process these are research and industrial organizations, medical and agricultural institution and other activities not related to nuclear power. Waste handled by these facilities is mainly beta- and gamma-emitting nuclides with half lives of less than 30 years. The long-lived and alpha-emitting isotopic content is insignificant. Most of the radwaste has low and medium radioactivity levels. The facilities also handle spent radiation sources, which are highly radioactive and contain 95-98 percent of the activity of all the radwaste buried at these facilities.

Horak, W.C.; Reisman, A.; Purvis, E.E. III

1997-07-01T23:59:59.000Z

359

Idaho's Advanced Mixed Waste Treatment Project Details 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho's Advanced Mixed Waste Treatment Project Details 2013 Idaho's Advanced Mixed Waste Treatment Project Details 2013 Accomplishments Idaho's Advanced Mixed Waste Treatment Project Details 2013 Accomplishments December 24, 2013 - 12:00pm Addthis IDAHO FALLS, Idaho - EM and its contractor, Idaho Treatment Group (ITG), safely and compliantly met all of their production and shipping targets in the Advanced Mixed Waste Treatment Project (AMWTP) at the Idaho site in 2013. AMWTP's purpose is to safely process and dispose of transuranic (TRU) and mixed low-level waste (MLLW). The defense-related TRU waste is sent to the Waste Isolation Pilot Plant in New Mexico, and the MLLW is sent to other federal and commercial disposal sites. AMWTP is the largest shipper of contact-handled TRU waste to WIPP. In 2013, AMWTP sent 2,444.69 cubic

360

Idaho's Advanced Mixed Waste Treatment Project Details 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho's Advanced Mixed Waste Treatment Project Details 2013 Idaho's Advanced Mixed Waste Treatment Project Details 2013 Accomplishments Idaho's Advanced Mixed Waste Treatment Project Details 2013 Accomplishments December 24, 2013 - 12:00pm Addthis IDAHO FALLS, Idaho - EM and its contractor, Idaho Treatment Group (ITG), safely and compliantly met all of their production and shipping targets in the Advanced Mixed Waste Treatment Project (AMWTP) at the Idaho site in 2013. AMWTP's purpose is to safely process and dispose of transuranic (TRU) and mixed low-level waste (MLLW). The defense-related TRU waste is sent to the Waste Isolation Pilot Plant in New Mexico, and the MLLW is sent to other federal and commercial disposal sites. AMWTP is the largest shipper of contact-handled TRU waste to WIPP. In 2013, AMWTP sent 2,444.69 cubic

Note: This page contains sample records for the topic "waste treatment facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

THE NGA-DOE GRANT TO EXAMINE CRITICAL ISSUES RELATED TO RADIOACTIVE WASTE AND MATERIALS DISPOSITION INVOLVING DOE FACILITIES  

Science Conference Proceedings (OSTI)

Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials. Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities. Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites in the complex. Changes to the FFCA site treatment plans as a result of proposals in the Department's Accelerating Cleanup: Paths to Closure plan and contractor integration analysis. Interstate waste and materials shipments. Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the period from April 1, 2001 through June 30, 2001, under the NGA grant.

Ethan W. Brown

2001-09-01T23:59:59.000Z

362

Steam Reforming Application for Treatment of DOE Sodium Bearing Tank Wastes at INL for ICP  

SciTech Connect

The patented THOR steam reforming waste treatment technology has been selected as the technology of choice for treatment of Sodium Bearing Waste (SBW) at the Idaho National Laboratory (INL) for the Idaho Cleanup Project (ICP). SBW is an acidic tank waste at the Idaho Nuclear Technology and Engineering Center (INTEC) at INL. It consists primarily of waste from decontamination activities and laboratory wastes. SBW contains high concentrations of nitric acid, alkali and aluminum nitrates, with minor amounts of many inorganic compounds including radionuclides, mainly cesium and strontium. The THOR steam reforming process will convert the SBW tank waste feed into a dry, solid, granular product. The THOR technology was selected to treat SBW, in part, because it can provide flexible disposal options to accommodate the final disposition path selected for SBW. THOR can produce a final end-product that will meet anticipated requirements for disposal as Remote-Handled TRU (RH-TRU) waste; and, with modifications, THOR can also produce a final endproduct that could be qualified for disposal as High Level Waste (HLW). SBW treatment will be take place within the Integrated Waste Treatment Unit (IWTU), a new facility that will be located at the INTEC. This paper provides an overview of the THOR process chemistry and process equipment being designed for the IWTU.

J. Bradley Mason; Kevin Ryan; Scott Roesener; Michael Cowen; Duane Schmoker; Pat Bacala; Bill Landman

2006-03-01T23:59:59.000Z

363

Waste treatment by selective mineral ion exchanger  

Science Conference Proceedings (OSTI)

STMI, subsidiary company of the AREVA Group with over 40 years in the D and D business, has been continuously innovating and developing new decontamination techniques, with the objectives of achieving more efficient decontaminations on a growing spectrum of media. In the field of liquid waste treatment, STMI manufactures uses and commercialises selective inorganic ion exchangers (RAN). These are hydrated synthetic inorganic compounds prepared from very pure raw materials. Different types of RANs (POLYAN, OXTAIN, Fe-Cu, Fe-CoK, Si-Fe-CoK) can be used to trap a large number of radioactive elements in contaminated effluents. Different implementations could be applied depending on technical conditions. STMI's offers consist in building global solution and preliminary design of installation either in dispersed form (batch) or in column (cartridge filtration). Those products are used all over the world not only in the nuclear business (Canada, US, Belgium, France...) but also in other fields. Indeed, it provides competitive solutions to many domains of application especially water pollution control, liquid waste treatment in the nuclear business by decreasing the activity level of waste. The following paper will focus on the theoretical principle of the mineral exchanger, its implementation and the feed back collected by STMI. (author)

Polito, Aurelie [Areva NC - BUA STMI, 1 route de la Noue - 91196 Gif sur Yvette, Cedex (France)

2007-07-01T23:59:59.000Z

364

Comparison of costs for alternative mixed low-level waste treatment systems  

SciTech Connect

Total life cycle costs (TLCCs), including disposal costs, of thermal, nonthermal and enhanced nonthermal systems were evaluated to guide future research and development programs for the treatment of mixed low-level waste (MLLW) consisting of RCRA hazardous and low-level radioactive wastes. In these studies, nonthermal systems are defined as those systems that process waste at temperatures less than 350 C. Preconceptual designs and costs were developed for thirty systems with a capacity (2,927 lbs/hr) to treat the DOE MLLW stored inventor y(approximately 236 million pounds) in 20 years in a single, centralized facility. A limited comparison of the studies` results is presented in this paper. Sensitivity of treatment costs with respect to treatment capacity, number of treatment facilities, and system availability were also determined. The major cost element is operations and maintenance (O and M), which is 50 to 60% of the TLCC for both thermal and nonthermal systems. Energy costs constitute a small fraction (< 1%) of the TLCCs. Equipment cost is only 3 to 5% of the treatment cost. Evaluation of subsystem costs demonstrate that receiving and preparation is the highest cost subsystem at about 25 to 30% of the TLCC for both thermal and nonthermal systems. These studies found no cost incentives to use nonthermal or hybrid (combined nonthermal treatment with stabilization by vitrification) systems in place of thermal systems. However, there may be other incentives including fewer air emissions and less local objection to a treatment facility. Building multiple treatment facilities to treat the same total mass of waste as a single facility would increase the total treatment cost significantly, and improved system availability decreases unit treatment costs by 17% to 30%.

Schwinkendorf, W.E.; Harvego, L. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Cooley, C.R. [Dept. of Energy (United States); Biagi, C. [Morrison Knudsen (United States)

1996-12-31T23:59:59.000Z

365

Analysis of waste treatment requirements for DOE mixed wastes: Technical basis  

SciTech Connect

The risks and costs of managing DOE wastes are a direct function of the total quantities of 3wastes that are handled at each step of the management process. As part of the analysis of the management of DOE low-level mixed wastes (LLMW), a reference scheme has been developed for the treatment of these wastes to meet EPA criteria. The treatment analysis in a limited form was also applied to one option for treatment of transuranic wastes. The treatment requirements in all cases analyzed are based on a reference flowsheet which provides high level treatment trains for all LLMW. This report explains the background and basis for that treatment scheme. Reference waste stream chemical compositions and physical properties including densities were established for each stream in the data base. These compositions are used to define the expected behavior for wastes as they pass through the treatment train. Each EPA RCRA waste code was reviewed, the properties, chemical composition, or characteristics which are of importance to waste behavior in treatment were designated. Properties that dictate treatment requirements were then used to develop the treatment trains and identify the unit operations that would be included in these trains. A table was prepared showing a correlation of the waste physical matrix and the waste treatment requirements as a guide to the treatment analysis. The analysis of waste treatment loads is done by assigning wastes to treatment steps which would achieve RCRA compliant treatment. These correlation`s allow one to examine the treatment requirements in a condensed manner and to see that all wastes and contaminant sets are fully considered.

1995-02-01T23:59:59.000Z

366

Low-level waste certification plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility. Revision 1  

SciTech Connect

The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan is composed to meet the requirements found in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and follows the suggested outline provided by WHC in the letter of April 26, 1990, to Dr. R.H. Thomas, Occupational Health Division, LBL. LLW is to be transferred to the WHC Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington.

1995-01-10T23:59:59.000Z

367

Benchmarking the Remote-Handled Waste Facility at the West Valley Demonstration Project  

Science Conference Proceedings (OSTI)

ABSTRACT Facility decontamination activities at the West Valley Demonstration Project (WVDP), the site of a former commercial nuclear spent fuel reprocessing facility near Buffalo, New York, have resulted in the removal of radioactive waste. Due to high dose and/or high contamination levels of this waste, it needs to be handled remotely for processing and repackaging into transport/disposal-ready containers. An initial conceptual design for a Remote-Handled Waste Facility (RHWF), completed in June 1998, was estimated to cost $55 million and take 11 years to process the waste. Benchmarking the RHWF with other facilities around the world, completed in November 1998, identified unique facility design features and innovative waste pro-cessing methods. Incorporation of the benchmarking effort has led to a smaller yet fully functional, $31 million facility. To distinguish it from the June 1998 version, the revised design is called the Rescoped Remote-Handled Waste Facility (RRHWF) in this topical report. The conceptual design for the RRHWF was completed in June 1999. A design-build contract was approved by the Department of Energy in September 1999.

O. P. Mendiratta; D. K. Ploetz

2000-02-29T23:59:59.000Z

368

Initial Selection of Supplemental Treatment Technologies for Hanford's Low-Activity Tank Waste  

Science Conference Proceedings (OSTI)

In 2002, the U.S. Department of Energy (DOE) documented a plan for accelerating cleanup of the Hanford Site, located in southeastern Washington State, by at least 35 years (DOE 2002). A key element of the accelerated cleanup plan was a strategic initiative for acceleration of the tank waste program and completion of "tank waste treatment by 2028 by increasing the capacity of the planned Waste Treatment Plant (ETP) and using supplemental technologies for waste treatment and immobilization." The plan identified specific technologies to be evaluated for supplemental treatment of as much as 70% of the low-activity waste (LAW). The objective was to complete required testing and evaluation that would "...bring an appropriate combination of the above technologies to deployment to supplement LAW treatment and immobilization in the WTP to achieve the completion of tank waste treatment by 2028." In concert with this acceleration plan, DOE, the U.S. Environmental Protection Agency, and the Washington State Department of Ecology have proposed to accelerate from 2012 to 2005 the Hanford Federal Facility Compliance Agreement (Tri-Party Agreement) milestone (M-62-08) associated with a final decision on treatment of the balance of tank waste that is beyond the capacity of the currently designed WTP.

Raymond, Richard E.; Powell, Roger W.; Hamilton, Dennis W.; Kitchen, William A.; Mauss, Billie M.; Brouns, Thomas M.

2004-07-15T23:59:59.000Z

369

Nuclear Solid Waste Processing Design at the Idaho Spent Fuels Facility  

Science Conference Proceedings (OSTI)

A spent nuclear fuels (SNF) repackaging and storage facility was designed for the Idaho National Engineering and Environmental Laboratory (INEEL), with nuclear solid waste processing capability. Nuclear solid waste included contaminated or potentially contaminated spent fuel containers, associated hardware, machinery parts, light bulbs, tools, PPE, rags, swabs, tarps, weld rod, and HEPA filters. Design of the nuclear solid waste processing facilities included consideration of contractual, regulatory, ALARA (as low as reasonably achievable) exposure, economic, logistical, and space availability requirements. The design also included non-attended transfer methods between the fuel packaging area (FPA) (hot cell) and the waste processing area. A monitoring system was designed for use within the FPA of the facility, to pre-screen the most potentially contaminated fuel canister waste materials, according to contact- or non-contact-handled capability. Fuel canister waste materials which are not able to be contact-handled after attempted decontamination will be processed remotely and packaged within the FPA. Noncontact- handled materials processing includes size-reduction, as required to fit into INEEL permitted containers which will provide sufficient additional shielding to allow contact handling within the waste areas of the facility. The current design, which satisfied all of the requirements, employs mostly simple equipment and requires minimal use of customized components. The waste processing operation also minimizes operator exposure and operator attendance for equipment maintenance. Recently, discussions with the INEEL indicate that large canister waste materials can possibly be shipped to the burial facility without size-reduction. New waste containers would have to be designed to meet the drop tests required for transportation packages. The SNF waste processing facilities could then be highly simplified, resulting in capital equipment cost savings, operational time savings, and significantly improved ALARA exposure.

Dippre, M. A.

2003-02-25T23:59:59.000Z

370

Plutonium Finishing Plan (PFP) Treatment and Storage Unit Waste Analysis Plan  

Science Conference Proceedings (OSTI)

The purpose of this waste analysis plan (WAP) is to document waste analysis activities associated with the Plutonium Finishing Plant Treatment and Storage Unit (PFP Treatment and Storage Unit) to comply with Washington Administrative Code (WAC) 173-303-300(1), (2), (4)(a) and (5). The PFP Treatment and Storage Unit is an interim status container management unit for plutonium bearing mixed waste radiologically managed as transuranic (TRU) waste. TRU mixed (TRUM) waste managed at the PFP Treatment and Storage Unit is destined for the Waste Isolation Pilot Plant (WIPP) and therefore is not subject to land disposal restrictions [WAC 173-303-140 and 40 CFR 268]. The PFP Treatment and Storage Unit is located in the 200 West Area of the Hanford Facility, Richland Washington (Figure 1). Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge.

PRIGNANO, A.L.

2000-07-01T23:59:59.000Z

371

Independent Oversight Review, Waste Treatment and Immobilization Plant -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Treatment and Immobilization Treatment and Immobilization Plant - November 2011 Independent Oversight Review, Waste Treatment and Immobilization Plant - November 2011 November 2011 Review of the Hanford Site Waste Treatment and Immobilization Plant Project Construction Quality The Office of Enforcement and Oversight (Independent Oversight) within the Office of Health, Safety and Security conducted an independent review of selected aspects of construction quality at the Hanford Waste Treatment and Immobilization Plant Project (WTP). The independent oversight review, which was performed September 12-15, 2011, was the latest in a series of ongoing quarterly assessments of construction quality at the WTP construction site. Independent Oversight Review, Waste Treatment and Immobilization Plant -

372

Review of the Hanford Site Waste Treatment and Immobilization...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy DOE-WTP ORP WTP Project Office HLW High-Level Waste Facility HVAC Heating, Ventilation, and Air Conditioning LAB Analytical Laboratory LAW Low-Activity...

373

Materials and Fuels Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables  

SciTech Connect

Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Fuels Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

Lisa Harvego; Brion Bennett

2011-09-01T23:59:59.000Z

374

Advanced Test Reactor Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables  

SciTech Connect

U.S. Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Advanced Test Reactor Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. U.S. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool to develop the radioactive waste management basis.

Lisa Harvego; Brion Bennett

2011-11-01T23:59:59.000Z

375

Sodium-bearing Waste Treatment Technology Evaluation Report  

SciTech Connect

Sodium-bearing waste (SBW) disposition is one of the U.S. Department of Energy (DOE) Idaho Operation Offices (NE-ID) and State of Idahos top priorities at the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL has been working over the past several years to identify a treatment technology that meets NE-ID and regulatory treatment requirements, including consideration of stakeholder input. Many studies, including the High-Level Waste and Facilities Disposition Environmental Impact Statement (EIS), have resulted in the identification of five treatment alternatives that form a short list of perhaps the most appropriate technologies for the DOE to select from. The alternatives are (a) calcination with maximum achievable control technology (MACT) upgrade, (b) steam reforming, (c) cesium ion exchange (CsIX) with immobilization, (d) direct evaporation, and (e) vitrification. Each alternative has undergone some degree of applied technical development and preliminary process design over the past four years. This report presents a summary of the applied technology and process design activities performed through February 2004. The SBW issue and the five alternatives are described in Sections 2 and 3, respectively. Details of preliminary process design activities for three of the alternatives (steam reforming, CsIX, and direct evaporation) are presented in three appendices. A recent feasibility study provides the details for calcination. There have been no recent activities performed with regard to vitrification; that section summarizes and references previous work.

Charles M. Barnes; Arlin L. Olson; Dean D. Taylor

2004-05-01T23:59:59.000Z

376

Recovery Act Supports Construction of Site's Largest Groundwater Treatment Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 7, 2011 June 7, 2011 Recovery Act Supports Construction of Site's Largest Groundwater Treatment Facility RICHLAND, Wash. - Construction of the largest ground- water treatment facility at the Hanford Site - a major American Recovery and Reinvestment Act project - is on schedule and more than 70 percent complete. Recovery Act workers with DOE contractor CH2M HILL Plateau Remediation Company are on pace to finish con- struction of the 200 West Groundwater Treatment Facil- ity this year. Funding for the project comes from the $1.6 billion the Richland Operations Office received from the Recovery Act. The 52,000-square-foot facility will pump contaminated water from the ground, remove contaminants with a combination of treatment technologies, and return clean water to the aquifer. The system will have the capacity to

377

Immobilized low-activity waste interim storage facility, Project W-465 conceptual design report  

SciTech Connect

This report outlines the design and Total Estimated Cost to modify the four unused grout vaults for the remote handling and interim storage of immobilized low-activity waste (ILAW). The grout vault facilities in the 200 East Area of the Hanford Site were constructed in the 1980s to support Tank Waste disposal activities. The facilities were to serve project B-714 which was intended to store grouted low-activity waste. The existing 4 unused grout vaults, with modifications for remote handling capability, will provide sufficient capacity for approximately three years of immobilized low activity waste (ILAW) production from the Tank Waste Remediation System-Privatization Vendors (TWRS-PV). These retrofit modifications to the grout vaults will result in an ILAW interim storage facility (Project W465) that will comply with applicable DOE directives, and state and federal regulations.

Pickett, W.W.

1997-12-30T23:59:59.000Z

378

Low-Level Waste Disposal Facility Federal Review Group (LFRG) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Management » Compliance » Low-Level Waste Program Management » Compliance » Low-Level Waste Disposal Facility Federal Review Group (LFRG) Low-Level Waste Disposal Facility Federal Review Group (LFRG) The Office of Environmental Management (EM) Low-Level Waste Disposal Facility Federal Review Group (LFRG) was established to fulfill the requirements contained in Section I.2.E(1)(a) of the Department of Energy (DOE) Order 435.1, Radioactive Waste Management, and exercised by the senior managers of EM. The LFRG assists EM senior managers in the review of documentation that supports the approval of performance assessments and composite analyses or appropriate Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA)documents as described in Section II of the LFRG Charter. Through its efforts, the LFRG supports the issuance

379

Construction and operation of replacement hazardous waste handling facility at Lawrence Berkeley Laboratory. Environmental Assessment  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0423, for the construction and operation of a replacement hazardous waste handling facility (HWHF) and decontamination of the existing HWHF at Lawrence Berkeley Laboratory (LBL), Berkeley, California. The proposed facility would replace several older buildings and cargo containers currently being used for waste handling activities and consolidate the LBL`s existing waste handling activities in one location. The nature of the waste handling activities and the waste volume and characteristics would not change as a result of construction of the new facility. Based on the analysis in the EA, DOE has determined that the proposed action would not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969, 42 USC. 4321 et seq. Therefore, an environmental impact statement is not required.

Not Available

1992-09-01T23:59:59.000Z

380

Cancer-fighting treatment gets boost from Isotope Production Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Cancer-fighting treatment gets boost from Isotope Production Cancer-fighting treatment gets boost from Isotope Production Facility Cancer-fighting treatment gets boost from Isotope Production Facility New capability expands existing program, creates treatment product in quantity. April 13, 2012 Medical Isotope Work Moves Cancer Treatment Agent Forward Medical Isotope Work Moves Cancer Treatment Agent Forward - Los Alamos scientist Meiring Nortier holds a thorium foil test target for the proof-of-concept production experiments. Research indicates that it will be possible to match current annual, worldwide production of Ac-225 in just two to five days of operations using the accelerator at Los Alamos and analogous facilities at Brookhaven. Alpha particles are energetic enough to destroy cancer cells but are unlikely to move beyond a tightly controlled target region and destroy

Note: This page contains sample records for the topic "waste treatment facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Savannah River Site mixed waste Proposed Site Treatment Plan (PSTP). Volumes 1 and 2 and reference document: Revision 2  

SciTech Connect

The DOE is required by the Resource Conservation and Recovery Act to prepare site treatment plans describing the development of treatment capacities and technologies for treating mixed waste. This proposed plan contains Savannah River Site`s preferred options and schedules for constructing new facilities, and otherwise obtaining treatment for mixed wastes. The proposed plan consists of 2 volumes. Volume 1, Compliance Plan, identifies the capacity to be developed and the schedules as required. Volume 2, Background, provides a detailed discussion of the preferred options with technical basis, plus a description of the specific waste streams. Chapters are: Introduction; Methodology; Mixed low level waste streams; Mixed transuranic waste; High level waste; Future generation of mixed waste streams; Storage; Process for evaluation of disposal issues in support of the site treatment plans discussions; Treatment facilities and treatment technologies; Offsite waste streams for which SRS treatment is the Preferred Option (Naval reactor wastes); Summary information; and Acronyms and glossary. This revision does not contain the complete revised report, but only those pages that have been revised.

Helmich, E.; Noller, D.K.; Wierzbicki, K.S.; Bailey, L.L.

1995-07-13T23:59:59.000Z

382

Advanced conceptual design report solid waste retrieval facility, phase I, project W-113  

SciTech Connect

Project W-113 will provide the equipment and facilities necessary to retrieve suspect transuranic (TRU) waste from Trench 04 of the 218W-4C burial ground. As part of the retrieval process, waste drums will be assayed, overpacked, vented, head-gas sampled, and x-rayed prior to shipment to the Phase V storage facility in preparation for receipt at the Waste Receiving and Processing Facility (WRAP). Advanced Conceptual Design (ACD) studies focused on project items warranting further definition prior to Title I design and areas where the potential for cost savings existed. This ACD Report documents the studies performed during FY93 to optimize the equipment and facilities provided in relation to other SWOC facilities and to provide additional design information for Definitive Design.

Smith, K.E.

1994-03-21T23:59:59.000Z

383

Assessment of Facilities, Materials, and Wastes Proposed for Transfer to EM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Non-Integrated Facilities Disposition Non-Integrated Facilities Disposition Project Technical Assistance Page 1 of 2 Complex-Wide Multi-State Assessment of Facilities, Materials, and Wastes Proposed for Transfer to EM Challenge In December 2007 the Assistant Secretary for Environmental Management (EM-1) invited the DOE Program Secretarial Offices (PSOs) of Nuclear Energy (NE), Science (SC), and the National Nuclear Security Administration (NNSA) to propose facilities and legacy waste for transfer to Environmental Management (EM) for final disposition or deactivation and decommissioning (D&D). Transfers of facilities, materials, and waste to EM will generate liabilities that are currently unfunded. For purposes of overall planning, it is important to understand the impacts of proposed transfers with regard to technical

384

Conceptual Design Report for Remote-Handled Low-Level Waste Disposal Facility  

SciTech Connect

This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

Lisa Harvego; David Duncan; Joan Connolly; Margaret Hinman; Charles Marcinkiewicz; Gary Mecham

2010-10-01T23:59:59.000Z

385

Groundwater impact assessment report for the 1325-N Liquid Waste Disposal Facility  

Science Conference Proceedings (OSTI)

In 1943 the Hanford Site was chosen as a location for the Manhattan Project to produce plutonium for use in nuclear weapons. The 100-N Area at Hanford was used from 1963 to 1987 for a dual-purpose, plutonium production and steam generation reactor and related operational support facilities (Diediker and Hall 1987). In November 1989, the reactor was put into dry layup status. During operations, chemical and radioactive wastes were released into the area soil, air, and groundwater. The 1325-N LWDF was constructed in 1983 to replace the 1301-N Liquid Waste Disposal Facility (1301-N LWDF). The two facilities operated simultaneously from 1983 to 1985. The 1301-N LWDF was retired from use in 1985 and the 1325-N LWDF continued operation until April 1991, when active discharges to the facility ceased. Effluent discharge to the piping system has been controlled by administrative means. This report discusses ground water contamination resulting from the 1325-N Liquid Waste Disposal facility.

Alexander, D.J.; Johnson, V.G.

1993-09-01T23:59:59.000Z

386

Independent Oversight Activity Report, Hanford Waste Treatment and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment and Waste Treatment and Immobilization Plant - July 2013 Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant - July 2013 July 2013 Operational Awareness of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity [HIAR-WTP-2013-07-31] This Independent Activity Report documents an oversight activity conducted by the Office of Health, Safety and Security's (HSS) Office of Safety and Emergency Management Evaluations from July 31 - August 5, 2013, at the Hanford Waste Treatment and Immobilization Plant (WTP). The activity consisted of HSS staff observing a limited portion of the hazards analysis (HA) for WTP Low Activity Waste (LAW) Melter Process system. The primary purpose of this HSS field activity was to observe and

387

Independent Activity Report, Waste Treatment and Immobilization Plant -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment and Immobilization Waste Treatment and Immobilization Plant - March 2013 Independent Activity Report, Waste Treatment and Immobilization Plant - March 2013 March 2013 Follow-up of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity Review [HIAR-WTP-2013-03-18] The Office of Health, Safety and Security (HSS) staff observed a limited portion of the restart of the Hazard Analysis (HA) for the Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) Melter Process (LMP) System. The primary purpose of this HSS field activity, on March 18-21, 2013, was to observe and understand the revised approach implemented by Bechtel National, Inc. (BNI), the contractor responsible for the design and construction of WTP for the U.S. Department of Energy (DOE) Office of

388

Independent Oversight Activity Report, Hanford Waste Treatment and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Waste Treatment and Hanford Waste Treatment and Immobilization Plant - June 2013 Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant - June 2013 June 2013 Hanford Waste Treatment and Immobilization Plant Low Activity Waste Melter Off-gas Process System Hazards Analysis Activity Observation [HIAR-WTP-2013-05-13] This Independent Activity Report documents an oversight activity conducted by the Office of Health, Safety and Security's (HSS) Office of Safety and Emergency Management Evaluations from May 13 - June 28, 2013, at the Hanford Waste Treatment and Immobilization Plant (WTP). The activity consisted of HSS staff observing a limited portion of the start of the hazard analysis (HA) for WTP Low Activity Waste (LAW) Primary Off-gas System. The primary purpose of this HSS field activity was to observe and

389

Idaho High-Level Waste & Facilities Disposition, Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Appendix A Appendix A Site Evaluation Process A-iii DOE/EIS-0287 Idaho HLW & FD EIS TABLE OF CONTENTS Section Page Appendix A Site Evaluation Process A-1 A.1 Introduction A-1 A.2 Methodology A-1 A.3 High-Level Waste Treatment and Interim Storage Site Selection A-3 A.3.1 Identification of "Must" Criteria A-3 A.3.2 Identification of "Want" Criteria A-3 A.3.3 Identification of Candidate Sites A-3 A.3.4 Evaluation Process A-4 A.3.5 Results of Evaluation Process A-6 A.4 Low-Activity Waste Disposal Site Selection A-6 A.4.1 Identification of "Must" Criteria A-7 A.4.2 Identification of "Want" Criteria A-8 A.4.3 Identification of Candidate Sites A-8 A.4.4 Evaluation Process A-8 A.4.5 Results of Evaluation Process A-9 A.4.6 Final Selection of a Low-Activity Waste Disposal Facility

390

Application of accident progression event tree technology to the Savannah River Site Defense Waste Processing Facility SAR analysis  

SciTech Connect

The Accident Analysis in the Safety Analysis Report (SAR) for the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) has recently undergone an upgrade. Non-reactor SARs at SRS (and other Department of Energy (DOE) sites) use probabilistic techniques to assess the frequency of accidents at their facilities. This paper describes the application of an extension of the Accident Progression Event Tree (APET) approach to accidents at the SRS DWPF. The APET technique allows an integrated model of the facility risk to be developed, where previous probabilistic accident analyses have been limited to the quantification of the frequency and consequences of individual accident scenarios treated independently. Use of an APET allows a more structured approach, incorporating both the treatment of initiators that are common to more than one accident, and of accident progression at the facility.

Brandyberry, M.D.; Baker, W.H.; Wittman, R.S. [Westinghouse Savannah River Co., Aiken, SC (United States); Amos, C.N. [Science Applications International Corp., Albuquerque, NM (United States)

1993-12-31T23:59:59.000Z

391

Oak Ridge National Lebroatory Liquid&Gaseous Waste Treatment System Strategic Plan  

SciTech Connect

Excellence in Laboratory operations is one of the three key goals of the Oak Ridge National Laboratory (ORNL) Agenda. That goal will be met through comprehensive upgrades of facilities and operational approaches over the next few years. Many of ORNL's physical facilities, including the liquid and gaseous waste collection and treatment systems, are quite old, and are reaching the end of their safe operating life. The condition of research facilities and supporting infrastructure, including the waste handling facilities, is a key environmental, safety and health (ES&H) concern. The existing infrastructure will add considerably to the overhead costs of research due to increased maintenance and operating costs as these facilities continue to age. The Liquid Gaseous Waste Treatment System (LGWTS) Reengineering Project is a UT-Battelle, LLC (UT-B) Operations Improvement Program (OIP) project that was undertaken to develop a plan for upgrading the ORNL liquid and gaseous waste systems to support ORNL's research mission.

Van Hoesen, S.D.

2003-09-09T23:59:59.000Z

392

Field's Point Wastewater Treatment Facility (Narragansett Bay Commission) |  

Open Energy Info (EERE)

Field's Point Wastewater Treatment Facility (Narragansett Bay Commission) Field's Point Wastewater Treatment Facility (Narragansett Bay Commission) Jump to: navigation, search Name Field's Point Wastewater Treatment Facility (Narragansett Bay Commission) Facility Field's Point Wastewater Treatment Facility (Narragansett Bay Commission) Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Gilbane Building Company Developer Narragansett Bay Commission Energy Purchaser Field's Point Location Providence RI Coordinates 41.79260859°, -71.3896966° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.79260859,"lon":-71.3896966,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

393

340 Waste handling Facility Hazard Categorization and Safety Analysis  

DOE Green Energy (OSTI)

The analysis presented in this document provides the basis for categorizing the facility as less than Hazard Category 3.

T. J. Rodovsky

2010-10-25T23:59:59.000Z

394

Waste Receiving and Processing Facility (WRAP) Drawing List  

SciTech Connect

This supporting document delineates the process of identification, categorization, and/or classification of the WRAP facility drawings used to support facility operations and maintenance. This document provides a listing of those essential or safety related drawings which have been identified to date. All other WRAP facility drawings have been classified as general.

WEIDERT, J.R.

1999-10-25T23:59:59.000Z

395

DNFSB Recommendation 2010-2, Pulse Jet Mixing at the Waste Treatment and Immobilization Plant WTP  

NLE Websites -- All DOE Office Websites (Extended Search)

DNFSB Rec. 2010-2, Rev.0, Nov.10, 2011 DNFSB Rec. 2010-2, Rev.0, Nov.10, 2011 i Department of Energy Plan to Address Waste Treatment and Immobilization Plant Vessel Mixing Issues Revision 0 Implementation Plan for Defense Nuclear Safety Board Recommendation 2010-2 November 10, 2011 DNFSB Rec. 2010-2, Rev.0, Nov.10, 2011 ii EXECUTIVE SUMMARY On December 17, 2010, the Defense Nuclear Facilities Safety Board (DNFSB) issued Recommendation 2010-2, Pulse Jet Mixing at the Waste Treatment and Immobilization Plant. The recommendation addressed the need for the U.S. Department of Energy (DOE) to ensure that the Hanford Waste Treatment and Immobilization Plant (WTP), in conjunction with the Hanford tank farm waste feed delivery system, will operate safely and effectively during a

396

M-Area hazardous waste management facility groundwater monitoring report -- first quarter 1994. Volume 1  

Science Conference Proceedings (OSTI)

This report describes the groundwater monitoring and corrective action program at the M-Area Hazardous Waste Management Facility (HWMF) at the Savannah River Site (SRS) during first quarter 1994 as required by South Carolina Hazardous Waste Permit SC1-890-008-989 and section 264.100(g) of the South Carolina Hazardous Waste Management Regulations. During first quarter 1994, 42 point-of-compliance (POC) wells at the M-Area HWMF were sampled for drinking water parameters.

Evans, C.S.; Washburn, F.; Jordan, J.; Van Pelt, R.

1994-05-01T23:59:59.000Z

397

Supplemental design requirements document, Multifunction Waste Tank Facility, Project W-236A. Revision 1  

SciTech Connect

The Multi-Function Waste Tank Facility (MWTF) consists of four, nominal 1 million gallon, underground double-shell tanks, located in the 200-East area, and two tanks of the same capacity in the 200-West area. MWTF will provide environmentally safe storage capacity for wastes generated during remediation/retrieval activities of existing waste storage tanks. This document delineates in detail the information to be used for effective implementation of the Functional Design Criteria requirements.

Groth, B.D.

1995-01-11T23:59:59.000Z

398

Waste Receiving and Processing Facility Module 1 Data Management System Software Requirements Specification  

Science Conference Proceedings (OSTI)

This document provides the software requirements for Waste Receiving and Processing (WRAP) Module 1 Data Management System (DMS). The DMS is one of the plant computer systems for the new WRAP 1 facility (Project W-026). The DMS will collect, store and report data required to certify the low level waste (LLW) and transuranic (TRU) waste items processed at WRAP 1 as acceptable for shipment, storage, or disposal.

Brann, E.C. II

1994-09-09T23:59:59.000Z

399

Conceptual design statement of work for the immobilized low-activity waste interim storage facility project  

SciTech Connect

The Immobilized Low-Activity Waste Interim Storage subproject will provide storage capacity for immobilized low-activity waste product sold to the U.S. Department of Energy by the privatization contractor. This statement of work describes the work scope (encompassing definition of new installations and retrofit modifications to four existing grout vaults), to be performed by the Architect-Engineer, in preparation of a conceptual design for the Immobilized Low-Activity Waste Interim Storage Facility.

Carlson, T.A., Fluor Daniel Hanford

1997-02-06T23:59:59.000Z

400

COMBINED HEAT AND POWER FOR A COLLEGE CAMPUS THE HARRISONBURG, VIRGINIA WASTE-TO-ENERGY FACILITY  

E-Print Network (OSTI)

of installing the super-heaters, cooling towers, condensers and auxiliary equipment needed to make and cooling needs of the campus. This facility also has a small turbine that can be brought on line to produce Madison University central heating & cooling system. This facility uses a mass-burn style waste combustion

Columbia University

Note: This page contains sample records for the topic "waste treatment facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.