National Library of Energy BETA

Sample records for waste summer capacity

  1. Reductive Capacity Measurement of Waste Forms for Secondary Radioactive Wastes

    SciTech Connect (OSTI)

    Um, Wooyong; Yang, Jungseok; Serne, R. Jeffrey; Westsik, Joseph H.

    2015-09-28

    The reductive capacities of dry ingredients and final solid waste forms were measured using both the Cr(VI) and Ce(IV) methods and the results were compared. Blast furnace slag (BFS), sodium sulfide, SnF2, and SnCl2 used as dry ingredients to make various waste forms showed significantly higher reductive capacities compared to other ingredients regardless of which method was used. Although the BFS exhibits appreciable reductive capacity, it requires greater amounts of time to fully react. In almost all cases, the Ce(IV) method yielded larger reductive capacity values than those from the Cr(VI) method and can be used as an upper bound for the reductive capacity of the dry ingredients and waste forms, because the Ce(IV) method subjects the solids to a strong acid (low pH) condition that dissolves much more of the solids. Because the Cr(VI) method relies on a neutral pH condition, the Cr(VI) method can be used to estimate primarily the waste form surface-related and readily dissolvable reductive capacity. However, the Cr(VI) method does not measure the total reductive capacity of the waste form, the long-term reductive capacity afforded by very slowly dissolving solids, or the reductive capacity present in the interior pores and internal locations of the solids.

  2. SUMMER

    U.S. Energy Information Administration (EIA) Indexed Site

    SUMMER Table 5a . Summer (FRCC) Historical and Projected Demand and Capacity, Calendar Year 2007 (Megawatts) Region FRCC Subregion Country U SUMMER Actual Line# DESCRIPTION 2007 2008 2009 2010 1 Unrestricted Non-coincident Peak Demand (Starting Point) = 2+1a+1b-1c-1d 46,676 47,364 48,181 49,093 1a New Conservation (Energy Efficiency) - - - 1b Estimated Diversity - - - - 1c Additions for non-member load (load served by non-registered LSE's in a region) - - - - 1d Stand-by Load Under Contract

  3. SUMMER

    U.S. Energy Information Administration (EIA) Indexed Site

    SUMMER Released: February 2010 Next Update: October 2010 Table 5a . Summer (FRCC) Historical and Projected Demand and Capacity, Calendar Year 2008 (Megawatts) Region FRCC Subregion Country U SUMMER Actual Projected Line# DESCRIPTION 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 1 Unrestricted Non-coincident Peak Demand = 2+1a+1b-1c-1d 44836 45734 45794 46410 47423 48304 49219 50280 51345 52431 53689 1a New Conservation (Energy Efficiency) 0 0 0 0 0 0 0 0 0 0 0 1b Estimated Diversity 0 0

  4. Recommendation 223: Recommendations on Additional Waste Disposal Capacity |

    Office of Environmental Management (EM)

    Department of Energy 3: Recommendations on Additional Waste Disposal Capacity Recommendation 223: Recommendations on Additional Waste Disposal Capacity ORSSAB's recommendations encourage DOE to continue planning for an additional on-site disposal facility for low-level waste and that a second facility be placed in an area already used for similar waste disposal. PDF icon Recommendation 223 PDF icon Response to Recommendation 223 More Documents & Publications ORSSAB Meeting - February

  5. Table 8.11b Electric Net Summer Capacity: Electric Power Sector, 1949-2011 (Subset of Table 8.11a; Kilowatts)

    U.S. Energy Information Administration (EIA) Indexed Site

    b Electric Net Summer Capacity: Electric Power Sector, 1949-2011 (Subset of Table 8.11a; Kilowatts) Year Fossil Fuels Nuclear Electric Power Hydro- electric Pumped Storage Renewable Energy Other 9 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Conventional Hydroelectric Power 5 Biomass Geo- thermal Solar/PV 8 Wind Total Wood 6 Waste 7 1949 NA NA NA NA 44,887,000 0 [5] 18,500,000 13,000 [10] NA NA NA 18,513,000 NA 63,400,000 1950 NA NA NA NA 49,987,000 0 [5] 19,200,000 13,000 [10] NA

  6. Table 8.11c Electric Net Summer Capacity: Electric Power Sector by Plant Type, 1989-2011 (Breakout of Table 8.11b; Kilowatts)

    U.S. Energy Information Administration (EIA) Indexed Site

    c Electric Net Summer Capacity: Electric Power Sector by Plant Type, 1989-2011 (Breakout of Table 8.11b; Kilowatts) Year Fossil Fuels Nuclear Electric Power Hydro- electric Pumped Storage Renewable Energy Other 8 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Conventional Hydroelectric Power Biomass Geo- thermal Solar/PV 7 Wind Total Wood 5 Waste 6 Electricity-Only Plants 9<//td> 1989 296,541,828 77,966,348 119,304,288 364,000 494,176,464 98,160,610 18,094,424 73,579,794

  7. Table 8.11d Electric Net Summer Capacity: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.11a; Kilowatts)

    U.S. Energy Information Administration (EIA) Indexed Site

    d Electric Net Summer Capacity: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.11a; Kilowatts) Year Fossil Fuels Nuclear Electric Power Hydro- electric Pumped Storage Renewable Energy Other 8 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Conventional Hydroelectric Power Biomass Geo- thermal Solar/PV 7 Wind Total Wood 5 Waste 6 Commercial Sector 9<//td> 1989 258,193 191,487 578,797 – 1,028,477 [–] – 17,942 13,144 166,392 [–] – – 197,478 – 1,225,955 1990

  8. 12/2000 Low-Level Waste Disposal Capacity Report Version 2 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Waste Disposition » 12/2000 Low-Level Waste Disposal Capacity Report Version 2 12/2000 Low-Level Waste Disposal Capacity Report Version 2 The purpose of this Report is to assess whether U.S. Department of Energy (DOE or the Department) disposal facilities have sufficient volumetric and radiological capacity to accommodate the low-level waste (LLW) and mixed low-level waste (MLLW) that the Department expects to dispose at these facilities. PDF icon 12/2000 Low-Level Waste Disposal

  9. Table 8.11a Electric Net Summer Capacity: Total (All Sectors), 1949-2011 (Sum of Tables 8.11b and 8.11d; Kilowatts)

    U.S. Energy Information Administration (EIA) Indexed Site

    a Electric Net Summer Capacity: Total (All Sectors), 1949-2011 (Sum of Tables 8.11b and 8.11d; Kilowatts) Year Fossil Fuels Nuclear Electric Power Hydro- electric Pumped Storage Renewable Energy Other 9 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Conventional Hydroelectric Power 5 Biomass Geo- thermal Solar/PV 8 Wind Total Wood 6 Waste 7 1949 NA NA NA NA 44,887,000 0 [5] 18,500,000 13,000 [10] NA NA NA 18,513,000 NA 63,400,000 1950 NA NA NA NA 49,987,000 0 [5] 19,200,000 13,000

  10. Methodologies for estimating one-time hazardous waste generation for capacity generation for capacity assurance planning

    SciTech Connect (OSTI)

    Tonn, B.; Hwang, Ho-Ling; Elliot, S.; Peretz, J.; Bohm, R.; Hendrucko, B.

    1994-04-01

    This report contains descriptions of methodologies to be used to estimate the one-time generation of hazardous waste associated with five different types of remediation programs: Superfund sites, RCRA Corrective Actions, Federal Facilities, Underground Storage Tanks, and State and Private Programs. Estimates of the amount of hazardous wastes generated from these sources to be shipped off-site to commercial hazardous waste treatment and disposal facilities will be made on a state by state basis for the years 1993, 1999, and 2013. In most cases, estimates will be made for the intervening years, also.

  11. TSD capacity model interface with waste reduction planning in the Environmental Restoration Program

    SciTech Connect (OSTI)

    Phifer, B.E. Jr.; Grumski, J.T.

    1991-01-01

    This report provides a picture of how the integration of waste generation forecasting with treatment, storage, and disposal (TSD) capacity modeling interfaces with waste reduction planning in the Environmental Restoration Program. Background information is given for the major activities at the seven Martin Marietta Energy Systems, Inc., sites: (1) Oak Ridge National Laboratory; (2) Oak Ridge Y-12 Plant; (3) Oak Ridge K-25 Site; (4) Paducah Gaseous Diffusion Plant; (5) Portsmouth Gaseous Diffusion Plant; (6) Oak Ridge Associated Universities; and (7) the off-site contaminated areas near DOE facilities. A perspective is provided for strategies to achieve waste reduction, how waste generation forecasts rates were developed, and how those forecasted waste generation rates will be used in TSD capacity modeling. The generation forecasting in combination with TSD modeling allows development of quantifiable goals and subsequent waste reduction. 2 figs.

  12. Development of low-level radioactive waste disposal capacity in the United States - progress or stalemate?

    SciTech Connect (OSTI)

    Devgun, J.S. [Argonne National Lab., IL (United States); Larson, G.S. [Midwest Low-Level Radioactive Waste Commission, St. Paul, MN (United States)

    1995-12-31

    It has been fifteen years since responsibility for the disposal of commercially generated low-level radioactive waste (LLW) was shifted to the states by the United States Congress through the Low-Level Radioactive Waste Policy Act of 1980 (LLRWPA). In December 1985, Congress revisited the issue and enacted the Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA). No new disposal sites have opened yet, however, and it is now evident that disposal facility development is more complex, time-consuming, and controversial than originally anticipated. For a nation with a large nuclear power industry, the lack of availability of LLW disposal capacity coupled with a similar lack of high-level radioactive waste disposal capacity could adversely affect the future viability of the nuclear energy option. The U.S. nuclear power industry, with 109 operating reactors, generates about half of the LLW shipped to commercial disposal sites and faces dwindling access to waste disposal sites and escalating waste management costs. The other producers of LLW - industries, government (except the defense related research and production waste), academic institutions, and medical institutions that account for the remaining half of the commercial LLW - face the same storage and cost uncertainties. This paper will summarize the current status of U.S. low-level radioactive waste generation and the status of new disposal facility development efforts by the states. The paper will also examine the factors that have contributed to delays, the most frequently suggested alternatives, and the likelihood of change.

  13. 12/2000 Low-Level Waste Disposal Capacity Report Version 2

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Current and Planned Low-Level Waste Disposal Capacity Report Revision 2 December 2000 U.S. Department of Energy Office of Environmental Management i TABLE OF CONTENTS EXECUTIVE SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ES-1 1.0 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 1.1 Summary of Report Sections . . . . . . . . . . . . . . . . . . . . . .

  14. Review of private sector treatment, storage, and disposal capacity for radioactive waste. Revision 1

    SciTech Connect (OSTI)

    Smith, M.; Harris, J.G.; Moore-Mayne, S.; Mayes, R.; Naretto, C.

    1995-04-14

    This report is an update of a report that summarized the current and near-term commercial and disposal of radioactive and mixed waste. This report was capacity for the treatment, storage, dating and written for the Idaho National Engineering Laboratory (INEL) with the objective of updating and expanding the report entitled ``Review of Private Sector Treatment, Storage, and Disposal Capacity for Radioactive Waste``, (INEL-95/0020, January 1995). The capacity to process radioactively-contaminated protective clothing and/or respirators was added to the list of private sector capabilities to be assessed. Of the 20 companies surveyed in the previous report, 14 responded to the request for additional information, five did not respond, and one asked to be deleted from the survey. One additional company was identified as being capable of performing LLMW treatability studies and six were identified as providers of laundering services for radioactively-contaminated protective clothing and/or respirators.

  15. Record new waste-to-energy capacity built in 1990 joins 128 existing plants

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    The Institute of Resource Recovery reports that waste-to-energy plants will operate at a record setting rate in 1991, handling 14% of the 185 million tons of trash expected to be generated. In addition, 47 plants with a capacity of 57,596 tons per day are in the advanced planning stages. Movement into construction will depend on factors such as financing and securing environmental permits. Some states are working towards integrated facilities that will combine waste reduction, recycling, combustion, and landfilling. Nevertheless, waste-to-energy will be a critical part of workable plans for the following reasons: it reduces the volume of trash up to 90%; it recovers steam and electricity from the combustion process, thus reducing the need for imported energy; present plants have some of the cleanest facilities in the country due to strict air emissions requirements.

  16. Effect Of Oxidation On Chromium Leaching And Redox Capacity Of Slag-Containing Waste Forms

    SciTech Connect (OSTI)

    Almond, P. M.; Stefanko, D. B.; Langton, C. A.

    2013-03-01

    The rate of oxidation is important to the long-term performance of reducing salt waste forms because the solubility of some contaminants, e.g., technetium, is a function of oxidation state. TcO{sub 4}{sup ?} in the salt solution is reduced to Tc(IV) and has been shown to react with ingredients in the waste form to precipitate low solubility sulfide and/or oxide phases [Shuh, et al., 1994, Shuh, et al., 2000, Shuh, et al., 2003]. Upon exposure to oxygen, the compounds containing Tc(IV) oxidize to the pertechnetate ion, Tc(VII)O{sub 4}{sup ?}, which is very soluble. Consequently the rate of technetium oxidation front advancement into a monolith and the technetium leaching profile as a function of depth from an exposed surface are important to waste form performance and ground water concentration predictions. An approach for measuring contaminant oxidation rate (effective contaminant specific oxidation rate) based on leaching of select contaminants of concern is described in this report. In addition, the relationship between reduction capacity and contaminant oxidation is addressed. Chromate was used as a non-radioactive surrogate for pertechnetate in simulated waste form samples. Depth discrete subsamples were cut from material exposed to Savannah River Site (SRS) ''field cured'' conditions. The subsamples were prepared and analyzed for both reduction capacity and chromium leachability. Results from field-cured samples indicate that the depth at which leachable chromium was detected advanced further into the sample exposed for 302 days compared to the sample exposed to air for 118 days (at least 50 mm compared to at least 20 mm). Data for only two exposure time intervals is currently available. Data for additional exposure times are required to develop an equation for the oxidation front progression. Reduction capacity measurements (per the Angus-Glasser method, which is a measurement of the ability of a material to chemically reduce Ce(IV) to Ce(III) in solution) performed on depth discrete samples could not be correlated with the amount of chromium leached from the depth discrete subsamples or with the oxidation front inferred from soluble chromium (i.e., effective Cr oxidation front). Exposure to oxygen (air or oxygen dissolved in water) results in the release of chromium through oxidation of Cr(III) to highly soluble chromate, Cr(VI). Residual reduction capacity in the oxidized region of the test samples indicates that the remaining reduction capacity is not effective in re-reducing Cr(VI) in the presence of oxygen. Consequently, this method for determining reduction capacity may not be a good indicator of the effective contaminant oxidation rate in a relatively porous solid (40 to 60 volume percent porosity). The chromium extracted in depth discrete samples ranged from a maximum of about 5.8 % at about 5 mm (118 day exposure) to about 4 % at about 10 mm (302 day exposure). The use of reduction capacity as an indicator of long-term performance requires further investigation. The carbonation front was also estimated to have advanced to at least 28 mm in 302 days based on visual observation of gas evolution during acid addition during the reduction capacity measurements. Depth discrete sampling of materials exposed to realistic conditions in combination with short term leaching of crushed samples has potential for advancing the understanding of factors influencing performance and will support conceptual model development.

  17. A system dynamic modeling approach for evaluating municipal solid waste generation, landfill capacity and related cost management issues

    SciTech Connect (OSTI)

    Kollikkathara, Naushad; Feng Huan; Yu Danlin

    2010-11-15

    As planning for sustainable municipal solid waste management has to address several inter-connected issues such as landfill capacity, environmental impacts and financial expenditure, it becomes increasingly necessary to understand the dynamic nature of their interactions. A system dynamics approach designed here attempts to address some of these issues by fitting a model framework for Newark urban region in the US, and running a forecast simulation. The dynamic system developed in this study incorporates the complexity of the waste generation and management process to some extent which is achieved through a combination of simpler sub-processes that are linked together to form a whole. The impact of decision options on the generation of waste in the city, on the remaining landfill capacity of the state, and on the economic cost or benefit actualized by different waste processing options are explored through this approach, providing valuable insights into the urban waste-management process.

  18. Water treatment capacity of forward osmosis systems utilizing power plant waste heat

    SciTech Connect (OSTI)

    Zhou, Xingshi; Gingerich, Daniel B.; Mauter, Meagan S.

    2015-06-11

    Forward osmosis (FO) has the potential to improve the energy efficiency of membrane-based water treatment by leveraging waste heat from steam electric power generation as the primary driving force for separation. In this study, we develop a comprehensive FO process model, consisting of membrane separation, heat recovery, and draw solute regeneration (DSR) models. We quantitatively characterize three alternative processes for DSR: distillation, steam stripping, and air stripping. We then construct a mathematical model of the distillation process for DSR that incorporates hydrodynamics, mass and heat transport resistances, and reaction kinetics, and we integrate this into a model for the full FO process. Finally, we utilize this FO process model to derive a first-order approximation of the water production capacity given the rejected heat quantity and quality available at U.S. electric power facilities. We find that the upper bound of FO water treatment capacity using low-grade heat sources at electric power facilities exceeds process water treatment demand for boiler water make-up and flue gas desulfurization wastewater systems.

  19. Water treatment capacity of forward osmosis systems utilizing power plant waste heat

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Xingshi; Gingerich, Daniel B.; Mauter, Meagan S.

    2015-06-11

    Forward osmosis (FO) has the potential to improve the energy efficiency of membrane-based water treatment by leveraging waste heat from steam electric power generation as the primary driving force for separation. In this study, we develop a comprehensive FO process model, consisting of membrane separation, heat recovery, and draw solute regeneration (DSR) models. We quantitatively characterize three alternative processes for DSR: distillation, steam stripping, and air stripping. We then construct a mathematical model of the distillation process for DSR that incorporates hydrodynamics, mass and heat transport resistances, and reaction kinetics, and we integrate this into a model for the fullmore » FO process. Finally, we utilize this FO process model to derive a first-order approximation of the water production capacity given the rejected heat quantity and quality available at U.S. electric power facilities. We find that the upper bound of FO water treatment capacity using low-grade heat sources at electric power facilities exceeds process water treatment demand for boiler water make-up and flue gas desulfurization wastewater systems.« less

  20. US Department of Energy interim mixed waste inventory report: Waste streams, treatment capacities and technologies: Volume 4, Site specific---Ohio through South Carolina

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    The Department of Energy (DOE) has prepared this report to provide an inventory of its mixed wastes and treatment capacities and technologies in response to Section 105(a) of the Federal Facility Compliance Act (FFCAct) of 1992 (Pub. L. No. 102-386). As required by the FFCAct-1992, this report provides site-specific information on DOE`s mixed waste streams and a general review of available and planned treatment facilities for mixed wastes at the following five Ohio facilities: Battelle Columbus Laboratories; Fernald Environmental Management Project; Mound Plant; Portsmouth Gaseous Diffusion Plant; and RMI, Titanium Company.

  1. summer_capacity_2010.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    Interconnection NERC Regional Assesment Area 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 FRCC 27,162 27,773 28,898 29,435 30,537 31,649 31,868 32,874 34,562 34,832 35,666 38,932 37,951 40,387 42,243 45,950 45,345 46,434 44,660 46,263 NPCC 46,016 45,952 46,007 46,380 47,465 48,290 48,950 50,240 51,760 53,450 54,270 55,888 55,164 53,936 51,580 57,402 60,879 58,221 59,896 55,730 Balance of Eastern Region 332,679 337,297 341,869 349,984

  2. Los Alamos National Laboratory transuranic waste characterization and certification program - an overview of capabilities and capacity

    SciTech Connect (OSTI)

    Rogers, P.S.Z.; Sinkule, B.J.; Janecky, D.R.; Gavett, M.A. [and others

    1997-02-01

    The Los Alamos National Laboratory (LANL) has full capability to characterize transuranic (TRU) waste for shipment to and disposal at the Waste Isolation Pilot Plant (WIPP) for its projected opening. LANL TRU waste management operations also include facilities to repackage both drums of waste found not to be certifiable for WIPP and oversized boxes of waste that must be size reduced for shipment to WIPP. All characterization activities and repackaging are carried out under a quality assurance program designed to meet Carlsbad Area Office (CAO) requirements. The flow of waste containers through characterization operations, the facilities used for characterization, and the electronic data management system used for data package preparation and certification of TRU waste at LANL are described.

  3. Summer Schools

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summer School Nuclear Forensics Space Weather Summer of Applied Geophysical Experience (SAGE) Los Alamos National Laboratory Logo Inside | Terms of Use, Privacy | Site Feedback...

  4. summer_nid_cr_cm_2004.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    Form EIA-411 for 2005 Released: February 7, 2008 Next Update: October 2007 Table 4. Summer Historic and Projected Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Council Regio (Megawatts and Percent) Projected Year Base Year Summer Contiguous U.S. ECAR FRCC MAAC Net Internal Demand (MW) Capacity Resources (MW) Capacity Margin (percent) Net Internal Demand (MW) Capacity Resources (MW) Capacity Margin (percent) Net Internal Demand (MW) Capacity

  5. Summer Schools

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program Offices Energy Security Council New Mexico Consortium Coordination Office Postdoc Program Students/Internships Centers, Institutes Center for Nonlinear Studies Engineering Institute Information Science & Technology Institute Center for Space and Earth Science Institute for Materials Science Seaborg Institute Summer Schools Engineering Institute Institute of Geophysics, Planetary Physics, Signatures Events NSEC » Summer Schools Summer Schools Offering various 8 to 12-week programs

  6. summer_nid_cr_cm_2003.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    t Form EIA-411 for 2005 Released: February 7, 2008 Next Update: October 2007 Table 4. Summer Historic and Projected Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Council Region, 1990 (Megawatts and Percent) Projected Year Base Year Summer Contiguous U.S. ECAR FRCC MAAC Net Internal Demand (MW) Capacity Resources (MW) Capacity Margin (percent) Net Internal Demand (MW) Capacity Resources (MW) Capacity Margin (percent) Net Internal Demand (MW)

  7. summer_nid_cr_cm_2005.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    d Form EIA-411 for 2005 Released: February 7, 2008 Next Update: October 2007 Table 4. Summer Historic and Projected Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Council Region, 2005 and 2006 through 2010 (Megawatts and Percent) Projected Year Base Year Summer Eastern Power Grid Contiguous U.S. FRCC MRO NPCC RFC Net Internal Demand (MW) Capacity Resources (MW) Capacity Margin (percent) Net Internal Demand (MW) Capacity Resources (MW)

  8. summer_nid_cr_cm_2006.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    h c Form EIA-411 for 2006 Released: February 7, 2008 Next Update: October 2008 Table 4. Summer Historic and Projected Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Corporation Region, 2006 and 2007 throug (Megawatts and Percent) Projected Year Base Year Summer Eastern Power Grid Contiguous U.S. FRCC MRO NPCC RFC Net Internal Demand (MW) Capacity Resources (MW) Capacity Margin (percent) Net Internal Demand (MW) Capacity Resources (MW)

  9. Summer Student

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summer Students Summer Student New Hires Employees and retirees are the building blocks of the Lab's success. Our employees get to contribute to the most pressing issues facing the nation. Contact (505) 667-4451, Option 6 Email Before you begin work, review the following guidance and complete outlined steps The new-hire process, including the official pre-arrival period, does not begin until you receive and accept your written offer letter. Pre-Arrival New Hire Process Benefit Options For your

  10. South Carolina Nuclear Profile - V C Summer

    U.S. Energy Information Administration (EIA) Indexed Site

    V C Summer" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,966,"8,487",100.3,"PWR","application/vnd.ms-excel","application/vnd.ms-excel" ,966,"8,487",100.3

  11. summer_nid_cr_cm_1990_2004.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    u Form EIA-411 for 2006 Released: February 7, 2008 Next Update: Not applicable for this table format Table 4a . Summer Historic Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Council Region, 1990 thro (Megawatts and Percent) Year Summer Contiguous U.S. ECAR FRCC MAAC Net Internal Demand (MW) Capacity Resources (MW) Capacity Margin (percent) Net Internal Demand (MW) Capacity Resources (MW) Capacity Margin (percent) Net Internal Demand (MW)

  12. Recommendation 223: Recommendations on Additional Waste Disposal...

    Office of Environmental Management (EM)

    3: Recommendations on Additional Waste Disposal Capacity Recommendation 223: Recommendations on Additional Waste Disposal Capacity ORSSAB's recommendations encourage DOE to...

  13. Doubling Geothermal Generation Capacity by 2020: A Strategic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Sources: Energy Information Association (2015) Nameplate Capacity: Form 860 Generator Data, State Electricity Profiles (July 2015). Summer Capacity: Annual Energy Review (2015). ...

  14. Summer School Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summer Institute IS&T Data Science at Scale Summer School IS&T Co-Design Summer School RELATED LINKS Affiliated Links IS&T Pillars New Mexico Consortium PRObE UCSC ISSDM...

  15. Liquid heat capacity lasers

    DOE Patents [OSTI]

    Comaskey, Brian J. (Walnut Creek, CA); Scheibner, Karl F. (Tracy, CA); Ault, Earl R. (Livermore, CA)

    2007-05-01

    The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

  16. Summer School Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summer School Programs Summer School Programs Summer schools are educational internship opportunities for undergraduate and graduate students. Contact Institute Director Stephan Eidenbenz (505) 667-3742 Email Professional Staff Assistant Nickole Aguilar Garcia (505) 665-3048 Email Summer schools are educational internship opportunities for undergraduate and graduate students. The goal of summer schools is to improve career prospects and build a recruiting pipeline into the many IS&T areas at

  17. summer_schedule3_2006.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    SUMMER Released: February 7, 2008 Next Update: October 2008 Table 5a . Summer (FRCC) Historical and Projected Demand and Capacity, Calendar Year 2006 (Megawatts) Region FRCC Subregion Country U SUMMER Actual Projected Line# DESCRIPTION 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 1 Internal Demand 45,751 46,878 48,037 49,280 50,249 51,407 52,464 53,548 54,622 55,896 57,189 2 Standby Demand - - - - - - - - - - 3 TOTAL INTERNAL DEMAND 45,751 46,878 48,037 49,280 50,249 51,407 52,464

  18. Summer_Gas_Outlook

    Gasoline and Diesel Fuel Update (EIA)

    (Energy Information Administration/Short-Term Energy Outlook -- April 2001) 1 Summer 2001 Motor Gasoline Outlook Summary April 2001 For the upcoming summer season (April to September), motor gasoline markets are projected to once again exhibit a very tight supply/demand balance. * Retail gasoline prices (regular grade) are expected to average $1.49 per gallon, slightly lower than last summer's average of $1.53 per gallon, but still above the previous (current-dollar) record summer average of

  19. Summer Research Fellowships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos National Laboratory LANL Menu National Security Education Center Post Doctoral Fellows Program Application Process & Eligibility Selection Process Reporting Requirements Summer Research Fellowships NSEC » Seaborg Institute » Summer Research Fellowships Summer Research Fellowships Research Fellowships will be offered in Nuclear and Radiochemistry and Actinide Science. Contacts Director Albert Migliori Deputy Franz Freibert 505 667-6879 Email Professional Staff Assistant Susan

  20. CEE Summer Program Meeting

    Broader source: Energy.gov [DOE]

    The Consortium for Energy Efficiency (CEE) is hosting the Summer Program Meeting to cover market transformation to accelerate uptake of efficient goods and services.

  1. Table 2. Ten largest plants by generation capacity, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Intermountain Power Project","Coal","Los Angeles Department of Water & Power",1800 ...

  2. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Bath County","Pumped storage","Virginia Electric & Power Co",3003 2,"North ...

  3. Hot Summer | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hot Summer July 27, 2010 One might think that we should be into the lazy, hazy days of summer. In contrast, since the beginning of June we have experienced a heat wave, and I am not referring to the "typical" Virginia summer with 100 degrees Fahrenheit registering on the thermometer. On June 1, we made our strategic plan presentation to the Office of Science. June 3, we made our mid-year performance presentation to the local Thomas Jefferson Site Office. June 6-9, the users held their

  4. summer_schedule3_2004.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    September 26, 2007 Next Update: October 2007 Summer (Part A.) Historical and Projected Demand and Capacity, Calendar Year 2004 (Megawatts) Region ECAR Subregion Country U SUMMER Actual Projected Line# Category Notes 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 01 Internal Demand 95300 103679 106753 108749 110942 112867 114598 116432 118241 119880 121783 02 Standby Demand 0 0 0 0 0 0 0 0 0 0 03 Total Internal Demand (01+02) 95300 103679 106753 108749 110942 112867 114598 116432 118241

  5. NARUC Summer Committee Meetings

    Broader source: Energy.gov [DOE]

    At the NARUC Summer Committee Meetings, you will meet utility regulators from every State in the U.S., along with federal and international officials. This is a wonderful opportunity for learning...

  6. NARUC Summer Committee Meeting

    Broader source: Energy.gov [DOE]

    The National Association of Regulatory Utility Commissioners (NARUC) is hosting their Summer Committee Meeting in New York City. Attendees will learn the latest in regulatory trends and sharing best practices.

  7. Student Summer Internships at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Student Summer Internships at NERSC Student Summer Internships at NERSC March 9, 2011 by Francesca Verdier NERSC has internship positions in cloud computing, data focused science,...

  8. Summer Camp 2050

    Broader source: Energy.gov [DOE]

    Students will work in small groups to apply knowledge of renewable energy to solve a problem. They will formulate a plan to power a summer camp, considering electrical power, hot water, appliances, costs, and environmental and social impacts. Students must present their plans to a mock city council and justify their choices based on data provided by the teacher.

  9. Top Performers Summer Fun

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Top Performers Summer Fun NSTec honors outstanding achievements. NNSA recognizes two of NFO's best. NSTEA offers hot vacation discounts. See pages 4-5. See page 3. Mitigation Fees Bring Opportunities for Tortoise Research Nevada National Security Site (NNSS) biologists have found a way to promote species research while keeping site-generated fees closer to home, thanks to a new agreement with the U.S. Fish and Wildlife Service (USFWS). In keeping with conservation laws, the USFWS charges NNSS

  10. Form EIA-411 for 2006",,"SUMMER

    U.S. Energy Information Administration (EIA) Indexed Site

    SUMMER" ,"Released: February 7, 2008" ,"Next Update: October 2008" "Table 5a. Summer (FRCC) Historical and Projected Demand and Capacity, Calendar Year 2006 " "(Megawatts)" "Region","FRCC" "Subregion", "Country","U"," " ,"SUMMER",,"Actual","Projected" "Line#",,"DESCRIPTION",2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016

  11. Form EIA-411 for 2008",,"SUMMER

    U.S. Energy Information Administration (EIA) Indexed Site

    SUMMER" ,"Released: February 2010" ,"Next Update: October 2010" "Table 5a. Summer (FRCC) Historical and Projected Demand and Capacity, Calendar Year 2008" "(Megawatts)" "Region","FRCC" "Subregion", "Country","U"," " ,"SUMMER",,"Actual","Projected" ,"Line#","DESCRIPTION",2008,2009,2010,2011,2012,2013,2014,2015,2016,2017,2018

  12. Berkeley-Stanford Summer School

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Berkeley-Stanford Summer School in Synchrotron Radiation July 8-14, 2001 The first Berkeley-Stanford summer school will provide basic lectures on the synchrotron radiation process,...

  13. Los Alamos Dynamics Summer School

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos Dynamics Summer School The Seventeenth Los Alamos Dynamics Summer School School overview and focus. Contact Institute Director Charles Farrar (505) 665-0860 Email Executive Administrator Ellie Vigil (505) 667-2818 Email Administrative Assistant Rebecca Duran (505) 665-8899 Email The Los Alamos Dynamics Summer School is a very selective summer school in which top upper-level US-citizen undergraduate students from universities around the nation attend lectures and work in teams of three

  14. summer_schedule3_2005.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    5a . Summer (FRCC) Historical and Projected Demand and Capacity, Calendar Year 2005 (Megawatts) Region FRCC Subregion Country U SUMMER Actual Projected Line# Category Notes 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 01 Internal Demand 46,396 45,520 46,725 48,030 49,233 50,221 51,343 52,490 53,686 54,830 56,130 02 Standby Demand - - - - - - - - - - - 03 Total Internal Demand (01+02) 46,396 45,520 46,725 48,030 49,233 50,221 51,343 52,490 53,686 54,830 56,130 04 Direct Control Load

  15. summer_schedule3_2010.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    A.1. FRCC Summer Historical and Projected Demand and Capacity, Data Year 2010 (Megawatts) Actual Data Year Country Season Area Subarea Line# DESCRIPTION 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2010 US SUM FRCC - 1 Unrestricted Non-coincident Peak Demand 45,722 46,091 46,658 47,446 48,228 49,278 50,036 50,833 51,377 52,186 53,083 2010 US SUM FRCC - 1a New Conservation (Energy Efficiency) - - - - - - - - - - 2010 US SUM FRCC - 1b Estimated Diversity - - - - - - - - - - 2010 US SUM

  16. 97summer.pgm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summer 1997 Los Alamos National Laboratory o f t h e N u c l e a r M a t e r i a l s T e c h n o l o g y D i v i s i o n Quarterly In This Issue 1 Source of the Actinide Concept 4 NMT Division Recycles, Purifies Plutonium-238 Oxide Fuel for Future Space Missions 6 New Mexico Welcomes "Plutonium Futures-The Science" Conference 7 "Plutonium Futures-The Science" Conference Program 16 NewsMakers Source of the Actinide Concept Th 90 232.0381 Thorium Pa 91 231.0359 Protactium U 92

  17. Los Alamos Dynamics Summer School

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos Dynamics Summer School » Los Alamos Dynamics Summer School The Seventeenth Los Alamos Dynamics Summer School Program Information and Application Process Contact Institute Director Charles Farrar (505) 665-0860 Email Executive Administrator Ellie Vigil (505) 667-2718 Email Administrative Assistant Rebecca Duran (505) 665-8899 Email How to Apply Students should email the following documents to LADSSApply@lanl.gov Application Form (pdf) A one-page cover letter describing your interest

  18. Los Alamos Dynamics Summer School

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Seventeenth Los Alamos Dynamics Summer School Program Information and Application Process Contact Institute Director Charles Farrar (505) 663-5330 Email Executive...

  19. Welcoming the Laboratory's summer students

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2016 all issues All Issues submit Welcoming the Laboratory's summer students A personal message from Alan Bishop, Principal Associate Director for Science, Technology, and...

  20. summer school flyer.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The summer school includes a wide range of topics such as: * Ring current and radiation belts * Magnetosphere-ionosphere coupling * Solar wind dynamics * Spacecraft charging *...

  1. ARM - ARM Summer Training and Science Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PlainsARM Summer Training and Science Applications Summer Training Navigation Agenda Instructor Bios Project Reports, Projects Presentations, and Lectures ARM Summer Training and Science Applications The summer training participants touring the Southern Great Plains site. The summer training participants touring the Southern Great Plains site. The ARM Summer Training and Science Applications event on observations and modeling of aerosol, clouds, and precipitation took place this summer July

  2. National Nuclear Chemistry Summer School

    Broader source: Energy.gov [DOE]

    he Division of Nuclear Chemistry and Technology of the American Chemical Society (ACS) is sponsoring two INTENSIVE six-week Summer Schools in Nuclear and Radiochemistry for undergraduates. Funding...

  3. National Nuclear Chemistry Summer School

    Broader source: Energy.gov [DOE]

    The Division of Nuclear Chemistry and Technology of the American Chemical Society (ACS) is sponsoring two INTENSIVE six-week Summer Schools in Nuclear and Radiochemistry for undergraduates. Funding is provided by the US Department of Energy.

  4. SMB 2014 - Imaging Summer School

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014 SMB Imaging Summer School July 11-15 2014 Apply Agenda 2014 SMB Agenda Maps & Directions Visiting SLAC The 1st SSRL SXRMI (Synchrotron X-ray MicroXAS Imaging) School will...

  5. Parallel Computing Summer Research Internship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Parallel Computing Parallel Computing Summer Research Internship Creates next-generation leaders in HPC research and applications development Contacts Program Co-Lead Robert (Bob) Robey Email Program Co-Lead Gabriel Rockefeller Email Program Co-Lead Hai Ah Nam Email Professional Staff Assistant Nickole Aguilar Garcia (505) 665-3048 Email The Parallel Computing Summer Research Internship is an intense 10 week program aimed at providing students with a solid foundation in modern high performance

  6. Summer Lake Aquaculture Aquaculture Low Temperature Geothermal...

    Open Energy Info (EERE)

    Summer Lake Aquaculture Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Summer Lake Aquaculture Aquaculture Low Temperature Geothermal Facility...

  7. summer_peak_1990_2004.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    c . Historical Noncoincident Summer Peak Load, Actual by North American Electric Reliability Council Region, 1990 through 2004 (Megawatts) Summer Noncoincident Peak Contiguous U.S....

  8. Hanford Dangerous Waste Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Double-Shell Tank System 204-AR Waste Unloading Facility Operating Unit 12 241-AP Tank Farm construction. See black pickup trucks for scale. The DSTs have limited capacity and are...

  9. FAQs about Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    about Storage Capacity How do I determine if my tanks are in operation or idle or ... Do I have to report storage capacity every month? No, only report storage capacity with ...

  10. summer_peak_2005.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    a . Noncoincident Summer Peak Load, Actual and Projected by North American Electric Reliability Council Region, 2005 and Projected 2006 through 2010 (Megawatts and 2005 Base Year) Summer Noncoincident Peak Contiguous U.S. Eastern Power Grid Texas Power Grid Western Power Grid Projected Year Base Year FRCC MRO (U.S.) NPCC (U.S.) RFC SERC SPP ERCOT WECC (U.S.) 2005 758,876 46,396 39,918 58,960 190,200 190,705 41,727 60,210 130,760 Projected Contiguous U.S. FRCC MRO (U.S.) NPCC (U.S.) RFC SERC SPP

  11. summer_peak_2006.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    a . Noncoincident Summer Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, 2006 and Projected 2007 through 2011 (Megawatts and 2006 Base Year) Summer Noncoincident Peak Contiguous U.S. Eastern Power Grid Texas Power Grid Western Power Grid Projected Year Base Year FRCC MRO (U.S.) NPCC (U.S.) RFC SERC SPP ERCOT WECC (U.S.) 2006 789,475 45,751 42,194 63,241 191,920 199,052 42,882 62,339 142,096 Projected Contiguous U.S. FRCC MRO (U.S.) NPCC (U.S.) RFC SERC

  12. SUMMER

    U.S. Energy Information Administration (EIA) Indexed Site

    46,263 42,820 42,831 43,409 43,899 44,451 45,015 45,674 46,351 47,199 47,988 4a Demand Response used for Reserves - Spinning 0 0 0 0 0 0 0 0 0 0 0 4b Demand Response used for ...

  13. Santa Cruz summer study papers

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1980-01-01

    Utilization of conservation measures and application of passive solar design in buildings are examined. The notion that solar energy is materials-intensive and requires so much energy in construction as to be impractical is dispelled. Also, the notion that conservation is doing without is dispelled. This report is a collection of papers by the author related to the Summer Study and entitled: On the Quality of Buildings; Balanced Design; Technical Potential of Combined Passive Solar and Conservation Strategies; and Alternative BEPS Implementation.

  14. Summer of Applied Geophysical Experience

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summer of Applied Geophysical Experience (SAGE) 2016 - Our 34 rd Year! SAGE is a 3-4 week research and education program in exploration geophysics for graduate, undergraduate students, and working professionals based in Santa Fe, NM, U.S.A. Application deadline March 27, 2016, 5:00pm MDT SAGE students, faculty, teaching assistants, and visiting scientists acquire, process and interpret reflection/refraction seismic, magnetotelluric (MT)/electromagnetic (EM), ground penetrating radar (GPR),

  15. SNOWMASS (DPF Community Summer Study)

    SciTech Connect (OSTI)

    Cronin-Hennessy, et al, Daniel

    2013-08-06

    The 2013 Community Summer Study, known as Snowmass," brought together nearly 700 physicists to identify the critical research directions for the United States particle physics program. Commissioned by the American Physical Society, this meeting was the culmination of intense work over the past year by more than 1000 physicists that defined the most important questions for this field and identified the most promising opportunities to address them. This Snowmass study report is a key resource for setting priorities in particle physics.

  16. Summer Series 2012 - Shashi Buluswar

    ScienceCinema (OSTI)

    Shashi Buluswar

    2013-06-24

    The last installment of the "Summer Series of Conversations" took place Wednesday, August 1, with guest Shashi Buluswar, the executive director of the LBNL Institute for Globally Transformative Technologies (LIGTT). The Institute seeks to foster the discovery, development and deployment of a generation of low-carbon, affordable technologies that will advance sustainable methods to fight global poverty. The event, was hosted by Public Affairs Head Jeff Miller.

  17. Summer Series 2012 - Shashi Buluswar

    SciTech Connect (OSTI)

    Shashi Buluswar

    2012-08-08

    The last installment of the "Summer Series of Conversations" took place Wednesday, August 1, with guest Shashi Buluswar, the executive director of the LBNL Institute for Globally Transformative Technologies (LIGTT). The Institute seeks to foster the discovery, development and deployment of a generation of low-carbon, affordable technologies that will advance sustainable methods to fight global poverty. The event, was hosted by Public Affairs Head Jeff Miller.

  18. Los Alamos Space Weather Summer School

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Non-U.S Citizens Mentors, Projects Lectures Papers, Reports Photos NSEC IGPPS Space Weather Summer School Los Alamos Space Weather Summer School June 6 - July 29, 2016...

  19. ARM - Field Campaign - Summer UAV Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsSummer UAV Campaign Campaign Links ARM UAV Program Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Summer...

  20. Los Alamos Dynamics Summer School Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos Dynamics Summer School » Los Alamos Dynamics Summer School-Overview Los Alamos Dynamics Summer School Projects Los Alamos Dynamics Summer School Projects and Resources Contact Institute Director Charles Farrar (505) 665-0860 Email Executive Administrator Ellie Vigil (505) 667-2818 Email Administrative Assistant Rebecca Duran (505) 665-8899 Email Past Programs and Resources 2015 2014 STUDENT RESOURCES Precollege Undergrads Graduates Postdocs Housing Los Alamos National Laboratory Logo

  1. Refinery Capacity Report

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Storage Capacity at Operable Refineries by PAD District as of January 1, 2006 PDF 9 Shell Storage Capacity at Operable Refineries by PAD District as of January 1, 2006 PDF 10...

  2. ORISE: Capacity Building

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capacity Building Because public health agencies must maintain the resources to respond to public health challenges, critical situations and emergencies, the Oak Ridge Institute for Science and Education (ORISE) helps government agencies and organizations develop a solid infrastructure through capacity building. Capacity building refers to activities that improve an organization's ability to achieve its mission or a person's ability do his or her job more effectively. For organizations, capacity

  3. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"US GSA Heating and Transmission","Natural gas","US GSA Heating and Transmission",9

  4. ,"Summer Noncoincident Peak Load",,"Contiguous U.S. ","Eastern...

    U.S. Energy Information Administration (EIA) Indexed Site

    e. Historical Noncoincident Summer Peak Load, Actual by North American Electric Reliability Corporation Region, 2005 through 2009 " ,"(Megawatts)" ,,,,," " ,"Summer Noncoincident...

  5. summer_peak_2003.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    3 and Projected 2004 through 2008 (Megawatts and 2003 Base Year) Summer Noncoincident Peak Contiguous U.S. Eastern Power Grid Texas Power Grid Western Power Grid Projected Year Base Year ECAR FRCC MAAC MAIN MAPP (U.S.) NPCC (U.S.) SERC SPP ERCOT WECC (U.S.) 1990 546,331 79,258 27,266 42,613 40,740 24,994 44,116 94,677 52,541 42,737 97,389 1991 551,418 81,224 28,818 45,937 41,598 25,498 46,594 95,968 51,885 41,870 92,026 1992 548,707 78,550 30,601 43,658 38,819 22,638 43,658 97,635 51,324 42,619

  6. summer_peak_2004.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    4 and Projected 2005 through 2009 (Megawatts and 2004 Base Year) Summer Noncoincident Peak Contiguous U.S. Eastern Power Grid Texas Power Grid Western Power Grid Projected Year Base Year ECAR FRCC MAAC MAIN MAPP/MRO (U.S.) NPCC (U.S.) SERC SPP ERCOT WECC (U.S.) 1990 546,331 79,258 27,266 42,613 40,740 24,994 44,116 94,677 52,541 42,737 97,389 1991 551,418 81,224 28,818 45,937 41,598 25,498 46,594 95,968 51,885 41,870 92,026 1992 548,707 78,550 30,601 43,658 38,819 22,638 43,658 97,635 51,324

  7. EIA - Electricity Generating Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    Electricity Generating Capacity Release Date: January 3, 2013 | Next Release: August 2013 Year Existing Units by Energy Source Unit Additions Unit Retirements 2011 XLS XLS XLS 2010...

  8. Excess Capacity from LADWP Control Area

    Office of Environmental Management (EM)

    Excess Capacity from LADWP Control Area (LADWP, Glendale, Burbank) Summer 2001 1 in 2 1 in 5 1in 10 Total Load (CEC Draft Demand Forecast 10/16/2000 6,169 6,471 6,533 LADWP DSM Program (10) Sales LADWP to CDWR 77 LADWP to TID 51 6,287 6,589 6,651 (In-State and Out-of-State) Thermal LADWP (LADWP 2000 Integrated Resource Plan) 5.170 Burbank 313 Glendale 297 Self Generation - in LADWP Control Area 338 6.118 Allowance for outages (6%) (367) Total 5,751 LADWP Hydro 1,948 Firm Contracts and

  9. Los Alamos Space Weather Summer School

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Overview Program Details Local Information Apply Application Process Eligibility Criteria General Information for Applicants Information for Non-U.S Citizens Mentors, Projects Lectures Papers, Reports Photos NSEC » CSES » Space Weather Summer School Los Alamos Space Weather Summer School June 6 - July 29, 2016 Contacts Director Misa Cowee Email Administrative Assistant Mary Wubbena Email Request more information Email Los Alamos Space Weather Summer School 4:05 Applications for the 2016

  10. EIA lowers forecast for summer gasoline prices

    Gasoline and Diesel Fuel Update (EIA)

    EIA lowers forecast for summer gasoline prices U.S. gasoline prices are expected to be lower this summer than previously thought. The price for regular gasoline this summer is now expected to average $3.53 a gallon, according to the new monthly forecast from the U.S. Energy Information Administration. That's down 10 cents from last month's forecast and 16 cents cheaper than last summer. After reaching a weekly peak of $3.78 a gallon in late February, pump prices fell nine weeks in a row to $3.52

  11. Summer 2004 Cyclotron Institute REU Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Habas; (Back row L to R) Mike Cho, Samuel Zenobia, Shalah Allison, Sarah Lumpkins, Nelson Martinez, Justin Rollins. Summer 2004 Student Presentations and Posters Shalah...

  12. Variable capacity gasification burner

    SciTech Connect (OSTI)

    Saxon, D.I.

    1985-03-05

    A variable capacity burner that may be used in gasification processes, the burner being adjustable when operating in its intended operating environment to operate at two different flow capacities, with the adjustable parts being dynamically sealed within a statically sealed structural arrangement to prevent dangerous blow-outs of the reactants to the atmosphere.

  13. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    CORPORATION / Refiner / Location Table 5. Refiners' Total Operable Atmospheric Crude Oil Distillation Capacity as of January 1, 2015 Calendar Day Barrels per CORPORATION / Refiner / Location Calendar Day Barrels per Companies with Capacity Over 100,000 bbl/cd .............................................................................................................................. VALERO ENERGY CORP 1,964,300 Valero Refining Co Texas LP

  14. Knudsen heat capacity

    SciTech Connect (OSTI)

    Babac, Gulru; Reese, Jason M.

    2014-05-15

    We present a Knudsen heat capacity as a more appropriate and useful fluid property in micro/nanoscale gas systems than the constant pressure heat capacity. At these scales, different fluid processes come to the fore that are not normally observed at the macroscale. For thermodynamic analyses that include these Knudsen processes, using the Knudsen heat capacity can be more effective and physical. We calculate this heat capacity theoretically for non-ideal monatomic and diatomic gases, in particular, helium, nitrogen, and hydrogen. The quantum modification for para and ortho hydrogen is also considered. We numerically model the Knudsen heat capacity using molecular dynamics simulations for the considered gases, and compare these results with the theoretical ones.

  15. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Cokers Catalytic Crackers Hydrocrackers Capacity Inputs Capacity Inputs Capacity Inputs Table 8. Capacity and Fresh Feed Input to Selected Downstream Units at U.S. Refineries, 2013 - 2015 (Barrels per Calendar Day) Reformers Capacity Inputs 2013 2,596,369 5,681,643 1,887,024 2,302,764 4,810,611 1,669,540 2,600,518 3,405,017 74,900 543,800 41,500 47,537 387,148 33,255 PADD I 162,249 240,550 450,093 1,196,952 303,000 414,732 1,028,003 263,238 PADD II 648,603 818,718 1,459,176 2,928,673 981,114

  16. Hanford Dangerous Waste Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    We don't expect any risk from this site. The permit ensures operation and closure of this facility do not harm humans or the environment. Liquid Effluent Retention Facility Effluent Treatment Facility Operating Unit #3 What happens to the waste it receives? LERF has three lined basins with a capacity of 88.5 million liters. ETF removes or destroys dangerous waste in liquid waste. It uses treatments such as filters, reverse osmosis, pH adjustment, and ultraviolet light. Water is treated, then

  17. ,"Year",,"Summer",,,"Eastern Power Grid",,,,,,,,,,,,,,,,,,,,...

    U.S. Energy Information Administration (EIA) Indexed Site

    Historic Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Council Region, 1990 through 2004 " ,"(Megawatts and Percent)"...

  18. WINDExchange: Potential Wind Capacity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Potential Wind Capacity Potential wind capacity maps are provided for a 2014 industry standard wind turbine installed on a 110-m tower, which represents plausible current technology options, and a wind turbine on a 140-m tower, which represents near-future technology options. Enlarge image This map shows the wind potential at a 110-m height for the United States. Download a printable map. Click on a state to view the wind map for that state. * Grid Granularity = 400 sq km* 35% Gross Capacity

  19. Refinery Capacity Report

    Reports and Publications (EIA)

    2015-01-01

    Data series include fuel, electricity, and steam purchased for consumption at the refinery; refinery receipts of crude oil by method of transportation; and current and projected atmospheric crude oil distillation, downstream charge, and production capacities. Respondents are operators of all operating and idle petroleum refineries (including new refineries under construction) and refineries shut down during the previous year, located in the 50 states, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, and other U.S. possessions. The Refinery Capacity Report does not contain working and shell storage capacity data. This data is now being collected twice a year as of March 31 and September 30 on the Form EIA-810, "Monthly Refinery Report", and is now released as a separate report Working and Net Available Shell Storage Capacity.

  20. Sandia National Laboratories: 2011's Second Zero Waste Lunch Event

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2011's Second Zero Waste Lunch Event June 22, 2011 zero waste station Zero Waste Station In collaboration with Sandia National Laboratories' New Mexico catering crew from Sodexo and composting vendor Soilutions, Pollution Prevention (P2) led a successful "Zero Waste" Lunch Event at Hardin Field during the Student Internship Program's summer welcome event. Replacing the forest of trash cans that usually appear at picnic events, three stations were strategically arranged to divert as

  1. Dual capacity reciprocating compressor

    DOE Patents [OSTI]

    Wolfe, R.W.

    1984-10-30

    A multi-cylinder compressor particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor rotation is provided with an eccentric cam on a crank pin under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180[degree] apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons whose connecting rods ride on a crank pin without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation. 6 figs.

  2. Dual capacity reciprocating compressor

    DOE Patents [OSTI]

    Wolfe, Robert W. (Wilkinsburg, PA)

    1984-01-01

    A multi-cylinder compressor 10 particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor 16 rotation is provided with an eccentric cam 38 on a crank pin 34 under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180.degree. apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons 24 whose connecting rods 30 ride on a crank pin 36 without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation.

  3. Geothermal Plant Capacity Factors

    SciTech Connect (OSTI)

    Greg Mines; Jay Nathwani; Christopher Richard; Hillary Hanson; Rachel Wood

    2015-01-01

    The capacity factors recently provided by the Energy Information Administration (EIA) indicated this plant performance metric had declined for geothermal power plants since 2008. Though capacity factor is a term commonly used by geothermal stakeholders to express the ability of a plant to produce power, it is a term frequently misunderstood and in some instances incorrectly used. In this paper we discuss how this capacity factor is defined and utilized by the EIA, including discussion on the information that the EIA requests from operations in their 923 and 860 forms that are submitted both monthly and annually by geothermal operators. A discussion is also provided regarding the entities utilizing the information in the EIA reports, and how those entities can misinterpret the data being supplied by the operators. The intent of the paper is to inform the facility operators as the importance of the accuracy of the data that they provide, and the implications of not providing the correct information.

  4. NNMCAB Newsletter: Summer 2014 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    In This Issue: Members Attend Oakridge Meeting Student Member Recruitment College Bound Student Members New Social Media Outreach New Recommendations for FY'14 PDF icon Volume II, Issue III - Summer 2014 More Documents & Publications NNMCAB Newsletter: Winter 2015

  5. Summer 2011 Cyclotron Institute REU Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 REU Lecture Notes Poster Guidelines 2011 Career Day Recap 2011 CEU 2011 Projects Summer 2011 Program The Texas A&M Cyclotron Institute, in conjunction with the National Science Foundation, is serving as a Research Experiences for Undergraduates site during the summer of 2011. This REU site focuses on research in nuclear physics and nuclear chemistry. Students will have the opportunity to work closely with internationally renowned scientists at a major university-based nuclear facility.

  6. Pilot summer program supports science teachers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pilot summer program supports science teachers Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:Mar. 2016 all issues All Issues » submit Pilot summer program supports science teachers Regional teachers learn about what "matters" July 1, 2013 Teachers expand their Science, Technology, Engineering and Math (STEM) skills during a pilot workshop New Mexico Public Education Department's Math and Science Director, Lesley Galyas

  7. New Hire Process for Summer Students

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Hire Process New Hire Process for Summer Students Employees and retirees are the building blocks of the Lab's success. Our employees get to contribute to the most pressing issues facing the nation. Contact (505) 667-4451, Option 6 Email New Hire Orientation 2016 Summer Student agenda (pdf) Required documents Review and familiarize yourself with the New Hire forms listed below. Ensure you have read and understand what essential information is needed to complete each form at new hire

  8. Summer 2003 Motor Gasoline Outlook.doc

    Gasoline and Diesel Fuel Update (EIA)

    3 1 Short-Term Energy Outlook April 2003 Summer 2003 Motor Gasoline Outlook Summary For the upcoming summer season (April to September 2003), high crude oil costs and other factors are expected to yield average retail motor gasoline prices higher than those of last year. Current crude oil prices reflect a substantial uncertainty premium due to concerns about the current conflict in the Persian Gulf, lingering questions about whether Venezuelan oil production will recover to near pre-strike

  9. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    District and State Production Capacity Alkylates Aromatics Asphalt and Road Oil Isomers Lubricants Marketable Petroleum Coke Sulfur (short tons/day) Hydrogen (MMcfd) Table 2. Production Capacity of Operable Petroleum Refineries by PAD District and State as of January 1, 2015 (Barrels per Stream Day, Except Where Noted) a 83,429 10,111 26,500 87,665 21,045 21,120 69 1,159 PAD District I Delaware 11,729 5,191 0 6,000 0 13,620 40 596 New Jersey 29,200 0 65,000 4,000 12,000 7,500 26 280 Pennsylvania

  10. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Distillation Crude Oil Atmospheric Distillation Vacuum Cracking Thermal Catalytic Cracking Fresh Recycled Catalytic Hydro- Cracking Catalytic Reforming Desulfurization Hydrotreating/ Fuels Solvent Deasphalting Downstream Charge Capacity Table 6. Operable Crude Oil and Downstream Charge Capacity of Petroleum Refineries, January 1, 1986 to (Thousand Barrels per Stream Day, Except Where Noted) January 1, 2015 JAN 1, 1986 16,346 6,892 1,880 5,214 463 1,125 3,744 8,791 NA JAN 1, 1987 16,460 6,935

  11. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Alkylates Aromatics Road Oil and Lubricants Petroleum Coke (MMcfd) Hydrogen Sulfur (short tons/day) Production Capacity Asphalt Isomers Marketable Table 7. Operable Production Capacity of Petroleum Refineries, January 1, 1986 to January 1, 2015 (Thousand Barrels per Stream Day, Except Where Noted) a JAN 1, 1986 941 276 804 258 246 356 2,357 NA JAN 1, 1987 974 287 788 326 250 364 2,569 23,806 JAN 1, 1988 993 289 788 465 232 368 2,418 27,639 JAN 1, 1989 1,015 290 823 469 230 333 2,501 28,369 JAN

  12. Summer Lake Hot Springs Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Summer Lake Hot Springs Space Heating Low Temperature Geothermal Facility Facility Summer Lake...

  13. Summer Infiltration/Ventilation Test Results from the FRTF Laboratory...

    Energy Savers [EERE]

    Summer InfiltrationVentilation Test Results from the FRTF Laboratory Summer InfiltrationVentilation Test Results from the FRTF Laboratory This presentation was delivered at the ...

  14. Building America Summer 2012 Technical Update Meeting Report...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summer 2012 Technical Update Meeting Report: Denver, Colorado - July 24-26, 2012 Building America Summer 2012 Technical Update Meeting Report: Denver, Colorado - July 24-26, 2012...

  15. For Cape Wind, Summer Breeze Makes Offshore Wind Feel Fine |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    For Cape Wind, Summer Breeze Makes Offshore Wind Feel Fine For Cape Wind, Summer Breeze Makes ... one of the world's largest wind farms, the Department's Loan Programs Office ...

  16. Computer System, Cluster and Networking Summer Institute (CSCNSI...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NSEC ISTI Summer School Programs CSCNSI Computer System, Cluster and Networking Summer Institute Emphasizes practical skills development Contact Leader Stephan Eidenbenz...

  17. Summer Schools in Nuclear and Radiochemistry

    SciTech Connect (OSTI)

    Silber, Herbert B.

    2013-06-20

    The ACS Summer Schools in Nuclear and Radiochemistry (herein called Summer Schools) were funded by the U.S. Department of Energy and held at San Jose State University (SJSU) and Brookhaven National Laboratory (BNL). The Summer Schools offer undergraduate students with U.S. citizenship an opportunity to complete coursework through ACS accredited chemistry degree programs at SJSU or the State University of New York at Stony Brook (SBU). The courses include lecture and laboratory work on the fundamentals and applications of nuclear and radiochemistry. The number of students participating at each site is limited to 12, and the low student-to-instructor ratio is needed due to the intense nature of the six-week program. To broaden the students perspectives on nuclear science, prominent research scientists active in nuclear and/or radiochemical research participate in a Guest Lecture Series. Symposia emphasizing environmental chemistry, nuclear medicine, and career opportunities are conducted as a part of the program. The Department of Energys Office of Basic Energy Sciences (BES) renewed the five-year proposal for the Summer Schools starting March 1, 2007, with contributions from Biological and Environmental Remediation (BER) and Nuclear Physics (NP). This Final Technical Report covers the Summer Schools held in the years 2007-2011.

  18. Refinery Capacity Report

    Gasoline and Diesel Fuel Update (EIA)

    1 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels per Atmospheric Crude Oil Distillation Capacity Idle Operating Total Operable Refineries Number of State and PAD District a b b 14 10 4 1,617,500 1,205,000 412,500 1,708,500 1,273,500 435,000 ............................................................................................................................................... PAD District I 1 0 1 182,200 0 182,200 190,200 0 190,200

  19. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels per Atmospheric Crude Oil Distillation Capacity Idle Operating Total Operable Refineries Number of State and PAD District a b b 9 9 0 1,268,500 1,236,500 32,000 1,332,000 1,297,000 35,000 ............................................................................................................................................... PAD District I 1 1 0 182,200 182,200 0 190,200 190,200 0

  20. CSTI high capacity power

    SciTech Connect (OSTI)

    Winter, J.M.

    1994-09-01

    The SP-100 program was established in 1983 by DOD, DOE, and NASA as a joint program to develop the technology necessary for space nuclear power systems for military and civil application. During FY86 and 87, the NASA SP-100 Advanced Technology Program was devised to maintain the momentum of promising technology advancement efforts started during Phase I of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for future space applications. In FY88, the Advanced Technology Program was incorporated into NASA`s new Civil Space Technology Initiative (CSTI). The CSTI Program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA SP-100 Advanced Technology project, and provides a bridge to NASA Project Pathfinder. The elements of CSTI High Capacity Power development include Conversion Systems, Thermal Management, Power Management, System Diagnostics, and Environmental Interactions. Technology advancement in all areas, including materials, is required to assure the high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall program will develop and demonstrate the technology base required to provide a wide range of modular power systems as well as allowing mission independence from solar and orbital attitude requirements. Several recent advancements in CSTI High Capacity power development will be discussed.

  1. Waste Determination Equivalency - 12172

    SciTech Connect (OSTI)

    Freeman, Rebecca D.

    2012-07-01

    The Savannah River Site (SRS) is a Department of Energy (DOE) facility encompassing approximately 800 square kilometers near Aiken, South Carolina which began operations in the 1950's with the mission to produce nuclear materials. The SRS contains fifty-one tanks (2 stabilized, 49 yet to be closed) distributed between two liquid radioactive waste storage facilities at SRS containing carbon steel underground tanks with storage capacities ranging from 2,800,000 to 4,900,000 liters. Treatment of the liquid waste from these tanks is essential both to closing older tanks and to maintaining space needed to treat the waste that is eventually vitrified or disposed of onsite. Section 3116 of the Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005 (NDAA) provides the Secretary of Energy, in consultation with the Nuclear Regulatory Commission (NRC), a methodology to determine that certain waste resulting from prior reprocessing of spent nuclear fuel are not high-level radioactive waste if it can be demonstrated that the waste meets the criteria set forth in Section 3116(a) of the NDAA. The Secretary of Energy, in consultation with the NRC, signed a determination in January 2006, pursuant to Section 3116(a) of the NDAA, for salt waste disposal at the SRS Saltstone Disposal Facility. This determination is based, in part, on the Basis for Section 3116 Determination for Salt Waste Disposal at the Savannah River Site and supporting references, a document that describes the planned methods of liquid waste treatment and the resulting waste streams. The document provides descriptions of the proposed methods for processing salt waste, dividing them into 'Interim Salt Processing' and later processing through the Salt Waste Processing Facility (SWPF). Interim Salt Processing is separated into Deliquification, Dissolution, and Adjustment (DDA) and Actinide Removal Process/Caustic Side Solvent Extraction Unit (ARP/MCU). The Waste Determination was signed by the Secretary of Energy in January of 2006 based on proposed processing techniques with the expectation that it could be revised as new processing capabilities became viable. Once signed, however, it became evident that any changes would require lengthy review and another determination signed by the Secretary of Energy. With the maturation of additional salt removal technologies and the extension of the SWPF start-up date, it becomes necessary to define 'equivalency' to the processes laid out in the original determination. For the purposes of SRS, any waste not processed through Interim Salt Processing must be processed through SWPF or an equivalent process, and therefore a clear statement of the requirements for a process to be equivalent to SWPF becomes necessary. (authors)

  2. Assessment of Summer 1997 Motor Gasoline Price Increase

    Reports and Publications (EIA)

    1998-01-01

    Assesses the 1997 late summer gasoline market and some of the important issues surrounding that event.

  3. ARM - Field Campaign - Summer 1996 SCM IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsSummer 1996 SCM IOP ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Summer 1996 SCM IOP 1996.07.01 - 1996.07.31 Lead Scientist : David Randall Data Availability Data Plots from Colorado State University Data Plots from Livermore National Laboratory Actual data files for a number of past SCM IOPs are available from the ARM Archive. For data sets, see below. Abstract These seasonal SCM IOPs are

  4. Inverse Design Summer School brochure, Sept 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Denver Marriott West * 1717 Denver West Blvd. * Golden, CO 80401 1-888-238-1803 (toll-free) * 303-279-9100 (local) Inverse Design Summer School September 13-14, 2011 The Center for Inverse Design-an Energy Frontier Research Center of the U.S. Department of Energy- is offering a no-cost, two-day summer school on inverse design. We invite you to attend if you are a: * Scientist or engineer interested in materials design and discovery * Technical leader in materials, electronics, or chemical

  5. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Former Corporation/Refiner Total Atmospheric Crude Oil Distillation Capacity (bbl/cd) New Corporation/Refiner Date of Sale Table 12. Refinery Sales During 2014 Lindsay Goldberg LLC/Axeon Speciality Products LLC Nustar Asphalt LLC/Nustar Asphalt Refining LLC 2/14 Savannah, GA 28,000 Lindsay Goldberg LLC/Axeon Specialty Products LLC Nustar Asphalt LLC/Nustar Asphalt Refining LLC 2/14 Paulsboro, NJ 70,000 bbl/cd= Barrels per calendar day Sources: Energy Information Administration (EIA) Form

  6. Physics Meets Biology (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Chu, Steve [Director, LBNL

    2011-04-28

    Summer Lecture Series 2006: If scientists could take advantage of the awesomely complex and beautiful functioning of biologys natural molecular machines, their potential for application in many disciplines would be incalculable. Nobel Laureate and Director of the Lawrence Berkeley National Laboratory Steve Chu explores Possible solutions to global warming and its consequences.

  7. SEED Presentation- ACEEE Summer Study 2014

    Broader source: Energy.gov [DOE]

    The Standard Energy Efficiency Data (SEED)™ Platform helps organizations manage and share large datasets about building performance: State and local governments implementing building benchmarking regulations, building managers, energy efficiency program managers, and more. This is a presentation given by the SEED Team at the ACEEE Summer Study in August 2014.

  8. Summer Study on Energy Efficiency in Buildings

    Broader source: Energy.gov [DOE]

    The 2016 Summer Study will be the 19th biennial ACEEE conference on Energy Efficiency in Buildings. A diverse group of professionals from around the world will gather at this pre-eminent meeting to discuss the technological basis for, and practical implementation of, actions to reduce energy use and the climate impacts associated with buildings.

  9. ,"Projected Year Base","Year","Summer",,,"Eastern Power Grid",,,,,,,,,,,,,,,,,,"Texas Power Grid",,,"Western Power Grid"

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Summer Historic and Projected Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Corporation Region, 2006 and 2007 through 2011 " " ","(Megawatts and Percent)" ,"Projected Year Base","Year","Summer",,,"Eastern Power Grid",,,,,,,,,,,,,,,,,,"Texas Power Grid",,,"Western Power Grid" ,,,"Contiguous U.S."

  10. ,"Projected Year Base","Year","Summer",,,"Eastern Power Grid",,,,,,,,,,,,,,,,,,"Texas Power Grid",,,"Western Power Grid"

    U.S. Energy Information Administration (EIA) Indexed Site

    March 2009" ,"Next Update: October 2009" ,"Table 4. Summer Historic and Projected Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Corporation Region, 2007 and 2008 through 2012 " " ","(Megawatts and Percent)" ,"Projected Year Base","Year","Summer",,,"Eastern Power Grid",,,,,,,,,,,,,,,,,,"Texas Power Grid",,,"Western Power Grid"

  11. ,"Projected Year Base","Year","Summer",,,"Eastern Power Grid",,,,,,,,,,,,,,,,,,"Texas Power Grid",,,"Western Power Grid"

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Summer Historic and Projected Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Corporation Region, 2008 and 2009 through 2013 " " ","(Megawatts and Percent)" ,"Projected Year Base","Year","Summer",,,"Eastern Power Grid",,,,,,,,,,,,,,,,,,"Texas Power Grid",,,"Western Power Grid" ,,,"Contiguous U.S." ,,,,,,"FRCC",,,"MRO

  12. Pre-Arrival for Summer Students

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pre-Arrival Pre-Arrival for Summer Students Employees and retirees are the building blocks of the Lab's success. Our employees get to contribute to the most pressing issues facing the nation. Contact (505) 667-4451, Option 6 Email Information you should know prior to attending New Hire Orientation Before attending New Hire Orientation, ensure you have reviewed, signed, and returned your Offer Letter to a Human Resources (HR) Division Representative. Do NOT report to the New-Hire Orientation

  13. SAGE, Summer of Applied Geophysical Experience

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Apply Who Qualifies Special Undergrad Information Contributors Faculty Past Programs Photo Gallery NSEC » CSES » SAGE SAGE, the Summer of Applied Geophysical Experience Application deadline: March 27, 2016, 5:00 pm MDT Contacts Institute Director Reinhard Friedel-Los Alamos SAGE Co-Director W. Scott Baldridge-Los Alamos SAGE Co-Director Larry Braile-Purdue University Professional Staff Assistant Georgia Sanchez (505) 665-0855 Email Application process for SAGE 2016 is now open. U.S.

  14. High capacity oil burner

    SciTech Connect (OSTI)

    Pedrosa, O.A. Jr.; Couto, N.C.; Fanqueiro, R.C.C.

    1983-11-01

    The present invention relates to a high capacity oil burner comprising a cylindrical atomizer completely surrounded by a protective cylindrical housing having a diameter from 2 to 3 times greater than the diameter of said atomizer; liquid fuels being injected under pressure into said atomizer and accumulating within said atomizer in a chamber for the accumulation of liquid fuels, and compressed air being injected into a chamber for the accumulation of air; cylindrical holes communicating said chamber for the accumulation of liquid fuels with the outside and cylindrical holes communicating said chamber for the accumulation of air with said cylindrical holes communicating the chamber for the accumulation of liquids with the outside so that the injection of compressed air into said liquid fuel discharge holes atomizes said fuel which is expelled to the outside through the end portions of said discharge holes which are circumferentially positioned to be burnt by a pilot flame; said protecting cylindrical housing having at its ends perforated circular rings into which water is injected under pressure to form a protecting fan-like water curtain at the rear end of the housing and a fan-like water curtain at the flame to reduce the formation of soot; the burning efficiency of said burner being superior to 30 barrels of liquid fuel per day/kg of the apparatus.

  15. Hot Topics Summer Workshops | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summer Workshops Hot Topics Summer Workshops Our recent workshops on Energy and the Environment and focusing on bringing cutting edge science into the classroom for teachers grades 5-12.

  16. Hot Topics Workshop-Summer 2014 | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Workshop-Summer 2014 Hot Topics Workshop-Summer 2014 Teachers from St. Louis area schools were welcomed to Washington University in St. Louis to learn about new, exciting classroom activities centered around Solar, Wind, and Biomass energy.

  17. 2016 ACEEE Summer Study on Energy Efficiency in Buildings | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ACEEE Summer Study on Energy Efficiency in Buildings 2016 ACEEE Summer Study on Energy Efficiency in Buildings August 21, 2016 9:00AM EDT to August 26, 2016 5

  18. The Better Buildings Neighborhood View - Summer 2011 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summer 2011 The Better Buildings Neighborhood View - Summer 2011 The quarterly update newsletter of the Better Buildings program of the U.S. Department of Energy. PDF icon BB...

  19. Center for Computing Research Summer Research Proceedings 2015.

    SciTech Connect (OSTI)

    Bradley, Andrew Michael; Parks, Michael L.

    2015-12-18

    The Center for Computing Research (CCR) at Sandia National Laboratories organizes a summer student program each summer, in coordination with the Computer Science Research Institute (CSRI) and Cyber Engineering Research Institute (CERI).

  20. Sending off our Summer Interns with Energy Literacy & Work Experience

    Broader source: Energy.gov [DOE]

    Sharing lessons-learned from the a summer internship through the Minority Educational Institution Student Partnership Program.

  1. Media Advisory - Jefferson Lab Hosts Summer Intern Science Poster Session |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab July 30, 2010 Time: 11:45 a.m. - 2 p.m. Place: Jefferson Lab, CEBAF Center Lobby, 12000 Jefferson Avenue, Newport News, VA 23606 Event: More than 35 high school and college interns that participated in Jefferson Lab's summer science enrichment programs will share their summer experiences and projects during a Poster Session. Participating in this summer's poster session are: Six (6) Hampton Roads-area high school students who participated in the laboratory's Summer Honors

  2. Office of Indian Energy Newsletter: Summer/Fall 2013

    Broader source: Energy.gov [DOE]

    Indian Energy Beat: News on Actions to Accelerate Energy Development in Indian Country Summer/Fall 2013 Issue

  3. Environmental assessment, finding of no significant impact, and response to comments. Radioactive waste storage

    SciTech Connect (OSTI)

    1996-04-01

    The Department of Energy`s (DOE) Rocky Flats Environmental Technology Site (the Site), formerly known as the Rocky Flats Plant, has generated radioactive, hazardous, and mixed waste (waste with both radioactive and hazardous constituents) since it began operations in 1952. Such wastes were the byproducts of the Site`s original mission to produce nuclear weapons components. Since 1989, when weapons component production ceased, waste has been generated as a result of the Site`s new mission of environmental restoration and deactivation, decontamination and decommissioning (D&D) of buildings. It is anticipated that the existing onsite waste storage capacity, which meets the criteria for low-level waste (LL), low-level mixed waste (LLM), transuranic (TRU) waste, and TRU mixed waste (TRUM) would be completely filled in early 1997. At that time, either waste generating activities must cease, waste must be shipped offsite, or new waste storage capacity must be developed.

  4. The Better Buildings Neighborhood View - Summer 2011 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summer 2011 The Better Buildings Neighborhood View - Summer 2011 The quarterly update newsletter of the Better Buildings program of the U.S. Department of Energy. PDF icon BB Neighborhood View -- Summer 2011 More Documents & Publications The Better Buildings Neighborhood View -- January 2012 The Better Buildings Neighborhood View -- March 2012 The Better Buildings Neighborhood View -- May

  5. CHP Installed Capacity Optimizer Software

    Energy Science and Technology Software Center (OSTI)

    2004-11-30

    The CHP Installed Capacity Optimizer is a Microsoft Excel spreadsheet application that determines the most economic amount of capacity of distributed generation and thermal utilization equipment (e.g., absorption chillers) to install for any user-defined set of load and cost data. Installing the optimum amount of capacity is critical to the life-cycle economic viability of a distributed generation/cooling heat and power (CHP) application. Using advanced optimization algorithms, the software accesses the loads, utility tariffs, equipment costs,more » etc., and provides to the user the most economic amount of system capacity to install.« less

  6. Property:USGSMeanCapacity | Open Energy Information

    Open Energy Info (EERE)

    USGSMeanCapacity Jump to: navigation, search Property Name USGSMeanCapacity Property Type String Description Mean capacity potential at location based on the USGS 2008 Geothermal...

  7. Peak Underground Working Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    of capacity that may understate the amount that can actually be stored. Working Gas Design Capacity: This measure estimates a natural gas facility's working gas capacity, as...

  8. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    California" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Dynegy Moss Landing Power Plant","Natural gas","Dynegy -Moss Landing LLC",2529 2,"Diablo Canyon","Nuclear","Pacific Gas & Electric Co",2240 3,"AES Alamitos LLC","Natural gas","AES Alamitos LLC",1997 4,"Castaic","Pumped Storage","Los Angeles

  9. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Hay Road","Natural gas","Calpine Mid-Atlantic Generation LLC",1136 2,"Edge Moor","Natural gas","Calpine Mid-Atlantic Generation LLC",725 3,"Indian River Generating Station","Coal","Indian River Operations Inc",591.4 4,"Delaware City Plant","Other

  10. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Braidwood Generation Station","Nuclear","Exelon Nuclear",2330 2,"Byron Generating Station","Nuclear","Exelon Nuclear",2300 3,"LaSalle Generating Station","Nuclear","Exelon Nuclear",2277 4,"Quad Cities Generating Station","Nuclear","Exelon

  11. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"William F Wyman","Petroleum","FPL Energy Wyman LLC",821.6 2,"Westbrook Energy Center Power Plant","Natural gas","Westbrook Energy Center",506 3,"Maine Independence Station","Natural gas","Casco Bay Energy Co LLC",490 4,"Verso Paper","Natural

  12. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Chalk Point LLC","Petroleum","NRG Chalk Point LLC",2248 2,"Calvert Cliffs Nuclear Power Plant","Nuclear","Calvert Cliffs Nuclear PP LLC",1716 3,"Morgantown Generating Plant","Coal","GenOn Mid-Atlantic LLC",1423 4,"Brandon Shores","Coal","Raven

  13. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Monroe (MI)","Coal","DTE Electric Company",2944 2,"Donald C Cook","Nuclear","Indiana Michigan Power Co",2069 3,"Ludington","Pumped storage","Consumers Energy Co",1872 4,"Midland Cogeneration Venture","Natural gas","Midland Cogeneration

  14. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Labadie","Coal","Union Electric Co - (MO)",2374 2,"Iatan","Coal","Kansas City Power & Light Co",1593.8 3,"Callaway","Nuclear","Union Electric Co - (MO)",1194 4,"Rush Island","Coal","Union Electric Co - (MO)",1182 5,"New

  15. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Colstrip","Coal","PPL Montana LLC",2094 2,"Noxon Rapids","Hydroelectric","Avista Corp",580.5 3,"Libby","Hydroelectric","USACE Northwestern Division",525 4,"Hungry Horse","Hydroelectric","U S Bureau of Reclamation",428

  16. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Gerald Gentleman","Coal","Nebraska Public Power District",1365 2,"Nebraska City","Coal","Omaha Public Power District",1339.3 3,"Cooper Nuclear Station","Nuclear","Nebraska Public Power District",766 4,"North Omaha","Coal","Omaha Public Power

  17. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"PSEG Salem Generating Station","Nuclear","PSEG Nuclear LLC",2370.4 2,"PSEG Linden Generating Station","Natural gas","PSEG Fossil LLC",1572 3,"Bergen Generating Station","Natural gas","PSEG Fossil LLC",1208 4,"PSEG Hope Creek Generating

  18. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"San Juan","Coal","Public Service Co of NM",1684 2,"Four Corners","Coal","Arizona Public Service Co",1540 3,"Luna Energy Facility","Natural gas","Public Service Co of NM",559 4,"Hobbs Generating Station","Natural gas","CAMS NM LLC",530.4

  19. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Coal Creek","Coal","Great River Energy",1141.9 2,"Antelope Valley","Coal","Basin Electric Power Coop",900 3,"Milton R Young","Coal","Minnkota Power Coop, Inc",684 4,"Leland Olds","Coal","Basin Electric Power Coop",667

  20. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Northeastern","Coal","Public Service Co of Oklahoma",1815 2,"Redbud Power Plant","Natural gas","Oklahoma Gas & Electric Co",1752.4 3,"Muskogee","Coal","Oklahoma Gas & Electric Co",1505.5 4,"Seminole (OK)","Natural gas","Oklahoma Gas &

  1. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"John Day","Hydroelectric","USACE Northwestern Division",2160 2,"The Dalles","Hydroelectric","USACE Northwestern Division",1822.7 3,"Bonneville","Hydroelectric","USACE Northwestern Division",1153.9 4,"McNary","Hydroelectric","USACE Northwestern

  2. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"PPL Susquehanna","Nuclear","PPL Susquehanna LLC",2520 2,"FirstEnergy Bruce Mansfield","Coal","FirstEnergy Generation Corp",2510 3,"Limerick","Nuclear","Exelon Nuclear",2296 4,"Peach Bottom","Nuclear","Exelon Nuclear",2250.8 5,"Homer

  3. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Entergy Rhode Island State Energy LP","Natural gas","Entergy RISE",538 2,"Manchester Street","Natural gas","Dominion Energy New England, LLC",447 3,"Tiverton Power Plant","Natural gas","Tiverton Power LLC",250 4,"Ocean State Power","Natural

  4. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Oconee","Nuclear","Duke Energy Carolinas, LLC",2554 2,"Cross","Coal","South Carolina Public Service Authority",2350 3,"Catawba","Nuclear","Duke Energy Carolinas, LLC",2290.2 4,"Bad Creek","Pumped Storage","Duke Energy Carolinas, LLC",1360

  5. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"W A Parish","Coal","NRG Texas Power LLC",3675 2,"South Texas Project","Nuclear","STP Nuclear Operating Co",2560 3,"Martin Lake","Coal","Luminant Generation Company LLC",2410 4,"Comanche Peak","Nuclear","Luminant Generation Company LLC",2400

  6. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Vermont Yankee","Nuclear","Entergy Nuclear Vermont Yankee",619.4 2,"Kingdom Community Wind","Wind","Green Mountain Power Corp",65 3,"J C McNeil","Wood","City of Burlington Electric - (VT)",52 4,"Bellows Falls","Hydroelectric","TransCanada Hydro

  7. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Grand Coulee","Hydroelectric","U S Bureau of Reclamation",7079 2,"Chief Joseph","Hydroelectric","USACE Northwestern Division",2456.2 3,"Transalta Centralia Generation","Coal","TransAlta Centralia Gen LLC",1340 4,"Rocky

  8. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"John E Amos","Coal","Appalachian Power Co",2900 2,"FirstEnergy Harrison Power Station","Coal","Allegheny Energy Supply Co LLC",1954 3,"Mt Storm","Coal","Virginia Electric & Power Co",1640 4,"Mitchell (WV)","Coal","Kentucky Power

  9. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Jim Bridger","Coal","PacifiCorp",2111 2,"Laramie River Station","Coal","Basin Electric Power Coop",1710 3,"Dave Johnston","Coal","PacifiCorp",760 4,"Naughton","Coal","PacifiCorp",687 5,"Dry Fork Station","Coal","Basin

  10. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    United States" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Grand Coulee","Hydroelectric","U S Bureau of Reclamation",7079 2,"Palo Verde","Nuclear","Arizona Public Service Co",3937 3,"Martin","Natural gas","Florida Power & Light Co",3695 4,"W A Parish","Coal","NRG Texas Power LLC",3675

  11. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Beluga","Natural gas","Chugach Electric Assn Inc",344.4 2,"George M Sullivan Generation Plant 2","Natural gas","Anchorage Municipal Light and Power",248.1 3,"Southcentral Power Project","Natural gas","Chugach Electric Assn Inc",169.7 4,"North

  12. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Palo Verde","Nuclear","Arizona Public Service Co",3937 2,"Navajo","Coal","Salt River Project",2250 3,"Springerville","Coal","Tucson Electric Power Co",1614.1 4,"Glen Canyon Dam","Hydroelectric","U S Bureau of Reclamation",1312

  13. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Comanche (CO)","Coal","Public Service Co of Colorado",1410 2,"Craig (CO)","Coal","Tri-State G & T Assn, Inc",1304 3,"Fort St Vrain","Natural gas","Public Service Co of Colorado",969 4,"Rawhide","Natural gas","Platte River Power

  14. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Millstone","Nuclear","Dominion Nuclear Conn Inc",2102.5 2,"Middletown","Petroleum","Middletown Power LLC",770.2 3,"Lake Road Generating Plant","Natural gas","Lake Road Generating Co LP",757.3 4,"Kleen Energy Systems Project","Natural

  15. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Martin","Natural gas","Florida Power & Light Co",3695 2,"West County Energy Center","Natural gas","Florida Power & Light Co",3669 3,"Turkey Point","Nuclear","Florida Power & Light Co",3552 4,"Manatee","Petroleum","Florida Power &

  16. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Scherer","Coal","Georgia Power Co",3406.7 2,"Bowen","Coal","Georgia Power Co",3202 3,"Jack McDonough","Natural gas","Georgia Power Co",2578 4,"Vogtle","Nuclear","Georgia Power Co",2302 5,"Wansley","Coal","Georgia Power

  17. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Brownlee","Hydroelectric","Idaho Power Co",744 2,"Dworshak","Hydroelectric","USACE Northwestern Division",400 3,"Langley Gulch Power Plant","Natural gas","Idaho Power Co",298.7 4,"Cabinet Gorge","Hydroelectric","Avista Corp",254.6

  18. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Gibson","Coal","Duke Energy Indiana Inc",3132 2,"Rockport","Coal","Indiana Michigan Power Co",2600 3,"R M Schahfer","Coal","Northern Indiana Pub Serv Co",1780 4,"AES Petersburg","Coal","Indianapolis Power & Light Co",1709.5 5,"Clifty

  19. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Walter Scott Jr Energy Center","Coal","MidAmerican Energy Co",1635.5 2,"George Neal North","Coal","MidAmerican Energy Co",909.9 3,"Louisa","Coal","MidAmerican Energy Co",746.2 4,"Ottumwa","Coal","Interstate Power and Light Co",718.4

  20. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Jeffrey Energy Center","Coal","Westar Energy Inc",2155 2,"La Cygne","Coal","Kansas City Power & Light Co",1415.3 3,"Wolf Creek Generating Station","Nuclear","Wolf Creek Nuclear Optg Corp",1175 4,"Gordon Evans Energy Center","Natural gas","Kansas

  1. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Paradise","Coal","Tennessee Valley Authority",2201 2,"Trimble County","Coal","Louisville Gas & Electric Co",2185 3,"Ghent","Coal","Kentucky Utilities Co",1932 4,"E W Brown","Natural gas","Kentucky Utilities Co",1496 5,"Mill Creek

  2. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Big Cajun 2","Coal","Louisiana Generating LLC",1756 2,"Willow Glen","Natural gas","Entergy Gulf States - LA LLC",1748.8 3,"Brame Energy Center","Petroleum","Cleco Power LLC",1543 4,"Nine Mile Point","Natural gas","Entergy Louisiana

  3. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Sherburne County","Coal","Northern States Power Co - Minnesota",2242.8 2,"Clay Boswell","Coal","Minnesota Power Inc",1082.4 3,"Prairie Island","Nuclear","Northern States Power Co - Minnesota",1040 4,"Monticello Nuclear

  4. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    York" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Robert Moses Niagara","Hydroelectric","New York Power Authority",2353.2 2,"Ravenswood","Natural gas","TC Ravenswood LLC",2207.6 3,"Nine Mile Point Nuclear Station","Nuclear","Nine Mile Point Nuclear Sta LLC",1924.1 4,"Northport","Natural

  5. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Roxboro","Coal","Duke Energy Progress - (NC)",2433 2,"McGuire","Nuclear","Duke Energy Carolinas, LLC",2278.1 3,"Belews Creek","Coal","Duke Energy Carolinas, LLC",2220 4,"Marshall (NC)","Coal","Duke Energy Carolinas, LLC",2078 5,"Sherwood

  6. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Oahe","Hydroelectric","USCE-Missouri River District",714 2,"Big Bend Dam","Hydroelectric","USCE-Missouri River District",520 3,"Big Stone","Coal","Otter Tail Power Co",475.6 4,"Fort Randall","Hydroelectric","USCE-Missouri River District",360

  7. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Cumberland (TN)","Coal","Tennessee Valley Authority",2470 2,"Sequoyah","Nuclear","Tennessee Valley Authority",2277.7 3,"Johnsonville","Coal","Tennessee Valley Authority",2250.8 4,"Raccoon Mountain","Pumped storage","Tennessee Valley

  8. Spring and Summer Energy-Saving Tips | Department of Energy

    Energy Savers [EERE]

    Spring and Summer Energy-Saving Tips Spring and Summer Energy-Saving Tips Simple and inexpensive actions can help you save energy and money during the warm spring and summer months. | Photo courtesy of iStockphoto.com/eyedias. Simple and inexpensive actions can help you save energy and money during the warm spring and summer months. | Photo courtesy of iStockphoto.com/eyedias. Here you'll find strategies to help you save energy during the spring and summer when the weather is warm and you are

  9. Hot Town, Summer in the City | Department of Energy

    Office of Environmental Management (EM)

    Town, Summer in the City Hot Town, Summer in the City June 4, 2012 - 2:06pm Addthis Ernie Tucker Editor, National Renewable Energy Laboratory Last fall, we mentioned the power that the "Inspiration of Music" can have for Energy Savers. At that time heading into winter, we talked generally about using tonal energy to start saving energy. But tunes can get us in the mood for summer, too. Take the Lovin' Spoonful's "Summer in the City" which begins "hot town, summer in the

  10. Low-level radioactive waste management at the Nevada Test Site -- Year 2000 current status

    SciTech Connect (OSTI)

    Becker, B.D.; Clayton, W.A.; Gertz, C.P.; Crowe, B.M.

    2000-02-01

    This paper describes the technical attributes of the facilities, present and future capacities and capabilities, and provides a description of the process from waste approval to final disposition. This paper also summarizes the current status of the waste disposal operations.

  11. The Waste Isolation Pilot Plant Hazardous Waste Facility Permit...

    Office of Environmental Management (EM)

    The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste Analysis Plan The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste Analysis Plan This ...

  12. EIS-0171: Pacificorp Capacity Sale

    Broader source: Energy.gov [DOE]

    The Bonneville Power Administration (BPA) EIS assesses the proposed action of providing surplus power from its facilites to PacifiCorp in response to its request for a continued supply of firm capacity. BPA has surplus electrical capacity (peakload energy) that BPA projects will not be required to meet its existing obligations.

  13. Atmospheric Crude Oil Distillation Operable Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Charge Capacity (BSD) Catalytic Hydrotreating NaphthaReformer Feed Charge Cap (BSD) Catalytic Hydrotreating Gasoline Charge Capacity (BSD) Catalytic Hydrotreating...

  14. Waste Treatment Plant - 12508

    SciTech Connect (OSTI)

    Harp, Benton; Olds, Erik

    2012-07-01

    The Waste Treatment Plant (WTP) will immobilize millions of gallons of Hanford's tank waste into solid glass using a proven technology called vitrification. The vitrification process will turn the waste into a stable glass form that is safe for long-term storage. Our discussion of the WTP will include a description of the ongoing design and construction of this large, complex, first-of-a-kind project. The concept for the operation of the WTP is to separate high-level and low-activity waste fractions, and immobilize those fractions in glass using vitrification. The WTP includes four major nuclear facilities and various support facilities. Waste from the Tank Farms is first pumped to the Pretreatment Facility at the WTP through an underground pipe-in-pipe system. When construction is complete, the Pretreatment Facility will be 12 stories high, 540 feet long and 215 feet wide, making it the largest of the four major nuclear facilities that compose the WTP. The total size of this facility will be more than 490,000 square feet. More than 8.2 million craft hours are required to construct this facility. Currently, the Pretreatment Facility is 51 percent complete. At the Pretreatment Facility the waste is pumped to the interior waste feed receipt vessels. Each of these four vessels is 55-feet tall and has a 375,000 gallon capacity, which makes them the largest vessels inside the Pretreatment Facility. These vessels contain a series of internal pulse-jet mixers to keep incoming waste properly mixed. The vessels are inside the black-cell areas, completely enclosed behind thick steel-laced, high strength concrete walls. The black cells are designed to be maintenance free with no moving parts. Once hot operations commence the black-cell area will be inaccessible. Surrounded by black cells, is the 'hot cell canyon'. The hot cell contains all the moving and replaceable components to remove solids and extract liquids. In this area, there is ultrafiltration equipment, cesium-ion exchange columns, evaporator boilers and recirculation pumps, and various mechanical process pumps for transferring process fluids. During the first phase of pretreatment, the waste will be concentrated using an evaporation process. Solids will be filtered out, and the remaining soluble, highly radioactive isotopes will be removed using an ion-exchange process. The high-level solids will be sent to the High-Level Waste (HLW) Vitrification Facility, and the low activity liquids will be sent to the Low-Activity Waste (LAW) Vitrification Facility for further processing. The high-level waste will be transferred via underground pipes to the HLW Facility from the Pretreatment Facility. The waste first arrives at the wet cell, which rests inside a black-cell area. The pretreated waste is transferred through shielded pipes into a series of melter preparation and feed vessels before reaching the melters. Liquids from various facility processes also return to the wet cell for interim storage before recycling back to the Pretreatment Facility. (authors)

  15. How Do You Save Energy When Entertaining in the Summer? | Department...

    Energy Savers [EERE]

    When Entertaining in the Summer? How Do You Save Energy When Entertaining in the Summer? ... Saving energy during these summer gatherings can be a little trickier in the summer than ...

  16. EA-0981: Solid Waste Retrieval Complex, Enhanced Radioactive and Mixed Waste Storage Facility, Infrastructure Upgrades, and Central Waste Support Complex, Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to retrieve transuranic waste (TRU), provide storage capacity for retrieved and newly generated TRU, Greater-than-Category 3, and mixed...

  17. Mixed Waste Management Options: 1995 Update. National Low-Level Waste Management Program

    SciTech Connect (OSTI)

    Kirner, N.; Kelly, J.; Faison, G.; Johnson, D.

    1995-05-01

    In the original mixed Waste Management Options (DOE/LLW-134) issued in December 1991, the question was posed, ``Can mixed waste be managed out of existence?`` That study found that most, but not all, of the Nation`s mixed waste can theoretically be managed out of existence. Four years later, the Nation is still faced with a lack of disposal options for commercially generated mixed waste. However, since publication of the original Mixed Waste Management Options report in 1991, limited disposal capacity and new technologies to treat mixed waste have become available. A more detailed estimate of the Nation`s mixed waste also became available when the US Environmental Protection Agency (EPA) and the US Nuclear Regulatory Commission (NRC) published their comprehensive assessment, titled National Profile on Commercially Generated Low-Level Radioactive Mixed Waste (National Profile). These advancements in our knowledge about mixed waste inventories and generation, coupled with greater treatment and disposal options, lead to a more applied question posed for this updated report: ``Which mixed waste has no treatment option?`` Beyond estimating the volume of mixed waste requiring jointly regulated disposal, this report also provides a general background on the Atomic Energy Act (AEA) and the Resource Conservation and Recovery Act (RCRA). It also presents a methodical approach for generators to use when deciding how to manage their mixed waste. The volume of mixed waste that may require land disposal in a jointly regulated facility each year was estimated through the application of this methodology.

  18. Nuclear theory summer meeting on ERHIC

    SciTech Connect (OSTI)

    McLerran, L.; Venugopalan, R.

    2000-06-26

    The eRHIC BNL summer meeting was held at BNL from June 26 to July 14, 2000. The meeting was very informal with only two talks a day and with ample time for discussions and collaborations. Several of the theory talks focused on the issue of saturation of parton distributions at small x--whether screening effects have already been seen at HERA, the relation of saturation to shadowing, and on the various signatures of a proposed novel state of matter--the Colored Glass Condensate--that may be observed at eRHIC. A related topic that was addressed was that of quantifying twist four effects, and on the relevance of these for studies of energy loss. Other issues addressed were coherence effects in vector meson production, anti-quark distributions in nuclei, and the relevance of saturation for heavy ion collisions. There were, also, talks on the Pomeron--the relevance of instantons and the non-perturbative gluon condensate to constructing a Pomeron. On the spin physics side, there were talks on predictions for inclusive distributions at small x. There were also talks on Skewed Parton Distributions and Deeply Virtual Compton Scattering. Though most of the talks were theory talks, there were also several important experimental contributions. A preliminary detector design for eRHIC was presented. Studies for semi-inclusive measurements at eRHIC were also presented. The current status of pA scattering studies at RHIC was also discussed. The eRHIC summer meeting provided a vigorous discussion of the current status of eRHIC studies. It is hoped that this document summarizing these discussions will be of use to all those interested in electron nucleus and polarized electron-polarized proton studies.

  19. Estimating Waste Inventory and Waste Tank Characterization

    Broader source: Energy.gov [DOE]

    Summary Notes from 28 May 2008 Generic Technical Issue Discussion on Estimating Waste Inventory and Waste Tank Characterization

  20. COMMUNITY CAPACITY BUILDING THROUGH TECHNOLOGY

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    COMMUNITY CAPACITY BUILDING THROUGH TECHNOLOGY Empowering Communities in the Age of E-Government Prepared by Melinda Downing, Environmental Justice Program Manager, U.S. Department of Energy MAR 06 MARCH 2006 Since 1999, the Department of Energy has worked with the National Urban Internet and others to create community capacity through technology.  Empowering Communities in the Age of E-Government Table of Contents Message from the Environmental Justice Program Manager . . . . . . . . 3

  1. News Media invited to interview JLab summer, science enrichment program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    participants; cover closing Poster Session | Jefferson Lab 2003 Education Poster Session 2003 Education Poster Session News Media invited to interview JLab summer, science enrichment program participants; cover closing Poster Session July 28, 2004 Newport News, VA. - News Media representatives are invited to interview, photograph or film participants of Jefferson Lab's summer, science enrichment programs as the high school and college students share their summer experiences and projects with

  2. News Media invited to interview Jefferson Lab summer science enrichment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    program participants; cover closing Poster Session | Jefferson Lab News Media invited to interview Jefferson Lab summer science enrichment program participants; cover closing Poster Session August 1, 2007 News Media representatives are invited to interview, photograph and/or film participants of Jefferson Lab's summer science enrichment programs as they share their summer experiences and projects with JLab staff during a Poster Session scheduled for Friday, Aug. 3, from 11:30 a.m.-1:30 p.m.

  3. Short-Term Energy Outlook April 1999-Summer Gasoline Outlook

    Gasoline and Diesel Fuel Update (EIA)

    Summer Motor Gasoline Outlook This year's base case outlook for summer (April-September) motor gasoline markets may be summarized as follows: * Pump Prices: (average regular) projected to average about $1.13 per gallon this summer, up 9-10 cents from last year. The increase, while substantial, still leaves average prices low compared to pre-1998 history, especially in inflation-adjusted terms. * Supplies: expected to be adequate, overall. Beginning-of-season inventories were even with the 1998

  4. Jefferson Lab seeks applicants for summer, science teacher enrichment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    program | Jefferson Lab seeks applicants for summer, science teacher enrichment program February 26, 2003 Calling all middle school teachers who instruct science classes. Jefferson Lab would like to help you refresh and hone your science knowledge and teaching skills over the summer. The Department of Energy physics research lab, located at 12000 Jefferson Ave. in Newport News, is seeking applications for its four-week, summer physics enrichment program for science teachers. The program

  5. Jefferson Lab welcomes students, teachers for summer internship, enrichment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    program | Jefferson Lab 2003 Education Poster Session Jefferson Lab welcomes students, teachers for summer internship, enrichment program July 28, 2004 Newport News, VA. - As schools close for the summer, the number of teachers and high school and college students at the Department of Energy's Jefferson Lab in Newport News, Va., multiplies. They come to participate in a variety of innovative, educational, science-based programs. High School seniors arrive for the Lab's summer honors program.

  6. Microsoft Word - Summer 2004 Motor Gasoline Outlook.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 2004 Summer 2004 Motor Gasoline Outlook Summary * Gasoline markets are tight as the 2004 driving season begins and conditions are likely to remain volatile through the summer. High crude oil costs, strong gasoline demand growth, low gasoline inventories, uncertainty about the availability of gasoline imports, high transportation costs, and changes in gasoline specifications have added to current and expected gasoline costs and pump prices. * For the upcoming summer driving season (April to

  7. Building America Summer 2012 Technical Update Meeting Report: Denver,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Colorado - July 24-26, 2012 | Department of Energy Summer 2012 Technical Update Meeting Report: Denver, Colorado - July 24-26, 2012 Building America Summer 2012 Technical Update Meeting Report: Denver, Colorado - July 24-26, 2012 This report summarizes key findings and outcomes from the U.S. Department of Energy's Building America Summer Technical Update Meeting, held on July 24-26, 2012, in Denver, Colorado. PDF icon 2012_technical_update_mtg.pdf More Documents & Publications Space

  8. Summer 2012 National Geothermal Academy: Applications Due February 15 |

    Energy Savers [EERE]

    Department of Energy Summer 2012 National Geothermal Academy: Applications Due February 15 Summer 2012 National Geothermal Academy: Applications Due February 15 January 23, 2012 - 4:02pm Addthis Course modules run from June 18 to August 10. (Download Application) The National Geothermal Academy is proud to present an intensive summer course in all aspects of geothermal energy development and utilization, held at the University of Nevada, Reno campus. The eight-week course is offered for

  9. Office of Indian Energy Newsletter: Summer 2012 | Department of Energy

    Energy Savers [EERE]

    Summer 2012 Office of Indian Energy Newsletter: Summer 2012 Indian Energy Beat News on Actions to Accelerate Energy Development in Indian Country Summer 2012 Issue: Eleven Tribes Jump START Clean Energy Projects Message from the Director Opening Doors: New Energy Resource Library for Tribes Education Program in Development Building Bridges: Transmission in Indian Country Sharing Knowledge: Energy Surety Micro Winning the Future: Native Village of Teller Addresses Heating Fuel Shortage, Improves

  10. Alaska Energy Pioneer Summer 2015 Newsletter | Department of Energy

    Energy Savers [EERE]

    Summer 2015 Newsletter Alaska Energy Pioneer Summer 2015 Newsletter The U.S. Department of Energy Office of Indian Energy's Alaska Energy Pioneer Summer 2015 newsletter highlights opportunities and actions to accelerate Alaska Native energy development. Read newsletter stories below or download the newsletter at the bottom of the page. Five Villages Win Bids for START Technical Assistance Image of a boat in the foreground, with a frozen lake and a wind turbine in the background. The DOE Office

  11. Vitrification technology for Hanford Site tank waste

    SciTech Connect (OSTI)

    Weber, E.T.; Calmus, R.B.; Wilson, C.N.

    1995-04-01

    The US Department of Energy`s (DOE) Hanford Site has an inventory of 217,000 m{sup 3} of nuclear waste stored in 177 underground tanks. The DOE, the US Environmental Protection Agency, and the Washington State Department of Ecology have agreed that most of the Hanford Site tank waste will be immobilized by vitrification before final disposal. This will be accomplished by separating the tank waste into high- and low-level fractions. Capabilities for high-capacity vitrification are being assessed and developed for each waste fraction. This paper provides an overview of the program for selecting preferred high-level waste melter and feed processing technologies for use in Hanford Site tank waste processing.

  12. Total Natural Gas Underground Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    Salt Caverns Storage Capacity Aquifers Storage Capacity Depleted Fields Storage Capacity Total Working Gas Capacity Working Gas Capacity of Salt Caverns Working Gas Capacity of Aquifers Working Gas Capacity of Depleted Fields Total Number of Existing Fields Number of Existing Salt Caverns Number of Existing Aquifers Number of Depleted Fields Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data

  13. Total Natural Gas Underground Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    Salt Caverns Storage Capacity Aquifers Storage Capacity Depleted Fields Storage Capacity Total Working Gas Capacity Working Gas Capacity of Salt Caverns Working Gas Capacity of Aquifers Working Gas Capacity of Depleted Fields Total Number of Existing Fields Number of Existing Salt Caverns Number of Existing Aquifers Number of Depleted Fields Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data

  14. Discovery of the Transuranium Elements (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Hoffman, Darleane

    2011-04-28

    Summer Lecture Series 2006: Darleane Hoffman, a Berkeley Lab nuclear chemist, chronicles the discovery of the heaviest elements ? those much heavier than uranium and plutonium.

  15. PNNL Radiation Detection for Nuclear Security Summer School

    SciTech Connect (OSTI)

    Runkle, Bob

    2013-07-10

    PNNL's Radiation Detection for Nuclear Security Summer School gives graduate and advanced graduate students an understanding of how radiation detectors are used in national security missions.

  16. Solar Technical Assistance Team (STAT) Summer Webinar Series: Webinar 3

    Broader source: Energy.gov [DOE]

    This document details the Solar Technical Assistance Team (STAT) Summer Webinar Series: Webinar 3: Solar Technology Options and Resource Assessment Question & Answer Session on August 15, 2012.

  17. Office of Indian Energy Spring/Summer 2015 Newsletter

    Broader source: Energy.gov [DOE]

    The Office of Indian Energy Indian Energy Beat Spring/Summer 2015 newsletter highlights opportunities and actions to accelerate energy development in Indian Country.

  18. An evaluation of the 1997 JPL Summer Teacher Enhancement Program

    SciTech Connect (OSTI)

    Slovacek, Simeon P.; Doyle-Nichols, Adelaide R.

    1997-10-20

    There were two major components in the Jet Propulsion Laboratory (JPL) Summer Teacher Enhancement Project (STEP). First, the Summer Institute was structured as a four-week, 4-credit-unit University course for middle school science teachers, and consisted of workshops, lectures, labs, and tours as activities. The second component consists of follow-up activities related to the summer institute's contents, and again is structured as a University credit-bearing course for participants to reinforce their summer training. Considerable information from the comments and course ratings as given by the participants is included.

  19. Spring and Summer Energy-Saving Tips | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Simple and inexpensive actions can help you save energy and money during the warm spring and summer months. | Photo courtesy of iStockphoto.comeyedias. Simple and inexpensive...

  20. Computer System, Cluster, and Networking Summer Institute Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Programs CSCNSI CSCNSI Projects Computer System, Cluster, and Networking Summer Institute Projects Present and past projects Contact Leader Stephan Eidenbenz (505) 667-3742...

  1. EECBG Success Story: While Summer Heats Up, Birmingham Community...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    While Summer Heats Up, Birmingham Community Centers Cool Down EECBG Success Story: While ... Green, Sand Mountain Reporter. EECBG Success Story: Solar LED Light Pilot Project ...

  2. Seismic Imaging of the Earth's Interior (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Romanowicz, Barbara

    2011-04-28

    Summer Lecture Series 2006: Earth scientist Barbara Romanowicz discusses how she explores the deep structure and dynamics of the Earth using seismic tomography.

  3. ,"Table 2a. Noncoincident Summer Peak Load, Actual and Projected...

    U.S. Energy Information Administration (EIA) Indexed Site

    2011" ,"Table 2a. Noncoincident Summer Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2009 and Projected 2010 through 2014 "...

  4. ,"Table 2a. Noncoincident Summer Peak Load, Actual and Projected...

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Noncoincident Summer Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2007 and Projected 2008 through 2012 " ,"(Megawatts and 2007...

  5. ,"Table 2a. Noncoincident Summer Peak Load, Actual and Projected...

    U.S. Energy Information Administration (EIA) Indexed Site

    2010" ,"Table 2a. Noncoincident Summer Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2008 and Projected 2009 through 2013 "...

  6. ,"Table 2a. Noncoincident Summer Peak Load, Actual and Projected...

    U.S. Energy Information Administration (EIA) Indexed Site

    4 and Projected 2005 through 2009 " ,"(Megawatts and 2004 Base Year)",,,," " ,"Summer Noncoincident Peak Load",,"Contiguous U.S. ","Eastern Power Grid",,,"Texas Power...

  7. ,"Table 2a. Noncoincident Summer Peak Load, Actual and Projected...

    U.S. Energy Information Administration (EIA) Indexed Site

    3 and Projected 2004 through 2008 " ,"(Megawatts and 2003 Base Year)",,,," " ,"Summer Noncoincident Peak Load",,"Contiguous U.S. ","Eastern Power Grid",,,"Texas Power...

  8. ,"Table 2a. Noncoincident Summer Peak Load, Actual and Projected...

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Noncoincident Summer Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2006 and Projected 2007 through 2011 " ,"(Megawatts and 2006...

  9. Development of iron phosphate ceramic waste form to immobilize radioactive waste solution

    SciTech Connect (OSTI)

    Choi, Jongkwon; Um, Wooyong; Choung, Sungwook

    2014-05-09

    The objective of this research was to develop an iron phosphate ceramic (IPC) waste form using converter slag obtained as a by-product of the steel industry as a source of iron instead of conventional iron oxide. Both synthetic off-gas scrubber solution containing technetium-99 (or Re as a surrogate) and LiCl-KCl eutectic salt, a final waste solution from pyrochemical processing of spent nuclear fuel, were used as radioactive waste streams. The IPC waste form was characterized for compressive strength, reduction capacity, chemical durability, and contaminant leachability. Compressive strengths of the IPC waste form prepared with different types of waste solutions were 16 MPa and 19 MPa for LiCl-KCl eutectic salt and the off-gas scrubber simulant, respectively, which meet the minimum compressive strength of 3.45 MPa (500 psi) for waste forms to be accepted into the radioactive waste repository. The reduction capacity of converter slag, a main dry ingredient used to prepare the IPC waste form, was 4,136 meq/kg by the Ce(IV) method, which is much higher than those of the conventional Fe oxides used for the IPC waste form and the blast furnace slag materials. Average leachability indexes of Tc, Li, and K for the IPC waste form were higher than 6.0, and the IPC waste form demonstrated stable durability even after 63-day leaching. In addition, the Toxicity Characteristic Leach Procedure measurements of converter slag and the IPC waste form with LiCl-KCl eutectic salt met the universal treatment standard of the leachability limit for metals regulated by the Resource Conservation and Recovery Act. This study confirms the possibility of development of the IPC waste form using converter slag, showing its immobilization capability for radionuclides in both LiCl-KCl eutectic salt and off-gas scrubber solutions with significant cost savings.

  10. EA-0688: Hazardous Waste Staging Facility, Pantex Plant, Amarillo, Texas

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to construct the Hazardous Waste Staging Facility that would help to alleviate capacity problems as well as provide a single compliant...

  11. ,"Year",,"Summer",,,"Eastern Power Grid",,,,,,,,,,,,,,,,,,"Texas...

    U.S. Energy Information Administration (EIA) Indexed Site

    Historic Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Corporation Region, 2005 through 2009 " ,"(Megawatts and...

  12. Waste Disposition Update by Doug Tonkay

    Office of Environmental Management (EM)

    www.em.doe.gov 1 Environmental Management Site-Specific Advisory Chairs Meeting Douglas Tonkay Office of Disposal Operations October 20, 2011 o Continue to manage waste inventories in a safe and compliant manner. o Address high risk waste in a cost- effective manner. o Maintain and optimize current disposal capability for future generations. www.em.doe.gov 2 o Develop future disposal capacity in a complex environment. o Promote the development of treatment and disposal alternatives in the

  13. Waste Hoist

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Primary Hoist: 45-ton Rope-Guide Friction Hoist Largest friction hoist in the world when it was built in 1985 Completely enclosed (for contamination control), the waste hoist at...

  14. Waste Hoist

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Primary Hoist: 45-ton Rope-Guide Friction Hoist Completely enclosed (for contamination control), the waste hoist at WIPP is a modern friction hoist with rope guides. With a 45-ton...

  15. Par Pond vegetation status Summer 1995 -- Summary

    SciTech Connect (OSTI)

    Mackey, H.E. Jr.; Riley, R.S.

    1996-01-01

    The water level of Par Pond was lowered approximately 20 feet in mid-1991 in order to protect downstream residents from possible dam failure suggested by subsidence on the downstream slope of the dam and to repair the dam. This lowering exposed both emergent and nonemergent macrophyte beds to drying conditions resulting in extensive losses. A survey of the newly emergent, shoreline aquatic plant communities of Par Pond began in June 1995, three months after the refilling of Par Pond to approximately 200 feet above mean sea level. These surveys continued in July, September, and late October, 1995. Communities similar to the pre-drawdown, Par Pond aquatic plant communities are becoming re-established. Emergent beds of maidencane, lotus, waterlily, and watershield are extensive and well developed. Cattail occurrence continued to increase during the summer, but large beds common to Par Pond prior to the drawdown have not formed. Estimates from SPOT HRV, remote sensing satellite data indicated that as much as 120 hectares of emergent wetlands vegetation may have been present along the Par Pond shoreline by early October, 1995. To track the continued development of macrophytes in Par Pond, future surveys throughout 1996 and 1997, along with the continued evaluation of satellite data to map the areal extent of the macrophyte beds of Par Pond, are planned.

  16. ARM - Field Campaign - Summer 1994 Single Column Model IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsSummer 1994 Single Column Model IOP ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Summer 1994 Single Column Model IOP 1994.07.01 - 1994.07.31

  17. Computer System, Cluster, and Networking Summer Institute Program Description

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    System, Cluster, and Networking Summer Institute Program Description The Computer System, Cluster, and Networking Summer Institute (CSCNSI) is a focused technical enrichment program targeting third-year college undergraduate students currently engaged in a computer science, computer engineering, or similar major. The program emphasizes practical skill development in setting up, configuring, administering, testing, monitoring, and scheduling computer systems, supercomputer clusters, and computer

  18. Spray dryer capacity stretched 50%

    SciTech Connect (OSTI)

    Paraskevas, J.

    1983-01-01

    This article describes plant equipment modifications which has resulted in a 50% increase in spray drying capacity. The installation of a new atomizer and screening system in NL Chemicals' Newberry Springs plant which produces natural clays for use as rheological additives in industrial coatings, cosmetics and other products, resulted in a 50% increase in spray drying capacity. Energy consumption per pound of product was reduced by 7%, and product quality improved. This was achieved in less than three months at an investment of less than 10% of what an additional spray dryer would have cost.

  19. Atmospheric Crude Oil Distillation Operable Capacity

    Gasoline and Diesel Fuel Update (EIA)

    (Barrels per Calendar Day) Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum

  20. California Working Natural Gas Underground Storage Capacity ...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) California Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  1. Worldwide Energy Efficiency Action through Capacity Building...

    Open Energy Info (EERE)

    Capacity Building and Training (WEACT) Jump to: navigation, search Logo: Worldwide Energy Efficiency Action through Capacity Building and Training (WEACT) Name Worldwide...

  2. Peak Underground Working Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Capacity Peak Underground Working Natural Gas Storage Capacity Released: September 3, 2010 for data as of April 2010 Next Release: August 2011 References Methodology Definitions...

  3. Washington Working Natural Gas Underground Storage Capacity ...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Washington Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  4. Mississippi Working Natural Gas Underground Storage Capacity...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Mississippi Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  5. Pennsylvania Working Natural Gas Underground Storage Capacity...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Pennsylvania Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May...

  6. Working and Net Available Shell Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    Working and Net Available Shell Storage Capacity With Data for September 2015 | Release ... Containing storage capacity data for crude oil, petroleum products, and selected biofuels. ...

  7. Property:Capacity | Open Energy Information

    Open Energy Info (EERE)

    Capacity Jump to: navigation, search Property Name Capacity Property Type Quantity Description Potential electric energy generation, default units of megawatts. Use this property...

  8. HLW Glass Waste Loadings

    Office of Environmental Management (EM)

    HLW Glass Waste Loadings Ian L. Pegg Vitreous State Laboratory The Catholic University of ... (JHCM) technology Factors affecting waste loadings Waste loading requirements ...

  9. Hanford Dangerous Waste Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dangerous Waste Permit Suzanne Dahl and Jeff Lyon Nuclear Waste Program April 17, 2012 Tank-Related Units Why have permits? * To regulate dangerous waste treatment, storage, and...

  10. Microsoft Word - Summer 2006 Motor Gasoline Prices.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 STEO Supplement: Summer 2006 Motor Gasoline Prices This supplement to the July 2006 Short-Term Energy Outlook (STEO) examines the various factors that have contributed to this summer's high gasoline prices and discusses how they may continue to impact markets over the next several months. EIA's forecast of the retail price of regular gasoline for the summer 2006 driving season (April 1 through September 30) has been revised steadily upwards from $2.62 per gallon in the April STEO to $2.88 per

  11. Media Advisory - Jefferson Lab Hosts Summer Intern Science Poster Session |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab August 3, 2012 Time: 11:45 a.m. - 2 p.m. Place: The CEBAF Center lobby at Jefferson Lab, 12000 Jefferson Avenue, Newport News, VA 23606 Event: More than 35 high school and college interns that participated in Jefferson Lab's summer science enrichment programs will share their summer experiences and projects during a Poster Session. News Media representatives are invited to attend. Participating in this summer's poster session are: Twelve (12) Hampton Roads-area high school

  12. Waste processing air cleaning

    SciTech Connect (OSTI)

    Kriskovich, J.R.

    1998-07-27

    Waste processing and preparing waste to support waste processing relies heavily on ventilation. Ventilation is used at the Hanford Site on the waste storage tanks to provide confinement, cooling, and removal of flammable gases.

  13. Supplemental Immobilization Cast Stone Technology Development and Waste Form Qualification Testing Plan

    SciTech Connect (OSTI)

    Westsik, Joseph H.; Serne, R. Jeffrey; Pierce, Eric M.; Cozzi, Alex; Chung, Chul-Woo; Swanberg, David J.

    2013-05-31

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 56 million gallons of radioactive waste stored in 177 underground tanks at the Hanford Site. The WTP includes a pretreatment facility to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions for vitrification and disposal. The LAW will be converted to glass for final disposal at the Integrated Disposal Facility (IDF). The pretreatment facility will have the capacity to separate all of the tank wastes into the HLW and LAW fractions, and the HLW Vitrification Facility will have the capacity to vitrify all of the HLW. However, a second immobilization facility will be needed for the expected volume of LAW requiring immobilization. A number of alternatives, including Cast Stonea cementitious waste formare being considered to provide the additional LAW immobilization capacity.

  14. winter_capacity_2010.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    Table 4.B Winter Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Corporation Region, 2001-2010 Actual, 2011-2015 Projected (Megawatts and Percent) Interconnection NERC Regional Assesment Area 2001/2002 2002/2003 2003/2004 2004/2005 2005/2006 2006/2007 2007/2008 2008/2009 2009/2010 2010/ 2011 2011/2012E 2012/2013E 2013/2014E 2014/2015E 2015/2016E FRCC 39,699 42,001 36,229 41,449 42,493 45,993 46,093 45,042 51,703 45,954 44,196 44,750 45,350

  15. High capacity carbon dioxide sorbent

    DOE Patents [OSTI]

    Dietz, Steven Dean; Alptekin, Gokhan; Jayaraman, Ambalavanan

    2015-09-01

    The present invention provides a sorbent for the removal of carbon dioxide from gas streams, comprising: a CO.sub.2 capacity of at least 9 weight percent when measured at 22.degree. C. and 1 atmosphere; an H.sub.2O capacity of at most 15 weight percent when measured at 25.degree. C. and 1 atmosphere; and an isosteric heat of adsorption of from 5 to 8.5 kilocalories per mole of CO.sub.2. The invention also provides a carbon sorbent in a powder, a granular or a pellet form for the removal of carbon dioxide from gas streams, comprising: a carbon content of at least 90 weight percent; a nitrogen content of at least 1 weight percent; an oxygen content of at most 3 weight percent; a BET surface area from 50 to 2600 m.sup.2/g; and a DFT micropore volume from 0.04 to 0.8 cc/g.

  16. High capacity immobilized amine sorbents

    DOE Patents [OSTI]

    Gray, McMahan L.; Champagne, Kenneth J.; Soong, Yee; Filburn, Thomas

    2007-10-30

    A method is provided for making low-cost CO.sub.2 sorbents that can be used in large-scale gas-solid processes. The improved method entails treating an amine to increase the number of secondary amine groups and impregnating the amine in a porous solid support. The method increases the CO.sub.2 capture capacity and decreases the cost of utilizing an amine-enriched solid sorbent in CO.sub.2 capture systems.

  17. Global Energy: Supply, Demand, Consequences, Opportunities (LBNL Summer Lecture Series)

    SciTech Connect (OSTI)

    Majumdar, Arun

    2008-07-29

    Summer Lecture Series 2009: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

  18. 2014 ACEEE Summer Study on Energy Efficiency in Buildings

    Broader source: Energy.gov [DOE]

    The 2014 Summer Study is the 18th biennial ACEEE conference on Energy Efficiency in Buildings. A diverse group of professionals from around the world will gather at this pre-eminent meeting to...

  19. Energy Efficient, Summer-Friendly Appliances | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Last week's question of the week included a little reference to the No-Cost and Low-Cost Tips to Save Energy this Summer. So I thought I'd follow that up with some, well,...

  20. The World as a Hologram (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Bousso, Raphael

    2011-04-28

    Summer Lecture Series 2006: UC Berkeley's Raphael Bousso presents a friendly introduction to the ideas behind the holographic principle, which may be very important in the hunt for a theory of quantum gravity.

  1. 2015 ACEEE Summer Study on Energy Efficiency in Industry

    Broader source: Energy.gov [DOE]

    The American Council for an Energy-Efficient Economy (ACEEE) is hosting a summer conference that will have six panels with concurrent sessions held over two days, each developed around industry energy efficiency.

  2. Solar Technical Assistance Team (STAT) Summer Webinar Series: Webinar 4

    Broader source: Energy.gov [DOE]

    This document details the questions and answers from the Solar Technical Assistance Team (STAT) Summer Webinar Series: Webinar 4: Policy for Distributed Solar 101: What Makes a Solar DG Market? on August 22, 2012.

  3. Building America Summer 2012 Technical Update Meeting Report

    SciTech Connect (OSTI)

    none,

    2012-10-01

    This report summarizes key findings and outcomes from the U.S. Department of Energy's Building America Summer Technical Update Meeting, held on July 24-26, 2012, in Denver, Colorado.

  4. Global Energy: Supply, Demand, Consequences, Opportunities (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Majumdar, Arun

    2011-04-28

    Summer Lecture Series 2009: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

  5. ARM - Field Campaign - Summer Single Column Model IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Summer Single Column Model IOP 1999.07.12 - 1999.07.22 Lead Scientist : David...

  6. Seventy Five Years of Particle Accelerators (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Sessler, Andy

    2011-04-28

    Summer Lecture Series 2006: Andy Sessler, Berkeley Lab director from 1973 to 1980, sheds light on the Lab's nearly eight-decade history of inventing and refining particle accelerators, which continue to illuminate the nature of the universe.

  7. High School Summer Internship | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    depending on the participant's school schedule. To be eligible for the summer internships, students must be: At least 16 years of age AND a rising or graduating senior in...

  8. PPPL now offering SUMMER high school internship! | Princeton...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Laboratory is pleased to announce that applications are now open for internships for high school rising seniors for the SUMMER of 2015 Please click here for more...

  9. How Are You Keeping Your Home Cool This Summer? | Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Addthis Related Articles How Do You Save Energy and Stay Cool While Cooking in the Summer? What Do You Set Your Thermostat to? Do You Have Your Own Tips for Saving Fuel

  10. Smart Meters Helping Oklahoma Consumers Save Hundreds During Summer Heat

    Broader source: Energy.gov [DOE]

    Smart meters -- just one of the advanced technologies being used to modernize the grid -- are helping Oklahoma businesses and home owners beat high electricity bills not only during these summer months, but year-round.

  11. Average summer electric power bills expected to be lowest in...

    U.S. Energy Information Administration (EIA) Indexed Site

    of forecasted milder temperatures compared with last summer is expected to more than offset higher electricity prices. The result is lower power bills for most U.S. households...

  12. Six Local Teens Win Jefferson Lab Summer Externships | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Local Teens Win Jefferson Lab Summer Externships April 22, 2002 Six Newport News 11th graders recently won paid, six-week, summer externships at Jefferson Lab. A dozen finalists competed in the oral presentation segment of Jefferson Lab's second annual African-Americans in Science & Technology Essay Contest. The finalists visited the Department of Energy basic physics research laboratory in late February for a day of activities, which culminated with the oral presentation segment of the

  13. Quest Magazine Summer 2013 | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quest Magazine Summer 2013 Welcome to the premiere issue of Quest, the annual magazine of the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL). We are pleased to provide this news of our strides in advancing research into fusion energy and plasma science-two topics of vital interest to the United States and the world. Publication File: PDF icon Quest Magazine Summer 2013 Publication Type: Quest

  14. Quest Magazine Summer 2014 | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quest Magazine Summer 2014 Welcome to the second issue of Quest, the annual magazine of the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL). We are pleased to provide this news of our strides in advancing research into fusion energy and plasma science-two topics of vital interest to the United States and the world. Publication File: PDF icon QUEST Magazine Summer 2014.pdf Publication Type: Quest

  15. Hot Topics Summer Workshops | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hot Topics Summer Workshops Hot Topics Summer Workshops NEW WORKSHOPS on Energy and the Environment for teachers grades 5-12 June 29, 2015 to July 2, 2015 Busch Laboratory Building 151 We are offering NEW WORKSHOPS on Energy and the Environment for teachers grades 5-12 Do you want to bring cutting edge science to your students? This workshop series, led by PARC Teacher Leaders and graduate students, focuses on bringing authentic science and engineering concepts into the classroom. Workshops

  16. Indian Energy Summer Internship Program Now Accepting Applications:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deadline Is March 27 | Department of Energy Indian Energy Summer Internship Program Now Accepting Applications: Deadline Is March 27 Indian Energy Summer Internship Program Now Accepting Applications: Deadline Is March 27 March 12, 2015 - 11:49am Addthis Deborah Tewa focused on tribal off-grid photovoltaic systems and renewable energy systems during her 2002 internship. Photo courtesy from Sandra Begay-Campbell, Sandia National Laboratories. Deborah Tewa focused on tribal off-grid

  17. Proceedings of RIKEN BNL Research Center Workshop: Brookhaven Summer

    Office of Scientific and Technical Information (OSTI)

    Program on Nucleon Spin Physics (Technical Report) | SciTech Connect Technical Report: Proceedings of RIKEN BNL Research Center Workshop: Brookhaven Summer Program on Nucleon Spin Physics Citation Details In-Document Search Title: Proceedings of RIKEN BNL Research Center Workshop: Brookhaven Summer Program on Nucleon Spin Physics Understanding the structure of the nucleon is of fundamental importance in sub-atomic physics. Already the experimental studies on the electro-magnetic form factors

  18. Carbon Smackdown: Visualizing Clean Energy (LBNL Summer Lecture Series)

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Carbon Smackdown: Visualizing Clean Energy (LBNL Summer Lecture Series) Citation Details In-Document Search Title: Carbon Smackdown: Visualizing Clean Energy (LBNL Summer Lecture Series) The final Carbon Smackdown match took place Aug. 9, 2010. Juan Meza of the Computational Research Division revealed how scientists use computer visualizations to accelerate climate research and discuss the development of next-generation clean energy technologies such as wind

  19. Carbon Smackdown: Visualizing Clean Energy (LBNL Summer Lecture Series)

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: Carbon Smackdown: Visualizing Clean Energy (LBNL Summer Lecture Series) Citation Details In-Document Search Title: Carbon Smackdown: Visualizing Clean Energy (LBNL Summer Lecture Series) The final Carbon Smackdown match took place Aug. 9, 2010. Juan Meza of the Computational Research Division revealed how scientists use computer visualizations to accelerate climate research and discuss the development of next-generation clean energy technologies

  20. Technical Update Meeting - Summer 2012 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Buildings » Building America » Technical Update Meeting - Summer 2012 Technical Update Meeting - Summer 2012 The U.S. Department of Energy (DOE) Building America program held the third annual Technical Update meeting on July 24-26, 2012, in Denver, Colorado. This meeting showcased world-class building science expertise for high performance homes in a dynamic new format. Researchers from Building America teams and national laboratories came together to discuss key issues currently

  1. Computer System, Cluster, and Networking Summer Institute Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CSCNSI Projects Computer System, Cluster, and Networking Summer Institute Projects Present and past projects Contacts Program Lead Carolyn Connor (505) 665-9891 Email Professional Staff Assistant Nickole Aguilar Garcia (505) 665-3048 Email 2015 Projects The summer school program was held June 1-July 31, 2015, at the National Security Education Center (NSEC) and New Mexico Consortium (NMC). Class of 2015 2015-si-group Back Row L-R: Matthew Broomfield (instructor), Gustavo Rayos, Destiny

  2. Computer System, Cluster and Networking Summer Institute (CSCNSI)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CSCNSI Computer System, Cluster and Networking Summer Institute Emphasizes practical skills development Contact Program Lead Carolyn Connor (505) 665-9891 Email Professional Staff Assistant Nicole Aguilar Garcia (505) 665-3048 Email Technical enrichment program for third-year undergrad students engaged in computer studies The Computer System, Cluster, and Networking Summer Institute (CSCNSI) is a focused technical enrichment program targeting third-year college undergraduate students currently

  3. EECBG Success Story: While Summer Heats Up, Birmingham Community Centers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cool Down | Department of Energy While Summer Heats Up, Birmingham Community Centers Cool Down EECBG Success Story: While Summer Heats Up, Birmingham Community Centers Cool Down July 22, 2010 - 4:14pm Addthis Birmingham, Alabama Mayor William A. Bell, Sr., City officials, and DOE representatives at the groundbreaking of an energy efficient HVAC system. Birmingham, Alabama Mayor William A. Bell, Sr., City officials, and DOE representatives at the groundbreaking of an energy efficient HVAC

  4. 2016 Combustion Summer School - Combustion Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center Course Descriptions Lecturers Lecture Notes Logistics & Fees Application Schedule of Events Past Sessions 2016 FAQ Lecture Videos News, Events & Publications Contact CEFRC CEFRC In Pictures CEFRC Intranet (Members Only) Home » 2016 Combustion Summer School 2016 Combustion Summer School Our Mission To provide the next generation of combustion researchers with a comprehensive knowledge in the technical areas of combustion theory, experiment, computation, fundamentals, and

  5. BGE's Smart Energy Pricing Pilot Summer 2008 Impact Evaluation | Department

    Energy Savers [EERE]

    of Energy BGE's Smart Energy Pricing Pilot Summer 2008 Impact Evaluation BGE's Smart Energy Pricing Pilot Summer 2008 Impact Evaluation The Brattle Group was retained by Baltimore Gas & Electric Company (BGE) in December 2006 to assist in the design of a dynamic pricing pilot program to develop assessments of the likely impact of a variety of dynamic pricing programs on BGE residential customer load shapes. The residential pilot program, Smart Energy Pricing (SEP) Pilot, was subsequently

  6. Summer Loving-Energy-Efficient Outdoor Lighting! | Department of Energy

    Energy Savers [EERE]

    Summer Loving-Energy-Efficient Outdoor Lighting! Summer Loving-Energy-Efficient Outdoor Lighting! June 20, 2013 - 9:47am Addthis Outdoor solar lights use solar cells, which convert sunlight into electricity, and are easy to install and virtually maintenance free. | Photo courtesy of ©iStockphoto.com/ndejan Outdoor solar lights use solar cells, which convert sunlight into electricity, and are easy to install and virtually maintenance free. | Photo courtesy of ©iStockphoto.com/ndejan Erin

  7. Parents and Kids: Energize Your Summer | Department of Energy

    Energy Savers [EERE]

    Parents and Kids: Energize Your Summer Parents and Kids: Energize Your Summer June 21, 2013 - 11:33am Addthis Did you know: Incandescent light bulbs only convert about 10 percent of the energy they consume into light and the rest is released as heat. The Energy Department's Energy Bike demonstrates the physical effort it takes to power incandescent, compact fluorescent and LED light bulbs. Students from Churchill Road Elementary School in Virginia recently pedaled for power at their Earth Day

  8. P24 Plasma Physics Summer School 2012 Los Alamos National Laboratory Summer lecture series for students

    SciTech Connect (OSTI)

    Intrator, Thomas P.; Bauer, Bruno; Fernandez, Juan C.; Daughton, William S.; Flippo, Kirk A.; Weber, Thomas; Awe, Thomas J.; Kim, Yong Ho

    2012-09-07

    This report covers the 2012 LANL summer lecture series for students. The lectures were: (1) Tom Intrator, P24 LANL: Kick off, Introduction - What is a plasma; (2) Bruno Bauer, Univ. Nevada-Reno: Derivation of plasma fluid equations; (3) Juan Fernandez, P24 LANL Overview of research being done in p-24; (4) Tom Intrator, P24 LANL: Intro to dynamo, reconnection, shocks; (5) Bill Daughton X-CP6 LANL: Intro to computational particle in cell methods; (6) Kirk Flippo, P24 LANL: High energy density plasmas; (7) Thom Weber, P24 LANL: Energy crisis, fission, fusion, non carbon fuel cycles; (8) Tom Awe, Sandia National Laboratory: Magneto Inertial Fusion; and (9) Yongho Kim, P24 LANL: Industrial technologies.

  9. Documented Safety Analysis for the Waste Storage Facilities

    SciTech Connect (OSTI)

    Laycak, D

    2008-06-16

    This documented safety analysis (DSA) for the Waste Storage Facilities was developed in accordance with 10 CFR 830, Subpart B, 'Safety Basis Requirements', and utilizes the methodology outlined in DOE-STD-3009-94, Change Notice 3. The Waste Storage Facilities consist of Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area portion of the DWTF complex. These two areas are combined into a single DSA, as their functions as storage for radioactive and hazardous waste are essentially identical. The B695 Segment of DWTF is addressed under a separate DSA. This DSA provides a description of the Waste Storage Facilities and the operations conducted therein; identification of hazards; analyses of the hazards, including inventories, bounding releases, consequences, and conclusions; and programmatic elements that describe the current capacity for safe operations. The mission of the Waste Storage Facilities is to safely handle, store, and treat hazardous waste, transuranic (TRU) waste, low-level waste (LLW), mixed waste, combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL (as well as small amounts from other DOE facilities).

  10. Documented Safety Analysis for the Waste Storage Facilities March 2010

    SciTech Connect (OSTI)

    Laycak, D T

    2010-03-05

    This Documented Safety Analysis (DSA) for the Waste Storage Facilities was developed in accordance with 10 CFR 830, Subpart B, 'Safety Basis Requirements,' and utilizes the methodology outlined in DOE-STD-3009-94, Change Notice 3. The Waste Storage Facilities consist of Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area portion of the DWTF complex. These two areas are combined into a single DSA, as their functions as storage for radioactive and hazardous waste are essentially identical. The B695 Segment of DWTF is addressed under a separate DSA. This DSA provides a description of the Waste Storage Facilities and the operations conducted therein; identification of hazards; analyses of the hazards, including inventories, bounding releases, consequences, and conclusions; and programmatic elements that describe the current capacity for safe operations. The mission of the Waste Storage Facilities is to safely handle, store, and treat hazardous waste, transuranic (TRU) waste, low-level waste (LLW), mixed waste, combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL (as well as small amounts from other DOE facilities).

  11. Property:CoolingTowerWaterUseSummerGross | Open Energy Information

    Open Energy Info (EERE)

    Property Name CoolingTowerWaterUseSummerGross Property Type Number Description Cooling Tower Water use (summer average) (afday) Gross. Retrieved from "http:en.openei.orgw...

  12. Property:CoolingTowerWaterUseSummerConsumed | Open Energy Information

    Open Energy Info (EERE)

    Property Name CoolingTowerWaterUseSummerConsumed Property Type Number Description Cooling Tower Water use (summer average) (afday) Consumed. Retrieved from "http:...

  13. Acceptance Priority Ranking & Annual Capacity Report

    SciTech Connect (OSTI)

    2004-07-31

    The Nuclear Waste Policy Act of 1982, as amended (the Act), assigns the Federal Government the responsibility for the disposal of spent nuclear fuel and high-level waste. Section 302(a) of the Act authorizes the Secretary to enter into contracts with the owners and generators of commercial spent nuclear fuel and/or high-level waste. The Standard Contract for Disposal of Spent Nuclear Fuel and/or High-Level Radioactive Waste (Standard Contract) established the contractual mechanism for the Department's acceptance and disposal of spent nuclear fuel and high-level waste. It includes the requirements and operational responsibilities of the parties to the Standard Contract in the areas of administrative matters, fees, terms of payment, waste acceptance criteria, and waste acceptance procedures. The Standard Contract provides for the acquisition of title to the spent nuclear fuel and/or high-level waste by the Department, its transportation to Federal facilities, and its subsequent disposal.

  14. EM's Defense Waste Processing Facility Achieves Waste Cleanup...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Defense Waste Processing Facility Achieves Waste Cleanup Milestone EM's Defense Waste Processing Facility Achieves Waste Cleanup Milestone January 14, 2016 - 12:10pm Addthis The...

  15. Iran outlines oil productive capacity

    SciTech Connect (OSTI)

    Not Available

    1992-11-09

    National Iranian Oil Co. (NIOC) tested production limits last month to prove a claim of 4 million bd capacity made at September's meeting of the organization of Petroleum Exporting Countries. Onshore fields account for 3.6 million bd of the total, with offshore fields providing the rest. NIOC plans to expand total capacity to 4.5 million bd by April 1993, consisting of 4 million b/d onshore and 500,000 b/d offshore. Middle East Economic Survey says questions remain about completion dates for gas injection, drilling, and offshore projects, but expansion targets are attainable within the scheduled time. NIOC said some slippage may be unavoidable, but it is confident the objective will be reached by third quarter 1993 at the latest. More than 60 rigs are working or about to be taken under contract to boost development drilling in onshore fields and provide gas injection in some. NIOC has spent $3.2 billion in foreign exchange on the drilling program in the last 2 1/2 years.

  16. Hanford Dangerous Waste Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrated Disposal Facility Operating Unit #11 Aerial view of IDF looking south. Note semi-truck trailer for scale. There are risks to groundwater in the future from secondary waste, according to modeling. Secondary waste would have to be significantly mitigated before it could be disposed at IDF. Where did the waste come from? No waste is stored here yet. IDF will receive vitrified waste when the Waste Treatment Plant starts operating. It may also receive secondary waste resulting from

  17. Low-Level Radioactive Waste Management at the Nevada Test Site - Current Status

    SciTech Connect (OSTI)

    Bruce D. Becker, Bechtel Nevada; Bruce M. Crowe, Los Alamos National Laboratory; Carl P. Gertz, DOE Nevada Operations Office; Wendy A. Clayton, DOE Nevada Operations Office

    1999-02-01

    The performance objective of the Department of Energy's Low-Level Radioactive Waste disposal facility at the Nevada Test Site transcends those of any other radioactive waste disposal site in the United States. This paper describes the technical attributes of the facility, present and future capacities and capabilities, and provides a description of the process from waste approval to final disposition. The paper also summarizes the current status of the waste disposal operations.

  18. Low-Level Radioactive Waste Management at the Nevada Test Site - Year 2000 Current Status

    SciTech Connect (OSTI)

    Bruce D. Becker, Bechtel Nevada; Bruce M. Crowe, Los Alamos National Laboratory; Carl P. Gertz, DOE Nevada; Wendy A. Clayton, DOE Nevada

    1999-08-06

    The performance objectives of the Department of Energy's Low-level radioactive waste disposal facilities at the Nevada Test Site transcend those of any other radioactive waste disposal site in the United States. The expanded paper will describe the technical attributes of the facilities, the present and the future disposal capacities and capabilities, and includes a description of the process from waste approval to final disposition. The paper also summarizes the current status of the waste disposal operations.

  19. U.S. Refining Capacity Utilization

    Reports and Publications (EIA)

    1995-01-01

    This article briefly reviews recent trends in domestic refining capacity utilization and examines in detail the differences in reported crude oil distillation capacities and utilization rates among different classes of refineries.

  20. California: Conducting Polymer Binder Boosts Storage Capacity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conducting Polymer Binder Boosts Storage Capacity, Wins R&D 100 Award California: Conducting Polymer Binder Boosts Storage Capacity, Wins R&D 100 Award August 19, 2013 - 10:17am ...

  1. Secondary Waste Form Development and OptimizationCast Stone

    SciTech Connect (OSTI)

    Sundaram, S. K.; Parker, Kent E.; Valenta, Michelle M.; Pitman, Stan G.; Chun, Jaehun; Chung, Chul-Woo; Kimura, Marcia L.; Burns, Carolyn A.; Um, Wooyong; Westsik, Joseph H.

    2011-07-14

    Washington River Protection Services is considering the design and construction of a Solidification Treatment Unit (STU) for the Effluent Treatment Facility (ETF) at Hanford. The ETF is a Resource Conservation and Recovery Act-permitted, multi-waste, treatment and storage unit and can accept dangerous, low-level, and mixed wastewaters for treatment. The STU needs to be operational by 2018 to receive secondary liquid wastes generated during operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The STU to ETF will provide the additional capacity needed for ETF to process the increased volume of secondary wastes expected to be produced by WTP.

  2. T10K Change Max Capacity

    Energy Science and Technology Software Center (OSTI)

    2013-08-16

    This command line utility will enable/disable the Oracle StorageTek T10000 tape drive's maximum capacity feature.

  3. DOE Transmission Capacity Report | Department of Energy

    Office of Environmental Management (EM)

    Transmission Capacity Report DOE Transmission Capacity Report DOE Transmission Capacity Report: Transmission lines, substations, circuit breakers, capacitors, and other equipment provide more than just a highway to deliver energy and power from generating units to distribution systems. Transmission systems both complement and substitute for generation. Transmission generally enhances reliability; lowers the cost of electricity delivered to consumers; limits the ability of generators to exercise

  4. Construction and operation of an industrial solid waste landfill at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    SciTech Connect (OSTI)

    1995-10-01

    The US Department of Energy (DOE), Office of Waste Management, proposes to construct and operate a solid waste landfill within the boundary of the Portsmouth Gaseous Diffusion Plant (PORTS), Piketon, Ohio. The purpose of the proposed action is to provide PORTS with additional landfill capacity for non-hazardous and asbestos wastes. The proposed action is needed to support continued operation of PORTS, which generates non-hazardous wastes on a daily basis and asbestos wastes intermittently. Three alternatives are evaluated in this environmental assessment (EA): the proposed action (construction and operation of the X-737 landfill), no-action, and offsite shipment of industrial solid wastes for disposal.

  5. United States-Russia: Environmental management activities, Summer 1998

    SciTech Connect (OSTI)

    1998-09-01

    A Joint Coordinating Committee for Environmental Restoration and Waste Management (JCCEM) was formed between the US and Russia. This report describes the areas of research being studied under JCCEM, namely: Efficient separations; Contaminant transport and site characterization; Mixed wastes; High level waste tank remediation; Transuranic stabilization; Decontamination and decommissioning; and Emergency response. Other sections describe: Administrative framework for cooperation; Scientist exchange; Future actions; Non-JCCEM DOE-Russian activities; and JCCEM publications.

  6. Waste remediation

    DOE Patents [OSTI]

    Halas, Nancy J.; Nordlander, Peter; Neumann, Oara

    2015-12-29

    A system including a steam generation system and a chamber. The steam generation system includes a complex and the steam generation system is configured to receive water, concentrate electromagnetic (EM) radiation received from an EM radiation source, apply the EM radiation to the complex, where the complex absorbs the EM radiation to generate heat, and transform, using the heat generated by the complex, the water to steam. The chamber is configured to receive the steam and an object, wherein the object is of medical waste, medical equipment, fabric, and fecal matter.

  7. Assessment of Summer 1997 motor gasoline price increase

    SciTech Connect (OSTI)

    1998-05-01

    Gasoline markets in 1996 and 1997 provided several spectacular examples of petroleum market dynamics. The first occurred in spring 1996, when tight markets, following a long winter of high demand, resulted in rising crude oil prices just when gasoline prices exhibit their normal spring rise ahead of the summer driving season. Rising crude oil prices again pushed gasoline prices up at the end of 1996, but a warm winter and growing supplies weakened world crude oil markets, pushing down crude oil and gasoline prices during spring 1997. The 1996 and 1997 spring markets provided good examples of how crude oil prices can move gasoline prices both up and down, regardless of the state of the gasoline market in the United States. Both of these spring events were covered in prior Energy Information Administration (EIA) reports. As the summer of 1997 was coming to a close, consumers experienced yet another surge in gasoline prices. Unlike the previous increase in spring 1996, crude oil was not a factor. The late summer 1997 price increase was brought about by the supply/demand fundamentals in the gasoline markets, rather than the crude oil markets. The nature of the summer 1997 gasoline price increase raised questions regarding production and imports. Given very strong demand in July and August, the seemingly limited supply response required examination. In addition, the price increase that occurred on the West Coast during late summer exhibited behavior different than the increase east of the Rocky Mountains. Thus, the Petroleum Administration for Defense District (PADD) 5 region needed additional analysis (Appendix A). This report is a study of this late summer gasoline market and some of the important issues surrounding that event.

  8. Summer 2011 Intern Project- Armin Moosazadeh | Center for Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This phenomenon may be exploited in order to improve energy efficiency, by applying it for refrigeration or generation of electricity from waste heat. Silicon germanium alloys ...

  9. ARM - Field Campaign - Summer 1995 Single Column Model IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsSummer 1995 Single Column Model IOP ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Summer 1995 Single Column Model IOP 1995.07.01 - 1995.07.31 Lead Scientist : David Randall Data Availability Data Plots from Colorado State University Data Plots from Livermore National Laboratory Actual data files for a number of past SCM IOPs are available from the ARM Archive. For data sets, see below.

  10. ARM - Field Campaign - Summer Single Column Model IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsSummer Single Column Model IOP ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Summer Single Column Model IOP 1997.06.18 - 1997.07.18 Lead Scientist : David Randall Data Availability Actual data files for a number of past SCM IOPs are available from the ARM Archive IOP Server Cloud and Radiation Products Derived from Satellite Data Colorado State's Single Column Modeling Home Page For data

  11. April 2013 Short-Term Energy and Summer Fuels Outlook

    Gasoline and Diesel Fuel Update (EIA)

    and Summer Fuels Outlook (STEO) Highlights  During the April-through-September summer driving season this year, regular gasoline retail prices are forecast to average $3.63 per gallon. The projected monthly average regular retail gasoline price falls from $3.69 per gallon in May to $3.57 per gallon in September. EIA expects regular gasoline retail prices to average $3.56 per gallon in 2013 and $3.39 per gallon in 2014, compared with $3.63 per gallon in 2012. The July 2013 New York harbor

  12. Capacity Value of Concentrating Solar Power Plants

    SciTech Connect (OSTI)

    Madaeni, S. H.; Sioshansi, R.; Denholm, P.

    2011-06-01

    This study estimates the capacity value of a concentrating solar power (CSP) plant at a variety of locations within the western United States. This is done by optimizing the operation of the CSP plant and by using the effective load carrying capability (ELCC) metric, which is a standard reliability-based capacity value estimation technique. Although the ELCC metric is the most accurate estimation technique, we show that a simpler capacity-factor-based approximation method can closely estimate the ELCC value. Without storage, the capacity value of CSP plants varies widely depending on the year and solar multiple. The average capacity value of plants evaluated ranged from 45%?90% with a solar multiple range of 1.0-1.5. When introducing thermal energy storage (TES), the capacity value of the CSP plant is more difficult to estimate since one must account for energy in storage. We apply a capacity-factor-based technique under two different market settings: an energy-only market and an energy and capacity market. Our results show that adding TES to a CSP plant can increase its capacity value significantly at all of the locations. Adding a single hour of TES significantly increases the capacity value above the no-TES case, and with four hours of storage or more, the average capacity value at all locations exceeds 90%.

  13. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4-3542 Site Sustainability Plan Waste Isolation Pilot Plant Fiscal Year 2015 Narrative ... Manager, Carlsbad Field Office Site Sustainability Plan Waste Isolation Pilot Plant, ...

  14. Hanford Tank Waste Retrieval,

    Office of Environmental Management (EM)

    Tank Waste Retrieval, Treatment, and Disposition Framework September 24, 2013 U.S. Department of Energy Washington, D.C. 20585 Hanford Tank Waste Retrieval, Treatment, and ...

  15. Salt Waste Processing Initiatives

    Office of Environmental Management (EM)

    Patricia Suggs Salt Processing Team Lead Assistant Manager for Waste Disposition Project Office of Environmental Management Savannah River Site Salt Waste Processing Initiatives 2 ...

  16. Waste Heat Recovery

    Office of Environmental Management (EM)

    DRAFT - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 ... 2 4 1.1. Introduction to Waste Heat Recovery ......

  17. Radioactive Waste Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1984-02-06

    To establish policies and guidelines by which the Department of Energy (DOE) manages tis radioactive waste, waste byproducts, and radioactively contaminated surplus facilities.

  18. Hanford Dangerous Waste Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    organics from tank waste. * Decreases the volume of water to create room in double-shell tanks, allowing them to accept waste from noncompliant single- shell tanks. * Treats...

  19. Waste-to-Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    into renewable energy, thereby enabling a national network of distributed power and biofuel production sites. Image courtesy of Iona Capital Waste-to-Energy Cycle Waste...

  20. Transuranic Waste Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    The guide provides criteria for determining if a waste is to be managed in accordance with DOE M 435.1-1, Chapter III, Transuranic Waste Requirements.

  1. A multi-echelon supply chain model for municipal solid waste management system

    SciTech Connect (OSTI)

    Zhang, Yimei; Huang, Guo He; He, Li

    2014-02-15

    In this paper, a multi-echelon multi-period solid waste management system (MSWM) was developed by inoculating with multi-echelon supply chain. Waste managers, suppliers, industries and distributors could be engaged in joint strategic planning and operational execution. The principal of MSWM system is interactive planning of transportation and inventory for each organization in waste collection, delivery and disposal. An efficient inventory management plan for MSWM would lead to optimized productivity levels under available capacities (e.g., transportation and operational capacities). The applicability of the proposed system was illustrated by a case with three cities, one distribution and two waste disposal facilities. Solutions of the decision variable values under different significant levels indicate a consistent trend. With an increased significant level, the total generated waste would be decreased, and the total transported waste through distribution center to waste to energy and landfill would be decreased as well.

  2. Westinghouse Waste Simulation and Optimization Software Tool - 13493

    SciTech Connect (OSTI)

    Mennicken, Kim [Westinghouse Electric Germany GmbH, Global Waste Management, Dudenstrasse 44, D-68167 Mannheim (Germany)] [Westinghouse Electric Germany GmbH, Global Waste Management, Dudenstrasse 44, D-68167 Mannheim (Germany); Aign, Joerg [Westinghouse Electric Germany GmbH, Global Waste Management, Tarpenring 6, D-22419 Hamburg (Germany)] [Westinghouse Electric Germany GmbH, Global Waste Management, Tarpenring 6, D-22419 Hamburg (Germany)

    2013-07-01

    Radioactive waste is produced during NPP operation and NPP D and D. Different kinds of waste with different volumes and properties have to be treated. Finding a technically and commercially optimized waste treatment concept is a difficult and time consuming process. The Westinghouse waste simulation and optimization software tool is an approach to study the total life cycle cost of any waste management facility. The tool enables the user of the simulation and optimization software to plan processes and storage buildings and to identify bottlenecks in the overall waste management design before starting detailed planning activities. Furthermore, application of the software enables the user to optimize the number of treatment systems, to determine the minimum design capacity for onsite storage facilities, to identify bottlenecks in the overall design and to identify the most cost-effective treatment paths by maintaining optimal waste treatment technologies. In combination with proven waste treatment equipment and integrated waste management solutions, the waste simulation and optimization software provides reliable qualitative results that lead to an effective planning and minimization of the total project planning risk of any waste management activity. (authors)

  3. High energy bursts from a solid state laser operated in the heat capacity limited regime

    DOE Patents [OSTI]

    Albrecht, Georg; George, E. Victor; Krupke, William F.; Sooy, Walter; Sutton, Steven B.

    1996-01-01

    High energy bursts are produced from a solid state laser operated in a heat capacity limited regime. Instead of cooling the laser, the active medium is thermally well isolated. As a result, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself. Therefore, the amount of energy the laser can put out during operation is proportional to its mass, the heat capacity of the active medium, and the temperature difference over which it is being operated. The high energy burst capacity of a heat capacity operated solid state laser, together with the absence of a heavy, power consuming steady state cooling system for the active medium, will make a variety of applications possible. Alternately, cooling takes place during a separate sequence when the laser is not operating. Industrial applications include new material working processes.

  4. High energy bursts from a solid state laser operated in the heat capacity limited regime

    DOE Patents [OSTI]

    Albrecht, G.; George, E.V.; Krupke, W.F.; Sooy, W.; Sutton, S.B.

    1996-06-11

    High energy bursts are produced from a solid state laser operated in a heat capacity limited regime. Instead of cooling the laser, the active medium is thermally well isolated. As a result, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself. Therefore, the amount of energy the laser can put out during operation is proportional to its mass, the heat capacity of the active medium, and the temperature difference over which it is being operated. The high energy burst capacity of a heat capacity operated solid state laser, together with the absence of a heavy, power consuming steady state cooling system for the active medium, will make a variety of applications possible. Alternately, cooling takes place during a separate sequence when the laser is not operating. Industrial applications include new material working processes. 5 figs.

  5. Tank Waste and Waste Processing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tank Waste and Waste Processing Tank Waste and Waste Processing Tank Waste and Waste Processing The Defense Waste Processing Facility set a record by producing 267 canisters filled with glassified waste in a year. New bubbler technology and other enhancements will increase canister production in the future. The Defense Waste Processing Facility set a record by producing 267 canisters filled with glassified waste in a year. New bubbler technology and other enhancements will increase canister

  6. 2015 Princeton-CEFRC Summer School on Combustion - Schedule of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton-CEFRC Summer School on Combustion - Schedule of Events Sunday, June 21 st 13:00 - 17:00 Check In 15:00 - 18:00 Lab Tour (EQuad) 1 st tour 3:00pm; 2 nd tour 4:30pm;...

  7. Summer Fellow Explores EM’s Cold War Cleanup

    Broader source: Energy.gov [DOE]

    Jared Woods graduates from the Maine Maritime Academy (MMA) next month with the experience of an adventurous summer as a fellow in the DOE Scholars Program, an opportunity to explore the agency’s careers and learn about its mission and operations.

  8. Summer Internship Program for American Indian & Native Alaska College Students

    ScienceCinema (OSTI)

    None

    2010-09-01

    Argonne National Laboratory's Summer Internship Program for American Indian & Native Alaska College Students. Supported by the Office of Indian Energy and Economic Development (IEED) in partnership with the Council of Energy Resource Tribes (CERT) and the U.S. Department of Energy.

  9. A Unique Summer Experience at NNSA's Annual MSI Program | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration Unique Summer Experience at NNSA's Annual MSI Program | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press

  10. North Dakota Refining Capacity Study

    SciTech Connect (OSTI)

    Dennis Hill; Kurt Swenson; Carl Tuura; Jim Simon; Robert Vermette; Gilberto Marcha; Steve Kelly; David Wells; Ed Palmer; Kuo Yu; Tram Nguyen; Juliam Migliavacca

    2011-01-05

    According to a 2008 report issued by the United States Geological Survey, North Dakota and Montana have an estimated 3.0 to 4.3 billion barrels of undiscovered, technically recoverable oil in an area known as the Bakken Formation. With the size and remoteness of the discovery, the question became 'can a business case be made for increasing refining capacity in North Dakota?' And, if so what is the impact to existing players in the region. To answer the question, a study committee comprised of leaders in the region's petroleum industry were brought together to define the scope of the study, hire a consulting firm and oversee the study. The study committee met frequently to provide input on the findings and modify the course of the study, as needed. The study concluded that the Petroleum Area Defense District II (PADD II) has an oversupply of gasoline. With that in mind, a niche market, naphtha, was identified. Naphtha is used as a diluent used for pipelining the bitumen (heavy crude) from Canada to crude markets. The study predicted there will continue to be an increase in the demand for naphtha through 2030. The study estimated the optimal configuration for the refinery at 34,000 barrels per day (BPD) producing 15,000 BPD of naphtha and a 52 percent refinery charge for jet and diesel yield. The financial modeling assumed the sponsor of a refinery would invest its own capital to pay for construction costs. With this assumption, the internal rate of return is 9.2 percent which is not sufficient to attract traditional investment given the risk factor of the project. With that in mind, those interested in pursuing this niche market will need to identify incentives to improve the rate of return.

  11. Tank Farms and Waste Feed Delivery - 12507

    SciTech Connect (OSTI)

    Fletcher, Thomas; Charboneau, Stacy; Olds, Erik

    2012-07-01

    The mission of the Department of Energy's Office of River Protection (ORP) is to safely retrieve and treat the 56 million gallons of Hanford's tank waste and close the Tank Farms to protect the Columbia River. Our discussion of the Tank Farms and Waste Feed Delivery will cover progress made to date with Base and Recovery Act funding in reducing the risk posed by tank waste and in preparing for the initiation of waste treatment at Hanford. The millions of gallons of waste are a by-product of decades of plutonium production. After irradiated fuel rods were taken from the nuclear reactors to the processing facilities at Hanford they were exposed to a series of chemicals designed to dissolve away the rod, which enabled workers to retrieve the plutonium. Once those chemicals were exposed to the fuel rods they became radioactive and extremely hot. They also couldn't be used in this process more than once. Because the chemicals are caustic and extremely hazardous to humans and the environment, underground storage tanks were built to hold these chemicals until a more permanent solution could be found. The underground storage tanks range in capacity from 55,000 gallons to more than 1 million gallons. The tanks were constructed with carbon steel and reinforced concrete. There are eighteen groups of tanks, called 'tank farms', some having as few as two tanks and others up to sixteen tanks. Between 1943 and 1964, 149 single-shell tanks were built at Hanford in the 200 West and East Areas. Heat generated by the waste and the composition of the waste caused an estimated 67 of these single-shell tanks to leak into the ground. Washington River Protection Solutions is the prime contractor responsible for the safe management of this waste. WRPS' mission is to reduce the risk to the environment that is posed by the waste. All of the pumpable liquids have been removed from the single-shell tanks and transferred to the double-shell tanks. What remains in the single-shell tanks are solid and semi-solid wastes. Known as salt-cakes, they have the consistency of wet beach sand. Some of the waste resembles small broken ice, or whitish crystals. Because the original pumps inside the tanks were designed to remove only liquid waste, other methods have been developed to reach the remaining waste. Access to the tank waste is through long, typically skinny pipes, called risers, extending out of the tanks. It is through these pipes that crews are forced to send machines and devices into the tanks that are used to break up the waste or push it toward a pump. These pipes range in size from just a few inches to just over a foot in diameter because they were never intended to be used in this manner. As part of the agreement regulating Hanford cleanup, crews must remove at least 99% of the material in every tank on the site, or at least as much waste that can be removed based on available technology. To date, seven single-shell tanks have been emptied, and work is underway in another 10 tanks in preparation for additional retrieval activities. Two barriers have been installed over single-shell tanks to prevent the intrusion of surface water down to the tanks, with additional barriers planned for the future. Single and double-shell tank integrity analyses are ongoing. Because the volume of the waste generated through plutonium production exceeded the capacity of the single-shell tanks, between 1968 and 1986 Hanford engineers built 28 double-shell tanks. These tanks were studied and made with a second shell to surround the carbon steel and reinforced concrete. The double-shell tanks have not leaked any of their waste. (authors)

  12. WINDExchange: U.S. Installed Wind Capacity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Education Printable Version Bookmark and Share Workforce Development Collegiate Wind Competition Wind for Schools Project School Project Locations Education & Training Programs Curricula & Teaching Materials Resources Installed Wind Capacity This page has maps of the United States that show installed wind capacity by state and its progression. This map shows the installed wind capacity in megawatts. As of June 30, 2015, 67,870 megawatts have been installed. Alaska, 62 megawatts; Hawaii,

  13. Hanford Site annual dangerous waste report: Volume 4, Waste Management Facility report, Radioactive mixed waste

    SciTech Connect (OSTI)

    1994-12-31

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation and amount of waste.

  14. Hanford Site annual dangerous waste report: Volume 2, Generator dangerous waste report, radioactive mixed waste

    SciTech Connect (OSTI)

    1994-12-31

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, waste designation, weight, and waste designation.

  15. Property:Cooling Capacity | Open Energy Information

    Open Energy Info (EERE)

    Pages using the property "Cooling Capacity" Showing 2 pages using this property. D Distributed Generation Study615 kW Waukesha Packaged System + 90 + Distributed Generation...

  16. Increasing the Capacity of Existing Power Lines

    SciTech Connect (OSTI)

    2013-04-01

    The capacity of the grid has been largely unchanged for decades and needs to expand to accommodate new power plants and renewable energy projects.

  17. EEI/DOE Transmission Capacity Report

    Broader source: Energy.gov (indexed) [DOE]

    ... The data show a continuation of past trends. Specifically, transmission capacity is being ... 1978 through 2012. These results show trends over time at the national and regional ...

  18. Solar Energy and Capacity Value (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-09-01

    This is a one-page, two-sided fact sheet on the capacity of solar power to provide value to utilities and power system operators.

  19. ,"Washington Natural Gas Underground Storage Capacity (MMcf)...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Washington Natural Gas Underground Storage Capacity (MMcf)",1,"Annual",2014 ,"Release...

  20. ,"Texas Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Underground Storage Capacity (MMcf)",1,"Annual",2014 ,"Release Date:","9...

  1. Voluntary Initiative: Partnering to Enhance Program Capacity

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Program Sustainability Peer Exchange Call Series: Voluntary Initiative: Partnering to Enhance Program Capacity, Call Slides and Summary, May 8, 2014.

  2. Peak Underground Working Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    Previous Articles Previous Articles Estimates of Peak Underground Working Gas Storage Capacity in the United States, 2009 Update (Released, 8312009) Estimates of Peak Underground...

  3. Underground Natural Gas Working Storage Capacity - Methodology

    Gasoline and Diesel Fuel Update (EIA)

    ... changed to active. References Methodology Related Links Storage Basics Field Level Annual Capacity Data Map of Storage Facilities Natural Gas Data Tables Short-Term Energy Outlook

  4. ,"Total Natural Gas Underground Storage Capacity "

    U.S. Energy Information Administration (EIA) Indexed Site

    ...orcapaepg0sacmmcfm.htm" ,"Source:","Energy Information Administration" ,"For Help, ... 1: Total Natural Gas Underground Storage Capacity " "Sourcekey","N5290US2","NGMEP...

  5. Climate Change Capacity Development (C3D+) | Open Energy Information

    Open Energy Info (EERE)

    Capacity Development (C3D+) Jump to: navigation, search Logo: Climate Change Capacity Development (C3D+) Name Climate Change Capacity Development (C3D+) AgencyCompany...

  6. Trinidad and Tobago-Building Capacity for Innovative Policy NAMAs...

    Open Energy Info (EERE)

    Trinidad and Tobago-Building Capacity for Innovative Policy NAMAs (Redirected from Building Capacity for Innovative Policy NAMAs) Jump to: navigation, search Name Building Capacity...

  7. UNDP-Low Emission Capacity Building Programme | Open Energy Informatio...

    Open Energy Info (EERE)

    Capacity Building Programme Jump to: navigation, search Logo: UNDP-Low Emission Capacity Building Programme Name UNDP-Low Emission Capacity Building Programme AgencyCompany...

  8. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Waste Isolation Pilot Plant AFFIDAVIT FOR SURVIVING RELATIVE STATE ) ) ss: COUNTY OF ) That I, , am the...

  9. Waste Package Lifting Calculation

    SciTech Connect (OSTI)

    H. Marr

    2000-05-11

    The objective of this calculation is to evaluate the structural response of the waste package during the horizontal and vertical lifting operations in order to support the waste package lifting feature design. The scope of this calculation includes the evaluation of the 21 PWR UCF (pressurized water reactor uncanistered fuel) waste package, naval waste package, 5 DHLW/DOE SNF (defense high-level waste/Department of Energy spent nuclear fuel)--short waste package, and 44 BWR (boiling water reactor) UCF waste package. Procedure AP-3.12Q, Revision 0, ICN 0, calculations, is used to develop and document this calculation.

  10. Infectious waste feed system

    DOE Patents [OSTI]

    Coulthard, E. James

    1994-01-01

    An infectious waste feed system for comminuting infectious waste and feeding the comminuted waste to a combustor automatically without the need for human intervention. The system includes a receptacle for accepting waste materials. Preferably, the receptacle includes a first and second compartment and a means for sealing the first and second compartments from the atmosphere. A shredder is disposed to comminute waste materials accepted in the receptacle to a predetermined size. A trough is disposed to receive the comminuted waste materials from the shredder. A feeding means is disposed within the trough and is movable in a first and second direction for feeding the comminuted waste materials to a combustor.

  11. Understanding radioactive waste

    SciTech Connect (OSTI)

    Murray, R.L.

    1981-12-01

    This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes). (ATT)

  12. How Do You Save Energy in the Summer? | Department of Energy

    Office of Environmental Management (EM)

    in the Summer? How Do You Save Energy in the Summer? June 17, 2010 - 7:30am Addthis Monday is the official first day of summer! With summer comes hot weather and high cooling bills. But you can take steps to save this summer; Drew told us about a few on Tuesday, and the Stay Cool, Save Money site has more tips. Tell us: How do you save energy in the summer? Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. Please

  13. Radioactive Waste Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. Change 1 dated 6/19/01 removes the requirement that Headquarters is to be notified and the Office of Environment, Safety and Health consulted for exemptions for use of non-DOE treatment facilities. Certified 1-9-07.

  14. Summer 2010 Intern Project- Elan Frantz | Center for Energy Efficient

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Elan Frantz THE POWER OF HEAT: UTILIZING THERMOELECTRIC POWER GENERATION TO COOL COMPUTER COMPONENTS Elan Frantz Electrical and Computer Engineering UC Santa Barbara Mentor: Peter Burke Faculty Advisor: Art Gossard Department: Electrical & Computer Engineering Waste heat is a main source of inefficiency in computer electronics. Using thermoelectric (TE) devices, waste heat can be captured to generate power. In this study, TE power generation is tested as a method of cooling the

  15. Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container...

    Office of Environmental Management (EM)

    Nitrate Salt Bearing Waste Container Isolation Plan Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container Isolation Plan The purpose of this document is to provide the ...

  16. Working and Net Available Shell Storage Capacity

    Reports and Publications (EIA)

    2015-01-01

    Working and Net Available Shell Storage Capacity is the U.S. Energy Information Administration’s (EIA) report containing storage capacity data for crude oil, petroleum products, and selected biofuels. The report includes tables detailing working and net available shell storage capacity by type of facility, product, and Petroleum Administration for Defense District (PAD District). Net available shell storage capacity is broken down further to show the percent for exclusive use by facility operators and the percent leased to others. Crude oil storage capacity data are also provided for Cushing, Oklahoma, an important crude oil market center. Data are released twice each year near the end of May (data for March 31) and near the end of November (data for September 30).

  17. Genome Science and Personalized Cancer Treatment (LBNL Summer Lecture Series)

    SciTech Connect (OSTI)

    Gray, Joe

    2009-08-04

    Summer Lecture Series 2009: Results from the Human Genome Project are enabling scientists to understand how individual cancers form and progress. This information, when combined with newly developed drugs, can optimize the treatment of individual cancers. Joe Gray, director of Berkeley Labs Life Sciences Division and Associate Laboratory Director for Life and Environmental Sciences, will focus on this approach, its promise, and its current roadblocks particularly with regard to breast cancer.

  18. Summer interns present research findings in poster session | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Lab Summer interns present research findings in poster session By Raphael Rosen August 31, 2015 Tweet Widget Google Plus One Share on Facebook New Jersey Assemblywoman Donna Simon Talks With SULI Intern Cara Bagley (Photo by Elle Starkman) New Jersey Assemblywoman Donna Simon Talks With SULI Intern Cara Bagley Gallery: Physicist Charles Skinner and Intern Amanda Lewis (Photo by Elle Starkman) Physicist Charles Skinner and Intern Amanda Lewis Interns Matthew Lotocki, Zack

  19. E=mc2 (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Murayama, Hitoshi

    2011-04-28

    Summer Lecture Series 2006: Go behind the famous equation with Hitoshi Murayama. This famous equation, part of the theory of relativity set forth by Einstein, changed our understanding of nature at the most fundamental level. The fascinating story of energy (E) and mass (m) is still evolving a century since Einstein as we understand more of where they come from, how they shape the universe, and the missing pieces of the universe: Dark Matter and Dark Energy.

  20. What is Gravitational Lensing? (LBNL Summer Lecture Series)

    SciTech Connect (OSTI)

    Leauthaud, Alexie; Nakajima, Reiko

    2009-07-28

    Summer Lecture Series 2009: Gravitational lensing is explained by Einstein's general theory of relativity: galaxies and clusters of galaxies, which are very massive objects, act on spacetime by causing it to become curved. Alexie Leauthaud and Reiko Nakajima, astrophysicists with the Berkeley Center for Cosmological Physics, will discuss how scientists use gravitational lensing to investigate the nature of dark energy and dark matter in the universe.

  1. CRF Summer Undergraduate Internship Opportunities - Apply by January 10,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014 Summer Undergraduate Internship Opportunities - Apply by January 10, 2014 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing

  2. Quest Magazine Summer 2015 | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quest Magazine Summer 2015 Welcome to the third issue of Quest, the annual magazine of the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL). We are pleased to provide this news of our strides in advancing research into fusion energy and plasma science-two topics of vital interest to the United States and the world. Image: Quest Publication File: PDF icon Quest 2015 Publication Type: Quest

  3. Apply for the Parallel Computing Summer Research Internship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Parallel Computing » How to Apply Apply for the Parallel Computing Summer Research Internship Creating next-generation leaders in HPC research and applications development Program Co-Lead Robert (Bob) Robey Email Program Co-Lead Gabriel Rockefeller Email Program Co-Lead Hai Ah Nam Email Professional Staff Assistant Nicole Aguilar Garcia (505) 665-3048 Email Current application deadline is February 5, 2016 with notification by early March 2016. Who can apply? Upper division undergraduate

  4. News Media invited to interview Jefferson Lab summer science enrichment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    program participants; cover closing Poster Session | Jefferson Lab SULI 2004 participant Rachel Black, SULI 2004 participant, talks to Alan Gavalya (far left), Physics Division, and Jim Clark, Accelerator Division, about her work with JLab's Detector Group. Photo: Greg Adams, JLab Media Advisory: News Media invited to interview Jefferson Lab summer science enrichment program participants; cover closing Poster Session July 29, 2005 News Media representatives are invited to interview,

  5. Development of Cellulosic Biofuels (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Somerville, Chris [Director, Energy Biosciences Institute

    2011-04-28

    Summer Lecture Series 2007: Chris Somerville, Director of the Energy Biosciences Institute and an award-winning plant biochemist with Berkeley Lab's Physical Biosciences Division, is a leading authority on the structure and function of plant cell walls. He discusses an overview of some of the technical challenges associated with the production of cellulosic biofuels, which will require an improved understanding of a diverse range of topics in fields such as agronomy, chemical engineering, microbiology, structural biology, genomics, environmental sciences, and socioeconomics.

  6. What is Gravitational Lensing?(LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Alexie, Leauthaud; Reiko, Nakajima [Berkeley Center for Cosmological Physics, Berkely, California, United States

    2010-01-08

    July 28, 2009 Berkeley Lab summer lecture: Gravitational lensing is explained by Einstein's general theory of relativity: galaxies and clusters of galaxies, which are very massive objects, act on spacetime by causing it to become curved. Alexie Leauthaud and Reiko Nakajima, astrophysicists with the Berkeley Center for Cosmological Physics, will discuss how scientists use gravitational lensing to investigate the nature of dark energy and dark matter in the universe.

  7. Jefferson Lab invites families, groups to Summer 2005 Physics Fests |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Science Education staff member Steve Gagnon Steve Gagnon, Science Education, doing the popular "Deep Freeze (cryogenics)" presentation at the 2003 Open House. Photo credit: Greg Adams. Jefferson Lab invites families, groups to Summer 2005 Physics Fests April 7, 2005 Wednesday, June 8 Wednesday, June 29 Tuesday, July 12 Wednesday, July 27 Wednesday, August 10 This two-hour presentation (10 a.m. - noon) includes an interactive summary of the research conducted at the

  8. Espanola Public School teachers strengthen skills during summer session

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Espanola Public School Teachers Strengthen Skills Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:Mar. 2016 all issues All Issues » submit Espanola Public School teachers strengthen skills during summer session Elementary- through high-school teachers attended a workshop designed to help them better understand and teach earth and space science. September 1, 2012 dummy image Read our archives Contacts Editor Linda Anderman Email

  9. What is Gravitational Lensing? (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Leauthaud, Alexie; Nakajima, Reiko [Berkeley Center for Cosmological Physics

    2011-04-28

    Summer Lecture Series 2009: Gravitational lensing is explained by Einstein's general theory of relativity: galaxies and clusters of galaxies, which are very massive objects, act on spacetime by causing it to become curved. Alexie Leauthaud and Reiko Nakajima, astrophysicists with the Berkeley Center for Cosmological Physics, will discuss how scientists use gravitational lensing to investigate the nature of dark energy and dark matter in the universe.

  10. Genome Science and Personalized Cancer Treatment (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Gray, Joe

    2011-04-28

    Summer Lecture Series 2009: Results from the Human Genome Project are enabling scientists to understand how individual cancers form and progress. This information, when combined with newly developed drugs, can optimize the treatment of individual cancers. Joe Gray, director of Berkeley Labs Life Sciences Division and Associate Laboratory Director for Life and Environmental Sciences, will focus on this approach, its promise, and its current roadblocks ? particularly with regard to breast cancer.

  11. Multicore: Fallout From a Computing Evolution (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Yelick, Kathy [Director, NERSC

    2011-04-28

    Summer Lecture Series 2008: Parallel computing used to be reserved for big science and engineering projects, but in two years that's all changed. Even laptops and hand-helds use parallel processors. Unfortunately, the software hasn't kept pace. Kathy Yelick, Director of the National Energy Research Scientific Computing Center at Berkeley Lab, describes the resulting chaos and the computing community's efforts to develop exciting applications that take advantage of tens or hundreds of processors on a single chip.

  12. Microsoft PowerPoint - 2012_summer_fuels.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summer Transportation Fuels O tl k Outlook April 10, 2012 www.eia.gov U.S. Energy Information Administration Independent Statistics & Analysis Key factors driving the short-term outlook * Recovery in Libyan production but lower crude oil exports from South Sudan, Syria, and Yemen and uncertainty over from South Sudan, Syria, and Yemen and uncertainty over the level and security of supply from Iran and other countries in the Middle East and North Africa region. * Decline in consumption in

  13. Microsoft PowerPoint - 2013_summer_fuels.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    S F l O tl k 2013 Summer Fuels Outlook April 9, 2013 www.eia.gov U.S. Energy Information Administration Independent Statistics & Analysis Key factors driving the short-term outlook * World liquid fuels consumption growth driven by emerging economies, with continuing consumption declines in OECD economies, with continuing consumption declines in OECD countries. * Non-OPEC supply growth, particularly in North America, pp y g , p y , expected to keep pace with world liquid fuels consumption

  14. 2005 JASON Summer Study Verification and Validation Charge Program Summary

    National Nuclear Security Administration (NNSA)

    5 JASON Summer Study Verification and Validation Charge Program Summary The Advanced Simulation and Computing (ASC) Program has been driven since its inception by the need to ensure the safety, reliability and performance of the nuclear weapons stockpile without nuclear testing through the development of simulation and modeling capability and the deployment of that capability on state-of-the-art high performance computing platforms. As the devices in the stockpile age and as necessary changes

  15. The Dog Days of Summer - Capitalizing on the Pet Market

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dog Days of Summer - Capitalizing on the Pet Market July 9, 2015 Call Slides and Discussion Summary Agenda  Call Logistics and Opening Poll #1  Introductions  Residential Network and Peer Exchange Call Overview  Opening Poll #2 and #3  Setting the Stage: Pet Market Statistics  Featured Speaker  Julie Saporito, Program Administrator, City and County of Denver (Network Member)  Discussion  What opportunities exist for leveraging the pet market to promote residential

  16. Waste Processing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Processing Waste Processing Workers process and repackage waste at the Transuranic Waste Processing Center’s Cask Processing Enclosure. Workers process and repackage waste at the Transuranic Waste Processing Center's Cask Processing Enclosure. Transuranic waste, or TRU, is one of several types of waste handled by Oak Ridge's EM program. This waste contains manmade elements heavier than uranium, hence the name "trans" or "beyond" uranium. Transuranic waste material

  17. Summer Lake Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    110C383.15 K 230 F 689.67 R 1 USGS Estimated Reservoir Volume: 2 km 1 USGS Mean Capacity: 8 MW 1 Click "Edit With Form" above to add content History and...

  18. 2016 ACEEE Summer Study on Energy Efficiency in Buildings | Department of

    Energy Savers [EERE]

    Energy ACEEE Summer Study on Energy Efficiency in Buildings 2016 ACEEE Summer Study on Energy Efficiency in Buildings August 21, 2016 9:00AM EDT to August 26, 2016 5

  19. U.S. diesel fuel price forecast to be 1 penny lower this summer...

    U.S. Energy Information Administration (EIA) Indexed Site

    That's down 12 percent from last summer's record exports. Biodiesel production, which averaged 68,000 barrels a day last summer, is forecast to jump to 82,000 barrels a day this ...

  20. CAST STONE TECHNOLOGY FOR TREATMENT & DISPOSAL OF IODINE RICH CAUSTIC WASTE DEMONSTRATION FINAL REPORT

    SciTech Connect (OSTI)

    LOCKREM, L.L.

    2005-07-14

    CH2M HILL is working to develop, design, and construct low-activity waste (LAW) treatment and imcholization systems to supplement the LAW capacity provided by the Waste Treatment and Immobilization Plant. CH2M HILL is investigating use of cast stone technology for treatment and immobilization of caustic solutions containing high concentrations of radioactive Iodine-129.

  1. Arizona Apache Tribe Set to Break Ground on New Solar Project, Spring / Summer 2014 (Newsletter)

    SciTech Connect (OSTI)

    Not Available

    2014-03-01

    This newsletter describes key activities of the DOE Office of Indian Energy Policy and Programs for Spring / Summer 2014.

  2. Radioactive Waste Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. The purpose of the Manual is to catalog those procedural requirements and existing practices that ensure that all DOE elements and contractors continue to manage DOE's radioactive waste in a manner that is protective of worker and public health and safety, and the environment. Does not cancel other directives.

  3. Waste-to-Energy: Waste Management and Energy Production Opportunities...

    Office of Environmental Management (EM)

    Waste-to-Energy: Waste Management and Energy Production Opportunities Waste-to-Energy: Waste Management and Energy Production Opportunities July 24, 2014 9:00AM to 3:30PM EDT U.S. ...

  4. Representation of the Solar Capacity Value in the ReEDS Capacity Expansion Model: Preprint

    SciTech Connect (OSTI)

    Sigrin, B.; Sullivan, P.; Ibanez, E.; Margolis, R.

    2014-08-01

    An important emerging issue is the estimation of renewables' contributions to reliably meeting system demand, or their capacity value. While the capacity value of thermal generation can be estimated easily, assessment of wind and solar requires a more nuanced approach due to resource variability. Reliability-based methods, particularly, effective load-carrying capacity (ELCC), are considered to be the most robust techniques for addressing this resource variability. The Regional Energy Deployment System (ReEDS) capacity expansion model and other long-term electricity capacity planning models require an approach to estimating CV for generalized PV and system configurations with low computational and data requirements. In this paper we validate treatment of solar photovoltaic (PV) capacity value by ReEDS capacity expansion model by comparing model results to literature for a range of energy penetration levels. Results from the ReEDS model are found to compare well with both comparisons--despite not being resolved at an hourly scale.

  5. Planned Geothermal Capacity | Open Energy Information

    Open Energy Info (EERE)

    Map of Development Projects Planned Geothermal Capacity in the U.S. is reported by the Geothermal Energy Association via their Annual U.S. Geothermal Power Production and...

  6. Capacity Building Project with Howard University

    Broader source: Energy.gov [DOE]

    The purpose of this initiative is to build community capacity for public participation in environmental and energy decision making. The target communities are those impacted by U.S. Department of...

  7. Waste Treatment and Immobilation Plant HLW Waste Vitrification Facility |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy HLW Waste Vitrification Facility PDF icon Summary - WTP HLW Waste Vitrification Facility More Documents & Publications Waste Treatment and Immobilization Plant (WTP) Analytical Laboratory (LAB), Balance of Facilities (BOF) and Low-Activity Waste Vitrification Facilities (LAW) Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant - November 2013 Waste Treatment and Immobilation Plant Pretreatment Facility

  8. Automation of Capacity Bidding with an Aggregator Using Open Automated Demand Response

    SciTech Connect (OSTI)

    Kiliccote, Sila; Piette, Mary Ann

    2008-10-01

    This report summarizes San Diego Gas& Electric Company?s collaboration with the Demand Response Research Center to develop and test automation capability for the Capacity Bidding Program in 2007. The report describes the Open Automated Demand Response architecture, summarizes the history of technology development and pilot studies. It also outlines the Capacity Bidding Program and technology being used by an aggregator that participated in this demand response program. Due to delays, the program was not fully operational for summer 2007. However, a test event on October 3, 2007, showed that the project successfully achieved the objective to develop and demonstrate how an open, Web?based interoperable automated notification system for capacity bidding can be used by aggregators for demand response. The system was effective in initiating a fully automated demand response shed at the aggregated sites. This project also demonstrated how aggregators can integrate their demand response automation systems with San Diego Gas& Electric Company?s Demand Response Automation Server and capacity bidding program.

  9. Hanford Tank Waste Residuals

    Office of Environmental Management (EM)

    Hanford Tank Waste Residuals DOE HLW Corporate Board November 6, 2008 Chris Kemp, DOE ORP Bill Hewitt, YAHSGS LLC Hanford Tanks & Tank Waste * Single-Shell Tanks (SSTs) - 27 million ...

  10. Nuclear Waste Partnership, LLC

    Office of Environmental Management (EM)

    Nuclear Waste Partnership, LLC Waste Isolation Pilot Plant Report from the Department of Energy Voluntary Protection Program Onsite Review March 17-27, 2015 U.S. Department of...

  11. Transuranic (TRU) Waste

    Broader source: Energy.gov [DOE]

    Defined by the WIPP Land Withdrawal Act as "waste containing more than 100 nanocuries of alpha-emitting transuranic isotopes per gram of waste with half-lives greater than 20 years, except for (A)...

  12. Hanford Dangerous Waste Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Waste Treatment and Immobilization Plant (vit plant) Operating Unit 10 Aerial view of construction, July 2011 Where will the waste go? LAW canisters will go to shallow disposal at...

  13. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Us Search About WIPP The nation's only deep geologic repository for nuclear waste The U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) is a deep...

  14. Measuring the capacity impacts of demand response

    SciTech Connect (OSTI)

    Earle, Robert; Kahn, Edward P.; Macan, Edo

    2009-07-15

    Critical peak pricing and peak time rebate programs offer benefits by increasing system reliability, and therefore, reducing capacity needs of the electric power system. These benefits, however, decrease substantially as the size of the programs grows relative to the system size. More flexible schemes for deployment of demand response can help address the decreasing returns to scale in capacity value, but more flexible demand response has decreasing returns to scale as well. (author)

  15. Alaska Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    2013 2014 View History Total Storage Capacity 83,592 83,592 2013-2014 Depleted Fields 83,592 83,592 2013-2014 Total Working Gas Capacity 67,915 67,915 2013-2014 Depleted Fields 67,915 67,915 2013-2014 Total Number of Existing Fields 5 5 2013-2014 Depleted Fields 5 5 2013

  16. Waste Specification Records - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Specification Records About Us Hanford Site Solid Waste Acceptance Program What's New Acceptance Criteria Acceptance Process Becoming a new Hanford Customer Annual Waste Forecast and Funding Arrangements Waste Stream Approval Waste Shipment Approval Waste Receipt Quality Assurance Program Waste Specification Records Tools Points of Contact Waste Specification Records Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size Waste Specification Records (WSRds) are the tool

  17. Tank Waste Strategy Update

    Office of Environmental Management (EM)

    Tank Waste Subcommittee www.em.doe.gov safety performance cleanup closure E M Environmental Management 1 Tank Waste Subcommittee Ken Picha Office of Environmental Management December 5, 2011 Background Tank Waste Subcommittee (TWS)originally chartered, in response to Secretary's request to perform a technical review of Waste Treatment and Immobilization Plant (WTP) in May 2010. Three tasks: o Verification of closure of WTP External Flowsheet Review Team (EFRT) issues. o WTP Technical Design

  18. Waste Confidence Discussion

    Office of Environmental Management (EM)

    Long-Term Waste Confidence Update Christine Pineda Office of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Commission National Transportation Stakeholders Forum May 2012 ♦ Knoxville, Tennessee Long-Term Update Draft Report, "Background and Preliminary Assumptions for an Environmental Impact Statement- Long-Term Waste Confidence Update" Elements of the Long-Term Update - Draft environmental impact statement - Draft Waste Confidence Decision - Proposed Waste Confidence

  19. Solid waste handling

    SciTech Connect (OSTI)

    Parazin, R.J.

    1995-05-31

    This study presents estimates of the solid radioactive waste quantities that will be generated in the Separations, Low-Level Waste Vitrification and High-Level Waste Vitrification facilities, collectively called the Tank Waste Remediation System Treatment Complex, over the life of these facilities. This study then considers previous estimates from other 200 Area generators and compares alternative methods of handling (segregation, packaging, assaying, shipping, etc.).

  20. Development of Improved Oil Field Waste Injection Disposal Techniques

    SciTech Connect (OSTI)

    Terralog Technologies

    2002-11-25

    The goals of this project have was to: (1) assemble and analyze a comprehensive database of past waste injection operations; (2) develop improved diagnostic techniques for monitoring fracture growth and formation changes; (3) develop operating guidelines to optimize daily operations and ultimate storage capacity of the target formation; and (4) to apply these improved models and guidelines in the field.

  1. Development of Improved Oil Field Waste Injection Disposal Techniques

    SciTech Connect (OSTI)

    Terralog Technologies USA Inc.

    2001-12-17

    The goals of this DOE sponsored project are to: (1) assemble and analyze a comprehensive database of past waste injection operations; (2) develop improved diagnostic techniques for monitoring fracture growth and formation changes; (3) develop operating guidelines to optimize daily operations and ultimate storage capacity of the target formation; and (4) to test these improved models and guidelines in the field.

  2. 2013 Summer's End Poster Session | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summer's End Poster Session View larger image 13 PR 0814 053 View larger image 13 PR 0814 104 View larger image 13 PR 0814 119 P View larger image 13 PR 0814 121 View larger image 13 PR 0814 123 View larger image 13 PR 0814 153 View larger image 13 PR 0814 214 View larger image 13 PR 0814 233 View larger image 13 PR 0814 260 View larger image 13 PR 0814 280 View larger image 13 PR 0814 320 View larger image 13 PR 0814 349 View larger image 13 PR 0814 356 View larger image 13 PR 0814 378 View

  3. 2015 Los Alamos Space Weather Summer School Research Reports

    SciTech Connect (OSTI)

    Cowee, Misa; Chen, Yuxi; Desai, Ravindra; Hassan, Ehab; Kalmoni, Nadine; Lin, Dong; Depascuale, Sebastian; Hughes, Randall Scott; Zhou, Hong

    2015-11-24

    The fifth Los Alamos Space Weather Summer School was held June 1st - July 24th, 2015, at Los Alamos National Laboratory (LANL). With renewed support from the Institute of Geophysics, Planetary Physics, and Signatures (IGPPS) and additional support from the National Aeronautics and Space Administration (NASA) and the Department of Energy (DOE) Office of Science, we hosted a new class of five students from various U.S. and foreign research institutions. The summer school curriculum includes a series of structured lectures as well as mentored research and practicum opportunities. Lecture topics including general and specialized topics in the field of space weather were given by a number of researchers affiliated with LANL. Students were given the opportunity to engage in research projects through a mentored practicum experience. Each student works with one or more LANL-affiliated mentors to execute a collaborative research project, typically linked with a larger ongoing research effort at LANL and/or the student’s PhD thesis research. This model provides a valuable learning experience for the student while developing the opportunity for future collaboration. This report includes a summary of the research efforts fostered and facilitated by the Space Weather Summer School. These reports should be viewed as work-in-progress as the short session typically only offers sufficient time for preliminary results. At the close of the summer school session, students present a summary of their research efforts. Titles of the papers included in this report are as follows: Full particle-in-cell (PIC) simulation of whistler wave generation, Hybrid simulations of the right-hand ion cyclotron anisotropy instability in a sub-Alfvénic plasma flow, A statistical ensemble for solar wind measurements, Observations and models of substorm injection dispersion patterns, Heavy ion effects on Kelvin-Helmholtz instability: hybrid study, Simulating plasmaspheric electron densities with a two-component electric field model, Ion and electron heating by whistler turbulence: parametric studies via particle-in-cell simulation, and The statistics of relativistic electron pitch angle distribution in the Earth’s radiation belt based on the Van Allen Probes measurements.

  4. Jefferson Lab holds summer Physics Fests for youth | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    summer Physics Fests for youth April 2, 2003 Wednesday, June 4: room for 190 Wednesday, July 9: room for 250 Wednesday, August 13: room for 250 Thursday, August 28: room for 175 This two-hour presentation (10 a.m. - noon) includes an interactive summary of the science and technology at the Department of Energy's Jefferson Lab followed by the popular "Deep Freeze (cryogenics) and Hot Stuff (plasmas)" presentations. Parents, teachers and youth planning to attend a Physics Fest may wish

  5. Space Radiation and Cataracts (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Blakely, Eleanor

    2011-04-28

    Summer Lecture Series 2009: Eleanor Blakely, radiation biologist of the Life Sciences Division at Lawrence Berkeley National Laboratory, has been a scientist at Berkeley Lab since 1975. She is studying the effect of radiation on cataracts which concerns not only cancer patients, but also astronauts. As astronauts spend increasingly longer time in space, the effects of cosmic radiation exposure will become an increasingly important health issue- yet there is little human data on these effects. Blakely reviews this emerging field and the contributions made at Berkeley Lab

  6. Waste disposal package

    DOE Patents [OSTI]

    Smith, M.J.

    1985-06-19

    This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.

  7. Hanford Tank Waste Retrieval,

    Office of Environmental Management (EM)

    Tank Waste Retrieval, Treatment, and Disposition Framework September 24, 2013 U.S. Department of Energy Washington, D.C. 20585 Hanford Tank Waste Retrieval, Treatment, and Disposition Framework This page intentionally left blank. ii Hanford Tank Waste Retrieval, Treatment, and Disposition Framework CONTENTS 1. Introduction ............................................................................................................................................. 1 Immobilizing Radioactive Tank

  8. Waste Heat Recovery

    Broader source: Energy.gov (indexed) [DOE]

    DRAFT - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. Introduction to the Technology/System ............................................................................................... 2 4 1.1. Introduction to Waste Heat Recovery .......................................................................................... 2 5 1.2. Challenges and Barriers for Waste Heat Recovery ..................................................................... 13 6 1.3.

  9. Municipal waste processing apparatus

    DOE Patents [OSTI]

    Mayberry, J.L.

    1988-04-13

    This invention relates to apparatus for processing municipal waste, and more particularly to vibrating mesh screen conveyor systems for removing grit, glass, and other noncombustible materials from dry municipal waste. Municipal waste must be properly processed and disposed of so that it does not create health risks to the community. Generally, municipal waste, which may be collected in garbage trucks, dumpsters, or the like, is deposited in processing areas such as landfills. Land and environmental controls imposed on landfill operators by governmental bodies have increased in recent years, however, making landfill disposal of solid waste materials more expensive. 6 figs.

  10. RH TRU Waste Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Remote-Handled Transuranic Waste Program After seven years and more than 5,000 safe shipments of contact-handled (CH) transuranic (TRU) waste, the Waste Isolation Pilot Plant is now also receiving remote-handled (RH) TRU waste. In October 2006, the New Mexico Environment Department (NMED) approved the U.S. Department of Energy's plans for disposal of RH-TRU waste at WIPP. The Environmental Protection Agency (EPA) gave its approval in 2004. Located in the remote desert of southeastern New Mexico,

  11. Radioactive Waste Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. Change 1 dated 6/19/01 removes the requirement that Headquarters is to be notified and the Office of Environment, Safety and Health consulted for exemptions for use of non-DOE treatment facilities. Certified 1-9-07. Admin Chg 2, dated 6-8-11, supersedes DOE M 435.1-1 Chg 1.

  12. Mixed and low-level waste treatment facility project. Volume 3, Waste treatment technologies (Draft)

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    The technology information provided in this report is only the first step toward the identification and selection of process systems that may be recommended for a proposed mixed and low-level waste treatment facility. More specific information on each technology will be required to conduct the system and equipment tradeoff studies that will follow these preengineering studies. For example, capacity, maintainability, reliability, cost, applicability to specific waste streams, and technology availability must be further defined. This report does not currently contain all needed information; however, all major technologies considered to be potentially applicable to the treatment of mixed and low-level waste are identified and described herein. Future reports will seek to improve the depth of information on technologies.

  13. Mixed waste: Proceedings

    SciTech Connect (OSTI)

    Moghissi, A.A.; Blauvelt, R.K.; Benda, G.A.; Rothermich, N.E.

    1993-12-31

    This volume contains the peer-reviewed and edited versions of papers submitted for presentation a the Second International Mixed Waste Symposium. Following the tradition of the First International Mixed Waste Symposium, these proceedings were prepared in advance of the meeting for distribution to participants. The symposium was organized by the Mixed Waste Committee of the American Society of Mechanical Engineers. The topics discussed at the symposium include: stabilization technologies, alternative treatment technologies, regulatory issues, vitrification technologies, characterization of wastes, thermal technologies, laboratory and analytical issues, waste storage and disposal, organic treatment technologies, waste minimization, packaging and transportation, treatment of mercury contaminated wastes and bioprocessing, and environmental restoration. Individual abstracts are catalogued separately for the data base.

  14. An assessment of the effect on Olkiluoto repository capacity achievable with advanced fuel cycles

    SciTech Connect (OSTI)

    Juutilainen, P.; Viitanen, T.

    2013-07-01

    Previously a few scenarios have been simulated for transition from thermal to fast reactor fleet in Finland in order to determine how much the transuranic inventory could be reduced with the partitioning and transmutation (P-T) technologies. Those calculations, performed with COSI6 code developed by CEA, are extended in the present study, in which the effect of P-T on the capacity of the planned final disposal repository at Olkiluoto (Finland) is evaluated by taking into account the created fission products and transuranic residuals from the reprocessing operations. The decay heat is assumed to be the most restrictive factor in defining the waste disposal packing density. The repository capacity evaluation of this study is based on the comparison of the decay heats produced by the deposited waste in various scenarios. The reference scenario of this article involves only Light Water Reactors (LWR) in an open fuel cycle. The capacity requirement of the geological repository is estimated in a few closed fuel cycle scenarios, all including actinide transmutation with Fast Reactors (FR). The comparison between the P-T scenarios and reference is based on the decay heat production of the deposited waste. The COSI6 code is used for simulations to provide the repository decay heat curves. Applying the closed fuel cycle would change the disposal concept and schedule, because of which it is not quite straightforward to assess the impact of P-T on the capacity. However, it can be concluded that recycling the transuranic nuclides probably decreases the required volume for the disposal, but thermal dimensioning analysis is needed for more specific conclusions.

  15. Supplemental Immobilization of Hanford Low-Activity Waste: Cast Stone Screening Tests

    SciTech Connect (OSTI)

    Westsik, Joseph H.; Piepel, Gregory F.; Lindberg, Michael J.; Heasler, Patrick G.; Mercier, Theresa M.; Russell, Renee L.; Cozzi, Alex; Daniel, William E.; Eibling, Russell E.; Hansen, E. K.; Reigel, Marissa M.; Swanberg, David J.

    2013-09-30

    More than 56 million gallons of radioactive and hazardous waste are stored in 177 underground storage tanks at the U.S. Department of Energy’s (DOE’s) Hanford Site in southeastern Washington State. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the wastes and immobilize them in a glass waste form. The WTP includes a pretreatment facility to separate the wastes into a small volume of high-level waste (HLW) containing most of the radioactivity and a larger volume of low-activity waste (LAW) containing most of the nonradioactive chemicals. The HLW will be converted to glass in the HLW vitrification facility for ultimate disposal at an offsite federal repository. At least a portion (~35%) of the LAW will be converted to glass in the LAW vitrification facility and will be disposed of onsite at the Integrated Disposal Facility (IDF). The pretreatment and HLW vitrification facilities will have the capacity to treat and immobilize the wastes destined for each facility. However, a second LAW immobilization facility will be needed for the expected volume of LAW requiring immobilization. A cementitious waste form known as Cast Stone is being considered to provide the required additional LAW immobilization capacity. The Cast Stone waste form must be acceptable for disposal in the IDF. The Cast Stone waste form and immobilization process must be tested to demonstrate that the final Cast Stone waste form can comply with the waste acceptance criteria for the disposal facility and that the immobilization processes can be controlled to consistently provide an acceptable waste form product. Further, the waste form must be tested to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support risk assessment and performance assessment (PA) analyses of the long-term environmental impact of the waste disposal in the IDF. The PA is needed to satisfy both Washington State IDF Permit and DOE Order requirements. Cast Stone has been selected for solidification of radioactive wastes including WTP aqueous secondary wastes treated at the Effluent Treatment Facility (ETF) at Hanford. A similar waste form called Saltstone is used at the Savannah River Site (SRS) to solidify its LAW tank wastes.

  16. An economic evaluation of waste flow control policies in municipal solid waste management

    SciTech Connect (OSTI)

    Greco, J.

    1995-12-01

    The transport of municipal solid waste through legal means is commonly known as waste flow control. Flow control ordinances prohibit the export of locally generated solid waste to disposal sites outside of a jurisdiction, requiring delivery to a locally designated facility for disposal or processing. Local governments use flow control to support public facilities and to comply with federal and state mandates. A decision by Supreme Court in May, 1994 invalidated the use of flow control by local governments raising important policy questions concerning balances between providing low-cost service to rate-payers, the value of conserving disposal capacity be developing expensive waste management programs, and the protection of the environment from the dangers of poor solid waste management. Since Congress is currently considering passage of federal legislation which would restore flow control authority to local government, there is a need to evaluate waste flow control from economic, environmental, political and social perspectives. This analysis attempts to evaluate flow control policies within an interdisciplinary framework. It examines not only the economic consequences of flow control policies, but also the social and environmental objectives that local governments claim are achieved via use of flow control. The analysis reveals that flow control introduces economic distortions into a highly competitive market for solid waste services, a market which consistently produces lower costs than flow-controlled, publicly-sponsored facilities. Important questions are raised concerning the allocation of risk in capital investments made by municipalities that use flow control to insulate investors and themselves from financial liability. Controlling waste flow helps local governments fulfill regulatory responsibilities that may not be met by reliance on competitive market forces.

  17. Representation of Solar Capacity Value in the ReEDS Capacity Expansion Model

    SciTech Connect (OSTI)

    Sigrin, B.; Sullivan, P.; Ibanez, E.; Margolis, R.

    2014-03-01

    An important issue for electricity system operators is the estimation of renewables' capacity contributions to reliably meeting system demand, or their capacity value. While the capacity value of thermal generation can be estimated easily, assessment of wind and solar requires a more nuanced approach due to the resource variability. Reliability-based methods, particularly assessment of the Effective Load-Carrying Capacity, are considered to be the most robust and widely-accepted techniques for addressing this resource variability. This report compares estimates of solar PV capacity value by the Regional Energy Deployment System (ReEDS) capacity expansion model against two sources. The first comparison is against values published by utilities or other entities for known electrical systems at existing solar penetration levels. The second comparison is against a time-series ELCC simulation tool for high renewable penetration scenarios in the Western Interconnection. Results from the ReEDS model are found to compare well with both comparisons, despite being resolved at a super-hourly temporal resolution. Two results are relevant for other capacity-based models that use a super-hourly resolution to model solar capacity value. First, solar capacity value should not be parameterized as a static value, but must decay with increasing penetration. This is because -- for an afternoon-peaking system -- as solar penetration increases, the system's peak net load shifts to later in the day -- when solar output is lower. Second, long-term planning models should determine system adequacy requirements in each time period in order to approximate LOLP calculations. Within the ReEDS model we resolve these issues by using a capacity value estimate that varies by time-slice. Within each time period the net load and shadow price on ReEDS's planning reserve constraint signals the relative importance of additional firm capacity.

  18. HPSS Disk Cache Upgrade Caters to Capacity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HPSS Disk Cache Upgrade Caters to Capacity HPSS Disk Cache Upgrade Caters to Capacity Analysis of NERSC Users' Data-Access Habits Reveals Sweet Spot for Short-term Storage October 16, 2015 Contact: Kathy Kincade, +1 510 495 2124, kkincade@lbl.gov HPSS 09 vert NERSC users today are benefiting from a business decision made three years ago by the center's Storage Systems Group (SSG) as they were looking to upgrade the High-Performance Storage System (HPSS) disk cache: rather than focus primarily on

  19. INVESTING IN NEW BASE LOAD GENERATING CAPACITY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    INVESTING IN NEW BASE LOAD GENERATING CAPACITY Paul L. Joskow April 8, 2008 The views expressed here are my own. They do not reflect the views of the Alfred P. Sloan Foundation, MIT or any other organization with which I am affiliated. THE 25-YEAR VIEW * Significant investment in base-load generating capacity is required over the next 25 years to balance supply and demand efficiently - ~ 200 to 250 Gw (Gross) - Depends on retirements of older steam and peaking units - Depends on demand growth *

  20. Ukraine-Capacity Building for Low Carbon Growth | Open Energy...

    Open Energy Info (EERE)

    Ukraine-Capacity Building for Low Carbon Growth (Redirected from UNDP-Capacity Building for Low Carbon Growth in Ukraine) Jump to: navigation, search Name UNDP-Capacity Building...

  1. Laboratory Waste | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Waste Sharps Broken Glass Containment Hazardous Waste All waste produced in the Sample Prep Labs should be appropriately disposed of at SLAC. You are prohibited to transport waste back to your home institution. Designated areas exist in the labs for sharps, broken glass, and hazardous waste. Sharps, broken glass, and hazardous waste must never be disposed of in the trash cans or sink drains. Containment Bottles, jars, and plastic bags are available for containing chemical waste. Place

  2. Enterprise Assessments Operational Awareness Record, Waste Treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessments Operational Awareness Record, Waste Treatment and Immobilization Plant - December 2014 Waste Treatment and Immobilation Plant HLW Waste Vitrification Facility

  3. Summer 2011 Intern Project- Eric Ling | Center for Energy Efficient

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Eric Ling THERMOELECTRIC PROPERTIES OF DOPED InGaAs Eric Ling Physics and Mathamatics UC Santa Barbara Mentor: Borzoyeh Shojaei Faculty Advisor: Chris Pamlstrom Department: Electrical and Computer Engineering In recent history, thermeoelectrics have shown to be promising materials for energy conversion via wasted heat to electricity. One such material, indium gallium arsenide (InGaAs), may possess a high electrical conductivity term in the thermoelectric figure of merit when doped

  4. Unreviewed Safety Question Determination - Processing Waste in the Waste

    Office of Environmental Management (EM)

    Characterization Glovebox | Department of Energy Unreviewed Safety Question Determination - Processing Waste in the Waste Characterization Glovebox Unreviewed Safety Question Determination - Processing Waste in the Waste Characterization Glovebox This document was used to determine facts and conditions during the Department of Energy Accident Investigation Board's investigation into the radiological release event at the Waste Isolation Pilot Plant. Additional documents referenced and listed

  5. FEASIBILITY AND EXPEDIENCE TO VITRIFY NPP OPERATIONAL WASTE

    SciTech Connect (OSTI)

    LIFANOV, F.A.; OJOVAN, M.I.; STEFANOVSKY, S.V.; BURCL, R.

    2003-02-27

    Operational radioactive waste is generated during routine operation of NPP. Process waste is mainly generated by treatment of water from reactor or ancillaries including spent fuel storage pools and some decontamination operations. Typical process wastes of pressurized water reactors (PWR or WWER) are borated water concentrates, whereas typical process wastes of boiling and RBMK type reactors are water concentrates with no boron content. NPP operational wastes are classified as low and intermediate level waste (LILW). NPP operational waste must be solidified in order to ensure safe conditions of storage and disposal. Currently the most promising solidification method for this waste is the vitrification technology. Vitrification of NPP operational waste is a relative new option being developed for last years. Nevertheless there is already accumulated operational experience on vitrifying low and intermediate level waste in Russian Federation at Moscow SIA ''Radon'' vitrification plant. This plant uses the most advanced type induction high frequency melters that facilitate the melting process and significantly reduce the generation of secondary waste and henceforth the overall cost. The plant was put into operation by the end of 1999. It has three operating cold crucible melters with the overall capacity up to 75 kg/h. The vitrification technology comprises a few stages, starting with evaporation of excess water from liquid radioactive waste, followed by batch preparation, glass melting, and ending with vitrified waste blocks and some relative small amounts of secondary waste. First of all since the original waste contain as main component water, this water is removed from waste through evaporation. Then the remaining salt concentrate is mixed with necessary technological additives, thus a glass-forming batch is formed. The batch is fed into melters where the glass melting occurs. From here there are two streams: one is the glass melt containing the most part of radioactivity and second is the off gas flow, which contains off gaseous and aerosol airborne. The melt glass is fed into containers, which are slowly cooled in an annealing tunnel furnace to avoid accumulation of mechanical stresses in the glass. Containers with glass are the final processing product containing the overwhelming part of waste contaminants. The second stream from melter is directed to gas purification system, which is a rather complex system taking into account the necessity to remove from off gas not only radionuclides but also the chemical contaminants. Operation of this purification system leads to generation of a small amount of secondary waste. This waste stream slightly contaminated with volatilized radionuclides is recycled in the same technological scheme. As a result only non-radioactive materials are produced. They are either discharged into environment or reused. Based on the experience gained during operation of vitrification plant one can conclude on high efficiency achieved through vitrification method. Another significant argument on vitrifying NPP operational waste is the minimal impact of vitrified radioactive waste onto environment. Solidified waste shall be disposed of into a near surface disposal facility. Waste forms disposed of in a near-surface wet repository eventually come into contact with groundwater. Engineered structures used or designed to prevent or postpone such contact and the subsequent radionuclide release are complex and often too expensive. Vitrification technologies provide waste forms with excellent resistance to corrosion and gave the basic possibility of maximal simplification of engineered barrier systems. The most simple disposal option is to locate the vitrified waste form packages directly into earthen trenches provided the host rock has the necessary sorption and confinement properties. Such an approach will significantly make simpler the disposal facilities thus contributing both to enhancing safety and economic al efficiency.

  6. HT Combinatorial Screening of Novel Materials for High Capacity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HT Combinatorial Screening of Novel Materials for High Capacity Hydrogen Storage HT Combinatorial Screening of Novel Materials for High Capacity Hydrogen Storage Presentation for...

  7. Montana Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Montana Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  8. Design and Evaluation of Novel High Capacity Cathode Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon esp13thackeray.pdf More Documents & Publications Design and Evaluation of High Capacity Cathodes Design and Evaluation of Novel High Capacity Cathode Materials Design ...

  9. Design and Evaluation of Novel High Capacity Cathode Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Design and Evaluation of High Capacity Cathodes Vehicle Technologies Office Merit Review 2014: Design and Evaluation of High Capacity Cathodes Design and ...

  10. Property:Installed Capacity (MW) | Open Energy Information

    Open Energy Info (EERE)

    Installed Capacity (MW) Jump to: navigation, search Property Name Installed Capacity (MW) Property Type Number Retrieved from "http:en.openei.orgwindex.php?titleProperty:Insta...

  11. Tunisia-Capacity Development for GHG inventories and MRV | Open...

    Open Energy Info (EERE)

    Tunisia-Capacity Development for GHG inventories and MRV Jump to: navigation, search Name Capacity Development for GHG inventories and MRV in Tunisia AgencyCompany Organization...

  12. EPA-GHG Inventory Capacity Building | Open Energy Information

    Open Energy Info (EERE)

    EPA-GHG Inventory Capacity Building Jump to: navigation, search Tool Summary Name: US EPA GHG inventory Capacity Building AgencyCompany Organization: United States Environmental...

  13. EPA-GHG Inventory Capacity Building | Open Energy Information

    Open Energy Info (EERE)

    Capacity Building) Jump to: navigation, search Tool Summary Name: US EPA GHG inventory Capacity Building AgencyCompany Organization: United States Environmental Protection...

  14. Modeling-Thermo-electrochemistry, Capacity Degradation and Mechanics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modeling-Thermo-electrochemistry, Capacity Degradation and Mechanics with SEI Layer Modeling-Thermo-electrochemistry, Capacity Degradation and Mechanics with SEI Layer 2011 DOE ...

  15. Assessment of the Adequacy of Natural Gas Pipeline Capacity in...

    Office of Environmental Management (EM)

    Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States - November 2013 Assessment of the Adequacy of Natural Gas Pipeline Capacity in the...

  16. DOE Issues Enforcement Guidance on Large-Capacity Clothes Washer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enforcement Guidance on Large-Capacity Clothes Washer Waivers and the Waiver Process DOE Issues Enforcement Guidance on Large-Capacity Clothes Washer Waivers and the Waiver Process...

  17. Property:Number of Plants included in Capacity Estimate | Open...

    Open Energy Info (EERE)

    Plants included in Capacity Estimate Jump to: navigation, search Property Name Number of Plants included in Capacity Estimate Property Type Number Retrieved from "http:...

  18. New Mexico Working Natural Gas Underground Storage Capacity ...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) New Mexico Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  19. UNDP/EC-China-Climate Change Capacity Building Program | Open...

    Open Energy Info (EERE)

    UNDPEC-China-Climate Change Capacity Building Program Redirect page Jump to: navigation, search REDIRECT EU-UNDP Low Emission Capacity Building Programme (LECBP) Retrieved from...

  20. EC/UNDP Climate Change Capacity Building Program | Open Energy...

    Open Energy Info (EERE)

    ECUNDP Climate Change Capacity Building Program Jump to: navigation, search Name UNDPEC Climate Change Capacity Building Program AgencyCompany Organization The European Union...

  1. Costa Rica-EU-UNDP Climate Change Capacity Building Program ...

    Open Energy Info (EERE)

    EU-UNDP Climate Change Capacity Building Program Jump to: navigation, search Name Costa Rica-EU-UNDP Climate Change Capacity Building Program AgencyCompany Organization The...

  2. FAO-Capacity Development on Climate Change | Open Energy Information

    Open Energy Info (EERE)

    Capacity Development on Climate Change Jump to: navigation, search Tool Summary LAUNCH TOOL Name: FAO-Capacity Development on Climate Change AgencyCompany Organization: Food and...

  3. India-Vulnerability Assessment and Enhancing Adaptive Capacities...

    Open Energy Info (EERE)

    Vulnerability Assessment and Enhancing Adaptive Capacities to Climate Change Jump to: navigation, search Name India-Vulnerability Assessment and Enhancing Adaptive Capacities to...

  4. Trinidad and Tobago-Building Capacity for Innovative Policy NAMAs...

    Open Energy Info (EERE)

    Trinidad and Tobago-Building Capacity for Innovative Policy NAMAs Jump to: navigation, search Name Building Capacity for Innovative Policy NAMAs AgencyCompany Organization...

  5. Kansas Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Kansas Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  6. West Virginia Working Natural Gas Underground Storage Capacity...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) West Virginia Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May...

  7. Indiana Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Indiana Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  8. Oregon Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Oregon Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  9. Arkansas Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Arkansas Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  10. Alaska Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Alaska Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  11. Oklahoma Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Oklahoma Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  12. Nebraska Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Nebraska Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  13. Michigan Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Michigan Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  14. Minnesota Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Minnesota Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  15. Utah Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Utah Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  16. Missouri Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Missouri Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  17. Virginia Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Virginia Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  18. Maryland Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Maryland Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  19. Wyoming Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Wyoming Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  20. Ohio Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Ohio Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  1. Illinois Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Illinois Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  2. Iowa Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Iowa Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  3. Kentucky Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Kentucky Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  4. Texas Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Texas Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  5. Louisiana Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Louisiana Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  6. Alabama Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Alabama Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  7. ,"Table 4.B Winter Net Internal Demand, Capacity Resources,...

    U.S. Energy Information Administration (EIA) Indexed Site

    B Winter Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Corporation Region," ,"2001-2010 Actual, 2011-2015 Projected" ...

  8. Capacity Adequacy and Revenue Sufficiency in Electricity Markets...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capacity Adequacy and Revenue Sufficiency in Electricity Markets with Wind Power Title Capacity Adequacy and Revenue Sufficiency in Electricity Markets with Wind Power Publication...

  9. New York Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) New York Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  10. Wireless Battery Management System for Safe High-Capacity Energy...

    Office of Scientific and Technical Information (OSTI)

    Wireless Battery Management System for Safe High-Capacity Energy Storage Citation Details In-Document Search Title: Wireless Battery Management System for Safe High-Capacity Energy ...

  11. Solid Waste Management Plan. Revision 4

    SciTech Connect (OSTI)

    1995-04-26

    The waste types discussed in this Solid Waste Management Plan are Municipal Solid Waste, Hazardous Waste, Low-Level Mixed Waste, Low-Level Radioactive Waste, and Transuranic Waste. The plan describes for each type of solid waste, the existing waste management facilities, the issues, and the assumptions used to develop the current management plan.

  12. Alabama Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    43,600 43,600 43,600 43,600 43,600 43,600 2002-2015 Total Working Gas Capacity 33,150 33,150 33,150 33,150 33,150 33,150 2012-2015 Total Number of Existing Fields 2 2 2 2 2 2

  13. Alaska Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    83,592 83,592 83,592 83,592 83,592 83,592 2013-2015 Total Working Gas Capacity 67,915 67,915 67,915 67,915 67,915 67,915 2013-2015 Total Number of Existing Fields 5 5 5 5 5 5

  14. Washington Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    39,210 41,309 43,673 46,900 46,900 46,900 1988-2014 Aquifers 39,210 41,309 43,673 46,900 46,900 46,900 1999-2014 Depleted Fields 0 0 1999-2014 Total Working Gas Capacity 23,514...

  15. Maryland Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    64,000 64,000 64,000 64,000 64,000 64,000 2002-2015 Total Working Gas Capacity 18,300 18,300 18,300 18,300 18,300 18,300 2012-2015 Total Number of Existing Fields 1 1 1 1 1 1

  16. Michigan Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    1,079,462 1,070,462 1,070,462 1,071,630 1,071,630 1,071,630 2002-2015 Total Working Gas Capacity 682,569 682,569 682,569 685,726 685,726 685,726 2012-2015 Total Number of Existing Fields 44 44 44 44 44 44

  17. Minnesota Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    7,000 7,000 7,000 7,000 7,000 7,000 2002-2015 Total Working Gas Capacity 2,000 2,000 2,000 2,000 2,000 2

  18. Mississippi Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    31,301 331,301 331,301 331,812 331,812 331,812 2002-2015 Total Working Gas Capacity 200,903 200,903 200,903 201,388 201,388 201,388 2012-2015 Total Number of Existing Fields 12 12 12 12 12 12

  19. Missouri Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    13,845 13,845 13,845 13,845 13,845 13,845 2002-2015 Total Working Gas Capacity 6,000 6,000 6,000 6,000 6,000 6

  20. Montana Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    76,301 376,301 376,301 376,301 376,301 376,301 2002-2015 Total Working Gas Capacity 197,501 197,501 197,501 197,501 197,501 197,501 2012-2015 Total Number of Existing Fields 5 5 5 5 5 5

  1. New York Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    245,779 245,779 245,779 245,779 245,779 245,779 2002-2015 Total Working Gas Capacity 126,871 126,871 126,871 126,871 126,871 126,871 2012-2015 Total Number of Existing Fields 26 26 26 26 26 26

  2. Ohio Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    575,794 575,794 575,794 575,794 575,794 575,794 2002-2015 Total Working Gas Capacity 230,828 230,828 230,828 230,828 230,828 230,828 2012-2015 Total Number of Existing Fields 24 24 24 24 24 24

  3. Oklahoma Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    376,435 376,435 374,735 375,135 375,135 375,143 2002-2015 Total Working Gas Capacity 190,955 190,955 189,255 189,455 189,455 191,455 2012-2015 Total Number of Existing Fields 13 13 13 13 13 13

  4. Oregon Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    29,565 29,565 29,565 29,565 29,565 29,565 2002-2015 Total Working Gas Capacity 15,935 15,935 15,935 15,935 15,935 15,935 2012-2015 Total Number of Existing Fields 7 7 7 7 7 7

  5. Pennsylvania Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    771,422 771,422 771,422 771,422 771,422 771,422 2002-2015 Total Working Gas Capacity 429,796 429,796 429,796 429,796 429,796 429,796 2012-2015 Total Number of Existing Fields 49 49 49 49 49 49

  6. Texas Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    832,644 832,644 832,644 832,644 832,644 834,965 2002-2015 Total Working Gas Capacity 528,445 528,335 528,335 528,335 528,335 528,335 2012-2015 Total Number of Existing Fields 36 36 36 36 36 36

  7. Utah Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    124,518 124,518 124,509 124,509 124,509 124,509 2002-2015 Total Working Gas Capacity 54,942 54,942 54,942 54,942 54,942 54,942 2012-2015 Total Number of Existing Fields 3 3 3 3 3 3

  8. Virginia Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    9,500 9,500 9,500 9,500 9,500 9,500 2002-2015 Total Working Gas Capacity 5,400 5,400 5,400 5,400 5,400 5,400 2012-2015 Total Number of Existing Fields 2 2 2 2 2 2

  9. California Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    603,012 603,012 603,012 601,808 601,808 601,808 2002-2015 Total Working Gas Capacity 376,996 376,996 376,996 375,496 375,496 375,496 2012-2015 Total Number of Existing Fields 14 14 14 14 14 14

  10. Colorado Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    130,186 130,186 130,186 130,186 130,186 130,186 2002-2015 Total Working Gas Capacity 63,774 63,774 63,774 63,774 63,774 63,774 2012-2015 Total Number of Existing Fields 10 10 10 10 10 10

  11. Illinois Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    ,004,598 1,004,598 1,003,899 1,004,100 1,004,100 1,004,100 2002-2015 Total Working Gas Capacity 304,312 304,312 303,613 303,613 303,613 303,613 2012-2015 Total Number of Existing Fields 28 28 28 28 28 28

  12. Indiana Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    10,749 110,749 110,749 110,749 111,581 111,581 2002-2015 Total Working Gas Capacity 32,760 32,760 32,760 32,760 33,592 33,592 2012-2015 Total Number of Existing Fields 21 21 21 21 21 21

  13. Iowa Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    288,210 288,210 288,210 288,210 288,210 288,210 2002-2015 Total Working Gas Capacity 90,313 90,313 90,313 90,313 90,313 90,313 2012-2015 Total Number of Existing Fields 4 4 4 4 4 4

  14. Kansas Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    82,984 282,984 282,984 282,984 282,984 282,984 2002-2015 Total Working Gas Capacity 122,980 122,980 122,980 122,980 122,980 122,980 2012-2015 Total Number of Existing Fields 17 17 17 17 17 17

  15. Kentucky Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    21,723 221,723 221,723 221,722 221,722 221,722 2002-2015 Total Working Gas Capacity 107,600 107,600 107,572 107,571 107,571 107,571 2012-2015 Total Number of Existing Fields 23 23 23 23 23 23

  16. Louisiana Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    742,627 742,627 749,867 749,867 749,867 749,867 2002-2015 Total Working Gas Capacity 452,359 452,359 457,530 457,530 457,530 457,530 2012-2015 Total Number of Existing Fields 19 19 19 19 19 19

  17. West Virginia Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    528,637 528,637 528,637 528,637 528,637 528,637 2002-2015 Total Working Gas Capacity 259,324 259,324 259,324 259,321 259,321 259,315 2012-2015 Total Number of Existing Fields 30 30 30 30 30 30

  18. Wyoming Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    157,985 157,985 157,985 157,985 157,985 157,985 2002-2015 Total Working Gas Capacity 73,705 73,705 73,705 73,705 73,705 73,705 2012-2015 Total Number of Existing Fields 9 9 9 9 9 9

  19. Underground waste barrier structure

    DOE Patents [OSTI]

    Saha, Anuj J. (Hamburg, NY); Grant, David C. (Gibsonia, PA)

    1988-01-01

    Disclosed is an underground waste barrier structure that consists of waste material, a first container formed of activated carbonaceous material enclosing the waste material, a second container formed of zeolite enclosing the first container, and clay covering the second container. The underground waste barrier structure is constructed by forming a recessed area within the earth, lining the recessed area with a layer of clay, lining the clay with a layer of zeolite, lining the zeolite with a layer of activated carbonaceous material, placing the waste material within the lined recessed area, forming a ceiling over the waste material of a layer of activated carbonaceous material, a layer of zeolite, and a layer of clay, the layers in the ceiling cojoining with the respective layers forming the walls of the structure, and finally, covering the ceiling with earth.

  20. Waste from grocery stores

    SciTech Connect (OSTI)

    Lieb, K.

    1993-11-01

    The Community Recycling Center, Inc., (CRC, Champaign, Ill.), last year conducted a two-week audit of waste generated at two area grocery stores. The stores surveyed are part of a 10-store chain. For two of the Kirby Foods Stores, old corrugated containers (OCC) accounted for 39-45% of all waste. The summary drew correlations between the amount of OCC and the sum of food and garbage waste. The study suggested that one can reasonably estimate volumes of waste based on the amount of OCC because most things come in a box. Auditors set up a series of containers to make the collection process straightforward. Every day the containers were taken to local recycling centers and weighed. Approximate waste breakdowns for the two stores were as follows: 45% OCC; 35% food waste; 20% nonrecyclable or noncompostable items; and 10% other.