National Library of Energy BETA

Sample records for waste stream disposition

  1. EM Waste and Materials Disposition & Transportation | Department...

    Office of Environmental Management (EM)

    Waste and Materials Disposition & Transportation EM Waste and Materials Disposition & Transportation DOE's Radioactive Waste Management Priorities: Continue to manage waste ...

  2. Savannah River Site Waste Disposition Project

    Office of Environmental Management (EM)

    Terrel J. Spears Assistant Manager Waste Disposition Project DOE Savannah River Operations Office Savannah River Site Savannah River Site Waste Disposition Project Waste ...

  3. Hanford Tank Waste Retrieval, Treatment and Disposition Framework...

    Office of Environmental Management (EM)

    Hanford Tank Waste Retrieval, Treatment and Disposition Framework Hanford Tank Waste Retrieval, Treatment and Disposition Framework Completing the Office of River Protection (ORP) ...

  4. Waste Disposition Update by Christine Gelles

    Office of Environmental Management (EM)

    Waste Disposition Update Christine Gelles Associate Deputy Assistant Secretary for Waste Management (EM-30) EM SSAB Chairs Meeting Washington, DC 2 October 2012 www.em.doe.gov 2 o ...

  5. Waste Disposition News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Disposition News Waste Disposition News July 28, 2016 ERDF is known as the "hub" of Hanford cleanup. EM Marks 20 years of Cleanup Success at Hanford Disposal Facility RICHLAND, Wash. - July marked 20 successful years of environmental cleanup at one of EM's largest disposal facilities - the Environmental Restoration Disposal Facility (ERDF) on the Hanford Site. July 28, 2016 Michael Casbon's first job for Hanford's ERDF was helping with its conceptual design. This month, he

  6. Waste and Materials Disposition Information | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste and Materials Disposition Information Waste and Materials Disposition Information Waste and Materials Disposition Information As the Office of Environmental Management (EM) fulfills its mission, waste and materials disposition plays a vital role in the cleanup of radioactive waste and the environmental legacy of nuclear weapons production and nuclear energy research. Disposal of waste frequently falls on the critical path of cleanup projects. Significant planning resources are spent to

  7. Idaho High-Level Waste & Facilities Disposition, Final Environmental...

    Office of Environmental Management (EM)

    Copies of the Idaho High-Level Waste and Facilities Disposition Final Environmental Impact ... of alternatives for managing high- level waste (HLW) calcine, mixed transuranic waste...

  8. Waste Stream Approval - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stream Approval About Us Hanford Site Solid Waste Acceptance Program What's New Acceptance Criteria Acceptance Process Becoming a new Hanford Customer Annual Waste Forecast and Funding Arrangements Waste Stream Approval Waste Shipment Approval Waste Receipt Quality Assurance Program Waste Specification Records Tools Points of Contact Waste Stream Approval Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size After funding approval is in place, the next step is to

  9. WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE...

    Office of Environmental Management (EM)

    WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE April 1, 2010 - 12:00pm Addthis An operator uses ...

  10. On Going TRU Waste Disposition

    SciTech Connect (OSTI)

    Cody, Tom

    2010-01-01

    The ongoing effort to contain dangerous, radioactive TRU waste. Under the Recovery Act, the Savannah River Site is able to safely test and transport these items to WIPP in Carlsbad, New Mexico.

  11. On Going TRU Waste Disposition

    ScienceCinema (OSTI)

    Cody, Tom

    2012-06-14

    The ongoing effort to contain dangerous, radioactive TRU waste. Under the Recovery Act, the Savannah River Site is able to safely test and transport these items to WIPP in Carlsbad, New Mexico.

  12. Formulation and Analysis of Compliant Grouted Waste Forms for SHINE Waste Streams

    SciTech Connect (OSTI)

    Ebert, William; Pereira, Candido; Heltemes, Thad A.; Youker, Amanda; Makarashvili, Vakhtang; Vandegrift, George F.

    2014-01-01

    Optional grouted waste forms were formulated for waste streams generated during the production of 99Mo to be compliant with low-level radioactive waste regulations. The amounts and dose rates of the various waste form materials that would be generated annually were estimated and used to determine the effects of various waste processing options, such as the of number irradiation cycles between uranium recovery operations, different combinations of waste streams, and removal of Pu, Cs, and Sr from waste streams for separate disposition (which is not evaluated in this report). These calculations indicate that Class C-compliant grouted waste forms can be produced for all waste streams. More frequent uranium recovery results in the generation of more chemical waste, but this is balanced by the fact that waste forms for those waste streams can accommodate higher waste loadings, such that similar amounts of grouted waste forms are required regardless of the recovery schedule. Similar amounts of grouted waste form are likewise needed for the individual and combined waste streams. Removing Pu, Cs, and Sr from waste streams lowers the waste form dose significantly at times beyond about 1 year after irradiation, which may benefit handling and transport. Although these calculations should be revised after experimentally optimizing the grout formulations and waste loadings, they provide initial guidance for process development.

  13. Idaho High-Level Waste & Facilities Disposition, Final Environmental...

    Office of Environmental Management (EM)

    must prepare an Environmental Impact Statement (EIS). Copies of the Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement are available at the...

  14. DOE/EIS-0287 Idaho High-Level Waste & Facilities Disposition...

    Office of Environmental Management (EM)

    State of Idaho Title: Idaho High-Level Waste and Facilities Disposition Draft ... or call: Abstract: This Idaho High-Level Waste and Facilities Disposition Draft EIS ...

  15. Hanford Tank Waste Retrieval, Treatment, and Disposition Framework |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Hanford Tank Waste Retrieval, Treatment, and Disposition Framework Hanford Tank Waste Retrieval, Treatment, and Disposition Framework Forty years of plutonium production at the Hanford Site has yielded a challenging nuclear waste legacy approximately 56 million gallons of radioactive and chemical wastes stored in 177 underground tanks (tank farms) located on Hanford's Central Plateau. The mission of the U.S. Department of Energy (DOE) Office of River Protection (ORP) is

  16. FUEL CYCLE POTENTIAL WASTE FOR DISPOSITION

    SciTech Connect (OSTI)

    Jones, R.; Carter, J.

    2010-10-13

    The United States (U.S.) currently utilizes a once-through fuel cycle where used nuclear fuel (UNF) is stored on-site in either wet pools or in dry storage systems with ultimate disposal in a deep mined geologic repository envisioned. Within the Department of Energy's (DOE) Office of Nuclear Energy (DOE-NE), the Fuel Cycle Research and Development Program (FCR&D) develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development of advanced fuel cycles, including modified open and closed cycles. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Yet, the routine disposal of used nuclear fuel and radioactive waste remains problematic. Advanced fuel cycles will generate different quantities and forms of waste than the current LWR fleet. This study analyzes the quantities and characteristics of potential waste forms including differing waste matrices, as a function of a variety of potential fuel cycle alternatives including: (1) Commercial UNF generated by uranium fuel light water reactors (LWR). Four once through fuel cycles analyzed in this study differ by varying the assumed expansion/contraction of nuclear power in the U.S; (2) Four alternative LWR used fuel recycling processes analyzed differ in the reprocessing method (aqueous vs. electro-chemical), complexity (Pu only or full transuranic (TRU) recovery) and waste forms generated; (3) Used Mixed Oxide (MOX) fuel derived from the recovered Pu utilizing a single reactor pass; and (4) Potential waste forms generated by the reprocessing of fuels derived from recovered TRU utilizing multiple reactor passes.

  17. FUEL CYCLE POTENTIAL WASTE FOR DISPOSITION

    SciTech Connect (OSTI)

    Carter, J.

    2011-01-03

    The United States (U.S.) currently utilizes a once-through fuel cycle where used nuclear fuel (UNF) is stored on-site in either wet pools or in dry storage systems with ultimate disposal in a deep mined geologic repository envisioned. Within the Department of Energy's (DOE) Office of Nuclear Energy (DOE-NE), the Fuel Cycle Research and Development Program (FCR&D) develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development of advanced fuel cycles, including modified open and closed cycles. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Yet, the routine disposal of used nuclear fuel and radioactive waste remains problematic. Advanced fuel cycles will generate different quantities and forms of waste than the current LWR fleet. This study analyzes the quantities and characteristics of potential waste forms including differing waste matrices, as a function of a variety of potential fuel cycle alternatives including: (1) Commercial UNF generated by uranium fuel light water reactors (LWR). Four once through fuel cycles analyzed in this study differ by varying the assumed expansion/contraction of nuclear power in the U.S. (2) Four alternative LWR used fuel recycling processes analyzed differ in the reprocessing method (aqueous vs. electro-chemical), complexity (Pu only or full transuranic (TRU) recovery) and waste forms generated. (3) Used Mixed Oxide (MOX) fuel derived from the recovered Pu utilizing a single reactor pass. (4) Potential waste forms generated by the reprocessing of fuels derived from recovered TRU utilizing multiple reactor passes.

  18. Draft Environmental Assessment on the Remote-handled Waste Disposition...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Draft Environmental Assessment on the Remote-handled Waste Disposition Project available for public review and comment The U.S. Department of Energy invites the public to review...

  19. Olefin Recovery from Chemical Industry Waste Streams

    SciTech Connect (OSTI)

    A.R. Da Costa; R. Daniels; A. Jariwala; Z. He; A. Morisato; I. Pinnau; J.G. Wijmans

    2003-11-21

    The objective of this project was to develop a membrane process to separate olefins from paraffins in waste gas streams as an alternative to flaring or distillation. Flaring these streams wastes their chemical feedstock value; distillation is energy and capital cost intensive, particularly for small waste streams.

  20. SRNL report for the tank waste disposition integrated flowsheet: Corrosion testing

    SciTech Connect (OSTI)

    Wyrwas, R. B.

    2015-09-30

    A series of cyclic potentiodynamic polarization (CPP) tests were performed in support of the Tank Waste Disposition Integrated Flowsheet (TWDIF). The focus of the testing was to assess the effectiveness of the SRNL model for predicting the amount of nitrite inhibitor needed to prevent pitting induced by increasing halide concentrations. The testing conditions were selected to simulate the dilute process stream that is proposed to be returned to tank farms from treating the off-gas from the low activity waste melter in the Waste Treatment and Immobilization Plant.

  1. Portsmouth RI/FS Report for the Site-Wide Waste Disposition Evaluation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Site-Wide Waste Disposition Evaluation Project Portsmouth RIFS Report for the Site-Wide ... RIFS Report for the Site-Wide Waste Disposition Evaluation Project for Portsmouth incl. ...

  2. Recommendation 219: Recommendation Regarding the Creation of a Graphic Representation of Waste Disposition Paths

    Broader source: Energy.gov [DOE]

    The Environmental Management Site-Specific Advisory Board recommends that DOE develop graphic representations of waste disposition paths.

  3. MANAGING HANFORD'S LEGACY NO-PATH-FORWARD WASTES TO DISPOSITION

    SciTech Connect (OSTI)

    WEST LD

    2011-01-13

    The U.S. Department of Energy (DOE) Richland Operations Office (RL) has adopted the 2015 Vision for Cleanup of the Hanford Site. This vision will protect the Columbia River, reduce the Site footprint, and reduce Site mortgage costs. The CH2M HILL Plateau Remediation Company's (CHPRC) Waste and Fuels Management Project (W&FMP) and their partners support this mission by providing centralized waste management services for the Hanford Site waste generating organizations. At the time of the CHPRC contract award (August 2008) slightly more than 9,000 m{sup 3} of waste was defined as 'no-path-forward waste.' The majority of these wastes are suspect transuranic mixed (TRUM) wastes which are currently stored in the low-level Burial Grounds (LLBG), or stored above ground in the Central Waste Complex (CWC). A portion of the waste will be generated during ongoing and future site cleanup activities. The DOE-RL and CHPRC have collaborated to identify and deliver safe, cost-effective disposition paths for 90% ({approx}8,000 m{sup 3}) of these problematic wastes. These paths include accelerated disposition through expanded use of offsite treatment capabilities. Disposal paths were selected that minimize the need to develop new technologies, minimize the need for new, on-site capabilities, and accelerate shipments of transuranic (TRU) waste to the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico.

  4. DRAFT EM SSAB Chairs Meeting Waste Disposition Strategies...

    Office of Environmental Management (EM)

    EM HQ Updates Waste Disposition Overview Christine Gelles Associate Deputy Assistant Secretary for Waste Management Office of Environmental Management EM SSAB Chairs Meeting 5 ...

  5. Waste Disposition Update by Doug Tonkay

    Office of Environmental Management (EM)

    October 20, 2011 o Continue to manage waste inventories in a safe and compliant manner. o Address high risk waste in a cost- effective manner. o Maintain and optimize current ...

  6. Waste Disposition Update by Doug Tonkay

    Office of Environmental Management (EM)

    www.em.doe.gov 1 Environmental Management Site-Specific Advisory Chairs Meeting Douglas Tonkay Office of Disposal Operations October 20, 2011 o Continue to manage waste inventories in a safe and compliant manner. o Address high risk waste in a cost- effective manner. o Maintain and optimize current disposal capability for future generations. www.em.doe.gov 2 o Develop future disposal capacity in a complex environment. o Promote the development of treatment and disposal alternatives in the

  7. Integration of health physics, safety and operational processes for management and disposition of recycled uranium wastes at the Fernald Environmental Management Project (FEMP)

    SciTech Connect (OSTI)

    Barber, James; Buckley, James

    2003-02-23

    Fluor Fernald, Inc. (Fluor Fernald), the contractor for the U. S. Department of Energy (DOE) Fernald Environmental Management Project (FEMP), recently submitted a new baseline plan for achieving site closure by the end of calendar year 2006. This plan was submitted at DOE's request, as the FEMP was selected as one of the sites for their accelerated closure initiative. In accordance with the accelerated baseline, the FEMP Waste Management Project (WMP) is actively evaluating innovative processes for the management and disposition of low-level uranium, fissile material, and thorium, all of which have been classified as waste. These activities are being conducted by the Low Level Waste (LLW) and Uranium Waste Disposition (UWD) projects. Alternatives associated with operational processing of individual waste streams, each of which poses potentially unique health physics, industrial hygiene and industrial hazards, are being evaluated for determination of the most cost effective and safe met hod for handling and disposition. Low-level Mixed Waste (LLMW) projects are not addressed in this paper. This paper summarizes historical uranium recycling programs and resultant trace quantity contamination of uranium waste streams with radionuclides, other than uranium. The presentation then describes how waste characterization data is reviewed for radiological and/or chemical hazards and exposure mitigation techniques, in conjunction with proposed operations for handling and disposition. The final part of the presentation consists of an overview of recent operations within LLW and UWD project dispositions, which have been safely completed, and a description of several current operations.

  8. DOE SEEKS CONTRACTOR TO DISPOSITION WASTE AT THE ADVANCED MIXED WASTE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TREATMENT PROJECT (AMWTP) SEEKS CONTRACTOR TO DISPOSITION WASTE AT THE ADVANCED MIXED WASTE TREATMENT PROJECT (AMWTP) Inside the AMWTP facility The AMWTP facility Idaho Falls - The U.S. Department of Energy, Idaho Operations Office, in coordination with the Office of Environmental Management today released a Final �Request for Proposal� to obtain a contractor to perform waste processing at the Advanced Mixed Waste Treatment Project at the Department�s Idaho Site near Idaho Falls,

  9. EIS-0287: Idaho High-Level Waste and Facilities Disposition Final...

    Office of Environmental Management (EM)

    This EIS also analyzes alternatives for the final disposition of HLW management facilities at the INEEL after their missions are completed. Idaho High-Level Waste and Facilities ...

  10. Public Comment Period for Portsmouth Site D&D and Waste Disposition Decisions

    Broader source: Energy.gov [DOE]

    Public Comment Period for the Process Buildings and Complex Facilities Decontamination and Decommissioning and Site-Wide Waste Disposition Decisions at the Portsmouth Gaseous Diffusion Plant

  11. Waste Information Management System with 2012-13 Waste Streams - 13095

    SciTech Connect (OSTI)

    Upadhyay, H.; Quintero, W.; Lagos, L.; Shoffner, P.; Roelant, D. [Applied Research Center, Florida International University, 10555 West Flagler Street, Suite 2100, Miami, FL 33174 (United States)] [Applied Research Center, Florida International University, 10555 West Flagler Street, Suite 2100, Miami, FL 33174 (United States)

    2013-07-01

    The Waste Information Management System (WIMS) 2012-13 was updated to support the Department of Energy (DOE) accelerated cleanup program. The schedule compression required close coordination and a comprehensive review and prioritization of the barriers that impeded treatment and disposition of the waste streams at each site. Many issues related to waste treatment and disposal were potential critical path issues under the accelerated schedule. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE Headquarters in Washington, D.C., needed timely waste forecast and transportation information regarding the volumes and types of radioactive waste that would be generated by DOE sites over the next 40 years. Each local DOE site historically collected, organized, and displayed waste forecast information in separate and unique systems. In order for interested parties to understand and view the complete DOE complex-wide picture, the radioactive waste and shipment information of each DOE site needed to be entered into a common application. The WIMS application was therefore created to serve as a common application to improve stakeholder comprehension and improve DOE radioactive waste treatment and disposal planning and scheduling. WIMS allows identification of total forecasted waste volumes, material classes, disposition sites, choke points, technological or regulatory barriers to treatment and disposal, along with forecasted waste transportation information by rail, truck and inter-modal shipments. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, developed and deployed the web-based forecast and transportation system and is responsible for updating the radioactive waste forecast and transportation data on a regular basis to ensure the long-term viability and value of this system. (authors)

  12. ACCELERATION OF LOS ALAMOS NATIONAL LABORATORY TRANSURANIC WASTE DISPOSITION

    SciTech Connect (OSTI)

    O'LEARY, GERALD A.

    2007-01-04

    One of Los Alamos National Laboratory's (LANL's) most significant risks is the site's inventory of transuranic waste retrievably stored above and below-ground in Technical Area (TA) 54 Area G, particularly the dispersible high-activity waste stored above-ground in deteriorating facilities. The high activity waste represents approximately 50% (by activity) of the total 292,000 PE-Ci inventory remaining to be disposed. The transuramic waste inventory includes contact-handled and remote-handled waste packaged in drums, boxes, and oversized containers which are retrievably stored both above and below-ground. Although currently managed as transuranic waste, some of the inventory is low-level waste that can be disposed onsite or at approved offsite facilities. Dispositioning the transuranic waste inventory requires retrieval of the containers from above and below-ground storage, examination and repackaging or remediation as necessary, characterization, certification and loading for shipment to the Waste Isolation Pilot Plant in Carlsbad New Mexico, all in accordance with well-defined requirements and controls. Although operations are established to process and characterize the lower-activity contact-handled transuranic waste containers, LAN L does not currently have the capability to repack high activity contact-handled transuranic waste containers (> 56 PE-Ci) or to process oversized containers with activity levels over 0.52 PE-Ci. Operational issues and compliance requirements have resulted in less than optimal processing capabilities for lower activity contact-handled transuranic waste containers, limiting preparation and reducing dependability of shipments to the Waste Isolation Pilot Plant. Since becoming the Los Alamos National Laboratory contract in June 2006, Los Alamos National Security (LANS) L.L.C. has developed a comprehensive, integrated plan to effectively and efficiently disposition the transuranic waste inventory, working in concert with the Department of

  13. Fuel Cycle Potential Waste Inventory for Disposition Rev 5 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Fuel Cycle Potential Waste Inventory for Disposition Rev 5 Fuel Cycle Potential Waste Inventory for Disposition Rev 5 The United States currently utilizes a once-through fuel cycle where used nuclear fuel is stored onsite in either wet pools or in dry storage systems with ultimate disposal envisioned in a deep mined geologic repository. This report provides an estimate of potential waste inventory and waste form characteristics for the DOE used nuclear fuel and high-level radioactive

  14. DRAFT EM SSAB Chairs Meeting Waste Disposition Strategies Update

    Office of Environmental Management (EM)

    EM HQ Updates Waste Disposition Overview Christine Gelles Associate Deputy Assistant Secretary for Waste Management Office of Environmental Management EM SSAB Chairs Meeting 5 November 2013 www.energy.gov/EM 2 * Waste Management Accomplishments and Priorities * National TRU Program Update * LLW/MLLW Disposal Update * Other Programmatic Updates * Disposition Maps - Current Tools Discussion Outline www.energy.gov/EM 3 FY13 Waste Management Accomplishments * WIPP: Emplaced 5,065 cubic meters of

  15. Chemical Disposition of Plutonium in Hanford Site Tank Wastes

    SciTech Connect (OSTI)

    Delegard, Calvin H.; Jones, Susan A.

    2015-05-07

    This report examines the chemical disposition of plutonium (Pu) in Hanford Site tank wastes, by itself and in its observed and potential interactions with the neutron absorbers aluminum (Al), cadmium (Cd), chromium (Cr), iron (Fe), manganese (Mn), nickel (Ni), and sodium (Na). Consideration also is given to the interactions of plutonium with uranium (U). No consideration of the disposition of uranium itself as an element with fissile isotopes is considered except tangentially with respect to its interaction as an absorber for plutonium. The report begins with a brief review of Hanford Site plutonium processes, examining the various means used to recover plutonium from irradiated fuel and from scrap, and also examines the intermediate processing of plutonium to prepare useful chemical forms. The paper provides an overview of Hanford tank defined-waste–type compositions and some calculations of the ratios of plutonium to absorber elements in these waste types and in individual waste analyses. These assessments are based on Hanford tank waste inventory data derived from separately published, expert assessments of tank disposal records, process flowsheets, and chemical/radiochemical analyses. This work also investigates the distribution and expected speciation of plutonium in tank waste solution and solid phases. For the solid phases, both pure plutonium compounds and plutonium interactions with absorber elements are considered. These assessments of plutonium chemistry are based largely on analyses of idealized or simulated tank waste or strongly alkaline systems. The very limited information available on plutonium behavior, disposition, and speciation in genuine tank waste also is discussed. The assessments show that plutonium coprecipitates strongly with chromium, iron, manganese and uranium absorbers. Plutonium’s chemical interactions with aluminum, nickel, and sodium are minimal to non-existent. Credit for neutronic interaction of plutonium with these absorbers

  16. EM's Portsmouth Site Disposes of Decades-Old Waste Stream

    Broader source: Energy.gov [DOE]

    PIKETON, Ohio – Disposition of a 40-plus-year-old legacy waste at the Portsmouth Gaseous Diffusion Plant site was completed thanks to a cooperative effort among EM, contractors, and private industry.

  17. Electrochemical/Pyrometallurgical Waste Stream Processing and Waste Form Fabrication

    SciTech Connect (OSTI)

    Steven Frank; Hwan Seo Park; Yung Zun Cho; William Ebert; Brian Riley

    2015-07-01

    This report summarizes treatment and waste form options being evaluated for waste streams resulting from the electrochemical/pyrometallurgical (pyro ) processing of used oxide nuclear fuel. The technologies that are described are South Korean (Republic of Korea – ROK) and United States of America (US) ‘centric’ in the approach to treating pyroprocessing wastes and are based on the decade long collaborations between US and ROK researchers. Some of the general and advanced technologies described in this report will be demonstrated during the Integrated Recycle Test (IRT) to be conducted as a part of the Joint Fuel Cycle Study (JFCS) collaboration between US Department of Energy (DOE) and ROK national laboratories. The JFCS means to specifically address and evaluated the technological, economic, and safe guard issues associated with the treatment of used nuclear fuel by pyroprocessing. The IRT will involve the processing of commercial, used oxide fuel to recover uranium and transuranics. The recovered transuranics will then be fabricated into metallic fuel and irradiated to transmutate, or burn the transuranic elements to shorter lived radionuclides. In addition, the various process streams will be evaluated and tested for fission product removal, electrolytic salt recycle, minimization of actinide loss to waste streams and waste form fabrication and characterization. This report specifically addresses the production and testing of those waste forms to demonstrate their compatibility with treatment options and suitability for disposal.

  18. Baseline Glass Development for Combined Fission Products Waste Streams

    SciTech Connect (OSTI)

    Crum, Jarrod V.; Billings, Amanda Y.; Lang, Jesse B.; Marra, James C.; Rodriguez, Carmen P.; Ryan, Joseph V.; Vienna, John D.

    2009-06-29

    Borosilicate glass was selected as the baseline technology for immobilization of the Cs/Sr/Ba/Rb (Cs), lanthanide (Ln) and transition metal fission product (TM) waste steams as part of a cost benefit analysis study.[1] Vitrification of the combined waste streams have several advantages, minimization of the number of waste forms, a proven technology, and similarity to waste forms currently accepted for repository disposal. A joint study was undertaken by Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL) to develop acceptable glasses for the combined Cs + Ln + TM waste streams (Option 1) and Cs + Ln combined waste streams (Option 2) generated by the AFCI UREX+ set of processes. This study is aimed to develop baseline glasses for both combined waste stream options and identify key waste components and their impact on waste loading. The elemental compositions of the four-corners study were used along with the available separations data to determine the effect of burnup, decay, and separations variability on estimated waste stream compositions.[2-5] Two different components/scenarios were identified that could limit waste loading of the combined Cs + LN + TM waste streams, where as the combined Cs + LN waste stream has no single component that is perceived to limit waste loading. Combined Cs + LN waste stream in a glass waste form will most likely be limited by heat due to the high activity of Cs and Sr isotopes.

  19. EM Makes Significant Progress on Dispositioning Transuranic Waste at Idaho Site

    Broader source: Energy.gov [DOE]

    IDAHO FALLS, Idaho – EM and contractor CH2M-WG, IDAHO, LLC (CWI) made significant progress in 2013 dispositioning transuranic (TRU) waste and helping ship it out of Idaho.

  20. 2010-01 "Disposition of Remote-Handled Waste Buried in 33 Shafts at

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Area 54" | Department of Energy 1 "Disposition of Remote-Handled Waste Buried in 33 Shafts at Technical Area 54" 2010-01 "Disposition of Remote-Handled Waste Buried in 33 Shafts at Technical Area 54" The intent of this recommendation is to remove the highly radioactive RH-TRU wastes from TA-54 in a safe manner with a minimum of radiation exposure to workers at all levels. Accomplishing this will result in a successful closure of the site. If the

  1. National Institutes of Health: Mixed waste stream analysis

    SciTech Connect (OSTI)

    Kirner, N.P.; Faison, G.P.; Johnson, D.R.

    1994-08-01

    The Low-Level Radioactive Waste Policy Amendments Act of 1985 requires that the US Department of Energy (DOE) provide technical assistance to host States, compact regions, and unaffiliated States to fulfill their responsibilities under the Act. The National Low-Level Waste Management Program (NLLWMP) operated for DOE by EG&G Idaho, Inc. provides technical assistance in the development of new commercial low-level radioactive waste disposal capacity. The NLLWMP has been requested by the Appalachian Compact to help the biomedical community become better acquainted with its mixed waste streams, to help minimize the mixed waste streams generated by the biomedical community, and to provide applicable treatment technologies to those particular mixed waste streams. Mixed waste is waste that satisfies the definition of low-level radioactive waste (LLW) in the Low-Level Radioactive Waste Policy Act of 1980 (LLRWPA) and contains hazardous waste that either (a) is listed as a hazardous waste in Subpart D of 40 CFR 261, or (b) causes the LLW to exhibit any of the hazardous waste characteristics identified in 40 CFR 261. The purpose of this report is to clearly define and characterize the mixed waste streams generated by the biomedical community so that an identification can be made of the waste streams that can and cannot be minimized and treated by current options. An understanding of the processes and complexities of generation of mixed waste in the biomedical community may encourage more treatment and storage options to become available.

  2. Low Level Waste Disposition – Quantity and Inventory

    Office of Energy Efficiency and Renewable Energy (EERE)

    This study has been prepared by the Used Fuel Disposition (UFD) campaign of the Fuel Cycle Research and Development (FCR&D) program. The purpose of this study is to provide an estimate of the...

  3. Characterization of industrial process waste heat and input heat streams

    SciTech Connect (OSTI)

    Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

    1984-05-01

    The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

  4. Waste Stream Analyses for Nuclear Fuel Cycles

    SciTech Connect (OSTI)

    N. R. Soelberg

    2010-08-01

    A high-level study was performed in Fiscal Year 2009 for the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) Advanced Fuel Cycle Initiative (AFCI) to provide information for a range of nuclear fuel cycle options (Wigeland 2009). At that time, some fuel cycle options could not be adequately evaluated since they were not well defined and lacked sufficient information. As a result, five families of these fuel cycle options are being studied during Fiscal Year 2010 by the Systems Analysis Campaign for the DOE NE Fuel Cycle Research and Development (FCRD) program. The quality and completeness of data available to date for the fuel cycle options is insufficient to perform quantitative radioactive waste analyses using recommended metrics. This study has been limited thus far to qualitative analyses of waste streams from the candidate fuel cycle options, because quantitative data for wastes from the front end, fuel fabrication, reactor core structure, and used fuel for these options is generally not yet available.

  5. Waste stream recycling: Its effect on water quality

    SciTech Connect (OSTI)

    Cornwell, D.A. ); Lee, R.G. )

    1994-11-01

    Waste streams recycled to the influent of a water treatment plant typically contain contaminants at concentrations that are of concern. These contaminants may include giardia and Cryptosporidium, trihalomethanes, manganese, and assimilable organic carbon. This research shows that proper management--treatment, equalization, and monitoring--of the waste streams can render them suitable for recycling in many situations.

  6. Superfund Policy Statements and Guidance Regarding Disposition of Radioactive Waste in Non-NRC Licensed Disposal Facilities - 13407

    SciTech Connect (OSTI)

    Walker, Stuart

    2013-07-01

    This talk will discuss EPA congressional testimony and follow-up letters, as well as letters to other stakeholders on EPA's perspectives on the disposition of radioactive waste outside of the NRC licensed disposal facility system. This will also look at Superfund's historical practices, and emerging trends in the NRC and agreement states on waste disposition. (author)

  7. EIS-0287: Idaho High-Level Waste & Facilities Disposition

    Broader source: Energy.gov [DOE]

    This EIS analyzes the potential environmental consequences of alternatives for managing high-level waste (HLW) calcine, mixed transuranic waste/sodium bearing waste (SBW) and newly generated liquid...

  8. Idaho High-Level Waste & Facilities Disposition, Final Environmental...

    Office of Environmental Management (EM)

    Abstract: This EIS analyzes the potential environmental consequences of alternatives for managing high- level waste (HLW) calcine, mixed transuranic wastesodium bearing waste ...

  9. Hanford Tank Waste Retrieval, Treatment, and Disposition Framework...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    nuclear waste legacyapproximately 56 million gallons of radioactive and chemical wastes stored in 177 underground tanks (tank farms) located on Hanford's Central Plateau. ...

  10. Portsmouth RI/FS Report for the Site-Wide Waste Disposition Evaluation Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Remedial Investigation and Feasibility Study Report for the Site-Wide Waste Disposition Evaluation Project at the Portsmouth Gaseous Diffusion Plant, Piketon, Ohio, presents the information necessary to select a Site-wide disposal alternative for the waste generated under the Director’s Final Findings and Orders (DFF&O) for Removal Action and Remedial Investigation and Feasibility Study and Remedial Design and Remedial Action.

  11. DOE Chooses Idaho Treatment Group, LLC to Disposition Waste at the Advanced

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mixed Waste Treatment Project Media Contact: Brad Bugger (208) 526-0833 For Immediate Release: Friday, May 27, 2011 DOE Chooses Idaho Treatment Group, LLC to Disposition Waste at the Advanced Mixed Waste Treatment Project Contract will continue cleanup and waste operations at the Idaho Site Idaho Falls � In order to further meet the U.S. Department of Energy�s commitments to the citizens of the state of Idaho, the DOE today announced that it has selected Idaho Treatment Group, LLC (ITG)

  12. Mixed and Low-Level Treatment Facility Project. Appendix B, Waste stream engineering files, Part 1, Mixed waste streams

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    This appendix contains the mixed and low-level waste engineering design files (EDFS) documenting each low-level and mixed waste stream investigated during preengineering studies for Mixed and Low-Level Waste Treatment Facility Project. The EDFs provide background information on mixed and low-level waste generated at the Idaho National Engineering Laboratory. They identify, characterize, and provide treatment strategies for the waste streams. Mixed waste is waste containing both radioactive and hazardous components as defined by the Atomic Energy Act and the Resource Conservation and Recovery Act, respectively. Low-level waste is waste that contains radioactivity and is not classified as high-level waste, transuranic waste, spent nuclear fuel, or 11e(2) byproduct material as defined by DOE 5820.2A. Test specimens of fissionable material irradiated for research and development only, and not for the production of power or plutonium, may be classified as low-level waste, provided the concentration of transuranic is less than 100 nCi/g. This appendix is a tool that clarifies presentation format for the EDFS. The EDFs contain waste stream characterization data and potential treatment strategies that will facilitate system tradeoff studies and conceptual design development. A total of 43 mixed waste and 55 low-level waste EDFs are provided.

  13. DRAFT EM SSAB Chair's Meeting Waste Disposition Strategies...

    Office of Environmental Management (EM)

    Discussion Points * WIPP Recovery * Greater-Than-Class C Low-Level Waste Final Environmental Impact Statement * Low-Level Waste Update www.energy.govEM 3 WIPP Recovery ...

  14. Idaho High-Level Waste & Facilities Disposition, Final Environmental...

    Office of Environmental Management (EM)

    A.1 Introduction A-1 A.2 Methodology A-1 A.3 High-Level Waste Treatment and Interim ... Evaluation Process A-6 A.4 Low-Activity Waste Disposal Site Selection A-6 A.4.1 ...

  15. Waste streams that preferentially corrode 55-gallon steel storage drums

    SciTech Connect (OSTI)

    Zirker, L.R.; Beitel, G.A.; Reece, C.M.

    1995-06-01

    When 55-gal steel drum waste containers fail in service, i.e., leak, corrode or breach, the standard fix has been to overpack the drum. When a drum fails and is overpacked into an 83-gal overpack drum, there are several negative consequences. Identifying waste streams that preferentially corrode steel drums is essential to the pollution prevention philosophy that ``an ounce of prevention is worth a pound of cure.`` It is essential that facilities perform pollution prevention measures at the front end of processes to reduce pollution on the back end. If these waste streams can be identified before they are packaged, the initial drum packaging system could be fortified or increased to eliminate future drum failures, breaches, clean-ups, and the plethora of other consequences. Therefore, a survey was conducted throughout the US Department of Energy complex for information concerning waste streams that have demonstrated preferential corrosion of 55-gal steel drums. From 21 site contacts, 21 waste streams were so identified. The major components of these waste streams include acids, salts, and solvent liquids, sludges, and still bottoms. The solvent-based waste streams typically had the shortest time to failure, 0.5 to 2 years. This report provides the results of this survey and research.

  16. DRAFT EM SSAB Chairs Meeting Waste Disposition Strategies...

    Office of Environmental Management (EM)

    and restart. * Town hall meetings are utilized to keep the community informed; to stay apprised go to: http:www.wipp.energy.gov * Live streaming of the meetings can be...

  17. Evaluation of Nitrate-Bearing Transuranic Waste Streams

    Energy Savers [EERE]

    OE-2: 2015-1 June 2015 Evaluation of Nitrate-Bearing Transuranic Waste Streams PURPOSE This Operating Experience Level 2 (OE-2) document provides actions to perform an evaluation...

  18. Process for removing toxicants from aqueous petroleum waste streams

    SciTech Connect (OSTI)

    O'Reilly, K.T.; Suzuki, J.P.

    1993-08-17

    A process is described for removing a toxicant from an aqueous waste stream associated with the production of petroleum or petroleum products wherein the toxicant is a thermally stable organic molecule having a molecular weight in the range from about 200 to about 400 and at least one carboxylic acid group, said toxicant further having a 96-hour median lethal concentration for larval rainbow trout and larval fathead minnows of less than about 10 ppb, said process comprising the steps of: (a) contacting the waste stream with an activated non-ionic macro reticular polymeric resin having low to intermediate surface polarity for a time sufficient to reduce the amount of said toxicant in said waste stream to a preselected level, and (b) recovering the waste stream from the resin with a reduced level of toxicity.

  19. Potential dispositioning flowsheets for ICPP SNF and wastes

    SciTech Connect (OSTI)

    Olson, A.L.; Anderson, P.A.; Bendixsen, C.L.

    1995-11-01

    The Idaho Chemical Processing Plant (ICPP), located at the Idaho National Laboratory (INEL), has reprocessed irradiated nuclear fuels for the US Department of Energy (DOE) since 1953. This activity resulted mainly in the recovery of uranium and the management of the resulting wastes. The acidic radioactive high-level liquid waste was routinely stored in stainless steel tanks and then calcined to form a dry granular solid. The calcine is stored in stainless steel bins that are housed in underground concrete vaults. In April 1992, the DOE discontinued the practice of reprocessing irradiated nuclear fuels. This decision has left a legacy of 1.8 million gallons of radioactive liquid wastes (1.5 million gallons of radioactive sodium-bearing liquid wastes and 0.3 million gallons of high-level liquid waste), 3800 cubic meters of calcine waste, and 289 metric tons of heavy metal within unprocessed spent nuclear fuel (SNF) left in inventory at the ICPP. The nation`s radioactive waste policy has been established by the Nuclear Waste Policy Act (NWPA), which requires the final disposal of SNF and radioactive waste in accordance with US Environmental Protection Agency (EPA) and Nuclear Regulatory Commission (NRC) standards. In accordance with these regulations and other legal agreements between the State of Idaho and the DOE, the DOE must, among other requirements, (1) complete a final Environmental Impact Statement by April 30, 1995, (2) evaluate and test sodium-bearing waste pre-treatment technologies, (3) select the sodium-bearing and calcine waste pre-treatment technology, if necessary, by June 1, 1995, and (4) select a technology for converting calcined waste into an appropriate disposal form by June 1, 1995.

  20. Portsmouth Proposed Plan for the Site-wide Waste Disposition...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE has evaluated alternatives for managing waste that would be created by decomtamination and decommissioning of the buildings at the Portsmouth Site. Three remedial alternatives ...

  1. DRAFT EM SSAB Chair's Meeting Waste Disposition Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Corrective Actions The DOE TRU Waste Complex has implemented several changes since the 2014 radiological release incident at WIPP. Based on the Accident Investigation Report and ...

  2. DRAFT EM SSAB Chairs Meeting Waste Disposition Strategies...

    Office of Environmental Management (EM)

    Isolation Pilot Plant Recovery Update J.R. Stroble DOE Carlsbad Field Office Northern New Mexico Citizens Advisory Board March 25, 2015 www.energy.govEM 2 Waste Isolation Pilot...

  3. DRAFT EM SSAB Chair's Meeting Waste Disposition Strategies Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Status Update Todd Shrader, Manager DOE Carlsbad Field Office for New Mexico Radioactive and Hazardous Materials Committee Carlsbad, New Mexico August 2, 2016 www.energy.gov/EM 2 WIPP Progress Path to Resumption of Waste Emplacement * Documented Safety Analysis * Interim Ventilation System * Cold Operations * Management Self Assessment * Operational Readiness Reviews Schedule Challenges * Ground Control * Interim Ventilation System Changes to the National TRU Program * New WIPP Waste Acceptance

  4. Transportable Vitrification System RCRA Closure Practical Waste Disposition Saves Time And Money

    SciTech Connect (OSTI)

    Brill, Angie; Boles, Roger; Byars, Woody

    2003-02-26

    The Transportable Vitrification System (TVS) was a large-scale vitrification system for the treatment of mixed wastes. The wastes contained both hazardous and radioactive materials in the form of sludge, soil, and ash. The TVS was developed to be moved to various United States Department of Energy (DOE) facilities to vitrify mixed waste as needed. The TVS consists of four primary modules: (1) Waste and Additive Materials Processing Module; (2) Melter Module; (3) Emissions Control Module; and (4) Control and Services Module. The TVS was demonstrated at the East Tennessee Technology Park (ETTP) during September and October of 1997. During this period, approximately 16,000 pounds of actual mixed waste was processed, producing over 17,000 pounds of glass. After the demonstration was complete it was determined that it was more expensive to use the TVS unit to treat and dispose of mixed waste than to direct bury this waste in Utah permitted facility. Thus, DOE had to perform a Resource Conservation and Recovery Act (RCRA) closure of the facility and find a reuse for as much of the equipment as possible. This paper will focus on the following items associated with this successful RCRA closure project: TVS site closure design and implementation; characterization activities focused on waste disposition; pollution prevention through reuse; waste minimization efforts to reduce mixed waste to be disposed; and lessons learned that would be integrated in future projects of this magnitude.

  5. DRAFT EM SSAB Chair's Meeting Waste Disposition Strategies Update

    Office of Environmental Management (EM)

    Fiscal Year 2016 Budget Genna Hackett Budget Analyst Environmental Management Los Alamos Field Office January 27, 2016 Northern New Mexico Citizens' Advisory Board Meeting www.energy.gov/EM 2 LOS ALAMOS (EM-LA) Agenda EM-HQ FY 2016 Funding Request EM-LA FY 2016 Appropriation FY 2016 Key Planned Scope FY 2016 In-Progress Summary www.energy.gov/EM 3 LOS ALAMOS (EM-LA) EM FY 2016 Funding Request Radioactive Liquid Tank Waste $ 2,297M / 39% Site Services** $ 413M /7% Soil and

  6. Engineering Options Assessment Report. Nitrate Salt Waste Stream Processing

    SciTech Connect (OSTI)

    Anast, Kurt Roy

    2015-11-13

    This report examines and assesses the available systems and facilities considered for carrying out remediation activities on remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The assessment includes a review of the waste streams consisting of 60 RNS, 29 above-ground UNS, and 79 candidate below-ground UNS containers that may need remediation. The waste stream characteristics were examined along with the proposed treatment options identified in the Options Assessment Report . Two primary approaches were identified in the five candidate treatment options discussed in the Options Assessment Report: zeolite blending and cementation. Systems that could be used at LANL were examined for housing processing operations to remediate the RNS and UNS containers and for their viability to provide repackaging support for remaining LANL legacy waste.

  7. Engineering Options Assessment Report: Nitrate Salt Waste Stream Processing

    SciTech Connect (OSTI)

    Anast, Kurt Roy

    2015-11-18

    This report examines and assesses the available systems and facilities considered for carrying out remediation activities on remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The assessment includes a review of the waste streams consisting of 60 RNS, 29 aboveground UNS, and 79 candidate belowground UNS containers that may need remediation. The waste stream characteristics were examined along with the proposed treatment options identified in the Options Assessment Report . Two primary approaches were identified in the five candidate treatment options discussed in the Options Assessment Report: zeolite blending and cementation. Systems that could be used at LANL were examined for housing processing operations to remediate the RNS and UNS containers and for their viability to provide repackaging support for remaining LANL legacy waste.

  8. Excess Weapons Plutonium Disposition: Plutonium Packaging, Storage and Transportation and Waste Treatment, Storage and Disposal Activities

    SciTech Connect (OSTI)

    Jardine, L J; Borisov, G B

    2004-07-21

    A fifth annual Excess Weapons Plutonium Disposition meeting organized by Lawrence Livermore National Laboratory (LLNL) was held February 16-18, 2004, at the State Education Center (SEC), 4 Aerodromnya Drive, St. Petersburg, Russia. The meeting discussed Excess Weapons Plutonium Disposition topics for which LLNL has the US Technical Lead Organization responsibilities. The technical areas discussed included Radioactive Waste Treatment, Storage, and Disposal, Plutonium Oxide and Plutonium Metal Packaging, Storage and Transportation and Spent Fuel Packaging, Storage and Transportation. The meeting was conducted with a conference format using technical presentations of papers with simultaneous translation into English and Russian. There were 46 Russian attendees from 14 different Russian organizations and six non-Russian attendees, four from the US and two from France. Forty technical presentations were made. The meeting agenda is given in Appendix B and the attendance list is in Appendix C.

  9. PROJECT STRATEGY FOR THE REMEDIATION AND DISPOSITION OF LEGACY TRANSURANIC WASTE AT THE SAVANNAH RIVER SITE, South Carolina, USA

    SciTech Connect (OSTI)

    Rodriguez, M.

    2010-12-17

    This paper discusses the Savannah River Site Accelerated Transuranic (TRU) Waste Project that was initiated in April of 2009 to accelerate the disposition of remaining legacy transuranic waste at the site. An overview of the project execution strategy that was implemented is discussed along with the lessons learned, challenges and improvements to date associated with waste characterization, facility modifications, startup planning, and remediation activities. The legacy waste was generated from approximately 1970 through 1990 and originated both on site as well as at multiple US Department of Energy sites. Approximately two thirds of the waste was previously dispositioned from 2006 to 2008, with the remaining one third being the more hazardous waste due to its activity (curie content) and the plutonium isotope Pu-238 quantities in the waste. The project strategy is a phased approach beginning with the lower activity waste in existing facilities while upgrades are made to support remediation of the higher activity waste. Five waste remediation process lines will be used to support the full remediation efforts which involve receipt of the legacy waste container, removal of prohibited items, venting of containers, and resizing of contents to fit into current approved waste shipping containers. Modifications have been minimized to the extent possible to meet the accelerated goals and involve limited upgrades to address life safety requirements, radiological containment needs, and handling equipment for the larger waste containers. Upgrades are also in progress for implementation of the TRUPACT III for the shipment of Standard Large Boxes to the Waste Isolation Pilot Plant, the US TRU waste repository. The use of this larger shipping container is necessary for approximately 20% of the waste by volume due to limited size reduction capability. To date, approximately 25% of the waste has been dispositioned, and several improvements have been made to the overall processing

  10. Future radioactive liquid waste streams study

    SciTech Connect (OSTI)

    Rey, A.S.

    1993-11-01

    This study provides design planning information for the Radioactive Liquid Waste Treatment Facility (RLWTF). Predictions of estimated quantities of Radioactive Liquid Waste (RLW) and radioactivity levels of RLW to be generated are provided. This information will help assure that the new treatment facility is designed with the capacity to treat generated RLW during the years of operation. The proposed startup date for the RLWTF is estimated to be between 2002 and 2005, and the life span of the facility is estimated to be 40 years. The policies and requirements driving the replacement of the current RLW treatment facility are reviewed. Historical and current status of RLW generation at Los Alamos National Laboratory are provided. Laboratory Managers were interviewed to obtain their insights into future RLW activities at Los Alamos that might affect the amount of RLW generated at the Lab. Interviews, trends, and investigation data are analyzed and used to create scenarios. These scenarios form the basis for the predictions of future RLW generation and the level of RLW treatment capacity which will be needed at LANL.

  11. Engineering evaluation of alternatives for the disposition of Niagara Falls Storage Site, its residues and wastes

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    The final disposition scenarios selected by DOE for assessment in this document are consistent with those stated in the Notice of Intent to prepare an Environmental Impact Statement (EIS) for the Niagara Falls Storage Site (NFSS) (DOE, 1983d) and the modifications to the alternatives resulting from the public scoping process. The scenarios are: take no action beyond interim remedial measures other than maintenance and surveillance of the NFSS; retain and manage the NFSS as a long-term waste management facility for the wastes and residues on the site; decontaminate, certify, and release the NFSS for other use, with long-term management of the wastes and residues at other DOE sites; and partially decontaminate the NFSS by removal and transport off site of only the more radioactive residues, and upgrade containment of the remaining wastes and residues on site. The objective of this document is to present to DOE the conceptual engineering, occupational radiation exposure, construction schedule, maintenance and surveillance requirements, and cost information relevant to design and implementation of each of the four scenarios. The specific alternatives within each scenario used as the basis for discussion in this document were evaluated on the bases of engineering considerations, technical feasibility, and regulatory requirements. Selected alternatives determined to be acceptable for each of the four final disposition scenarios for the NFSS were approved by DOE to be assessed and costed in this document. These alternatives are also the subject of the EIS for the NFSS currently being prepared by Argonne National Laboratory (ANL). 40 figures, 38 tables.

  12. Separation of technetium from nuclear waste stream simulants. Final report

    SciTech Connect (OSTI)

    Strauss, S.H. [Colorado State Univ., Fort Collins, CO (United States). Dept. of Chemistry

    1995-09-11

    The author studied liquid anion exchangers, such as Aliquat-336 nitrate, various pyridinium nitrates, and related salts, so that they may be applied toward a specific process for extracting (partitioning) and recovering {sup 99}TcO{sub 4}{sup {minus}} from nuclear waste streams. Many of the waste streams are caustic and contain a variety of other ions. For this reason, the author studied waste stream simulants that are caustic and contain appropriate concentrations of selected, relevant ions. Methods of measuring the performance of the exchangers and extractant systems included contact experiments. Batch contact experiments were used to determine the forward and reverse extraction parameters as a function of temperature, contact time, phase ratio, concentration, solvent (diluent), and other physical properties. They were also used for stability and competition studies. Specifically, the author investigated the solvent extraction behavior of salts of perrhenate (ReO{sub 4}{sup {minus}}), a stable (non-radioactive) chemical surrogate for {sup 99}TcO{sub 4}{sup {minus}}. Results are discussed for alternate organic solvents; metalloporphyrins, ferrocenes, and N-cetyl pyridium nitrate as alternate extractant salts; electroactive polymers; and recovery of ReO{sub 4}{sup {minus}} and TcO{sub 4}{sup {minus}}.

  13. Disposal Activities and the Unique Waste Streams at the Nevada National Security Site (NNSS)

    SciTech Connect (OSTI)

    Arnold, P.

    2012-10-31

    This slide show documents waste disposal at the Nevada National Security Site. Topics covered include: radionuclide requirements for waste disposal; approved performance assessment (PA) for depleted uranium disposal; requirements; program approval; the Waste Acceptance Review Panel (WARP); description of the Radioactive Waste Acceptance Program (RWAP); facility evaluation; recent program accomplishments, nuclear facility safety changes; higher-activity waste stream disposal; and, large volume bulk waste streams.

  14. Glass Ceramic Waste Forms for Combined CS+LN+TM Fission Products Waste Streams

    SciTech Connect (OSTI)

    Crum, Jarrod V.; Turo, Laura A.; Riley, Brian J.; Tang, Ming; Kossoy, Anna; Sickafus, Kurt E.

    2010-09-23

    In this study, glass ceramics were explored as an alternative waste form for glass, the current baseline, to be used for immobilizing alkaline/alkaline earth + lanthanide (CS+LN) or CS+LN+transition metal (TM) fission-product waste streams generated by a uranium extraction (UREX+) aqueous separations type process. Results from past work on a glass waste form for the combined CS+LN waste streams showed that as waste loading increased, large fractions of crystalline phases precipitated upon slow cooling.[1] The crystalline phases had no noticeable impact on the waste form performance by the 7-day product consistency test (PCT). These results point towards the development of a glass ceramic waste form for treating CS+LN or CS+LN+TM combined waste streams. Three main benefits for exploring glass ceramics are: (1) Glass ceramics offer increased solubility of troublesome components in crystalline phases as compared to glass, leading to increased waste loading; (2) The crystalline network formed in the glass ceramic results in higher heat tolerance than glass; and (3) These glass ceramics are designed to be processed by the same melter technology as the current baseline glass waste form. It will only require adding controlled canister cooling for crystallization into a glass ceramic waste form. Highly annealed waste form (essentially crack free) with up to 50X lower surface area than a typical High-Level Waste (HLW) glass canister. Lower surface area translates directly into increased durability. This was the first full year of exploring glass ceramics for the Option 1 and 2 combined waste stream options. This work has shown that dramatic increases in waste loading are achievable by designing a glass ceramic waste form as an alternative to glass. Table S1 shows the upper limits for heat, waste loading (based on solubility), and the decay time needed before treatment can occur for glass and glass ceramic waste forms. The improvements are significant for both combined waste

  15. Design of electrochemical processes for treatment of unusual waste streams

    SciTech Connect (OSTI)

    Farmer, J.C.

    1998-01-01

    attractive is the use of eiectrochemically generated mediators such as Ag( ll), Co( Ill) and Fe( III). These oxidants react with organicsin Bipolar membrane electrodialysis. in the aqueous processing of nuclear materials, process steps arise that require the neutralization of an acidic stream with a strong base. Ultimately, these neutralized salt solutions become aqueous waste streams, requiring further treatment and disposal. By "splitting" such neutralized salt solutions into their acid and base components, the generation of aqueous mixed waste can be greatly reduced. At LLNL, a bipolar membrane electrodialysis cell has been used to separate neutral solutions of NaCl, NaNO1 and Na, SO, into product streams of NaOH, HCI, HNOj and H2S0,, which could be recycled. The eftlciency of this particular process will be discussed, as well as practical limitations of the technology. Basic principles of engineering design of such systems will be reviewed.

  16. Topic: Cesium Management and Disposition Alternatives for the Low Activity Waste Pre-Treatment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Topic Index to the DOE Administrative Records Disposition Schedules Topic Index to the DOE Administrative Records Disposition Schedules Topic Index to the DOE Administrative Records Disposition Schedules Topic Index to the DOE Administrative Records Disposition Schedules (235.82 KB) More Documents & Publications ADMINISTRATIVE RECORDS SCHEDULE 20: ELECTRONIC RECORDS ADMINISTRATIVE RECORDS SCHEDULE 20: ELECTRONIC RECORDS ADMINISTRATIVE RECORDS SCHEDULE 12:

  17. Composting: Dirty riches. [Composting organic wastes from the municiple solid waste stream

    SciTech Connect (OSTI)

    Sachs, A.

    1993-08-01

    Up to three-quarters of municiple solid waste (MSW) is organic, readily biodegradable material, such as food, leaves, and paper. If this waste were allowed to root properly, the solid waste crisis would be less serious. However, rotting isn't easy in a tightly packed mountain of garbage at a typical landfill. The last few years have at least established composing as a rising green industry, especially in the most populous regions of the developed world. However, the variety of composting programs is too inefficient to divert any more than a tiny fraction of the compostable waste stream away from landfills and incinerators. This article discusses the problems of mixed municiple solid wastes and composting organic wastes, and possible solutions.

  18. Using benchmarking to minimize common DOE waste streams. Volume 1, Methodology and liquid photographic waste

    SciTech Connect (OSTI)

    Levin, V.

    1994-04-01

    Finding innovative ways to reduce waste streams generated at Department of Energy (DOE) sites by 50% by the year 2000 is a challenge for DOE`s waste minimization efforts. This report examines the usefulness of benchmarking as a waste minimization tool, specifically regarding common waste streams at DOE sites. A team of process experts from a variety of sites, a project leader, and benchmarking consultants completed the project with management support provided by the Waste Minimization Division EM-352. Using a 12-step benchmarking process, the team examined current waste minimization processes for liquid photographic waste used at their sites and used telephone and written questionnaires to find ``best-in-class`` industrv partners willing to share information about their best waste minimization techniques and technologies through a site visit. Eastman Kodak Co., and Johnson Space Center/National Aeronautics and Space Administration (NASA) agreed to be partners. The site visits yielded strategies for source reduction, recycle/recovery of components, regeneration/reuse of solutions, and treatment of residuals, as well as best management practices. An additional benefit of the work was the opportunity for DOE process experts to network and exchange ideas with their peers at similar sites.

  19. RADIOACTIVE WASTE STREAMS FROM VARIOUS POTENTIAL NUCLEAR FUEL CYCLE OPTIONS

    SciTech Connect (OSTI)

    Nick Soelberg; Steve Piet

    2010-11-01

    Five fuel cycle options, about which little is known compared to more commonly known options, have been studied in the past year for the United States Department of Energy. These fuel cycle options, and their features relative to uranium-fueled light water reactor (LWR)-based fuel cycles, include: • Advanced once-through reactor concepts (Advanced Once-Through, or AOT) – intended for high uranium utilization and long reactor operating life, use depleted uranium in some cases, and avoid or minimize used fuel reprocessing • Fission-fusion hybrid (FFH) reactor concepts – potential variations are intended for high uranium or thorium utilization, produce fissile material for use in power generating reactors, or transmute transuranic (TRU) and some radioactive fission product (FP) isotopes • High temperature gas reactor (HTGR) concepts - intended for high uranium utilization, high reactor thermal efficiencies; they have unique fuel designs • Molten salt reactor (MSR) concepts – can breed fissile U-233 from Th fuel and avoid or minimize U fuel enrichment, use on-line reprocessing of the used fuel, produce lesser amounts of long-lived, highly radiotoxic TRU elements, and avoid fuel assembly fabrication • Thorium/U-233 fueled LWR (Th/U-233) concepts – can breed fissile U-233 from Th fuel and avoid or minimize U fuel enrichment, and produce lesser amounts of long-lived, highly radiotoxic TRU elements. These fuel cycle options could result in widely different types and amounts of used or spent fuels, spent reactor core materials, and waste streams from used fuel reprocessing, such as: • Highly radioactive, high-burnup used metal, oxide, or inert matrix U and/or Th fuels, clad in Zr, steel, or composite non-metal cladding or coatings • Spent radioactive-contaminated graphite, SiC, carbon-carbon-composite, metal, and Be reactor core materials • Li-Be-F salts containing U, TRU, Th, and fission products • Ranges of separated or un-separated activation

  20. Mixed and Low-Level Waste Treatment Facility Project. Appendix B, Waste stream engineering files: Part 2, Low-level waste streams

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report documents those studies so the project can continue with an evaluation of programmatic options, system tradeoff studies, and the conceptual design phase of the project. This report, appendix B, comprises the engineering design files for this project study. The engineering design files document each waste steam, its characteristics, and identified treatment strategies.

  1. Data analysis and radionuclide scaling factor for the B-Cell waste stream

    SciTech Connect (OSTI)

    HILL, R.L.

    2000-04-25

    This report documents a statistical data analysis of radiological data obtained to characterize the 324 Facility B-Cell decontamination and decommissioning waste stream.

  2. End of FY10 report - used fuel disposition technical bases and lessons learned : legal and regulatory framework for high-level waste disposition in the United States.

    SciTech Connect (OSTI)

    Weiner, Ruth F.; Blink, James A.; Rechard, Robert Paul; Perry, Frank; Jenkins-Smith, Hank C.; Carter, Joe; Nutt, Mark; Cotton, Tom

    2010-09-01

    This report examines the current policy, legal, and regulatory framework pertaining to used nuclear fuel and high level waste management in the United States. The goal is to identify potential changes that if made could add flexibility and possibly improve the chances of successfully implementing technical aspects of a nuclear waste policy. Experience suggests that the regulatory framework should be established prior to initiating future repository development. Concerning specifics of the regulatory framework, reasonable expectation as the standard of proof was successfully implemented and could be retained in the future; yet, the current classification system for radioactive waste, including hazardous constituents, warrants reexamination. Whether or not consideration of multiple sites are considered simultaneously in the future, inclusion of mechanisms such as deliberate use of performance assessment to manage site characterization would be wise. Because of experience gained here and abroad, diversity of geologic media is not particularly necessary as a criterion in site selection guidelines for multiple sites. Stepwise development of the repository program that includes flexibility also warrants serious consideration. Furthermore, integration of the waste management system from storage, transportation, and disposition, should be examined and would be facilitated by integration of the legal and regulatory framework. Finally, in order to enhance acceptability of future repository development, the national policy should be cognizant of those policy and technical attributes that enhance initial acceptance, and those policy and technical attributes that maintain and broaden credibility.

  3. SOLIDIFICATION OF THE HANFORD LAW WASTE STREAM PRODUCED AS A RESULT OF NEAR-TANK CONTINUOUS SLUDGE LEACHING AND SODIUM HYDROXIDE RECOVERY

    SciTech Connect (OSTI)

    Reigel, M.; Johnson, F.; Crawford, C.; Jantzen, C.

    2011-09-20

    The U.S. Department of Energy (DOE), Office of River Protection (ORP), is responsible for the remediation and stabilization of the Hanford Site tank farms, including 53 million gallons of highly radioactive mixed wasted waste contained in 177 underground tanks. The plan calls for all waste retrieved from the tanks to be transferred to the Waste Treatment Plant (WTP). The WTP will consist of three primary facilities including pretreatment facilities for Low Activity Waste (LAW) to remove aluminum, chromium and other solids and radioisotopes that are undesirable in the High Level Waste (HLW) stream. Removal of aluminum from HLW sludge can be accomplished through continuous sludge leaching of the aluminum from the HLW sludge as sodium aluminate; however, this process will introduce a significant amount of sodium hydroxide into the waste stream and consequently will increase the volume of waste to be dispositioned. A sodium recovery process is needed to remove the sodium hydroxide and recycle it back to the aluminum dissolution process. The resulting LAW waste stream has a high concentration of aluminum and sodium and will require alternative immobilization methods. Five waste forms were evaluated for immobilization of LAW at Hanford after the sodium recovery process. The waste forms considered for these two waste streams include low temperature processes (Saltstone/Cast stone and geopolymers), intermediate temperature processes (steam reforming and phosphate glasses) and high temperature processes (vitrification). These immobilization methods and the waste forms produced were evaluated for (1) compliance with the Performance Assessment (PA) requirements for disposal at the IDF, (2) waste form volume (waste loading), and (3) compatibility with the tank farms and systems. The iron phosphate glasses tested using the product consistency test had normalized release rates lower than the waste form requirements although the CCC glasses had higher release rates than the

  4. Documentation of acceptable knowledge for LANL Plutonium Facility transuranic waste streams

    SciTech Connect (OSTI)

    Montoya, A.J.; Gruetzmacher, K.; Foxx, C.; Rogers, P.S.Z.

    1998-07-01

    Characterization of transuranic waste from the LANL Plutonium Facility for certification and transportation to WIPP includes the use of acceptable knowledge as specified in the WIPP Quality Assurance Program Plan. In accordance with a site-specific procedure, documentation of acceptable knowledge for retrievably stored and currently generated transuranic waste streams is in progress at LANL. A summary overview of the transuranic waste inventory is complete and documented in the Sampling Plan. This document also includes projected waste generation, facility missions, waste generation processes, flow diagrams, times, and material inputs. The second part of acceptable knowledge documentation consists of assembling more detailed acceptable knowledge information into auditable records and is expected to require several years to complete. These records for each waste stream must support final assignment of waste matrix parameters, EPA hazardous waste numbers, and radionuclide characterization. They must also include a determination whether waste streams are defense waste streams for compliance with the WIPP Land Withdrawal Act. The LANL Plutonium Facility`s mission is primarily plutonium processing in basic special nuclear material (SNM) research activities to support national defense and energy programs. It currently has about 100 processes ranging from SNM recovery from residues to development of plutonium 238 heat sources for space applications. Its challenge is to characterize and certify waste streams from such diverse and dynamic operations using acceptable knowledge. This paper reports the progress on the certification of the first of these waste streams to the WIPP WAC.

  5. Documentation of acceptable knowledge for Los Alamos National Laboratory Plutonium Facility TRU waste stream

    SciTech Connect (OSTI)

    Montoya, A.J.; Gruetzmacher, K.M.; Foxx, C.L.; Rogers, P.Z.

    1998-03-01

    Characterization of transuranic waste from the LANL Plutonium Facility for certification and transportation to WIPP includes the use of acceptable knowledge as specified in the WIPP Quality Assurance Program Plan. In accordance with a site specific procedure, documentation of acceptable knowledge for retrievably stored and currently generated transuranic waste streams is in progress at LANL. A summary overview of the TRU waste inventory is complete and documented in the Sampling Plan. This document also includes projected waste generation, facility missions, waste generation processes, flow diagrams, times, and material inputs. The second part of acceptable knowledge documentation consists of assembling more detailed acceptable knowledge information into auditable records and is expected to require several years to complete. These records for each waste stream must support final assignment of waste matrix parameters, EPA hazardous waste numbers, and radionuclide characterization. They must also include a determination whether waste streams are defense waste streams for compliance with the WIPP Land Withdrawal Act. The LANL Plutonium Facility`s mission is primarily plutonium processing in basic special nuclear material (SNM) research activities to support national defense and energy programs. It currently has about 100 processes ranging from SNM recovery from residues to development of plutonium 238 heat sources for space applications. Its challenge is to characterize and certify waste streams from such diverse and dynamic operations using acceptable knowledge. This paper reports the progress on the certification of the first of these waste streams to the WIPP WAC.

  6. Surrogate formulations for thermal treatment of low-level mixed waste, Part II: Selected mixed waste treatment project waste streams

    SciTech Connect (OSTI)

    Bostick, W.D.; Hoffmann, D.P.; Chiang, J.M.; Hermes, W.H.; Gibson, L.V. Jr.; Richmond, A.A.; Mayberry, J.; Frazier, G.

    1994-01-01

    This report summarizes the formulation of surrogate waste packages, representing the major bulk constituent compositions for 12 waste stream classifications selected by the US DOE Mixed Waste Treatment Program. These waste groupings include: neutral aqueous wastes; aqueous halogenated organic liquids; ash; high organic content sludges; adsorbed aqueous and organic liquids; cement sludges, ashes, and solids; chloride; sulfate, and nitrate salts; organic matrix solids; heterogeneous debris; bulk combustibles; lab packs; and lead shapes. Insofar as possible, formulation of surrogate waste packages are referenced to authentic wastes in inventory within the DOE; however, the surrogate waste packages are intended to represent generic treatability group compositions. The intent is to specify a nonradiological synthetic mixture, with a minimal number of readily available components, that can be used to represent the significant challenges anticipated for treatment of the specified waste class. Performance testing and evaluation with use of a consistent series of surrogate wastes will provide a means for the initial assessment (and intercomparability) of candidate treatment technology applicability and performance. Originally the surrogate wastes were intended for use with emerging thermal treatment systems, but use may be extended to select nonthermal systems as well.

  7. Using benchmarking to minimize common DOE waste streams: Volume 5. Office paper waste

    SciTech Connect (OSTI)

    Levin, V.

    1995-10-01

    Finding innovative ways to reduce waste streams generated at US Department of Energy (DOE) sites by 50% by the year 2000 is a challenge for DOE`s waste minimization efforts. A team composed of members from several DOE facilities used the quality tool known as benchmarking to improve waste minimization efforts. First the team examined office waste generation and handling processes at their sites. Then team members developed telephone and written questionnaires to help identify potential ``best-in-class`` industry partners willing to share information about their best waste minimization techniques and technologies. The team identified two benchmarking partners, NIKE, Inc., in Beaverton, Oregon, and Microsoft, Inc., in Redmond, Washington. Both companies have proactive, employee-driven environmental issues programs. Both companies report strong employee involvement, management commitment, and readily available markets for recyclable materials such as white paper and nonwhite assorted paper. The availability of markets, the initiative and cooperation of employees, and management support are the main enablers for their programs. At both companies, recycling and waste reduction programs often cut across traditional corporate divisions such as procurement, janitorial services, environmental compliance, grounds maintenance, cafeteria operations, surplus sales, and shipping and receiving. These companies exhibited good cooperation between these functions to design and implement recycling and waste reduction programs.

  8. DRAFT EM SSAB Chairs Meeting Waste Disposition Strategies...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 11,689 Total dispositioned to date 89,360 m 3 Knolls Atomic Power Laboratory Babcock & Wilcox NES Bettis Atomic Power Laboratory As of October 27, 2013 Four small CA sites DOE ...

  9. STREAM

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    STREAM STREAM Description STREAM is a simple, synthetic benchmark designed to measure sustainable memory bandwidth (in MB/s) and a corresponding computation rate for four simple vector kernels. Download NERSC8-Stream tar file How to Build the Code The version of STREAM provided here is the latest STREAM OpenMP enabled benchmark. (see http://www.cs.virginia.edu/stream/ref.html) Optionally, for GPU architectures, you may choose to run the Scalable Heterogeneous Computing Benchmark Suite (SHOC)

  10. Laboratory optimization tests of technetium decontamination of Hanford Waste Treatment Plant low activity waste melter off-gas condensate simulant

    SciTech Connect (OSTI)

    Taylor-Pashow, Kathryn M.L.; McCabe, Daniel J.

    2015-11-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable simplified operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste.

  11. Pervaporation process and use in treating waste stream from glycol dehydrator

    DOE Patents [OSTI]

    Kaschemekat, Jurgen; Baker, Richard W.

    1994-01-01

    Pervaporation processes and apparatus with few moving parts. Ideally, only one pump is used to provide essentially all of the motive power and driving force needed. The process is particularly useful for handling small streams with flow rates less than about 700 gpd. Specifically, the process can be used to treat waste streams from glycol dehydrator regeneration units.

  12. Nuclear Materials Disposition

    Broader source: Energy.gov [DOE]

    In fulfilling its mission, EM frequently manages and completes disposition of surplus nuclear materials and spent nuclear fuel.  These are not waste. They are nuclear materials no longer needed for...

  13. DOE/EIS-0287 Idaho High-Level Waste & Facilities Disposition...

    Office of Environmental Management (EM)

    Cesium ion exchange & grouting Cesium ion exchange & grouting NWCF* NWCF* Calcine Mixed transuranic wasteSBW Mixed transuranic wasteNGLW Low-level waste disposa l*** disposa l*** ...

  14. Waste Stream to Energy source: What if America's Next Big Fuel Source is

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    its Trash? | The Ames Laboratory Waste Stream to Energy source: What if America's Next Big Fuel Source is its Trash? Ames Laboratory Waste Stream to Energy According to the U.S. Environmental Protection Agency, the United States produced 254 million tons of municipal solid waste in 2013. And though 87 million tons of that material from the landfill was diverted through recycling and composting, what if the nation could do better? What if landfills could become local sources of clean energy

  15. FFTF Isotope Production and Irradiation Services Mission Waste Stream Estimates and Management

    SciTech Connect (OSTI)

    NIELSEN, D.L.

    1999-12-01

    The composite projected radioactive waste streams for the proposed mission and corresponding comparisons with projected Hanford Site inventories from other sources are depicted below. In all cases, the waste additions from the proposed mission are well within the error bands of the projected waste volumes from other Hanford sources. Therefore the proposed Fast Flux Test Facility (FFTF) mission will have insignificant impact on any aspect of Hanford cleanup.

  16. Laboratory Optimization Tests of Technetium Decontamination of Hanford Waste Treatment Plant Direct Feed Low Activity Waste Melter Off-Gas Condensate Simulant

    SciTech Connect (OSTI)

    Taylor-Pashow, K.; McCabe, D.

    2015-12-23

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste.

  17. Review of Potential Candidate Stabilization Technologies for Liquid and Solid Secondary Waste Streams

    SciTech Connect (OSTI)

    Pierce, Eric M.; Mattigod, Shas V.; Westsik, Joseph H.; Serne, R. Jeffrey; Icenhower, Jonathan P.; Scheele, Randall D.; Um, Wooyong; Qafoku, Nikolla

    2010-01-30

    Pacific Northwest National Laboratory has initiated a waste form testing program to support the long-term durability evaluation of a waste form for secondary wastes generated from the treatment and immobilization of Hanford radioactive tank wastes. The purpose of the work discussed in this report is to identify candidate stabilization technologies and getters that have the potential to successfully treat the secondary waste stream liquid effluent, mainly from off-gas scrubbers and spent solids, produced by the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Down-selection to the most promising stabilization processes/waste forms is needed to support the design of a solidification treatment unit (STU) to be added to the Effluent Treatment Facility (ETF). To support key decision processes, an initial screening of the secondary liquid waste forms must be completed by February 2010.

  18. AN NDA Technique for the Disposition of Mixed Low Level Waste at the Advanced Mixed Waste Treatment Project

    SciTech Connect (OSTI)

    M.J. Clapham; J.V. Seamans; R.E. Arbon

    2006-05-16

    The AMWTP is aggressively characterizing and shipping transuranic (TRU) waste to meet the DOE-IDs goal of 6000m3 of TRU waste to the Waste Isolation Pilot Plant (WIPP). The AMWTP shipping schedule requires streamlined waste movements and efficient waste characterization. Achieving this goal is complicated by the presence of waste that cannot be shipped to WIPP. A large amount of this waste is non-shippable due to the fact that no measurable TRU activity is identified during non-destructive assay (NDA).

  19. STREAM

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Description STREAM is a simple, synthetic benchmark designed to measure sustainable memory bandwidth (in MBs) and a corresponding computation rate for four simple vector...

  20. ERM 593 Applied Project_Guidance for Reviewing and Approving a Waste Stream Profile in the Waste Compliance and Tracking System_Final_05-05-15

    SciTech Connect (OSTI)

    Elicio, Andy U.

    2015-05-05

    My ERM 593 applied project will provide guidance for the Los Alamos National Laboratory Waste Stream Profile reviewer (i.e. RCRA reviewer) in regards to Reviewing and Approving a Waste Stream Profile in the Waste Compliance and Tracking System. The Waste Compliance and Tracking system is called WCATS. WCATS is a web-based application that “supports the generation, characterization, processing and shipment of LANL radioactive, hazardous, and industrial waste.” The LANL generator must characterize their waste via electronically by filling out a waste stream profile (WSP) in WCATS. Once this process is completed, the designated waste management coordinator (WMC) will perform a review of the waste stream profile to ensure the generator has completed their waste stream characterization in accordance with applicable state, federal and LANL directives particularly P930-1, “LANL Waste Acceptance Criteria,” and the “Waste Compliance and Tracking System User's Manual, MAN-5004, R2,” as applicable. My guidance/applied project will describe the purpose, scope, acronyms, definitions, responsibilities, assumptions and guidance for the WSP reviewer as it pertains to each panel and subpanel of a waste stream profile.

  1. Method for extracting metals from aqueous waste streams for long term storage

    DOE Patents [OSTI]

    Chaiko, David J.

    1995-01-01

    A liquid--liquid extraction method for removing metals and hydrous metal colloids from waste streams is provided wherein said waste streams are contacted with a solvent system containing a water-in-oil microemulsion wherein the inverted micelles contain the extracted metal. A silicon alkoxide, either alone or in combination with other metal alkoxide compounds is added to the water-in-oil microemulsion, thereby allowing encapsulation of the extracted metal within a silicon oxide network. Lastly, the now-encapsulated metal is precipitated from the water-in-oil microemulsion phase to yield aggregates of metal-silicate particles having average individual particle sizes of approximately 40 nanometers.

  2. Method for extracting metals from aqueous waste streams for long term storage

    DOE Patents [OSTI]

    Chaiko, D.J.

    1995-03-07

    A liquid-liquid extraction method for removing metals and hydrous metal colloids from waste streams is provided wherein said waste streams are contacted with a solvent system containing a water-in-oil microemulsion wherein the inverted micelles contain the extracted metal. A silicon alkoxide, either alone or in combination with other metal alkoxide compounds is added to the water-in-oil microemulsion, thereby allowing encapsulation of the extracted metal within a silicon oxide network. Lastly, the now-encapsulated metal is precipitated from the water-in-oil microemulsion phase to yield aggregates of metal-silicate particles having average individual particle sizes of approximately 40 nanometers. 2 figs.

  3. Method for extracting metals from aqueous waste streams for long term storage

    DOE Patents [OSTI]

    Chaiko, D.J.

    1993-01-01

    A liquid-liquid extraction method for removing metals and hydrous metal colloids from waste streams is provided wherein said waste streams are contacted with a solvent system containing a water-in-oil microemulsion wherein the inverted micelles contain the extracted metal. A silicon alkoxide, either alone or in combination with other metal alkoxide compounds is added to the water-in-oil microemulsion, thereby allowing encapsulation of the extracted metal within a silicon oxide network. Lastly, the now-encapsulated metal is precipitated from the water-in-oil microemulsion phase to yield aggregates of metal-silicate particles having average. individual particle sizes of approximately 40 manometers.

  4. Microsoft Word - INL Waste Stream Cleared for Shipment to WIPP...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at INL to separate the drum for treatment and to review inspection procedures. Waste drums are initially examined through radiography (an X-ray process) at DOE sites as part of...

  5. The Rocky Flats Plant Waste Stream and Residue Identification and Characterization Program (WSRIC): Progress and achievements

    SciTech Connect (OSTI)

    Ideker, V.L.; Doyle, G.M.

    1994-02-01

    The Waste Stream and Residue Identification and Characterization (WSRIC) Program, as described in the WSRIC Program Description delineates the process knowledge used to identify and characterize currently-generated waste from approximately 5404 waste streams originating from 576 processes in 288 buildings at Rocky Flats Plant (RFP). Annual updates to the WSRIC documents are required by the Federal Facilities Compliance Agreement between the US Department of Energy, the Colorado Department of Health and the Environmental Protection Agency. Accurate determination and characterization of waste is a crucial component in RFP`s waste management strategy to assure compliance with Resource Conservation and Recovery Act (RCRA) storage and treatment requirements, as well as disposal acceptance criteria. The WSRIC Program was rebaselined in September 1992, and serves as the linchpin for documenting process knowledge in RFP`s RCRA operating record. Enhancements to the WSRIC include strengthening the waste characterization rationale, expanding WSRIC training for waste generators, and incorporating analytical information into the WSRIC building books. These enhancements will improve credibility with the regulators and increase waste generators` understanding of the basis for credible waste characterizations.

  6. Commercial treatability study capabilities for application to the US Department of Energy`s anticipated mixed waste streams

    SciTech Connect (OSTI)

    1996-07-01

    The U.S. Department of Energy (DOE) has established the Mixed Waste Focus Area (MWFA), which represents a national effort to develop and coordinate treatment solutions for mixed waste among all DOE facilities. The hazardous waste component of mixed waste is regulated under the Resource Conservation and Recovery Act (RCRA), while the radioactive component is regulated under the Atomic Energy Act, as implemented by the DOE, making mixed waste one of the most complex types of waste for the DOE to manage. The MWFA has the mission to support technologies that meet the needs of the DOE`s waste management efforts to characterize, treat, and dispose of mixed waste being generated and stored throughout the DOE complex. The technologies to be supported must meet all regulatory requirements, provide cost and risk improvements over available technologies, and be acceptable to the public. The most notable features of the DOE`s mixed-waste streams are the wide diversity of waste matrices, volumes, radioactivity levels, and RCRA-regulated hazardous contaminants. Table 1-1 is constructed from data from the proposed site treatment plans developed by each DOE site and submitted to DOE Headquarters. The table shows the number of mixed-waste streams and their corresponding volumes. This table illustrates that the DOE has a relatively small number of large-volume mixed-waste streams and a large number of small-volume mixed-waste streams. There are 1,033 mixed-waste streams with volumes less than 1 cubic meter; 1,112 mixed-waste streams with volumes between 1 and 1,000 cubic meters; and only 61 mixed-waste streams with volumes exceeding 1,000 cubic meters.

  7. 2010-01 "Disposition of Remote-Handled Waste Buried in 33 Shafts...

    Office of Environmental Management (EM)

    The intent of this recommendation is to remove the highly radioactive RH-TRU wastes from TA-54 in a safe manner with a minimum of radiation exposure to workers at all levels. ...

  8. Portsmouth Proposed Plan for the Site-wide Waste Disposition Evaluation Project

    Broader source: Energy.gov [DOE]

    DOE has evaluated alternatives for managing waste that would be created by decomtamination and decommissioning of the buildings at the Portsmouth Site. Three remedial alternatives for management of...

  9. ICDF Complex Operations Waste Management Plan

    SciTech Connect (OSTI)

    W.M. Heileson

    2006-12-01

    This Waste Management Plan functions as a management and planning tool for managing waste streams generated as a result of operations at the Idaho CERCLA Disposal Facility (ICDF) Complex. The waste management activities described in this plan support the selected remedy presented in the Waste Area Group 3, Operable Unit 3-13 Final Record of Decision for the operation of the Idaho CERCLA Disposal Facility Complex. This plan identifies the types of waste that are anticipated during operations at the Idaho CERCLA Disposal Facility Complex. In addition, this plan presents management strategies and disposition for these anticipated waste streams.

  10. New Innovations in Highly Ion Specific Media for Recalcitrant Waste stream Radioisotopes

    SciTech Connect (OSTI)

    Denton, M. S.; Wilson, J.; Ahrendt, M. [RWE NUKEM Corporation (RNC), 800 Oak Ridge Tnpk., Suite A701, Oak Ridge, TN 37830 (United States); Bostick, W. D. [Materials and Chemistry Laboratory (MCL), Inc., East Tennessee Technology Park, Building K-1006, 2010 Highway 58, Suite 1000, Oak Ridge, TN 37830 (United States); DeSilva, F.; Meyers, P. [ResinTech, Inc., 1 ResinTech Plaza, 160 Cooper Road, West Berlin, NJ 08091 (United States)

    2006-07-01

    Specialty ion specific media were examined and developed for, not only pre- and post-outage waste streams, but also for very difficult outage waste streams. This work was carried out on first surrogate waste streams, then laboratory samples of actual waste streams, and, finally, actual on-site waste streams. This study was particularly focused on PWR wastewaters such as Floor Drain Tank (FDT), Boron Waste Storage Tank (BWST), and Waste Treatment Tank (WTT, or discharge tank). Over the last half decade, or so, treatment technologies have so greatly improved and discharge levels have become so low, that certain particularly problematic isotopes, recalcitrant to current treatment skids, are all that remain prior to discharge. In reality, they have always been present, but overshadowed by the more prevalent and higher activity isotopes. Such recalcitrants include cobalt, especially Co 58 [both ionic/soluble (total dissolved solids, TDS) and colloidal (total suspended solids, TSS)] and antimony (Sb). The former is present in most FDT and BWST wastewaters, while the Sb is primarily present in BWST waste streams. The reasons Co 58 can be elusive to granulated activated carbon (GAC), ultrafiltration (UF) and ion exchange (IX) demineralizers is that it forms submicron colloids as well as has a tendency to form metal complexes with chelating agents (e.g., ethylene diamine tetraacetic acid, or EDTA). Such colloids and non-charged complexes will pass through the entire treatment skid. Antimony (Sb) on the other hand, has little or no ionic charge, and will, likewise, pass through both the filtration and de-min skids into the discharge tanks. While the latter will sometimes (the anionic vs. the cationic or neutral species) be removed on the anion bed(s), it will slough off (snow-plow effect) when a higher affinity anion (iodine slugs, etc.) comes along; thus causing effluents not meeting discharge criteria. The answer to these problems found in this study, during an actual

  11. Selective enrichment of a methanol-utilizing consortium using pulp & paper mill waste streams

    SciTech Connect (OSTI)

    Gregory R. Mockos; William A. Smith; Frank J. Loge; David N. Thompson

    2007-04-01

    Efficient utilization of carbon inputs is critical to the economic viability of the current forest products sector. Input carbon losses occur in various locations within a pulp mill, including losses as volatile organics and wastewater . Opportunities exist to capture this carbon in the form of value-added products such as biodegradable polymers. Waste activated sludge from a pulp mill wastewater facility was enriched for 80 days for a methanol-utilizing consortium with the goal of using this consortium to produce biopolymers from methanol-rich pulp mill waste streams. Five enrichment conditions were utilized: three high-methanol streams from the kraft mill foul condensate system, one methanol-amended stream from the mill wastewater plant, and one methanol-only enrichment. Enrichment reactors were operated aerobically in sequencing batch mode at neutral pH and 25°C with a hydraulic residence time and a solids retention time of four days. Non-enriched waste activated sludge did not consume methanol or reduce chemical oxygen demand. With enrichment, however, the chemical oxygen demand reduction over 24 hour feed/decant cycles ranged from 79 to 89 %, and methanol concentrations dropped below method detection limits. Neither the non-enriched waste activated sludge nor any of the enrichment cultures accumulated polyhydroxyalkanoates (PHAs) under conditions of nitrogen sufficiency. Similarly, the non-enriched waste activated sludge did not accumulate PHAs under nitrogen limited conditions. By contrast, enriched cultures accumulated PHAs to nearly 14% on a dry weight basis under nitrogen limited conditions. This indicates that selectively-enriched pulp mill waste activated sludge can serve as an inoculum for PHA production from methanol-rich pulp mill effluents.

  12. EIS-0283: Surplus Plutonium Disposition Environmental Impact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    10, 2008 EIS-0283: Amended Record of Decision Surplus Plutonium Disposition: Waste Solidification Building November 26, 2008 EIS-0283-SA-02: Supplement Analysis Surplus Plutonium...

  13. Waste stream to energy source: What if America's next big fuel source is

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    its trash? | The Ames Laboratory Waste stream to energy source: What if America's next big fuel source is its trash? According to the U.S. Environmental Protection Agency, the United States produced 254 million tons of municipal solid waste in 2013. And though 87 million tons of that material from the landfill was diverted through recycling and composting, what if the nation could do better? What if landfills could become local sources of clean energy production? Better yet, what if all

  14. Grout formulation for disposal of low-level and hazardous waste streams containing fluoride

    DOE Patents [OSTI]

    McDaniel, E.W.; Sams, T.L.; Tallent, O.K.

    1987-06-02

    A composition and related process for disposal of hazardous waste streams containing fluoride in cement-based materials is disclosed. the presence of fluoride in cement-based materials is disclosed. The presence of fluoride in waste materials acts as a set retarder and as a result, prevents cement-based grouts from setting. This problem is overcome by the present invention wherein calcium hydroxide is incorporated into the dry-solid portion of the grout mix. The calcium hydroxide renders the fluoride insoluble, allowing the grout to set up and immobilize all hazardous constituents of concern. 4 tabs.

  15. Waste Treatment And Immobilization Plant U. S. Department Of Energy Office Of River Protection Submerged Bed Scrubber Condensate Disposition Project - Abstract # 13460

    SciTech Connect (OSTI)

    Yanochko, Ronald M; Corcoran, Connie

    2012-11-15

    The Hanford Waste Treatment and Immobilization Plant (WTP) will generate an off-gas treatment system secondary liquid waste stream [submerged bed scrubber (SBS) condensate], which is currently planned for recycle back to the WTP Low Activity Waste (LAW) melter. This SBS condensate waste stream is high in Tc-99, which is not efficiently captured in the vitrified glass matrix. A pre-conceptual engineering study was prepared in fiscal year 2012 to evaluate alternate flow paths for melter off-gas secondary liquid waste generated by the WTP LAW facility. This study evaluated alternatives for direct off-site disposal of this SBS without pre-treatment, which mitigates potential issues associated with recycling.

  16. Proceedings of waste stream minimization and utilization innovative concepts: An experimental technology exchange. Volume 2, Industrial liquid waste processing, industrial gaseous waste processing

    SciTech Connect (OSTI)

    Lee, V.E. [ed.; Watts, R.L.

    1993-04-01

    This two-volume proceedings summarize the results of fifteen innovations that were funded through the US Department of Energy`s Innovative Concept Program. The fifteen innovations were presented at the sixth Innovative Concepts Fair, held in Austin, Texas, on April 22--23, 1993. The concepts in this year`s fair address innovations that can substantially reduce or use waste streams. Each paper describes the need for the proposed concept, the concept being proposed, and the concept`s economics and market potential, key experimental results, and future development needs. The papers are divided into two volumes: Volume 1 addresses innovations for industrial solid waste processing and municipal waste reduction/recycling, and Volume 2 addresses industrial liquid waste processing and industrial gaseous waste processing. Individual reports are indexed separately.

  17. Results of Toxicity Studies Conducted on Outfall X-08 and Its Contributing Waste Streams, November 1999 - June 2000

    SciTech Connect (OSTI)

    Specht, W.L.

    2000-06-28

    This interim report summarizes the results of toxicity tests, Toxicity Identification Evaluations, and chemical analyses that have been conducted on SRS's NPDES Outfall X-08 and its contributing waste streams between November 1999 and June 2000.

  18. A Neutron Monitor for In-Situ Real-Time Determination of Transuranics in a Processed Waste Effluent Stream

    SciTech Connect (OSTI)

    Brodzinski, Ronald L.; Craig, Richard A.; Hensley, Walter K.; Lepel, Elwood A.; Seymour, R.; Smart, John E.

    2001-05-01

    A pilot plant operation at the Savannah River Site will demonstrate the removal of 90Sr, 137Cs, and transuranics from a high-level liquid waste stream prior to encapsulation in a Saltstone Facility.

  19. Low-level radioactive waste from nuclear power generating stations: Characterization, classification and assessment of activated metals and waste streams

    SciTech Connect (OSTI)

    Thomas, V.W.; Robertson, D.E.; Thomas, C.W.

    1993-02-01

    Since the enactment of 10 CFR Part 61, additional difficult-to-measure long-lived radionuclides, not specified in Tables 1 2 of Part 61, have been identified (e.g., {sup 108m}Ag, {sup 93}Mo, {sup 36}Cl, {sup 10}Be, {sup 113m}Cd, {sup 121m}Sn, {sup 126}Sn, {sup 93m}Nb) that may be of concern in certain types of waste. These nuclides are primarily associated with activated metal and perhaps other nuclear power low-level waste (LLW) being sent to disposal facilities. The concentration of a radionuclide in waste materials is normally determined by direct measurement or by indirect calculational methods, such as using a scaling factor to relate inferred concentration of a difficult-to-measure radionuclide to another that is easily measured. The total disposal site inventory of certain difficult-to-measure radionuclides (e.g., {sup 14}C, {sup 129}I, and {sup 99}Tc) often control the total quantities of radioactive waste permitted in LLW burial facilities. Overly conservative scaling factors based on lower limits of detection (LLD), often used in the nuclear power industry to estimate these controlling nuclides, could lead to premature closure of a disposal facility. Samples of LLW (Class B and C activated metals [AM] and other waste streams) are being collected from operating nuclear power stations and analyzed for radionuclides covered in 10 CFR Part 61 and the additional difficult-to-measure radionuclides. This analysis will enhance the NRC`s understanding of the distribution and projected quantities of radionuclides within AM and LLW streams from commercial nuclear power stations. This research will also provide radiological characterization of AM specimens for others to use in leach-rate and lysimeter experiments to determine nuclide releases and subsequent movement in natural soil environments.

  20. Low-level radioactive waste from nuclear power generating stations: Characterization, classification and assessment of activated metals and waste streams

    SciTech Connect (OSTI)

    Thomas, V.W.; Robertson, D.E.; Thomas, C.W.

    1993-02-01

    Since the enactment of 10 CFR Part 61, additional difficult-to-measure long-lived radionuclides, not specified in Tables 1 2 of Part 61, have been identified (e.g., [sup 108m]Ag, [sup 93]Mo, [sup 36]Cl, [sup 10]Be, [sup 113m]Cd, [sup 121m]Sn, [sup 126]Sn, [sup 93m]Nb) that may be of concern in certain types of waste. These nuclides are primarily associated with activated metal and perhaps other nuclear power low-level waste (LLW) being sent to disposal facilities. The concentration of a radionuclide in waste materials is normally determined by direct measurement or by indirect calculational methods, such as using a scaling factor to relate inferred concentration of a difficult-to-measure radionuclide to another that is easily measured. The total disposal site inventory of certain difficult-to-measure radionuclides (e.g., [sup 14]C, [sup 129]I, and [sup 99]Tc) often control the total quantities of radioactive waste permitted in LLW burial facilities. Overly conservative scaling factors based on lower limits of detection (LLD), often used in the nuclear power industry to estimate these controlling nuclides, could lead to premature closure of a disposal facility. Samples of LLW (Class B and C activated metals [AM] and other waste streams) are being collected from operating nuclear power stations and analyzed for radionuclides covered in 10 CFR Part 61 and the additional difficult-to-measure radionuclides. This analysis will enhance the NRC's understanding of the distribution and projected quantities of radionuclides within AM and LLW streams from commercial nuclear power stations. This research will also provide radiological characterization of AM specimens for others to use in leach-rate and lysimeter experiments to determine nuclide releases and subsequent movement in natural soil environments.

  1. Independent Analysis of Alternatives for Disposition of the Idaho Calcined High-Level Waste Inventory Volume 1- Summary Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy Idaho Field Office and the Office of Environmental Management (EM) chartered an independent Analysis of Alternatives for the Idaho Calcine Disposition Project (CDP), part of the overall Idaho Cleanup Project.

  2. DEVELOPMENT OF GLASS AND CRYSTALLINE CERAMIC FORMS FOR DISPOSITION OF EXCESS PLUTONIUM

    SciTech Connect (OSTI)

    Marra, James; Cozzi, A; Crawford, C.; Herman, C.; Marra, John; Peeler, D.

    2009-09-10

    In the aftermath of the Cold War, the United States Department of Energy (DOE) has identified up to 50 metric tons of excess plutonium that needs to be dispositioned. The bulk of the material is slated to be blended with uranium and fabricated into a Mixed Oxide (MOX) fuel for subsequent burning in commercial nuclear reactors. Excess plutonium-containing impurity materials making it unsuitable for fabrication into MOX fuel will need to be dispositioned via other means. Glass and crystalline ceramics have been developed and studied as candidate forms to immobilize these impure plutonium feeds. A titanate-based ceramic was identified as an excellent actinide material host. This composition was based on Synroc compositions previously developed for nuclear waste immobilization. These titanate ceramics were found to be able to accommodate extremely high quantities of fissile material and exhibit excellent aqueous durability. A lanthanide borosilicate (LaBS) glass was developed to accommodate high concentrations of plutonium and to be very tolerant of impurities yet still maintain good aqueous durability. Recent testing of alkali borosilicate compositions showed promise of using these compositions to disposition lower concentrations of plutonium using existing high level waste vitrification processes. The developed waste forms all appear to be suitable for Pu disposition. Depending on the actual types and concentrations of the Pu residue streams slated for disposition, each waste form offers unique advantages.

  3. Hanford Site waste treatment/storage/disposal integration

    SciTech Connect (OSTI)

    MCDONALD, K.M.

    1999-02-24

    In 1998 Waste Management Federal Services of Hanford, Inc. began the integration of all low-level waste, mixed waste, and TRU waste-generating activities across the Hanford site. With seven contractors, dozens of generating units, and hundreds of waste streams, integration was necessary to provide acute waste forecasting and planning for future treatment activities. This integration effort provides disposition maps that account for waste from generation, through processing, treatment and final waste disposal. The integration effort covers generating facilities from the present through the life-cycle, including transition and deactivation. The effort is patterned after the very successful DOE Complex EM Integration effort. Although still in the preliminary stages, the comprehensive onsite integration effort has already reaped benefits. These include identifying significant waste streams that had not been forecast, identifying opportunities for consolidating activities and services to accelerate schedule or save money; and identifying waste streams which currently have no path forward in the planning baseline. Consolidation/integration of planned activities may also provide opportunities for pollution prevention and/or avoidance of secondary waste generation. A workshop was held to review the waste disposition maps, and to identify opportunities with potential cost or schedule savings. Another workshop may be held to follow up on some of the long-term integration opportunities. A change to the Hanford waste forecast data call would help to align the Solid Waste Forecast with the new disposition maps.

  4. Amended Record of Decision: Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement (DOE/EIS-0287) (11/28/06)

    Office of Environmental Management (EM)

    811 Federal Register / Vol. 71, No. 228 / Tuesday, November 28, 2006 / Notices Information Relay Service (FIRS) at 1-800-877-8339. [FR Doc. E6-20124 Filed 11-27-06; 8:45 am] BILLING CODE 4000-01-P DEPARTMENT OF ENERGY Amended Record of Decision: Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement AGENCY: Department of Energy. ACTION: Amended Record of Decision. SUMMARY: The U.S. Department of Energy (DOE) is amending its Record of Decision (ROD) published

  5. Special Analysis for the Disposal of the Neutron Products Incorporated Sealed Source Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    SciTech Connect (OSTI)

    Shott, Gregory

    2014-08-31

    The purpose of this special analysis (SA) is to determine if the Neutron Products Incorporated (NPI) Sealed Sources waste stream (DRTK000000056, Revision 0) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS). The NPI Sealed Sources waste stream consists of 850 60Co sealed sources (Duratek [DRTK] 2013). The NPI Sealed Sources waste stream requires a special analysis (SA) because the waste stream 60Co activity concentration exceeds the Nevada National Security Site (NNSS) Waste Acceptance Criteria (WAC) Action Levels.

  6. Removal of pertechnetate from simulated nuclear waste streams using supported zerovalent iron

    SciTech Connect (OSTI)

    Darab, John; Amonette, Alexandra; Burke, Deborah; Orr, Robert; Ponder, Sherman; Schrick, Bettina; Mallouk, Thomas; Lukens, Wayne; Caulder, Dana; Shuh, David

    2007-07-11

    The application of nanoparticles of predominantly zerovalent iron (nanoiron), either unsupported or supported, to the separation and reduction of pertechnetate anions (TcO4-) from complex waste mixtures was investigated as an alternative approach to current waste-processing schemes. Although applicable to pertechnetate-containing waste streams in general, the research discussed here was directed at two specific potential applications at the U.S. Department of Energy's Hanford Site: (1) the direct removal of pertechnetate from highly alkaline solutions, typical of those found in Hanford tank waste, and (2) the removal of dilute pertechnetate from near-neutral solutions, typical of the eluate streams from commercial organic ion-exchange resins that may be used to remediate Hanford tank wastes. It was envisioned that both applications would involve the subsequent encapsulation of the loaded sorbent material into a separate waste form. A high surface area (>200 M2/g) base-stable, nanocrystalline zirconia was used as a support for nanoiron for tests with highly alkaline solutions, while a silica gel support was used for tests with near-neutral solutions. It was shown that after 24 h of contact time, the high surface area zirconia supported nanoiron sorbent removed about 50percent (K-d = 370 L/kg) of the pertechnetate from a pH 14 tank waste simulant containing 0.51 mM TCO4- and large concentrations of Na+, OH-, NO3-, and CO32- for a phase ratio of 360 L simulant per kg of sorbent. It was also shown that after 18 h of contact time, the silica-supported nanoiron removed>95percent pertechnetate from a neutral pH eluate simulant containing 0.076 mM TcO4_ for a phase ratio of 290 L/kg. It was determined that in all cases, nanoiron reduced the Tc(VII) to Tc(IV), or possibly to Tc(V), through a redox reaction. Finally, it was demonstrated that a mixture of 20 mass percent of the solid reaction products obtained from contacting zirconia- supported nanoiron with an alkaline

  7. The upcycling of post-industrial PP/PET waste streams through in-situ microfibrillar preparation

    SciTech Connect (OSTI)

    Delva, Laurens Ragaert, Kim Cardon, Ludwig

    2015-12-17

    Post-industrial plastic waste streams can be re-used as secondary material streams for polymer processing by extrusion or injection moulding. One of the major commercially available waste stream contains polypropylene (PP) contaminated with polyesters (mostly polyethylene tereftalate - PET). An important practical hurdle for the direct implementation of this waste stream is the immiscibility of PP and PET in the melt, which leads to segregation within the polymer structure and adversely affects the reproducibility and mechanical properties of the manufactured parts. It has been indicated in literature that the creation of PET microfibrils in the PP matrix could undo these drawbacks and upcycle the PP/PET combination. Within the current research, a commercially available virgin PP/PET was evaluated for the microfibrillar preparation. The mechanical (tensile and impact) properties, thermal properties and morphology of the composites were characterized at different stages of the microfibrillar preparation.

  8. Development of a treatability variance guidance document for US DOE mixed-waste streams

    SciTech Connect (OSTI)

    Scheuer, N.; Spikula, R. ); Harms, T. . Environmental Guidance Div.); Triplett, M.B. )

    1990-03-01

    In response to the US Department of Energy's (DOE's) anticipated need for variances from the Resource Conservation and Recovery Act (RCRA) Land Disposal Restrictions (LDRs), a treatability variance guidance document was prepared. The guidance manual is for use by DOE facilities and operations offices. The manual was prepared as a part of an ongoing effort by DOE-EH to provide guidance for the operations offices and facilities to comply with the RCRA (LDRs). A treatability variance is an alternative treatment standard granted by EPA for a restricted waste. Such a variance is not an exemption from the requirements of the LDRs, but rather is an alternative treatment standard that must be met before land disposal. The manual, Guidance For Obtaining Variance From the Treatment Standards of the RCRA Land Disposal Restrictions (1), leads the reader through the process of evaluating whether a variance from the treatment standard is a viable approach and through the data-gathering and data-evaluation processes required to develop a petition requesting a variance. The DOE review and coordination process is also described and model language for use in petitions for DOE radioactive mixed waste (RMW) is provided. The guidance manual focuses on RMW streams, however the manual also is applicable to nonmixed, hazardous waste streams. 4 refs.

  9. PAPER STUDY EVALUATIONS OF THE INTRODUCTION OF SMALL COLUMN ION EXCHANGE WASTE STREAMS TO THE DEFENSE WASTE PROCESSING FACILITY

    SciTech Connect (OSTI)

    Fox, K.; Edwards, T.; Stone, M.; Koopman, D.

    2010-06-29

    The objective of this paper study is to provide guidance on the impact of Monosodium Titanate (MST) and Crystalline Silicotitanate (CST) streams from the Small Column Ion Exchange (SCIX) process on the Defense Waste Processing Facility (DWPF) flowsheet and glass waste form. A series of waste processing scenarios was evaluated, including projected compositions of Sludge Batches 8 through 17 (SB8 through SB17), MST additions, CST additions to Tank 40 or to a sludge batch preparation tank (Tank 42 or Tank 51, referred to generically as Tank 51 in this report), streams from the Salt Waste Processing Facility (SWPF), and two canister production rates. A wide array of potential glass frit compositions was used to support this assessment. The sludge and frit combinations were evaluated using the predictive models in the current DWPF Product Composition Control System (PCCS). The results were evaluated based on the number of frit compositions available for a particular sludge composition scenario. A large number of candidate frit compositions (e.g., several dozen to several hundred) is typically a good indicator of a sludge composition for which there is flexibility in forming an acceptable waste glass and meeting canister production rate commitments. The MST and CST streams will significantly increase the concentrations of certain components in glass, such as Nb{sub 2}O{sub 5}, TiO{sub 2}, and ZrO{sub 2}, to levels much higher than have been previously processed at DWPF. Therefore, several important assumptions, described in detail in the report, had to be made in performing the evaluations. The results of the paper studies, which must be applied carefully given the assumptions made concerning the impact of higher Ti, Zr, and Nb concentrations on model validity, provided several observations: (1) There was difficulty in identifying a reasonable number of candidate frits (and in some cases an inability to identify any candidate frits) when a waste loading of 40% is

  10. Savannah River Site Waste Isolation Pilot Plant Disposal Program - Acceptable Knowledge Summary Report for Waste Stream: SR-T001-221-HET

    SciTech Connect (OSTI)

    Lunsford, G.F.

    2001-01-24

    This document, along with referenced supporting documents provides a defensible and auditable record of acceptable knowledge for one of the waste streams from the FB-Line. This heterogeneous debris transuranic waste stream was generated after January 25, 1990 and before March 20, 1997. The waste was packaged in 55-gallon drums, then shipped to the transuranic waste storage facility in ''E'' area of the Savannah River Site. This acceptable knowledge report includes information relating to the facility's history, configuration, equipment, process operations and waste management practices. Information contained in this report was obtained from numerous sources including: facility safety basis documentation, historical document archives, generator and storage facility waste records and documents, and interviews with cognizant personnel.

  11. Fluidized Bed Steam Reforming (FBSR) Mineralization for High Organic and Nitrate Waste Streams for the Global Nuclear Energy Partnership (GNEP)

    SciTech Connect (OSTI)

    Jantzen, C.M.; Williams, M.R. [Savannah River National Laboratory, Aiken, SC (United States)

    2008-07-01

    Waste streams that may be generated by the Global Nuclear Energy Partnership (GNEP) Advanced Energy Initiative may contain significant quantities of organics (0-53 wt%) and/or nitrates (0-56 wt%). Decomposition of high nitrate streams requires reducing conditions, e.g. organic additives such as sugar or coal, to reduce the NOx in the off-gas to N{sub 2} to meet the Clean Air Act (CAA) standards during processing. Thus, organics will be present during waste form stabilization regardless of which GNEP processes are chosen, e.g. organics in the feed or organics for nitrate destruction. High organic containing wastes cannot be stabilized with the existing HLW Best Developed Available Technology (BDAT) which is HLW vitrification (HLVIT) unless the organics are removed by preprocessing. Alternative waste stabilization processes such as Fluidized Bed Steam Reforming (FBSR) operate at moderate temperatures (650-750 deg. C) compared to vitrification (1150-1300 deg. C). FBSR converts organics to CAA compliant gases, creates no secondary liquid waste streams, and creates a stable mineral waste form that is as durable as glass. For application to the high Cs-137 and Sr-90 containing GNEP waste streams a single phase mineralized Cs-mica phase was made by co-reacting illite clay and GNEP simulated waste. The Cs-mica accommodates up to 30% wt% Cs{sub 2}O and all the GNEP waste species, Ba, Sr, Rb including the Cs-137 transmutation to Ba-137. For reference, the cesium mineral pollucite (CsAlSi{sub 2}O{sub 6}), currently being studied for GNEP applications, can only be fabricated at {>=}1000 deg. C. Pollucite mineralization creates secondary aqueous waste streams and NOx. Pollucite is not tolerant of high concentrations of Ba, Sr or Rb and forces the divalent species into different mineral host phases. The pollucite can accommodate up to 33% wt% Cs{sub 2}O. (authors)

  12. FLUIDIZED BED STEAM REFORMING MINERALIZATION FOR HIGH ORGANIC AND NITRATE WASTE STREAMS FOR THE GLOBAL NUCLEAR ENERGY PARTNERSHIP

    SciTech Connect (OSTI)

    Jantzen, C; Michael Williams, M

    2008-01-11

    Waste streams that may be generated by the Global Nuclear Energy Partnership (GNEP) Advanced Energy Initiative may contain significant quantities of organics (0-53 wt%) and/or nitrates (0-56 wt%). Decomposition of high nitrate streams requires reducing conditions, e.g. organic additives such as sugar or coal, to reduce the NO{sub x} in the off-gas to N{sub 2} to meet the Clean Air Act (CAA) standards during processing. Thus, organics will be present during waste form stabilization regardless of which GNEP processes are chosen, e.g. organics in the feed or organics for nitrate destruction. High organic containing wastes cannot be stabilized with the existing HLW Best Developed Available Technology (BDAT) which is HLW vitrification (HLVIT) unless the organics are removed by preprocessing. Alternative waste stabilization processes such as Fluidized Bed Steam Reforming (FBSR) operate at moderate temperatures (650-750 C) compared to vitrification (1150-1300 C). FBSR converts organics to CAA compliant gases, creates no secondary liquid waste streams, and creates a stable mineral waste form that is as durable as glass. For application to the high Cs-137 and Sr-90 containing GNEP waste streams a single phase mineralized Cs-mica phase was made by co-reacting illite clay and GNEP simulated waste. The Cs-mica accommodates up to 30% wt% Cs{sub 2}O and all the GNEP waste species, Ba, Sr, Rb including the Cs-137 transmutation to Ba-137. For reference, the cesium mineral pollucite (CsAlSi{sub 2}O{sub 6}), currently being studied for GNEP applications, can only be fabricated at {ge} 1000 C. Pollucite mineralization creates secondary aqueous waste streams and NO{sub x}. Pollucite is not tolerant of high concentrations of Ba, Sr or Rb and forces the divalent species into different mineral host phases. The pollucite can accommodate up to 33% wt% Cs{sub 2}O.

  13. DOE Chooses Idaho Treatment Group, LLC to Disposition Waste at the Advanced Mixed Waste Treatment Project: Contract will continue cleanup and waste operations at the Idaho Site

    Office of Energy Efficiency and Renewable Energy (EERE)

    Idaho Falls – In order to further meet the U.S. Department of Energy’s commitments to the citizens of the state of Idaho, the DOE today announced that it has selected Idaho Treatment Group, LLC (ITG) to perform waste processing at the Advanced Mixed Waste Treatment Project (AMWTP) at DOE’s Idaho Site near Idaho Falls.

  14. Global Nuclear Energy Partnership Waste Treatment Baseline

    SciTech Connect (OSTI)

    Dirk Gombert; William Ebert; James Marra; Robert Jubin; John Vienna

    2008-05-01

    The Global Nuclear Energy Partnership program (GNEP) is designed to demonstrate a proliferation-resistant and sustainable integrated nuclear fuel cycle that can be commercialized and used internationally. Alternative stabilization concepts for byproducts and waste streams generated by fuel recycling processes were evaluated and a baseline of waste forms was recommended for the safe disposition of waste streams. Waste forms are recommended based on the demonstrated or expected commercial practicability and technical maturity of the processes needed to make the waste forms, and performance of the waste form materials when disposed. Significant issues remain in developing technologies to process some of the wastes into the recommended waste forms, and a detailed analysis of technology readiness and availability may lead to the choice of a different waste form than what is recommended herein. Evolving regulations could also affect the selection of waste forms.

  15. EIS-0287: Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement, EIS-0287 (September 2002)

    Broader source: Energy.gov [DOE]

    This EIS analyzes the potential environmental consequences of alternatives for managing high-level waste (HLW) calcine, mixed transuranic waste/sodium bearing waste (SBW) and newly generated liquid...

  16. Waste Treatment and Immobilization Plant U. S. Department of Energy Office of River Protection Submerged Bed Scrubber Condensate Disposition Project - 13460

    SciTech Connect (OSTI)

    Yanochko, Ronald M. [Washington River Protection Solutions, P.O. Box 850, Richland, Washington 99352 (United States)] [Washington River Protection Solutions, P.O. Box 850, Richland, Washington 99352 (United States); Corcoran, Connie [AEM Consulting, LLC, 1201 Jadwin Avenue, Richland, Washington 99352 (United States)] [AEM Consulting, LLC, 1201 Jadwin Avenue, Richland, Washington 99352 (United States)

    2013-07-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) will generate an off-gas treatment system secondary liquid waste stream [submerged bed scrubber (SBS) condensate], which is currently planned for recycle back to the WTP Low Activity Waste (LAW) melter. This SBS condensate waste stream is high in Tc-99, which is not efficiently captured in the vitrified glass matrix [1]. A pre-conceptual engineering study was prepared in fiscal year 2012 to evaluate alternate flow paths for melter off-gas secondary liquid waste generated by the WTP LAW facility [2]. This study evaluated alternatives for direct off-site disposal of this SBS without pre-treatment, which mitigates potential issues associated with recycling. This study [2] concluded that SBS direct disposal is a viable option to the WTP baseline. The results show: - Off-site transportation and disposal of the SBS condensate is achievable and cost effective. - Reduction of approximately 4,325 vitrified WTP Low Activity Waste canisters could be realized. - Positive WTP operational impacts; minimal WTP construction impacts are realized. - Reduction of mass flow from the LAW Facility to the Pretreatment Facility by 66%. - Improved Double Shell Tank (DST) space management is a benefit. (authors)

  17. Legacy Waste | Department of Energy

    Office of Environmental Management (EM)

    Services Legacy Waste Legacy Waste Legacy Waste The Environmental Management Los Alamos Field Office's (EM-LA) Solid Waste Stabilization and Disposition Project Team is ...

  18. Three dimensional electrode for the electrolytic removal of contaminants from aqueous waste streams

    DOE Patents [OSTI]

    Spiegel, Ella F.; Sammells, Anthony F.

    2001-01-01

    Efficient and cost-effective electrochemical devices and processes for the remediation of aqueous waste streams. The invention provides electrolytic cells having a high surface area spouted electrode for removal of heavy metals and oxidation of organics from aqueous environments. Heavy metal ions are reduced, deposited on cathode particles of a spouted bed cathode and removed from solution. Organics are efficiently oxidized at anode particles of a spouted bed anode and removed from solution. The method of this inventions employs an electrochemical cell having an anolyte compartment and a catholyte compartment, separated by a microporous membrane, in and through which compartments anolyte and catholyte, respectively, are circulated. A spouted-bed electrode is employed as the cathode for metal deposition from contaminated aqueous media introduced as catholyte and as the anode for oxidation of organics from contaminated aqueous media introduced as anolyte.

  19. DM100 AND DM1200 MELTER TESTING WITH HIGH WASTE LOADING GLASS FORMULATIONS FOR HANFORD HIGH-ALUMINUM HLW STREAMS

    SciTech Connect (OSTI)

    KRUGER AA; MATLACK KS; KOT WK; PEGG IL; JOSEPH I

    2009-12-30

    This Test Plan describes work to support the development and testing of high waste loading glass formulations that achieve high glass melting rates for Hanford high aluminum high level waste (HLW). In particular, the present testing is designed to evaluate the effect of using low activity waste (LAW) waste streams as a source of sodium in place ofchemical additives, sugar or cellulose as a reductant, boehmite as an aluminum source, and further enhancements to waste processing rate while meeting all processing and product quality requirements. The work will include preparation and characterization of crucible melts in support of subsequent DuraMelter 100 (DM 100) tests designed to examine the effects of enhanced glass formulations, glass processing temperature, incorporation of the LAW waste stream as a sodium source, type of organic reductant, and feed solids content on waste processing rate and product quality. Also included is a confirmatory test on the HLW Pilot Melter (DM1200) with a composition selected from those tested on the DM100. This work builds on previous work performed at the Vitreous State Laboratory (VSL) for Department of Energy's (DOE's) Office of River Protection (ORP) to increase waste loading and processing rates for high-iron HLW waste streams as well as previous tests conducted for ORP on the same waste composition. This Test Plan is prepared in response to an ORP-supplied statement of work. It is currently estimated that the number of HLW canisters to be produced in the Hanford Tank Waste Treatment and Immobilization Plant (WTP) is about 12,500. This estimate is based upon the inventory ofthe tank wastes, the anticipated performance of the sludge treatment processes, and current understanding of the capability of the borosilicate glass waste form. The WTP HLW melter design, unlike earlier DOE melter designs, incorporates an active glass bubbler system. The bubblers create active glass pool convection and thereby improve heat transfer and

  20. Acceptable Knowledge Summary Report for Waste Stream: SR-T001-221F-HET/Drums

    SciTech Connect (OSTI)

    Lunsford, G.F.

    1999-08-23

    Since beginning operations in 1954, the Department of Energy's Savannah River Site FB-Line conducted atomic energy defense activities consistent with the listing in Section 10101(3) of the Nuclear Waste Policy Act of 1982. The facility mission was to process and convert dilute plutonium solution into highly purified weapons grade plutonium metal. As a result of various activities conducted in support of the mission (e.g., operation, maintenance, repair, clean up, and facility modifications), the facility generated transuranic waste. This document, along with referenced supporting documents, provides a defensible and auditable record of acceptable knowledge for one of the waste streams from the FB-Line. The waste was packaged in 55-gallon drums, then shipped to the transuranic waste storage facility in ''E'' area of the Savannah River Site. This acceptable knowledge report includes information relating to the facility's history, configuration,equipment, process operations, and waste management practices.

  1. THE SUCCESSFUL UTILIZATION OF COMMERCIAL TREATMENT CAPABILITIES TO DISPOSITION HANFORD NO-PATH-FORWARD SUSPECT TRANSURANIC WASTES

    SciTech Connect (OSTI)

    BLACKFORD LT; CATLOW RL; WEST LD; COLLINS MS; ROMINE LD; MOAK DJ

    2012-01-30

    The U.S. Department of Energy (DOE) Richland Operations Office (RL) has adopted the 2015 Vision for Cleanup of the Hanford Site. The CH2M HILL Plateau Remediation Company's (CHPRC) Waste and Fuels Management Project (W&FMP) and their partners support this mission by providing centralized waste management services for the Hanford Site waste generating organizations. At the time of the CHPRC contract award (August 2008) slightly more than 9,000 cubic meters (m{sup 3}) of legacy waste was defined as ''no-path-forward waste.'' A significant portion of this waste (7,650 m{sup 3}) comprised wastes with up to 50 grams of special nuclear materials (SNM) in oversized packages recovered during retrieval operations and large glove boxes removed from Hanford's Plutonium Finishing Plant (PFP). Through a collaborative effort between the DOE, CHPRC, and Perma-Fix Environmental Services, Inc. (PESI), pathways for these problematic wastes were developed and are currently being implemented.

  2. Reforming Pyrolysis Aqueous Waste Streams to Process Hydrogen and Hydrocarbons Presentation for BETO 2015 Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1: Reforming Pyrolysis Aqueous Waste Streams to Process Hydrogen and Hydrocarbons March 27, 2015 Kim Magrini 2 | Bioenergy Technologies Office eere.energy.gov Program Mission: Transform our renewable biomass resources into commercially viable, high-performance biofuels, bioproducts, and biopower through targeted research, development, demonstration, and deployment supported through public and private partnerships. Task Goal: Develop, evaluate and characterize reforming and upgrading catalysts

  3. Records Disposition

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1988-09-13

    To assign responsibilities and authorities and to prescribe policies, procedures, standards, and guidelines for the orderly disposition of records of the Department of Energy (DOE) and its management and operating contractors. Cancels DOE O 1324.2 dated 5-28-80. Chg 1 dated 4-9-92. Canceled by DOE O 1324.2B dated 1-12-95.

  4. Separation of heavy metals from industrial waste streams by membrane separation technology

    SciTech Connect (OSTI)

    Yichu Huang; Koseoglu, S.S. . Engineering Biosciences Research Center)

    1993-01-01

    Industrial membrane technology is becoming increasingly attractive as a low-cost generic separation technique for volume reduction, recovery, and/or purification of the liquid phase and concentration and/or recovery of the contaminant or solute. It offers outstanding future potential in the reduction and/or recycling of hazardous pollutants from waste streams. Membrane separation technology may include: (1) commercial processes such as electrodialysis, reverse osmosis, nanofiltration, and ultrafiltration and (2) the development of hybrid processes such as liquid membranes, Donnan dialysis, and membrane bioreactor technology. Membrane separation technology as applied to waste treatment/reduction and environmental engineering problems has several advantages over conventional treatment processes. In contrast to distillation and solvent extraction membrane separation is achieved without a phase change and use of expensive solvents. The advantages of this technology are (1) low energy requirements; (2) small volumes of retentate that need to be handled; (3) selective removal of pollutants with the use of complexing agents and biocatalysts or by membrane surface modification; (4) the possibility for achieving zero discharge'' with reuse of product water, binding media and target, compounds; (5) continuous operation; (6) modular design without significant size limitations; (7) discrete membrane barrier to ensure physical separation of contaminants; and (8) minimal labor requirement.

  5. Removal of plutonium and Americium from hydrochloric acid waste streams using extraction chromatography

    SciTech Connect (OSTI)

    Schulte, L.D.; FitzPatrick, J.R.; Salazar, R.R.; Schake, B.S.; Martinez, B.T.

    1995-01-01

    Extraction chromatography is under development as a method to lower actinide activity levels in hydrochloric acid (HCl) effluent streams. Successful application of this technique for radioactive liquid waste treatment would provide a low activity feedstream for HCl recycle, reduce the loss of radioactivity to the environment in aqueous effluents, and lower the quantity and improve the form of solid waste generated. The extraction of plutonium and americium from HCl solutions was examined for several commercial and laboratory-produced sorbed resin materials. Polymer beads were coated with n-octyl(phenyl)-N,N-diisobutylcarbamoyl- methylphosphine oxide (CMPO) and either tributyl phosphate (TBP), or diamyl amylphosphonate (DAAP). Distribution coefficients for Pu and Am were measured by contact studies in 1-10 M HCl, while varying REDOX conditions, actinide loading levels, and resin formulations. Flow experiments were run to evaluate actinide loading and elution under varied conditions. Significant differences in the actinide distribution coefficients in contact experiments, and in actinide retention in flow experiments were observed as a function of resin formulation.

  6. US Department of Energy interim mixed waste inventory report: Waste streams, treatment capacities and technologies: Volume 4, Site specific---Ohio through South Carolina

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    The Department of Energy (DOE) has prepared this report to provide an inventory of its mixed wastes and treatment capacities and technologies in response to Section 105(a) of the Federal Facility Compliance Act (FFCAct) of 1992 (Pub. L. No. 102-386). As required by the FFCAct-1992, this report provides site-specific information on DOE`s mixed waste streams and a general review of available and planned treatment facilities for mixed wastes at the following five Ohio facilities: Battelle Columbus Laboratories; Fernald Environmental Management Project; Mound Plant; Portsmouth Gaseous Diffusion Plant; and RMI, Titanium Company.

  7. Records Disposition

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1980-05-28

    To assign responsibilities and authorities and to prescribe policies, procedures, standards, and guidelines for the orderly disposition of records of the Department of Energy (DOE) and its operating and onsite service contractors. Cancels DOE O 1324.1 dated 7-10-78. Chg 1 dated 7-2-81. Chg 2 dated 11-9-82. Canceled by DOE O 1324.2A dated 9-13-88.

  8. Quantities and characteristics of the contact-handled low-level mixed waste streams for the DOE complex

    SciTech Connect (OSTI)

    Huebner, T.L.; Wilson, J.M.; Ruhter, A.H.; Bonney, S.J.

    1994-08-01

    This report supports the Integrated Thermal Treatment System (ITTS) Study initiated by the Department of Energy (DOE) Office of Technology Development (EM-50), which is a system engineering assessment of a variety of mixed waste treatment process. The DOE generates and stores large quantities of mixed wastes that are contaminated with both chemically hazardous and radioactive species. The treatment of these mixed wastes requires meeting the standards established by the Environmental Protection Agency for the specific hazardous contaminants regulated under the Resource Conservation and Recovery Act while also providing adequate control of the radionuclides. The thrust of the study is to develop preconceptual designs and life-cycle cost estimates for integrated thermal treatment systems ranging from conventional incinerators, such as rotary kiln and controlled air systems, to more innovative but not yet established technologies, such as molten salt and molten metal waste destruction systems. Prior to this engineering activity, the physical and chemical characteristics of the DOE low-level mixed waste streams to be treated must be defined or estimated. This report describes efforts to estimate the DOE waste stream characteristics.

  9. Amended Record of Decision for the Idaho High-Level Waste (HLW) and Facilities Disposition Final Environmental Impact Statement

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) is amending its Record of Decision (ROD) published December 19, 2005 (70 Federal Register (FR) 75165), pursuant to the Idaho HIgh-Level Waste and Facilities...

  10. Characterization and Disposition of Legacy Low-Level Waste at the Y-12 National Security Complex - 12133

    SciTech Connect (OSTI)

    Tharp, Tim; Donnelly, Jim

    2012-07-01

    The Y-12 National Security Complex (Y-12) is concluding a multi-year program to characterize and dispose of all legacy low-level waste (LLW). The inventory of legacy waste at Y-12 has been reduced from over 3500 containers in Fiscal Year (FY) 2000 to 6 containers at the end of FY2011. In addition, the site recently eliminated the inventory of other low-level waste that is greater than 365 days old (i.e., >365-Day LLW), to be in full compliance with DOE Order 435.1. A consistent technical characterization approach emerged for both of these populations of backlogged waste: (1) compile existing historical data and process knowledge and conduct interviews with site personnel; (2) inspect the containers and any tags, labels, or other markings to confirm or glean additional data; (3) with appropriate monitoring, open the container, visually inspect and photograph the contents while obtaining preliminary radiological surveys; (4) obtain gross weight and field non-destructive assay (NDA) data as needed; (5) use the non-public Oak Ridge Reservation Haul Road to ship the container to a local offsite vendor for waste sorting and segregation; (6) sort, drain, sample, and remove prohibited items; and (7) compile final data and prepare for shipment to disposal. After disposing of this backlog, the focus has now turned to avoiding the recurrence of this situation by maintaining low inventories of low-level waste and shortening the duration between waste generation and disposal. An enhanced waste tracking system and monthly metric charts are used to monitor and report progress to contractor and federal site office management. During the past 2 years, the average age of LLW onsite at Y-12 has decreased from more than 180 days to less than 60 days. (authors)

  11. Special Analysis for the Disposal of the Lawrence Livermore National Laboratory EnergyX Macroencapsulated Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    SciTech Connect (OSTI)

    Shott, Gregory J.

    2015-06-01

    This special analysis (SA) evaluates whether the Lawrence Livermore National Laboratory (LLNL) EnergyX Macroencapsulated waste stream (B LAMACRONCAP, Revision 1) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site (NNSS). The LLNL EnergyX Macroencapsulated waste stream is macroencapsulated mixed waste generated during research laboratory operations and maintenance (LLNL 2015). The LLNL EnergyX Macroencapsulated waste stream required a special analysis due to tritium (3H), cobalt-60 (60Co), cesium-137 (137Cs), and radium-226 (226Ra) exceeding the NNSS Waste Acceptance Criteria (WAC) Action Levels (U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office [NNSA/NFO] 2015).The results indicate that all performance objectives can be met with disposal of the waste stream in a SLB trench. Addition of the LLNL EnergyX Macroencapsulated inventory slightly increases multiple performance assessment results, with the largest relative increase occurring for the all-pathways annual total effective dose (TED). The maximum mean and 95th percentile 222Rn flux density remain less than the performance objective throughout the compliance period. The LLNL EnergyX Macroencapsulated waste stream is suitable for disposal by SLB at the Area 5 RWMS. The waste stream is recommended for approval without conditions.

  12. Operable Unit 3-13, Group 3, Other Surface Soils Remediation Sets 4-6 (Phase II) Waste Management Plan

    SciTech Connect (OSTI)

    G. L. Schwendiman

    2006-07-01

    This Waste Management Plan describes waste management and waste minimization activities for Group 3, Other Surface Soils Remediation Sets 4-6 (Phase II) at the Idaho Nuclear Technology and Engineering Center located within the Idaho National Laboratory. The waste management activities described in this plan support the selected response action presented in the Final Record of Decision for Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13. This plan identifies the waste streams that will be generated during implementation of the remedial action and presents plans for waste minimization, waste management strategies, and waste disposition.

  13. Acceptable Knowledge Summary Report for Mixed TRU Waste Streams: SR-W026-221F-HET-A through D

    SciTech Connect (OSTI)

    Lunsford, G.F.

    2001-10-02

    This document, along with referenced supporting documents provides a defensible and auditable record of acceptable knowledge for the heterogeneous debris mixed transuranic waste streams generated in the FB-Line after January 25, 1990 and before March 20, 1997.

  14. Salt Waste Processing Initiatives

    Office of Environmental Management (EM)

    Patricia Suggs Salt Processing Team Lead Assistant Manager for Waste Disposition Project Office of Environmental Management Savannah River Site Salt Waste Processing Initiatives 2 ...

  15. Hanford Tank Waste Retrieval,

    Office of Environmental Management (EM)

    Tank Waste Retrieval, Treatment, and Disposition Framework September 24, 2013 U.S. Department of Energy Washington, D.C. 20585 Hanford Tank Waste Retrieval, Treatment, and ...

  16. US Department of Energy interim mixed waste inventory report: Waste streams, treatment capacities and technologies: Volume 3, Site specific---Illinois through New York

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    The Department of Energy (DOE) has prepared this report to provide an inventory of its mixed wastes and treatment capacities and technologies in response to Section 105(a) of the Federal Facility Compliance act (FFCAct) of 1992 (Pub. L. No. 102-386). As required by the FFCAct-1992, this report provides site-specific information on DOE`s mixed waste streams and a general review of available and planned treatment facilities for mixed wastes for the following sites: Argonne National Laboratory-East; Site A/plot M in Palos Forest Preserve, Illinois; Ames Laboratory; Paducah Gaseous Diffusion Plant; Portsmouth Naval Shipyard; Kansas City Plant; University of Missouri; Weldon Springs Site, St. Charles, Missouri; Nevada Test Site; Middlesex Sampling Plant, Middlesex, New Jersey; Princeton Plasma Physics Laboratory; LANL; Sandia national laboratory; Brookhaven National Laboratory; Colonie Interim Storage Site, Colonie, New York; Knolls Atomic Power Laboratory; Knolls Atomic Power Laboratory-Kesselring Site; and West Valley Demonstration Project.

  17. Removal and recovery of metal ions from process and waste streams using polymer filtration

    SciTech Connect (OSTI)

    Jarvinen, G.D.; Smith, B.F.; Robison, T.W.; Kraus, K.M.; Thompson, J.A.

    1999-06-13

    Polymer Filtration (PF) is an innovative, selective metal removal technology. Chelating, water-soluble polymers are used to selectively bind the desired metal ions and ultrafiltration is used to concentrate the polymer-metal complex producing a permeate with low levels of the targeted metal ion. When applied to the treatment of industrial metal-bearing aqueous process streams, the permeate water can often be reused within the process and the metal ions reclaimed. This technology is applicable to many types of industrial aqueous streams with widely varying chemistries. Application of PF to aqueous streams from nuclear materials processing and electroplating operations will be described.

  18. Characterization of past and present solid waste streams from 231-Z

    SciTech Connect (OSTI)

    Pottmeyer, J.A.; DeLorenzo, D.S.; Weyns-Rollosson, M.I.; Berkwitz, D.E.; Vejvoda, E.J.; Duncan, D.R.

    1993-06-01

    During the next two decades the transuranic (TRU) wastes now stored in the burial trenches and storage facilities at the Hanford Site are to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant near Carlsbad, New Mexico for final disposal. Over 8% of the TRU waste to be retrieved for shipment to the Waste Isolation Pilot Plant has been generated at the Plutonium Metallurgy Laboratory (231-Z) Facility. The purpose of this report is to characterize the radioactive solid wastes generated by 231-Z using process knowledge, existing records and oral history interviews. Since 1944 research and development programs utilizing plutonium have been conducted at 231-Z in the fields of physical metallurgy, property determination, alloy development, and process development. The following are sources of solid waste generation at the 231-Z Facility: (1) General Weapons Development Program, (2) process waste from gloveboxes, (3) numerous classified research and development programs, (4) advanced decontamination and decommissioning technologies, including sectioning, vibratory finishing, electropolishing, solution process, and small bench-scale work, (5) general laboratory procedures, (6) foundry area, (7) housekeeping activities, and (8) four cleanout campaigns. All solid wastes originating at 231-Z were packaged for onsite-offsite storage or disposal. Waste packaging and reporting requirements have undergone significant changes throughout the history of 231-Z. Current and historical procedures are provided in Section 4.0. Information on the radioactive wastes generated at 231-Z can be found in a number of documents and databases, most importantly the Solid Waste Information and Tracking System database and Solid Waste Burial Records. Facility personnel also provide excellent information about past waste generation and the procedures used to handle that waste. Section 5.0 was compiled using these sources.

  19. Special Analysis for the Disposal of the Idaho National Laboratory Unirradiated Light Water Breeder Reactor Rods and Pellets Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    SciTech Connect (OSTI)

    Shott, Gregory

    2014-08-31

    The purpose of this special analysis (SA) is to determine if the Idaho National Laboratory (INL) Unirradiated Light Water Breeder Reactor (LWBR) Rods and Pellets waste stream (INEL103597TR2, Revision 2) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS). The INL Unirradiated LWBR Rods and Pellets waste stream consists of 24 containers with unirradiated fabricated rods and pellets composed of uranium oxide (UO2) and thorium oxide (ThO2) fuel in zirconium cladding. The INL Unirradiated LWBR Rods and Pellets waste stream requires an SA because the 229Th, 230Th, 232U, 233U, and 234U activity concentrations exceed the Nevada National Security Site (NNSS) Waste Acceptance Criteria (WAC) Action Levels.

  20. Special Analysis for the Disposal of the Lawrence Livermore National Laboratory Low Activity Beta/Gamma Sources Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    SciTech Connect (OSTI)

    Shott, Gregory J.

    2015-06-01

    This special analysis (SA) evaluates whether the Lawrence Livermore National Laboratory (LLNL) Low Activity Beta/Gamma Sources waste stream (BCLALADOEOSRP, Revision 0) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site (NNSS). The LLNL Low Activity Beta/Gamma Sources waste stream consists of sealed sources that are no longer needed. The LLNL Low Activity Beta/Gamma Sources waste stream required a special analysis because cobalt-60 (60Co), strontium-90 (90Sr), cesium-137 (137Cs), and radium-226 (226Ra) exceeded the NNSS Waste Acceptance Criteria (WAC) Action Levels (U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office [NNSA/NFO] 2015). The results indicate that all performance objectives can be met with disposal of the LLNL Low Activity Beta/Gamma Sources in a SLB trench. The LLNL Low Activity Beta/Gamma Sources waste stream is suitable for disposal by SLB at the Area 5 RWMS. However, the activity concentration of 226Ra listed on the waste profile sheet significantly exceeds the action level. Approval of the waste profile sheet could potentially allow the disposal of high activity 226Ra sources. To ensure that the generator does not include large 226Ra sources in this waste stream without additional evaluation, a control is need on the maximum 226Ra inventory. A limit based on the generator’s estimate of the total 226Ra inventory is recommended. The waste stream is recommended for approval with the control that the total 226Ra inventory disposed shall not exceed 5.5E10 Bq (1.5 Ci).

  1. Waste stream to energy source: What if America's next big fuel...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Sadow and Slowing will also be applying similar techniques to the conversion of wet sludge and agricultural wastes. Sadow said the scientific challenges are complex, with a need ...

  2. Method for sequestering CO.sub.2 and SO.sub.2 utilizing a plurality of waste streams

    DOE Patents [OSTI]

    Soong, Yee; Allen, Douglas E.; Zhu, Chen

    2011-04-12

    A neutralization/sequestration process is provided for concomitantly addressing capture and sequestration of both CO.sub.2 and SO.sub.2 from industrial gas byproduct streams. The invented process concomitantly treats and minimizes bauxite residues from aluminum production processes and brine wastewater from oil/gas production processes. The benefits of this integrated approach to coincidental treatment of multiple industrial waste byproduct streams include neutralization of caustic byproduct such as bauxite residue, thereby decreasing the risk associated with the long-term storage and potential environmental of storing caustic materials, decreasing or obviating the need for costly treatment of byproduct brines, thereby eliminating the need to purchase CaO or similar scrubber reagents typically required for SO.sub.2 treatment of such gasses, and directly using CO.sub.2 from flue gas to neutralize bauxite residue/brine mixtures, without the need for costly separation of CO.sub.2 from the industrial byproduct gas stream by processes such as liquid amine-based scrubbers.

  3. Using Biosurfactants Produced from Agriculture Process Waste Streams to Improve Oil Recovery in Fractured Carbonate Reservoirs

    SciTech Connect (OSTI)

    Stephen Johnson; Mehdi Salehi; Karl Eisert; Sandra Fox

    2009-01-07

    This report describes the progress of our research during the first 30 months (10/01/2004 to 03/31/2007) of the original three-year project cycle. The project was terminated early due to DOE budget cuts. This was a joint project between the Tertiary Oil Recovery Project (TORP) at the University of Kansas and the Idaho National Laboratory (INL). The objective was to evaluate the use of low-cost biosurfactants produced from agriculture process waste streams to improve oil recovery in fractured carbonate reservoirs through wettability mediation. Biosurfactant for this project was produced using Bacillus subtilis 21332 and purified potato starch as the growth medium. The INL team produced the biosurfactant and characterized it as surfactin. INL supplied surfactin as required for the tests at KU as well as providing other microbiological services. Interfacial tension (IFT) between Soltrol 130 and both potential benchmark chemical surfactants and crude surfactin was measured over a range of concentrations. The performance of the crude surfactin preparation in reducing IFT was greater than any of the synthetic compounds throughout the concentration range studied but at low concentrations, sodium laureth sulfate (SLS) was closest to the surfactin, and was used as the benchmark in subsequent studies. Core characterization was carried out using both traditional flooding techniques to find porosity and permeability; and NMR/MRI to image cores and identify pore architecture and degree of heterogeneity. A cleaning regime was identified and developed to remove organic materials from cores and crushed carbonate rock. This allowed cores to be fully characterized and returned to a reproducible wettability state when coupled with a crude-oil aging regime. Rapid wettability assessments for crushed matrix material were developed, and used to inform slower Amott wettability tests. Initial static absorption experiments exposed limitations in the use of HPLC and TOC to determine

  4. Characterization of past and present solid waste streams from the plutonium finishing plant

    SciTech Connect (OSTI)

    Duncan, D.R.; Mayancsik, B.A.; Pottmeyer, J.A.; Vejvoda, E.J.; Reddick, J.A.; Sheldon, K.M.; Weyns, M.I.

    1993-02-01

    During the next two decades the transuranic (TRU) wastes now stored in the burial trenches and storage facilities at the Hanford Site are to be retrieved, processed at the Waste Receiving and Processing (WRAP) Facility, and shipped to the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico for final disposal. Over 50% of the TRU waste to be retrieved for shipment to the WIPP has been generated at the Plutonium Finishing Plant (PFP), also known as the Plutonium Processing and Storage Facility and Z Plant. The purpose of this report is to characterize the radioactive solid wastes generated by the PFP since its construction in 1947 using process knowledge, existing records, and history-obtained from interviews. The PFP is currently operated by Westinghouse Hanford Company (WHC) for the US Department of Energy (DOE).

  5. High-Level Waste Inventory

    Office of Environmental Management (EM)

    Analysis of Alternatives for Disposition of the Idaho Calcined High-Level Waste Inventory ... of the Idaho Calcined High-Level Waste Inventory Volume 1- Summary Report April ...

  6. Characterization of past and present solid waste streams from the Plutonium-Uranium Extraction Plant

    SciTech Connect (OSTI)

    Pottmeyer, J.A.; Weyns, M.I.; Lorenzo, D.S.; Vejvoda, E.J.; Duncan, D.R.

    1993-04-01

    During the next two decades the transuranic wastes, now stored in the burial trenches and storage facilities at the Hanford Site, are to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant near Carlsbad, New Mexico for final disposal. Over 7% of the transuranic waste to be retrieved for shipment to the Waste Isolation Pilot Plant has been generated at the Plutonium-Uranium Extraction (PUREX) Plant. The purpose of this report is to characterize the radioactive solid wastes generated by PUREX using process knowledge, existing records, and oral history interviews. The PUREX Plant is currently operated by the Westinghouse Hanford Company for the US Department of Energy and is now in standby status while being prepared for permanent shutdown. The PUREX Plant is a collection of facilities that has been used primarily to separate plutonium for nuclear weapons from spent fuel that had been irradiated in the Hanford Site`s defense reactors. Originally designed to reprocess aluminum-clad uranium fuel, the plant was modified to reprocess zirconium alloy clad fuel elements from the Hanford Site`s N Reactor. PUREX has provided plutonium for research reactor development, safety programs, and defense. In addition, the PUREX was used to recover slightly enriched uranium for recycling into fuel for use in reactors that generate electricity and plutonium. Section 2.0 provides further details of the PUREX`s physical plant and its operations. The PUREX Plant functions that generate solid waste are as follows: processing operations, laboratory analyses and supporting activities. The types and estimated quantities of waste resulting from these activities are discussed in detail.

  7. Life Cycle Analysis for Treatment and Disposal of PCB Waste at Ashtabula and Fernald

    SciTech Connect (OSTI)

    Morris, M.I.

    2001-01-11

    This report presents the use of the life cycle analysis (LCA) system developed at Oak Ridge National Laboratory (ORNL) to assist two U.S. Department of Energy (DOE) sites in Ohio--the Ashtabula Environmental Management Project near Cleveland and the Fernald Environmental Management Project near Cincinnati--in assessing treatment and disposal options for polychlorinated biphenyl (PCB)-contaminated low-level radioactive waste (LLW) and mixed waste. We will examine, first, how the LCA process works, then look briefly at the LCA system's ''toolbox,'' and finally, see how the process was applied in analyzing the options available in Ohio. As DOE nuclear weapons facilities carry out planned decontamination and decommissioning (D&D) activities for site closure and progressively package waste streams, remove buildings, and clean up other structures that have served as temporary waste storage locations, it becomes paramount for each waste stream to have a prescribed and proven outlet for disposition. Some of the most problematic waste streams throughout the DOE complex are PCB low-level radioactive wastes (liquid and solid) and PCB low-level Resource Conservation and Recovery Act (RCRA) liquid and solid wastes. Several DOE Ohio Field Office (OH) sites have PCB disposition needs that could have an impact on the critical path of the decommissioning work of these closure sites. The Ashtabula Environmental Management Project (AEMP), an OH closure site, has an urgent problem with disposition of soils contaminated by PCB and low-level waste at the edge of the site. The Fernald Environmental Management Project (FEMP), another OH closure site, has difficulties in timely disposition of its PCB-low-level sludges and its PCB low-level RCRA sludges in order to avoid impacting the critical path of its D&D activities. Evaluation of options for these waste streams is the subject of this report. In the past a few alternatives for disposition of PCB low-level waste and PCB low-level RCRA

  8. Waste Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Management Waste Management Nuclear Materials Disposition Nuclear Materials Disposition In fulfilling its mission, EM frequently manages and completes disposition of surplus nuclear materials and spent nuclear fuel. These are not waste. They are nuclear materials no longer needed for national security or other purposes, including spent nuclear fuel, special nuclear materials (as defined by the Atomic Energy Act) and other Nuclear Materials. Read more Tank Waste and Waste Processing Tank Waste

  9. Update of the Used Fuel Disposition Campaign Implementation Plan

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Used Fuel Disposition Campaign will identify alternatives and conduct scientific research and technology development to enable storage, transportation, and disposal of used nuclear fuel and wastes generated by existing and future nuclear fuel cycles.

  10. Waste Treatment Technology Process Development Plan For Hanford Waste Treatment Plant Low Activity Waste Recycle

    SciTech Connect (OSTI)

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.

    2013-08-29

    The purpose of this Process Development Plan is to summarize the objectives and plans for the technology development activities for an alternative path for disposition of the recycle stream that will be generated in the Hanford Waste Treatment Plant Low Activity Waste (LAW) vitrification facility (LAW Recycle). This plan covers the first phase of the development activities. The baseline plan for disposition of this stream is to recycle it to the WTP Pretreatment Facility, where it will be concentrated by evaporation and returned to the LAW vitrification facility. Because this stream contains components that are volatile at melter temperatures and are also problematic for the glass waste form, they accumulate in the Recycle stream, exacerbating their impact on the number of LAW glass containers. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and reducing the halides in the Recycle is a key component of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, this stream does not have a proven disposition path, and resolving this gap becomes vitally important. This task seeks to examine the impact of potential future disposition of this stream in the Hanford tank farms, and to develop a process that will remove radionuclides from this stream and allow its diversion to another disposition path, greatly decreasing the LAW vitrification mission duration and quantity of glass waste. The origin of this LAW Recycle stream will be from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover or precipitates of scrubbed components (e.g. carbonates). The soluble

  11. Special Analysis for the Disposal of the Consolidated Edison Uranium Solidification Project Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2013-01-31

    The purpose of this Special Analysis (SA) is to determine if the Oak Ridge (OR) Consolidated Edison Uranium Solidification Project (CEUSP) uranium-233 (233U) waste stream (DRTK000000050, Revision 0) is acceptable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). The CEUSP 233U waste stream requires a special analysis because the concentrations of thorium-229 (229Th), 230Th, 232U, 233U, and 234U exceeded their NNSS Waste Acceptance Criteria action levels. The acceptability of the waste stream is evaluated by determining if performance assessment (PA) modeling provides a reasonable expectation that SLB disposal is protective of human health and the environment. The CEUSP 233U waste stream is a long-lived waste with unique radiological hazards. The SA evaluates the long-term acceptability of the CEUSP 233U waste stream for near-surface disposal as a two tier process. The first tier, which is the usual SA process, uses the approved probabilistic PA model to determine if there is a reasonable expectation that disposal of the CEUSP 233U waste stream can meet the performance objectives of U.S. Department of Energy Manual DOE M 435.1-1, “Radioactive Waste Management,” for a period of 1,000 years (y) after closure. The second tier addresses the acceptability of the OR CEUSP 233U waste stream for near-surface disposal by evaluating long-term site stability and security, by performing extended (i.e., 10,000 and 60,000 y) modeling analyses, and by evaluating the effect of containers and the depth of burial on performance. Tier I results indicate that there is a reasonable expectation of compliance with all performance objectives if the OR CEUSP 233U waste stream is disposed in the Area 5 RWMS SLB disposal units. The maximum mean and 95th percentile PA results are all less than the performance objective for 1,000 y. Monte Carlo uncertainty analysis indicates that there is a high likelihood of

  12. US nuclear waste may have temporary home

    SciTech Connect (OSTI)

    Kramer, David

    2015-05-15

    Combined developments could break the logjam over disposition of spent nuclear fuel and defense high-level radioactive waste.

  13. 12/2000 Low-Level Waste Disposal Capacity Report Version 2 |...

    Office of Environmental Management (EM)

    Waste Management Waste Disposition 122000 Low-Level Waste Disposal Capacity Report Version 2 122000 Low-Level Waste Disposal Capacity Report Version 2 The purpose of this ...

  14. High-Level Waste Corporate Board Presentation Archive | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Site Waste Disposition Project More Documents & Publications Salt Waste Processing Facility Fact Sheet Tank Waste Corporate Board Meeting 111810 Compilation of TRA Summaries

  15. Microsoft PowerPoint - Marcinowski - Waste Management (FINAL...

    Office of Environmental Management (EM)

    WIPP, Tank Waste and Other Waste Disposition Frank Marcinowski Deputy Assistant Secretary for Waste Management Office of Environmental Management EM SSAB Chairs Fall Meeting - ...

  16. EIS-0287: Notice of Preferred Sodium Bearing Waste Treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Preferred Sodium Bearing Waste Treatment Technology EIS-0287: Notice of Preferred Sodium Bearing Waste Treatment Technology Idaho High-Level Waste (HLW) and Facilities Disposition...

  17. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Secondary-waste-form performance High-level radioactive waste (HLW) disposition (Yucca Mountain issue) Mitigation Exclusion of greater-than-Class C (GTCC) waste in cumulative ...

  18. Disposition Schedules | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Disposition Schedules Disposition Schedules keyboard-70506__180.jpg Records Disposition Schedules The DOE Records Disposition Schedules provide the authority for transfer and disposal of records created and maintained by the Department. Disposition Schedules and the citations to the disposition authorities are available at the following links: DOE Administrative Records Schedules -- provides a list of records contained in the NARA General Records Schedule as customized to the needs of the

  19. Use of thermal analysis techniques (TG-DSC) for the characterization of diverse organic municipal waste streams to predict biological stability prior to land application

    SciTech Connect (OSTI)

    Fernandez, Jose M.; Plaza, Cesar; Polo, Alfredo; Plante, Alain F.

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Thermal analysis was used to assess stability and composition of organic matter in three diverse municipal waste streams. Black-Right-Pointing-Pointer Results were compared with C mineralization during 90-day incubation, FTIR and {sup 13}C NMR. Black-Right-Pointing-Pointer Thermal analysis reflected the differences between the organic wastes before and after the incubation. Black-Right-Pointing-Pointer The calculated energy density showed a strong correlation with cumulative respiration. Black-Right-Pointing-Pointer Conventional and thermal methods provide complimentary means of characterizing organic wastes. - Abstract: The use of organic municipal wastes as soil amendments is an increasing practice that can divert significant amounts of waste from landfill, and provides a potential source of nutrients and organic matter to ameliorate degraded soils. Due to the high heterogeneity of organic municipal waste streams, it is difficult to rapidly and cost-effectively establish their suitability as soil amendments using a single method. Thermal analysis has been proposed as an evolving technique to assess the stability and composition of the organic matter present in these wastes. In this study, three different organic municipal waste streams (i.e., a municipal waste compost (MC), a composted sewage sludge (CS) and a thermally dried sewage sludge (TS)) were characterized using conventional and thermal methods. The conventional methods used to test organic matter stability included laboratory incubation with measurement of respired C, and spectroscopic methods to characterize chemical composition. Carbon mineralization was measured during a 90-day incubation, and samples before and after incubation were analyzed by chemical (elemental analysis) and spectroscopic (infrared and nuclear magnetic resonance) methods. Results were compared with those obtained by thermogravimetry (TG) and differential scanning calorimetry (DSC

  20. SELECTION OF SURPLUS PLUTONIUM MATERIALS FOR DISPOSITION TO WIPP

    SciTech Connect (OSTI)

    Allender, J.; Mcclard, J.; Christopher, J.

    2012-06-08

    The U.S. Department of Energy (DOE) is preparing a Surplus Plutonium Disposition (SPD) Supplemental Environmental Impact Statement (SEIS). Included in the evaluation are up to 6 metric tons (MT) of plutonium in the form of impure oxides and metals for which a disposition plan has not been decided, among options that include preparation as feed for the Mixed Oxide Fuel Fabrication Facility; disposing to high-level waste through the Savannah River Site (SRS) HB Line and H Canyon; can-in-canister disposal using the SRS Defense Waste Processing Facility; and preparation for disposal at the Waste Isolation Pilot Plant (WIPP). DOE and SRS have identified at least 0.5 MT of plutonium that, because of high levels of chemical and isotopic impurities, is impractical for disposition by methods other than the WIPP pathway. Characteristics of these items and the disposition strategy are discussed.

  1. Characterizing Surplus US Plutonium for Disposition - 13199

    SciTech Connect (OSTI)

    Allender, Jeffrey S.; Moore, Edwin N.

    2013-07-01

    The United States (US) has identified 61.5 metric tons (MT) of plutonium that is permanently excess to use in nuclear weapons programs, including 47.2 MT of weapons-grade plutonium. Surplus inventories will be stored safely by the Department of Energy (DOE) and then transferred to facilities that will prepare the plutonium for permanent disposition. The Savannah River National Laboratory (SRNL) operates a Feed Characterization program for the Office of Fissile Materials Disposition (OFMD) of the National Nuclear Security Administration (NNSA) and the DOE Office of Environmental Management (DOE-EM). SRNL manages a broad program of item tracking through process history, laboratory analysis, and non-destructive assay. A combination of analytical techniques allows SRNL to predict the isotopic and chemical properties that qualify materials for disposition through the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). The research also defines properties that are important for other disposition paths, including disposal to the Waste Isolation Pilot Plant (WIPP) as transuranic waste (TRUW) or to high-level waste (HLW) systems. (authors)

  2. Characterizing surplus US plutonium for disposition

    SciTech Connect (OSTI)

    Allender, Jeffrey S.; Moore, Edwin N.

    2013-02-26

    The United States (US) has identified 61.5 metric tons (MT) of plutonium that is permanently excess to use in nuclear weapons programs, including 47.2 MT of weapons-grade plutonium. Surplus inventories will be stored safely by the Department of Energy (DOE) and then transferred to facilities that will prepare the plutonium for permanent disposition. The Savannah River National Laboratory (SRNL) operates a Feed Characterization program for the Office of Fissile Materials Disposition (OFMD) of the National Nuclear Security Administration (NNSA) and the DOE Office of Environmental Management (DOE-EM). SRNL manages a broad program of item tracking through process history, laboratory analysis, and non-destructive assay. A combination of analytical techniques allows SRNL to predict the isotopic and chemical properties that qualify materials for disposition through the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). The research also defines properties that are important for other disposition paths, including disposal to the Waste Isolation Pilot Plant (WIPP) as transuranic waste (TRUW) or to high-level waste (HLW) systems.

  3. Determination of vapor-liquid equilibrium data and decontamination factors needed for the development of evaporator technology for use in volume reduction of radioactive waste streams

    SciTech Connect (OSTI)

    Betts, S.E.

    1993-10-01

    A program is currently in progress at Argonne National Laboratory to evaluate and develop evaporator technology for concentrating radioactive waste streams. By concentrating radioactive waste streams, disposal costs can be significantly reduced. To effectively reduce the volume of waste, the evaporator must achieve high decontamination factors so that the distillate is sufficiently free of radioactive material. One technology that shows a great deal of potential for this application is being developed by LICON, Inc. In this program, Argonne plans to apply LICON`s evaporator designs to the processing of radioactive solutions. Concepts that need to be incorporated into the design of the evaporator include, criticality safety, remote operation and maintenance, and materials of construction. To design an effective process for concentrating waste streams, both solubility and vapor-liquid equilibrium data are needed. The key issue, however, is the high decontamination factors that have been demonstrated by this equipment. Two major contributions were made to this project. First, a literature survey was completed to obtain available solubility and vapor-liquid equilibrium data. Some vapor-liquid data necessary for the project but not available in the literature was obtained experimentally. Second, the decontamination factor for the evaporator was determined using neutron activation analysis (NAA).

  4. Energy Efficient Removal of Volatile Organic Compounds (VOCs) and Organic Hazardous Air Pollutants (o-HAPs) from Industrial Waste Streams by Direct Electron Oxidation

    SciTech Connect (OSTI)

    Testoni, A. L.

    2011-10-19

    This research program investigated and quantified the capability of direct electron beam destruction of volatile organic compounds and organic hazardous air pollutants in model industrial waste streams and calculated the energy savings that would be realized by the widespread adoption of the technology over traditional pollution control methods. Specifically, this research determined the quantity of electron beam dose required to remove 19 of the most important non-halogenated air pollutants from waste streams and constructed a technical and economic model for the implementation of the technology in key industries including petroleum refining, organic & solvent chemical production, food & beverage production, and forest & paper products manufacturing. Energy savings of 75 - 90% and green house gas reductions of 66 - 95% were calculated for the target market segments.

  5. WIPP WASTE MINIMIZATION PROGRAM DESCRIPTION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... NMSW - New Mexico Special Waste MSW - Municipal Solid Waste C&D - Construction and ... Proposed waste streams that could generate hazardous wastes are reviewed regularly to ...

  6. Request For Records Disposition | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Request For Records Disposition Request For Records Disposition Spent Nuclear Fuels Request For Records Disposition (270.54 KB) More Documents & Publications Report on Separate ...

  7. 2016 Used Fuel Disposition Working Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Used Fuel Disposition Working Group - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs

  8. Development And Initial Testing Of Off-Gas Recycle Liquid From The WTP Low Activity Waste Vitrification Process - 14333

    SciTech Connect (OSTI)

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.; Taylor-Pashow, Kathryn M.; Adamson, Duane J.; Crawford, Charles L.; Morse, Megan M.

    2014-01-07

    The Waste Treatment and Immobilization Plant (WTP) process flow was designed to pre-treat feed from the Hanford tank farms, separate it into a High Level Waste (HLW) and Low Activity Waste (LAW) fraction and vitrify each fraction in separate facilities. Vitrification of the waste generates an aqueous condensate stream from the off-gas processes. This stream originates from two off-gas treatment unit operations, the Submerged Bed Scrubber (SBS) and the Wet Electrospray Precipitator (WESP). Currently, the baseline plan for disposition of the stream from the LAW melter is to recycle it to the Pretreatment facility where it gets evaporated and processed into the LAW melter again. If the Pretreatment facility is not available, the baseline disposition pathway is not viable. Additionally, some components in the stream are volatile at melter temperatures, thereby accumulating to high concentrations in the scrubbed stream. It would be highly beneficial to divert this stream to an alternate disposition path to alleviate the close-coupled operation of the LAW vitrification and Pretreatment facilities, and to improve long-term throughput and efficiency of the WTP system. In order to determine an alternate disposition path for the LAW SBS/WESP Recycle stream, a range of options are being studied. A simulant of the LAW Off-Gas Condensate was developed, based on the projected composition of this stream, and comparison with pilot-scale testing. The primary radionuclide that vaporizes and accumulates in the stream is Tc-99, but small amounts of several other radionuclides are also projected to be present in this stream. The processes being investigated for managing this stream includes evaporation and radionuclide removal via precipitation and adsorption. During evaporation, it is of interest to investigate the formation of insoluble solids to avoid scaling and plugging of equipment. Key parameters for radionuclide removal include identifying effective precipitation or ion

  9. Microsoft PowerPoint - EM SSAB Chairs Webinar - Marcinowski Waste Strategies.042413

    Office of Environmental Management (EM)

    Chair's Meeting Waste Disposition Strategies Update www.energy.gov/EM 1 Waste Disposition Strategies Update Frank Marcinowski Deputy Assistant Secretary for Waste Management Office of Environmental Management April 25, 2013 * Recent Program Accomplishments * FY13 Waste Management Priorities * FY14 Waste Management Priorities * Los Alamos Update * LLW/MLLW Disposition Options Discussion Outline www.energy.gov/EM 2 * Hanford TRU Tank Disposition Initiative * GTCC EIS * Mercury Supplemental EIS *

  10. CHARACTERIZATION OF SURPLUS PLUTONIUM FOR DISPOSITION OPTIONS

    SciTech Connect (OSTI)

    Allender, J; Edwin Moore, E; Scott Davies, S

    2008-07-15

    The United States (U.S.) has identified 61.5 metric tons (MT) of plutonium that is permanently excess to use in nuclear weapons programs, including 47.2 MT of weapons-grade plutonium. Except for materials that remain in use for programs outside of national defense, including programs for nuclear-energy development, the surplus inventories will be stored safely by the Department of Energy (DOE) and then transferred to facilities that will prepare the plutonium for permanent disposition. Some items will be disposed as transuranic waste, low-level waste, or spent fuel. The remaining surplus plutonium will be managed through: (1) the Mixed Oxide (MOX) Fuel Fabrication Facility (FFF), to be constructed at the Savannah River Site (SRS), where the plutonium will be converted to fuel that will be irradiated in civilian power reactors and later disposed to a high-level waste (HLW) repository as spent fuel; (2) the SRS H-Area facilities, by dissolving and transfer to HLW systems, also for disposal to the repository; or (3) alternative immobilization techniques that would provide durable and secure disposal. From the beginning of the U.S. program for surplus plutonium disposition, DOE has sponsored research to characterize the surplus materials and to judge their suitability for planned disposition options. Because many of the items are stored without extensive analyses of their current chemical content, the characterization involves three interacting components: laboratory sample analysis, if available; non-destructive assay data; and rigorous evaluation of records for the processing history for items and inventory groups. This information is collected from subject-matter experts at inventory sites and from materials stabilization and surveillance programs, in cooperation with the design agencies for the disposition facilities. This report describes the operation and status of the characterization program.

  11. Topic: Cesium Management and Disposition Alternatives for the...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... using non-elutable media, place in spent fuel storage containers for future high level ... cesium, from a waste stream from the tank farms creating a low activity waste feed for ...

  12. DISPOSITION PATHS FOR ROCKY FLATS GLOVEBOXES: EVALUATING OPTIONS

    SciTech Connect (OSTI)

    Lobdell, D.; Geimer, R.; Larsen, P.; Loveland, K.

    2003-02-27

    The Kaiser-Hill Company, LLC has the responsibility for closure activities at the Rocky Flats Environmental Technology Site (RFETS). One of the challenges faced for closure is the disposition of radiologically contaminated gloveboxes. Evaluation of the disposition options for gloveboxes included a detailed analysis of available treatment capabilities, disposal facilities, and lifecycle costs. The Kaiser-Hill Company, LLC followed several processes in determining how the gloveboxes would be managed for disposition. Currently, multiple disposition paths have been chosen to accommodate the needs of the varying styles and conditions of the gloveboxes, meet the needs of the decommissioning team, and to best manage lifecycle costs. Several challenges associated with developing a disposition path that addresses both the radiological and RCRA concerns as well as offering the most cost-effective solution were encountered. These challenges included meeting the radiological waste acceptance criteria of available disposal facilities, making a RCRA determination, evaluating treatment options and costs, addressing void requirements associated with disposal, and identifying packaging and transportation options. The varying disposal facility requirements affected disposition choices. Facility conditions that impacted decisions included radiological and chemical waste acceptance criteria, physical requirements, and measurement for payment options. The facility requirements also impacted onsite activities including management strategies, decontamination activities, and life-cycle cost.

  13. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of mixed polymer waste streams to sequentially recover monomers or other high value products

    DOE Patents [OSTI]

    Evans, Robert J.; Chum, Helena L.

    1994-01-01

    A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent.

  14. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of mixed polymer waste streams to sequentially recover monomers or other high value products

    DOE Patents [OSTI]

    Evans, Robert J.; Chum, Helena L.

    1994-01-01

    A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents, selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent.

  15. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of mixed polymer waste streams to sequentially recover monomers or other high value products

    DOE Patents [OSTI]

    Evans, Robert J.; Chum, Helena L.

    1993-01-01

    A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent.

  16. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of mixed polymer waste streams to sequentially recover monomers or other high value products

    DOE Patents [OSTI]

    Evans, R.J.; Chum, H.L.

    1994-10-25

    A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent. 83 figs.

  17. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of mixed polymer waste streams to sequentially recover monomers or other high value products

    DOE Patents [OSTI]

    Evans, R.J.; Chum, H.L.

    1994-04-05

    A process is described for using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents, selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent. 87 figures.

  18. Extraction and recovery of mercury and lead from aqueous waste streams using redox-active layered metal chalcogenides. Annual progress report, September 15, 1996--September 14, 1997

    SciTech Connect (OSTI)

    Dorhout, P.K.; Strauss, S.H.

    1997-01-01

    'The authors have begun to examine the extraction and recovery of heavy elements from aqueous waste streams using redox-active metal chalcogenides. They have been able to prepare extractants from known chalcogenide starting materials, studied the efficacy of the extractants for selective removal of soft metal ions from aqueous phases, studied the deactivation of extractants and the concomitant recovery of soft metal ions from the extractants, and characterized all of the solids and solutions thus far in the study. The study was proposed as two parallel tasks: Part 1 and Part 2 emphasize the study and development of known metal chalcogenide extractants and the synthesis and development of new metal chalcogenide extractants, respectively. The two tasks were divided into sub-sections that study the extractants and their chemistry as detailed below: Preparation and reactivity of metal chalcogenide host solids Extraction of target waste (guest) ions from simulated waste streams Examination of the guest-host solids recovery of the guest metal and reuse of extractant Each section of the two tasks was divided into focused subsections that detail the specific problems and solutions to those problems that were proposed. The extent to which those tasks have been accomplished and the continued efforts of the team are described in detail below. (b) Progress and Results. The DOE-supported research has proceeded largely as proposed and has been productive in its first 12 months. Two full-paper manuscripts were submitted and are currently under peer review. A third paper is in preparation and will be submitted shortly. In addition, 5 submitted or invited presentations have been made.'

  19. Facility Disposition Safety Strategy RM

    Broader source: Energy.gov [DOE]

    The Facility Disposition Safety Strategy (FDSS) Review Module is a tool that assists DOE federal project review teams in evaluating the adequacy of the facility documentation, preparations or...

  20. Regulatory issues for deep borehole plutonium disposition

    SciTech Connect (OSTI)

    Halsey, W.G.

    1995-03-01

    As a result of recent changes throughout the world, a substantial inventory of excess separated plutonium is expected to result from dismantlement of US nuclear weapons. The safe and secure management and eventual disposition of this plutonium, and of a similar inventory in Russia, is a high priority. A variety of options (both interim and permanent) are under consideration to manage this material. The permanent solutions can be categorized into two broad groups: direct disposal and utilization. The deep borehole disposition concept involves placing excess plutonium deep into old stable rock formations with little free water present. Issues of concern include the regulatory, statutory and policy status of such a facility, the availability of sites with desirable characteristics and the technologies required for drilling deep holes, characterizing them, emplacing excess plutonium and sealing the holes. This white paper discusses the regulatory issues. Regulatory issues concerning construction, operation and decommissioning of the surface facility do not appear to be controversial, with existing regulations providing adequate coverage. It is in the areas of siting, licensing and long term environmental protection that current regulations may be inappropriate. This is because many current regulations are by intent or by default specific to waste forms, facilities or missions significantly different from deep borehole disposition of excess weapons usable fissile material. It is expected that custom regulations can be evolved in the context of this mission.

  1. Glass-Ceramic Waste Forms for Uranium and Plutonium Residues Wastes - 13164

    SciTech Connect (OSTI)

    Stewart, Martin W.A.; Moricca, Sam A.; Zhang, Yingjie; Day, R. Arthur; Begg, Bruce D.; Scales, Charlie R.; Maddrell, Ewan R.; Hobbs, Jeff

    2013-07-01

    A program of work has been undertaken to treat plutonium-residues wastes at Sellafield. These have arisen from past fuel development work and are highly variable in both physical and chemical composition. The principal radiological elements present are U and Pu, with small amounts of Th. The waste packages contain Pu in amounts that are too low to be economically recycled as fuel and too high to be disposed of as lower level Pu contaminated material. NNL and ANSTO have developed full-ceramic and glass-ceramic waste forms in which hot-isostatic pressing is used as the consolidation step to safely immobilize the waste into a form suitable for long-term disposition. We discuss development work on the glass-ceramic developed for impure waste streams, in particular the effect of variations in the waste feed chemistry glass-ceramic. The waste chemistry was categorized into actinides, impurity cations, glass formers and anions. Variations of the relative amounts of these on the properties and chemistry of the waste form were investigated and the waste form was found to be largely unaffected by these changes. This work mainly discusses the initial trials with Th and U. Later trials with larger variations and work with Pu-doped samples further confirmed the flexibility of the glass-ceramic. (authors)

  2. Optimizing High Level Waste Disposal

    SciTech Connect (OSTI)

    Dirk Gombert

    2005-09-01

    If society is ever to reap the potential benefits of nuclear energy, technologists must close the fuel-cycle completely. A closed cycle equates to a continued supply of fuel and safe reactors, but also reliable and comprehensive closure of waste issues. High level waste (HLW) disposal in borosilicate glass (BSG) is based on 1970s era evaluations. This host matrix is very adaptable to sequestering a wide variety of radionuclides found in raffinates from spent fuel reprocessing. However, it is now known that the current system is far from optimal for disposal of the diverse HLW streams, and proven alternatives are available to reduce costs by billions of dollars. The basis for HLW disposal should be reassessed to consider extensive waste form and process technology research and development efforts, which have been conducted by the United States Department of Energy (USDOE), international agencies and the private sector. Matching the waste form to the waste chemistry and using currently available technology could increase the waste content in waste forms to 50% or more and double processing rates. Optimization of the HLW disposal system would accelerate HLW disposition and increase repository capacity. This does not necessarily require developing new waste forms, the emphasis should be on qualifying existing matrices to demonstrate protection equal to or better than the baseline glass performance. Also, this proposed effort does not necessarily require developing new technology concepts. The emphasis is on demonstrating existing technology that is clearly better (reliability, productivity, cost) than current technology, and justifying its use in future facilities or retrofitted facilities. Higher waste processing and disposal efficiency can be realized by performing the engineering analyses and trade-studies necessary to select the most efficient methods for processing the full spectrum of wastes across the nuclear complex. This paper will describe technologies being

  3. USED FUEL DISPOSITION CAMPAIGN

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Effects of Lower Drying-Storage Temperatures on the DBTT of High-Burnup PWR Cladding Prepared for U.S. Department of Energy Used Fuel Disposition Campaign M.C. Billone, T.A. Burtseva, and M.A. Martin-Rengel Argonne National Laboratory August 28, 2015 FCRD-UFD-2015-000008 ANL-15/21 About Argonne National Laboratory Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory's main facility is outside Chicago, at 9700 South

  4. Acceptable Knowledge Summary Report for Waste Stream: SR-T001-221F-HET/Drums

    SciTech Connect (OSTI)

    Lunsford, G.F.

    1999-06-14

    This report is fully responsive to the requirements of Section 4.0 Acceptable Knowledge from the WIPP Transuranic Waste Characterization Quality Assurance Plan, CAO-94-1010, and provides a sound, (and auditable) characterization that satisfies the WIPP criteria for Acceptable Knowledge.

  5. Major Risk Factors Integrated Facility Disposition Project -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Facility Disposition Project - Oak Ridge Major Risk Factors Integrated Facility Disposition Project - Oak Ridge Full Document and Summary Versions are available for ...

  6. Material Disposition | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    The Office of Material Disposition also manages the resulting LEU supply from its HEU disposition efforts, providing material to support peaceful uses such as research reactor ...

  7. Grouting Operation to Lead to First SRS Waste Tank Closures Since...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... this accomplishment," said Terry Spears, Assistant Manager for Waste Disposition Project. ... Lindsey Graham (R-SC) unveil a marker to commemorate the closing of waste tanks at the ...

  8. Pulling History from the Waste Stream: Identification and Collection of Manhattan Project and Cold War Era Artifacts on the Hanford Site

    SciTech Connect (OSTI)

    Marceau, Thomas E.; Watson, Thomas L.

    2013-11-13

    One man's trash is another man's treasure. Not everything called "waste" is meant for the refuse pile. The mission of the Curation Program is at direct odds with the remediation objectives of the Hanford Site. While others are busily tearing down and burying the Site's physical structures and their associated contents, the Curation Program seeks to preserve the tangible elements of the Site's history from these structures for future generations before they flow into the waste stream. Under the provisions of a Programmatic Agreement, Cultural Resources staff initiated a project to identify and collect artifacts and archives that have historic or interpretive value in documenting the role of the Hanford Site throughout the Manhattan Project and Cold War Era. The genesis of Hanford's modern day Curation Program, its evolution over nearly two decades, issues encountered, and lessons learned along the way -- particularly the importance of upper management advocacy, when and how identification efforts should be accomplished, the challenges of working within a radiological setting, and the importance of first hand information -- are presented.

  9. Weapons-grade plutonium dispositioning. Volume 2: Comparison of plutonium disposition options

    SciTech Connect (OSTI)

    Brownson, D.A.; Hanson, D.J.; Blackman, H.S.

    1993-06-01

    The Secretary of Energy requested the National Academy of Sciences (NAS) Committee on International Security and Arms Control to evaluate disposition options for weapons-grade plutonium. The Idaho National Engineering Laboratory (INEL) offered to assist the NAS in this evaluation by investigating the technical aspects of the disposition options and their capability for achieving plutonium annihilation levels greater than 90%. This report was prepared for the NAS to document the gathered information and results from the requested option evaluations. Evaluations were performed for 12 plutonium disposition options involving five reactor and one accelerator-based systems. Each option was evaluated in four technical areas: (1) fuel status, (2) reactor or accelerator-based system status, (3) waste-processing status, and (4) waste disposal status. Based on these evaluations, each concept was rated on its operational capability and time to deployment. A third rating category of option costs could not be performed because of the unavailability of adequate information from the concept sponsors. The four options achieving the highest rating, in alphabetical order, are the Advanced Light Water Reactor with plutonium-based ternary fuel, the Advanced Liquid Metal Reactor with plutonium-based fuel, the Advanced Liquid Metal Reactor with uranium-plutonium-based fuel, and the Modular High Temperature Gas-Cooled Reactor with plutonium-based fuel. Of these four options, the Advanced Light Water Reactor and the Modular High Temperature Gas-Cooled Reactor do not propose reprocessing of their irradiated fuel. Time constraints and lack of detailed information did not allow for any further ratings among these four options. The INEL recommends these four options be investigated further to determine the optimum reactor design for plutonium disposition.

  10. Hanford Dangerous Waste Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Waste Treatment and Immobilization Plant (vit plant) Operating Unit #10 Aerial view of construction, July 2011 Where will the waste go? LAW canisters will go to shallow disposal at Hanford's Integrated Disposal Facility. HLW canisters will go to a For scale, here's the parking lot! Safe disposition of our nation's most dangerous waste relies on the vit plant's safe completion and ability to process waste for 20+ years. * Permitted for storage and treatment of Hanford's tank waste in unique

  11. Laboratory Evaporation Testing Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    SciTech Connect (OSTI)

    Adamson, Duane J.; Nash, Charles A.; McCabe, Daniel J.; Crawford, Charles L.; Wilmarth, William R.

    2014-01-27

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream, LAW Off-Gas Condensate, from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of canistered glass waste forms. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to be within acceptable concentration ranges in the LAW glass. Diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the impact of potential future disposition of this stream in the Hanford tank farms, and investigates auxiliary evaporation to enable another disposition path. Unless an auxiliary evaporator is used, returning the stream to the tank farms would require evaporation in the 242-A evaporator. This stream is expected to be unusual because it will be very high in corrosive species that are volatile in the melter

  12. SALTSTONE VAULT CLASSIFICATION SAMPLES MODULAR CAUSTIC SIDE SOLVENT EXTRACTION UNIT/ACTINIDE REMOVAL PROCESS WASTE STREAM APRIL 2011

    SciTech Connect (OSTI)

    Eibling, R.

    2011-09-28

    Savannah River National Laboratory (SRNL) was asked to prepare saltstone from samples of Tank 50H obtained by SRNL on April 5, 2011 (Tank 50H sampling occurred on April 4, 2011) during 2QCY11 to determine the non-hazardous nature of the grout and for additional vault classification analyses. The samples were cured and shipped to Babcock & Wilcox Technical Services Group-Radioisotope and Analytical Chemistry Laboratory (B&W TSG-RACL) to perform the Toxic Characteristic Leaching Procedure (TCLP) and subsequent extract analysis on saltstone samples for the analytes required for the quarterly analysis saltstone sample. In addition to the eight toxic metals - arsenic, barium, cadmium, chromium, mercury, lead, selenium and silver - analytes included the underlying hazardous constituents (UHC) antimony, beryllium, nickel, and thallium which could not be eliminated from analysis by process knowledge. Additional inorganic species determined by B&W TSG-RACL include aluminum, boron, chloride, cobalt, copper, fluoride, iron, lithium, manganese, molybdenum, nitrate/nitrite as Nitrogen, strontium, sulfate, uranium, and zinc and the following radionuclides: gross alpha, gross beta/gamma, 3H, 60Co, 90Sr, 99Tc, 106Ru, 106Rh, 125Sb, 137Cs, 137mBa, 154Eu, 238Pu, 239/240Pu, 241Pu, 241Am, 242Cm, and 243/244Cm. B&W TSG-RACL provided subsamples to GEL Laboratories, LLC for analysis for the VOCs benzene, toluene, and 1-butanol. GEL also determines phenol (total) and the following radionuclides: 147Pm, 226Ra and 228Ra. Preparation of the 2QCY11 saltstone samples for the quarterly analysis and for vault classification purposes and the subsequent TCLP analyses of these samples showed that: (1) The saltstone waste form disposed of in the Saltstone Disposal Facility in 2QCY11 was not characteristically hazardous for toxicity. (2) The concentrations of the eight RCRA metals and UHCs identified as possible in the saltstone waste form were present at levels below the UTS. (3) Most of the

  13. Waste Information Management System-2012 - 12114

    SciTech Connect (OSTI)

    Upadhyay, H.; Quintero, W.; Shoffner, P.; Lagos, L.; Roelant, D.

    2012-07-01

    The Waste Information Management System (WIMS) -2012 was updated to support the Department of Energy (DOE) accelerated cleanup program. The schedule compression required close coordination and a comprehensive review and prioritization of the barriers that impeded treatment and disposition of the waste streams at each site. Many issues related to waste treatment and disposal were potential critical path issues under the accelerated schedule. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE Headquarters in Washington, D.C., needed timely waste forecast and transportation information regarding the volumes and types of radioactive waste that would be generated by DOE sites over the next 40 years. Each local DOE site historically collected, organized, and displayed waste forecast information in separate and unique systems. In order for interested parties to understand and view the complete DOE complex-wide picture, the radioactive waste and shipment information of each DOE site needed to be entered into a common application. The WIMS application was therefore created to serve as a common application to improve stakeholder comprehension and improve DOE radioactive waste treatment and disposal planning and scheduling. WIMS allows identification of total forecasted waste volumes, material classes, disposition sites, choke points, technological or regulatory barriers to treatment and disposal, along with forecasted waste transportation information by rail, truck and inter-modal shipments. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, developed and deployed the web-based forecast and transportation system and is responsible for updating the radioactive waste forecast and transportation data on a regular basis to ensure the long-term viability and value of this system. WIMS continues to successfully accomplish the goals and objectives set forth by DOE for this project. It has

  14. REQUEST FOR RECORDS DISPOSITION AUTHORITY

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    REQUEST FOR RECORDS DISPOSITION AUTHORITY LEAVE BLANK (NARA use only) JOB NUMBER To: NATIONAL ARCHIVES & RECORDS ADMINISTRATION 8601 ADELPHI ROAD, COLLEGE PARK, MD 20740-6001 Date Received 1. FROM (Agency or establishment) NOTIFICATION TO AGENCY In accordance with the provisions of 44 U.S.C 3303a, the disposition request, including amendments is approved except for items that may be marked "disposition not approved" or "withdrawn" in column 10. 2. MAJOR SUB DIVISION 3.

  15. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of phenolic resin containing waste streams to sequentially recover monomers and chemicals

    DOE Patents [OSTI]

    Chum, H.L.; Evans, R.J.

    1992-08-04

    A process is described for using fast pyrolysis in a carrier gas to convert a waste phenolic resin containing feedstreams in a manner such that pyrolysis of said resins and a given high value monomeric constituent occurs prior to pyrolyses of the resins in other monomeric components therein comprising: selecting a first temperature program range to cause pyrolysis of said resin and a given high value monomeric constituent prior to a temperature range that causes pyrolysis of other monomeric components; selecting, if desired, a catalyst and a support and treating said feedstreams with said catalyst to effect acid or basic catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said first temperature program range to utilize reactive gases such as oxygen and steam in the pyrolysis process to drive the production of specific products; differentially heating said feedstreams at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantity of said high value monomeric constituent prior to pyrolysis of other monomeric components therein; separating said high value monomeric constituent; selecting a second higher temperature program range to cause pyrolysis of a different high value monomeric constituent of said phenolic resins waste and differentially heating said feedstreams at said higher temperature program range to cause pyrolysis of said different high value monomeric constituent; and separating said different high value monomeric constituent. 11 figs.

  16. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of phenolic resin containing waste streams to sequentially recover monomers and chemicals

    DOE Patents [OSTI]

    Chum, Helena L.; Evans, Robert J.

    1992-01-01

    A process of using fast pyrolysis in a carrier gas to convert a waste phenolic resin containing feedstreams in a manner such that pyrolysis of said resins and a given high value monomeric constituent occurs prior to pyrolyses of the resins in other monomeric components therein comprising: selecting a first temperature program range to cause pyrolysis of said resin and a given high value monomeric constituent prior to a temperature range that causes pyrolysis of other monomeric components; selecting, if desired, a catalyst and a support and treating said feedstreams with said catalyst to effect acid or basic catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said first temperature program range to utilize reactive gases such as oxygen and steam in the pyrolysis process to drive the production of specific products; differentially heating said feedstreams at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantity of said high value monomeric constituent prior to pyrolysis of other monomeric components therein; separating said high value monomeric constituent; selecting a second higher temperature program range to cause pyrolysis of a different high value monomeric constituent of said phenolic resins waste and differentially heating said feedstreams at said higher temperature program range to cause pyrolysis of said different high value monomeric constituent; and separating said different high value monomeric constituent.

  17. Development of guidance for variances from the RCRA Land Disposal Restrictions for US DOE mixed-waste streams

    SciTech Connect (OSTI)

    Scheuer, N.; Spikula, R. ); Harms, T. . Environmental Guidance Div.); Triplett, M.B. )

    1990-02-01

    In response to the US Department of Energy's (DOE's) anticipated need for variances from the Resource Conservation and Recovery Act (RCRA) Land Disposal Restrictions (LDRs), a guidance manual was prepared. The guidance manual is for use by DOE facilities and operations offices in obtaining variances from the RCRA LDR treatment standards. The manual was prepared as a part of an ongoing effort by DOE-EH to provide guidance for the operations offices and facilities to comply with the RCRA LDRs. The manual addresses treatability variances and equivalent treatment variances. A treatability variance is an alternative treatment standard granted by EPA for a restricted waste. Such a variance is not an exemption from the requirements of the LDRs, but rather is an alternative treatment standard that must be met before land disposal. An equivalent treatment variance is granted by EPA that allows treatment of a restricted waste by a process that differs from that specified in the standards, but achieves a level of performance equivalent to the technology specified in the standard. 4 refs.

  18. Hight-Level Waste & Facilities Disposition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Administration | (NNSA) Highly Enriched Uranium Transparency Program November 13, 2013 The U.S. National Nuclear Security Administration's (NNSA) Highly Enriched Uranium (HEU) Transparency Program reduces nuclear risk by monitoring the conversion of 500 metric tons (MT) of Russian HEU, enough material for 20,000 nuclear weapons, into low enriched uranium (LEU). This LEU is put into peaceful use in the United States, generating nearly 10% of all U.S. electrical power. The HEU Purchase

  19. EM Waste and Materials Disposition & Transportation

    Office of Environmental Management (EM)

    Department of Energy Updates Congress on Nuclear Cleanup Progress in 18th Annual Caucus EM Updates Congress on Nuclear Cleanup Progress in 18th Annual Caucus March 1, 2012 - 12:00pm Addthis WASHINGTON, D.C. - EM and its cleanup contractors present briefings each year to the U.S. House Nuclear Cleanup Caucus on remediation operations at its major sites across the DOE complex. The briefings are organized by Rep. Doc Hastings (R-Wash.), who chairs the bipartisan caucus. For nearly two decades,

  20. REQUEST FOR RECORDS DISPOSITION AUTHORITY | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    REQUEST FOR RECORDS DISPOSITION AUTHORITY REQUEST FOR RECORDS DISPOSITION AUTHORITY Request for Records Disposition Authority REQUEST FOR RECORDS DISPOSITION AUTHORITY (82.34 KB) More Documents & Publications Request For Records Disposition Authority Request For Records Disposition Request For Records Disposition Authority

  1. High-Level Waste Inventory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis of Alternatives for Disposition of the Idaho Calcined High-Level Waste Inventory Volume 1 - Summary Report U.S. Department of Energy Office of Environmental Management April 2016 U.S. DOE-EM Independent Analysis of Alternatives for Disposition of the Idaho Calcined High-Level Waste Inventory Volume 1- Summary Report April 2016 ii THIS PAGE INTENTIONALLY LEFT BLANK U.S. DOE-EM Independent Analysis of Alternatives for Disposition of the Idaho Calcined High-Level Waste Inventory Volume 1-

  2. FS65 Disposition Option Report

    SciTech Connect (OSTI)

    Wenz, Tracy R.

    2015-09-25

    This report outlines the options for dispositioning the MOX fuel stored in FS65 containers at LANL. Additional discussion regarding the support equipment for loading and unloading the FS65 transport containers is included at the end of the report.

  3. REQUEST FOR RECORDS DISPOSITION AUTHORITY | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FOR RECORDS DISPOSITION AUTHORITY REQUEST FOR RECORDS DISPOSITION AUTHORITY RS-Weapons X-Rays PDF icon REQUEST FOR RECORDS DISPOSITION AUTHORITY More Documents & Publications...

  4. Update of the Used Fuel Disposition Campaign Implementation Plan

    SciTech Connect (OSTI)

    Jens Birkholzer; Robert MacKinnon; Kevin McMahon; Sylvia Saltzstein; Ken Sorenson; Peter Swift

    2014-09-01

    This Campaign Implementation Plan provides summary level detail describing how the Used Fuel Disposition Campaign (UFDC) supports achievement of the overarching mission and objectives of the Department of Energy Office of Nuclear Energy Fuel Cycle Technologies Program The implementation plan begins with the assumption of target dates that are set out in the January 2013 DOE Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste (http://energy.gov/downloads/strategy-management-and-disposal-used-nuclear-fuel-and-high-level-radioactive-waste). These target dates and goals are summarized in section III. This implementation plan will be maintained as a living document and will be updated as needed in response to progress in the Used Fuel Disposition Campaign and the Fuel Cycle Technologies Program.

  5. DOE - Office of Legacy Management -- Waste Isolation Pilot Plant...

    Office of Legacy Management (LM)

    Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials ... of transuranic radioactive waste left from the research and production of nuclear weapons. ...

  6. Laboratory Scoping Tests Of Decontamination Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    SciTech Connect (OSTI)

    Taylor-Pashow, Kathryn M.; Nash, Charles A.; Crawford, Charles L.; McCabe, Daniel J.; Wilmarth, William R.

    2014-01-21

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task seeks to examine the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also

  7. Streaming Canvas

    Energy Science and Technology Software Center (OSTI)

    2015-05-14

    Streaming Canvas is an interactive data visualization tool for high dimensional data such as text documents. It allows the user to interactively analyze documents.

  8. Uranium Downblending and Disposition Project Technology Readiness

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessment | Department of Energy Uranium Downblending and Disposition Project Technology Readiness Assessment Uranium Downblending and Disposition Project Technology Readiness Assessment Full Document and Summary Versions are available for download Uranium Downblending and Disposition Project Technology Readiness Assessment (1.11 MB) Summary - Uranium233 Downblending and Disposition Project (146.5 KB) More Documents & Publications Compilation of TRA Summaries EA-1574: Final

  9. DISPOSITION AUTHORITIES FROZEN UNDER THE EPIDEMIOLOGICAL MORATORIUM |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy DISPOSITION AUTHORITIES FROZEN UNDER THE EPIDEMIOLOGICAL MORATORIUM DISPOSITION AUTHORITIES FROZEN UNDER THE EPIDEMIOLOGICAL MORATORIUM Listed on this document are all the disposition authorities which are under the moratorium on the destruction of health related records as of March 2008. DISPOSITION AUTHORITIES FROZEN UNDER THE EPIDEMIOLOGICAL MORATORIUM (41.28 KB) More Documents & Publications ADMINISTRATIVE RECORDS SCHEDULE 17: CARTOGRAPHIC, AERIAL PHOTOGRAPHIC,

  10. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 1, Waste streams and treatment technologies

    SciTech Connect (OSTI)

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01

    This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

  11. Miscellaneous streams best management practices (BMP) report

    SciTech Connect (OSTI)

    Lueck, K.J., Westinghouse Hanford

    1996-07-24

    The Washington State Department of Ecology (Ecology) and U.S. Department of Energy Consent Order No. DE 91NM-177 (Consent Order) lists regulatory milestones for liquid effluent streams at the Hanford Site to comply with the permitting requirements of Washington Administrative Code (WAC) 173-216 (`State Waste Discharge Permit Program`) or WAC 173-218 (`Washington Underground Injection Control Program`) where applicable. Hanford Site liquid effluent streams discharging to the soil column are categorized as Phase I and Phase II Streams, and Miscellaneous Streams. There were originally 33 Phase I and Phase II Streams, however some of these streams have been eliminated. Miscellaneous Streams are those liquid effluent streams discharged to the ground that are not categorized as Phase I or Phase II Streams, and are subject to the requirements of several milestones identified in the Consent Order. The three criteria for identifying streams that are potentially affecting groundwater are: (1) streams discharging to surface contaminated areas (referred to as category `b` streams); (2) potentially contaminated streams (referred to as category `c` streams); and (3) streams discharging within 91 meters (300 feet) of a contaminated crib, ditch, or trench (referred to as category `d` streams). Miscellaneous Streams that meet any of these criteria must be evaluated for application of best management practices (BMP). The purpose of this report is to provide the best management practice preferred alternative. The list of BMP streams has been revised since the original submittal. Several streams from the original list of BMP streams have already been eliminated through facility upgrades, reduction of steam usage, and facility shutdowns. This document contains a description of the changes to the list of BMP streams, applicable definitions and regulatory requirements and possible alternatives, and a schedule for implementing the preferred alternatives.

  12. More Than 180 People Gather for Women of Waste Management Event

    Broader source: Energy.gov [DOE]

    More than 180 people attended the Women of Waste Management Panel and Networking Reception at the Waste Management 2014 Conference on the safe management and disposition of radioactive waste and radioactive materials in Phoenix earlier this month.

  13. Plutonium disposition via immobilization in ceramic or glass

    SciTech Connect (OSTI)

    Gray, L.W.; Kan, T.; Shaw, H.F.; Armantrout, A.

    1997-03-05

    The management of surplus weapons plutonium is an important and urgent task with profound environmental, national, and international security implications. In the aftermath of the Cold War, Presidential Policy Directive 13, and various analyses by renown scientific, technical, and international policy organizations have brought about a focused effort within the Department of Energy to identify and implement paths for the long term disposition of surplus weapons- usable plutonium. The central goal of this effort is to render surplus weapons plutonium as inaccessible and unattractive for reuse in nuclear weapons as the much larger and growing stock of plutonium contained in spent fuel from civilian reactors. One disposition option being considered for surplus plutonium is immobilization, in which the plutonium would be incorporated into a glass or ceramic material that would ultimately be entombed permanently in a geologic repository for high-level waste.

  14. Radiation Effects in Nuclear Waste Materials

    SciTech Connect (OSTI)

    Weber, William J.

    2005-09-30

    The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials. This work provides the underpinning science to develop improved glass and ceramic waste forms for the immobilization and disposition of high-level tank waste, excess plutonium, plutonium residues and scrap, other actinides, and other nuclear waste streams. Furthermore, this work is developing develop predictive models for the performance of nuclear waste forms and stabilized nuclear materials. Thus, the research performed under this project has significant implications for the immobilization of High-Level Waste (HLW) and Nuclear Materials, two mission areas within the Office of Environmental Management (EM). With regard to the HLW mission, this research will lead to improved understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials mission, this research will lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. The research uses plutonium incorporation, ion-beam irradiation, and electron-beam irradiation to simulate the effects of alpha decay and beta decay on relevant glasses and ceramics. The research under this project has the potential to result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials.

  15. Radiation Effects in Nuclear Waste Materials

    SciTech Connect (OSTI)

    Weber, William J.

    2005-06-01

    The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials. This work provides the underpinning science to develop improved glass and ceramic waste forms for the immobilization and disposition of high-level tank waste, excess plutonium, plutonium residues and scrap, other actinides, and other nuclear waste streams. Furthermore, this work is developing develop predictive models for the performance of nuclear waste forms and stabilized nuclear materials. Thus, the research performed under this project has significant implications for the immobilization of High-Level Waste (HLW) and Nuclear Materials, two mission areas within the Office of Environmental Management (EM). With regard to the HLW mission, this research will lead to improved understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials mission, this research will lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. The research uses plutonium incorporation, ion-beam irradiation, and electron-beam irradiation to simulate the effects of alpha decay and beta decay on relevant glasses and ceramics. The research under this project has the potential to result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials.

  16. Portsmouth Site Breaks Ground For Waste Disposal | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plan Approved for Waste Disposition at DOE's Portsmouth Site A pup is a reusable blue overpack that weighs about 360 pounds. Unique Waste Leaves Portsmouth in a 'Pup' Crane ...

  17. Waste Shipment Approval - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Us Hanford Site Wide Programs Hanford Site Solid Waste Acceptance Program Acceptance Process Waste Shipment Approval About Us Hanford Site Solid Waste Acceptance Program What's New Acceptance Criteria Acceptance Process Becoming a new Hanford Customer Annual Waste Forecast and Funding Arrangements Waste Stream Approval Waste Shipment Approval Waste Receipt Quality Assurance Program Waste Specification Records Tools Points of Contact Waste Shipment Approval Email Email Page | Print Print

  18. Solidification Tests Conducted on Transuranic Mixed Oil Waste (TRUM) at the Rocky Flats Environmental Technology Site (RFETS)

    SciTech Connect (OSTI)

    Brunkow, W. G.; Campbell, D.; Geimer, R.; Gilbreath, C.; Rivera, M.

    2002-02-25

    Rocky Flats Environmental Technology Site (RFETS) near Golden, Colorado is the first major nuclear weapons site within the DOE complex that has been declared a full closure site. RFETS has been given the challenge of closing the site by 2006. Key to meeting this challenge is the removal of all waste from the site followed by site restoration. Crucial to meeting this challenge is Kaiser-Hill's (RFETS Operating Contractor) ability to dispose of significant quantities of ''orphan'' wastes. Orphan wastes are those with no current disposition for treatment or disposal. Once such waste stream, generically referred to as Transuranic oils, poses a significant threat to meeting the closure schedule. Historically, this waste stream, which consist of a variety of oil contaminated with a range of organic solvents were treated by simply mixing with Environstone. This treatment method rendered a solidified waste form, but unfortunately not a TRUPACT-II transportable waste. So for the last ten years, RFETS has been accumulating these TRU oils while searching for a non-controversial treatment option.

  19. STATUS OF THE DEVELOPMENT OF IN-TANK/AT-TANK SEPARATIONS TECHNOLOGIES FOR FOR HIGH-LEVEL WASTE PROCESSING FOR THE U.S. DEPARTMENT OF ENERGY

    SciTech Connect (OSTI)

    Aaron, G.; Wilmarth, B.

    2011-09-19

    Within the U.S. Department of Energy's (DOE) Office of Technology Innovation and Development, the Office of Waste Processing manages a research and development program related to the treatment and disposition of radioactive waste. At the Savannah River (South Carolina) and Hanford (Washington) Sites, approximately 90 million gallons of waste are distributed among 226 storage tanks (grouped or collocated in 'tank farms'). This waste may be considered to contain mixed and stratified high activity and low activity constituent waste liquids, salts and sludges that are collectively managed as high level waste (HLW). A large majority of these wastes and associated facilities are unique to the DOE, meaning many of the programs to treat these materials are 'first-of-a-kind' and unprecedented in scope and complexity. As a result, the technologies required to disposition these wastes must be developed from basic principles, or require significant re-engineering to adapt to DOE's specific applications. Of particular interest recently, the development of In-tank or At-Tank separation processes have the potential to treat waste with high returns on financial investment. The primary objective associated with In-Tank or At-Tank separation processes is to accelerate waste processing. Insertion of the technologies will (1) maximize available tank space to efficiently support permanent waste disposition including vitrification; (2) treat problematic waste prior to transfer to the primary processing facilities at either site (i.e., Hanford's Waste Treatment and Immobilization Plant (WTP) or Savannah River's Salt Waste Processing Facility (SWPF)); and (3) create a parallel treatment process to shorten the overall treatment duration. This paper will review the status of several of the R&D projects being developed by the U.S. DOE including insertion of the ion exchange (IX) technologies, such as Small Column Ion Exchange (SCIX) at Savannah River. This has the potential to align the salt

  20. Features, Events and Processes for the Used Fuel Disposition Campaign

    SciTech Connect (OSTI)

    Blink, J A; Greenberg, H R; Caporuscio, F A; Houseworth, J E; Freeze, G A; Mariner, P; Cunnane, J C

    2010-12-15

    The Used Fuel Disposition (UFD) Campaign within DOE-NE is evaluating storage and disposal options for a range of waste forms and a range of geologic environments. To assess the potential performance of conceptual repository designs for the combinations of waste form and geologic environment, a master set of Features, Events, and Processes (FEPs) has been developed and evaluated. These FEPs are based on prior lists developed by the Yucca Mountain Project (YMP) and the international repository community. The objective of the UFD FEPs activity is to identify and categorize FEPs that are important to disposal system performance for a variety of disposal alternatives (i.e., combinations of waste forms, disposal concepts, and geologic environments). FEP analysis provides guidance for the identification of (1) important considerations in disposal system design, and (2) gaps in the technical bases. The UFD FEPs also support the development of performance assessment (PA) models to evaluate the long-term performance of waste forms in the engineered and geologic environments of candidate disposal system alternatives. For the UFD FEP development, five waste form groups and seven geologic settings are being considered. A total of 208 FEPs have been identified, categorized by the physical components of the waste disposal system as well as cross-cutting physical phenomena. The combination of 35 waste-form/geologic environments and 208 FEPs is large; however, some FEP evaluations can cut across multiple waste/environment combinations, and other FEPs can be categorized as not-applicable for some waste/environment combinations, making the task of FEP evaluation more tractable. A FEP status tool has been developed to document progress. The tool emphasizes three major areas that can be statused numerically. FEP Applicability documents whether the FEP is pertinent to a waste/environment combination. FEP Completion Status documents the progress of the evaluation for the FEP/waste

  1. Trade study for the disposition of cesium and strontium capsules

    SciTech Connect (OSTI)

    Claghorn, R.D.

    1996-03-01

    This trade study analyzes alternatives for the eventual disposal of cesium and strontium capsules currently stored at the Waste Encapsulation and Storage Facility as by-product. However, for purposes of this study, it is assumed that at some time in the future, the capsules will be declared high-level waste and therefore will require disposal at an offsite geologic repository. The study considered numerous alternatives and selected three for detailed analysis: (1) overpack and storage at high-level waste canister storage building, (2) overpack at the high-level waste vitrification facility followed by storage at a high-level waste canister storage building, and (3) blend capsule contents with other high-level waste feed streams and vitrify at the high-level waste vitrification facility.

  2. Waste2Energy Holdings | Open Energy Information

    Open Energy Info (EERE)

    is a supplier of proprietary gasification technology designed to convert municipal solid waste, biomass and other solid waste streams traditionally destined for landfill into...

  3. Annual Transuranic Waste Inventory Report - 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Waste Stream Description This waste generated at the Rocky Flats Plant consists of dry ... burn chamber and solidified soot and scrubber sludge from the incinerator off-gas ...

  4. DOE Records Disposition Schedule Changes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Records Disposition Schedule Changes DOE Records Disposition Schedule Changes Disposition Schedule Changes DOE Records Disposition Schedule Changes (88.66 KB) More Documents & Publications DOE Administrative Records Schedules Changes DOERS Records Schedule Cross Index to DOE Administrative Records Disposition Schedules ADMINISTRATIVE RECORDS SCHEDULE 18: SECURITY, EMERGENCY PLANNING, AND SAFETY RECORDS

  5. Used Fuel Disposition Campaign Disposal Research and Development Roadmap Rev. 01

    Broader source: Energy.gov [DOE]

    The Used Fuel Disposition Campaign (UFDC) conducts R&D activities related to storage, transportation and disposal of used nuclear fuel and high level nuclear waste (for existing and future fuels); deep geologic disposal R&D activities are outlined and prioritized on the basis of gaps in understanding and benefit derived from R&D to narrow such gaps.

  6. Personal Property Disposition - Community Reuse Organizations (CROs) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Personal Property Disposition - Community Reuse Organizations (CROs) Personal Property Disposition - Community Reuse Organizations (CROs) MEMORANDUM TO: DISTRIBUTION FROM: Michael Owen (signed) Director, Office of Worker and Community Transition Department of Energy Washington, DC 20505 January 22, 2003 Disposition of Excess Personal Property BACKGROUND AND PURPOSE CROs have been operating asset conversion and personal property transfer programs since shortly after the

  7. Low-level radioactive waste management at the Nevada Test Site -- Current status

    SciTech Connect (OSTI)

    Becker, B.D.; Crowe, B.M.; Gertz, C.P.; Clayton, W.A.

    1999-04-01

    The performance objectives of the Department of Energy`s Low-Level Radioactive Waste (LLW) disposal facilities located at the Nevada Test Site transcend those of any other radioactive waste disposal site in the US. Situated at the southern end of the Great Basin, 800 feet above the water table, the Area 5 Radioactive Waste Management Site (RWMS) has utilized a combination of engineered shallow land disposal cells and deep augured shafts to dispose a variety of waste streams. These include high volume low-activity wastes, classified materials, and high-specific-activity special case wastes. Twenty miles north of Area 5 is the Area 3 RWMS. Here bulk LLW disposal takes place in subsidence craters formed from underground testing of nuclear weapons. Earliest records indicate that documented LLW disposal activities have occurred at the Area 5 and Area 3 RWMS`s since 1961 and 1968, respectively. However, these activities have only been managed under a formal program since 1978. This paper describes the technical attributes of the facilities, present and future capacities and capabilities, and provides a description of the process from waste approval to final disposition. The paper also summarizes the current status of the waste disposal operations.

  8. Waste Management at the Nevada Test Site Fiscal Year 2001 Current Status

    SciTech Connect (OSTI)

    B. D. Becker; W. A. Clayton; B. M. Crowe

    2002-05-01

    The performance objectives of the U. S. Department of Energy's National Nuclear Security Administration Nevada Operations Office (NNSA/NV) Low-level Radioactive Waste (LLW) disposal facilities located at the Nevada Test Site transcend those of any other radioactive waste disposal site in the United States. Situated at the southern end of the Great Basin, 244 meters (800 feet) above the water table, the Area 5 Radioactive Waste Management Site (RWMS) has utilized a combination of engineered shallow land disposal cells and deep augured shafts to dispose a variety of waste streams. These include high volume low-activity waste, classified radioactive material, and high-specific-activity special case waste. Fifteen miles north of Area 5 is the Area 3 RWMS. Here bulk LLW disposal takes place in subsidence craters formed from underground testing of nuclear weapons. Earliest records indicate that documented LLW disposal activities have occurred at the Area 5 and Area 3 RWMSs since 1961 and 1 968, respectively. However, these activities have only been managed under a formal program since 1978. This paper describes the technical attributes of the facilities, present and future capacities and capabilities, and provides a description of the process from waste approval to final disposition. The paper also summarizes the current status of the waste disposal operations.

  9. Used Fuel Disposition Campaign Preliminary Quality Assurance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Preliminary Quality Assurance Implementation Plan Used Fuel Disposition Campaign Preliminary Quality Assurance Implementation Plan The primary objective of this report is to ...

  10. Weapons Dismantlement and Disposition NNSS Capabilities

    SciTech Connect (OSTI)

    Pat Arnold

    2011-12-01

    The U.S. Department of Energy (DOE) has tasked the WDD working group to disposition the large inventory of legacy classified weapon components scattered across the complex.