Powered by Deep Web Technologies
Note: This page contains sample records for the topic "waste storage tanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Vapor sampling of the headspace of radioactive waste storage tanks  

DOE Green Energy (OSTI)

This paper recants the history of vapor sampling in the headspaces of radioactive waste storage tanks at Hanford. The first two tanks to receive extensive vapor pressure sampling were Tanks 241-SY-101 and 241-C-103. At various times, a gas chromatography, on-line mass spectrometer, solid state hydrogen monitor, FTIR, and radio acoustic ammonia monitor have been installed. The head space gas sampling activities will continue for the next few years. The current goal is to sample the headspace for all the tanks. Some tank headspaces will be sampled several times to see the data vary with time. Other tanks will have continuous monitors installed to provide additional data.

Reynolds, D.A., Westinghouse Hanford

1996-05-22T23:59:59.000Z

2

Mixed waste removal from a hazardous waste storage tank  

Science Conference Proceedings (OSTI)

The spent fuel transfer canal at the Oak Ridge Graphite Reactor was found to be leaking 400 gallons of water per day into the surrounding soil. Sampling of the sediment layer on the floor of the canal to determine the environmental impact of the leak identified significant radiological contamination and elevated levels of cadmium and lead which are hazardous under the Resource Conservation and Recovery Act (RCRA). Under RCRA regulations and Rules of Tennessee Department of Environment and Conservation, the canal was considered a hazardous waste storage tank. This paper describes elements of the radiological control program established in support of a fast-track RCRA closure plan that involved underwater mapping of the radiation fields, vacuuming, and ultra-filtration techniques that were successfully used to remove the mixed waste sediments and close the canal in a method compliant with state and federal regulations.

Geber, K.R.

1993-06-01T23:59:59.000Z

3

Computer modeling of forced mixing in waste storage tanks  

SciTech Connect

Numerical simulation results of fluid dynamic and physical processes in radioactive waste storage tanks are presented. Investigations include simulation of jet mixing pump induced flows intended to mix and maintain particulate material uniformly distributed throughout the liquid volume. Physical effects of solids are included in the code. These are particle size through a settling velocity and mixture properties through density and viscosity. Calculations have been accomplished for a centrally located, rotationally-oscillating, horizontally-directed jet mixing pump for two cases. One case is with low jet velocity and high settling velocity. It results in nonuniform distribution. The other case is with high jet velocity and low settling velocity. It results in uniform conditions. Results are being used to aid in experiment design and to understand mixing in the waste tanks. These results are to be used in conjunction with scaled experiments to define limits of pump operation to maintain uniformity of the mixture in the storage tanks during waste retrieval operations.

Eyler, L.L.; Michener, T.E.

1992-04-01T23:59:59.000Z

4

Heat pipe cooling system for underground, radioactive waste storage tanks  

SciTech Connect

An array of 37 heat pipes inserted through the central hole at the top of a radioactive waste storage tank will remove 100,000 Btu/h with a heat sink of 70/sup 0/F atmospheric air. Heat transfer inside the tank to the heat pipe is by natural convection. Heat rejection to outside air utilizes a blower to force air past the heat pipe condenser. The heat pipe evaporator section is axially finned, and is constructed of stainless steel. The working fluid is ammonia. The finned pipes are individually shrouded and extend 35 ft down into the tank air space. The hot tank air enters the shroud at the top of the tank and flows downward as it is cooled, with the resulting increased density furnishing the pressure difference for circulation. The cooled air discharges at the center of the tank above the sludge surface, flows radially outward, and picks up heat from the radioactive sludge. At the tank wall the heated air rises and then flows inward to comple the cycle.

Cooper, K.C.; Prenger, F.C.

1980-02-01T23:59:59.000Z

5

Criticality Safety Evaluation of Hanford Site High Level Waste Storage Tanks  

Science Conference Proceedings (OSTI)

This criticality safety evaluation covers operations for waste in underground storage tanks at the high-level waste tank farms on the Hanford site. This evaluation provides the bases for criticality safety limits and controls to govern receipt, transfer, and long-term storage of tank waste. Justification is provided that a nuclear criticality accident cannot occur for tank farms operations, based on current fissile material and operating conditions.

ROGERS, C.A.

2000-02-17T23:59:59.000Z

6

Decision and systems analysis for underground storage tank waste retrieval systems and tank waste remediation system  

SciTech Connect

Hanford`s underground tanks (USTs) pose one of the most challenging hazardous and radioactive waste problems for the Department of Energy (DOE). Numerous schemes have been proposed for removing the waste from the USTs, but the technology options for doing this are largely unproven. To help assess the options, an Independent Review Group (IRG) was established to conduct a broad review of retrieval systems and the tank waste remediation system. The IRG consisted of the authors of this report.

Bitz, D.A. [Independent Consultant, Kirkland, WA (United States); Berry, D.L. [Sandia National Labs., Albuquerque, NM (United States); Jardine, L.J. [Lawrence Livermore National Lab., CA (United States)

1994-03-01T23:59:59.000Z

7

LESSONS LEARNED FROM PREVIOUS WASTE STORAGE TANK VAPOR CONTROL ATTEMPTS ON SINGLE SHELL TANK (SST) & DOUBLE SHELL TANK (DST) FARMS  

Science Conference Proceedings (OSTI)

This report forms the basis for a feasibility study and conceptual design to control vapor emissions from waste storage tanks at the Hanford Site. The Carbtrol, Vapor Mixing, and High Efficiency Gas Absorber (HEGA) vapor controls were evaluated to determine the lessons learned from previous failed vapor control attempts. This document illustrates the resulting findings based on that evaluation.

BAKER, D.M.

2004-08-03T23:59:59.000Z

8

Nondestructive examination of DOE high-level waste storage tanks  

SciTech Connect

A number of DOE sites have buried tanks containing high-level waste. Tanks of particular interest am double-shell inside concrete cylinders. A program has been developed for the inservice inspection of the primary tank containing high-level waste (HLW), for testing of transfer lines and for the inspection of the concrete containment where possible. Emphasis is placed on the ultrasonic examination of selected areas of the primary tank, coupled with a leak-detection system capable of detecting small leaks through the wall of the primary tank. The NDE program is modelled after ASME Section XI in many respects, particularly with respects to the sampling protocol. Selected testing of concrete is planned to determine if there has been any significant degradation. The most probable failure mechanisms are corrosion-related so that the examination program gives major emphasis to possible locations for corrosion attack.

Bush, S.; Bandyopadhyay, K.; Kassir, M.; Mather, B.; Shewmon, P.; Streicher, M.; Thompson, B.; van Rooyen, D.; Weeks, J.

1995-05-01T23:59:59.000Z

9

A STUDY OF CORROSION AND STRESS CORROSION CRACKING OF CARBON STEEL NUCLEAR WASTE STORAGE TANKS  

SciTech Connect

The Hanford reservation Tank Farms in Washington State has 177 underground storage tanks that contain approximately 50 million gallons of liquid legacy radioactive waste from cold war plutonium production. These tanks will continue to store waste until it is treated and disposed. These nuclear wastes were converted to highly alkaline pH wastes to protect the carbon steel storage tanks from corrosion. However, the carbon steel is still susceptible to localized corrosion and stress corrosion cracking. The waste chemistry varies from tank to tank, and contains various combinations of hydroxide, nitrate, nitrite, chloride, carbonate, aluminate and other species. The effect of each of these species and any synergistic effects on localized corrosion and stress corrosion cracking of carbon steel have been investigated with electrochemical polarization, slow strain rate, and crack growth rate testing. The effect of solution chemistry, pH, temperature and applied potential are all considered and their role in the corrosion behavior will be discussed.

BOOMER, K.D.

2007-08-21T23:59:59.000Z

10

LIMITATIONS FOR EXISTING STORAGE TANKS FOR RADIOACTIVE WASTES FROM SEPARATIONS PLANTS  

SciTech Connect

The physical limitations of existing storage tanks for radioactive wastes from separations plants are defined as a guide for preparing process and operating criteria for the existing tank forms to assure continued integrity of the tanks. A "safe-load" curve for each of the four groups of tanks based on current technology is presented. Loading conditions, operation procedures, and thermal stresses are discussed. (M.C.G.)

Doud, E.; Stivers, H.W.

1959-10-22T23:59:59.000Z

11

METHODOLOGY & CALCULATIONS FOR THE ASSIGNMENT OF WASTE GROUPS FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE  

DOE Green Energy (OSTI)

Waste stored within tank farm double-shell tanks (DST) and single-shell tanks (SST) generates flammable gas (principally hydrogen) to varying degrees depending on the type, amount, geometry, and condition of the waste. The waste generates hydrogen through the radiolysis of water and organic compounds, thermolytic decomposition of organic compounds, and corrosion of a tank's carbon steel walls. Radiolysis and thermolytic decomposition also generates ammonia. Nonflammable gases, which act as dilutents (such as nitrous oxide), are also produced. Additional flammable gases (e.g., methane) are generated by chemical reactions between various degradation products of organic chemicals present in the tanks. Volatile and semi-volatile organic chemicals in tanks also produce organic vapors. The generated gases in tank waste are either released continuously to the tank headspace or are retained in the waste matrix. Retained gas may be released in a spontaneous or induced gas release event (GRE) that can significantly increase the flammable gas concentration in the tank headspace as described in RPP-7771. The document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 5 is the annual update of the methodology and calculations of the flammable gas Waste Groups for DSTs and SSTs.

BARKER, S.A.

2006-07-27T23:59:59.000Z

12

METHODOLOGY & CALCULATIONS FOR THE ASSIGNMENT OF WASTE FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE  

DOE Green Energy (OSTI)

Waste stored within tank farm double-shell tanks (DST) and single-shell tanks (SST) generates flammable gas (principally hydrogen) to varying degrees depending on the type, amount, geometry, and condition of the waste. The waste generates hydrogen through the radiolysis of water and organic compounds, thermolytic decomposition of organic compounds, and corrosion of a tank's carbon steel walls. Radiolysis and thermolytic decomposition also generates ammonia. Nonflammable gases, which act as dilutents (such as nitrous oxide), are also produced. Additional flammable gases (e.g., methane) are generated by chemical reactions between various degradation products of organic chemicals present in the tanks. Volatile and semi-volatile organic chemicals in tanks also produce organic vapors. The generated gases in tank waste are either released continuously to the tank headspace or are retained in the waste matrix. Retained gas may be released in a spontaneous or induced gas release event (GRE) that can significantly increase the flammable gas concentration in the tank headspace as described in RPP-7771, Flammable Gas Safety Isme Resolution. Appendices A through I provide supporting information. The document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste and characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 6 is the annual update of the flammable gas Waste Groups for DSTs and SSTs.

TU, T.A.

2007-01-04T23:59:59.000Z

13

Tank waste consolidation analysis for transfer of ORNL RH-TRU tank sludges to the Melton Valley Storage Tanks  

SciTech Connect

The objective of this work is to evaluate the schedule and technical issues associated with consolidation of Remote Handled Transuranic (RH-TRU) sludges in the Melton Valley Storage Tanks (MVSTs). This work supports the DOE Transuranic Waste (TRU) Program plans for private sector treatment of all ORNL TRU sludges for disposal at the Waste Isolation Pilot Plant (WIPP). Transfer of these sludges must be completed in FY 2000 to meet the required schedule for beginning shipment of treated sludges to the WIPP by 2002. This study was performed to (1) evaluate the sludge transfer schedule, (2) evaluate the ability of existing tank systems to contain and manage the sludges and liquids generated during the transfers, and (3) evaluate the costs and schedules of different solid/liquid separation and solids-monitoring methods used during sludge transfer for management of sluice waters.

Kent, T.E.; DePaoli, S.M.

1997-01-01T23:59:59.000Z

14

METHODOLOGY & CALCULATIONS FOR THE ASSIGNMENT OF WASTE FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT HANFORD SITE [SEC 1 & 2  

DOE Green Energy (OSTI)

Waste stored within tank farm double-shell tanks (DST) and single-shell tanks (SST) generates flammable gas (principally hydrogen) to varying degrees depending on the type, amount, geometry, and condition of the waste. The waste generates hydrogen through the radiolysis of water, thermolytic decomposition of organic compounds, and corrosion of a tank's carbon steel walls. Radiolysis and thermolytic decomposition also generate ammonia. Nonflammable gases, which act as diluents (such as nitrous oxide), are also produced. Additional flammable gases (e.g., methane) are generated by chemical reactions between various degradation products of organic chemicals present in the tanks. Volatile and semivolatile organic chemicals in tanks also produce organic vapors. The generated gases in tank waste are either released continuously to the tank headspace or are retained in the waste matrix. Retained gas may be released in a spontaneous or induced gas release event (GRE) that can significantly increase the flammable gas concentration in tank headspace as described in RPP-7771, Flammable Gas Safety Issue Resolution. Appendices A through L provide supporting information. This document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste and characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event.

BARKER, S.A.; HEDENGREN, D.C.

2003-08-28T23:59:59.000Z

15

Safe interim storage of Hanford tank wastes, draft environmental impact statement, Hanford Site, Richland, Washington  

Science Conference Proceedings (OSTI)

This Draft EIS is prepared pursuant to the National Environmental Policy Act (NEPA) and the Washington State Environmental Policy Act (SEPA). DOE and Ecology have identified the need to resolve near-term tank safety issues associated with Watchlist tanks as identified pursuant to Public Law (P.L.) 101-510, Section 3137, ``Safety Measures for Waste Tanks at Hanford Nuclear Reservation,`` of the National Defense Authorization Act for Fiscal Year 1991, while continuing to provide safe storage for other Hanford wastes. This would be an interim action pending other actions that could be taken to convert waste to a more stable form based on decisions resulting from the Tank Waste Remediation System (TWRS) EIS. The purpose for this action is to resolve safety issues concerning the generation of unacceptable levels of hydrogen in two Watchlist tanks, 101-SY and 103-SY. Retrieving waste in dilute form from Tanks 101-SY and 103-SY, hydrogen-generating Watchlist double shell tanks (DSTs) in the 200 West Area, and storage in new tanks is the preferred alternative for resolution of the hydrogen safety issues.

Not Available

1994-07-01T23:59:59.000Z

16

Final Environmental Impact Statement Safe Interim Storage Of Hanford Tank Wastes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1995/01eis0212_cl.html[6/27/2011 1:02:59 PM] 1995/01eis0212_cl.html[6/27/2011 1:02:59 PM] Final Environmental Impact Statement Safe Interim Storage Of Hanford Tank Wastes DOE/EIS-0212 VOLUME 1 OF 2 VOLUME 1 FINAL ENVIRONMENTAL IMPACT STATEMENT SAFE INTERIM STORAGE OF HANFORD TANK WASTES Hanford Site Richland, Washington October, 1995 WASHINGTON STATE DEPARTMENT OF ECOLOGY NUCLEAR WASTE PROGRAM LACEY, WASHINGTON 98503 U.S. DEPARTMENT OF ENERGY RICHLAND OPERATIONS OFFICE

17

Underground storage tank integrated demonstration: Evaluation of pretreatment options for Hanford tank wastes  

SciTech Connect

Separation science plays a central role inn the pretreatment and disposal of nuclear wastes. The potential benefits of applying chemical separations in the pretreatment of the radioactive wastes stored at the various US Department of Energy sites cover both economic and environmental incentives. This is especially true at the Hanford Site, where the huge volume (>60 Mgal) of radioactive wastes stored in underground tanks could be partitioned into a very small volume of high-level waste (HLW) and a relatively large volume of low-level waste (LLW). The cost associated with vitrifying and disposing of just the HLW fraction in a geologic repository would be much less than those associated with vitrifying and disposing of all the wastes directly. Futhermore, the quality of the LLW form (e.g., grout) would be improved due to the lower inventory of radionuclides present in the LLW stream. In this report, we present the results of an evaluation of the pretreatment options for sludge taken from two different single-shell tanks at the Hanford Site-Tanks 241-B-110 and 241-U-110 (referred to as B-110 and U-110, respectively). The pretreatment options examined for these wastes included (1) leaching of transuranic (TRU) elements from the sludge, and (2) dissolution of the sludge followed by extraction of TRUs and {sup 90}Sr. In addition, the TRU leaching approach was examined for a third tank waste type, neutralized cladding removal waste.

Lumetta, G.J.; Wagner, M.J.; Colton, N.G.; Jones, E.O.

1993-06-01T23:59:59.000Z

18

CSER 94-004: Criticality safety of double-shell waste storage tanks  

SciTech Connect

This criticality safety evaluation covers double-shell waste storage tanks (DSTs), double-contained receiver tanks (DCRTs), vault tanks, and the 242-A Evaporator located in the High Level Waste (HLW) Tank Farms on the Hanford Site. Limits and controls are specified and the basis for ensuring criticality safety is discussed. A minimum limit of 1,000 is placed upon the solids/plutonium mass ratio in incoming waste. The average solids/Pu mass ratio over all waste in tank farms is estimated to be about 74,500, about 150 times larger than required to assure subcriticality in homogeneous waste. PFP waste in Tank-102-SY has an estimated solids/Pu mass ratio of 10,000. Subcriticality is assured whenever the plutonium concentration is less than 2.6 g. The median reported plutonium concentration for 200 samples of waste solids is about 0.01 g (0.038 g/gal). A surveillance program is proposed to increase the knowledge of the waste and provide added assurance of the high degree of subcriticality.

Rogers, C.A.

1994-09-22T23:59:59.000Z

19

Borehole Miner - Extendible Nozzle Development for Radioactive Waste Dislodging and Retrieval from Underground Storage Tanks  

Science Conference Proceedings (OSTI)

This report summarizes development of borehole-miner extendible-nozzle water-jetting technology for dislodging and retrieving salt cake, sludge} and supernate to remediate underground storage tanks full of radioactive waste. The extendible-nozzle development was based on commercial borehole-miner technology.

CW Enderlin; DG Alberts; JA Bamberger; M White

1998-09-25T23:59:59.000Z

20

Hanford Tank Waste Residuals  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Hanford Tank Waste Residuals DOE HLW Corporate Board November 6, 2008 Chris Kemp, DOE ORP Bill Hewitt, YAHSGS LLC Hanford Tanks & Tank Waste * Single-Shell Tanks (SSTs) - ~27 million gallons of waste* - 149 SSTs located in 12 SST Farms - Grouped into 7 Waste Management Areas (WMAs) for RCRA closure purposes: 200 West Area S/SX T TX/TY U 200 East Area A/AX B/BX/BY C * Double-Shell Tanks (DSTs) - ~26 million gallons of waste* - 28 DSTs located in 6 DST Farms (1 West/5 East) * 17 Misc Underground Storage Tanks (MUST) * 43 Inactive MUST (IMUST) 200 East Area A/AX B/BX/BY C * Volumes fluctuate as SST retrievals and 242-A Evaporator runs occur. Major Regulatory Drivers * Radioactive Tank Waste Materials - Atomic Energy Act - DOE M 435.1-1, Ch II, HLW - Other DOE Orders * Hazardous/Dangerous Tank Wastes - Hanford Federal Facility Agreement and Consent Order (TPA) - Retrieval/Closure under State's implementation

Note: This page contains sample records for the topic "waste storage tanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Steam reforming as a method to treat Hanford underground storage tank (UST) wastes  

Science Conference Proceedings (OSTI)

This report summarizes a Sandia program that included partnerships with Lawrence Livermore National Laboratory and Synthetica Technologies, Inc. to design and test a steam reforming system for treating Hanford underground storage tank (UST) wastes. The benefits of steam reforming the wastes include the resolution of tank safety issues and improved radionuclide separations. Steam reforming destroys organic materials by first gasifying, then reacting them with high temperature steam. Tests indicate that up to 99% of the organics could be removed from the UST wastes by steam exposure. In addition, it was shown that nitrates in the wastes could be destroyed by steam exposure if they were first distributed as a thin layer on a surface. High purity alumina and nickel alloys were shown to be good candidates for materials to be used in the severe environment associated with steam reforming the highly alkaline, high nitrate content wastes. Work was performed on designing, building, and demonstrating components of a 0.5 gallon per minute (gpm) system suitable for radioactive waste treatment. Scale-up of the unit to 20 gpm was also considered and is feasible. Finally, process demonstrations conducted on non-radioactive waste surrogates were carried out, including a successful demonstration of the technology at the 0.1 gpm scale.

Miller, J.E.; Kuehne, P.B. [eds.] [and others

1995-07-01T23:59:59.000Z

22

C-tank transfers: Transuranic sludge removal from the C-1, C-2, and W-23 waste storage tanks at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect

Two fluidic pulse jet mixing systems were used to successfully mobilize remote-handled transuranic sludge for retrieval from three 50,000-gal horizontal waste storage tanks at Oak Ridge National Laboratory (ORNL). The results of this operation indicate that the pulse jet system should be considered for mixing and bulk retrieval of sludges in other vertical and horizontal waste tanks at ORNL and at other U.S. Department of Energy sites.

Dahl, T.L.; Lay, A.C.; Taylor, S.A.; Moore, J.W.

1999-05-01T23:59:59.000Z

23

High level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 6  

SciTech Connect

The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 6) outlines the standards and requirements for the sections on: Environmental Restoration and Waste Management, Research and Development and Experimental Activities, and Nuclear Safety.

Not Available

1994-04-01T23:59:59.000Z

24

Technical requirements specification for tank waste retrieval  

Science Conference Proceedings (OSTI)

This document provides the technical requirements specification for the retrieval of waste from the underground storage tanks at the Hanford Site. All activities covered by this scope are conducted in support of the Tank Waste Remediation System (TWRS) mission.

Lamberd, D.L.

1996-09-26T23:59:59.000Z

25

Revised cost savings estimate with uncertainty for enhanced sludge washing of underground storage tank waste  

SciTech Connect

Enhanced Sludge Washing (ESW) has been selected to reduce the amount of sludge-based underground storage tank (UST) high-level waste at the Hanford site. During the past several years, studies have been conducted to determine the cost savings derived from the implementation of ESW. The tank waste inventory and ESW performance continues to be revised as characterization and development efforts advance. This study provides a new cost savings estimate based upon the most recent inventory and ESW performance revisions, and includes an estimate of the associated cost uncertainty. Whereas the author`s previous cost savings estimates for ESW were compared against no sludge washing, this study assumes the baseline to be simple water washing which more accurately reflects the retrieval activity along. The revised ESW cost savings estimate for all UST waste at Hanford is $6.1 B {+-} $1.3 B within 95% confidence. This is based upon capital and operating cost savings, but does not include development costs. The development costs are assumed negligible since they should be at least an order of magnitude less than the savings. The overall cost savings uncertainty was derived from process performance uncertainties and baseline remediation cost uncertainties, as determined by the author`s engineering judgment.

DeMuth, S.

1998-09-01T23:59:59.000Z

26

HWMA/RCRA Closure Plan for the CPP-648 Radioactive Solid and Liquid Waste Storage Tank System (VES-SFE-106)  

Science Conference Proceedings (OSTI)

This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan for the Radioactive Solid and Liquid Waste Storage Tank System located in the adjacent to the Sludge Tank Control House (CPP-648), Idaho Nuclear Technology and Engineering Center, Idaho National Laboratory, was developed to meet the interim status closure requirements for a tank system. The system to be closed includes a tank and associated ancillary equipment that were determined to have managed hazardous waste. The CPP-648 Radioactive Solid and Liquid Waste Storage Tank System will be "cleaned closed" in accordance with the requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act as implemented by the Idaho Administrative Procedures Act and 40 Code of Federal Regulations 265. This closure plan presents the closure performance standards and methods of acheiving those standards for the CPP-648 Radioactive Solid and Liquid Waste Storage Tank System.

S. K. Evans

2006-08-15T23:59:59.000Z

27

SAVANNAH RIVER SITE INCIPIENT SLUDGE MIXING IN RADIOACTIVE LIQUID WASTE STORAGE TANKS DURING SALT SOLUTION BLENDING  

DOE Green Energy (OSTI)

This paper is the second in a series of four publications to document ongoing pilot scale testing and computational fluid dynamics (CFD) modeling of mixing processes in 85 foot diameter, 1.3 million gallon, radioactive liquid waste, storage tanks at Savannah River Site (SRS). Homogeneous blending of salt solutions is required in waste tanks. Settled solids (i.e., sludge) are required to remain undisturbed on the bottom of waste tanks during blending. Suspension of sludge during blending may potentially release radiolytically generated hydrogen trapped in the sludge, which is a safety concern. The first paper (Leishear, et. al. [1]) presented pilot scale blending experiments of miscible fluids to provide initial design requirements for a full scale blending pump. Scaling techniques for an 8 foot diameter pilot scale tank were also justified in that work. This second paper describes the overall reasons to perform tests, and documents pilot scale experiments performed to investigate disturbance of sludge, using non-radioactive sludge simulants. A third paper will document pilot scale CFD modeling for comparison to experimental pilot scale test results for both blending tests and sludge disturbance tests. That paper will also describe full scale CFD results. The final paper will document additional blending test results for stratified layers in salt solutions, scale up techniques, final full scale pump design recommendations, and operational recommendations. Specifically, this paper documents a series of pilot scale tests, where sludge simulant disturbance due to a blending pump or transfer pump are investigated. A principle design requirement for a blending pump is UoD, where Uo is the pump discharge nozzle velocity, and D is the nozzle diameter. Pilot scale test results showed that sludge was undisturbed below UoD = 0.47 ft{sup 2}/s, and that below UoD = 0.58 ft{sup 2}/s minimal sludge disturbance was observed. If sludge is minimally disturbed, hydrogen will not be released. Installation requirements were also determined for a transfer pump which will remove tank contents, and which is also required to not disturb sludge. Testing techniques and test results for both types of pumps are presented.

Leishear, R.; Poirier, M.; Lee, S.; Steeper, T.; Fowley, M.; Parkinson, K.

2011-01-12T23:59:59.000Z

28

Implementation of seismic design and evaluation guidelines for the Department of Energy high-level waste storage tanks and appurtenances  

SciTech Connect

In the fall of 1992, a draft of the Seismic Design and Evaluation Guidelines for the Department of Energy (DOE) High-level Waste Storage Tanks and Appurtenances was issued. The guidelines were prepared by the Tanks Seismic Experts Panel (TSEP) and this task was sponsored by DOE, Environmental Management. The TSEP is comprised of a number of consultants known for their knowledge of seismic ground motion and expertise in the analysis of structures, systems and components subjected to seismic loads. The development of these guidelines was managed by staff from Brookhaven National Laboratory, Engineering Research and Applications Division, Department of Nuclear Energy. This paper describes the process used to incorporate the Seismic Design and Evaluation Guidelines for the DOE High-Level Waste Storage Tanks and Appurtenances into the design criteria for the Multi-Function Waste Tank Project at the Hanford Site. This project will design and construct six new high-level waste tanks in the 200 Areas at the Hanford Site. This paper also discusses the vehicles used to ensure compliance to these guidelines throughout Title 1 and Title 2 design phases of the project as well as the strategy used to ensure consistent and cost-effective application of the guidelines by the structural analysts. The paper includes lessons learned and provides recommendations for other tank design projects which might employ the TSEP guidelines.

Conrads, T.J.

1993-06-01T23:59:59.000Z

29

High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID)  

SciTech Connect

The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 3) presents the standards and requirements for the following sections: Safeguards and Security, Engineering Design, and Maintenance.

Not Available

1994-04-01T23:59:59.000Z

30

High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 2  

Science Conference Proceedings (OSTI)

The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Document (S/RID) is contained in multiple volumes. This document (Volume 2) presents the standards and requirements for the following sections: Quality Assurance, Training and Qualification, Emergency Planning and Preparedness, and Construction.

Not Available

1994-04-01T23:59:59.000Z

31

High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 4  

SciTech Connect

The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 4) presents the standards and requirements for the following sections: Radiation Protection and Operations.

Not Available

1994-04-01T23:59:59.000Z

32

High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 5  

SciTech Connect

The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 5) outlines the standards and requirements for the Fire Protection and Packaging and Transportation sections.

1994-04-01T23:59:59.000Z

33

High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 6  

SciTech Connect

The scope of the Environmental Restoration and Waste Management (EM) Functional Area includes the programmatic controls associated with the management and operation of the Hanford Tank Farm Facility. The driving management organization implementing the programmatic controls is the Tank Farms Waste Management (WM)organization whose responsibilities are to ensure that performance objectives are established; and that measurable criteria for attaining objectives are defined and reflected in programs, policies and procedures. Objectives for the WM Program include waste minimization, establishment of effective waste segregation methods, waste treatment technology development, radioactive (low-level, high-level) hazardous and mixed waste transfer, treatment, and storage, applicability of a corrective action program, and management and applicability of a decontamination and decommissioning (D&D) program in future years.

Not Available

1994-04-01T23:59:59.000Z

34

Final Environmental Impact Statement (Supplement to ERDA-1537, September 1977) Waste Management Operations Double-Shell Tanks for Defense High-Level Radioactive Waste Storage Savannah River Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Do Do E/EIS-0062 FINAL ENVIRONMENTAL IMPACT mATEIUIENT (Supplement to ERDA-1537, September 1977) Waste ~ Management Operations Savannah River Plant ! Aiken, South Carolina Double-Shell Tanks for Defense High-Level Radioactive Waste Storage April 1980 U.S. DEPARTMENT OF ENERGY WASHINGTON. D.C.20545 1980 WL 94273 (F.R.) NOTICES DEPARTMENT OF ENERGY Office of Deputy Assistant Secretary for Nuclear Waste Management Double-Shell Tanks for Defense High-Level Radioactive Waste Storage, Savannah River Plant, Aiken, S.C. Wednesday, July 9, 1980 *46154 Record of Decision Decision. The decision has been made to complete the construction of the 14 double-shell tanks and use them to store defense high-level radioactive waste at the Savannah River Plant (SRP). Background. The SRP, located near Aiken, South Carolina, is a major installation of the

35

Seismic design and evaluation guidelines for the Department of Energy high-level waste storage tanks and appurtenances  

Science Conference Proceedings (OSTI)

This document provides guidelines for the design and evaluation of underground high-level waste storage tanks due to seismic loads. Attempts were made to reflect the knowledge acquired in the last two decades in the areas of defining the ground motion and calculating hydrodynamic loads and dynamic soil pressures for underground tank structures. The application of the analysis approach is illustrated with an example. The guidelines are developed for specific design of underground storage tanks, namely double-shell structures. However, the methodology discussed is applicable for other types of tank structures as well. The application of these and of suitably adjusted versions of these concepts to other structural types will be addressed in a future version of this document.

Bandyopadhyay, K.; Cornell, A.; Costantino, C.; Kennedy, R.; Miller, C.; Veletsos, A.

1993-01-01T23:59:59.000Z

36

Structural Integrity Program for the 300,000-Gallon Radioactive Liquid Waste Storage Tanks at the Idaho Nuclear Technology and Engineering Center  

SciTech Connect

This report provides a record of the Structural Integrity Program for the 300,000-gal liquid waste storage tanks and associated equipment at the Idaho Nuclear Technology and Engineering Center, as required by U.S. Department of Energy M 435.1-1, ''Radioactive Waste Management Manual.'' This equipment is known collectively as the Tank Farm Facility. The conclusion of this report is that the Tank Farm Facility tanks, vaults, and transfer systems that remain in service for storage are structurally adequate, and are expected to remain structurally adequate over the remainder of their planned service life through 2012. Recommendations are provided for continued monitoring of the Tank Farm Facility.

Bryant, J.W.; Nenni, J.A.; Yoder, T.S.

2003-04-22T23:59:59.000Z

37

CORROSION CONTROL MEASURES FOR LIQUID RADIOACTIVE WASTE STORAGE TANKS AT THE SAVANNAH RIVER SITE  

SciTech Connect

The Savannah River Site has stored radioactive wastes in large, underground, carbon steel tanks for approximately 60 years. An assessment of potential degradation mechanisms determined that the tanks may be vulnerable to nitrate- induced pitting corrosion and stress corrosion cracking. Controls on the solution chemistry and temperature of the wastes are in place to mitigate these mechanisms. These controls are based upon a series of experiments performed using simulated solutions on materials used for construction of the tanks. The technical bases and evolution of these controls is presented in this paper.

Wiersma, B.; Subramanian, K.

2012-11-27T23:59:59.000Z

38

Estimating Waste Inventory and Waste Tank Characterization |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Estimating Waste Inventory and Waste Tank Characterization Estimating Waste Inventory and Waste Tank Characterization Summary Notes from 28 May 2008 Generic Technical Issue...

39

Action plan for response to abnormal conditions in Hanford high level radioactive liquid waste storage tanks containing flammable gases. Revision 1  

DOE Green Energy (OSTI)

Radioactive liquid waste tends to produce hydrogen as a result of the interaction of gamma radiation and water. In tanks containing organic chelating agents, additional hydrogen gas as well as nitrous oxide and ammonia can be produced by thermal and radiolytic decomposition of these organics. Several high-level radioactive liquid waste storage tanks, located underground at the Hanford Site, contain waste that retains the gases produced in them until large quantities are released rapidly to the tank vapor space. Tanks filled to near capacity have relatively little vapor space; therefore, if the waste suddenly releases a large amount of hydrogen and nitrous oxide, a flammable gas mixture may result. The most notable waste tank with a flammable gas problem is tank 241-SY-101. Waste in this tank has occasionally released enough flammable gas to burn if an ignition source had been present inside of the tank. Several other waste tanks exhibit similar behavior to a lesser magnitude. Administrative controls have been developed to assure that these Flammable Gas Watch List tanks are safely maintained. Responses have also been developed for off-normal conditions which might develop in these tanks. In addition, scientific and engineering studies are underway to further understand and mitigate the behavior of the Flammable Gas Watch List tanks.

Sherwood, D.J.

1994-03-01T23:59:59.000Z

40

Seismic design and evaluation guidelines for the Department of Energy High-Level Waste Storage Tanks and Appurtenances  

Science Conference Proceedings (OSTI)

This document provides seismic design and evaluation guidelines for underground high-level waste storage tanks. The guidelines reflect the knowledge acquired in the last two decades in defining seismic ground motion and calculating hydrodynamic loads, dynamic soil pressures and other loads for underground tank structures, piping and equipment. The application of the guidelines is illustrated with examples. The guidelines are developed for a specific design of underground storage tanks, namely double-shell structures. However, the methodology discussed is applicable for other types of tank structures as well. The application of these and of suitably adjusted versions of these concepts to other structural types will be addressed in a future version of this document. The original version of this document was published in January 1993. Since then, additional studies have been performed in several areas and the results are included in this revision. Comments received from the users are also addressed. Fundamental concepts supporting the basic seismic criteria contained in the original version have since then been incorporated and published in DOE-STD-1020-94 and its technical basis documents. This information has been deleted in the current revision.

Bandyopadhyay, K.; Cornell, A.; Costantino, C.; Kennedy, R.; Miller, C.; Veletsos, A.

1995-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste storage tanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Structural acceptance criteria for the evaulation of existing double-shell waste storage tanks located at the Hanford site, Richland, Washington  

SciTech Connect

The structural acceptance criteria contained herein for the evaluation of existing underground double-shell waste storage tanks located at the Hanford Site is part of the Life Management/Aging Management Program of the Tank Waste Remediation System. The purpose of the overall life management program is to ensure that confinement of the waste is maintained over the required service life of the tanks. Characterization of the present condition of the tanks, understanding and characterization of potential degradation mechanisms, and development of tank structural acceptance criteria based on previous service and projected use are prerequisites to assessing tank integrity, to projecting the length of tank service, and to developing and applying prudent fixes or repairs. The criteria provided herein summarize the requirements for the analysis and structural qualification of the existing double-shell tanks for continued operation. Code reconciliation issues and material degradation under aging conditions are addressed. Although the criteria were developed for double-shell tanks, many of the provisions are equally applicable to single-shell tanks. However, the criteria do not apply to the evaluation of tank appurtenances and buried piping.

Julyk, L.J.; Day, A.D.; Dyrness, A.D.; Moore, C.J.; Peterson, W.S.; Scott, M.A.; Shrivastava, H.P.; Sholman, J.S.; Watts, T.N.

1995-09-01T23:59:59.000Z

42

Structural Integrity Program for the 300,000-Gallon Radioactive Liquid Waste Storage Tanks at the Idaho Nuclear Technology and Engineering Center  

SciTech Connect

This report provides a record of the Structural Integrity Program for the 300,000-gal liquid waste storage tanks and associated equipment at the Idaho Nuclear Technology and Engineering Center, as required by U.S. Department of Energy M 435.1-1, ''Radioactive Waste Management Manual.'' This equipment is known collectively as the Tank Farm Facility. The conclusion of this report is that the Tank Farm Facility tanks, vaults, and transfer systems that remain in service for storage are structurally adequate, and are expected to remain structurally adequate over the remainder of their planned service life through 2012. Recommendations are provided for continued monitoring of the Tank Farm Facility.

Bryant, J.W.; Nenni, J.A.; Yoder, T.S.

2003-04-22T23:59:59.000Z

43

Structural Integrity Program for the 300,000-Gallon Radioactive Liquid Waste Storage Tanks at the Idaho Nuclear Technology and Engineering Center  

SciTech Connect

This report provides a record of the Structural Integrity Program for the 300,000-gal liquid waste storage tanks and associated equipment at the Idaho Nuclear Technology and Engineering Center, as required by U.S. Department of Energy M 435.1-1, “Radioactive Waste Management Manual.” This equipment is known collectively as the Tank Farm Facility. This report is an update, and replaces the previous report by the same title issued April 2003. The conclusion of this report is that the Tank Farm Facility tanks, vaults, and transfer systems that remain in service for storage are structurally adequate, and are expected to remain structurally adequate over the remainder of their planned service life through 2012. Recommendations are provided for continued monitoring of the Tank Farm Facility.

Bryant, Jeffrey W.

2010-08-12T23:59:59.000Z

44

Tank Waste Strategy Update  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tank Waste Subcommittee www.em.doe.gov safety performance cleanup closure E M Environmental Management 1 Tank Waste Subcommittee Ken Picha Office of Environmental Management December 5, 2011 Background Tank Waste Subcommittee (TWS)originally chartered, in response to Secretary's request to perform a technical review of Waste Treatment and Immobilization Plant (WTP) in May 2010. Three tasks: o Verification of closure of WTP External Flowsheet Review Team (EFRT) issues. o WTP Technical Design Review o WTP potential improvements Report completed and briefed to DOE in September 2010 www.em.doe.gov safety performance cleanup closure E M Environmental Management 2 Report completed and briefed to DOE in September 2010 Follow-on scope for TWS identified immediately after briefing to DOE and

45

Enhanced Tank Waste Strategy Update  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reduce the life-cycle costs and accelerate the cleanup of the Cold War environmental legacy www.em.doe.gov safety performance cleanup closure E M Environmental Management 1 cleanup of the Cold War environmental legacy Shirley J. Olinger Associate Principal Deputy for Corporate Operations EMAB Presentation June 23, 2011 EM Priorities: Activities to maintain a safe, secure, and compliant posture in the EM complex Radioactive tank waste stabilization, treatment, and disposal Spent (used) nuclear fuel storage, receipt, and disposition "To-Go Life-Cycle Costs" ($185B - $218B as of the FY 2012 Request) Programmatic support activities* 10% Radioactive tank waste stabilization, treatment and disposal 38% Excess facilities decontamination and decommissioning

46

Radioactive tank waste remediation focus area  

SciTech Connect

EM`s Office of Science and Technology has established the Tank Focus Area (TFA) to manage and carry out an integrated national program of technology development for tank waste remediation. The TFA is responsible for the development, testing, evaluation, and deployment of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in the underground stabilize and close the tanks. The goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. Within the DOE complex, 335 underground storage tanks have been used to process and store radioactive and chemical mixed waste generated from weapon materials production and manufacturing. Collectively, thes tanks hold over 90 million gallons of high-level and low-level radioactive liquid waste in sludge, saltcake, and as supernate and vapor. Very little has been treated and/or disposed or in final form.

1996-08-01T23:59:59.000Z

47

Project W-236A multi-function waste tank facility waste feed projections  

SciTech Connect

A review of Hanford Underground Waste Storage Tank Chemistry, coupled with planned remediation actions and retrieval sequences was conducted in order to predict the chemistry of the waste to be stored in the MWTF tanks. All projected waste solutions to be transferred to the MWTF tanks were found to be in compliance with current tank chemistry specifications; therefore, the waste and the tank materials of construction are expected to be compatible.

Larrick, A.P.

1994-12-22T23:59:59.000Z

48

Ferrocyanide tank waste stability. Supplement 2  

Science Conference Proceedings (OSTI)

Ferrocyanide wastes were generated at the Hanford Site during the mid to late 1950s as a result of efforts to create more tank space for the storage of high-level nuclear waste. The ferrocyanide process was developed to remove {sup 137}CS from existing waste and newly generated waste that resulted from the recovery of valuable uranium in Hanford Site waste tanks. During the course of research associated with the ferrocyanide process, it was recognized that ferrocyanide materials, when mixed with sodium nitrate and/or sodium nitrite, were capable of violent exothermic reaction. This chemical reactivity became an issue in the 1980s, when safety issues associated with the storage of ferrocyanide wastes in Hanford Site tanks became prominent. These safety issues heightened in the late 1980s and led to the current scrutiny of the safety issues associated with these wastes, as well as current research and waste management programs. Testing to provide information on the nature of possible tank reactions is ongoing. This document supplements the information presented in Summary of Single-Shell Tank Waste Stability, WHC-EP-0347, March 1991 (Borsheim and Kirch 1991), which evaluated several issues. This supplement only considers information particular to ferrocyanide wastes.

Fowler, K.D.

1993-01-01T23:59:59.000Z

49

Hanford ETR Tank Waste Treatment and Immobilization Plant - Hanford Tank  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ETR Tank Waste Treatment and Immobilization Plant - Hanford ETR Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - External Flowsheet Review Team (Technical) Report Hanford ETR Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - External Flowsheet Review Team (Technical) Report Full Document and Summary Versions are available for download Hanford ETR Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - External Flowsheet Review Team (Technical) Report Summary - Flowsheet for the Hanford Waste Treatment Plant More Documents & Publications Waste Treatment and Immobilation Plant HLW Waste Vitrification Facility

50

River Protection Project (RPP) Tank Waste Retrieval and Disposal Mission Technical Baseline Summary Description  

Science Conference Proceedings (OSTI)

This document is one of the several documents prepared by Lockheed Martin Hanford Corp. to support the U. S. Department of Energy's Tank Waste Retrieval and Disposal mission at Hanford. The Tank Waste Retrieval and Disposal mission includes the programs necessary to support tank waste retrieval; waste feed, delivery, storage, and disposal of immobilized waste; and closure of the tank farms.

DOVALLE, O.R.

1999-12-29T23:59:59.000Z

51

High-Level Liquid Waste Tank Integrity Workshop - 2008  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Liquid Waste Tank Integrity Liquid Waste Tank Integrity Workshop - 2008 Karthik Subramanian Bruce Wiersma November 2008 High Level Waste Corporate Board Meeting karthik.subramanian@srnl.doe.gov bruce.wiersma@srnl.doe.gov 2 Acknowledgements * Bruce Wiersma (SRNL) * Kayle Boomer (Hanford) * Michael T. Terry (Facilitator) * SRS - Liquid Waste Organization * Hanford Tank Farms * DOE-EM 3 Background * High level radioactive waste (HLW) tanks provide critical interim confinement for waste prior to processing and permanent disposal * Maintaining structural integrity (SI) of the tanks is a critical component of operations 4 Tank Integrity Workshop - 2008 * Discuss the HLW tank integrity technology needs based upon the evolving waste processing and tank closure requirements along with its continued storage mission

52

Underground storage tank management plan  

Science Conference Proceedings (OSTI)

The Underground Storage Tank (UST) Management Program at the Oak Ridge Y-12 Plant was established to locate UST systems in operation at the facility, to ensure that all operating UST systems are free of leaks, and to establish a program for the removal of unnecessary UST systems and upgrade of UST systems that continue to be needed. The program implements an integrated approach to the management of UST systems, with each system evaluated against the same requirements and regulations. A common approach is employed, in accordance with Tennessee Department of Environment and Conservation (TDEC) regulations and guidance, when corrective action is mandated. This Management Plan outlines the compliance issues that must be addressed by the UST Management Program, reviews the current UST inventory and compliance approach, and presents the status and planned activities associated with each UST system. The UST Management Plan provides guidance for implementing TDEC regulations and guidelines for petroleum UST systems. (There are no underground radioactive waste UST systems located at Y-12.) The plan is divided into four major sections: (1) regulatory requirements, (2) implementation requirements, (3) Y-12 Plant UST Program inventory sites, and (4) UST waste management practices. These sections describe in detail the applicable regulatory drivers, the UST sites addressed under the Management Program, and the procedures and guidance used for compliance with applicable regulations.

NONE

1994-09-01T23:59:59.000Z

53

RECENT PROGRESS IN DOE WASTE TANK CLOSURE  

SciTech Connect

The USDOE complex currently has over 330 underground storage tanks that have been used to process and store radioactive waste generated from the production of weapons materials. These tanks contain over 380 million liters of high-level and low-level radioactive waste. The waste consists of radioactively contaminated sludge, supernate, salt cake or calcine. Most of the waste exists at four USDOE locations, the Hanford Site, the Savannah River Site, the Idaho Nuclear Technology and Engineering Center and the West Valley Demonstration Project. A summary of the DOE tank closure activities was first issued in 2001. Since then, regulatory changes have taken place that affect some of the sites and considerable progress has been made in closing tanks. This paper presents an overview of the current regulatory changes and drivers and a summary of the progress in tank closures at the various sites over the intervening six years. A number of areas are addressed including closure strategies, characterization of bulk waste and residual heel material, waste removal technologies for bulk waste, heel residuals and annuli, tank fill materials, closure system modeling and performance assessment programs, lessons learned, and external reviews.

Langton, C

2008-02-01T23:59:59.000Z

54

Hanford ETR - Tank Waste Treatment and Immobilization Plant - Hanford Tank  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Tank Waste Treatment and Immobilization Plant - - Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - Estimate at Completion (Cost) Report Hanford ETR - Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - Estimate at Completion (Cost) Report This is a comprehensive review ofthe Hanford WTP estimate at completion - assessing the project scope, contract requirements, management execution plant, schedule, cost estimates, and risks. Hanford ETR - Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - Estimate at Completion (Cost) Report More Documents & Publications TBH-0042 - In the Matter of Curtis Hall

55

Tank Waste Corporate Board | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tank Waste Corporate Board Tank Waste Corporate Board Tank Waste Corporate Board The Tank Waste Corporate Board is a chartered group of senior DOE, contractor, and laboratory managers and staff that meets approximately semi-annually to formulate and coordinate implementation of an effective and efficient national Tank Waste program. August 1, 2012 Tank Waste Corporate Board Meeting 08/01/12 The following documents are associated with the Tank Waste Corporate Board Meeting held on August 1st, 2012. November 18, 2010 Tank Waste Corporate Board Meeting 11/18/10 The following documents are associated with the Tank Waste Corporate Board Meeting held on November 18th, 2010. July 29, 2009 Tank Waste Corporate Board Meeting 07/29/09 The following documents are associated with the Tank Waste Corporate Board

56

Rethinking the Hanford Tank Waste Program  

Science Conference Proceedings (OSTI)

The program to treat and dispose of the highly radioactive wastes stored in underground tanks at the U.S. Department of Energy's Hanford site has been studied. A strategy/management approach to achieve an acceptable (technically sound) end state for these wastes has been developed in this study. This approach is based on assessment of the actual risks and costs to the public, workers, and the environment associated with the wastes and storage tanks. Close attention should be given to the technical merits of available waste treatment and stabilization methodologies, and application of realistic risk reduction goals and methodologies to establish appropriate tank farm cleanup milestones. Increased research and development to reduce the mass of non-radioactive materials in the tanks requiring sophisticated treatment is highly desirable. The actual cleanup activities and milestones, while maintaining acceptable safety standards, could be more focused on a risk-to-benefit cost effectiveness, as agreed to by the involved stakeholders and in accordance with existing regulatory requirements. If existing safety standards can be maintained at significant cost savings under alternative plans but with a change in the Tri-Party Agreement (a regulatory requirement), those plans should be carried out. The proposed strategy would also take advantage of the lessons learned from the activities and efforts in the first phase of the two-phased cleanup of the Hanford waste tank farms.

Parker, F. L.; Clark, D. E.; Morcos, N.

2002-02-26T23:59:59.000Z

57

Hanford Site Tank Waste Remediation System. Waste management 1993 symposium papers and viewgraphs  

Science Conference Proceedings (OSTI)

The US Department of Energy`s (DOE) Hanford Site in southeastern Washington State has the most diverse and largest amount of highly radioactive waste of any site in the US. High-level radioactive waste has been stored in large underground tanks since 1944. A Tank Waste Remediation System Program has been established within the DOE to safely manage and immobilize these wastes in anticipation of permanent disposal in a geologic repository. The Hanford Site Tank Waste Remediation System Waste Management 1993 Symposium Papers and Viewgraphs covered the following topics: Hanford Site Tank Waste Remediation System Overview; Tank Waste Retrieval Issues and Options for their Resolution; Tank Waste Pretreatment - Issues, Alternatives and Strategies for Resolution; Low-Level Waste Disposal - Grout Issue and Alternative Waste Form Technology; A Strategy for Resolving High-Priority Hanford Site Radioactive Waste Storage Tank Safety Issues; Tank Waste Chemistry - A New Understanding of Waste Aging; Recent Results from Characterization of Ferrocyanide Wastes at the Hanford Site; Resolving the Safety Issue for Radioactive Waste Tanks with High Organic Content; Technology to Support Hanford Site Tank Waste Remediation System Objectives.

Not Available

1993-05-01T23:59:59.000Z

58

WRPS MEETING THE CHALLENGE OF TANK WASTE  

SciTech Connect

Washington River Protection Solutions (WRPS) is the Hanford tank operations contractor, charged with managing one of the most challenging environmental cleanup projects in the nation. The U.S. Department of Energy hired WRPS to manage 56 million gallons of high-level radioactive waste stored in 177 underground tanks. The waste is the legacy of 45 years of plutonium production for the U. S. nuclear arsenal. WRPS mission is three-fold: safely manage the waste until it can be processed and immobilized; develop the tools and techniques to retrieve the waste from the tanks, and build the infrastructure needed to deliver the waste to the Waste Treatment Plant (WTP) when it begins operating. WTP will 'vitrify' the waste by mixing it with silica and other materials and heating it in an electric melter. Vitrification turns the waste into a sturdy glass that will isolate the radioactivity from the environment. It will take more than 20 years to process all the tank waste. The tank waste is a complex highly radioactive mixture of liquid, sludge and solids. The radioactivity, chemical composition of the waste and the limited access to the underground storage tanks makes retrieval a challenge. Waste is being retrieved from aging single-shell tanks and transferred to newer, safer double-shell tanks. WRPS is using a new technology known as enhanced-reach sluicing to remove waste. A high-pressure stream of liquid is sprayed at 100 gallons per minute through a telescoping arm onto a hard waste layer several inches thick covering the waste. The waste is broken up, moved to a central pump suction and removed from the tank. The innovative Mobile Arm Retrieval System (MARS) is also being used to retrieve waste. MARS is a remotely operated, telescoping arm installed on a mast in the center of the tank. It uses multiple technologies to scrape, scour and rake the waste toward a pump for removal. The American Reinvestment and Recovery Act (ARRA) provided nearly $326 million over two-and-a-half years to modernize the infrastructure in Hanford's tank farms. WRPS issued 850 subcontracts totaling more than $152 million with nearly 76 percent of that total awarded to small businesses. WRPS used the funding to upgrade tank farm infrastructure, develop technologies to retrieve and consolidate tank waste and extend the life of two critical operating facilities needed to feed waste to the WTP. The 222-S Laboratory analyzes waste to support waste retrievals and transfers. The laboratory was upgraded to support future WTP operations with a new computer system, new analytical equipment, a new office building and a new climate-controlled warehouse. The 242-A Evaporator was upgraded with a control-room simulator for operator training and several upgrades to aging equipment. The facility is used to remove liquid from the tank waste, creating additional storage space, necessary for continued waste retrievals and WTP operation. The One System Integrated Project Team is ajoint effort ofWRPS and Bechtel National to identify and resolve common issues associated with commissioning, feeding and operating the Waste Treatment Plant. Two new facilities are being designed to support WTP hot commlsslomng. The Interim Hanford Storage project is planned to store canisters of immobilized high-level radioactive waste glass produced by the vitrification plant. The facility will use open racks to store the 15-foot long, two-foot diameter canisters of waste, which require remote handling. The Secondary Liquid Waste Treatment Project is a major upgrade to the existing Effluent Treatment Facility at Hanford so it can treat about 10 million gallons of liquid radioactive and hazardous effluent a year from the vitrification plant. The One System approach brings the staff of both companies together to identify and resolve WTP safety issues. A questioning attitude is encouraged and an open forum is maintained for employees to raise issues. WRPS is completing its mission safely with record-setting safety performance. Since WRPS took over the Hanford Tank Operations Contract in October 2

BRITTON JC

2012-02-21T23:59:59.000Z

59

Tank Waste Disposal Program redefinition  

SciTech Connect

The record of decision (ROD) (DOE 1988) on the Final Environmental Impact Statement, Hanford Defense High-Level, Transuranic and Tank Wastes, Hanford Site, Richland Washington identifies the method for disposal of double-shell tank waste and cesium and strontium capsules at the Hanford Site. The ROD also identifies the need for additional evaluations before a final decision is made on the disposal of single-shell tank waste. This document presents the results of systematic evaluation of the present technical circumstances, alternatives, and regulatory requirements in light of the values of the leaders and constitutents of the program. It recommends a three-phased approach for disposing of tank wastes. This approach allows mature technologies to be applied to the treatment of well-understood waste forms in the near term, while providing time for the development and deployment of successively more advanced pretreatment technologies. The advanced technologies will accelerate disposal by reducing the volume of waste to be vitrified. This document also recommends integration of the double-and single-shell tank waste disposal programs, provides a target schedule for implementation of the selected approach, and describes the essential elements of a program to be baselined in 1992.

Grygiel, M.L.; Augustine, C.A.; Cahill, M.A.; Garfield, J.S.; Johnson, M.E.; Kupfer, M.J.; Meyer, G.A.; Roecker, J.H. [Westinghouse Hanford Co., Richland, WA (United States); Holton, L.K.; Hunter, V.L.; Triplett, M.B. [Pacific Northwest Lab., Richland, WA (United States)

1991-10-01T23:59:59.000Z

60

Storage Tanks (Arkansas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Tanks (Arkansas) Storage Tanks (Arkansas) Storage Tanks (Arkansas) < Back Eligibility Commercial Construction Fuel Distributor Industrial Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Arkansas Program Type Environmental Regulations Siting and Permitting Provider Department of Environmental Quality The Storage Tanks regulations is a set of rules and permit requirements mandated by the Arkansas Pollution and Ecology Commission in order to protect the public health and the lands and the waters of the State of Arkansas. They are promulgated pursuant to Arkansas Code Annotated 8-7-801 and the Petroleum Storage Trust Fund Act 8-7-901. It covers all storage tanks, above (AST) and underground (UST). Most importantly these regulations establish that all owners and operators of storage tanks must

Note: This page contains sample records for the topic "waste storage tanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Hanford Waste Tank Plant PIA, Richland Operations Office | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Waste Tank Plant PIA, Richland Operations Office Hanford Waste Tank Plant PIA, Richland Operations Office Hanford Waste Tank Plant PIA, Richland Operations Office Hanford...

62

Underground Storage Tank Regulations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Underground Storage Tank Regulations Underground Storage Tank Regulations Underground Storage Tank Regulations < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Mississippi Program Type Environmental Regulations Siting and Permitting Provider Department of Environmental Quality The Underground Storage Tank Regulations is relevant to all energy projects

63

Supplemental design requirements document, Multifunction Waste Tank Facility, Project W-236A. Revision 1  

SciTech Connect

The Multi-Function Waste Tank Facility (MWTF) consists of four, nominal 1 million gallon, underground double-shell tanks, located in the 200-East area, and two tanks of the same capacity in the 200-West area. MWTF will provide environmentally safe storage capacity for wastes generated during remediation/retrieval activities of existing waste storage tanks. This document delineates in detail the information to be used for effective implementation of the Functional Design Criteria requirements.

Groth, B.D.

1995-01-11T23:59:59.000Z

64

Evaluation of the TORE(R)Lance for Radioactive Waste Mobilization and Retrieval from Underground Storage Tanks  

Science Conference Proceedings (OSTI)

The TORE? Lance is a hand-held hydro transportation device with the ability to convey solids at pre-determined slurry concentrations over great distances. The TORE? Lance head generates a precessing vortex core to mobilize solids. Solids retrieval is accomplished using an eductor. The device contains no parts and requires pressurized fluid to operate the eductor and produce mobilization. Three configurations of TORE? Lance operation were evaluated for mobilization and eduction during these tests: compressed air, water, and an air and water mixture. These tests have shown that the TORE? Lance is a tool that can be used at Hanford for mobilization and retrieval of wastes. The system is versatile and can be configured for many types of applications. These studies showed that the diverse applications require unique solutions so care is recommended for TORE? Lance equipment selection for each application. The two components of the TORE? Lance are the precessing vortex for mobilizing and the eductor for retrieval. The precessing vortex is sensitive to fluid flow rate and pressure. In the hand-held unit these parameters are controlled both internally, by changing shim spacing, and externally by controlling the flow split between the eductor and the head. For in-tank applications out-of-tank control of both these parameters are recommended.

Bamberger, Judith A.; Bates, Cameron J.; Bates, James M.; White, M.

2002-09-25T23:59:59.000Z

65

Tank farm surveillance and waste status summary report for May 1993  

DOE Green Energy (OSTI)

This report is the official inventory for radioactive waste stored in underground tanks in the 200 in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 49 smaller catch tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations.

Hanlon, B.M.

1993-08-01T23:59:59.000Z

66

Tank Farm surveillance and waste status summary report for April 1993  

SciTech Connect

This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 49 smaller catch tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations.

Hanlon, B.M.

1993-07-01T23:59:59.000Z

67

EM Tank Waste Subcommittee Report for SRS / Hanford Tank Waste Review |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tank Waste Subcommittee Report for SRS / Hanford Tank Waste Tank Waste Subcommittee Report for SRS / Hanford Tank Waste Review EM Tank Waste Subcommittee Report for SRS / Hanford Tank Waste Review Environmental Management Advisory Board EM Tank Waste Subcommittee Report for SRS / Hanford Tank Waste Review Report Number TWS #003 EMAB EM-TWS SRS / Hanford Tank Waste June 23, 2011 This is the second report of the Environmental Management Tank Waste Subcommittee (EMTWS) of the Environmental Management Advisory Board (EMAB). The first report was submitted and accepted by the Assistant Secretary for Environmental Management (EM-1) in September 2010. The EM-TWS responded to three charges from EM-1 regarding the Waste Treatment and Immobilization Plant at Hanford (WTP) under construction in Richland, Washington. EM's responses were timely, and efforts have been

68

Hanford Waste Tank Bump Accident and Consequence Analysis  

Science Conference Proceedings (OSTI)

This report provides a new evaluation of the Hanford tank bump accident analysis and consequences for incorporation into the Authorization Basis. The analysis scope is for the safe storage of waste in its current configuration in single-shell and double-shell tanks.

BRATZEL, D.R.

2000-06-20T23:59:59.000Z

69

Comparative safety analysis of LNG storage tanks  

Science Conference Proceedings (OSTI)

LNG storage tank design and response to selected release scenarios were reviewed. The selection of the scenarios was based on an investigation of potential hazards as cited in the literature. A review of the structure of specific LNG storage facilities is given. Scenarios initially addressed included those that most likely emerge from the tank facility itself: conditions of overfill and overflow as related to liquid LNG content levels; over/underpressurization at respective tank vapor pressure boundaries; subsidence of bearing soil below tank foundations; and crack propagation in tank walls due to possible exposure of structural material to cryogenic temperatures. Additional scenarios addressed include those that result from external events: tornado induced winds and pressure drops; exterior tank missile impact with tornado winds and rotating machinery being the investigated mode of generation; thermal response due to adjacent fire conditions; and tank response due to intense seismic activity. Applicability of each scenario depended heavily on the specific tank configurations and material types selected. (PSB)

Fecht, B.A.; Gates, T.E.; Nelson, K.O.; Marr, G.D.

1982-07-01T23:59:59.000Z

70

Stress evaluation of the primary tank of a double-shell underground storage tank facility  

SciTech Connect

A facility called the Multi-Function Waste Tank Facility (MWTF) is being designed at the Department of Energy`s Hanford site. The MWTF is expected to be completed in 1998 and will consist of six underground double-shell waste storage tanks and associated systems. These tanks will provide safe and environmentally acceptable storage capacity to handle waste generated during single-shell and double-shell tank safety mitigation and remediation activities. This paper summarizes the analysis and qualification of the primary tank structure of the MWTF, as performed by ICF Kaiser Hanford during the latter phase of Title 1 (Preliminary) design. Both computer finite element analysis (FEA) and hand calculations methods based on the so-called Tank Seismic Experts Panel (TSEP) Guidelines were used to perform the analysis and evaluation. Based on the evaluations summarized in this paper, it is concluded that the primary tank structure of the MWTF satisfies the project design requirements. In addition, the hand calculations performed using the methodologies provided in the TSEP Guidelines demonstrate that, except for slosh height, the capacities exceed the demand. The design accounts for the adverse effect of the excessive slosh height demand, i.e., inadequate freeboard, by increasing the hydrodynamic wall and roof pressures appropriately, and designing the tank for such increased pressures.

Atalay, M.B. [ICF Kaiser Engineers, Inc., Oakland, CA (United States); Stine, M.D. [ICF Kaiser Hanford Co., Richland, WA (United States); Farnworth, S.K. [Westinghouse Hanford Co., Richland, WA (United States)

1994-12-01T23:59:59.000Z

71

Estimating retained gas volumes in the Hanford tanks using waste level measurements  

SciTech Connect

The Hanford site is home to 177 large, underground nuclear waste storage tanks. Safety and environmental concerns surround these tanks and their contents. One such concern is the propensity for the waste in these tanks to generate and trap flammable gases. This report focuses on understanding and improving the quality of retained gas volume estimates derived from tank waste level measurements. While direct measurements of gas volume are available for a small number of the Hanford tanks, the increasingly wide availability of tank waste level measurements provides an opportunity for less expensive (than direct gas volume measurement) assessment of gas hazard for the Hanford tanks. Retained gas in the tank waste is inferred from level measurements -- either long-term increase in the tank waste level, or fluctuations in tank waste level with atmospheric pressure changes. This report concentrates on the latter phenomena. As atmospheric pressure increases, the pressure on the gas in the tank waste increases, resulting in a level decrease (as long as the tank waste is {open_quotes}soft{close_quotes} enough). Tanks with waste levels exhibiting fluctuations inversely correlated with atmospheric pressure fluctuations were catalogued in an earlier study. Additionally, models incorporating ideal-gas law behavior and waste material properties have been proposed. These models explicitly relate the retained gas volume in the tank with the magnitude of the waste level fluctuations, dL/dP. This report describes how these models compare with the tank waste level measurements.

Whitney, P.D.; Chen, G.; Gauglitz, P.A.; Meyer, P.A.; Miller, N.E.

1997-09-01T23:59:59.000Z

72

Fuel Cell Technologies Office: Onboard Storage Tank Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Onboard Storage Tank Onboard Storage Tank Workshop to someone by E-mail Share Fuel Cell Technologies Office: Onboard Storage Tank Workshop on Facebook Tweet about Fuel Cell Technologies Office: Onboard Storage Tank Workshop on Twitter Bookmark Fuel Cell Technologies Office: Onboard Storage Tank Workshop on Google Bookmark Fuel Cell Technologies Office: Onboard Storage Tank Workshop on Delicious Rank Fuel Cell Technologies Office: Onboard Storage Tank Workshop on Digg Find More places to share Fuel Cell Technologies Office: Onboard Storage Tank Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Annual Merit Review Proceedings Workshop & Meeting Proceedings

73

Tank waste remediation system integrated technology plan. Revision 2  

SciTech Connect

The Hanford Site, located in southeastern Washington State, is operated by the US Department of Energy (DOE) and its contractors. Starting in 1943, Hanford supported fabrication of reactor fuel elements, operation of production reactors, processing of irradiated fuel to separate and extract plutonium and uranium, and preparation of plutonium metal. Processes used to recover plutonium and uranium from irradiated fuel and to recover radionuclides from tank waste, plus miscellaneous sources resulted in the legacy of approximately 227,000 m{sup 3} (60 million gallons) of high-level radioactive waste, currently in storage. This waste is currently stored in 177 large underground storage tanks, 28 of which have two steel walls and are called double-shell tanks (DSTs) an 149 of which are called single-shell tanks (SSTs). Much of the high-heat-emitting nuclides (strontium-90 and cesium-137) has been extracted from the tank waste, converted to solid, and placed in capsules, most of which are stored onsite in water-filled basins. DOE established the Tank Waste Remediation System (TWRS) program in 1991. The TWRS program mission is to store, treat, immobilize and dispose, or prepare for disposal, the Hanford tank waste in an environmentally sound, safe, and cost-effective manner. Technology will need to be developed or improved to meet the TWRS program mission. The Integrated Technology Plan (ITP) is the high-level consensus plan that documents all TWRS technology activities for the life of the program.

Eaton, B.; Ignatov, A.; Johnson, S.; Mann, M.; Morasch, L.; Ortiz, S.; Novak, P. [eds.] [Pacific Northwest Lab., Richland, WA (United States)

1995-02-28T23:59:59.000Z

74

Organic Tanks Safety Program: Waste aging studies  

Science Conference Proceedings (OSTI)

The underground storage tanks at the Hanford Complex contain wastes generated from many years of plutonium production and recovery processes, and mixed wastes from radiological degradation processes. The chemical changes of the organic materials used in the extraction processes have a direct on several specific safety issues, including potential energy releases from these tanks. This report details the first year`s findings of a study charged with determining how thermal and radiological processes may change the composition of organic compounds disposed to the tank. Their approach relies on literature precedent, experiments with simulated waste, and studies of model reactions. During the past year, efforts have focused on the global reaction kinetics of a simulated waste exposed to {gamma} radiation, the reactions of organic radicals with nitrite ion, and the decomposition reactions of nitro compounds. In experiments with an organic tank non-radioactive simulant, the authors found that gas production is predominantly radiolytically induced. Concurrent with gas generation they observe the disappearance of EDTA, TBP, DBP and hexone. In the absence of radiolysis, the TBP readily saponifies in the basic medium, but decomposition of the other compounds required radiolysis. Key organic intermediates in the model are C-N bonded compounds such as oximes. As discussed in the report, oximes and nitro compounds decompose in strong base to yield aldehydes, ketones and carboxylic acids (from nitriles). Certain aldehydes can react in the absence of radiolysis to form H{sub 2}. Thus, if the pathways are correct, then organic compounds reacting via these pathways are oxidizing to lower energy content. 75 refs.

Camaioni, D.M.; Samuels, W.D.; Lenihan, B.D.; Clauss, S.A.; Wahl, K.L.; Campbell, J.A.

1994-11-01T23:59:59.000Z

75

Hanford tank residual waste – contaminant source terms and release models  

Science Conference Proceedings (OSTI)

Residual waste is expected to be left in 177 underground storage tanks after closure at the U.S. Department of Energy’s Hanford Site in Washington State (USA). In the long term, the residual wastes represent a potential source of contamination to the subsurface environment. Residual materials that cannot be completely removed during the tank closure process are being studied to identify and characterize the solid phases and estimate the release of contaminants from these solids to water that might enter the closed tanks in the future. As of the end of 2009, residual waste from five tanks has been evaluated. Residual wastes from adjacent tanks C-202 and C-203 have high U concentrations of 24 and 59 wt%, respectively, while residual wastes from nearby tanks C-103 and C-106 have low U concentrations of 0.4 and 0.03 wt%, respectively. Aluminum concentrations are high (8.2 to 29.1 wt%) in some tanks (C-103, C-106, and S-112) and relatively low (Technetium leachability is not as strongly dependent on the concentration of Tc in the waste, and it appears to be slightly more leachable by the Ca(OH)2-saturated solution than by the CaCO3-saturated solution. In general, Tc is much less leachable (<10 wt% of the available mass in the waste) than previously predicted. This may be due to the coprecipitation of trace concentrations of Tc in relatively insoluble phases such as Fe oxide/hydroxide solids.

Deutsch, William J.; Cantrell, Kirk J.; Krupka, Kenneth M.; Lindberg, Michael J.; Serne, R. Jeffrey

2011-08-23T23:59:59.000Z

76

Alternative Fuels Data Center: Promulgation of Renewable Fuel Storage Tank  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Promulgation of Promulgation of Renewable Fuel Storage Tank Regulations to someone by E-mail Share Alternative Fuels Data Center: Promulgation of Renewable Fuel Storage Tank Regulations on Facebook Tweet about Alternative Fuels Data Center: Promulgation of Renewable Fuel Storage Tank Regulations on Twitter Bookmark Alternative Fuels Data Center: Promulgation of Renewable Fuel Storage Tank Regulations on Google Bookmark Alternative Fuels Data Center: Promulgation of Renewable Fuel Storage Tank Regulations on Delicious Rank Alternative Fuels Data Center: Promulgation of Renewable Fuel Storage Tank Regulations on Digg Find More places to share Alternative Fuels Data Center: Promulgation of Renewable Fuel Storage Tank Regulations on AddThis.com... More in this section... Federal

77

A summary of available information on ferrocyanide tank wastes  

Science Conference Proceedings (OSTI)

Ferrocyanide wastes were generated at the Hanford site during the mid to late 1950s to make more tank space available for the storage of high level nuclear waste. The ferrocyanide process was developed as a method of removing {sup 137}Cs from existing waste solutions and from process solutions that resulted from the recovery of valuable uranium in waste tanks. During the coarse of the research associated with the ferrocyanide process, it was discovered that ferrocyanide materials when mixed with NaNO{sub 3} and/or NaNO{sub 2} exploded. This chemical reactivity became an issue in the 1980s when the safety associated with the storage of ferrocyanide wastes in Hanford tanks became prominent. These safety issues heightened in the late 1980s and led to the current scrutiny of the safety associated with these wastes and the current research and waste management programs. Over the past three years, numerous explosive test have been carried out using milligram quantities of cyanide compounds. These tests provide information on the nature of possible tank reactions. On heating a mixture of ferrocyanide and nitrate or nitrite, an explosive reaction normally begins at about 240{degrees}C, but may occur well below 200{degrees}C in the presence of catalysts or organic compounds that may act as initiators. The energy released is highly dependent on the course of the reaction. Three attempts to model hot spots in local areas of the tanks indicate a very low probability of having a hot spot large enough and hot enough to be of concern. The main purpose of this document is to inform the members of the Tank Waste Science Panel of the background and issues associated with the ferrocyanide wastes. Hopefully, this document fulfills similar needs outside of the framework of the Tank Waste Science Panel. 50 refs., 9 figs., 7 tabs.

Burger, L.L.; Strachan, D.M. (Pacific Northwest Lab., Richland, WA (United States)); Reynolds, D.A. (Westinghouse Hanford Co., Richland, WA (United States)); Schulz, W.W. (Schulz (W.W.), Wilmington, DE (United States))

1991-10-01T23:59:59.000Z

78

The integrated tank waste management plan at Oak Ridge National Laboratory  

SciTech Connect

DOE`s Environmental Management Program at Oak Ridge has developed an integrated tank waste management plan that combines the accelerated deployment of innovative technologies with an aggressive waste transfer schedule. Oak Ridge is cleaning out waste from aging underground storage tanks in preparation of waste processing, packaging and final safe disposal. During remediation this plan will reduce the risk of environmental, worker, and civilian exposure, save millions of dollars, and cut years off of tank remediation schedules at Oak Ridge.

Billingsley, K. [STEP, Inc., Oak Ridge, TN (United States); Mims, C. [Dept. of Energy, Oak Ridge, TN (United States). Oak Ridge Operations Office; Robinson, S. [Oak Ridge National Lab., TN (United States)

1998-06-01T23:59:59.000Z

79

Tank Waste and Waste Processing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tank Waste and Waste Processing Tank Waste and Waste Processing Tank Waste and Waste Processing Tank Waste and Waste Processing The Defense Waste Processing Facility set a record by producing 267 canisters filled with glassified waste in a year. New bubbler technology and other enhancements will increase canister production in the future. The Defense Waste Processing Facility set a record by producing 267 canisters filled with glassified waste in a year. New bubbler technology and other enhancements will increase canister production in the future. A Savannah River Remediation employee uses a manipulator located inside a shielded enclosure at the Defense Waste Processing Facility where the melter is pouring molten glass inside a canister. A Savannah River Remediation employee uses a manipulator located inside a

80

ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM - 2011  

SciTech Connect

Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2011 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2011 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2011-00026, HLW Tank Farm Inspection Plan for 2011, were completed. Ultrasonic measurements (UT) performed in 2011 met the requirements of C-ESR-G-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 25, 26 and 34 and the findings are documented in SRNL-STI-2011-00495, Tank Inspection NDE Results for Fiscal Year 2011, Waste Tanks 25, 26, 34 and 41. A total of 5813 photographs were made and 835 visual and video inspections were performed during 2011. A potential leaksite was discovered at Tank 4 during routine annual inspections performed in 2011. The new crack, which is above the allowable fill level, resulted in no release to the environment or tank annulus. The location of the crack is documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.6.

West, B.; Waltz, R.

2012-06-21T23:59:59.000Z

Note: This page contains sample records for the topic "waste storage tanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Verification survey report of the south waste tank farm training/test tower and hazardous waste storage lockers at the West Valley demonstration project, West Valley, New York  

Science Conference Proceedings (OSTI)

A team from ORAU's Independent Environmental Assessment and Verification Program performed verification survey activities on the South Test Tower and four Hazardous Waste Storage Lockers. Scan data collected by ORAU determined that both the alpha and alpha-plus-beta activity was representative of radiological background conditions. The count rate distribution showed no outliers that would be indicative of alpha or alpha-plus-beta count rates in excess of background. It is the opinion of ORAU that independent verification data collected support the site?s conclusions that the South Tower and Lockers sufficiently meet the site criteria for release to recycle and reuse.

Weaver, Phyllis C.

2012-08-29T23:59:59.000Z

82

VERIFICATION SURVEY REPORT OF THE SOUTH WASTE TANK FARM TRAINING/TEST TOWER AND HAZARDOUS WASTE STORAGE LOCKERS AT THE WEST VALLEY DEMONSTRATION PROJECT WEST VALLEY, NEW YORK  

SciTech Connect

A team from ORAU’s Independent Environmental Assessment and Verification Program performed verification survey activities on the South Test Tower and four Hazardous Waste Storage Lockers. Scan data collected by ORAU determined that both the alpha and alpha-plus-beta activity was representative of radiological background conditions. The count rate distribution showed no outliers that would be indicative of alpha or alpha-plus-beta count rates in excess of background. It is the opinion of ORAU that independent verification data collected support the site’s conclusions that the South Tower and Lockers sufficiently meet the site criteria for release to recycle and reuse.

Phyllis C. Weaver

2012-08-29T23:59:59.000Z

83

GRR/Section 18-CO-a - Underground Storage Tank Permit | Open Energy  

Open Energy Info (EERE)

GRR/Section 18-CO-a - Underground Storage Tank Permit GRR/Section 18-CO-a - Underground Storage Tank Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-CO-a - Underground Storage Tank Permit 18COAUndergroundStorageTankPermit (1).pdf Click to View Fullscreen Contact Agencies Colorado Department of Labor and Employment Regulations & Policies Solid Waste Disposal Act 7 CCR 1101-14 Article 2 Underground Storage Tanks Triggers None specified Click "Edit With Form" above to add content 18COAUndergroundStorageTankPermit (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The design, installation, registration, construction, and operation of

84

Radioactive waste storage issues  

SciTech Connect

In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal) of wastes generated solely within a state`s boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected.

Kunz, D.E.

1994-08-15T23:59:59.000Z

85

Hydrogen Storage "Think Tank" Report  

NLE Websites -- All DOE Office Websites (Extended Search)

brainstorming on this critical issue. This "Think Tank" meeting was held in Washington, D.C. on March 14, 2003 and was organized and sponsored by the U.S. Department of...

86

Improvement in LNG storage tanks  

SciTech Connect

To develop and produce natural gas fuel tanks for medium duty truck and transit bus end-use to overcome the weight and range problems inherent in current fuel systems.

NONE

1999-11-20T23:59:59.000Z

87

Hanford Tank Farm interim storage phase probabilistic risk assessment outline  

Science Conference Proceedings (OSTI)

This report is the second in a series examining the risks for the high level waste (HLW) storage facilities at the Hanford Site. The first phase of the HTF PSA effort addressed risks from Tank 101-SY, only. Tank 101-SY was selected as the initial focus of the PSA because of its propensity to periodically release (burp) a mixture of flammable and toxic gases. This report expands the evaluation of Tank 101-SY to all 177 storage tanks. The 177 tanks are arranged into 18 farms and contain the HLW accumulated over 50 years of weapons material production work. A centerpiece of the remediation activity is the effort toward developing a permanent method for disposing of the HLW tank`s highly radioactive contents. One approach to risk based prioritization is to perform a PSA for the whole HLW tank farm complex to identify the highest risk tanks so that remediation planners and managers will have a more rational basis for allocating limited funds to the more critical areas. Section 3 presents the qualitative identification of generic initiators that could threaten to produce releases from one or more tanks. In section 4 a detailed accident sequence model is developed for each initiating event group. Section 5 defines the release categories to which the scenarios are assigned in the accident sequence model and presents analyses of the airborne and liquid source terms resulting from different release scenarios. The conditional consequences measured by worker or public exposure to radionuclides or hazardous chemicals and economic costs of cleanup and repair are analyzed in section 6. The results from all the previous sections are integrated to produce unconditional risk curves in frequency of exceedance format.

Not Available

1994-05-19T23:59:59.000Z

88

ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2010  

SciTech Connect

Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2010 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2010 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2009-00138, HLW Tank Farm Inspection Plan for 2010, were completed. Ultrasonic measurements (UT) performed in 2010 met the requirements of C-ESG-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 30, 31 and 32 and the findings are documented in SRNL-STI-2010-00533, Tank Inspection NDE Results for Fiscal Year 2010, Waste Tanks 30, 31 and 32. A total of 5824 photographs were made and 1087 visual and video inspections were performed during 2010. Ten new leaksites at Tank 5 were identified in 2010. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.5. Ten leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. None of these new leaksites resulted in a release to the environment. The leaksites were documented during wall cleaning activities and the waste nodules associated with the leaksites were washed away. Previously documented leaksites were reactivated at Tank 12 during waste removal activities.

West, B.; Waltz, R.

2011-06-23T23:59:59.000Z

89

Savannah River Tank Waste Residuals  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah Savannah River Savannah River Tank Waste Residuals HLW Corporate Board November 6, 2008 1 November 6, 2008 Presentation By Sherri R. Ross Department of Energy Savannah River Operations Office The Issue * How clean is clean? * Ultimate Challenge - Justify highly radioactive radionuclides have been removed to the maximum extent practical? 2 removed to the maximum extent practical? - Building compelling regulatory documentation that will withstand intense scrutiny §3116 Requirements 1. Does not require disposal in deep geological repository 2. Highly radioactive radionuclides removed to the maximum extent practical 3. Meet the performance objectives in 10 CFR Part 3 3. Meet the performance objectives in 10 CFR Part 61, Subpart C 4. Waste disposed pursuant to a State-approved closure plan or permit Note: If it is anticipated that Class C disposal limits will be exceeded, additional

90

General requirements for RCRA regulated hazardous waste tanks  

Science Conference Proceedings (OSTI)

The Resource Conservation and Recovery Act (RCRA), as amended, requires that tanks used for the storage or treatment of hazardous waste (HazW) be permitted, and comply with the requirements contained within the Code of Federal Regulations (CFR) TItle 40 in Subpart J of Part 264/265, unless those tanks have been exempted. Subpart J specifies requirements for the design, construction, installation, operation, inspection, maintenance, repair, release, response, and closure of HazW tanks. Also, the regulations make a distinction between new and existing tanks. Effective December 6, 1995, standards for controlling volatile organic air emissions will apply to non-exempt HazW tanks. HazW tanks will have to be equipped with a cover or floating roof, or be designed to operate as a closed system, to be in compliance with the air emission control requirements. This information brief describes those tanks that are subject to the Subpart J requirements, and will also discuss secondary containment, inspection, restrictions on waste storage, release response, and closure requirements associated with regulated HazW tanks.

NONE

1995-11-01T23:59:59.000Z

91

Idaho Waste Vitrification Facilities Project Vitrified Waste Interim Storage Facility  

SciTech Connect

This feasibility study report presents a draft design of the Vitrified Waste Interim Storage Facility (VWISF), which is one of three subprojects of the Idaho Waste Vitrification Facilities (IWVF) project. The primary goal of the IWVF project is to design and construct a treatment process system that will vitrify the sodium-bearing waste (SBW) to a final waste form. The project will consist of three subprojects that include the Waste Collection Tanks Facility, the Waste Vitrification Facility (WVF), and the VWISF. The Waste Collection Tanks Facility will provide for waste collection, feed mixing, and surge storage for SBW and newly generated liquid waste from ongoing operations at the Idaho Nuclear Technology and Engineering Center. The WVF will contain the vitrification process that will mix the waste with glass-forming chemicals or frit and turn the waste into glass. The VWISF will provide a shielded storage facility for the glass until the waste can be disposed at either the Waste Isolation Pilot Plant as mixed transuranic waste or at the future national geological repository as high-level waste glass, pending the outcome of a Waste Incidental to Reprocessing determination, which is currently in progress. A secondary goal is to provide a facility that can be easily modified later to accommodate storage of the vitrified high-level waste calcine. The objective of this study was to determine the feasibility of the VWISF, which would be constructed in compliance with applicable federal, state, and local laws. This project supports the Department of Energy’s Environmental Management missions of safely storing and treating radioactive wastes as well as meeting Federal Facility Compliance commitments made to the State of Idaho.

Bonnema, Bruce Edward

2001-09-01T23:59:59.000Z

92

Hanford Tank Waste Treatment and Immobilization Plan Project...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Tank Waste Treatment and Immobilization Plan Project PIA, Richland Operations Office Hanford Tank Waste Treatment and Immobilization Plan Project PIA, Richland Operations...

93

High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 1  

SciTech Connect

The purpose of this Requirements Identification Document (RID) section is to identify, in one location, all of the facility specific requirements and good industry practices which are necessary or important to establish an effective Issues Management Program for the Tank Farm Facility. The Management Systems Functional Area includes the site management commitment to environmental safety and health (ES&H) policies and controls, to compliance management, to development and management of policy and procedures, to occurrence reporting and corrective actions, resource and issue management, and to the self-assessment process.

Not Available

1994-04-01T23:59:59.000Z

94

RETRIEVAL & TREATMENT OF HANFORD TANK WASTE  

SciTech Connect

The Hanford Tank Farms contain 53 million gal of radioactive waste accumulated during over 50 years of operations. The waste is stored in 177 single-shell and double-shell tanks in the Hanford 200 Areas. The single-shell tanks were put into operation from the early 1940s through the 1960s with wastes received from several generations of processing facilities for the recovery of plutonium and uranium, and from laboratories and other ancillary facilities. The overall hanford Tank Farm system represents one of the largest nuclear legacies in the world driving towards completion of retrieval and treatment in 2028 and the associated closure activity completion by 2035. Remote operations, significant radiation/contamination levels, limited access, and old facilities are just some of the challenges faced by retrieval and treatment systems. These systems also need to be able to successfully remove 99% or more of the waste, and support waste treatment, and tank closure. The Tank Farm retrieval program has ramped up dramatically in the past three years with design, fabrication, installation, testing, and operations ongoing on over 20 of the 149 single-shell tanks. A variety of technologies are currently being pursued to retrieve different waste types, applications, and to help establish a baseline for recovery/operational efficiencies. The paper/presentation describes the current status of retrieval system design, fabrication, installation, testing, readiness, and operations, including: (1) Saltcake removal progress in Tanks S-102, S-109, and S-112 using saltcake dissolution, modified sluicing, and high pressure water lancing techniques; (2) Sludge vacuum retrieval experience from Tanks C-201, C-202, C-203, and C-204; (3) Modified sluicing experience in Tank C-103; (4) Progress on design and installation of the mobile retrieval system for sludge in potentially leaking single-shell tanks, particularly Tank C-101; and (5) Ongoing installation of various systems in the next generation of tanks to be retrieved.

EACKER, J.A.; SPEARS, J.A.; STURGES, M.H.; MAUSS, B.M.

2006-01-20T23:59:59.000Z

95

Underground Storage Tank Program (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

These rules are intended to protect public health and the environment by establishing standards for the design, installation, operation, maintenance, monitoring, and closure of underground storage...

96

DOE Clears Way for Closure of Emptied Waste Tanks at Idaho National  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Clears Way for Closure of Emptied Waste Tanks at Idaho National DOE Clears Way for Closure of Emptied Waste Tanks at Idaho National Laboratory DOE Clears Way for Closure of Emptied Waste Tanks at Idaho National Laboratory November 20, 2006 - 9:25am Addthis Secretary Bodman Signs Idaho Waste Determination After Consultation with NRC WASHINGTON, DC - U.S. Secretary of Energy Samuel W. Bodman yesterday signed a waste determination for the Idaho Tank Farm Facility clearing the way for the Department of Energy (DOE) to safely and permanently close the 15 waste storage tanks at the Idaho National Laboratory near Arco, Idaho. DOE will begin grouting the first 11 cleaned and emptied tanks at Idaho Nuclear Technology and Engineering Center (INTEC) and plans to complete all 15 tanks by December 2012. Assistant Secretary of Energy for Environmental Management James Rispoli

97

Use belowground storage tanks to manage stormwater  

Science Conference Proceedings (OSTI)

To meet performance and operating requirements under Resource Conservation and Recovery Act (RCRA), BP Oil`s Toledo Refinery installed two 10-million-gallon (MMgal) concrete belowground storage tanks to replace the existing impoundment ponds. Environmental, safety and operating criteria influenced how this older refinery could cost-effectively replace impoundment ponds without interrupting the production schedule. The north stormwater impoundment pond at BP Oil`s Toledo Refinery had received primary sludge, a RCRA-listed hazardous waste and material exceeding the toxic characteristic limit for benzene (0.5 ppm). Because the pond could not be adapted to meet RCRA standards, it had to be replaced by a system that met these standards and New Source Performance Standards (NSPS). Under normal operating conditions, stormwater was commingled with process wastewater and processed at the wastewater treatment unit (WWTU) before final disposal. However, when flow in the sewer system exceeded the capacity of the WWTU, excess flow was stored in an impoundment system. The case history shows how BP Oil`s project engineers, working with a consulting engineering group and a general contractor (GC), cost-effectively replaced the impoundment pond to handle stormwater runoff for the refinery.

Nedrow, J. [BP Oil Co., Toledo, OH (United States)

1996-01-01T23:59:59.000Z

98

ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM- 2007  

SciTech Connect

Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. The 2007 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. A very small amount of material had seeped from Tank 12 from a previously identified leaksite. The material observed had dried on the tank wall and did not reach the annulus floor. A total of 5945 photographs were made and 1221 visual and video inspections were performed during 2007. Additionally, ultrasonic testing was performed on four Waste Tanks (15, 36, 37 and 38) in accordance with approved inspection plans that met the requirements of WSRC-TR-2002- 00061, Revision 2 'In-Service Inspection Program for High Level Waste Tanks'. The Ultrasonic Testing (UT) In-Service Inspections (ISI) are documented in a separate report that is prepared by the ISI programmatic Level III UT Analyst. Tanks 15, 36, 37 and 38 are documented in 'Tank Inspection NDE Results for Fiscal Year 2007'; WSRC-TR-2007-00064.

West, B; Ruel Waltz, R

2008-06-05T23:59:59.000Z

99

Thermodynamic Modeling of Hanford Waste Tank 241-AN-107  

Science Conference Proceedings (OSTI)

The high level waste storage double-shell tanks at the Hanford site are highly basic. The high basicity is a key factor in controlling the chemical behavior of different components of the waste and in influencing the corrosion rate of the carbon steel primary tanks. However, the introduction of atmospheric CO2 can act to reduce the pH of the tank wastes over time and possibly alter the corrosion rate of the carbon steel tanks. In order to at least partially address this issue for waste tank 241-AN-107, thermodynamic modeling calculations were performed to predict the changes in pH and carbonate concentration that could occur as CO2 is absorbed from the atmosphere. The calculations extended to complete equilibrium with the partial pressure of CO2 in the atmosphere (i.e. pCO2 = 10-3.5 atm). Simulations were performed for both the “upper” segments of tank 241-AN-107, which have been influenced by the introduction of high concentrations of NaOH to the supernatant, and for the “lower” segments where the salt cake/interstitial liquid have not been substantially altered by the introduction of base concentration.

Felmy, Andrew R.

2005-09-07T23:59:59.000Z

100

Tank farm surveillance and waste status summary report for October 1992  

SciTech Connect

This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 49 smaller catch tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US Department of Energy-Richland Operations Office Order 5820.2A, Chapter 1, Section 3.e. (3) (DOE-RL, 1990, Radioactive Waste Management, US Department of Energy-Richland Operation Office, Richland, Washington) requiring the reporting of waste inventories and space utilization for Hanford Tank Farm Tanks.

Hanlon, B.M.

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste storage tanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Tank farm surveillance and waste status summary report for December 1992  

SciTech Connect

This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 49 smaller catch tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US Department of Energy-Richland Operations Office Order 5820.2A, Chapter I, Section 3.e. (3) (DOE-RL, 1990, Radioactive Waste Management, US Department of Energy-Richland Operation Office, Richland, Washington) requiring the reporting of waste inventories and space utilization for Hanford Tank Farm Tanks.

Hanlon, B.M.

1993-02-01T23:59:59.000Z

102

Tank farm surveillance and waste status summary report for January 1993  

SciTech Connect

This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 49 smaller catch tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US Department of Energy-Richland Operations Office Order 5820.2A, Chapter I, Section 3.e. (3) (DOE-RL, 1990, Radioactive Waste Management, US Department of Energy-Richland Operation Office, Richland, Washington) requiring the reporting of waste inventories and space utilization for Hanford Tank Farm Tanks.

Hanlon, B.M.

1993-03-01T23:59:59.000Z

103

Tank farm surveillance and waste status summary report for November 1993  

SciTech Connect

This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 49 smaller catch tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US Department of Energy-Richland Operations Office Order 5820.2A, Chapter I. Section 3.e. (3) (DOE-RL, 1990, Radioactive Waste Management, US Department of Energy-Richland Operation Office, Richland, Washington) requiring the reporting of waste inventories and space utilization for Hanford Tank Farm Tanks.

Hanlon, B.M.

1994-02-01T23:59:59.000Z

104

Tank farm surveillance and waste status summary report for November 1992  

SciTech Connect

This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 49 smaller catch tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US Department of Energy-Richland Operations Office Order 5820.2A, Chapter 1, Section 3.e. (3) (DOE-RL, 1990, Radioactive Waste Management, US Department of Energy-Richland Operation Office, Richland, Washington) requiring the reporting of waste inventories and space utilization for Hanford Tank Farm Tanks.

Hanlon, B.M.

1993-02-01T23:59:59.000Z

105

Tank farm surveillance and waste status summary report for June 1993  

Science Conference Proceedings (OSTI)

This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 49 smaller catch tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US Department of Energy-Richland Operations Office Order 5820.2A, Chapter I, Section 3.e. (3) (DOE-RL, 1990, Radioactive Waste Management, US Department of Energy-Richland Operation Office, Richland, Washington) requiring the reporting of waste inventories and space utilization for Hanford Tank Farm Tanks.

Hanlon, B.M.

1993-10-01T23:59:59.000Z

106

Tank Farm surveillance and waste status summary report for September 1993  

SciTech Connect

This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 49 smaller catch tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US Department of Energy-Richland Operations Office Order 5820.2A, Chapter 1, Section 3.e. (3) (DOE-RL, 1990, Radioactive Waste Management, US Department of Energy-Richland Operation Office, Richland, Washington) requiring the reporting of waste inventories and space utilization for Hanford Tank Farm Tanks.

Hanlon, B.M.

1994-01-01T23:59:59.000Z

107

Development of a High Level Waste Tank Inspection System  

SciTech Connect

The Westinghouse Savannah River Technology Center was requested by it`s sister site, West Valley Nuclear Service (WVNS), to develop a remote inspection system to gather wall thickness readings of their High Level Waste Tanks. WVNS management chose to take a proactive approach to gain current information on two tanks t hat had been in service since the early 70`s. The tanks contain high level waste, are buried underground, and have only two access ports to an annular space between the tank and the secondary concrete vault. A specialized remote system was proposed to provide both a visual surveillance and ultrasonic thickness measurements of the tank walls. A magnetic wheeled crawler was the basis for the remote delivery system integrated with an off-the-shelf Ultrasonic Data Acquisition System. A development program was initiated for Savannah River Technology Center (SRTC) to design, fabricate, and test a remote system based on the Crawler. The system was completed and involved three crawlers to perform the needed tasks, an Ultrasonic Crawler, a Camera Crawler, and a Surface Prep Crawler. The crawlers were computer controlled so that their operation could be done remotely and their position on the wall could be tracked. The Ultrasonic Crawler controls were interfaced with ABB Amdata`s I-PC, Ultrasonic Data Acquisition System so that thickness mapping of the wall could be obtained. A second system was requested by Westinghouse Savannah River Company (WSRC), to perform just ultrasonic mapping on their similar Waste Storage Tanks; however, the system needed to be interfaced with the P-scan Ultrasonic Data Acquisition System. Both remote inspection systems were completed 9/94. Qualifications tests were conducted by WVNS prior to implementation on the actual tank and tank development was achieved 10/94. The second inspection system was deployed at WSRC 11/94 with success, and the system is now in continuous service inspecting the remaining high level waste tanks at WSRC.

Appel, D.K.; Loibl, M.W. [Westinghouse Savannah River Company, SC (United States); Meese, D.C. [Westinghouse West Valley Nuclear Services, West Valley, NY (United States)

1995-03-21T23:59:59.000Z

108

EM Tank Waste Subcommittee Report for SRS and Hanford Tank Waste...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

incorporating chemistry. Such tools would allow the facile evaluation of the impacts of treatment and waste form alternatives on the overall disposition path for Hanford tank...

109

Organic Tank Safety Project: development of a method to measure the equilibrium water content of Hanford organic tank wastes and demonstration of method on actual waste  

Science Conference Proceedings (OSTI)

Some of Hanford`s underground waste storage tanks contain Organic- bearing high level wastes that are high priority safety issues because of potentially hazardous chemical reactions of organics with inorganic oxidants in these wastes such as nitrates and nitrites. To ensure continued safe storage of these wastes, Westinghouse Hanford Company has placed affected tanks on the Organic Watch List and manages them under special rules. Because water content has been identified as the most efficient agent for preventing a propagating reaction and is an integral part of the criteria developed to ensure continued safe storage of Hanford`s organic-bearing radioactive tank wastes, as part of the Organic Tank Safety Program the Pacific Northwest National Laboratory developed and demonstrated a simple and easily implemented procedure to determine the equilibrium water content of these potentially reactive wastes exposed to the range of water vapor pressures that might be experienced during the wastes` future storage. This work focused on the equilibrium water content and did not investigate the various factors such as @ ventilation, tank surface area, and waste porosity that control the rate that the waste would come into equilibrium, with either the average Hanford water partial pressure 5.5 torr or other possible water partial pressures.

Scheele, R.D.; Bredt, P.R.; Sell, R.L.

1996-09-01T23:59:59.000Z

110

Underground Storage Tank Regulations for the Certification of Persons Who  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Underground Storage Tank Regulations for the Certification of Underground Storage Tank Regulations for the Certification of Persons Who Install, Alter, and Remove Underground Storage Tanks (Mississippi) Underground Storage Tank Regulations for the Certification of Persons Who Install, Alter, and Remove Underground Storage Tanks (Mississippi) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells

111

Approach for tank safety characterization of Hanford site waste  

Science Conference Proceedings (OSTI)

The overall approach and associated technical basis for characterizing Hanford Site waste to help identify and resolve Waste Tank Safety Program safety issues has been summarized. The safety issues include flammable gas, noxious vapors, organic solvents, condensed-phase exothermic reactions (ferrocyanide and organic complexants), criticality, high heat, and safety screening. For the safety issues involving chemical reactions (i.e., flammable gas, organic solvents, ferrocyanide, and organic complexants), the approach to safety characterization is based on the fact that rapid exothermic reactions cannot occur if either fuel, oxidizer, or temperature (initiators) is not sufficient or controlled. The approach to characterization has been influenced by the progress made since mid-1993: (1) completion of safety analyses on ferrocyanide, criticality, organic solvent in tank 241-C-103, and sludge dryout. (2) successful mitigation of tank 241-SY-101; (3) demonstration of waste aging in laboratory experiments and from waste sampling, and (4) increased understanding of the information that can be obtained from headspace sampling. Headspace vapor sampling is being used to confirm that flammable gas does not accumulate in the single-shell tanks, and to determine whether organic solvents are present. The headspaces of tanks that may contain significant quantities of flammable gas will be monitored continuously using standard hydrogen monitors. For the noxious vapors safety issue, characterization will consist of headspace vapor sampling of most of the Hanford Site waste tanks. Sampling specifically for criticality is not required to confirm interim safe storage; however, analyses for fissile material will be conducted as waste samples are obtained for other reasons. High-heat tanks will be identified through temperature monitoring coupled with thermal analyses.

Meacham, J.E.; Babad, H.; Cash, R.J.; Dukelow, G.T.; Eberlein, S.J.; Hamilton, D.W.; Johnson, G.D.; Osborne, J.W.; Payne, M.A.; Sherwood, D.J. [and others

1995-03-01T23:59:59.000Z

112

Hanford Determines Double-Shell Tank Leaked Waste From Inner Tank |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Determines Double-Shell Tank Leaked Waste From Inner Tank Determines Double-Shell Tank Leaked Waste From Inner Tank Hanford Determines Double-Shell Tank Leaked Waste From Inner Tank October 22, 2012 - 12:00pm Addthis Media Contacts Lori Gamache, ORP 509-372-9130 John Britton, WRPS 509-376-5561 RICHLAND - The Department of Energy's Office of River Protection (ORP), working with its Hanford tank operations contractor Washington River Protection Solutions, has determined that there is a slow leak of chemical and radioactive waste into the annulus space in Tank AY-102, the approximately 30-inch area between the inner primary tank and the outer tank that serves as the secondary containment for these types of tanks. This is the first time a double-shell tank (DST) leak from the primary tank into the annulus has been identified. There is no indication of waste in

113

Tank waste chemistry: A new understanding of waste aging  

SciTech Connect

There is concern about the risk of uncontrolled exothermic reaction(s) in Hanford Site waste tanks containing NO{sub 3}{sup {minus}}/NO{sub 2} based salts and/or metal hydroxide sludges in combination with organics or ferrocyanides. However, gradual oxidation of the waste in the tanks to less reactive species appears to have reduced the risk. In addition, wastes sampled to date contain sufficiently large quantities of water so that propagation reactions are highly unlikely. This paper investigates various aspects of the aging of Hanford tank wastes.

Babad, H. [Westinghouse Hanford Co., Richland, WA (United States); Camaioni, D.M.; Lilga, M.A.; Samuels, W.D.; Strachan, D.M. [Pacific Northwest Lab., Richland, WA (United States)

1993-02-01T23:59:59.000Z

114

ORNL measurements at Hanford Waste Tank TX-118  

Science Conference Proceedings (OSTI)

A program of measurements and calculations to develop a method of measuring the fissionable material content of the large waste storage tanks at the Hanford, Washington, site is described in this report. These tanks contain radioactive waste from the processing of irradiated fuel elements from the plutonium-producing nuclear reactors at the Hanford site. Time correlation and noise analysis techniques, similar to those developed for and used in the Nuclear Weapons Identification System at the Y-12 Plant in Oak Ridge, Tennessee, will be used at the Hanford site. Both ``passive`` techniques to detect the neutrons emitted spontaneously from the waste in the tank and ``active`` techniques using AmBe and {sup 252}Cf neutron sources to induce fissions will be used. This work is divided into three major tasks: (1) development of high-sensitivity neutron detectors that can selectively count only neutrons in the high {gamma} radiation fields in the tanks, (2) Monte Carlo neutron transport calculations using both the KENO and MCNP codes to plan and analyze the measurements, and (3) the measurement of time-correlated neutrons by time and frequency analysis to distinguish spontaneous fission from sources inside the tanks. This report describes the development of the detector and its testing in radiation fields at the Radiation Calibration Facility at Oak Ridge National Laboratory and in tank TX-118 at the 200 W area at Westinghouse Hanford Company.

Koehler, P.E.; Mihalczo, J.T.

1995-02-01T23:59:59.000Z

115

Data Quality Objectives for Tank Farms Waste Compatibility Program  

SciTech Connect

There are 177 waste storage tanks containing over 210,000 m{sup 3} (55 million gal) of mixed waste at the Hanford Site. The River Protection Project (RPP) has adopted the data quality objective (DQO) process used by the U.S. Environmental Protection Agency (EPA) (EPA 1994a) and implemented by RPP internal procedure (Banning 1999a) to identify the information and data needed to address safety issues. This DQO document is based on several documents that provide the technical basis for inputs and decision/action levels used to develop the decision rules that evaluate the transfer of wastes. A number of these documents are presently in the process of being revised. This document will need to be revised if there are changes to the technical criteria in these supporting documents. This DQO process supports various documents, such as sampling and analysis plans and double-shell tank (DST) waste analysis plans. This document identifies the type, quality, and quantity of data needed to determine whether transfer of supernatant can be performed safely. The requirements in this document are designed to prevent the mixing of incompatible waste as defined in Washington Administrative Code (WAC) 173-303-040. Waste transfers which meet the requirements contained in this document and the Double-Shell Tank Waste Analysis Plan (Mulkey 1998) are considered to be compatible, and prevent the mixing of incompatible waste.

BANNING, D.L.

1999-07-02T23:59:59.000Z

116

Removing Phosphate from Hanford High-Phosphate Tank Wastes: FY 2010 Results  

SciTech Connect

The U.S. Department of Energy (DOE) is responsible for environmental remediation at the Hanford Site in Washington State, a former nuclear weapons production site. Retrieving, processing, immobilizing, and disposing of the 2.2 × 105 m3 of radioactive wastes stored in the Hanford underground storage tanks dominates the overall environmental remediation effort at Hanford. The cornerstone of the tank waste remediation effort is the Hanford Tank Waste Treatment and Immobilization Plant (WTP). As currently designed, the capability of the WTP to treat and immobilize the Hanford tank wastes in the expected lifetime of the plant is questionable. For this reason, DOE has been pursuing supplemental treatment options for selected wastes. If implemented, these supplemental treatments will route certain waste components to processing and disposition pathways outside of WTP and thus will accelerate the overall Hanford tank waste remediation mission.

Lumetta, Gregg J.; Braley, Jenifer C.; Edwards, Matthew K.; Qafoku, Odeta; Felmy, Andrew R.; Carter, Jennifer C.; MacFarlan, Paul J.

2010-09-22T23:59:59.000Z

117

Computer modeling of ORNL storage tank sludge mobilization and mixing  

SciTech Connect

This report presents and analyzes the results of the computer modeling of mixing and mobilization of sludge in horizontal, cylindrical storage tanks using submerged liquid jets. The computer modeling uses the TEMPEST computational fluid dynamics computer program. The horizontal, cylindrical storage tank configuration is similar to the Melton Valley Storage Tanks (MVST) at Oak Ridge National (ORNL). The MVST tank contents exhibit non-homogeneous, non-Newtonian rheology characteristics. The eventual goals of the simulations are to determine under what conditions sludge mobilization using submerged liquid jets is feasible in tanks of this configuration, and to estimate mixing times required to approach homogeneity of the contents of the tanks.

Terrones, G.; Eyler, L.L.

1993-09-01T23:59:59.000Z

118

Hanford Tank Waste - Near Source Treatment of Low Activity Waste  

SciTech Connect

Treatment and disposition of Hanford Site waste as currently planned consists of I 00+ waste retrievals, waste delivery through up to 8+ miles of dedicated, in-ground piping, centralized mixing and blending operations- all leading to pre-treatment combination and separation processes followed by vitrification at the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The sequential nature of Tank Farm and WTP operations requires nominally 15-20 years of continuous operations before all waste can be retrieved from many Single Shell Tanks (SSTs). Also, the infrastructure necessary to mobilize and deliver the waste requires significant investment beyond that required for the WTP. Treating waste as closely as possible to individual tanks or groups- as allowed by the waste characteristics- is being investigated to determine the potential to 1) defer, reduce, and/or eliminate infrastructure requirements, and 2) significantly mitigate project risk by reducing the potential and impact of single point failures. The inventory of Hanford waste slated for processing and disposition as LAW is currently managed as high-level waste (HLW), i.e., the separation of fission products and other radionuclides has not commenced. A significant inventory ofthis waste (over 20M gallons) is in the form of precipitated saltcake maintained in single shell tanks, many of which are identified as potential leaking tanks. Retrieval and transport (as a liquid) must be staged within the waste feed delivery capability established by site infrastructure and WTP. Near Source treatment, if employed, would provide for the separation and stabilization processing necessary for waste located in remote farms (wherein most ofthe leaking tanks reside) significantly earlier than currently projected. Near Source treatment is intended to address the currently accepted site risk and also provides means to mitigate future issues likely to be faced over the coming decades. This paper describes the potential near source treatment and waste disposition options as well as the impact these options could have on reducing infrastructure requirements, project cost and mission schedule.

Ramsey, William Gene

2013-08-15T23:59:59.000Z

119

Life Estimation of High Level Waste Tank Steel for H-Tank Farm ...  

the tanks is not considered in the analysis. Life Estimation of High Level Waste Tank ... conservative scenario in which the concrete vault has completely

120

THE RETRIEVAL KNOWLEDGE CENTER EVALUATION OF LOW TANK LEVEL MIXING TECHNOLOGIES FOR DOE HIGH LEVEL WASTE TANK RETRIEVAL 10516  

Science Conference Proceedings (OSTI)

The Department of Energy (DOE) Complex has over two-hundred underground storage tanks containing over 80-million gallons of legacy waste from the production of nuclear weapons. The majority of the waste is located at four major sites across the nation and is planned for treatment over a period of almost forty years. The DOE Office of Technology Innovation & Development within the Office of Environmental Management (DOE-EM) sponsors technology research and development programs to support processing advancements and technology maturation designed to improve the costs and schedule for disposal of the waste and closure of the tanks. Within the waste processing focus area are numerous technical initiatives which included the development of a suite of waste removal technologies to address the need for proven equipment and techniques to remove high level radioactive wastes from the waste tanks that are now over fifty years old. In an effort to enhance the efficiency of waste retrieval operations, the DOE-EM Office of Technology Innovation & Development funded an effort to improve communications and information sharing between the DOE's major waste tank locations as it relates to retrieval. The task, dubbed the Retrieval Knowledge Center (RKC) was co-lead by the Savannah River National Laboratory (SRNL) and the Pacific Northwest National Laboratory (PNNL) with core team members representing the Oak Ridge and Idaho sites, as well as, site contractors responsible for waste tank operations. One of the greatest challenges to the processing and closure of many of the tanks is complete removal of all tank contents. Sizeable challenges exist for retrieving waste from High Level Waste (HLW) tanks; with complications that are not normally found with tank retrieval in commercial applications. Technologies currently in use for waste retrieval are generally adequate for bulk removal; however, removal of tank heels, the materials settled in the bottom of the tank, using the same technology have proven to be difficult. Through the RKC, DOE-EM funded an evaluation of adaptable commercial technologies that could assist with the removal of the tank heels. This paper will discuss the efforts and results of developing the RKC to improve communications and discussion of tank waste retrieval through a series of meetings designed to identify technical gaps in retrieval technologies at the DOE Hanford and Savannah River Sites. This paper will also describe the results of an evaluation of commercially available technologies for low level mixing as they might apply to HLW tank heel retrievals.

Fellinger, A.

2009-12-08T23:59:59.000Z

Note: This page contains sample records for the topic "waste storage tanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Flammable gas tank waste level reconciliation for 241-S-111  

SciTech Connect

Fluor Daniel Northwest (FDNW) was authorized to address flammable gas issues by reconciling the unexplained surface level increases in Tank 241-S-111. The trapped gas evaluation document states that Tank S-111 exceeds the 25% of the lower flammable-limit criterion, based on a surface level rise evaluation. The Waste Storage Tank Status and Leak Detection Criteria document, commonly referred to as the Welty Report is the basis for this letter report. The unexplained waste level rises were attributed to the production and retention of gas in the column of waste corresponding to the unaccounted for surface level rise. From 1973 through 1980, the Welty Report tracked Tank S-111 transfers. This surface level increase is from an unknown source or is unaccounted for. Duke Engineering and Services Hanford and Lockheed Martin Hanford Corporation are interested in determining the validity of the unexplained surface level changes reported in the Welty Report based upon other corroborative sources of data. The purpose of this letter report is to assemble detailed surface level and waste addition data from daily tank records, logbooks, and other corroborative data that indicate surface levels, and to reconcile the cumulative unaccounted for surface level changes as shown in the Welty Report from 1973 through 1980. Tank S-111 initially received waste from REDOX in 1952, and after April 1974, primarily received processed waste slurry from the 242-S Evaporator/Crystallizer and transferred supernatant waste to Tank S-102. From the FDNW review and comparisons of the Welty Report versus other daily records for Tank S-111, FDNW determined that the majority of the time, the Welty Report is consistent with daily records. Surface level decreases that occurred following saltwell pumping were identified as unaccounted for decreases in the Welty Report, however they were probably a continued settlement caused by saltwell pumping of the interstitial liquids. Because the flammable/trapped gas issue is linked to the unexplained increase in the surface level, FDNW recommends that all occurrence reports, concerning tank waste level increases or decreases from 1970 through 1980, be reevaluated for acceptability of the evaluation as to the root cause of the occurrence.

Brevick, C.H.; Gaddis, L.A.

1997-06-23T23:59:59.000Z

122

ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2008  

SciTech Connect

Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2008 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report.

West, B.; Waltz, R.

2009-06-11T23:59:59.000Z

123

Annual Radioactive Waste Tank Inspection Program - 2000  

SciTech Connect

Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2000 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report.

West, W.R.

2001-04-17T23:59:59.000Z

124

Criteria for temperature monitoring in ferrocyanide waste tanks at the Hanford Site  

Science Conference Proceedings (OSTI)

This report is relevant to the twenty underground waste storage tanks at the Hanford Site that have been identified as potentially containing a significant amount of ferrocyanide compounds. Tanks believed to contain > 1,000 gram moles of ferrocyanide have been classified as Watch List tanks. This report addresses temperature monitoring criteria for the Ferrocyanide Watch List tanks. These criteria must comply with governing regulations to ensure that safe continued storage of the tank wastes is not jeopardized. Temperature monitoring is defined in this report as the routine as the routine continuous measurement of a waste tank temperature with an output that is tied to an actively interrogated information collection system that includes an automated warning of temperature increases beyond the established limits.

Fowler, K.D.; Dukelow, G.T.

1994-09-01T23:59:59.000Z

125

Georgia Underground Storage Tank Act (Georgia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Underground Storage Tank Act (Georgia) Underground Storage Tank Act (Georgia) Georgia Underground Storage Tank Act (Georgia) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Georgia Program Type Environmental Regulations Siting and Permitting Provider Georgia Department of Natural Resources The Georgia Underground Storage Act (GUST) provides a comprehensive program to prevent, detect, and correct releases from underground storage tanks

126

EA-1044: Melton Valley Storage Tanks Capacity Increase Project- Oak Ridge  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

44: Melton Valley Storage Tanks Capacity Increase Project- Oak 44: Melton Valley Storage Tanks Capacity Increase Project- Oak Ridge National Laboratory, Oak Ridge, Tennessee EA-1044: Melton Valley Storage Tanks Capacity Increase Project- Oak Ridge National Laboratory, Oak Ridge, Tennessee SUMMARY This EA evaluates the environmental impacts of the proposal to construct and maintain additional storage capacity at the U.S. Department of Energy's Oak Ridge National Laboratory, Oak Ridge, Tennessee, for liquid low-level radioactive waste. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD May 25, 1995 EA-1044: Finding of No Significant Impact Melton Valley Storage Tanks Capacity Increase Project- Oak Ridge National Laboratory, Oak Ridge, Tennessee May 25, 1995 EA-1044: Final Environmental Assessment

127

Microsoft Word - Tank Waste Report 9-30-05.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accelerated Tank Waste Retrieval Accelerated Tank Waste Retrieval Activities at the Hanford Site DOE/IG-0706 October 2005 REPORT ON THE ACCELERATED TANK WASTE RETRIEVAL ACTIVITIES AT THE HANFORD SITE TABLE OF CONTENTS Tank Waste Retrieval Details of Finding 1 Recommendations and Comments 4 Appendices Objective, Scope, and Methodology 6 Prior Reports 7 Management Comments 8 Tank Waste Retrieval Page 1 Details of Finding Tank Waste The Department will not meet Tri-Party Agreement (Agreement) Retrieval Activities milestones for the retrieval of waste from the single-shell tanks located at the C-Tank Farm within schedule and cost. Based on the current C-Tank Farm retrieval schedule and the amount of waste retrieved to date, the Department will not accomplish its

128

Radioactive Tank Waste Remediation Focus Area. Technology summary  

SciTech Connect

In February 1991, DOE`s Office of Technology Development created the Underground Storage Tank Integrated Demonstration (UST-ID), to develop technologies for tank remediation. Tank remediation across the DOE Complex has been driven by Federal Facility Compliance Agreements with individual sites. In 1994, the DOE Office of Environmental Management created the High Level Waste Tank Remediation Focus Area (TFA; of which UST-ID is now a part) to better integrate and coordinate tank waste remediation technology development efforts. The mission of both organizations is the same: to focus the development, testing, and evaluation of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in USTs at DOE facilities. The ultimate goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. The TFA has focused on four DOE locations: the Hanford Site in Richland, Washington, the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho, the Oak Ridge Reservation in Oak Ridge, Tennessee, and the Savannah River Site (SRS) in Aiken, South Carolina.

NONE

1995-06-01T23:59:59.000Z

129

Effect of water storage tanks design in solar combisystems efficiency  

Science Conference Proceedings (OSTI)

One of the key components of a solar combisystem is the heat store. In the international literature the matter of storage necessity for solar systems is well justified. We build an experimental system assisted by a stratified storage tank and we estimate ... Keywords: fractional savings, storage tank, stratification

Nikolaos Taoussanidis

2007-05-01T23:59:59.000Z

130

Slurry growth, gas retention, and flammable gas generation by Hanford radioactive waste tanks: Synthetic waste studies, FY 1991  

DOE Green Energy (OSTI)

Of 177 high-level waste storage tanks on the Hanford Site, 23 have been placed on a safety watch list because they are suspected of producing flammable gases in flammable or explosive concentrate. One tankin particular, Tank 241-SY-101 (Tank 101-SY), has exhibited slow increases in waste volume followed by a rapid decrease accompanied by venting of large quantities of gases. The purpose of this study is to help determine the processes by which flammable gases are produced, retained, and eventually released from Tank 101-SY. Waste composition data for single- and double-shell waste tanks on the flammable gas watch listare critically reviewed. The results of laboratory studies using synthetic double-shell wastes are summarized, including physical and chemical properties of crusts that are formed, the stoichiometry and rate ofgas generation, and mechanisms responsible for formation of a floating crust.

Bryan, S.A.; Pederson, L.R.; Ryan, J.L.; Scheele, R.D.; Tingey, J.M.

1992-08-01T23:59:59.000Z

131

Tank Waste System Integrated Project Team  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Decisional Draft Decisional Draft 1 This document is intended for planning and analysis purposes, assuming a continuing constrained budget environment. Every effort will be made to comply with all applicable environmental and legal obligations, while also assuring that essential functions necessary to protect human health, the environment and national security are maintained. Tank Waste System Tank Waste System Integrated Project Team Integrated Project Team Steve Schneider Office of Engineering and Technology Tank Waste Corporate Board July 29, 2009 2 This document is intended for planning and analysis purposes, assuming a continuing constrained budget environment. Every effort will be made to comply with all applicable environmental and legal obligations, while also assuring that essential functions necessary

132

Technology development activities supporting tank waste remediation  

Science Conference Proceedings (OSTI)

This document summarizes work being conducted under the U.S. Department of Energy`s Office of Technology Development (EM-50) in support of the Tank Waste Remediation System (TWRS) Program. The specific work activities are organized by the following categories: safety, characterization, retrieval, barriers, pretreatment, low-level waste, and high-level waste. In most cases, the activities presented here were identified as supporting tank remediation by EM-50 integrated program or integrated demonstration lead staff and the selections were further refined by contractor staff. Data sheets were prepared from DOE-HQ guidance to the field issued in September 1993. Activities were included if a significant portion of the work described provides technology potentially needed by TWRS; consequently, not all parts of each description necessarily support tank remediation.

Bonner, W.F.; Beeman, G.H.

1994-06-01T23:59:59.000Z

133

Life Extension of Aging High-Level Waste Tanks  

Science Conference Proceedings (OSTI)

The Double Shell Tanks (DSTs) play a critical role in the Hanford High-Level Waste Treatment Complex, and therefore activities are underway to protect and better understand these tanks. The DST Life Extension Program is focused on both tank life extension and on evaluation of tank integrity. Tank life extension activities focus on understanding tank failure modes and have produced key chemistry and operations controls to minimize tank corrosion and extend useful tank life. Tank integrity program activities have developed and applied key technologies to evaluate the condition of the tank structure and predict useful tank life. Program results to date indicate that DST useful life can be extended well beyond the original design life and allow the existing tanks to fill a critical function within the Hanford High-Level Waste Treatment Complex. In addition the tank life may now be more reliably predicted, facilitating improved planning for the use and possible future replacement of these tanks.

Bryson, D.; Callahan, V.; Ostrom, M.; Bryan, W.; Berman, H.

2002-02-26T23:59:59.000Z

134

Enclosure 1 Additional Information on Hanford Tank Wastes  

E-Print Network (OSTI)

Enclosure 1 Additional Information on Hanford Tank Wastes Introduction The U. S. Nuclear Regulatory of Energy to the U. S. Environmental Protection Agency addressing the Hanford Tank and K Basin Wastes (CBFO stored in two tanks (designated as tanks 241-AW-103 and 241-AW-105) at the Hanford Site are not high

135

Forklift Storage Tank R&D: Timely, Critical, Exemplary  

NLE Websites -- All DOE Office Websites (Extended Search)

Forklift Storage Tank R&D: Timely, Critical, Exemplary August 14, 2012 DOE EERE Fuel Cell Technologies Program Webinar Daniel E. Dedrick and Chris San Marchi Sandia National...

136

Underground Storage Tanks (New Jersey) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Underground Storage Tanks (New Jersey) Underground Storage Tanks (New Jersey) Underground Storage Tanks (New Jersey) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State New Jersey Program Type Safety and Operational Guidelines This chapter constitutes rules for all underground storage tank facilities- including registration, reporting, permitting, certification, financial responsibility and to protect human health and the environment

137

Thermal and radiolytic gas generation from Tank 241-S-102 waste  

SciTech Connect

This report summarizes progress in evaluating thermal and radiolytic rate parameters for flammable gas generation in Hanford single-shell tank wastes based on the results of laboratory tests using actual waste from Tank 241-S-102 (S-102). Work described in this report was conducted at Pacific Northwest National Laboratory (PNNL) for the Flammable Gas Safety Project, whose purpose is to develop information to support Fluor Daniel Hanford (FDH) and its Project Management Hanford Contract (PHMC) subcontractors in their efforts to ensure the safe interim storage of wastes at the Hanford Site. This work is related to gas generation studies being performed at Georgia Institute of Technology (GIT) under subcontract to PNNL, using simulated wastes, and to studies being performed at Numatec Hanford Corporation (formerly Westinghouse Hanford Company) using actual wastes. The results of gas generation from Tank S-102 waste under thermal and radiolytic conditions are described in this report. The accurate measurement of gas generation rates in actual waste from highly radioactive waste tanks is needed to assess the potential for producing and storing flammable gases within the waste tanks. This report addresses the gas generation capacity of the waste from Tank S-102, a waste tank listed as high priority by the Flammable Gas Safety Program due to its potential for flammable gas accumulation above the flammability limit.

King, C.M.; Pederson, L.R.; Bryan, S.A.

1997-07-01T23:59:59.000Z

138

Flammable gas tank waste level reconcilliation for 241-SX-102  

SciTech Connect

Fluoro Dynel Northwest (FDNW) was authorized to address flammable gas issues by reconciling the unexplained surface level increases in Tank 24 1-S-1 1 1 (S-I 1 1, typical). The trapped gas evaluation document (ref 1) states that Tank SX-102 exceeds the 25% of the lower flammable limit (FL) criterion (ref 2), based on a surface level rise evaluation. The Waste Storage Tank Status and Leak Detection Criteria document, commonly referred to as the ``Wallet Report`` is the basis for this letter report (ref 3). The Wallet Report is also a part of the trapped gas evaluation document criteria. The Wallet Report contains various tank information, including: physical information, status, levels, and dry wells, see Appendix A. The unexplained waste level rises were attributed to the production and retention of gas in the column of waste corresponding to the unacquainted for surface level rise. From 1973 through 1980, the Wallet Report tracked Tank S- 102 transfers and reported a net cumulative change of 19.95 in. This surface level increase is from an unknown source or is unacquainted for. Duke Engineering and Services Hanford (DASH) and Leached Martin Hanford Corporation (LMHC) are interested in determining the validity of the unexplained surface level changes reported in the 0611e Wallet Report based upon other corroborative sources of data. The purpose of this letter report is to assemble detailed surface level and waste addition data from daily tank records, logbooks, and other corroborative data that indicate surface levels, and to reconcile the cumulative unacquainted for surface level changes as shown in the Wallet Report from 1973 through 1980.

Brevick, C.H.; Gaddie, L.A.

1997-06-23T23:59:59.000Z

139

Forms of Al in Hanford Tank Waste  

NLE Websites -- All DOE Office Websites (Extended Search)

Actual Waste Testing Actual Waste Testing Lanée Snow Sandra Fiskum Rick Shimskey Reid Peterson 4/9/09 2 Tested > 75% of sludge waste types Sludge Sources Bi-Phosphate waste Redox Purex Cladding TBP FeCN sludge Redox Cladding Zirc Cladding Purex waste Misc NA 4/9/09 3 Tested > 75% of saltcake waste types Saltcake fractions Bi-phosphate saltcake S A B R NA Tested 8 groups of tank waste types Group ID Type Al Cr PO 4 3- Oxalate Sulfate Fluoride 1 Bi Phosphate sludge 3% 3% 21% 2% 6% 12% 2 Bi Phosphate saltcake (BY, T) 18% 25% 36% 36% 43% 36% 3 PUREX Cladding Waste sludge 12% 1% 3% 1% 1% 3% 4 REDOX Cladding Waste sludge 8% 1% 0% 0% 0% 2% 5 REDOX sludge 26% 8% 1% 3% 1% 2% 6 S - Saltcake (S) 11% 38% 12% 24% 14% 3% 7 TBP Waste sludge 1% 1% 8% 0% 2% 1% 8 FeCN sludge 2% 1% 4% 1% 1% 1% *Percentages reflect % of total inventory of species in the tank farm. *Discussion will focus on those that make up the largest fraction of the Al

140

GRR/Section 18-HI-a - Underground Storage Tank | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » GRR/Section 18-HI-a - Underground Storage Tank < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-HI-a - Underground Storage Tank 18HIAUndergroundStorageTankPermit.pdf Click to View Fullscreen Contact Agencies Hawaii Department of Health Solid and Hazardous Waste Branch Regulations & Policies Hawaii Administrative Regulations Title 11, Chapter 281 Triggers None specified Click "Edit With Form" above to add content 18HIAUndergroundStorageTankPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative

Note: This page contains sample records for the topic "waste storage tanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Tank Waste Corporate Board Meeting 07/24/08  

Energy.gov (U.S. Department of Energy (DOE))

The following documents are associated with the Tank Waste Corporate Board Meeting held on July 24th, 2008.

142

Annual report of tank waste treatability  

SciTech Connect

This report has been prepared as part of the Hanford Federal Facility Agreement and Consent Order* (Tri-Party Agreement) and constitutes completion of Tri-Party Agreement milestone M-04-00D for fiscal year 1993. This report provides a summary of treatment activities for newly generated waste, existing double-shell tank waste, and existing single-shell tank waste, as well as a summary of grout disposal feasibility, glass disposal feasibility, alternate methods for disposal, and safety issues which may impact the treatment and disposal of existing defense nuclear wastes. This report is an update of the 1992 report and is intended to provide traceability for the documentation by statusing the studies, activities, and issues which occurred in these areas listed above over the period of March 1, 1992, through February 28, 1993. Therefore, ongoing studies, activities, and issues which were documented in the previous (1992) report are addressed in this (1993) report.

Lane, A.G. [Los Alamos Technical Associates, Inc., NM (United States); Kirkbride, R.A. [Westinghouse Hanford Co., Richland, WA (United States)

1993-09-01T23:59:59.000Z

143

Deflagration studies on waste Tank 101-SY: Test plan  

DOE Green Energy (OSTI)

Waste slurries produced during the recovery of plutonium and uranium from irradiated fuel are stored in underground storage tanks. While a variety of waste types have been generated, of particular concern are the wastes stored in Tank 101-SY. A slurry growth-gas evolution cycle has been observed since 1981. The waste consists of a thick slurry, consisting of a solution high in NaOH, NaNO{sub 3}, NaAlO{sub 2}, dissolved organic complexants (EDTA, HEDTA, NTA, and degradation products), other salts (sulfates and phosphates), and radionuclides (primarily cesium and strontium). During a gas release the major gaseous species identified include: hydrogen and nitrous oxide (N{sub 2}O). Significant amounts of nitrogen may also be present. Traces of ammonia, carbon oxides, and other nitrogen oxides are also detected. Air and water vapor are also present in the tank vapor space. The purpose of the deflagration study is to determine risks of the hydrogen, nitrous oxide, nitrogen, and oxygen system. To be determined are pressure and temperature as a function of composition of reacting gases and the concentration of gases before and after the combustion event. Analyses of gases after the combustion event will be restricted to those tests that had an initial concentration of {le}8% hydrogen. This information will be used to evaluate safety issues related to periodic slurry growth and flammable gas releases from Tank 101-SY. the conditions to be evaluated will simulate gases in the vapor space above the salt cake as well as gases that potentially are trapped in pockets within/under the waste. The deflagration study will relate experimental laboratory results to conditions in the existing tanks.

Cashdollar, K.L.; Zlochower, I.A.; Hertzberg, M.

1991-07-01T23:59:59.000Z

144

Research of Heat Storage Tank Operation Modes in Cogeneration Plant.  

E-Print Network (OSTI)

??The dissertation investigates typical operation modes of the heat storage tank in the small-scale cogeneration (CHP) plant, analyses formation of thermal stratifi-cation in such storage… (more)

Streckien?, Giedr?

2011-01-01T23:59:59.000Z

145

Tank waste remediation system mission analysis report  

SciTech Connect

This document describes and analyzes the technical requirements that the Tank Waste Remediation System (TWRS) must satisfy for the mission. This document further defines the technical requirements that TWRS must satisfy to supply feed to the private contractors` facilities and to store or dispose the immobilized waste following processing in these facilities. This document uses a two phased approach to the analysis to reflect the two-phased nature of the mission.

Acree, C.D.

1998-01-09T23:59:59.000Z

146

Tank waste remediation system fiscal year 1997 multi-year workplan WBS 1.1  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) established the Tank Waste Remediation System (TWRS) Program to manage and immobilize for disposal the waste contained in underground storage tanks at the Hanford Site. The TWRS program was established as a DOE major system acquisition under an approved Justification of Mission Need (JMN) dated January 19, 1993. The JMN states that the purpose of the TWRS Program is to: Resolve the tank waste safety issues; Integrate the waste disposal mission with the ongoing waste management mission; Assess the technical bases for tank waste management and disposal; Determine the technology available and develop any needed technologies; and Establish a dedicated organization and provide the resources to meet the technical challenge. The principal objectives of management of existing and future tank wastes is to cost-effectively minimize the environmental, safety, and health risks associated with stored wastes, with reduction of safety risks given the highest priority. The potentials must be minimized for release of tank wastes to the air and to the ground (and subsequently to the groundwater) and for exposure of the operating personnel to tank wastes.

Wilson, C.E.

1996-09-23T23:59:59.000Z

147

Hanford Tank Waste Retrieval, Treatment and Disposition Framework |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Tank Waste Retrieval, Treatment and Disposition Framework Hanford Tank Waste Retrieval, Treatment and Disposition Framework Hanford Tank Waste Retrieval, Treatment and Disposition Framework Completing the Office of River Protection (ORP) mission of stabilizing 56 million gallons of chemical and radioactive waste stored in Hanford's 177 tanks is one of the Energy Department's highest priorities. This Framework document outlines a phased approach for beginning tank waste treatment while continuing to resolve technical issues with the Pretreatment and High-Level Waste Facilities. Hanford Tank Waste Retrieval, Treatment and Disposition Framework More Documents & Publications EIS-0391: Draft Environmental Impact Statement Waste Treatment Plant and Tank Farm Program EIS-0356: Notice of Intent to Prepare an Environmental Impact Statement

148

Hanford Tank Waste Retrieval, Treatment and Disposition Framework |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Tank Waste Retrieval, Treatment and Disposition Framework Hanford Tank Waste Retrieval, Treatment and Disposition Framework Hanford Tank Waste Retrieval, Treatment and Disposition Framework Completing the Office of River Protection (ORP) mission of stabilizing 56 million gallons of chemical and radioactive waste stored in Hanford's 177 tanks is one of the Energy Department's highest priorities. This Framework document outlines a phased approach for beginning tank waste treatment while continuing to resolve technical issues with the Pretreatment and High-Level Waste Facilities. Hanford Tank Waste Retrieval, Treatment and Disposition Framework More Documents & Publications EIS-0391: Draft Environmental Impact Statement Waste Treatment Plant and Tank Farm Program EIS-0356: Notice of Intent to Prepare an Environmental Impact Statement

149

Permanent Closure of the TAN-664 Underground Storage Tank  

SciTech Connect

This closure package documents the site assessment and permanent closure of the TAN-664 gasoline underground storage tank in accordance with the regulatory requirements established in 40 CFR 280.71, 'Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks: Out-of-Service UST Systems and Closure.'

Bradley K. Griffith

2011-12-01T23:59:59.000Z

150

Double-shell tank waste pretreatment  

SciTech Connect

Double-shell tanks contain most of the transuranic/high-level chemical processing waste generated at the Hanford Site in recent years. A small mass fraction of this waste is responsible for its characterization as transuranic/high-level waste. Pretreatment will partition the waste into a small fraction containing most of the transuranic/high-level components and a large fraction that is a low-level waste. The operations for achieving this objective include dissolution of water-soluble salts, dissolution of precipitated metal oxides in acid, clarification of the resulting dissolver liquors, transuranium element removal by solvent extraction and cesium removal by ion exchange. The primary benefit of pretreatment is a reduction in the overall cost of waste disposal.

Orme, R.M.; Appel, J.N.

1990-01-01T23:59:59.000Z

151

Microsoft PowerPoint - S05-02_Rinker_Single Shell Tank Structural...  

NLE Websites -- All DOE Office Websites (Extended Search)

on Hanford Single Shell Waste Tanks EM Waste Processing Technical Exchange Waste Storage and Tank Inspection Mike Rinker Pacific Northwest National Laboratory November 17, 2010 1...

152

Hanford site tank waste remediation system programmatic environmental review report  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE) committed in the Tank Waste Remediation System (TWRS) Environmental Impact Statement (EIS) Record of Decision (ROD) to perform future National Environmental Policy Act (NEPA) analysis at key points in the Program. Each review will address the potential impacts that new information may have on the environmental impacts presented in the TWRS EIS and support an assessment of whether DOE`s plans for remediating the tank waste are still pursuing the appropriate plan for remediation or whether adjustments to the program are needed. In response to this commitment, DOE prepared a Supplement Analysis (SA) to support the first of these reevaluations. Subsequent to the completion of the SA, the Phase IB negotiations process with private contractors resulted in several changes to the planned approach. These changes along with other new information regarding the TWRS Program have potential implications for Phase 1 and Phase 2 of tank waste retrieval and waste storage and/or disposal that may influence the environmental impacts of the Phased Implementation alternative. This report focuses on identifying those potential environmental impacts that may require NEPA analysis prior to authorization to begin facility construction and operations.

Haass, C.C.

1998-09-03T23:59:59.000Z

153

Alabama Underground Storage Tank And Wellhead Protection Act (Alabama) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alabama Underground Storage Tank And Wellhead Protection Act Alabama Underground Storage Tank And Wellhead Protection Act (Alabama) Alabama Underground Storage Tank And Wellhead Protection Act (Alabama) < Back Eligibility Commercial Construction Industrial Municipal/Public Utility Savings Category Buying & Making Electricity Water Home Weatherization Program Info State Alabama Program Type Environmental Regulations The department, acting through the commission, is authorized to promulgate rules and regulations governing underground storage tanks and is authorized to seek the approval of the United States Environmental Protection Agency to operate the state underground storage tank program in lieu of the federal program. In addition to specific authorities provided by this chapter, the department is authorized, acting through the commission, to

154

Fuel Cell Technologies Office: Onboard Storage Tank Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Onboard Storage Tank Workshop Onboard Storage Tank Workshop The U.S. Department of Energy (DOE) and Sandia National Laboratories co-hosted the Onboard Storage Tank Workshop on April 29th, 2010. Onboard storage tank experts gathered to share lessons learned about research and development (R&D) needs; regulations, codes and standards (RCS); and a path forward to enable the successful deployment of hydrogen storage tanks in early market fuel cell applications. The workshop also included initial follow up to the DOE and Department of Transportation (DOT) International Workshop on Compressed Natural Gas and Hydrogen Fuels held on December 10-11, 2009. Here you will find information about Workshop proceedings including all presentations. Agenda and Notes The following agenda and notes provide summary information about the workshop.

155

Hydrogen Peroxide Storage in Small Sealed Tanks  

DOE Green Energy (OSTI)

Unstabilized hydrogen peroxide of 85% concentration has been prepared in laboratory quantities for testing material compatibility and long term storage on a small scale. Vessels made of candidate tank and liner materials ranged in volume from 1 cc to 2540 cc. Numerous metals and plastics were tried at the smallest scales, while promising ones were used to fabricate larger vessels and liners. An aluminum alloy (6061-T6) performed poorly, including increasing homogeneous decay due to alloying elements entering solution. The decay rate in this high strength aluminum was greatly reduced by anodizing. Better results were obtained with polymers, particularly polyvinylidene fluoride. Data reported herein include ullage pressures as a function of time with changing decay rates, and contamination analysis results.

Whitehead, J.

1999-10-20T23:59:59.000Z

156

Bases for solid waste volume estimates for tank waste remediation system  

Science Conference Proceedings (OSTI)

This document presents the background and basis for the Tank Waste Remediation System forecast for solid waste submitted in June 1996. The forecast was generated for single-shell tank and double-shell tank activities including operations through retrieval and disposal of chemical tank waste.

Reddick, G.W., Westinghouse Hanford

1996-08-01T23:59:59.000Z

157

Combustion modeling in waste tanks  

DOE Green Energy (OSTI)

This paper has two objectives. The first one is to repeat previous simulations of release and combustion of flammable gases in tank SY-101 at the Hanford reservation with the recently developed code GASFLOW-II. The GASFLOW-II results are compared with the results obtained with the HMS/TRAC code and show good agreement, especially for non-combustion cases. For combustion GASFLOW-II predicts a steeper pressure rise than HMS/TRAC. The second objective is to describe a so-called induction parameter model which was developed and implemented into GASFLOW-II and reassess previous calculations of Bureau of Mines experiments for hydrogen-air combustion. The pressure time history improves compared with the one-step model, and the time rate of pressure change is much closer to the experimental data.

Mueller, C.; Unal, C. [Los Alamos National Lab., NM (United States); Travis, J.R. [Los Alamos National Lab., NM (United States)]|[Forschungszentrum Karlsruhe (Germany). Inst. fuer Reaktorsicherheit

1997-08-01T23:59:59.000Z

158

Waste canister for storage of nuclear wastes  

DOE Patents (OSTI)

A waste canister for storage of nuclear wastes in the form of a solidified glass includes fins supported from the center with the tips of the fins spaced away from the wall to conduct heat away from the center without producing unacceptable hot spots in the canister wall.

Duffy, James B. (Fullerton, CA)

1977-01-01T23:59:59.000Z

159

Tank Waste Remediation System fiscal year 1996 multi-year program plan WBS 1.1. Revision 1, Appendix A  

Science Conference Proceedings (OSTI)

This document is a compilation of data relating to the Tank Waste Remediation System Multi-Year Program. Topics discussed include: management systems; waste volume, transfer and evaporation management; transition of 200 East and West areas; ferricyanide, volatile organic vapor, and flammable gas management; waste characterization; retrieval from SSTs and DSTs; heat management; interim storage; low-level and high-level radioactive waste management; and tank farm closure.

NONE

1995-09-01T23:59:59.000Z

160

Progress in resolving Hanford Site high-level waste tank safety issues  

DOE Green Energy (OSTI)

Interim storage of alkaline, high-level radioactive waste, from two generations of spent fuel reprocessing and waste management activities, has resulted in the accumulation of 238 million liters of waste in Hanford Site single and double-shell tanks. Before the 1990`s, the stored waste was believed to be: (1) chemically unreactive under its existing storage conditions and plausible accident scenarios; and (2) chemically stable. This paradigm was proven incorrect when detailed evaluation of tank contents and behavior revealed a number of safety issues and that the waste was generating flammable and noxious gases. In 1990, the Waste Tank Safety Program was formed to focus on identifying safety issues and resolving the ferrocyanide, flammable gas, organic, high heat, noxious vapor, and criticality issues. The tanks of concern were placed on Watch Lists by safety issue. This paper summarizes recent progress toward resolving Hanford Site high-level radioactive waste tank safety issues, including modeling, and analyses, laboratory experiments, monitoring upgrades, mitigation equipment, and developing a strategy to screen tanks for safety issues.

Babad, H.; Eberlein, S.J.; Johnson, G.D.; Meacham, J.E.; Osborne, J.W.; Payne, M.A.; Turner, D.A.

1995-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste storage tanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Alternatives for managing wastes from reactors and post-fission operations in the LWR fuel cycle. Volume 3. Alternatives for interim storage and transportation  

SciTech Connect

Volume III of the five-volume report contains information on alternatives for interim storage and transportation. Section titles are: interim storage of spent fuel elements; interim storage of chop-leach fuel bundle residues; tank storage of high-level liquid waste; interim storage of solid non-high-level wastes; interim storage of solidified high-level waste; and, transportation alternatives. (JGB)

1976-05-01T23:59:59.000Z

162

Underground Storage Tanks (West Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tanks (West Virginia) Tanks (West Virginia) Underground Storage Tanks (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Siting and Permitting Provider Department of Environmental Protection This rule governs the construction, installation, upgrading, use, maintenance, testing, and closure of underground storage tanks, including certification requirements for individuals who install, repair, retrofit,

163

Hanford high level waste (HLW) tank mixer pump safe operating envelope reliability assessment  

DOE Green Energy (OSTI)

The US Department of Energy and its contractor, Westinghouse Corp., are responsible for the management and safe storage of waste accumulated from processing defense reactor irradiated fuels for plutonium recovery at the Hanford Site. These wastes, which consist of liquids and precipitated solids, are stored in underground storage tanks pending final disposition. Currently, 23 waste tanks have been placed on a safety watch list because of their potential for generating, storing, and periodically releasing various quantities of hydrogen and other gases. Tank 101-SY in the Hanford SY Tank Farm has been found to release hydrogen concentrations greater than the lower flammable limit (LFL) during periodic gas release events. In the unlikely event that an ignition source is present during a hydrogen release, a hydrogen burn could occur with a potential to release nuclear waste materials. To mitigate the periodic gas releases occurring from Tank 101-SY, a large mixer pump currently is being installed in the tank to promote a sustained release of hydrogen gas to the tank dome space. An extensive safety analysis (SA) effort was undertaken and documented to ensure the safe operation of the mixer pump after it is installed in Tank 101-SY.1 The SA identified a need for detailed operating, alarm, and abort limits to ensure that analyzed safety limits were not exceeded during pump operations.

Fischer, S.R. [Los Alamos National Lab., NM (United States); Clark, J. [Science and Engineering Associates, Inc., Albuquerque, NM (United States)

1993-10-01T23:59:59.000Z

164

EIS-0391: Hanford Tank Closure and Waste Management, Richland, Washington |  

NLE Websites -- All DOE Office Websites (Extended Search)

391: Hanford Tank Closure and Waste Management, Richland, 391: Hanford Tank Closure and Waste Management, Richland, Washington EIS-0391: Hanford Tank Closure and Waste Management, Richland, Washington Summary This EIS evaluates the environmental impacts for the following three key areas: (1) retrieval, treatment, and disposal of waste from 149 single-shell tanks (SSTs) and 28 double-shell tanks and closure of the SST system, (2) decommissioning of the Fast Flux Test Facility, a nuclear test reactor, and (3) disposal of Hanford's waste and other DOE sites' low-level and mixed low-level radioactive waste. Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download December 13, 2013 EIS-0391: Record of Decision Final Tank Closure and Waste Management Environmental Impact Statement for

165

Tank waste remediation system configuration management plan  

SciTech Connect

The configuration management program for the Tank Waste Remediation System (TWRS) Project Mission supports management of the project baseline by providing the mechanisms to identify, document, and control the functional and physical characteristics of the products. This document is one of the tools used to develop and control the mission and work. It is an integrated approach for control of technical, cost, schedule, and administrative information necessary to manage the configurations for the TWRS Project Mission. Configuration management focuses on five principal activities: configuration management system management, configuration identification, configuration status accounting, change control, and configuration management assessments. TWRS Project personnel must execute work in a controlled fashion. Work must be performed by verbatim use of authorized and released technical information and documentation. Application of configuration management will be consistently applied across all TWRS Project activities and assessed accordingly. The Project Hanford Management Contract (PHMC) configuration management requirements are prescribed in HNF-MP-013, Configuration Management Plan (FDH 1997a). This TWRS Configuration Management Plan (CMP) implements those requirements and supersedes the Tank Waste Remediation System Configuration Management Program Plan described in Vann, 1996. HNF-SD-WM-CM-014, Tank Waste Remediation System Configuration Management Implementation Plan (Vann, 1997) will be revised to implement the requirements of this plan. This plan provides the responsibilities, actions and tools necessary to implement the requirements as defined in the above referenced documents.

Vann, J.M.

1998-01-08T23:59:59.000Z

166

Underground Storage Tank Act (West Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Act (West Virginia) Act (West Virginia) Underground Storage Tank Act (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Siting and Permitting Provider Department of Environmental Protection New underground storage tank construction standards must include at least the following requirements: (1) That an underground storage tank will prevent releases of regulated substances stored therein, which may occur as

167

Tank Waste Remediation System retrieval and disposal mission technical baseline summary description  

SciTech Connect

This document is prepared in order to support the US Department of Energy`s evaluation of readiness-to-proceed for the Waste Retrieval and Disposal Mission at the Hanford Site. The Waste Retrieval and Disposal Mission is one of three primary missions under the Tank Waste Remediation System (TWRS) Project. The other two include programs to characterize tank waste and to provide for safe storage of the waste while it awaits treatment and disposal. The Waste Retrieval and Disposal Mission includes the programs necessary to support tank waste retrieval, wastefeed, delivery, storage and disposal of immobilized waste, and closure of tank farms. This mission will enable the tank farms to be closed and turned over for final remediation. The Technical Baseline is defined as the set of science and engineering, equipment, facilities, materials, qualified staff, and enabling documentation needed to start up and complete the mission objectives. The primary purposes of this document are (1) to identify the important technical information and factors that should be used by contributors to the mission and (2) to serve as a basis for configuration management of the technical information and factors.

McLaughlin, T.J.

1998-01-06T23:59:59.000Z

168

Closure Report for Corrective Action Unit 135: Areas 25 Underground Storage Tanks, Nevada Test Site, Nevada  

Science Conference Proceedings (OSTI)

Corrective Action Unit (CAU) 135, Area 25 Underground Storage Tanks, was closed in accordance with the approved Corrective Action Plan (DOE/NV, 2000). CAU 135 consists of three Corrective Action Sites (CAS). Two of these CAS's were identified in the Corrective Action Investigation Data Quality Objective meeting as being improperly identified as underground storage tanks. CAS 25-02-03 identified as the Deluge Valve Pit was actually an underground electrical vault and CAS 25-02-10 identified as an Underground Storage Tank was actually a former above ground storage tank filled with demineralized water. Both of these CAS's are recommended for a no further action closure. CAS 25-02-01 the Underground Storage Tanks commonly referred to as the Engine Maintenance Assembly and Disassembly Waste Holdup Tanks and Vault was closed by decontaminating the vault structure and conducting a radiological verification survey to document compliance with the Nevada Test Site unrestricted use release criteria. The Area 25 Underground Storage Tanks, (CAS 25-02-01), referred to as the Engine Maintenance, Assembly, and Disassembly (E-MAD) Waste Holdup Tanks and Vault, were used to receive liquid waste from all of the radioactive and cell service area drains at the E-MAD Facility. Based on the results of the Corrective Action Investigation conducted in June 1999, discussed in ''The Corrective Action Investigation Plan for Corrective Action Unit 135: Area 25 Underground Storage Tanks, Nevada Test Site, Nevada'' (DOE/NV, 199a), one sample from the radiological survey of the concrete vault interior exceeded radionuclide preliminary action levels. The analytes from the sediment samples exceeded the preliminary action levels for polychlorinated biphenyls, Resource Conservation and Recovery Act metals, total petroleum hydrocarbons as diesel-range organics, and radionuclides. The CAU 135 closure activities consisted of scabbling radiological ''hot spots'' from the concrete vault, and the drilling removal of the cement-lined vault sump. Field activities began on November 28, 2000, and ended on December 4, 2000. After verification samples were collected, the vault was repaired with cement. The concrete vault sump, soil excavated beneath the sump, and compactable hot line trash were disposed at the Area 23 Sanitary Landfill. The vault interior was field surveyed following the removal of waste to verify that unrestricted release criteria had been achieved. Since the site is closed by unrestricted release decontamination and verification, post-closure care is not required.

D. H. Cox

2001-06-01T23:59:59.000Z

169

HIGH LEVEL WASTE MECHANCIAL SLUDGE REMOVAL AT THE SAVANNAH RIVER SITE F TANK FARM CLOSURE PROJECT  

SciTech Connect

The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal (MSR) using the Waste on Wheels (WOW) system for the first time within one of its storage tanks. The WOW system is designed to be relatively mobile with the ability for many components to be redeployed to multiple waste tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. In addition, the project is currently preparing another waste tank for MSR utilizing lessons learned from this previous operational activity. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2,840 cubic meters (750,000 gallons) each. The construction of these tanks was completed in 1953, and they were placed into waste storage service in 1959. The tank's primary shell is 23 meters (75 feet) in diameter, and 7.5 meters (24.5 feet) in height. Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. Both Tank 5 and Tank 6 received and stored F-PUREX waste during their operating service time before sludge removal was performed. DOE intends to remove from service and operationally close (fill with grout) Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. Mechanical Sludge Removal, the first step in the tank closure process, will be followed by chemical cleaning. After obtaining regulatory approval, the tanks will be isolated and filled with grout for long-term stabilization. Mechanical Sludge Removal operations within Tank 6 removed approximately 75% of the original 95,000 liters (25,000 gallons). This sludge material was transferred in batches to an interim storage tank to prepare for vitrification. This operation consisted of eleven (11) Submersible Mixer Pump(s) mixing campaigns and multiple intraarea transfers utilizing STPs from July 2006 to August 2007. This operation and successful removal of sludge material meets requirement of approximately 19,000 to 28,000 liters (5,000 to 7,500 gallons) remaining prior to the Chemical Cleaning process. Removal of the last 35% of sludge was exponentially more difficult, as less and less sludge was available to mobilize and the lighter sludge particles were likely removed during the early mixing campaigns. The removal of the 72,000 liters (19,000 gallons) of sludge was challenging due to a number factors. One primary factor was the complex internal cooling coil array within Tank 6 that obstructed mixer discharge jets and impacted the Effective Cleaning Radius (ECR) of the Submersible Mixer Pumps. Minimal access locations into the tank through tank openings (risers) presented a challenge because the available options for equipment locations were very limited. Mechanical Sludge Removal activities using SMPs caused the sludge to migrate to areas of the tank that were outside of the SMP ECR. Various SMP operational strategies were used to address the challenge of moving sludge from remote areas of the tank to the transfer pump. This paper describes in detail the Mechanical Sludge Removal activities and mitigative solutions to cooling coil obstructions and other challenges. The performance of the WOW system and SMP operational strategies were evaluated and the resulting lessons learned are described for application to future Mechanical Sludge Removal operations.

Jolly, R; Bruce Martin, B

2008-01-15T23:59:59.000Z

170

CRITICAL ASSUMPTIONS IN THE F-TANK FARM CLOSURE OPERATIONAL DOCUMENTATION REGARDING WASTE TANK INTERNAL CONFIGURATIONS  

SciTech Connect

The intent of this document is to provide clarification of critical assumptions regarding the internal configurations of liquid waste tanks at operational closure, with respect to F-Tank Farm (FTF) closure documentation. For the purposes of this document, FTF closure documentation includes: (1) Performance Assessment for the F-Tank Farm at the Savannah River Site (hereafter referred to as the FTF PA) (SRS-REG-2007-00002), (2) Basis for Section 3116 Determination for Closure of F-Tank Farm at the Savannah River Site (DOE/SRS-WD-2012-001), (3) Tier 1 Closure Plan for the F-Area Waste Tank Systems at the Savannah River Site (SRR-CWDA-2010-00147), (4) F-Tank Farm Tanks 18 and 19 DOE Manual 435.1-1 Tier 2 Closure Plan Savannah River Site (SRR-CWDA-2011-00015), (5) Industrial Wastewater Closure Module for the Liquid Waste Tanks 18 and 19 (SRRCWDA-2010-00003), and (6) Tank 18/Tank 19 Special Analysis for the Performance Assessment for the F-Tank Farm at the Savannah River Site (hereafter referred to as the Tank 18/Tank 19 Special Analysis) (SRR-CWDA-2010-00124). Note that the first three FTF closure documents listed apply to the entire FTF, whereas the last three FTF closure documents listed are specific to Tanks 18 and 19. These two waste tanks are expected to be the first two tanks to be grouted and operationally closed under the current suite of FTF closure documents and many of the assumptions and approaches that apply to these two tanks are also applicable to the other FTF waste tanks and operational closure processes.

Hommel, S.; Fountain, D.

2012-03-28T23:59:59.000Z

171

Status report for inactive miscellaneous underground storage tanks at Hanford Site 200 Areas  

DOE Green Energy (OSTI)

The purpose of this status report is to summarize updated data and information from the FY 1994 strategy plan that is associated with inactive miscellaneous underground storage tanks (IMUSTs). Assumptions and processes to assess potential risks and operational concerns are documented in this report. Safety issue priorities are ranked based on a number of considerations. Sixty-three IMUSTs have been Identified and placed on the official IMUST list. All the tanks are associated with past Hanford Site operations. Of the 63 tanks., 19 are catch tanks, 20 are vault tanks, 3 are neutralization tanks, 8 are settling tanks, 2 are solvent makeup tanks used to store hexone, 2 are flush tanks, 3 are decontamination tanks, 1 is a diverter station, 1 is a receiver tank, 1 is an experimental tank, and 3 are waste handling tanks. It is important to proactively deal with the risks Imposed by these 63 tanks, and at the same time not jeopardize the existing commitments and schedules for mitigating and resolving identified safety issues related to the 177 SSTs and DSTS. Access controls and signs have been placed on all but the three official IMUSTs added most recently. An accelerated effort to identify authorization documents and perform unreviewed safety question (USQ) screening has been completed. According to a set of criteria consistent with the safety screening data quality objective (DQO) process, 6 IMUSTs are ranked high related to the hydrogen generation potential safety Issue, 1 is ranked high related to the ferrocyanide potential safety issue, 6 are ranked high related to the flammability potential safety issue, and 25 are ranked high related to the vapor emissions potential safety issue.

Powers, T.B.

1995-10-01T23:59:59.000Z

172

Deflagration studies on waste Tank 101-SY: Test plan  

DOE Green Energy (OSTI)

This report discusses test procedures and calibration of equipment to study the flammability and deflagration of hydrogen, nitrous oxide, and air in waste tanks. (JL)

Cashdollar, K.L.; Zlochower, I.A.; Hertzberg, M.

1991-06-01T23:59:59.000Z

173

Design requirements document for project W-465, immobilized low activity waste interim storage  

SciTech Connect

The scope of this design requirements document is to identify the functions and associated requirements that must be performed to accept, transport, handle, and store immobilized low-activity waste produced by the privatized Tank Waste Remediation System treatment contractors. The functional and performance requirements in this document provide the basis for the conceptual design of the Tank Waste Remediation System Immobilized low-activity waste interim storage facility project and provides traceability from the program level requirements to the project design activity.

Burbank, D.A.

1997-01-27T23:59:59.000Z

174

Waste analysis plan for 222-S dangerous and mixed waste storage area  

Science Conference Proceedings (OSTI)

The 222-S Laboratory Complex, in the southeast corner of the 200 West Area, consists of the 222-S Laboratory, the 222-SA Standards Laboratory, and several ancillary facilities. Currently, 222-S Laboratory activities are in supporting efforts to characterize the waste stored in the 200 Areas single shell and double shell tanks. Besides this work, the laboratory also provides analytical services for waste-management processing plants, Tank Farms, B Plant, 242-A Evaporator Facility, Plutonium-Uranium Extraction Plant, Plutonium Finishing Plant, Uranium-Oxide Plant, Waste Encapsulation Storage Facility, environmental monitoring and surveillance programs, and activities involving essential materials and research and development. One part of the 222-SA Laboratory prepares nonradioactive standards for the 200 Area laboratories. The other section of the laboratory is used for cold (nonradioactive) process development work and standards preparation. The 219-S Waste Handling Facility has three storage tanks in which liquid acid waste from 222-S can be received, stored temporarily, and neutralized. From this facility, neutralized waste, containing radionuclides, is transferred to the Tank Farms. A 700-gallon sodium-hydroxide supply tank is also located in this facility. This plan provides the methods used to meet the acceptance criteria required by the 204-AR Waste Receiving Facility.

Warwick, G.J.

1994-08-30T23:59:59.000Z

175

EVALUATION OF BEST AVAILABLE CONTROL TECHNOLOGY FOR TOXICS -TBACT- DOUBLE SHELL TANK FARMS PRIMARY VENTILATION SYSTEMS SUPPORTING WASTE TRANSFER OPERATIONS  

Science Conference Proceedings (OSTI)

This report is an evaluation of Best Available Control Technology for Toxics (tBACT) for installation and operation of the Hanford double shell (DST) tank primary ventilation systems. The DST primary ventilation systems are being modified to support Hanford's waste retrieval, mixing, and delivery of single shell tank (SST) and DST waste through the DST storage system to the Waste Treatment and Immobilizaiton Plant (WTP).

HAAS CC; KOVACH JL; KELLY SE; TURNER DA

2010-06-24T23:59:59.000Z

176

EVALUATION OF BEST AVAILABLE CONTROL TECHNOLOGY FOR TOXICS (TBACT) DOUBLE SHELL TANK FARMS PRIMARY VENTILATION SYSTEM SUPPORTING WASTE TRANSFER OPERATIONS  

Science Conference Proceedings (OSTI)

This report is an evaluation of Best Available Control Technology for Toxics (tBACT) for installation and operation of the Hanford double shell (DST) tank primary ventilation systems. The DST primary ventilation systems are being modified to support Hanford's waste retrieval, mixing, and delivery of single shell tank (SST) and DST waste throught the DST storage system to the Waste Treatment and Immobilization Plant (WTP).

KELLY SE; HAASS CC; KOVACH JL; TURNER DA

2010-06-03T23:59:59.000Z

177

Management plan -- Multi-Function Waste Tank Facility. Revision 1  

SciTech Connect

This Westinghouse Hanford Company (WHC) Multi-Function Waste Tank Facility (MWTF) Management Plan provides guidance for execution WHC MWTF Project activities related to design, procurement, construction, testing, and turnover. This Management Plan provides a discussion of organizational responsibilities, work planning, project management systems, quality assurance (QA), regulatory compliance, personnel qualifications and training, and testing and evaluations. Classified by the US Department of Energy (DOE) as a major systems acquisition (MSA), the MWTF mission is to provide a safe, cost-effective, and environmentally sound method for interim storage of Hanford Site high-level wastes. This Management Plan provides policy guidance and direction to the Project Office for execution of the project activities.

Fritz, R.L.

1995-01-11T23:59:59.000Z

178

High-level waste tank farm set point document  

Science Conference Proceedings (OSTI)

Setpoints for nuclear safety-related instrumentation are required for actions determined by the design authorization basis. Minimum requirements need to be established for assuring that setpoints are established and held within specified limits. This document establishes the controlling methodology for changing setpoints of all classifications. The instrumentation under consideration involve the transfer, storage, and volume reduction of radioactive liquid waste in the F- and H-Area High-Level Radioactive Waste Tank Farms. The setpoint document will encompass the PROCESS AREA listed in the Safety Analysis Report (SAR) (DPSTSA-200-10 Sup 18) which includes the diversion box HDB-8 facility. In addition to the PROCESS AREAS listed in the SAR, Building 299-H and the Effluent Transfer Facility (ETF) are also included in the scope.

Anthony, J.A. III

1995-01-15T23:59:59.000Z

179

Development and Deployment of Advanced Corrosion Monitoring Systems for High-Level Waste Tanks  

SciTech Connect

This paper describes the results of a collaborative technology development program, sponsored by the Tanks Focus Area, to use electrochemical noise (EN) for corrosion monitoring in underground storage tanks. These tanks, made of carbon or stainless steels, contain high-level radioactive liquid waste (HLW) generated by weapons production or radioactive liquid waste from nuclear fuel reprocessing activities at several Department of Energy (DOE) sites. The term EN is used to describe low frequency fluctuations in current and voltage measurements associated with corrosion. In their most basic form, EN-based corrosion monitoring systems measure and record these fluctuations over time from electrodes immersed in the environment of interest--in this case, radioactive tank waste. The resulting EN signals have characteristic patterns for different corrosion mechanisms. In recent years, engineers and scientists from several DOE sites, in collaboration with several private companies, have conducted laboratory studies and field applications to correlate the EN signals with corrosion mechanisms active in the radioactive waste tanks. The participating DOE sites are Hanford, Savannah River, Oak Ridge Reservation and the Idaho National Engineering and Environmental Laboratory. The commercial vendors have included HiLine Engineering and Fabrication, Inc., EIC Laboratories, Inc., and AEA Technologies. Successful deployment of the EN technology will yield improved information of waste tank corrosion conditions, better tank management, and lower overall cost.

Terry, M. T.; Edgemon, G. L.; Mickalonis, J. I.; Mizia, R. E.

2002-02-26T23:59:59.000Z

180

Development and deployment of advanced corrosion monitoring systems for high-level waste tanks.  

Science Conference Proceedings (OSTI)

This paper describes the results of a collaborative technology development program, sponsored by the Tanks Focus Area, to use electrochemical noise (EN) for corrosion monitoring in underground storage tanks. These tanks, made of carbon or stainless steels, contain high-level radioactive liquid waste (HLW) generated by weapons production or radioactive liquid waste from nuclear fuel reprocessing activities at several Department of Energy (DOE) sites. The term EN is used to describe low frequency fluctuations in current and voltage measurements associated with corrosion. In their most basic form, EN-based corrosion monitoring systems measure and record these fluctuations over time from electrodes immersed in the environment of interest - in this case, radioactive tank waste. The resulting EN signals have characteristic patterns for different corrosion mechanisms. In recent years, engineers and scientists from several DOE sites, in collaboration with several private companies, have conducted laboratory studies and field applications to correlate the EN signals with corrosion mechanisms active in the radioactive waste tanks. The participating DOE sites are Hanford, Savannah River, Oak Ridge Reservation and the Idaho National Engineering and Environmental Laboratory. The commercial vendors have included HiLine Engineering and Fabrication, Inc., EIC Laboratories, Inc., and M A Technologies. Successful deployment of the EN technology will yield improved information of waste tank corrosion conditions, better tank management, and lower overall cost.

Terry, M. T. (Michael T.); Edgemon, G. L. (Glenn L.); Mickalonis, J. I. (John I.); Mizia, R. E. (Ronald E.)

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste storage tanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

The Hanford site tank waste remediation system technical strategy  

SciTech Connect

The US Department of Energy`s Hanford Site, located in southeastern Washington State, has the most diverse and largest amount of radioactive tank the United States. High-level radioactive waste has been stored in large underground tanks since 1944. Approximately 230,000 m{sup 3} (61 Mgal) of caustic liquids, slurries, saltcakes, and sludges have accumulated in 177 tanks. In addition, significant amounts of {sup 90}S and {sup 137}Cs were removed from the tank waste, converted to salts, doubly encapsulated in metal containers, and stored in water basins. A Tank Waste Remediation System Program was established by the US DOE Energy in 1991 to safely manage and immobilize these wastes for permanent disposal of the high-level waste fraction in a geologic repository. The technical strategy to manage and dispose of these wastes has been revised and successfully negotiated with the regulatory agencies.

Wodrich, D.D.

1994-04-01T23:59:59.000Z

182

Double Shell Tank (DST) Process Waste Sampling Subsystem Specification  

SciTech Connect

This specification establishes the performance requirements and provides references to the requisite codes and standards to be applied to the Double-Shell Tank (DST) Process Waste Sampling Subsystem which supports the first phase of Waste Feed Delivery.

RASMUSSEN, J.H.

2000-05-03T23:59:59.000Z

183

Iraq liquid radioactive waste tanks maintenance and monitoring program plan.  

SciTech Connect

The purpose of this report is to develop a project management plan for maintaining and monitoring liquid radioactive waste tanks at Iraq's Al-Tuwaitha Nuclear Research Center. Based on information from several sources, the Al-Tuwaitha site has approximately 30 waste tanks that contain varying amounts of liquid or sludge radioactive waste. All of the tanks have been non-operational for over 20 years and most have limited characterization. The program plan embodied in this document provides guidance on conducting radiological surveys, posting radiation control areas and controlling access, performing tank hazard assessments to remove debris and gain access, and conducting routine tank inspections. This program plan provides general advice on how to sample and characterize tank contents, and how to prioritize tanks for soil sampling and borehole monitoring.

Dennis, Matthew L.; Cochran, John Russell; Sol Shamsaldin, Emad (Iraq Ministry of Science and Technology)

2011-10-01T23:59:59.000Z

184

Standard guide for sampling radioactive tank waste  

E-Print Network (OSTI)

1.1 This guide addresses techniques used to obtain grab samples from tanks containing high-level radioactive waste created during the reprocessing of spent nuclear fuels. Guidance on selecting appropriate sampling devices for waste covered by the Resource Conservation and Recovery Act (RCRA) is also provided by the United States Environmental Protection Agency (EPA) (1). Vapor sampling of the head-space is not included in this guide because it does not significantly affect slurry retrieval, pipeline transport, plugging, or mixing. 1.2 The values stated in inch-pound units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

American Society for Testing and Materials. Philadelphia

2011-01-01T23:59:59.000Z

185

Gas generation from Tank 241-SY-103 waste  

DOE Green Energy (OSTI)

This report summarizes progress made in evaluating mechanisms by which flammable gases are generated in Hanford double-shell tank wastes, based on the results of laboratory tests using actual waste from Tank 241-SY-103. The objective of this work is to establish the identity and stoichiometry of degradation products formed in actual tank wastes by thermal and radiolytic processes as a function of temperature. The focus of the gas generation tests on Tank 241-SY-103 samples is first the effect of temperature on gas generation (volume and composition). Secondly, gas generation from irradiation of Tank 241-SY-103 samples at the corresponding temperatures as the thermal-only treatments will be measured in the presence of an external radiation source (using a {sup 137}Cs capsule). The organic content will be measured on a representative sample prior to gas generation experiments and again at the termination of heating and irradiation. The gas generation will be related to the extent of organic species consumption during heating. Described in this report are experimental methods used for producing and measuring gases generated at various temperatures from highly radioactive actual tank waste, and results of gas generation from Tank 241-SY-103 waste taken from its convective layer. The accurate measurement of gas generation rates from actual waste from highly radioactive waste tanks is needed to assess the potential for producing and storing flammable gases within the waste tanks. This report addresses the gas generation capacity of the waste from the convective layer of Tank 241-SY-103, a waste tank listed on the Flammable Gas Watch List due to its potential for flammable gas accumulation above the flammability limit.

Bryan, S.A.; King, C.M.; Pederson, L.R.; Forbes, S.V.; Sell, R.L.

1996-04-01T23:59:59.000Z

186

TEST PLAN CHARACTERIZATION OF JET FORCES UPON WASTE TANK COMPONENTS  

Science Conference Proceedings (OSTI)

Westinghouse Hanford Company plans to install mixer pumps in double-shell waste tanks to mobilize and suspend settled sludge to allow eventual retrieval for treatment and permanent storage. The mixer pumps produce high momentum, horizontally directed jets that impact and mobilize the sludge and mix it into slurry for removal. There is concern that the force of the jet may damage tank internal components in its path. This test plan describes scaled experiments designed to characterize the velocity profiles of a near floor jet and to quantify the impact farces and drag coefficients of three tank components: radiation dry well, airlift circulator, and steam coil. The experiments will be conducted in water, at approximately 1/6-scale, using one stationary nozzle to simulate the jet. To measure and confirm the velocity profile of the free, submerged jet, the horizontal and vertical velocity profiles will be measured at several distances from the nozzle. The profile will also be measured after the jet impinges upon the tank floor to determine the·extent of the change in the profile caused by impingement. The jet forces upon the test articles will be measured at a maximum of four velocities and a variety of test article orientations. Each orientation will represent a unique position of the test article relative to the jet and the tank floor. In addition, the steam coil will be tested in three rotational orientations because it is not symmetric. The highest jet velocity will be selected so that the Reynolds number of the test article in the model will match that of the prototype when operating at design conditions. The forces measured upon the model components will be used to calculate the force on the prototype components using geometric scaling factors. In addition, the model force measurements will be used to calculate the component's drag coefficient as a function of the component Reynolds number.

Bamberger, J. A.

1992-01-01T23:59:59.000Z

187

GEOCHEMICAL TESTING AND MODEL DEVELOPMENT - RESIDUAL TANK WASTE TEST PLAN  

SciTech Connect

This Test Plan describes the testing and chemical analyses release rate studies on tank residual samples collected following the retrieval of waste from the tank. This work will provide the data required to develop a contaminant release model for the tank residuals from both sludge and salt cake single-shell tanks. The data are intended for use in the long-term performance assessment and conceptual model development.

CANTRELL KJ; CONNELLY MP

2010-03-09T23:59:59.000Z

188

Use of Multiple Innovative Technologies for Retrieval and Handling of Low-Level Radioactive Tank Wastes at Oak Ridge National Laboratory  

SciTech Connect

The U.S. Department of Energy (DOE) successfully implemented an integrated tank waste management plan at Oak Ridge National Laboratory (ORNL) (1), which resulted in the cleanup, removal, or stabilization of 37 inactive underground storage tanks (USTs) since 1998, and the reduction of risk to human health and the environment. The integrated plan helped accelerate the development and deployment of innovative technologies for the retrieval of radioactive sludge and liquid waste from inactive USTs. It also accelerated the pretreatment of the retrieved waste and newly generated waste from ORNL research and development activities to provide for volume and contamination reduction of the liquid waste. The integrated plan included: retrieval of radioactive sludge, contaminated material, and other debris from USTs at ORNL using a variety of robotic and remotely operated equipment; waste conditioning and transfer of retrieved waste to pretreatment facilities and interim, double contained storage tanks; the development and deployment of technologies for pretreating newly generated and retrieved waste transferred to interim storage tanks; waste treatment and packaging for final off-site disposal; stabilization of the inactive USTs that did not meet the regulatory requirements of the Federal Facilities Agreement between the DOE, the Environmental Protection Agency (EPA), and the Tennessee Department of Environment and Conservation (TDEC); and the continued monitoring of the active USTs that remain in long-term service. This paper summarizes the successful waste retrieval and tank stabilization operations conducted during two ORNL tank remediation projects (The Gunite Tanks Remediation Project and the Old Hydrofracture Facility Tanks Remediation Project), the sludge retrieval operations from the active Bethel Valley Evaporator Service Tanks, and pretreatment operations conducted for the tank waste. This paper also provides the status of ongoing activities conducted in preparation of treating the retrieved tank waste for final disposition, and the efforts to improve monitoring capabilities for waste collection and storage tanks that will remain in long-term service at ORNL.

Noble-Dial, J.; Riner, G.; Robinson, S.; Lewis, B.; Bolling, D.; Ganapathi, G.; Harper, M.; Billingsley, K.; Burks, B.

2002-02-26T23:59:59.000Z

189

The Gunite and Associated Tanks Remediation Project Tank Waste Retrieval Performance and Lessons Learned, vol. 1 [of 2  

SciTech Connect

The Gunite and Associated Tanks (GAAT) Remediation Project was the first of its kind performed in the United States. Robotics and remotely operated equipment were used to successfully transfer almost 94,000 gal of remote-handled transuranic sludge containing over 81,000 Ci of radioactive contamination from nine large underground storage tanks at the Oak Ridge National Laboratory (ORNL). The sludge was transferred with over 439,000 gal of radioactive waste supernatant and {approx}420,500 gal of fresh water that was used in sluicing operations. The GAATs are located in a high-traffic area of ORNL near a main thoroughfare. A phased and integrated approach to waste retrieval operations was used for the GAAT Remediation Project. The project promoted safety by obtaining experience from low-risk operations in the North Tank Farm before moving to higher-risk operations in the South Tank Farm. This approach allowed project personnel to become familiar with the tanks and waste, as well as the equipment, processes, procedures, and operations required to perform successful waste retrieval. By using an integrated approach to tank waste retrieval and tank waste management, the project was completed years ahead of the original baseline schedule, which resulted in avoiding millions of dollars in associated costs. This report is organized in two volumes. Volume 1 provides information on the various phases of the GAAT Remediation Project. It also describes the different types of equipment and how they were used. The emphasis of Volume 1 is on the description of the tank waste retrieval performance and the lessons learned during the GAAT Remediation Project. Volume 2 provides the appendixes for the report, which include the following information: (A) Background Information for the Gunite and Associated Tanks Operable Unit; (B) Annotated Bibliography; (C) Comprehensive Listing of the Sample Analysis Data from the GAAT Remediation Project; (D) GAAT Equipment Matrix; and (E) Vendor List for the GAAT Remediation Project. The remediation of the GAATs was completed {approx}5.5 years ahead of schedule and {approx}$120,435,000 below the cost estimated in the Remedial Investigation/Feasibility Study for the project. These schedule and cost savings were a direct result of the selection and use of state-of-the-art technologies and the dedication and drive of the engineers, technicians, managers, craft workers, and support personnel that made up the GAAT Remediation Project Team.

Lewis, BE

2003-10-07T23:59:59.000Z

190

Low level tank waste disposal study  

SciTech Connect

Westinghouse Hanford Company (WHC) contracted a team consisting of Los Alamos Technical Associates (LATA), British Nuclear Fuel Laboratories (BNFL), Southwest Research Institute (SwRI), and TRW through the Tank Waste Remediation System (TWRS) Technical Support Contract to conduct a study on several areas concerning vitrification and disposal of low-level-waste (LLW). The purpose of the study was to investigate how several parameters could be specified to achieve full compliance with regulations. The most restrictive regulation governing this disposal activity is the National Primary Drinking Water Act which sets the limits of exposure to 4 mrem per year for a person drinking two liters of ground water daily. To fully comply, this constraint would be met independently of the passage of time. In addition, another key factor in the investigation was the capability to retrieve the disposed waste during the first 50 years as specified in Department of Energy (DOE) Order 5820.2A. The objective of the project was to develop a strategy for effective long-term disposal of the low-level waste at the Hanford site.

Mullally, J.A.

1994-09-29T23:59:59.000Z

191

Underground Storage Tank Management (District of Columbia)  

Energy.gov (U.S. Department of Energy (DOE))

The  installation, upgrade and operation of any petroleum UST (>110 gallons) or hazardous substance UST System, including heating oil tanks over 1,100 gallons capacity in the District requires a...

192

Structural Integrity Program for the 300,000-Gallon Radioactive Liquid Waste Tanks at the Idaho Nuclear Technology and Engineering Center  

Science Conference Proceedings (OSTI)

This report provides a record of the Structural Integrity Program for the 300,000-gal liquid waste storage tanks and associated equipment at the Idaho Nuclear Technology and Engineering Center, as required by U.S. Department of Energy M 435.1-1, “Radioactive Waste Management Manual.” This equipment is known collectively as the Tank Farm Facility. The conclusion of this report is that the Tank Farm Facility tanks, vaults, and transfer systems that remain in service for storage are structurally adequate, and are expected to remain structurally adequate over the remainder of their planned service life through 2012. Recommendations are provided for continued monitoring of the Tank Farm Facility.

Bryant, Jeffrey Whealdon; Nenni, Joseph A; Timothy S. Yoder

2003-04-01T23:59:59.000Z

193

Permitting plan for the high-level waste interim storage  

SciTech Connect

This document addresses the environmental permitting requirements for the transportation and interim storage of solidified high-level waste (HLW) produced during Phase 1 of the Hanford Site privatization effort. Solidified HLW consists of canisters containing vitrified HLW (glass) and containers that hold cesium separated during low-level waste pretreatment. The glass canisters and cesium containers will be transported to the Canister Storage Building (CSB) in a U.S. Department of Energy (DOE)-provided transportation cask via diesel-powered tractor trailer. Tri-Party Agreement (TPA) Milestone M-90 establishes a new major milestone, and associated interim milestones and target dates, governing acquisition and/or modification of facilities necessary for: (1) interim storage of Tank Waste Remediation Systems (TWRS) immobilized HLW (IHLW) and other canistered high-level waste forms; and (2) interim storage and disposal of TWRS immobilized low-activity tank waste (ILAW). An environmental requirements checklist and narrative was developed to identify the permitting path forward for the HLW interim storage (HLWIS) project (See Appendix B). This permitting plan will follow the permitting logic developed in that checklist.

Deffenbaugh, M.L.

1997-04-23T23:59:59.000Z

194

Environmental Degradation of Nuclear Waste Storage Canister ...  

Science Conference Proceedings (OSTI)

Abstract Scope, The interaction between mild steel nuclear waste storage containers ... Durable and Highly Efficient Energy-harvesting Electrochromic Window ...

195

Oak Ridge National Laboratory TRU Waste Processing Center Tank Waste Processing Supernate Processing System  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TRU Waste Processing Center TRU Waste Processing Center ORNL TRU Waste Processing Center Tank Waste Processing Supernate (SN) Processing System Presented by Don F. Gagel Vice President and Chief Technology Officer EnergX LLC ORNL TRU Waste Processing Center 1/21/09 2 SRS Technology Transfer, ORNL SN Process Overview SN Process Facility ORNL TRU Waste Processing Center 3 Waste Concentration Using Evaporator Evaporator Concentrates Waste Vapor stream superheated and HEPA-filtered Vapor stream exhausted to main ventilation system Supernate Pump and Evaporator Discharge Pump circulate waste between selected tank and evaporator during concentration. Evaporator Discharge Pump Supernate Pump Supernate Tank Evaporator Exhaust Blower ORNL TRU Waste Processing Center 4 Tank Sampling/ Transfer To Dryer Tank

196

Pressure resulting from an ITP waste tank deflagration  

DOE Green Energy (OSTI)

The SRS waste tanks to be employed with the In-Tank Precipitation (ITP) process are undergoing a structural evaluation in order to define their response to a hypothetical deflagration accident. At the request of the Waste Management and Environmental Remediation Division (WM&ER -- High Level Waste Programs), a task was initiated to predict the peak gas pressure which would result from a deflagration (Thomas and Hensel 1993a). This report presents the final results of the deflagration peak gas pressure evaluation.

Thomas, J.K.; Hensel, S.J.

1993-04-01T23:59:59.000Z

197

Assessment of Tank 241-S-112 Liquid Waste Mixing in Tank 241-SY-101  

SciTech Connect

The objectives of this study were to evaluate mixing of liquid waste from Tank 241-S-112 with waste in Tank 241-SY-101 and to determine the properties of the resulting waste for the cross-site transfer to avoid potential double-shell tank corrosion and pipeline plugging. We applied the time-varying, three-dimensional computer code TEMPEST to Tank SY-101 as it received the S-112 liquid waste. The model predicts that temperature variations in Tank SY-101 generate a natural convection flow that is very slow, varying from about 7 x 10{sup -5} to 1 x 10{sup -3} ft/sec (0.3 to about 4 ft/hr) in most areas. Thus, natural convection would eventually mix the liquid waste in SY-101 but would be very slow to achieve nearly complete mixing. These simulations indicate that the mixing of S-112 and SY-101 wastes in Tank SY-101 is a very slow process, and the density difference between the two wastes would further limit mixing. It is expected to take days or weeks to achieve relatively complete mixing in Tank SY-101.

Onishi, Yasuo; Trent, Donald S.; Wells, Beric E.; Mahoney, Lenna A.

2003-10-01T23:59:59.000Z

198

Tank waste remediation system retrieval and disposal mission waste feed delivery plan  

Science Conference Proceedings (OSTI)

This document is a plan presenting the objectives, organization, and management and technical approaches for the Waste Feed Delivery (WFD) Program. This WFD Plan focuses on the Tank Waste Remediation System (TWRS) Project`s Waste Retrieval and Disposal Mission.

Potter, R.D.

1998-01-08T23:59:59.000Z

199

EM Tank Waste Subcommittee Report for SRS and Hanford Tank Waste Review  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

One System Plan. ........................................................................................................ 88 v PREFACE This is the second report of the Environmental Management Tank Waste Subcommittee (EM- TWS) of the Environmental Management Advisory Board (EMAB). The first report was submitted and accepted by the Assistant Secretary for Environmental Management (EM-1) in September 2010. The EM-TWS responded to three charges from EM-1 regarding the Waste Treatment and Immobilization Plant at Hanford (WTP) under construction in Richland, Washington. EM's responses were timely, and efforts have been put in place to address the recommendations that EMAB made. This report addresses eight charges given to the EM-TWS earlier this fiscal year. The current

200

Tank waste remediation system engineering plan  

SciTech Connect

This Engineering Plan describes the engineering process and controls that will be in place to support the Technical Baseline definition and manage its evolution and implementation to the field operations. This plan provides the vision for the engineering required to support the retrieval and disposal mission through Phase 1 and 2, which includes integrated data management of the Technical Baseline. Further, this plan describes the approach for moving from the ``as is`` condition of engineering practice, systems, and facilities to the desired ``to be`` configuration. To make this transition, Tank Waste Remediation System (TWRS) Engineering will become a center of excellence for TWRS which,will perform engineering in the most effective manner to meet the mission. TWRS engineering will process deviations from sitewide systems if necessary to meet the mission most effectively.

Rifaey, S.H.

1998-01-09T23:59:59.000Z

Note: This page contains sample records for the topic "waste storage tanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

EMAB Tank Waste Subcommittee Report Presentation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EM EM Environmental Management Tank Waste Subcommittee (EM- -TWS) TWS) Report to the Report to the Environmental Management Advisory Board Environmental Management Advisory Board FY 2011 FY 2011 EM EM- -TWS Report TWS Report- - #003 #003 June 23, June 23, 2011 2011 1 1 Agenda Agenda Overview Overview * * Charges / Scope of Work Charges / Scope of Work * * Committee Members and Support Committee Members and Support * * Work Schedule Work Schedule * * Plan Focus Plan Focus System Plan Basis of Review System Plan Basis of Review 2 2 System Plan Basis of Review System Plan Basis of Review Phase II Report Findings and Observations Phase II Report Findings and Observations * * Charges 1 through 7 Charges 1 through 7 * * Status of Charge 8 Status of Charge 8 Vulnerabilities and Potential Mitigation

202

Waste Tank Organic Safety Project organic concentration mechanisms task. FY 1994 progress report  

SciTech Connect

The Pacific Northwest Laboratory (PNL), Waste Tank Organic Safety Project is conducting research to support Westinghouse Hanford Company`s (WHC) Waste Tank Safety Program, sponsored by the U.S. Department of Energy`s Tank Farm Project Office. The goal of PNL`s program is to provide a scientific basis for analyzing organics in Hanford`s underground storage tanks (USTs) and for determining whether they are at concentrations that pose a potentially unsafe condition. Part of this research is directed toward determining what organic concentrations are safe by conducting research on organic aging mechanisms and waste energetics to assess the conditions necessary to produce an uncontrolled energy release in tanks due to reactions between the organics and the nitrate and nitrate salts in the tank wastes. The objective of the Organic Concentration Mechanisms Task is to assess the degree of localized enrichment of organics to be expected in the USTs due to concentration mechanisms. This report describes the progress of research conducted in FY 1994 on two concentration mechanisms of interest to the tank safety project: (1) permeation of a separate organic liquid phase into the interstitial spaces of the tank solids during the draining of free liquid from the tanks; and (2) concentration of organics on the surfaces of the solids due to adsorption. Three experiments were conducted to investigate permeation of air and solvent into a sludge simulant that is representative of single-shell tank sludge. The permeation behavior of air and solvent into the sludge simulant can be explained by the properties of the fluid pairs (air/supernate and solvent supernate) and the sludge. One important fluid property is the interfacial tension between the supernate and either the solvent or air. In general, the greater the interfacial tension between two fluids, the more difficult it will be for the air or solvent to displace the supernate during dewatering of the sludge.

Gerber, M.A.

1994-09-01T23:59:59.000Z

203

Closure Report for Corrective Action Unit 130: Storage Tanks Nevada Test Site, Nevada, Revision 0  

SciTech Connect

This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 130: Storage Tanks, Nevada Test Site, Nevada. This CR complies with the requirements of the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. The corrective action sites (CASs) within CAU 130 are located within Areas 1, 7, 10, 20, 22, and 23 of the Nevada Test Site. Corrective Action Unit 130 is comprised of the following CASs: • 01-02-01, Underground Storage Tank • 07-02-01, Underground Storage Tanks • 10-02-01, Underground Storage Tank • 20-02-03, Underground Storage Tank • 20-99-05, Tar Residue • 22-02-02, Buried UST Piping • 23-02-07, Underground Storage Tank This CR provides documentation supporting the completed corrective action investigations and provides data confirming that the closure objectives for CASs within CAU 130 were met. To achieve this, the following actions were performed: • Reviewed the current site conditions, including the concentration and extent of contamination. • Implemented any corrective actions necessary to protect human health and the environment. • Properly disposed of corrective action and investigation-derived wastes. From August 4 through September 30, 2008, closure activities were performed as set forth in the Streamlined Approach for Environmental Restoration Plan for CAU 130, Storage Tanks, Nevada Test Site, Nevada. The purposes of the activities as defined during the data quality objectives process were: • Determine whether contaminants of concern (COCs) are present. • If COCs are present, determine their nature and extent, implement appropriate corrective actions, confirm that no residual contamination is present, and properly dispose of wastes. Constituents detected during the closure activities were evaluated against final action levels to identify COCs for CAU 130. Assessment of the data generated from closure activities indicates that no further action is necessary because no COCs were identified at any CAU 130 CAS. Debris removal from these CASs was considered a best management practice because no contamination was detected. The DOE, National Nuclear Security Administration Nevada Site Office provides the following recommendations: • No further corrective action is required at all CAU 130 CASs. • A Notice of Completion to DOE, National Nuclear Security Administration Nevada Site Office, is requested from the Nevada Division of Environmental Protection for closure of CAU 130. • Corrective Action Unit 130 should be moved from Appendix III to Appendix IV of the Federal Facility Agreement and Consent Order.

Alfred Wickline

2009-03-01T23:59:59.000Z

204

Storage tanks, particularly for liquefied gases  

SciTech Connect

Marine and Industrial Developments, Ltd., Greece, has developed a new, low-cost LNG-tank lining which is highly resistant to impairment by tensile stresses encountered during cooldown to cryogenic temperatures. The thermal insulation is incorporated in the unitary cellular matrix lining composed of layers of plastics (polyurethane rubbers) including the primary barrier and at least one other fluid-impervious layer between the primary barrier and the tank wall. The plastic layers are thin, less than 0.24 in. (6 mm) in thickness. The layers of plastic for forming the cellular matrix can be formed in situ as the lining is built by applying a polymerizable or curable polymeric composition under, between, and over blocks of the selected thermally insulating material as they are laid. The polymerizable composition thus constitutes a kind of mortar which is then polymerized and/or cured in situ.

Papanicolaou, J.P.; Galatis, T.N.

1976-04-06T23:59:59.000Z

205

SRS Tank 48H Waste Treatment Project Technology Readiness Assessment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Site Tank 48H Savannah River Site Tank 48H Waste Treatment Project Technology Readiness Assessment Harry D. Harmon Joan B. Berkowitz John C. DeVine, Jr. Herbert G. Sutter Joan K. Young SPD-07-195 July 31, 2007 Prepared by the U.S. Department of Energy Aiken, South Carolina SRS Tank 48H Waste Treatment Project SPD-07-195 Technology Readiness Assessment July 31, 2007 Signature Page 7/31/07 ___________________________ _________________________ John C. DeVine, Jr., Team Member Date SRS Tank 48H Waste Treatment Project SPD-07-195 Technology Readiness Assessment July 31, 2007 Executive Summary The purpose of this assessment was to determine the technology maturity level of the candidate Tank 48H treatment technologies that are being considered for implementation at DOE's

206

Diagnosis of Solar Water Heaters Using Solar Storage Tank Surface Temperature Data: Preprint  

DOE Green Energy (OSTI)

Study of solar water heaters by using surface temperature data of solar storage tanks to diagnose proper operations.

Burch, J.; Magnuson, L.; Barker, G.; Bullwinkel, M.

2009-04-01T23:59:59.000Z

207

Probabilistic Stress Analysis of Liquid Storage Tank.  

E-Print Network (OSTI)

??Liquefied Natural Gas transport and storage has become very important due to its ability to occupy 1/600th of the volume that compressed natural gas would… (more)

Khan, Khader A.

2010-01-01T23:59:59.000Z

208

Mineral formation during simulated leaks of Hanford waste tanks  

E-Print Network (OSTI)

Mineral formation during simulated leaks of Hanford waste tanks Youjun Deng a , James B. Harsh a at the US DOE Hanford Site, Washington, caus- ing mineral dissolution and re-precipitation upon contact mimicking tank leak conditions at the US DOE Hanford Site. In batch experiments, Si-rich solutions

Flury, Markus

209

MODELING ANALYSIS FOR GROUT HOPPER WASTE TANK  

SciTech Connect

The Saltstone facility at Savannah River Site (SRS) has a grout hopper tank to provide agitator stirring of the Saltstone feed materials. The tank has about 300 gallon capacity to provide a larger working volume for the grout nuclear waste slurry to be held in case of a process upset, and it is equipped with a mechanical agitator, which is intended to keep the grout in motion and agitated so that it won't start to set up. The primary objective of the work was to evaluate the flow performance for mechanical agitators to prevent vortex pull-through for an adequate stirring of the feed materials and to estimate an agitator speed which provides acceptable flow performance with a 45{sup o} pitched four-blade agitator. In addition, the power consumption required for the agitator operation was estimated. The modeling calculations were performed by taking two steps of the Computational Fluid Dynamics (CFD) modeling approach. As a first step, a simple single-stage agitator model with 45{sup o} pitched propeller blades was developed for the initial scoping analysis of the flow pattern behaviors for a range of different operating conditions. Based on the initial phase-1 results, the phase-2 model with a two-stage agitator was developed for the final performance evaluations. A series of sensitivity calculations for different designs of agitators and operating conditions have been performed to investigate the impact of key parameters on the grout hydraulic performance in a 300-gallon hopper tank. For the analysis, viscous shear was modeled by using the Bingham plastic approximation. Steady state analyses with a two-equation turbulence model were performed. All analyses were based on three-dimensional results. Recommended operational guidance was developed by using the basic concept that local shear rate profiles and flow patterns can be used as a measure of hydraulic performance and spatial stirring. Flow patterns were estimated by a Lagrangian integration technique along the flow paths from the material feed inlet.

Lee, S.

2012-01-04T23:59:59.000Z

210

Low temperature hydrothermal destruction of organics in Hanford tank wastes  

SciTech Connect

The objective of this work is to evaluate and develop a low temperature hydrothermal process (HTP) for the destruction of organics that are present wastes temporarily stored in underground tanks at the Hanford Site. Organic compounds contribute to tank waste safety issues, such as hydrogen generation. Some organic compounds act as complexants, promoting the solubility of radioactive constituents such as {sup 90}Sr and {sup 241}Am, which is undesirable for waste pretreatment processing. HTP is thermal-chemical autogenous processing method that is typically operated between 250{degrees}C and 375{degrees}C and approximately 200 atm. Testing with simulated tank waste, containing a variety of organics has been performed. The distribution of strontium, cesium and bulk metals between the supernatant and solid phases as a function of the total organic content of the waste simulant will be presented. Test results using simulant will be compared with similar tests conducted using actual radioactive waste.

Orth, R.J.; Elmore, M.R.; Zacher, A.H.; Neuenschwander, G.G.; Schmidt, A.J.; Jones, E.O.; Hart, T.R.; Poshusta, J.C.

1994-08-01T23:59:59.000Z

211

Savannah River Site Contractor Achieves Tank Waste Milestone | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Contractor Achieves Tank Waste Milestone Contractor Achieves Tank Waste Milestone Savannah River Site Contractor Achieves Tank Waste Milestone February 2, 2012 - 12:00pm Addthis Pictured here is a component of the Interim Salt Disposition Process — known as Modular Caustic Side Solvent Extraction Unit (MCU) — that helped Savannah River Remediation process more than 500,000 gallons of salt waste since October last year, a contract milestone. Pictured here is a component of the Interim Salt Disposition Process - known as Modular Caustic Side Solvent Extraction Unit (MCU) - that helped Savannah River Remediation process more than 500,000 gallons of salt waste since October last year, a contract milestone. AIKEN, S.C. - The Savannah River Site's liquid waste contractor recently achieved a contract milestone by processing 500,000 gallons of

212

Issuance of the Final Tank Closure and Waste Management Environmental  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Issuance of the Final Tank Closure and Waste Management Issuance of the Final Tank Closure and Waste Management Environmental Impact Statement Issuance of the Final Tank Closure and Waste Management Environmental Impact Statement December 5, 2012 - 12:00pm Addthis Media Contacts Carrie Meyer, DOE (509) 376-0810 Carrie_C_Meyer@orp.doe.gov Erika Holmes, Ecology (509) 372-7880 Erika.Holmes@ecy.wa.gov Richland, WA - The U.S. Department of Energy (DOE) is issuing its Final Tank Closure and Waste Management Environmental Impact Statement Hanford Site, Richland, Washington" (Final TC & WM EIS, DOE/EIS-0391), prepared in accordance with the National Environmental Policy Act (NEPA). The Environmental Protection Agency (EPA) and Washington State Department of Ecology are cooperating agencies on this Final EIS, which analyzes

213

Tank Waste Remediation Systems (TWRS) Configuration Management Implementation Plan  

SciTech Connect

The Tank Waste Configuration Management (TWRS) Configuration Management Implementation Plan descibes the execution of the configuration management (CM) that the contractor uses to manage and integrate its programmatic and functional operations to perform work.

WEIR, W.R.

2000-12-18T23:59:59.000Z

214

EA-0915: Waste Tank Safety Program Hanford Site, Richland, Washington  

Energy.gov (U.S. Department of Energy (DOE))

This EA evaluates the environmental impacts of the proposal to resolve waste tank safety issues at the Hanford Site near the City of Richland, Washington, and to reduce the risks associated with...

215

Journey to Excellence Goal 2 and Enhanced Tank Waste Strategy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy Agenda * Journey to Excellence - Goal 2 on reducing EM's Life Cycle Costs * Enhanced Tank Waste Strategy - What it is and what we need to do...

216

Earthquake Experience Data on Anchored, Ground-Mounted Vertical Storage Tanks  

Science Conference Proceedings (OSTI)

Earthquake experience data indicate that anchored, vertical storage tanks similar in structure to those used in nuclear power plant safety systems can survive greater ground motion than accounted for in most nuclear plant designs. Comparison of design parameters for nuclear and nonnuclear storage tanks confirmed the applicability of earthquake experience data to demonstrate the seismic adequacy of nuclear plant storage tanks.

1989-03-17T23:59:59.000Z

217

In-Situ Remediation of Mixed Radioactive Tank Waste, Via Air Sparging and Poly-Acrylate Solidification  

SciTech Connect

This paper describes remediation activities performed in accordance with the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) on an underground storage tank (UST) from the Idaho National Laboratory's Test Area North (TAN) complex. The UST had been used to collect radioactive liquid wastes from and for the TAN evaporator. Recent analyses had found that the residual waste in Tank V-14 had contained quantities of tetrachloroethylene (PCE) in excess of F001 treatment standards. In addition, the residual waste in Tank V-14 was not completely solidified. As a result, further remediation and solidification of the waste was required before the tank could be properly disposed of at the Idaho CERCLA Disposal Facility (ICDF). Remediation of the PCE-contaminated waste in Tank V-14 was performed by first adding sufficient water to fluidize the residual waste in the tank. This was followed by high-volume, in-situ air sparging of the fluidized waste, using air lances that were inserted to the bottom of V-14. The high-volume air sparging removed residual PCE from the fluidized waste, collecting it on granular activated carbon filters within the off-gas system. The sparged waste was then solidified by educting large-diameter crystals of an acrylic acrylate resin manufactured by WaterWorks America{sup TM} into the fluidized waste, via the air-sparging lances. To improve solidification, the air-sparging lances were rotated during the eduction step, while continuing to provide high-volume air flow into the waste. Eduction was continued until the waste had solidified sufficiently to not allow for further eduction of WaterWorks{sup TM} crystals into the waste. The tank was then disposed of at the ICDF, with the residual void volume in the tank filled with cement. (authors)

Farnsworth, R.K.; Edgett, S.M.; Eaton, D.L. [CH2M-WG Idaho, LLC, Idaho Cleanup Projecta, Idaho Falls, ID (United States)

2007-07-01T23:59:59.000Z

218

Mechanisms of gas retention and release: Experimental results for Hanford waste tanks 241-AW-101 and 241-AN-103  

DOE Green Energy (OSTI)

The 177 storage tanks at Hanford contain a vast array of radioactive waste forms resulting, primarily, from nuclear materials processing. Through radiolytic, thermal, and other decomposition reactions of waste components, gaseous species including hydrogen, ammonia, and the oxidizer nitrous oxide are generated within the waste tanks. Many of these tanks are known to retain and periodically release quantities of these flammable gas mixtures. The primary focus of the Flammable Gas Project is the safe storage of Hanford tank wastes. To this end, we strive to develop an understanding of the mechanisms of flammable gas retention and release in Hanford tanks through laboratory investigations on actual tank wastes. These results support the closure of the Flammable Gas Unreviewed Safety Question (USQ) on the safe storage of waste tanks known to retain flammable gases and support resolution of the broader Flammable Gas Safety Issue. The overall purpose of this ongoing study is to develop a comprehensive and thorough understanding of the mechanisms of flammable gas retention and release. The first objective of the current study was to classify bubble retention and release mechanisms in two previously untested waste materials from Tanks 241-AN-103 (AN-103) and 241-AW-101 (AW-101). Results were obtained for retention mechanisms, release characteristics, and the maximum gas retention. In addition, unique behavior was also documented and compared with previously studied waste samples. The second objective was to lengthen the duration of the experiments to evaluate the role of slowing bubble growth on the retention and release behavior. Results were obtained for experiments lasting from a few hours to a few days.

Rassat, S.D.; Gauglitz, P.A.; Bredt, P.R.; Mahoney, L.A.; Forbes, S.V.; Tingey, S.M.

1997-09-01T23:59:59.000Z

219

Hanford waste tanks - light at the end of the tunnel  

DOE Green Energy (OSTI)

The U.S. Department of Energy (DOE) faced several problems in its Hanford Site tank farms in the early nineties. It had 177 waste tanks, ranging in size from 55,000 to 1,100,000 gallons, which contained more than 55 million gallons of liquid and solid high-level radioactive waste (HLW) from a variety of processes. Unfortunately, waste transfer records were incomplete. Chemical reactions going on in the tanks were not totally understood. Every tank had high concentrations of powerful oxidizers in the form of nitrates and nitrites, and some tanks had relatively high concentrations of potential fuels that could react explosively with oxidizers. A few of these tanks periodically released large quantities of hydrogen and nitrous oxide, a mixture that was potentially more explosive than hydrogen and air. Both the nitrate/fuel and hydrogen/nitrous oxide reactions had the potential to rupture a tank exposing workers and the general public to unacceptably large quantities of radioactive material. One tank (241-C-106) was generating so much heat that water had to be added regularly to avoid thermal damage to the tank's concrete exterior shell. The tanks contained more than 250 million Curies of radioactivity. Some of that radioactivity was in the form of fissile plutonium, which represented a potential criticality problem. As awareness of the potential hazards grew, the public and various regulatory agencies brought increasing pressure on DOE to quantify the hazards and mitigate any that were found to be outside accepted risk guidelines. In 1990, then Representative, now Senator Ron Wyden (D-Oregon), introduced an amendment to Public Law 101-510, Section 3137, that required DOE to identify Hanford tanks that might have a serious potential for release of high-level waste.

POPPITI, J.A.

1999-09-29T23:59:59.000Z

220

Engineering Model of Liquid Storage Utility Tank for Heat Transfer Analysis  

SciTech Connect

The utility or chemical storage tank requires special engineering attention and heat transfer analysis because the tank content is very sensitive to temperature and surrounding environment such as atmospheric or outside air, humidity, and solar radiation heat. A simplified heat transfer model was developed to calculate the liquid content temperature of utility storage tank. The content of the utility storage tanks can be water or any other chemical liquid. An engineering model of liquid storage tank for heat transfer analysis and temperature calculations are presented and discussed in the examples of Tanks No. 1 containing oxalic acid and No. 2 containing sodium tetraphenylborate solution.

Kwon, K.C.

1995-09-27T23:59:59.000Z

Note: This page contains sample records for the topic "waste storage tanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Alternatives Generation and Analysis for Heat Removal from High Level Waste Tanks  

Science Conference Proceedings (OSTI)

This document addresses the preferred combination of design and operational configurations to provide heat removal from high-level waste tanks during Phase 1 waste feed delivery to prevent the waste temperature from exceeding tank safety requirement limits. An interim decision for the preferred method to remove the heat from the high-level waste tanks during waste feed delivery operations is presented herein.

WILLIS, W.L.

2000-06-15T23:59:59.000Z

222

Ice slurry cooling research: Storage tank ice agglomeration and extraction  

DOE Green Energy (OSTI)

A new facility has been built to conduct research and development on important issues related to implementing ice slurry cooling technology. Ongoing studies are generating important information on the factors that influence ice particle agglomeration in ice slurry storage tanks. The studies are also addressing the development of methods to minimize and monitor agglomeration and improve the efficiency and controllability of tank extraction of slurry for distribution to cooling loads. These engineering issues impede the utilization of the ice slurry cooling concept that has been under development by various groups.

Kasza, K. [Argonne National Lab., IL (United States); Hayashi, Kanetoshi [NKK Corp., Kawasaki (Japan)

1999-08-01T23:59:59.000Z

223

Tank Waste Retrieval Lessons Learned at the Hanford Site  

SciTech Connect

One of the environmental remediation challenges facing the nation is the retrieval and permanent disposal of approximately 90 million gallons of radioactive waste stored in underground tanks at the U. S. Department of Energy (DOE) facilities. The Hanford Site is located in southeastern Washington State and stores roughly 60 percent of this waste. An estimated 53 million gallons of high-level, transuranic, and low-level radioactive waste is stored underground in 149 single-shell tanks (SSTs) and 28 newer double-shell tanks (DSTs) at the Hanford Site. These SSTs range in size from 55,000 gallons to 1,000,000 gallon capacity. Approximately 30 million gallons of this waste is stored in SSTs. The SSTs were constructed between 1943 and 1964 and all have exceeded the nominal 20-year design life. Sixty-seven SSTs are known or suspected to have leaked an estimated 1,000,000 gallons of waste to the surrounding soil. The risk of additional SST leakage has been greatly reduced by removing more than 3 million gallons of interstitial liquids and supernatant and transferring this waste to the DST system. Retrieval of SST salt-cake and sludge waste is underway to further reduce risks and stage feed materials for the Hanford Site Waste Treatment Plant. Regulatory requirements for SST waste retrieval and tank farm closure are established in the Hanford Federal Facility Agreement and Consent Order (HFFACO), better known as the Tri- Party Agreement, or TPA. The HFFACO was signed by the DOE, the State of Washington Department of Ecology (Ecology), and U.S. Environmental Protection Agency (EPA) and requires retrieval of as much waste as technically possible, with waste residues not to exceed 360 ft{sup 3} in 530,000 gallon or larger tanks; 30 ft{sup 3} in 55,000 gallon or smaller tanks; or the limit of waste retrieval technology, whichever is less. If residual waste volume requirements cannot be achieved, then HFFACO Appendix H provisions can be invoked to request Ecology and EPA approval of an exception to the waste retrieval criteria for a specific tank. Tank waste retrieval has been conducted at the Hanford Site over the last few decades using a method referred to as Past Practice Hydraulic Sluicing. Past Practice Hydraulic Sluicing employs large volumes of DST supernatant and water to dislodge, dissolve, mobilize, and retrieve tank waste. Concern over the leak integrity of SSTs resulted in the need for tank waste retrieval methods capable of using smaller volumes of liquid in a more controlled manner. Retrieval of SST waste in accordance with HFFACO requirements was initiated at the Hanford Site in April 2003. New and innovative tank waste retrieval methods that minimize and control the use of liquids are being implemented for the first time. These tank waste retrieval methods replace Past Practice Hydraulic Sluicing and employ modified sluicing, vacuum retrieval, and in-tank vehicle techniques. Waste retrieval has been completed in seven Hanford Site SSTs (C-106, C-103, C-201, C-202, C-203, C-204, and S-112) in accordance with HFFACO requirements. Three additional tanks are currently in the process of being retrieved (C-108, C-109 and S-102) Preparation for retrieval of two additional SSTs (C-104 and C-110) is ongoing with retrieval operations forecasted to start in calendar year 2008. Tank C-106 was retrieved to a residual waste volume of 470 ft{sup 3} using oxalic acid dissolution and modified sluicing. An Appendix H exception request for Tank C-106 is undergoing review. Tank C-103 was retrieved to a residual volume of 351 ft{sup 3} using a modified sluicing technology. This approach was successful at reaching the TPA limits for this tank of less than 360 ft{sup 3}and the limits of the technology. Tanks C-201, C-202, C-203, and C-204 are smaller (55,000 gallon) tanks and waste removal was completed in accordance with HFFACO requirements using a vacuum retrieval system. Residual waste volumes in each of these four tanks were less than 25 ft{sup 3}. Tank S-112 retrieval was completed February 28, 2007, meeting the TPA Limits of less than

Dodd, R.A. [CH2M HILL Hanford Group, Inc., Richland, Washington (United States)

2008-07-01T23:59:59.000Z

224

CEMENTITIOUS GROUT FOR CLOSING SRS HIGH LEVEL WASTE TANKS - #12315  

SciTech Connect

In 1997, the first two United States Department of Energy (US DOE) high level waste tanks (Tanks 17-F and 20-F: Type IV, single shell tanks) were taken out of service (permanently closed) at the Savannah River Site (SRS). In 2012, the DOE plans to remove from service two additional Savannah River Site (SRS) Type IV high-level waste tanks, Tanks 18-F and 19-F. These tanks were constructed in the late 1950's and received low-heat waste and do not contain cooling coils. Operational closure of Tanks 18-F and 19-F is intended to be consistent with the applicable requirements of the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and will be performed in accordance with South Carolina Department of Health and Environmental Control (SCDHEC). The closure will physically stabilize two 4.92E+04 cubic meter (1.3 E+06 gallon) carbon steel tanks and isolate and stabilize any residual contaminants left in the tanks. The closure will also fill, physically stabilize and isolate ancillary equipment abandoned in the tanks. A Performance Assessment (PA) has been developed to assess the long-term fate and transport of residual contamination in the environment resulting from the operational closure of the F-Area Tank Farm (FTF) waste tanks. Next generation flowable, zero-bleed cementitious grouts were designed, tested, and specified for closing Tanks 18-F and 19-F and for filling the abandoned equipment. Fill requirements were developed for both the tank and equipment grouts. All grout formulations were required to be alkaline with a pH of 12.4 and chemically reduction potential (Eh) of -200 to -400 to stabilize selected potential contaminants of concern. This was achieved by including Portland cement and Grade 100 slag in the mixes, respectively. Ingredients and proportions of cementitious reagents were selected and adjusted, respectively, to support the mass placement strategy developed by closure operations. Subsequent down selection was based on compressive strength and saturated hydraulic conductivity results. Fresh slurry property results were used as the first level of screening. A high range water reducing admixture and a viscosity modifying admixture were used to adjust slurry properties to achieve flowable grouts. Adiabatic calorimeter results were used as the second level screening. The third level of screening was used to design mixes that were consistent with the fill material parameters used in the F-Tank Farm Performance Assessment which was developed to assess the long-term fate and transport of residual contamination in the environment resulting from the operational closures.

Langton, C.; Burns, H.; Stefanko, D.

2012-01-10T23:59:59.000Z

225

Closure Report for Corrective Action Unit 134: Aboveground Storage Tanks, Nevada Test Site, Nevada  

SciTech Connect

Corrective Action Unit (CAU) 134 is identified in the Federal Facility Agreement and Consent Order (FFACO) as “Aboveground Storage Tanks” and consists of the following four Corrective Action Sites (CASs), located in Areas 3, 15, and 29 of the Nevada Test Site: · CAS 03-01-03, Aboveground Storage Tank · CAS 03-01-04, Tank · CAS 15-01-05, Aboveground Storage Tank · CAS 29-01-01, Hydrocarbon Stain

NSTec Environmental Restoration

2009-06-30T23:59:59.000Z

226

GRR/Section 18-TX-a - Underground Storage Tank Process | Open Energy  

Open Energy Info (EERE)

TX-a - Underground Storage Tank Process TX-a - Underground Storage Tank Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-TX-a - Underground Storage Tank Process 18TXAUndergroundStorageTanks (1).pdf Click to View Fullscreen Contact Agencies Texas Commission on Environmental Quality Regulations & Policies 30 Texas Administrative Code 334 - Underground and Aboveground Storage Tanks 30 Texas Administrative Code 37 - Financial Assurance for Petroleum Underground Storage Tanks Triggers None specified Click "Edit With Form" above to add content 18TXAUndergroundStorageTanks (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

227

GRR/Section 18-UT-a - Underground Storage Tank | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 18-UT-a - Underground Storage Tank GRR/Section 18-UT-a - Underground Storage Tank < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-UT-a - Underground Storage Tank 18UTAUndergroundStorageTank (1).pdf Click to View Fullscreen Contact Agencies Utah Department of Environmental Quality Regulations & Policies Utah Underground Storage Tank Act Triggers None specified Click "Edit With Form" above to add content 18UTAUndergroundStorageTank (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Utah Department of Environmental Quality Division of Environmental Response and Remediation oversees the underground storage tank (UST) program in

228

GRR/Section 18-AK-a - Storage Tank Registration | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 18-AK-a - Storage Tank Registration GRR/Section 18-AK-a - Storage Tank Registration < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-AK-a - Storage Tank Registration 18AKA - StorageTankRegistration (1).pdf Click to View Fullscreen Contact Agencies Alaska Department of Environmental Conservation Regulations & Policies AS 46.03.380 As 46.03.385 18 AAC 78 Underground Storage Tanks Triggers None specified Click "Edit With Form" above to add content 18AKA - StorageTankRegistration (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Any project that requires installation or operation of a storage tank must

229

STATUS OF THE DEVELOPMENT OF IN-TANK/AT-TANK SEPARATIONS TECHNOLOGIES FOR FOR HIGH-LEVEL WASTE PROCESSING FOR THE U.S. DEPARTMENT OF ENERGY  

SciTech Connect

Within the U.S. Department of Energy's (DOE) Office of Technology Innovation and Development, the Office of Waste Processing manages a research and development program related to the treatment and disposition of radioactive waste. At the Savannah River (South Carolina) and Hanford (Washington) Sites, approximately 90 million gallons of waste are distributed among 226 storage tanks (grouped or collocated in 'tank farms'). This waste may be considered to contain mixed and stratified high activity and low activity constituent waste liquids, salts and sludges that are collectively managed as high level waste (HLW). A large majority of these wastes and associated facilities are unique to the DOE, meaning many of the programs to treat these materials are 'first-of-a-kind' and unprecedented in scope and complexity. As a result, the technologies required to disposition these wastes must be developed from basic principles, or require significant re-engineering to adapt to DOE's specific applications. Of particular interest recently, the development of In-tank or At-Tank separation processes have the potential to treat waste with high returns on financial investment. The primary objective associated with In-Tank or At-Tank separation processes is to accelerate waste processing. Insertion of the technologies will (1) maximize available tank space to efficiently support permanent waste disposition including vitrification; (2) treat problematic waste prior to transfer to the primary processing facilities at either site (i.e., Hanford's Waste Treatment and Immobilization Plant (WTP) or Savannah River's Salt Waste Processing Facility (SWPF)); and (3) create a parallel treatment process to shorten the overall treatment duration. This paper will review the status of several of the R&D projects being developed by the U.S. DOE including insertion of the ion exchange (IX) technologies, such as Small Column Ion Exchange (SCIX) at Savannah River. This has the potential to align the salt and sludge processing life cycle, thereby reducing the Defense Waste Processing Facility (DWPF) mission by 7 years. Additionally at the Hanford site, problematic waste streams, such as high boehmite and phosphate wastes, could be treated prior to receipt by WTP and thus dramatically improve the capacity of the facility to process HLW. Treatment of boehmite by continuous sludge leaching (CSL) before receipt by WTP will dramatically reduce the process cycle time for the WTP pretreatment facility, while treatment of phosphate will significantly reduce the number of HLW borosilicate glass canisters produced at the WTP. These and other promising technologies will be discussed.

Aaron, G.; Wilmarth, B.

2011-09-19T23:59:59.000Z

230

Corrosion and failure processes in high-level waste tanks  

Science Conference Proceedings (OSTI)

A large amount of radioactive waste has been stored safely at the Savannah River and Hanford sites over the past 46 years. The aim of this report is to review the experimental corrosion studies at Savannah River and Hanford with the intention of identifying the types and rates of corrosion encountered and indicate how these data contribute to tank failure predictions. The compositions of the High-Level Wastes, mild steels used in the construction of the waste tanks and degradation-modes particularly stress corrosion cracking and pitting are discussed. Current concerns at the Hanford Site are highlighted.

Mahidhara, R.K.; Elleman, T.S.; Murty, K.L. [North Carolina State Univ., Raleigh, NC (United States)

1992-11-01T23:59:59.000Z

231

Tank Waste Feed Delivery System Readiness at the Hanford Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Audit Report Audit Report Tank Waste Feed Delivery System Readiness at the Hanford Site OAS-L-12-09 August 2012 Department of Energy Washington, DC 20585 August 23, 2012 MEMORANDUM FOR THE MANAGER, OFFICE OF RIVER PROTECTION FROM: David Sedillo, Director Western Audits Division Office of Audits and Inspections Office of Inspector General SUBJECT: INFORMATION: Audit Report on "Tank Waste Feed Delivery System Readiness at the Hanford Site" BACKGROUND The Department of Energy's largest cleanup task involves the treatment, immobilization and disposal of 56 million gallons of hazardous and highly radioactive waste at the Hanford Site, located in Southeastern Washington State. As part of this effort, the Department is constructing

232

HANFORD WASTE TANK BUMP ACCIDENT & CONSEQUENCE ANALYSIS  

DOE Green Energy (OSTI)

Postulated physical scenarios leading to tank bumps were examined. A combination of a substantial supernatant layer depth, supernatant temperatures close to saturation, and high sludge temperatures are required for a tank bump to occur. Scenarios postulated at various times for sludge layers lacking substantial supernatant, such as superheat within the layer and fumarole formation leading to a bump were ruled out.

MEACHAM, J.E.

2005-02-22T23:59:59.000Z

233

Hanford Tank Farms Waste Certification Flow Loop Test Plan  

Science Conference Proceedings (OSTI)

A future requirement of Hanford Tank Farm operations will involve transfer of wastes from double shell tanks to the Waste Treatment Plant. As the U.S. Department of Energy contractor for Tank Farm Operations, Washington River Protection Solutions anticipates the need to certify that waste transfers comply with contractual requirements. This test plan describes the approach for evaluating several instruments that have potential to detect the onset of flow stratification and critical suspension velocity. The testing will be conducted in an existing pipe loop in Pacific Northwest National Laboratory’s facility that is being modified to accommodate the testing of instruments over a range of simulated waste properties and flow conditions. The testing phases, test matrix and types of simulants needed and the range of testing conditions required to evaluate the instruments are described

Bamberger, Judith A.; Meyer, Perry A.; Scott, Paul A.; Adkins, Harold E.; Wells, Beric E.; Blanchard, Jeremy; Denslow, Kayte M.; Greenwood, Margaret S.; Morgen, Gerald P.; Burns, Carolyn A.; Bontha, Jagannadha R.

2010-01-01T23:59:59.000Z

234

Separation projects within the US Department of Energy`s Underground Storage Tank: Integrated Demonstration  

SciTech Connect

The greatest challenge facing the US Department of Energy is the remediation of the 1 {times} 10{sup 8} gal of high-level and low-level radioactive waste in the underground storage tanks (USTs) at its Hanford, Savannah River, Oak Ridge, Idaho, and Fernald sites. With current technologies, this remediation will cost at least 100 billion dollars. In an effort to reduce costs, improve safety, and minimize delays, the Underground Storage Tank--Integrated Demonstration was created for demonstration, testing, and evaluation (DT&E) of promising new technologies that can be used for UST remediation. These demonstrations, which are typically at the pilot-plant scale, will determine which processes will be used in the full-scale remediation of the USTs. These DT&E studies are performed by the Characterization and Waste Retrieval Program or by the Waste Processing and Disposal Program (WPDP). This paper presents the technical progress and future plans of the WPDP projects. The 11 WPDP programs in FY 1993 focused on three problem areas, which involve the treatment of supernate, the treatment of sludge, and nitrate destruction and subsequent waste forms. In addition, a planned Request for Expression of Interest on organic destruction techniques from private industries and universities and the WPDP`s future direction and programmatic issues are discussed.

McGinnis, C.P.; Hunt, R.D. [Oak Ridge National Lab., TN (United States); Gibson, S.M. [USDOE, Germantown, MD (United States); Gilchrist, R.L. [Westinghouse Hanford Co., Richland, WA (United States)

1993-12-01T23:59:59.000Z

235

Solubilities of gases in simulated Tank 241-SY-101 wastes  

DOE Green Energy (OSTI)

Oxygen, nitrogen, hydrogen, methane, and nitrous oxide solubilities were evaluated as a function of temperature in SYl-SIM-93B, a homogeneous simulated waste mixture containing sodium hydroxide, sodium nitrite, sodium nitrate, sodium aluminate, and sodium carbonate, the principal inorganic constituents of the wastes in Tank 241-SY-101. Ammonia solubility data for this simulated waste was obtained as a function of temperature in an earlier study. The choice of a homogeneous waste mixture in this study has the advantage of eliminating complications associated with a changing electrolyte concentration as a function of temperature that would be encountered with a slurry simulant. Dissolution is one of the means by which gases may be retained in Hanford Site wastes. While models are available to estimate gas solubilities in electrolyte solutions, few data are in existence that pertain to highly concentrated, multicomponent electrolytes such as those stored in Hanford Site waste tanks.

Norton, J.D.; Pederson, L.R.

1995-09-01T23:59:59.000Z

236

Parametric Analyses of Heat Removal from High Level Waste Tanks  

Science Conference Proceedings (OSTI)

The general thermal hydraulics program GOTH-SNF was used to predict the thermal response of the waste in tanks 241-AY-102 and 241-AZ-102 when mixed by two 300 horsepower mixer pumps. This mixing was defined in terms of a specific waste retrieval scenario. Both dome and annulus ventilation system flow are necessary to maintain the waste within temperature control limits during the mixing operation and later during the sludge-settling portion of the scenario are defined.

TRUITT, J.B.

2000-06-05T23:59:59.000Z

237

Double Shell Tank (DST) Process Waste Sampling Subsystem Definition Report  

Science Conference Proceedings (OSTI)

This report defines the Double-Shell Tank (DST) Process Waste Sampling Subsystem (PWSS). This subsystem definition report fully describes and identifies the system boundaries of the PWSS. This definition provides a basis for developing functional, performance, and test requirements (i.e., subsystem specification), as necessary, for the PWSS. The resultant PWSS specification will include the sampling requirements to support the transfer of waste from the DSTs to the Privatization Contractor during Phase 1 of Waste Feed Delivery.

RASMUSSEN, J.H.

2000-04-25T23:59:59.000Z

238

Evaluation of the potential for significant ammonia releases from Hanford waste tanks  

DOE Green Energy (OSTI)

Ammonia is ubiquitous as a component of the waste stored in the Hanford Site single-shell tanks (SSTs) and double-shell tanks (DSTs). Because ammonia is both flammable and toxic, concerns have been raised about the amount of ammonia stored in the tanks and the possible mechanisms by which it could be released from the waste into the head space inside the tanks as well as into the surrounding atmosphere. Ammonia is a safety issue for three reasons. As already mentioned, ammonia is a flammable gas and may contribute to a flammability hazard either directly, if it reaches a high enough concentration in the tank head space, or by contributing to the flammability of other flammable gases such as hydrogen (LANL 1994). Ammonia is also toxic and at relatively low concentrations presents a hazard to human health. The level at which ammonia is considered Immediately Dangerous to Life or Health (IDLH) is 300 ppm (WHC 1993, 1995). Ammonia concentrations at or above this level have been measured inside the head space in a number of SSTs. Finally, unlike hydrogen and nitrous oxide, ammonia is highly soluble in aqueous solutions, and large amounts of ammonia can be stored in the waste as dissolved gas. Because of its high solubility, ammonia behaves in a qualitatively different manner from hydrogen or other insoluble gases. A broader range of scenarios must be considered in modeling ammonia storage and release.

Palmer, B.J.; Anderson, C.M.; Chen, G.; Cuta, J.M.; Ferryman, T.A.; Terrones, G.

1996-07-01T23:59:59.000Z

239

PSA results for Hanford high level waste Tank 101-SY  

DOE Green Energy (OSTI)

Los Alamos National Laboratory has performed a comprehensive probabilistic safety assessment (PSA) that includes consideration of external events for the weapons-production wastes stored in tank number 241-SY-101, commonly known as Tank 101-SY, as configured in December 1992. This tank, which periodically releases (``burps``) a gaseous mixture of hydrogen, nitrous oxide, ammonia, and nitrogen, was analyzed because of public safety concerns associated with the potential for release of radioactive tank contents should this gas mixture be ignited during one of the burps. In an effort to mitigate the burping phenomenon, an experiment is underway in which a large pump has been inserted into the tank to determine if pump-induced circulation of the tank contents will promote a slow, controlled release of the gases. This PSA for Tank 101-SY, which did not consider the pump experiment or future tank-remediation activities, involved three distinct tasks. First, the accident sequence analysis identified and quantified those potential accidents whose consequences result in tank material release. Second, characteristics and release paths for the airborne and liquid radioactive source terms were determined. Finally, the consequences, primarily onsite and offsite potential health effects resulting from radionuclide release, were estimated, and overall risk curves were constructed. An overview of each of these tasks and a summary of the overall results of the analysis are presented in the following sections.

MacFarlane, D.R.; Bott, T.F.; Brown, L.F.; Stack, D.W. [Los Alamos National Lab., NM (United States); Kindinger, J.; Deremer, R.K.; Medhekar, S.R.; Mikschl, T.J. [PLG, Inc., Newport Beach, CA (United States)

1993-10-01T23:59:59.000Z

240

Tank Waste Remediation System tank waste pretreatment and vitrification process development testing requirements assessment  

Science Conference Proceedings (OSTI)

A multi-faceted study was initiated in November 1993 to provide assurance that needed testing capabilities, facilities, and support infrastructure (sampling systems, casks, transportation systems, permits, etc.) would be available when needed for process and equipment development to support pretreatment and vitrification facility design and construction schedules. This first major report provides a snapshot of the known testing needs for pretreatment, low-level waste (LLW) and high-level waste (HLW) vitrification, and documents the results of a series of preliminary studies and workshops to define the issues needing resolution by cold or hot testing. Identified in this report are more than 140 Hanford Site tank waste pretreatment and LLW/HLW vitrification technology issues that can only be resolved by testing. The report also broadly characterizes the level of testing needed to resolve each issue. A second report will provide a strategy(ies) for ensuring timely test capability. Later reports will assess the capabilities of existing facilities to support needed testing and will recommend siting of the tests together with needed facility and infrastructure upgrades or additions.

Howden, G.F.

1994-10-24T23:59:59.000Z

Note: This page contains sample records for the topic "waste storage tanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Simulation of Hanford Tank 241-C-106 Waste Release into Tank 241-Y-102  

SciTech Connect

Waste stored in Hdord single-shell Tank 241-C-106 will be sluiced with a supernatant liquid from doubIe-shell Tank 241 -AY- 102 (AY-1 02) at the U.S. Department of Energy's Har@ord Site in Eastern Washington. The resulting slurry, containing up to 30 wtYo solids, will then be transferred to Tank AY-102. During the sluicing process, it is important to know the mass of the solids being transferred into AY- 102. One of the primary instruments used to measure solids transfer is an E+ densitometer located near the periphery of the tank at riser 15S. This study was undert.dcen to assess how well a densitometer measurement could represent the total mass of soiids transferred if a uniform lateral distribution was assumed. The study evaluated the C-1 06 slurry mixing and accumulation in Tank AY- 102 for the following five cases: Case 1: 3 wt'%0 slurry in 6.4-m AY-102 waste Case 2: 3 w-t% slurry in 4.3-m AY-102 waste Case 3: 30 wtYo slurry in 6.4-m AY-102 waste Case 4: 30 wt% slurry in 4.3-m AY-102 waste Case 5: 30 wt% slurry in 5. O-m AY-102 waste. The tirne-dependent, three-dimensional, TEMPEST computer code was used to simulate solid deposition and accumulation during the injection of the C-106 slurry into AY-102 through four injection nozzles. The TEMPEST computer code was applied previously to other Hanford tanks, AP-102, SY-102, AZ-101, SY-101, AY-102, and C-106, to model tank waste mixing with rotating pump jets, gas rollover events, waste transfer from one tank to another, and pump-out retrieval of the sluiced waste. The model results indicate that the solid depth accumulated at the densitometer is within 5% of the average depth accumulation. Thus the reading of the densitometer is expected to represent the total mass of the transferred solids reasonably well.

KP Recknagle; Y Onishi

1999-05-19T23:59:59.000Z

242

Analysis of vehicle fuel release resulting in waste tank fire  

Science Conference Proceedings (OSTI)

This document reevaluates several aspects of the in-tank vehicle fuel fire/deflagration accident formally documented as an independent accident (representative accident [rep acc] 2). This reevaluation includes frequencies for the accidents and incorporates the behavior of gasoline and diesel fuel in more detail than previous analysis. This reevaluation uses data from RPP-13121, ''Historical Summary of Occurrences from the Tank Farm Safety Analysis Report'', Table B-1, ''Tank Farm Events, Off-Normal and Critiques,'' and B-2, ''Summary of Occurrences,'' and from the River Protection Project--Occurrence Reporting & Processing System (ORPS) reports as a basis for changing some of the conclusions formally reported in HNF-SD-WM-CN-037, ''Frequency Analysis of Vehicle Fuel Releases Resulting in Waste Tank Fire''. This calculation note will demonstrate that the in-tank vehicle fuel fire/deflagration accident event may be relocated to other, more bounding accidents.

STEPHENS, L.S.

2003-03-21T23:59:59.000Z

243

Resource Conservation and Recovery Act (RCRA) Part B permit application for tank storage units at the Oak Ridge Y-12 Plant  

SciTech Connect

In compliance with the Resource Conservation and Recovery Act (RCRA), this report discusses information relating to permit applications for three tank storage units at Y-12. The storage units are: Building 9811-1 RCRA Tank Storage Unit (OD-7); Waste Oil/Solvent Storage Unit (OD-9); and Liquid Organic Solvent Storage Unit (OD-10). Numerous sections discuss the following: Facility description; waste characteristics; process information; groundwater monitoring; procedures to prevent hazards; contingency plan; personnel training; closure plan, post closure plan, and financial requirements; record keeping; other federal laws; organic air emissions; solid waste management units; and certification. Sixteen appendices contain such items as maps, waste analyses and forms, inspection logs, equipment identification, etc.

Not Available

1994-05-01T23:59:59.000Z

244

FITNESS-FOR-SERVICE ASSESSMENT FOR A RADIOACTIVE WASTE TANK THAT CONTAINS STRESS CORROSION CRACKS  

Science Conference Proceedings (OSTI)

Radioactive wastes are confined in 49 underground storage tanks at the Savannah River Site. The tanks are examined by ultrasonic (UT) methods for thinning, pitting, and stress corrosion cracking in order to assess fitness-for-service. During an inspection in 2002, ten cracks were identified on one of the tanks. Given the location of the cracks (i.e., adjacent to welds, weld attachments, and weld repairs), fabrication details (e.g., this tank was not stress-relieved), and the service history the degradation mechanism was stress corrosion cracking. Crack instability calculations utilizing API-579 guidance were performed to show that the combination of expected future service condition hydrostatic and weld residual stresses do not drive any of the identified cracks to instability. The cracks were re-inspected in 2007 to determine if crack growth had occurred. During this re-examination, one indication that was initially reported as a 'possible perpendicular crack API-579 crack instability calculations were again performed, based on expected future service conditions and trended crack growth rates for the future tank service cycle. The analysis showed that the combined hydrostatic and weld residual stresses do not drive the identified cracks to instability. This tank expected to be decommissioned in the near future. However, if these plans are delayed, it was recommended that a third examination of selected cracks in the tank be performed in 2014.

Wiersma, B; James Elder, J; Rodney Vandekamp, R; Charles Mckeel, C

2009-04-23T23:59:59.000Z

245

Characterization of the Old Hydrofracture Facility (OHF) waste tanks located at ORNL  

SciTech Connect

The Old Hydrofracture Facility (OHF) is located in Melton Valley within Waste Area Grouping (WAG) 5 and includes five underground storage tanks (T1, T2, T3, T4, and T9) ranging from 13,000 to 25,000 gal. capacity. During the period of 1996--97 there was a major effort to re-sample and characterize the contents of these inactive waste tanks. The characterization data summarized in this report was needed to address waste processing options, examine concerns dealing with the performance assessment (PA) data for the Waste Isolation Pilot Plant (WIPP), evaluate the waste characteristics with respect to the waste acceptance criteria (WAC) for WIPP and Nevada Test Site (NTS), address criticality concerns, and to provide the data needed to meet DOT requirements for transporting the waste. This report discusses the analytical characterization data collected on both the supernatant and sludge samples taken from three different locations in each of the OHF tanks. The isotopic data presented in this report supports the position that fissile isotopes of uranium ({sup 233}U and {sup 235}U) do not satisfy the denature ratios required by the administrative controls stated in the ORNL LLLW waste acceptance criteria (WAC). The fissile isotope of plutonium ({sup 239}Pu and {sup 241}Pu) are diluted with thorium far above the WAC requirements. In general, the OHF sludge was found to be hazardous (RCRA) based on total metal content and the transuranic alpha activity was well above the 100 nCi/g limit for TRU waste. The characteristics of the OHF sludge relative to the WIPP WAC limits for fissile gram equivalent, plutonium equivalent activity, and thermal power from decay heat were estimated from the data in this report and found to be far below the upper boundary for any of the remote-handled transuranic waste (RH-TRU) requirements for disposal of the waste in WIPP.

Keller, J.M.; Giaquinto, J.M.; Meeks, A.M.

1997-04-01T23:59:59.000Z

246

Savannah River Site Celebrates Historic Closure of Radioactive Waste Tanks:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Site Celebrates Historic Closure of Radioactive Savannah River Site Celebrates Historic Closure of Radioactive Waste Tanks: Senior DOE Officials and South Carolina Congressional Leadership Gather to Commemorate Historic Cleanup Milestone Savannah River Site Celebrates Historic Closure of Radioactive Waste Tanks: Senior DOE Officials and South Carolina Congressional Leadership Gather to Commemorate Historic Cleanup Milestone October 1, 2012 - 12:00pm Addthis U.S. Energy Under Secretary for Nuclear Security Thomas D'Agostino, left, South Carolina Department of Health and Environmental Control Director Catherine Templeton and U.S. Sen. Lindsey Graham (R-SC) unveil a marker to commemorate the closing of waste tanks at the Savannah River Site in South Carolina. U.S. Energy Under Secretary for Nuclear Security Thomas D'Agostino, left,

247

Savannah River Site Celebrates Historic Closure of Radioactive Waste Tanks:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Site Celebrates Historic Closure of Radioactive Savannah River Site Celebrates Historic Closure of Radioactive Waste Tanks: Senior DOE Officials and South Carolina Congressional Leadership Gather to Commemorate Historic Cleanup Milestone Savannah River Site Celebrates Historic Closure of Radioactive Waste Tanks: Senior DOE Officials and South Carolina Congressional Leadership Gather to Commemorate Historic Cleanup Milestone October 1, 2012 - 12:00pm Addthis U.S. Energy Under Secretary for Nuclear Security Thomas D'Agostino, left, South Carolina Department of Health and Environmental Control Director Catherine Templeton and U.S. Sen. Lindsey Graham (R-SC) unveil a marker to commemorate the closing of waste tanks at the Savannah River Site in South Carolina. U.S. Energy Under Secretary for Nuclear Security Thomas D'Agostino, left,

248

Basis for Selection of a Residual Waste Retrieval System for Gunite and Associated Tank W-9 at the Oak Ridge National Laboratory  

Science Conference Proceedings (OSTI)

Waste retrieval and transfer operations at the Gunite{trademark} and Associated Tanks (GAATs) Remediation Project have been successfully accomplished using the Tank Waste Retrieval System. This system is composed of the Modified Light-Duty Utility Arm, Houdini Vehicle, Waste Dislodging and Conveyance System, Hose Management Arm, and Sludge Conditioning System. GAAT W-9 has been used as a waste-consolidation and batch-transfer tank during the retrieval of sludges and supernatants from the seven Gunite tanks in the North and South tank farms at Oak Ridge National Laboratory. Tank W-9 was used as a staging tank for the transfers to the Melton Valley Storage Tanks (MVSTs). A total of 18 waste transfers from W-9 occurred between May 25, 1999, and March 30, 2000. Most of these transfers were accomplished using the PulsAir Mixer to mobilize and mix the slurry and a submersible retrieval-transfer pump to transfer the slurry through the Sludge Conditioning System and the {approx}1-mile long, 2-in.-diam waste-transfer line to the MVSTs. The transfers from W-9 have consisted of low-solids-content slurries with solids contents ranging from {approx}2.8 to 6.8 mg/L. Of the initial {approx}88,000 gal of wet sludge estimated in the GAATs, a total of {approx}60,451 gal have been transferred to the MVSTs via tank W-9 as of March 30, 2000. Once the waste-consolidation operations and transfers from W-9 to the MVSTs are completed, the remaining material in W-9 will be mobilized and transferred to the active waste system, Bethel Valley Evaporator Service Tank W-23. Tank W-23 will serve as a batch tank for the final waste transfers from tank W-9 to the MVSTs. This report provides a summary of the requirements and recommendations for the final waste retrieval system for tank W-9, a compilation of the sample analysis data for the sludge in W-9, and brief descriptions of the various waste-retrieval system concepts that were considered for this task. The recommended residual waste retrieval system for cleanout of tank W-9 consists primarily of the existing Tank Waste Retrieval System, which, is used in conjunction with a small surge vessel placed in one of the tank risers and a positive displacement pump installed inside the Primary Conditioning System containment box. Final cleanout of tank W-9 was initiated in July and successfully completed in September 2000. The performance of the selected residual waste retrieval system will be described in a follow-on report.

Lewis, B.E

2000-10-23T23:59:59.000Z

249

Tank Waste Corporate Board Meeting 11/06/08 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

11/06/08 11/06/08 Tank Waste Corporate Board Meeting 11/06/08 The following documents are associated with the Tank Waste Corporate Board Meeting held on November 6th, 2008. Note: (Please contact Steven Ross at steven.ross@em.doe.gov for a HLW Glass Waste Loadings version with animations on slide 6). Slurry Retrieval, Pipeline Transport & Plugging and Mixing Workshop The Way Ahead - West Valley Demonstration Project High-Level Liquid Waste Tank Integrity Workshop - 2008 Savannah River Tank Waste Residuals Hanford Tank Waste Residuals HLW Glass Waste Loadings High-Level Waste Corporate Board Performance Assessment Subcommittee More Documents & Publications Tank Waste Corporate Board Meeting 11/18/10 System Planning for Low-Activity Waste at Hanford Waste Treatment and Immobilation Plant HLW Waste Vitrification Facility

250

EA-1146: Radioactive Waste Storage at Rocky Flats Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

46: Radioactive Waste Storage at Rocky Flats Environmental Technology Site, Golden, Colorado EA-1146: Radioactive Waste Storage at Rocky Flats Environmental Technology Site,...

251

DOE Announces Preference for Disposal of Hanford Transuranic Tank Waste at  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Announces Preference for Disposal of Hanford Transuranic Tank Announces Preference for Disposal of Hanford Transuranic Tank Waste at WIPP DOE Announces Preference for Disposal of Hanford Transuranic Tank Waste at WIPP March 6, 2013 - 12:00pm Addthis WASHINGTON, D.C. - Today the U.S. Department of Energy (DOE) announced its preferred alternative to retrieve, treat, package, characterize and certify certain Hanford tank waste for disposal at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico, if such waste is properly classified in the future as defense-related mixed transuranic tank waste (mixed TRU waste). This preferred alternative, which may cover up to approximately 3.1 million gallons of tank waste contained in up to 20 tanks, will provide DOE with an option to deal with recent information about possible tank leaks and to

252

Integrated beta and gamma radiation dose calculations for the ferrocyanide waste tanks  

SciTech Connect

This report contains the total integrated beta and gamma radiation doses in all the ferrocyanide waste tanks. It also contains estimated gamma radiation dose rates for all single-shell waste tanks containing a liquid observation well.

Parra, S.A.

1994-11-30T23:59:59.000Z

253

Record of Decision Issued for the Hanford Tank Closure and Waste...  

NLE Websites -- All DOE Office Websites (Extended Search)

Record of Decision Issued for the Hanford Tank Closure and Waste Management EIS Record of Decision Issued for the Hanford Tank Closure and Waste Management EIS December 13, 2013 -...

254

EXPERIMENTAL METHODS TO ESTIMATE ACCUMULATED SOLIDS IN NUCLEAR WASTE TANKS  

SciTech Connect

The Department of Energy has a large number of nuclear waste tanks. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles, e.g., plutonium containing, could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a waste tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids and supernatant were charged to the test tank and rotating liquid jets were used to remove most of the solids. Then the volume and shape of the residual solids and the spatial concentration profiles for the surrogate for plutonium were measured. This paper discusses the overall test results, which indicated heavy solids only accumulate during the first few transfer cycles, along with the techniques and equipment designed and employed in the test. Those techniques include: Magnetic particle separator to remove stainless steel solids, the plutonium surrogate from a flowing stream; Magnetic wand used to manually remove stainless steel solids from samples and the tank heel; Photographs were used to determine the volume and shape of the solids mounds by developing a composite of topographical areas; Laser rangefinders to determine the volume and shape of the solids mounds; Core sampler to determine the stainless steel solids distribution within the solids mounds; Computer driven positioner that placed the laser rangefinders and the core sampler over solids mounds that accumulated on the bottom of a scaled staging tank in locations where jet velocities were low. These devices and techniques were very effective to estimate the movement, location, and concentrations of the solids representing plutonium and are expected to perform well at a larger scale. The operation of the techniques and their measurement accuracies will be discussed as well as the overall results of the accumulated solids test.

Duignan, M.; Steeper, T.; Steimke, J.

2012-12-10T23:59:59.000Z

255

The potential for buoyant displacement gas release events in Tank 241-SY-102 after waste transfer from Tank 241-SY-101  

DOE Green Energy (OSTI)

Tank 241-SY-101 (SY-101) is a double-shell, radioactive waste storage tank with waste that, before the recent transfer and water back-dilution operations, was capable of retaining gas and producing buoyant displacement (BD) gas release events (GREs). Some BD GREs caused gas concentrations in the tank headspace to exceed the lower flammability limit (LFL). A BD GRE occurs when a portion of the nonconvective layer retains enough gas to become buoyant, rises to the waste surface, breaks up, and releases some of its stored gas. The installation of a mixer pump in 1993 successfully mitigated gas retention in the settled solids layer in SY-101 and has since prevented BD GREs. However, operation of the mixer pump over the years caused gas retention in the floating crust layer and a corresponding accelerated waste level growth. The accelerating crust growth trend observed in 1997--98 led to initiation of sequences of waste removal and water back-dilutions in December 1999. Waste is removed from the mixed slurry layer in Tank SY-101 and transferred into Tank 241-Sy-102 (SY-102). Water is then added back to dissolve soluble solids that retain gas. The initial transfer of 89,500 gallons of SY-101 waste, diluted in-line at 0.94:1 by volume with water, to SY-102 was conducted in December 1999. The second transfer of 230,000 gallons of original SY-101 waste, diluted approximately 0.9:1, was completed in January 2000, and the third transfer of 205,500 gallons of original SY-101 waste diluted at 0.9:1 was completed in March 2000.

BE Wells; PE Meyer; G Chen

2000-05-10T23:59:59.000Z

256

Tank Waste Remediation System decisions and risk assessment  

SciTech Connect

The Tank Waste Remediation System (TWRS) mission is to store, treat, and immobilize the highly radioactive Hanford Site tank wastes and encapsulated cesium and strontium materials in an environmentally sound, safe, and cost effective manner. Additionally, the TWRS conducts, as part of this mission, resolution of safety issues associated with the wastes within the 177 underground radioactive waste tanks. Systems engineering principles are being applied to determine the functions and establish requirements necessary for accomplishing the TWRS mission (DOE 1994 draft). This systematic evaluation of the TWRS program has identified key decisions that must be executed to establish mission scope, determine requirements, or select a technical solution for accomplishing identified functions and requirements. Key decisions identified through the systematic evaluation of the TWRS mission are presented in this document. Potential alternative solutions to each decision are discussed. After-discussion and evaluation of each decision with effected stakeholder groups, the US Department of Energy (DOE) will select a solution from the identified alternatives for implementation. In order to proceed with the development and execution of the tank waste remediation program, the DOE has adopted a planning basis for several of these decisions, until a formal basis is established. The planning bases adopted by the DOE is continuing to be discussed with stakeholder groups to establish consensus for proceeding with proposed actions. Technical and programmatic risks associated with the planning basis adopted by the DOE are discussed.

Johnson, M.E.

1994-09-01T23:59:59.000Z

257

Potential for erosion corrosion of SRS high level waste tanks  

Science Conference Proceedings (OSTI)

SRS high-level radioactive waste tanks will not experience erosion corrosion to any significant degree during slurry pump operations. Erosion corrosion in carbon steel structures at reported pump discharge velocities is dominated by electrochemical (corrosion) processes. Interruption of those processes, as by the addition of corrosion inhibitors, sharply reduces the rate of metal loss from erosion corrosion. The well-inhibited SRS waste tanks have a near-zero general corrosion rate, and therefore will be essentially immune to erosion corrosion. The experimental data on carbon steel erosion corrosion most relevant to SRS operations was obtained at the Hanford Site on simulated Purex waste. A metal loss rate of 2.4 mils per year was measured at a temperature of 102 C and a slurry velocity comparable to calculated SRS slurry velocities on ground specimens of the same carbon steel used in SRS waste tanks. Based on these data and the much lower expected temperatures, the metal loss rate of SRS tanks under waste removal and processing conditions should be insignificant, i.e. less than 1 mil per year.

Zapp, P.E.

1994-01-01T23:59:59.000Z

258

GRR/Section 18-MT-a - Underground Storage Tanks | Open Energy Information  

Open Energy Info (EERE)

MT-a - Underground Storage Tanks MT-a - Underground Storage Tanks < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-MT-a - Underground Storage Tanks 18MTAUndergroundStorageTanks (2).pdf Click to View Fullscreen Contact Agencies Montana Department of Environmental Quality Regulations & Policies Montana Code Annotated 75-11-501 Administrative Rules of Montana 17-56 Triggers None specified Click "Edit With Form" above to add content 18MTAUndergroundStorageTanks (2).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative A developer must obtain an Underground Storage Tank Installation Permit

259

GRR/Section 18-ID-a - Underground Storage Tank Systems | Open Energy  

Open Energy Info (EERE)

GRR/Section 18-ID-a - Underground Storage Tank Systems GRR/Section 18-ID-a - Underground Storage Tank Systems < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-ID-a - Underground Storage Tank Systems 18IDAUndergroundStorageTankSystems.pdf Click to View Fullscreen Contact Agencies Idaho Department of Environmental Quality Regulations & Policies IDAPA 58.01.07 Rules Regulating Underground Storage Tank Systems Triggers None specified Click "Edit With Form" above to add content 18IDAUndergroundStorageTankSystems.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Idaho Department of Environmental Quality (DEQ) requires notification

260

GRR/Section 18-OR-a - State Underground Storage Tank | Open Energy  

Open Energy Info (EERE)

GRR/Section 18-OR-a - State Underground Storage Tank GRR/Section 18-OR-a - State Underground Storage Tank < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-OR-a - State Underground Storage Tank 18ORAStateUndergroundStorageTank (1).pdf Click to View Fullscreen Contact Agencies Oregon Department of Environmental Quality Regulations & Policies OAR 340-150: Underground Storage Tank Rules Triggers None specified Click "Edit With Form" above to add content 18ORAStateUndergroundStorageTank (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative _ 18-OR-a.1 - Application for General Permit Registration Certificate, EPA

Note: This page contains sample records for the topic "waste storage tanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

GRR/Section 18-NV-a - Underground Storage Tank | Open Energy Information  

Open Energy Info (EERE)

a - Underground Storage Tank a - Underground Storage Tank < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-NV-a - Underground Storage Tank 18NVAUndergroundStorageTank.pdf Click to View Fullscreen Contact Agencies Nevada Division of Environmental Protection Regulations & Policies Nevada Revised Statutes (NRS) Nevada Administrative Code (NAC) Triggers None specified Click "Edit With Form" above to add content 18NVAUndergroundStorageTank.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Nevada Division of Environmental Protection (NDEP) administers the Underground Storage Tank (UST) Program for the State of Nevada.

262

SRS Waste Tanks 5 and 6 Are Operationally Closed | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SRS Waste Tanks 5 and 6 Are Operationally Closed SRS Waste Tanks 5 and 6 Are Operationally Closed SRS Waste Tanks 5 and 6 Are Operationally Closed December 19, 2013 - 12:00pm Addthis The final amount of grout is poured into Tank 6, marking the operational closure of Tanks 5 and 6. The final amount of grout is poured into Tank 6, marking the operational closure of Tanks 5 and 6. Media Contacts Amy Caver, Amy.Caver@srs.gov, 803-952-7213 Rick Kelley, Rick.Kelley@srs.gov, 803-208-0198 AIKEN, S.C. - Savannah River Remediation (SRR), the liquid waste contractor at the U.S. Department of Energy (DOE) Savannah River Site, has removed from service two more Cold War-era liquid radioactive waste tanks, marking the third and fourth tanks operationally closed by SRR in the last 14 months. Grouting and closure of Tanks 5 and 6 were completed approximately two

263

EVALUATION OF ULTIMATE DISPOSAL METHOD FOR LIQUID AND SOLID RADIOACTIVE WASTES. PART I. INTERIM LIQUID STORAGE  

SciTech Connect

As the first part of a study to evaluate the economics of the various steps leading to and including the permanent disposal of high-activity liquid and solid radioactive waste, costs of interim liquid storage of acid and alkaline Purex and Thorex wastes were estimated for storage times of 0.5 to 30 years. A 6- ton/day plant was assumed, processing 1500 tons/year of uranium converter fuel at a burnup of 10,000 Mwd/ton and 270 tons/year of thorium converter fuel at a burnup of 20,000 Mwd/ton. Tanks of Savannah River design were assumed, with stainless steel construction for acid wastes and mild steel construction for neutralized wastes. The operating cycle of each tank was assumed to consist of equal filling and emptying periods plus a full (or dead) period. With interim storage time defined as filling time plus full time, tank costs were minimum when full time was 40 to 70% of the interim storage time, using present worth considerations. For waste storage times of 0.5 to 30 years, costs ranged from 2.2 x 10/sup -3/ to 9.5 x 10/sup -3/ mill/kwh/sub e/ for acid wastes and from 1.7 x 10/sup -3/ to 5.1 x 10/sup -3/ mill/kwh/sub e/ for neutralized wastes. (auth)

Bradshaw, R.L.; Perona, J.J.; Roberts, J.T.; Blomeke, J.O.

1961-08-22T23:59:59.000Z

264

TANK WASTE RETRIEVAL LESSONS LEARNED AT THE HANFORD SITE  

SciTech Connect

One of the environmental remediation challenges facing the nation is the retrieval and permanent disposal of approximately 90 million gallons of radioactive waste stored in underground tanks at the US Department of Energy (DOE) facilities. The Hanford Site is located in southeastern Washington State and stores roughly 60% of this waste. An estimated 53 million gallons of high-level, transuranic, and low-level radioactive waste is stored underground in 149 single-shell tanks (SSTs) and 28 newer double-shell tanks (DSTs) at the Hanford Site. These SSTs range in size from 55,000 gallons to 1,000,000 gallon capacity. Approximately 30 million gallons of this waste is stored in SSTs. The SSTs were constructed between 1943 and 1964 and all have exceeded the nominal 20-year design life. Sixty-seven SSTs are known or suspected to have leaked an estimated 1,000,000 gallons of waste. The risk of additional SST leakage has been greatly reduced by removing more than 3 million gallons of interstitial liquids and supernatant and transferring the waste to the DST system since 1997 as part of the interim stabilization program. Retrieval of SST saltcake and sludge waste is underway to further reduce risks and stage feed materials for the Hanford Site Waste Treatment Plant. This paper presents lessons learned from retrieval of tank waste at the Hanford Site and discusses how this information is used to optimize retrieval system efficiency, improve overall cost effectiveness of retrieval operations, and ensure that HFFACO requirements are met.

DODD, R.A.

2006-01-17T23:59:59.000Z

265

Process chemistry for the pretreatment of Hanford tank wastes  

SciTech Connect

Current guidelines for disposing radioactive wastes stored in underground tanks at the US Department of Energy`s Hanford Site call for the vitrification of high-level waste in borosilicate glass and disposal of the glass canisters in a deep geologic repository. Low-level waste is to be cast in grout and disposed of on site in shallow burial vaults. Because of the high cost of vitrification and geologic disposal, methods are currently being developed to minimize the volume of high-level waste requiring disposal. Two approaches are being considered for pretreating radioactive tank sludges: (1) leaching of selected components from the sludge and (2) acid dissolution of the sludge followed by separation of key radionuclides. The leaching approach offers the advantage of simplicity, but the acid dissolution/radionuclide extraction approach has the potential to produce the least number of glass canisters. Four critical components (Cr, P, S, and Al) were leached from an actual Hanford tank waste-Plutonium Finishing Plant sludge. The Al, P, and S were removed from the sludge by digestion of the sludge with 0.1 M NaOH at 100{degrees}C. The Cr was leached by treating the sludge with alkaline KMnO{sub 4} at 100{degrees}C. Removing these four components from the sludge will dramatically lower the number of glass canisters required to dispose of this waste. The transuranic extraction (TRUEX) solvent extraction process has been demonstrated at a bench scale using an actual Hanford tank waste. The process, which involves extraction of the transuranic elements with octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO), separated 99.9% of the transuranic elements from the bulk components of the waste. Several problems associated with the TRUEX processing of this waste have been addressed and solved.

Lumetta, G.J.; Swanson, J.L. [Pacific Northwest Lab., Richland, WA (United States); Barker, S.A. [Westinghouse Hanford Co., Richland, WA (United States)

1992-08-01T23:59:59.000Z

266

HANFORD TANK CLEANUP UPDATE  

SciTech Connect

Access to Hanford's single-shell radioactive waste storage tank C-107 was significantly improved when workers completed the cut of a 55-inch diameter hole in the top of the tank. The core and its associated cutting equipment were removed from the tank and encased in a plastic sleeve to prevent any potential spread of contamination. The larger tank opening allows use of a new more efficient robotic arm to complete tank retrieval.

BERRIOCHOA MV

2011-04-07T23:59:59.000Z

267

ENGINEERING SPECIALTY ASSESSMENT OF TANK WASTE COMPATIBILITY REPORTING  

Science Conference Proceedings (OSTI)

This Engineering Specialty Assessment was conducted to review the Tank Farm Waste Transfer Compatibility Program to assess whether the program meets the needs of accelerated retrieval and closure and waste feed delivery and to identify areas and methods for streamlining the program. The assessment was conducted in June 2003 and resulted in two findings and thirteen observations. The assessment results indicate that significant opportunities exist for streamlining the program by reducing the number of criteria requiring evaluation from 21 to 11, with only six of the criteria requiring evaluation for the majority of transfers. The assessment identified areas where existing criteria require strengthening to ensure that the risks of undesirable solids precipitation, from either waste mixing or waste transfer, are minimized. The assessment further identified opportunities for using existing engineering tools to simplify the calculations involved with preparation of waste compatibility assessments. The need to ensure that a revision to the waste compatibility program is prepared to align the program criteria with those that will be implemented with the DSA approval was also identified. Finally, the assessment identified that corrective actions are required to implement a tank-by-tank PCB inventory within the Best Basis Inventory and to ensure that sample data from external waste generators is entered into the TWINS database.

KNIGHT, M.A.

2003-06-30T23:59:59.000Z

268

Tank farms solid waste characterization guide with sampling and analysis plan attachment  

SciTech Connect

This document describes methods used, including sampling and analysis, to characterize hazardous chemical constituent in Tank Farms containerized solid waste.

Quigley, J.T.

1997-04-02T23:59:59.000Z

269

Potential for criticality in Hanford tanks resulting from retrieval of tank waste  

SciTech Connect

This report assesses the potential during retrieval operations for segregation and concentration of fissile material to result in a criticality. The sluicing retrieval of C-106 sludge to AY-102 and the operation of mixer pumps in SY-102 are examined in some detail. These two tanks (C-106, SY-102) were selected because of the near term plans for retrieval of these tanks and their high plutonium inventories relative to other tanks. Although all underground storage tanks are subcritical by a wide margin if assumed to be uniform in composition, the possibility retrieval operations could preferentially segregate the plutonium and locally concentrate it sufficiently to result in criticality was a concern. This report examines the potential for this segregation to occur.

Whyatt, G.A.; Sterne, R.J.; Mattigod, S.V. [and others

1996-09-01T23:59:59.000Z

270

Alkaline-side extraction of technetium from tank waste using crown ethers and other extractants  

SciTech Connect

The chemical development of a new crown-ether-based solvent-extraction process for the separation of (Tc) from alkaline tank-waste supernate is ready for counter-current testing. The process addresses a priority need in the proposed cleanup of Hanford and other tank wastes. This need has arisen from concerns due to the volatility of Tc during vitrification, as well as {sup 99}Tc`s long half-life and environmental mobility. The new process offers several key advantages that direct treatability--no adjustment of the waste composition is needed; economical stripping with water; high efficiency--few stages needed; non-RCRA chemicals--no generation of hazardous or mixed wastes; co-extraction of {sup 90}Sr; and optional concentration on a resin. A key concept advanced in this work entails the use of tandem techniques: solvent extraction offers high selectivity, while a subsequent column sorption process on the aqueous stripping solution serves to greatly concentrate the Tc. Optionally, the stripping solution can be evaporated to a small volume. Batch tests of the solvent-extraction and stripping components of the process have been conducted on actual melton Valley Storage Tank (MVST) waste as well as simulants of MVST and Hanford waste. The tandem process was demonstrated on MVST waste simulants using the three solvents that were selected the final candidates for the process. The solvents are 0.04 M bis-4,4{prime}(5{prime})[(tert-butyl)cyclohexano]-18-crown-6 (abbreviated di-t-BuCH18C6) in a 1:1 vol/vol blend of tributyl phosphate and Isopar{reg_sign} M (an isoparaffinic kerosene); 0.02 M di-t-BuCH18C6 in 2:1 vol/vol TBP/Isopar M and pure TBP. The process is now ready for counter-current testing on actual Hanford tank supernates.

Bonnesen, P.V.; Moyer, B.A.; Presley, D.J.; Armstrong, V.S.; Haverlock, T.J.; Counce, R.M.; Sachleben, R.A.

1996-06-01T23:59:59.000Z

271

Initial Investigation of Waste Feed Delivery Tank Mixing and Sampling Issues  

SciTech Connect

The Hanford tank farms contractor will deliver waste to the Waste Treatment Plant (WTP) from a staging double-shell tank. The WTP broadly classifies waste it receives in terms of “Envelopes,” each with different limiting properties and composition ranges. Envelope A, B, and C wastes are liquids that can include up to 4% entrained solids that can be pumped directly from the staging DST without mixing. Envelope D waste contains insoluble solids and must be mixed before transfer. The mixing and sampling issues lie within Envelope D solid-liquid slurries. The question is how effectively these slurries are mixed and how representative the grab samples are that are taken immediately after mixing. This report summarizes the current state of knowledge concerning jet mixing of wastes in underground storage tanks. Waste feed sampling requirements are listed, and their apparent assumption of uniformity by lack of a requirement for sample representativeness is cited as a significant issue. The case is made that there is not an adequate technical basis to provide such a sampling regimen because not enough is known about what can be achieved in mixing and distribution of solids by use of the baseline submersible mixing pump system. A combined mixing-sampling test program is recommended to fill this gap. Historical Pacific Northwest National Laboratory project and tank farms contractor documents are used to make this case. A substantial investment and progress are being made to understand mixing issues at the WTP. A summary of the key WTP activities relevant to this project is presented in this report. The relevant aspects of the WTP mixing work, together with a previously developed scaled test strategy for determining solids suspension with submerged mixer pumps (discussed in Section 3) provide a solid foundation for developing a path forward.

Fort, James A.; Bamberger, Judith A.; Meyer, Perry A.; Stewart, Charles W.

2007-10-01T23:59:59.000Z

272

DOUBLE SHELL TANK (DST) INTEGRITY PROJECT HIGH LEVEL WASTE CHEMISTRY OPTIMIZATION  

SciTech Connect

The U.S. Department of Energy's Office (DOE) of River Protection (ORP) has a continuing program for chemical optimization to better characterize corrosion behavior of High-Level Waste (HLW). The DOE controls the chemistry in its HLW to minimize the propensity of localized corrosion, such as pitting, and stress corrosion cracking (SCC) in nitrate-containing solutions. By improving the control of localized corrosion and SCC, the ORP can increase the life of the Double-Shell Tank (DST) carbon steel structural components and reduce overall mission costs. The carbon steel tanks at the Hanford Site are critical to the mission of safely managing stored HLW until it can be treated for disposal. The DOE has historically used additions of sodium hydroxide to retard corrosion processes in HLW tanks. This also increases the amount of waste to be treated. The reactions with carbon dioxide from the air and solid chemical species in the tank continually deplete the hydroxide ion concentration, which then requires continued additions. The DOE can reduce overall costs for caustic addition and treatment of waste, and more effectively utilize waste storage capacity by minimizing these chemical additions. Hydroxide addition is a means to control localized and stress corrosion cracking in carbon steel by providing a passive environment. The exact mechanism that causes nitrate to drive the corrosion process is not yet clear. The SCC is less of a concern in the newer stress relieved double shell tanks due to reduced residual stress. The optimization of waste chemistry will further reduce the propensity for SCC. The corrosion testing performed to optimize waste chemistry included cyclic potentiodynamic volarization studies. slow strain rate tests. and stress intensity factor/crack growth rate determinations. Laboratory experimental evidence suggests that nitrite is a highly effective:inhibitor for pitting and SCC in alkaline nitrate environments. Revision of the corrosion control strategies to a nitrite-based control, where there is no constant depletion mechanism as with hydroxide, should greatly enhance tank lifetime, tank space availability, and reduce downstream reprocessing costs by reducing chemical addition to the tanks.

WASHENFELDER DJ

2008-01-22T23:59:59.000Z

273

PUREX storage tunnels waste analysis plan  

SciTech Connect

Washington Administrative Code 173-303-300 requires that a facility develop and follow a written waste analysis plan which describes the procedures that will be followed to ensure that its dangerous waste is managed properly. This document covers the activities at the PUREX Storage Tunnels used to characterize and designate waste that is generated within the PUREX Plant, as well as waste received from other on-site sources.

Haas, C.R., Westinghouse Hanford

1996-07-10T23:59:59.000Z

274

STATUS OF CHEMICAL CLEANING OF WASTE TANKS AT THE SAVANNAH RIVER SITE F TANK FARM CLOSURE PROJECT - 9114  

SciTech Connect

Chemical Cleaning is currently in progress for Tanks 5 and 6 at the Savannah River Site. The Chemical Cleaning process is being utilized to remove the residual waste heel remaining after completion of Mechanical Sludge Removal. This work is required to prepare the tanks for closure. Tanks 5 and 6 are 1950s vintage carbon steel waste tanks that do not meet current containment standards. These tanks are 22.9 meters (75 feet) in diameter, 7.5 meters (24.5 feet) in height, and have a capacity of 2.84E+6 liters (750,000 gallons). Chemical Cleaning adds 8 wt % oxalic acid to the carbon steel tank to dissolve the remaining sludge heel. The resulting acidic waste solution is transferred to Tank 7 where it is pH adjusted to minimize corrosion of the carbon steel tank. The Chemical Cleaning flowsheet includes multiple strikes of acid in each tank. Acid is delivered by tanker truck and is added to the tanks through a hose assembly connected to a pipe penetration through the tank top. The flowsheet also includes spray washing with acid and water. This paper includes an overview of the configuration required for Chemical Cleaning, the planned flowsheet, and an overview of technical concerns associated with the process. In addition, the current status of the Chemical Cleaning process in Tanks 5 and 6, lessons learned from the execution of the process, and the path forward for completion of cleaning in Tanks 5 and 6 will also be discussed.

Thaxton, D; Geoff Clendenen, G; Willie Gordon, W; Samuel Fink, S; Michael Poirier, M

2008-12-31T23:59:59.000Z

275

Computer modeling of jet mixing in INEL waste tanks  

SciTech Connect

The objective of this study is to examine the feasibility of using submerged jet mixing pumps to mobilize and suspend settled sludge materials in INEL High Level Radioactive Waste Tanks. Scenarios include removing the heel (a shallow liquid and sludge layer remaining after tank emptying processes) and mobilizing and suspending solids in full or partially full tanks. The approach used was to (1) briefly review jet mixing theory, (2) review erosion literature in order to identify and estimate important sludge characterization parameters (3) perform computer modeling of submerged liquid mixing jets in INEL tank geometries, (4) develop analytical models from which pump operating conditions and mixing times can be estimated, and (5) analyze model results to determine overall feasibility of using jet mixing pumps and make design recommendations.

Meyer, P.A.

1994-01-01T23:59:59.000Z

276

Screening for organic solvents in Hanford waste tanks using organic vapor concentrations  

SciTech Connect

The potential ignition of organic liquids stored in the Hanford Site high-level radioactive waste tanks has been identified as a safety issue because expanding gases could potentially affect tank dome integrity. Organic liquid waste has been found in some of the waste tanks, but most are thought to contain only trace amounts. Due to the inhomogeneity of the waste, direct sampling of the tank waste to locate organic liquids may not conclusively demonstrate that a given tank is free of risk. However, organic vapors present above the organic liquid waste can be detected with a high degree of confidence and can be used to identify problem tanks. This report presents the results of a screening test that has been applied to 82 passively ventilated high-level radioactive waste tanks at the Hanford Site to identify those that might contain a significant amount of organic liquid waste. It includes seven tanks not addressed in the previous version of this report, Screening for Organic Solvents in Hanford Waste Tanks Using Total Non-Methane Organic Compound Vapor Concentrations. The screening test is based on a simple model of the tank headspace that estimates the effective surface area of semivolatile organic liquid waste in a tank. Analyses indicate that damage to the tank dome is credible only if the organic liquid burn rate is above a threshold value, and this can occur only if the surface area of organic liquid in a tank is above a corresponding threshold value of about one square meter. Thirteen tanks were identified as potentially containing at least that amount of semivolatile organic liquid based on conservative estimates. Most of the tanks identified as containing potentially significant quantities of organic liquid waste are in the 241-BY and 241-C tank farms, which agrees qualitatively with the fact that these tank farms received the majority of the PUREX process organic wash waste and waste organic liquids.

Huckaby, J.L.; Sklarew, D.S.

1997-09-01T23:59:59.000Z

277

Double-shell tank waste retrieval survey package  

SciTech Connect

Westinghouse Hanford Company is seeking industry solutions to underground double-shell tank waste retrieval at the Hanford Site located in southeastern Washington. This is not a request for proposals; it is a request for information to facilitate continued discussion. Westinghouse Hanford Company will not reimburse any costs incurred for providing the information requested.

Berglin, E.J.

1995-12-01T23:59:59.000Z

278

TECHNOLOGY SUMMARY ADVANCING TANK WASTE RETREIVAL AND PROCESSING  

SciTech Connect

This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

SAMS TL

2010-07-07T23:59:59.000Z

279

TECHNOLOGY SUMMARY ADVANCING TANK WASTE RETRIEVAL AND PROCESSING  

SciTech Connect

This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

SAMS TL; MENDOZA RE

2010-08-11T23:59:59.000Z

280

The Gunite and Associated Tanks Remediation Project Tank Waste Retrieval Performance and Lessons Learned, vol. 2 [of 2  

SciTech Connect

The Gunite and Associated Tanks (GAAT) Remediation Project was the first of its kind performed in the United States. Robotics and remotely operated equipment were used to successfully transfer almost 94,000 gal of remote-handled transuranic sludge containing over 81,000 Ci of radioactive contamination from nine large underground storage tanks at the Oak Ridge National Laboratory (ORNL). The sludge was transferred with over 439,000 gal of radioactive waste supernatant and {approx}420,500 gal of fresh water that was used in sluicing operations. The GAATs are located in a high-traffic area of ORNL near a main thoroughfare. Volume 1 provides information on the various phases of the project and describes the types of equipment used. Volume 1 also discusses the tank waste retrieval performance and the lessons learned during the remediation effort. Volume 2 consists of the following appendixes, which are referenced in Vol. 1: A--Background Information for the Gunite and Associated Tanks Operable Unit; B--Annotated Bibliography; C--GAAT Equipment Matrix; D--Comprehensive Listing of the Sample Analysis Data from the GAAT Remediation Project; and E--Vendor List for the GAAT Remediation Project. The remediation of the GAATs was completed {approx}5.5 years ahead of schedule and {approx}$120,435K below the cost estimated in the Remedial Investigation/Feasibility Study for the project. These schedule and cost savings were a direct result of the selection and use of state-of-the-art technologies and the dedication and drive of the engineers, technicians, managers, craft workers, and support personnel that made up the GAAT Remediation Project Team.

Lewis, BE

2003-10-07T23:59:59.000Z

Note: This page contains sample records for the topic "waste storage tanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Our Environment in Hot Water: Comparing Water Heaters, A Life Cycle Approach Comparing Tank and Tankless Water Heaters in California  

E-Print Network (OSTI)

heater storage tank wastes energy to continuous heating.fired water heater Total Energy Total Waste Emissions (Air)fired water heater Total Energy Total Waste Emissions (Air)

Lu, Alison

2011-01-01T23:59:59.000Z

282

Minutes of the Tank Waste Science Panel meeting July 9--1, 1991. Hanford Tank Safety Project  

Science Conference Proceedings (OSTI)

The fifth meeting of the Tank Waste Science Panel was held July 9--11, 1991, in Atlanta, Georgia. The subject areas included the generation, retention, and release of gases from Tank 241-SY-101 and the chemistry of ferrocyanide wastes.

Strachan, D.M. [comp.

1992-04-01T23:59:59.000Z

283

Demonstration of the TRUEX process for the treatment of actual high activity tank waste at the INEEL using centrifugal contactors  

SciTech Connect

The Idaho Chemical Processing Plant (ICPP), located at the Idaho National Engineering and Environmental Laboratory (INEEL), formerly reprocessed spent nuclear fuel to recover fissionable uranium. The radioactive raffinates from the solvent extraction uranium recovery processes were converted to granular solids (calcine) in a high temperature fluidized bed. A secondary liquid waste stream was generated during the course of reprocessing, primarily from equipment decontamination between campaigns and solvent wash activities. This acidic tank waste cannot be directly calcined due to the high sodium content and has historically been blended with reprocessing raffinates or non-radioactive aluminum nitrate prior to calcination. Fuel reprocessing activities are no longer being performed at the ICPP, thereby eliminating the option of waste blending to deplete the waste inventory. Currently, approximately 5.7 million liters of high-activity waste are temporarily stored at the ICPP in large underground stainless-steel tanks. The United States Environmental Protection Agency and the Idaho Department of Health and Welfare filed a Notice of Noncompliance in 1992 contending some of the underground waste storage tanks do not meet secondary containment. As part of a 1995 agreement between the State of Idaho, the Department of Energy, and the Department of Navy, the waste must be removed from the tanks by 2012. Treatment of the tank waste inventories by partitioning the radionuclides and immobilizing the resulting high-activity and low-activity waste streams is currently under evaluation. A recent peer review identified the most promising radionuclide separation technologies for evaluation. The Transuranic Extraction-(TRUEX) process was identified as a primary candidate for separation of the actinides from ICPP tank waste.

Law, J.D.; Brewer, K.N.; Todd, T.A.; Olson, L.G.

1997-10-01T23:59:59.000Z

284

Tank Farm Waste Transfer Compatibility Program  

SciTech Connect

The compatibility program described in this document formalizes the process for determining waste compatibility. The primary goal of the program is to ensure that sufficient controls are in place to prevent the formation of incompatible mixtures during future operations. The process described involves characterizing waste, comparing characteristics with criteria, resolving potential incompatibilities and documenting the process.

FOWLER, K.D.

2000-07-12T23:59:59.000Z

285

Correlation models for waste tank sludges and slurries  

SciTech Connect

This report presents the results of work conducted to support the TEMPEST computer modeling under the Flammable Gas Program (FGP) and to further the comprehension of the physical processes occurring in the Hanford waste tanks. The end products of this task are correlation models (sets of algorithms) that can be added to the TEMPEST computer code to improve the reliability of its simulation of the physical processes that occur in Hanford tanks. The correlation models can be used to augment, not only the TEMPEST code, but other computer codes that can simulate sludge motion and flammable gas retention. This report presents the correlation models, also termed submodels, that have been developed to date. The submodel-development process is an ongoing effort designed to increase our understanding of sludge behavior and improve our ability to realistically simulate the sludge fluid characteristics that have an impact on safety analysis. The effort has employed both literature searches and data correlation to provide an encyclopedia of tank waste properties in forms that are relatively easy to use in modeling waste behavior. These properties submodels will be used in other tasks to simulate waste behavior in the tanks. Density, viscosity, yield strength, surface tension, heat capacity, thermal conductivity, salt solubility, and ammonia and water vapor pressures were compiled for solutions and suspensions of sodium nitrate and other salts (where data were available), and the data were correlated by linear regression. In addition, data for simulated Hanford waste tank supernatant were correlated to provide density, solubility, surface tension, and vapor pressure submodels for multi-component solutions containing sodium hydroxide, sodium nitrate, sodium nitrite, and sodium aluminate.

Mahoney, L.A.; Trent, D.S.

1995-07-01T23:59:59.000Z

286

Inhibited Release of Mobile Contaminants from Hanford Tank Residual Waste  

SciTech Connect

Investigations of contaminant release from Hanford Site tank residual waste have indicated that in some cases certain contaminants of interest (Tc and Cr) exhibit inhibited release. The percentage of Tc that dissolved from residual waste from tanks 241-C-103, 241-C-106, 241-C-202, and 241-C-203 ranged from approximately 6% to 10%. The percent leachable Cr from residual waste from tanks C-103, C 202, and C-203 ranged from approximately 1.1% to 44%. Solid phase characterization results indicate that the recalcitrant forms of these contaminants are associated with iron oxides. X-ray absorption near edge structure analysis of Tc and Cr in residual waste indicates that these contaminants occur in Fe oxide particles as their lower, less soluble oxidation states [Tc(IV) and Cr(III)]. The form of these contaminants is likely as oxides or hydroxides incorporated within the structure of the Fe oxide. Leaching behavior of U from tank residual waste was studied using deionized water, and CaCO3 and Ca(OH)2 saturated solutions as leachants. The release behavior of U from tank residual waste is complex. Initial U concentrations in water and CaCO3 leachants are high due to residual amounts of the highly soluble U mineral cejkaite. As leaching and dilution occur NaUO2PO4 {center_dot} xH2O, Na2U2O7(am) and schoepite (or a similar phase) become the solubility controlling phases for U. In the case of the Ca(OH)2 leachant, U release from tank residual waste is dramatically reduced. Thermodynamic modeling indicates that the solubility of CaUO4(c) controls release of U from residual waste in the Ca(OH)2 leachants. It is assumed the solubility controlling phase is actually a hydrated version of CaUO4 with a variable water content ranging from CaUO4 to CaUO4 {center_dot} (H2O). The critically reviewed value for CaUO4(c) (log KSP0 = 15.94) produced good agreement with our experimental data for the Ca(OH)2 leachates.

Cantrell, Kirk J.; Heald, Steve M.; Arey, Bruce W.; Lindberg, Michael J.

2011-03-03T23:59:59.000Z

287

Performance evaluation of rotating pump jet mixing of radioactive wastes in Hanford Tanks 241-AP-102 and -104  

Science Conference Proceedings (OSTI)

The purpose of this study was to confirm the adequacy of a single mixer pump to fully mix the wastes that will be stored in Tanks 241-AP-102 and -104. These Hanford double-shell tanks (DSTs) will be used as staging tanks to receive low-activity wastes from other Hanford storage tanks and, in turn, will supply the wastes to private waste vitrification facilities for eventual solidification. The TEMPEST computer code was applied to Tanks AP-102 and -104 to simulate waste mixing generated by the 60-ft/s rotating jets and to determine the effectiveness of the single rotating pump to mix the waste. TEMPEST simulates flow and mass/heat transport and chemical reactions (equilibrium and kinetic reactions) coupled together. Section 2 describes the pump jet mixing conditions the authors evaluated, the modeling cases, and their parameters. Section 3 reports model applications and assessment results. The summary and conclusions are presented in Section 4, and cited references are listed in Section 5.

Onishi, Y.; Recknagle, K.P.

1998-07-01T23:59:59.000Z

288

Two-tank working gas storage system for heat engine  

DOE Patents (OSTI)

A two-tank working gas supply and pump-down system is coupled to a hot gas engine, such as a Stirling engine. The system has a power control valve for admitting the working gas to the engine when increased power is needed, and for releasing the working gas from the engine when engine power is to be decreased. A compressor pumps the working gas that is released from the engine. Two storage vessels or tanks are provided, one for storing the working gas at a modest pressure (i.e., half maximum pressure), and another for storing the working gas at a higher pressure (i.e., about full engine pressure). Solenoid valves are associated with the gas line to each of the storage vessels, and are selectively actuated to couple the vessels one at a time to the compressor during pumpdown to fill the high-pressure vessel with working gas at high pressure and then to fill the low-pressure vessel with the gas at low pressure. When more power is needed, the solenoid valves first supply the low-pressure gas from the low-pressure vessel to the engine and then supply the high-pressure gas from the high-pressure vessel. The solenoid valves each act as a check-valve when unactuated, and as an open valve when actuated.

Hindes, Clyde J. (Troy, NY)

1987-01-01T23:59:59.000Z

289

Energy Storage In a Restructured Electric Industry: Report on EPRI Think Tank III  

Science Conference Proceedings (OSTI)

This report -- "Energy Storage in a Restructured Electric Industry" -- summarizes the third of a series of Think Tanks sponsored by EPRI on energy storage in a deregulated electric utility industry.

2002-06-10T23:59:59.000Z

290

Immobilized low-activity waste interim storage facility, Project W-465 conceptual design report  

SciTech Connect

This report outlines the design and Total Estimated Cost to modify the four unused grout vaults for the remote handling and interim storage of immobilized low-activity waste (ILAW). The grout vault facilities in the 200 East Area of the Hanford Site were constructed in the 1980s to support Tank Waste disposal activities. The facilities were to serve project B-714 which was intended to store grouted low-activity waste. The existing 4 unused grout vaults, with modifications for remote handling capability, will provide sufficient capacity for approximately three years of immobilized low activity waste (ILAW) production from the Tank Waste Remediation System-Privatization Vendors (TWRS-PV). These retrofit modifications to the grout vaults will result in an ILAW interim storage facility (Project W465) that will comply with applicable DOE directives, and state and federal regulations.

Pickett, W.W.

1997-12-30T23:59:59.000Z

291

Ostwald Ripening and Its Effect on PuO2 Particle Size in Hanford Tank Waste  

Science Conference Proceedings (OSTI)

Between 1944 and 1989, the Hanford Site produced 60 percent (54.5 metric tons) of the United States weapons plutonium and produced an additional 12.9 metric tons of fuels-grade plutonium. High activity wastes, including plutonium lost from the separations processes used to isolate the plutonium, were discharged to underground storage tanks during these operations. Plutonium in the Hanford tank farms is estimated to be {approx}700 kg but may be up to {approx}1000 kg. Despite these apparent large quantities, the average plutonium concentration in the {approx}200 million liter tank waste volume is only about 0.003 grams per liter ({approx}0.0002 wt%). The plutonium is largely associated with low solubility metal hydroxide/oxide sludges where its low concentration and intimate mixture with neutron-absorbing elements (e.g., iron) are credited in nuclear criticality safety. However, concerns have been expressed that plutonium, in the form of plutonium hydrous oxide, PuO{sub 2} {center_dot} xH{sub 2}O, could undergo sufficient crystal growth through Ostwald ripening in the alkaline tank waste to potentially be separable from neutron absorbing constituents by settling or sedimentation. It was found that plutonium that entered the alkaline tank waste by precipitation through neutralization from acid solution is initially present as 2- to 3-nm (0.002- to 0.003-{mu}m) scale PuO{sub 2} {center_dot} xH{sub 2}O crystallite particles and grows from that point at exceedingly slow rates, posing no risk to physical segregation. These conclusions are reached by both general considerations of Ostwald ripening and specific observations of the behaviors of PuO{sub 2} and PuO{sub 2} {center_dot} xH{sub 2}O upon aging in alkaline solution.

Delegard, Calvin H.

2011-09-29T23:59:59.000Z

292

Waste Treatment Plant and Tank Farm Program  

Energy.gov (U.S. Department of Energy (DOE))

This photo shows the Pretreatment Facility control room building pad at the Office of River Protection at the Hanford site. The Low-Activity Waste Facility is in the background.

293

FLAMMABILITY AND CONSEQUENCE ANALYSIS FOR MCU WASTE TANKS  

DOE Green Energy (OSTI)

The Savannah River Site of Department of Energy will use the new Modular Caustic Side Solvent Extraction Unit (MCU) to process the waste stream by removing/reducing Cs-137 using Caustic Side Solvent Extraction (CSSX) technology. The CSSX technology utilizes multicomponent organic solvent and annular centrifugal contactors to extract Cs-137 from waste salt solution. Due to the radiolysis of the aqueous nuclear wastes, hydrogen generation is expected in the MCU holding tanks. The hydrogen from radiolysis and the vapor from the organic component of the solvent, Isopar-L, may form a composite flammable gas mixture, resulting in a shorter time to flammability than that of a pure hydrogen environment. It has been found that the time-to-Lower Flammability Limit (LFL) and stoichiometric concentration (SC) vary greatly from tank to tank, and could be decreased significantly by the presence of the Isopar-L. However, neither the deflagration nor the detonation event would challenge the Evaluation Guideline for any of the tanks at any liquid level.

Knight, J; Mukesh Gupta, M

2007-02-13T23:59:59.000Z

294

Hanford immobilized low-activity tank waste performance assessment  

Science Conference Proceedings (OSTI)

The Hanford Immobilized Low-Activity Tank Waste Performance Assessment examines the long-term environmental and human health effects associated with the planned disposal of the vitrified low-level fraction of waste presently contained in Hanford Site tanks. The tank waste is the by-product of separating special nuclear materials from irradiated nuclear fuels over the past 50 years. This waste has been stored in underground single and double-shell tanks. The tank waste is to be retrieved, separated into low and high-activity fractions, and then immobilized by private vendors. The US Department of Energy (DOE) will receive the vitrified waste from private vendors and plans to dispose of the low-activity fraction in the Hanford Site 200 East Area. The high-level fraction will be stored at Hanford until a national repository is approved. This report provides the site-specific long-term environmental information needed by the DOE to issue a Disposal Authorization Statement that would allow the modification of the four existing concrete disposal vaults to provide better access for emplacement of the immobilized low-activity waste (ILAW) containers; filling of the modified vaults with the approximately 5,000 ILAW containers and filler material with the intent to dispose of the containers; construction of the first set of next-generation disposal facilities. The performance assessment activity will continue beyond this assessment. The activity will collect additional data on the geotechnical features of the disposal sites, the disposal facility design and construction, and the long-term performance of the waste. Better estimates of long-term performance will be produced and reviewed on a regular basis. Performance assessments supporting closure of filled facilities will be issued seeking approval of those actions necessary to conclude active disposal facility operations. This report also analyzes the long-term performance of the currently planned disposal system as a basis to set requirements on the waste form and the facility design that will protect the long-term public health and safety and protect the environment.

Mann, F.M.

1998-03-26T23:59:59.000Z

295

Tank Waste Corporate Board Meeting 11/18/10 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tank Waste Corporate Board Meeting 11/18/10 Tank Waste Corporate Board Meeting 11/18/10 Tank Waste Corporate Board Meeting 11/18/10 The following documents are associated with the Tank Waste Corporate Board Meeting held on November 18th, 2010. High-Level Waste Corporate Board Meeting Agenda Journey to Excellence Goal 2 and Enhanced Tank Waste Strategy Introduction to Tc/I in Hanford Flowsheet Fate of Tc99 at WTP and Current Work on Capture Technetium Retention During LAW Vitrification Impacts of Feed Composition and Recycle on Hanford Low-Activity Waste Glass Mass Secondary Waste Forms and Technetium Management Hanford Low Activity Waste (LAW) Fluidized Bed Steam Reformer (FBSR) Na-Al-Si (NAS) Waste Form Qualification Salt Waste Processing Initiatives Recap and Conclusions to Tc/I in Hanford Flowsheet Presentations

296

Closure Report for Corrective Action Unit 127: Areas 25 and 26 Storage Tanks, Nevada Test Site, Nevada  

Science Conference Proceedings (OSTI)

CAU 127, Areas 25 and 26 Storage Tanks, consists of twelve CASs located in Areas 25 and 26 of the NTS. The closure alternatives included no further action, clean closure, and closure in place with administrative controls. The purpose of this Closure Report is to provide a summary of the completed closure activities, documentation of waste disposal, and analytical data to confirm that the remediation goals were met.

NSTec Environmental Restoration

2008-02-01T23:59:59.000Z

297

Polymeric hydrogen diffusion barrier, high-pressure storage tank so equipped, method of fabricating a storage tank and method of preventing hydrogen diffusion  

DOE Patents (OSTI)

An electrochemically active hydrogen diffusion barrier which comprises an anode layer, a cathode layer, and an intermediate electrolyte layer, which is conductive to protons and substantially impermeable to hydrogen. A catalytic metal present in or adjacent to the anode layer catalyzes an electrochemical reaction that converts any hydrogen that diffuses through the electrolyte layer to protons and electrons. The protons and electrons are transported to the cathode layer and reacted to form hydrogen. The hydrogen diffusion barrier is applied to a polymeric substrate used in a storage tank to store hydrogen under high pressure. A storage tank equipped with the electrochemically active hydrogen diffusion barrier, a method of fabricating the storage tank, and a method of preventing hydrogen from diffusing out of a storage tank are also disclosed.

Lessing, Paul A. (Idaho Falls, ID)

2008-07-22T23:59:59.000Z

298

Hanford Tanks 241-C-202 and 241-C-203 Residual Waste Contaminant Release Models and Supporting Data  

SciTech Connect

As directed by Congress, the U. S. Department of Energy (DOE) established the Office of River Protection in 1998 to manage DOE's largest, most complex environmental cleanup project – retrieval of radioactive waste from Hanford tanks for treatment and eventual disposal. Sixty percent by volume of the nation's high-level radioactive waste is stored at Hanford in aging deteriorating tanks. If not cleaned up, this waste is a threat to the Columbia River and the Pacific Northwest. CH2M Hill Hanford Group, Inc., is the Office of River Protection's prime contractor responsible for the storage, retrieval, and disposal of Hanford's tank waste. As part of this effort, CH2M HILL Hanford Group, Inc. contracted with Pacific Northwest National Laboratory (PNNL) to develop release models for key contaminants that are present in residual sludge remaining after closure of Hanford Tanks 241-C-203 (C-203) and 241-C-204 (C-204). The release models were developed from data generated by laboratory characterization and testing of samples from these two tanks. These release models are being developed to support the tank closure risk assessments performed by CH2M HILL Hanford Group, Inc., for DOE.

Deutsch, William J.; Krupka, Kenneth M.; Lindberg, Michael J.; Cantrell, Kirk J.; Brown, Christopher F.; Mattigod, Shas V.; Schaef, Herbert T.; Arey, Bruce W.

2007-09-13T23:59:59.000Z

299

Characterization of the C1 and C2 waste tanks located in the BVEST system at ORNL  

SciTech Connect

There was a major effort to sample and analyze the Active Liquid Low-Level Waste (LLLW) tanks at ORNL which include the Melton Valley Storage Tanks (MVST) and the Bethel Valley Evaporator Service Tanks (BVEST). The characterization data summarized in this report was needed to address waste processing options, address concerns dealing with the performance assessment (PA) data for the Waste Isolation Pilot Plant (WIPP), evaluate the waste characteristics with respect to the waste acceptance criteria (WAC) for WIPP and Nevada Test Site (NTS), address criticality concerns, and meet DOT requirements for transporting the waste. This report discusses the analytical characterization data for the supernatant and sludge in the BVEST waste tanks C-1 and C-2. The isotopic data presented in this report supports the position that fissile isotopes of uranium ({sup 233}U and {sup 235}U) and plutonium ({sup 239}Pu and {sup 241}Pu) were denatured as required by the administrative controls stated in the ORNL LLLW waste acceptance criteria (WAC). In general, the sludge in tanks C1 and C2 was found to be hazardous based on RCRA characteristics and the transuranic alpha activity was well above the 100 nCi/g limit for TRU waste. Additional characteristics of the C1 and C2 sludge inventory relative to the WIPP WAC limits for fissile gram equivalent, plutonium equivalent activity, and thermal power from decay heat were estimated from the data in this report and found to be far below the upper boundary for any of the remote-handled transuranic waste (RH-TRU) requirements for disposal of the waste in WIPP.

Keller, J.M.; Giaquinto, J.M.

1998-02-01T23:59:59.000Z

300

Clean option: An alternative strategy for Hanford Tank Waste Remediation. Volume 2, Detailed description of first example flowsheet  

SciTech Connect

Disposal of high-level tank wastes at the Hanford Site is currently envisioned to divide the waste between two principal waste forms: glass for the high-level waste (HLW) and grout for the low-level waste (LLW). The draft flow diagram shown in Figure 1.1 was developed as part of the current planning process for the Tank Waste Remediation System (TWRS), which is evaluating options for tank cleanup. The TWRS has been established by the US Department of Energy (DOE) to safely manage the Hanford tank wastes. It includes tank safety and waste disposal issues, as well as the waste pretreatment and waste minimization issues that are involved in the ``clean option`` discussed in this report. This report describes the results of a study led by Pacific Northwest Laboratory to determine if a more aggressive separations scheme could be devised which could mitigate concerns over the quantity of the HLW and the toxicity of the LLW produced by the reference system. This aggressive scheme, which would meet NRC Class A restrictions (10 CFR 61), would fit within the overall concept depicted in Figure 1.1; it would perform additional and/or modified operations in the areas identified as interim storage, pretreatment, and LLW concentration. Additional benefits of this scheme might result from using HLW and LLW disposal forms other than glass and grout, but such departures from the reference case are not included at this time. The evaluation of this aggressive separations scheme addressed institutional issues such as: radioactivity remaining in the Hanford Site LLW grout, volume of HLW glass that must be shipped offsite, and disposition of appropriate waste constituents to nonwaste forms.

Swanson, J.L.

1993-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste storage tanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Permanent Closure of MFC Biodiesel Underground Storage Tank 99ANL00013  

SciTech Connect

This closure package documents the site assessment and permanent closure of the Materials and Fuels Complex biodiesel underground storage tank 99ANL00013 in accordance with the regulatory requirements established in 40 CFR 280.71, “Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks: Out-of-Service UST Systems and Closure.”

Kerry L. Nisson

2012-10-01T23:59:59.000Z

302

Collection and analysis of existing data for waste tank mechanistic analysis. Progress report, December 1990  

DOE Green Energy (OSTI)

Pacific Northwest Laboratory (PNL) is conducting this study for Westinghouse Hanford Company (Westinghouse Hanford), a contractor for the US Department of Energy (DOE). The purpose of the work is to study possible mechanisms and fluid dynamics contributing to the periodic release of gases from the double-shell waste storage tanks at the Hanford Site in Richland, Washington. The waste inside the tank is generating and periodically releasing potentially flammable gases into the tank`s vent system according to observations. Questions scientists are trying to answer are: (1) How are these gases generated? (2) How did these gases become trapped? (3) What causes the periodic gas releases? (4) And, what is the mechanism of the gas releases? To develop a safe mitigation strategy, possible physical mechanisms for the periodic release of flammable gases need to be understood. During initial work, PNL has obtained, correlated, analyzed, and compared data with expected physical properties, defined mechanisms; and prepared initial models of gas formation and retention. This is the second interim report summarizing the status of the work done to data.

Allemann, R.T.; Antoniak, Z.I.; Friley, J.R.; Haines, C.E.; Liljegren, L.M.; Somasundaram, S.

1991-12-01T23:59:59.000Z

303

Feasibility report on criticality issues associated with storage of K Basin sludge in tanks farms  

Science Conference Proceedings (OSTI)

This feasibility study provides the technical justification for conclusions about K Basin sludge storage options. The conclusions, solely based on criticality safety considerations, depend on the treatment of the sludge. The two primary conclusions are, (1) untreated sludge must be stored in a critically safe storage tank, and (2) treated sludge (dissolution, precipitation and added neutron absorbers) can be stored in a standard Double Contained Receiver Tank (DCRT) or 241-AW-105 without future restrictions on tank operations from a criticality safety perspective.

Vail, T.S.

1997-05-29T23:59:59.000Z

304

Tank Waste Corporate Board Meeting 07/29/09 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9/09 9/09 Tank Waste Corporate Board Meeting 07/29/09 The following documents are associated with the Tank Waste Corporate Board Meeting held on July 29th, 2009. Fuel Cycle Research and Development Program Retrieval and Repackaging of RH-TRU Waste - General Presentation Modular Hot Cell Technology Tank Waste System Integrated Project Team Gunite Tanks Waste Retrieval and Closure Operations at Oak Ridge Nattional Laboratory Integrated Facilities Disposition Program Oak Ridge National Laboratory TRU Waste Processing Center Tank Waste Processing Supernate Processing System Chemical Cleaning Program Review Enhanced Chemical Cleaning Hanford Single-Shell Tank Integrity Program Modeling the Performance of Engineered Systems for Closure and Near-Surface Disposal Nuclear Safety R&D in the Waste Processing Technology Development &

305

GRR/Section 18-WA-a - Underground Storage Tank Process | Open Energy  

Open Energy Info (EERE)

GRR/Section 18-WA-a - Underground Storage Tank Process GRR/Section 18-WA-a - Underground Storage Tank Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-WA-a - Underground Storage Tank Process 18-WA-a - Underground Storage Tank Process.pdf Click to View Fullscreen Contact Agencies Washington State Department of Ecology Regulations & Policies Revised Code of Washington Chapter 90.76 Washington Administrative Code Chapter 173-360 Triggers None specified Washington has a federally-approved state Underground Storage Tank (UST) program regulated by the Washington State Department of Ecology (WSDE) under Revised Code of Washington Chapter 90.76 and Washington Administrative Code Chapter 173-360. Washington defines an "Underground

306

“What's going on Inside Today's Fuel Storage Tank?”  

Science Conference Proceedings (OSTI)

... 14 Page 15. E85 tanks ? Minnesota has a high percentage of underground tanks at gas stations storing 85% ethanol ? Last ...

2013-08-28T23:59:59.000Z

307

Solid Waste Disposal, Hazardous Waste Management Act, Underground Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposal, Hazardous Waste Management Act, Underground Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) Solid Waste Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Nonprofit Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Tribal Government Utility Program Info State Tennessee Program Type Environmental Regulations Siting and Permitting Provider Tennessee Department Of Environment and Conservation The Solid Waste Disposal Laws and Regulations are found in Tenn. Code 68-211. These rules are enforced and subject to change by the Public Waste Board (PWB), which is established by the Division of Solid and Hazardous

308

Decision analysis for INEL hazardous waste storage  

Science Conference Proceedings (OSTI)

In mid-November 1993, the Idaho National Engineering Laboratory (INEL) Waste Reduction Operations Complex (WROC) Manager requested that the INEL Hazardous Waste Type Manager perform a decision analysis to determine whether or not a new Hazardous Waste Storage Facility (HWSF) was needed to store INEL hazardous waste (HW). In response to this request, a team was formed to perform a decision analysis for recommending the best configuration for storage of INEL HW. Personnel who participated in the decision analysis are listed in Appendix B. The results of the analysis indicate that the existing HWSF is not the best configuration for storage of INEL HW. The analysis detailed in Appendix C concludes that the best HW storage configuration would be to modify and use a portion of the Waste Experimental Reduction Facility (WERF) Waste Storage Building (WWSB), PBF-623 (Alternative 3). This facility was constructed in 1991 to serve as a waste staging facility for WERF incineration. The modifications include an extension of the current Room 105 across the south end of the WWSB and installing heating, ventilation, and bay curbing, which would provide approximately 1,600 ft{sup 2} of isolated HW storage area. Negotiations with the State to discuss aisle space requirements along with modifications to WWSB operating procedures are also necessary. The process to begin utilizing the WWSB for HW storage includes planned closure of the HWSF, modification to the WWSB, and relocation of the HW inventory. The cost to modify the WWSB can be funded by a reallocation of funding currently identified to correct HWSF deficiencies.

Page, L.A.; Roach, J.A.

1994-01-01T23:59:59.000Z

309

Tank waste remediation system fiscal year 1998 multi-year work plan WBS 1.1  

Science Conference Proceedings (OSTI)

The TWRS Project Mission is to manage and immobilize for disposal the Hanford Site radioactive tank waste and cesium (Cs)/strontium (Sr) capsules in a safe, environmentally sound, and cost-effective manner. The scope includes all activities needed to (1) resolve safety issues; (2) operate, maintain, and upgrade the tank farms and supporting infrastructure; (3) characterize, retrieve, pretreat, and immobilize the waste for disposal and tank farm closure; and (4) use waste minimization and evaporation to manage tank waste volumes to ensure that the tank capacities of existing DSTs are not exceeded. The TWRS Project is responsible for closure of assigned operable units and D&D of TWRS facilities.

Lenseigne, D.L., Westinghouse Hanford, Richland, WA

1997-09-15T23:59:59.000Z

310

Measurements of waste tank passive ventilation rates using tracer gases  

Science Conference Proceedings (OSTI)

This report presents the results of ventilation rate studies of eight passively ventilated high-level radioactive waste tanks using tracer gases. Head space ventilation rates were determined for Tanks A-101, AX-102, AX-103, BY-105, C-107, S-102, U-103, and U-105 using sulfur hexafluoride (SF{sub 6}) and/or helium (He) as tracer gases. Passive ventilation rates are needed for the resolution of several key safety issues. These safety issues are associated with the rates of flammable gas production and ventilation, the rates at which organic salt-nitrate salt mixtures dry out, and the estimation of organic solvent waste surface areas. This tracer gas study involves injecting a tracer gas into the tank headspace and measuring its concentration at different times to establish the rate at which the tracer is removed by ventilation. Tracer gas injection and sample collection were performed by SGN Eurisys Service Corporation and/or Lockheed Martin Hanford Corporation, Characterization Project Operations. Headspace samples were analyzed for He and SF{sub 6} by Pacific Northwest National Laboratory (PNNL). The tracer gas method was first demonstrated on Tank S-102. Tests were conducted on Tank S-102 to verify that the tracer gas was uniformly distributed throughout the tank headspace before baseline samples were collected, and that mixing was sufficiently vigorous to maintain an approximately uniform distribution of tracer gas in the headspace during the course of the study. Headspace samples, collected from a location about 4 in away from the injection point and 15, 30, and 60 minutes after the injection of He and SF{sub 6}, indicated that both tracer gases were rapidly mixed. The samples were found to have the same concentration of tracer gases after 1 hour as after 24 hours, suggesting that mixing of the tracer gas was essentially complete within 1 hour.

Huckaby, J.L.; Olsen, K.B.; Sklarew, D.S.; Evans, J.C.; Remund, K.M.

1997-09-01T23:59:59.000Z

311

EIS-0303: Savannah River Site High-Level Waste Tank Closure | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

03: Savannah River Site High-Level Waste Tank Closure 03: Savannah River Site High-Level Waste Tank Closure EIS-0303: Savannah River Site High-Level Waste Tank Closure SUMMARY This EIS evaluates alternatives for closing 49 high-level radioactive waste tanks and associated equipment such as evaporator systems, transfer pipelines, diversion boxes, and pump pits. DOE selected the preferred alternative identified in the Final EIS, Stabilize Tanks-Fill with Grout, to guide development and implementation of closure of the high-level waste tanks and associated equipment at the Savannah River Site. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD March 5, 2012 EIS-0303: Supplement Analysis Savannah River Site High-Level Waste Tank Closure, SC July 8, 2011 EIS-0303: Notice of Intent to Prepare an Environmental Impact Statement

312

Summary - Savannah River Site Tank 48H Waste Treatment Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

S S Wet Air Savan contain liquid w contain potent to the option tank w Bed S condu be pur The as Techn Techn as liste * W o o The Ele Site: S roject: S P Report Date: J ited States Savanna Why DOE r Oxidation Proc nnah River Tan ning approxima waste. The wa ns tetraphenylb tially flammable tank head spa s have been id waste: Wet Air O team Reformin cted to aid in d rsued for treatin What th ssessment team ology Element ology Readine ed below: Wet Air Oxidatio Reactor sys Offgas Trea To view the full T http://www.em.doe. objective of a Tech ements (CTEs), usin Savannah Rive SRS Tank 48H Project July 2007 Departmen ah River E-EM Did This cess k 48H is a 1.3 ately 250, 000 aste is a salt so borate (TPB), w e concentration ce. Two poten dentified for this Oxidation (WAO ng (FBSR). Th deciding which ng the Tank 48

313

Safety support for hydrogen reanalysis of Waste Tank 101-SY  

DOE Green Energy (OSTI)

Tank 101-Sy, a double-shell tank on the Hanford SY high-level waste tank farm, has periodic releases of large volumes of gas. The released gas contains hydrogen (a fuel), nitrous oxide (a strong oxidizer), and other gases. These gases are intimately mixed, and therefore, it is very difficult to reduce the potential for a hydrogen combustion event. The safety is hydrogen gas exceeding one-quarter of the Lower Flammability Limit during these periodic releases. The Department of Energy Office of Environmental Restoration and Waste Management requested Los Alamos and Brookhaven National Laboratories to perform a reanalysis of a postulated hydrogen combustion event in Tank 101-SY. This paper provide the results of this work. The results of this analysis are similar to the Westinghouse Hanford Company results with slightly higher pressures and larger releases. The results given here are believed to be conservative in that the pressures are higher and the radiological releases are larger than that would be produced by a best-estimate analysis.

Sullivan, L.H.; Eisenhawer, S.W.; Henninger, R.J.; Hill, S.W.; MacFarlane, D.R.; Nichols, B.D.; Spore, J.W.; Wilson, T.L.; Travis, J.R.; Coleman, J.R. (Los Alamos National Lab., NM (United States)); Bandyopadhyay, K. (Brookhaven National Lab., Upton, NY (United States))

1991-01-01T23:59:59.000Z

314

Safety support for hydrogen reanalysis of Waste Tank 101-SY  

DOE Green Energy (OSTI)

Tank 101-Sy, a double-shell tank on the Hanford SY high-level waste tank farm, has periodic releases of large volumes of gas. The released gas contains hydrogen (a fuel), nitrous oxide (a strong oxidizer), and other gases. These gases are intimately mixed, and therefore, it is very difficult to reduce the potential for a hydrogen combustion event. The safety is hydrogen gas exceeding one-quarter of the Lower Flammability Limit during these periodic releases. The Department of Energy Office of Environmental Restoration and Waste Management requested Los Alamos and Brookhaven National Laboratories to perform a reanalysis of a postulated hydrogen combustion event in Tank 101-SY. This paper provide the results of this work. The results of this analysis are similar to the Westinghouse Hanford Company results with slightly higher pressures and larger releases. The results given here are believed to be conservative in that the pressures are higher and the radiological releases are larger than that would be produced by a best-estimate analysis.

Sullivan, L.H.; Eisenhawer, S.W.; Henninger, R.J.; Hill, S.W.; MacFarlane, D.R.; Nichols, B.D.; Spore, J.W.; Wilson, T.L.; Travis, J.R.; Coleman, J.R. [Los Alamos National Lab., NM (United States); Bandyopadhyay, K. [Brookhaven National Lab., Upton, NY (United States)

1991-12-31T23:59:59.000Z

315

Hazard evaluation for transfer of waste from tank 241-SY-101 to tank 241-SY-102  

SciTech Connect

Tank 241-SY-101 (SY-101) waste level growth is an emergent, high priority issue. The purpose of this document is to record the hazards evaluation process and document potential hazardous conditions that could lead to the release of radiological and toxicological material from the proposed transfer of a limited quantity (approximately 100,000 gallons) of waste from SY-101 to 241-SY-102 (SY-102). The results of the hazards evaluation will be compared to the current Tank Waste Remediation System (TWRS) Basis for Interim Operation (HNF-SD-WM-BIO-001, 1998, Revision 1) to identify any hazardous conditions where Authorization Basis (AB) controls may not be sufficient or may not exist. Comparison to LA-UR-92-3196, A Safety Assessment for Proposed Pump Mixing Operations to Mitigate Episodic Gas Releases in Tank 241-SY-101, was also made in the case of transfer pump removal activities. This document is not intended to authorize the activity or determine the adequacy of controls; it is only intended to provide information about the hazardous conditions associated with this activity. The Unreviewed Safety Question (USQ) process will be used to determine the adequacy of controls and whether the proposed activity is within the AB. This hazard evaluation does not constitute an accident analysis.

SHULTZ, M.V.

1999-02-12T23:59:59.000Z

316

Decontamination system study for the Tank Waste Retrieval System  

SciTech Connect

This report summarizes the findings of the Idaho National Engineering Laboratory`s decontamination study in support of the Tank Waste Retrieval System (TWRS) development program. Problems associated with waste stored in existing single shell tanks are discussed as well as the justification for the TWRS program. The TWRS requires a decontamination system. The subsystems of the TWRS are discussed, and a list of assumptions pertinent to the TWRS decontamination system were developed. This information was used to develop the functional and operational requirements of the TWRS decontamination system. The requirements were combined with a comprehensive review of currently available decontamination techniques to produced a set of evaluation criteria. The cleaning technologies and techniques were evaluated, and the CO{sub 2} blasting decontamination technique was chosen as the best technology for the TWRS.

Reutzel, T.; Manhardt, J.

1994-05-01T23:59:59.000Z

317

Review of High Level Waste Tanks Ultrasonic Inspection Data  

SciTech Connect

A review of the data collected during ultrasonic inspection of the Type I high level waste tanks has been completed. The data was analyzed for relevance to the possibility of vapor space corrosion and liquid/air interface corrosion. The review of the Type I tank UT inspection data has confirmed that the vapor space general corrosion is not an unusually aggressive phenomena and correlates well with predicted corrosion rates for steel exposed to bulk solution. The corrosion rates are seen to decrease with time as expected. The review of the temperature data did not reveal any obvious correlations between high temperatures and the occurrences of leaks. The complex nature of temperature-humidity interaction, particularly with respect to vapor corrosion requires further understanding to infer any correlation. The review of the waste level data also did not reveal any obvious correlations.

Wiersma, B

2006-03-09T23:59:59.000Z

318

Tank waste remediation system nuclear criticality safety program management review  

SciTech Connect

This document provides the results of an internal management review of the Tank Waste Remediation System (TWRS) criticality safety program, performed in advance of the DOE/RL assessment for closure of the TWRS Nuclear Criticality Safety Issue, March 1994. Resolution of the safety issue was identified as Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-40-12, due September 1999.

BRADY RAAP, M.C.

1999-06-24T23:59:59.000Z

319

USE OF STREAM ANALYZER FOR SOLUBILITY PREDICTIONS OF SELECTED HANFORD TANK WASTE  

SciTech Connect

The Hanford Tank Waste Operations Simulator (HTWOS) models the mission to manage, retrieve, treat and vitrify Hanford waste for long-term storage and disposal. HTWOS is a dynamic, flowsheet, mass balance model of waste retrieval and treatment activities. It is used to evaluate the impact of changes on long-term mission planning. The project is to create and evaluate the integrated solubility model (ISM). The ISM is a first step in improving the chemistry basis in HTWOS. On principal the ISM is better than the current HTWOS solubility. ISM solids predictions match the experimental data well, with a few exceptions. ISM predictions are consistent with Stream Analyzer predictions except for chromium. HTWOS is producing more realistic results with the ISM.

PIERSON KL; BELSHER JD; HO QT

2012-11-02T23:59:59.000Z

320

Minutes of the Tank Waste Science Panel meeting September 13--14, 1990  

DOE Green Energy (OSTI)

The third meeting of the Tank Waste Science Panel was held September 13--14, 1990. Science Panel members were briefed on the August 5, 1990, gas release from tank 241-101-SY (commonly denoted 101-SY), synthetic waste experiments to investigate gas generation and crust behavior in the tank, computer simulations of the thermal behavior of the waste in the tank, and calculations of gas generation based on radiolytic chemistry in alkaline solutions. Data from tanks 103-SY and 103-AN were presented, but it was decided not to divert attention from tank 101-SY at this time by taking additional samples from 103-SY or 103-AN. Science Panel members recommended that multiple groups begin a concerted experimental effort to understand the chemical and physical mechanisms involved in the tank. The understanding, along with the tank model, can then be used to determine the effectiveness of a particular mitigation method before using the method in tank 101-SY. 1 tab.

Strachan, D.M.; Morgan, L.G. (comps.)

1991-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste storage tanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Tank Waste Information Network System (TWINS) FY 2001 Data Management Plan  

SciTech Connect

The mission of Tank Waste Information Network System (TWINS) is to provide system users with quality tank data and information when needed, in the form needed and at a reasonable cost.

ADAMS, M.R.

2000-06-12T23:59:59.000Z

322

Retrieval of Hanford Single Shell Nuclear Waste Tanks using Technologies Foreign and Domestic  

SciTech Connect

The Hanford Site is accelerating its SST retrieval mission. One aspect of this acceleration is the identification of new baseline retrieval technologies that can be applied to all tank conditions for salt & sludge wastes in both sound & leaking tanks.

EACKER, J.A.; GIBBONS, P.W.

2003-01-01T23:59:59.000Z

323

State of the Art Report on High-Level Waste Tank Closure  

Science Conference Proceedings (OSTI)

This report includes strategies for treating the incidental waste left in the emptied tanks as non-retrievable heels and methods and materials for physically stabilizing the void space in the tanks to prevent future subsidence.

Langton, C.A.

2002-06-18T23:59:59.000Z

324

Tank Vapor Characterization Project -- Headspace vapor characterization of Hanford waste Tank 241-C-107: Results from samples collected on 01/17/96  

DOE Green Energy (OSTI)

This report describes the analytical results of vapor samples taken from the headspace of waste storage tank 241-C-107 (Tank C-107) at the Hanford Site in Washington State. The results described in this report were obtained to compare vapor sampling of the tank headspace using the Vapor Sampling System (VSS) and In Situ Vapor Sampling (ISVS) system with and without high efficiency particulate air (HEPA) prefiltration. The results include air concentrations of water (H{sub 2}O) and ammonia (NH{sub 3}), permanent gases, total non-methane hydrocarbons (TO-12), and individual organic analytes collected in SUMMA{trademark} canisters and on triple sorbent traps (TSTs). Samples were collected by Westinghouse Hanford Company (WHC) and analyzed by Pacific Northwest National Laboratory (PNNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Analyte concentrations were based on analytical results and, where appropriate, sample volume measurements provided by WHC.

Thomas, B.L.; Evans, J.C.; Pool, K.H.; Olsen, K.B.; Fruchter, J.S.; Silvers, K.L.

1996-07-01T23:59:59.000Z

325

Energy Storage in a Restructured Electric Utility Industry: Report on EPRI Think Tanks I and II  

Science Conference Proceedings (OSTI)

Energy storage will play an increasingly crucial role in the deregulated electric power industry, with future generation probably decreasing in size and becoming more distributed. EPRI sponsored two think tanks to explore the need for energy storage in a deregulated environment and to assess the state of development of energy storage technologies. The think tanks described the U.S. Federal Energy Regulatory Commission (FERC) view of deregulation and how electric utility deregulation compares to the dereg...

1997-09-30T23:59:59.000Z

326

Screening for organic solvents in Hanford waste tanks using total non- methane organic compound vapor concentrations  

SciTech Connect

The potential ignition of organic liquids stored in the Hanford high-level radioactive waste tanks is a safety issue because expanding gases could affect tank dome integrity. This report presents results of a screening test that was applied to 75 passively ventilated waste tanks at Hanford to determine those that might contain a significant amount of organic liquid waste. The screening test is based on a simple model of tank headspace, headspace organic vapor concentrations, and certain tank physical parameters. Analyses indicate that damage to the tank dome is credible only if the organic liquid burn rate is above a threshold value, and this can occur only if the surface area of organic liquid in a tank is above a corresponding threshold value of about one square meter. Twelve tanks were identified as potentially containing at least that amount of semivolatile organic liquid based on conservative estimates. Tank head space organic vapor concentrations and physical parameters required by the screening test have been compiled and are presented for each of the tanks studied. Estimates of the ventilation rates of the waste tanks were revised to reflect recent information obtained from hydrogen monitoring data. A simple analysis of the uncertainty in the test results suggests that the largest current uncertainty in the estimation of organic liquid surface area is that associated with knowledge of the tank ventilation rate. The uncertainty analysis is applied to determine 95% confidence limits for the estimated organic waste surface area in each tank.

Huckaby, J.L.; Glissmeyer, J.A.; Sklarew, D.S.

1997-02-01T23:59:59.000Z

327

Headspace vapor characterization of Hanford waste Tank 241-C-201: Results from samples collected on 06/19/96  

DOE Green Energy (OSTI)

This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-C-201 (Tank C-201) at the Hanford Site in Washington State. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwest National Laboratory (PNNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Analyte concentrations were based on analytical results and, where appropriate, on sample volumes provided by WHC. A summary, of the inorganic analytes, permanent gases, and total non-methane organic compounds is listed in a table. Detailed descriptions of the analytical results appear in the appendices.

Thomas, B.L.; Evans, J.C.; Pool, K.H.; Olsen, K.B.; Fruchter, J.S.; Silvers, K.L.

1997-01-01T23:59:59.000Z

328

Headspace vapor characterization of Hanford waste Tank 241-C-202: Results from samples collected on 06/25/96  

DOE Green Energy (OSTI)

This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-C-202 (Tank C-202) at the Hanford Site in Washington State. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwest National Laboratory (PNNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Analyte concentrations were based on analytical results and, where appropriate, on sample volumes provided by WHC. A summary of the inorganic analytes, permanent gases, and total non-methane organic compounds is listed in a table. Detailed descriptions of the analytical results appear in the appendices.

Pool, K.H.; Evans, J.C.; Thomas, B.L.; Olsen, K.B.; Fruchter, J.S.; Silvers, K.L.

1997-01-01T23:59:59.000Z

329

Corrective Action Plan for Corrective Action Unit 135: Area 25 Underground Storage Tanks, Nevada Test Site, Nevada  

SciTech Connect

The Area 25 Underground Storage Tanks site Corrective Action Unit (CAU) 135 will be closed by unrestricted release decontamination and verification survey, in accordance with the Federal Facility Agreement and Consert Order (FFACO, 1996). The CAU includes one Corrective Action Site (CAS). The Area 25 Underground Storage Tanks, (CAS 25-02-01), referred to as the Engine-Maintenance Assembly and Disassembly (E-MAD) Waste Holdup Tanks and Vault, were used to receive liquid waste from all of the radioactive drains at the E-MAD Facility. Based on the results of the Corrective Action Investigation conducted in June 1999 discussed in the Corrective Action Investigation Plan for Corrective Action Unit 135: Area 25 Underground Storage Tanks, Nevada Test Site, Nevada (DOE/NV,1999a), one sample from the radiological survey of the concrete vault interior exceeded radionuclide preliminary action levels. The analytes from the sediment samples that exceeded the preliminary action levels are polychlorinated biphenyls, Resource Conservation and Recovery Act metals, total petroleum hydrocarbons as diesel-range organics, and radionuclides. Unrestricted release decontamination and verification involves removal of concrete and the cement-lined pump sump from the vault. After verification that the contamination has been removed, the vault will be repaired with concrete, as necessary. The radiological- and chemical-contaminated pump sump and concrete removed from the vault would be disposed of at the Area 5 Radioactive Waste Management Site. The vault interior will be field surveyed following removal of contaminated material to verify that unrestricted release criteria have been achieved.

D. H. Cox

2000-07-01T23:59:59.000Z

330

Engineering study of 50 miscellaneous inactive underground radioactive waste tanks located at the Hanford Site, Washington  

SciTech Connect

This engineering study addresses 50 inactive underground radioactive waste tanks. The tanks were formerly used for the following functions associated with plutonium and uranium separations and waste management activities in the 200 East and 200 West Areas of the Hanford Site: settling solids prior to disposal of supernatant in cribs and a reverse well; neutralizing acidic process wastes prior to crib disposal; receipt and processing of single-shell tank (SST) waste for uranium recovery operations; catch tanks to collect water that intruded into diversion boxes and transfer pipeline encasements and any leakage that occurred during waste transfer operations; and waste handling and process experimentation. Most of these tanks have not been in use for many years. Several projects have, been planned and implemented since the 1970`s and through 1985 to remove waste and interim isolate or interim stabilize many of the tanks. Some tanks have been filled with grout within the past several years. Responsibility for final closure and/or remediation of these tanks is currently assigned to several programs including Tank Waste Remediation Systems (TWRS), Environmental Restoration and Remedial Action (ERRA), and Decommissioning and Resource Conservation and Recovery Act (RCRA) Closure (D&RCP). Some are under facility landlord responsibility for maintenance and surveillance (i.e. Plutonium Uranium Extraction [PUREX]). However, most of the tanks are not currently included in any active monitoring or surveillance program.

Freeman-Pollard, J.R.

1994-03-02T23:59:59.000Z

331

Concentration of Melton Valley Storage Tank surrogates with a wiped film evaporator  

SciTech Connect

This report describes experiments to determine whether a wiped film evaporator (WFE) might be used to concentrate low-level liquid radioactive waste (LLLW). Solutions used in these studies were surrogates that contain no radionuclides. The compositions of the surrogates were based on one of Oak Ridge National Laboratory`s (ORNL`s) Melton Valley Storage Tanks (MVSTs). It was found that a WFE could be used to concentrate LLLW to varying degrees by manipulating various parameters. The parameters studied were rotor speed, process fluid feed temperature and feed rate, and evaporator temperature. Product consistency varied from an unsaturated liquid to a dry powder. Volume reductions up to 68% were achieved. System decontamination factors were consistently in the range of 10{sup 4}.

Boring, M.D.; Farr, L.L.; Fowler, V.L.; Hewitt, J.D.

1994-08-01T23:59:59.000Z

332

Hydrogen Composite Tank Program Principal Investigator: Dr. Neel Sirosh, Director of Fuel Storage  

E-Print Network (OSTI)

Hydrogen Composite Tank Program Principal Investigator: Dr. Neel Sirosh, Director of Fuel Storage-effective and efficient high-pressure hydrogen storage systems. World's premier automotive OEMs developing fuel cell vehicles have demonstrated significant interest in compressed hydrogen storage systems developed

333

Collection and analysis of existing data for waste tank mechanistic analysis  

DOE Green Energy (OSTI)

Pacific Northwest Laboratory (PNL) is conducting this study for Westinghouse Hanford Company (Westinghouse Hanford), a contractor for the US Department of Energy (DOE). The purpose of the work is to study possible mechanisms and fluid dynamics contributing to the periodic release of gases from the double-shell waste storage tanks at the Hanford Site in Richland, Washington. The waste inside the tank is generating and periodically releasing potentially flammable gases into the tank's vent system according to observations. Questions scientists are trying to answer are: (1) How are these gases generated (2) How did these gases become trapped (3) What causes the periodic gas releases (4) And, what is the mechanism of the gas releases To develop a safe mitigation strategy, possible physical mechanisms for the periodic release of flammable gases need to be understood. During initial work, PNL has obtained, correlated, analyzed, and compared data with expected physical properties, defined mechanisms; and prepared initial models of gas formation and retention. This is the second interim report summarizing the status of the work done to data.

Allemann, R.T.; Antoniak, Z.I.; Friley, J.R.; Haines, C.E.; Liljegren, L.M.; Somasundaram, S.

1991-12-01T23:59:59.000Z

334

Predicting Peak Hydrogen Concentrations from Spontaneous Gas Releases in Hanford Waste Tanks  

DOE Green Energy (OSTI)

Buoyant displacement gas release events (BDGRE) are spontaneous gas releases that occur in a few of the Hanford radioactive waste storage tanks when gas accumulation makes the sediment layer buoyant with respect to the liquid. BDGREs are assumed to be likely if the ratio of the predicted sediment gas fraction and neutral buoyancy gas fraction, or buoyancy ratio, exceeds unity. Based on the observation that the buoyancy ratio is also an empirical indicator of BDGRE size, a new methodology is derived that formally correlates the buoyancy ratio and the peak headspace hydrogen concentration resulting from BDGREs. The available data on the six historic BDGRE tanks, AN-103, AN-104, AN-105, AW-101, SY-103, and SY-101, are studied in detail to describe both the waste state and the corresponding distribution of BDGREs. The range of applicability of the buoyancy ratio-based models is assessed based on the modeling assumptions and availability of tank data. Recommendations are given for extending the range of the models applicability.

Stewart, Charles W.; Hartley, Stacey A.; Meyer, Perry A.; Wells, Beric E.

2005-07-15T23:59:59.000Z

335

Advances in Geochemical Testing of Key Contaminants in Residual Hanford Tank Waste  

Science Conference Proceedings (OSTI)

This report describes the advances that have been made over the past two years in testing and characterizing waste material in Hanford tanks.

Deutsch, William J.; Krupka, Kenneth M.; Cantrell, Kirk J.; Brown, Christopher F.; Lindberg, Michael J.; Schaef, Herbert T.; Heald, Steve M.; Arey, Bruce W.; Kukkadapu, Ravi K.

2005-11-04T23:59:59.000Z

336

Understanding waste phenomenology to reduce the amount of sampling and analysis required to resolve Hanford waste tank safety issues  

SciTech Connect

Safety issues associated with Hanford Site waste tanks arose because of inadequate safety analyses and high levels of uncertainty over the release of radioactivity resulting from condensed phase exothermic chemical reactions (organic solvent fires, organic complexant-nitrate reactions, and ferrocyanide-nitrate reactions). The approach to resolving the Organic Complexant, Organic Solvent, and Ferrocyanide safety issues has changed considerably since 1990. The approach formerly utilized core sampling and extensive analysis of the samples with the expectation the data would provide insight into the hazard. This resulted in high costs and the generation of a large amount of data that was of limited value in resolving the safety issues. The new approach relies on an understanding of the hazard phenomenology to focus sampling and analysis on those analytes that are key to ensuring safe storage of the waste.

Meacham, J.E.; Babad, H.

1996-02-01T23:59:59.000Z

337

Tank Waste Corporate Board Meeting 11/18/10 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

18/10 18/10 Tank Waste Corporate Board Meeting 11/18/10 The following documents are associated with the Tank Waste Corporate Board Meeting held on November 18th, 2010. High-Level Waste Corporate Board Meeting Agenda Journey to Excellence Goal 2 and Enhanced Tank Waste Strategy Introduction to Tc/I in Hanford Flowsheet Fate of Tc99 at WTP and Current Work on Capture Technetium Retention During LAW Vitrification Impacts of Feed Composition and Recycle on Hanford Low-Activity Waste Glass Mass Secondary Waste Forms and Technetium Management Hanford Low Activity Waste (LAW) Fluidized Bed Steam Reformer (FBSR) Na-Al-Si (NAS) Waste Form Qualification Salt Waste Processing Initiatives Recap and Conclusions to Tc/I in Hanford Flowsheet Presentations Tank Closure More Documents & Publications

338

Technology Evaluation Workshop Report for Tank Waste Chemical Characterization  

SciTech Connect

A Tank Waste Chemical Characterization Technology Evaluation Workshop was held August 24--26, 1993. The workshop was intended to identify and evaluate technologies appropriate for the in situ and hot cell characterization of the chemical composition of Hanford waste tank materials. The participants were asked to identify technologies that show applicability to the needs and good prospects for deployment in the hot cell or tanks. They were also asked to identify the tasks required to pursue the development of specific technologies to deployment readiness. This report describes the findings of the workshop. Three focus areas were identified for detailed discussion: (1) elemental analysis, (2) molecular analysis, and (3) gas analysis. The technologies were restricted to those which do not require sample preparation. Attachment 1 contains the final workshop agenda and a complete list of attendees. An information package (Attachment 2) was provided to all participants in advance to provide information about the Hanford tank environment, needs, current characterization practices, potential deployment approaches, and the evaluation procedure. The participants also received a summary of potential technologies (Attachment 3). The workshop opened with a plenary session, describing the background and issues in more detail. Copies of these presentations are contained in Attachments 4, 5 and 6. This session was followed by breakout sessions in each of the three focus areas. The workshop closed with a plenary session where each focus group presented its findings. This report summarizes the findings of each of the focus groups. The evaluation criteria and information about specific technologies are tabulated at the end of each section in the report. The detailed notes from each focus group are contained in Attachments 7, 8 and 9.

Eberlein, S.J.

1994-04-01T23:59:59.000Z

339

Progress in resolving Savannah River Site high-level waste tank safety issues  

SciTech Connect

At the Savannah River Site (SRS), near Aiken, South Carolina, approximately 35 million gallons of high-level radioactive waste are stored in 51 underground, carbon steel waste tanks. These tanks and associated facilities are distributed between the F and H areas, two processing areas at SRS, and are called the F- and H-area high-level waste tank farms. Within the last few years, issues have been raised about the safety of high-level waste tank farms throughout the DOE complex, including those at SRS. Plans for resolution of these issues were reported at the Waste Management 192 conference. This paper addresses progress made at SRS since 1992. Most of the efforts for resolving the six safety issues identified at SRS have concentrated on (1) preparing the tanks for waste removal and (2) completing construction, testing, and starting up three key facilities. These facilities will transform the waste into forms suitable for final disposal, specifically borosilicate glass and saltstone (grout). Removing the waste from the tanks and processing it is needed to resolve three of the safety issues. Two facilities -- In-Tank Precipitation and the Defense Waste Processing Facility -- are undergoing non-radioactive simulant testing (``cold runs``) at this time. The third facility -- Sludge Processing -- began testing with actual waste in October 1993. In Tank Precipitation is scheduled to be operating by the end of 1994.

d`Entremont, P.D.

1993-12-31T23:59:59.000Z

340

Tank waste remediation system retrieval and disposal mission readiness-to-proceed guidance and requirements to deliverables crosswalk  

Science Conference Proceedings (OSTI)

In September 1996, the US Department of Energy, Richland Operations Office (RL) initiated the first of a two-phase program to remediate waste storage in tanks at the Hanford Site in Washington State. Initiating the first phase, RL signed contracts with two private companies who agreed to receive and vitrify a portion of the tank waste in a demonstration and to return the vitrified product and by-products to the Project Management Hanford Contract (PHMC) team for disposition. The first phase of the overall remediation effort is a demonstration of treatment concepts, and the second phase includes treatment of the remaining tank wastes. The demonstration phase, Phase 1 of the project, is further subdivided into two parts, A and B. During Phase 1A, the vitrification contractors are to establish the technical, operational, regulatory, business, and financial elements required to provide treatment services on a fixed unit price basis. Phase 1A deliverables will be evaluated by RL to determine whether it is in the best interest of the government to have one or more vitrification contractors proceed with Phase 1B, in which 6% to 13% of the tank waste would be treated in the demonstration. In addition, before RL can authorize proceeding with Phase 1B, the PHMC team must demonstrate its readiness to retrieve and deliver the waste to the private contractor(s) and to receive and dispose of the products and by-products returned from the treatment. The PHMC team has organized their plans for providing these vitrification-support services into the Retrieval and Disposal Mission within the Tank Waste Remediation System (TWRS) Project. Three RL core teams were established to assist in evaluating the PHMC team`s readiness specifically in regard to three task areas: Waste feed delivery; Infrastructure and by-products delivery; and Immobilized products. The core teams each developed a set of criteria and plans to be used in evaluating the PHMC team`s readiness to proceed (RTP).

Hall, C.E.

1998-01-06T23:59:59.000Z

Note: This page contains sample records for the topic "waste storage tanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Risk characterization data manual for Category D inactive liquid low-level waste tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

Science Conference Proceedings (OSTI)

This manual reports the results of a risk characterization of Category D inactive liquid low-level radioactive waste (LLLW) underground storage tanks (Uses) at the Oak Ridge National Laboratory (ORNL). The risk characterization is required by the Federal Facility Agreement between the Department of Energy-Oak Ridge Operations Office, the Environmental Protection Agency-Region IV, and the Tennessee Department of Environment and Conservation. The intent of the risk characterization is to determine relative priorities for assessment and remediation. A total of 55 FFA Category D inactive LLLW tanks are discussed in this manual. Of the 39 tanks at ORNL that have been accepted into the Environmental Restoration (ER) Program, all have been sampled for preliminary characterization, except for 5 tanks that were found to be empty plus I that was found not to exist. The remaining 16 tanks are in the Waste Management (WM) Program. Twelve were sampled for preliminary characterization, and four were found empty. Each sampled tank was scored on a scale of I to 5 on the basis of three criteria: (1) leak characteristics, (2) location, and (3) toxicological characteristics of residual sludges and liquids. Each criterion was assigned a weighing factor based on perceived importance. The criterion score multiplied by the weighting factor equaled the tank`s total score for that criterion. The three weighted criterion scores for each tank were then summed for a total score for that tank. When the scores for all tanks had been weighted and summed, the tanks were ranked in descending order on the basis of their total scores. The highest possible score for a tank is 30. The descending rank order represents the recommended priorities for evaluation: the higher the score, the higher the priority for evaluation. Of the 54 tanks sampled in the risk characterization, 23 tanks scored 16 or higher, 11 scored between 10 and 15, 5 scored between 4 and 9, and 15 scored 3 or less.

Not Available

1993-09-01T23:59:59.000Z

342

Risk characterization data manual for Category D inactive liquid low-level waste tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

Science Conference Proceedings (OSTI)

This manual reports the results of a risk characterization of Category D inactive liquid low-level radioactive waste (LLLW) underground storage tanks (USTs) at the Oak Ridge National Laboratory (ORNL). The risk characterization is required by the Federal Facility Agreement between the Department of Energy-Oak Ridge Operations Office, the Environmental Protection Agency-Region IV, and the Tennessee Department of Environment and Conservation. The intent of the risk characterization is to determine relative priorities for assessment and remediation. A total of 55 FFA Category D inactive LLLW tanks are discussed in this manual. Of the 39 tanks at ORNL that have been accepted into the Environmental Restoration (ER) Pregrain, all have been sampled for preliminary characterization, except for 5 tanks that were found to be empty plus 1 that was found not to exist. The remaining 16 tanks are in the Waste Management (WM) Program. Twelve were sampled for preliminary characterization, and four were found empty. Each sampled tank was scored on a scale of I to 5 on the basis of three criteria: (1) leak characteristics, (2) location, and (3) toxicological characteristics of residual sludges and liquids. Each criterion was assigned a weighing factor based on perceived importance. The criterion score multiplied by the weighting factor equaled the tank`s total score for that criterion. The three weighted criterion scores for each tank were then summed for a total score for that tank. When the scores for all tanks had been weighted and summed, the tanks were ranked in descending order on the basis of their total scores. The highest possible score for a tank is 30. The descending rank order represents the recommended priorities for evaluation: the higher the score, the higher the priority for evaluation. Of the 54 tanks sampled in the risk characterization, 23 tanks scored 16 or higher, 11 scored between 10 and 15, 5 scored between 4 and 9, and 15 scored 3 or less.

Not Available

1993-07-01T23:59:59.000Z

343

Heat pump water heater and storage tank assembly  

DOE Patents (OSTI)

A water heater and storage tank assembly comprises a housing defining a chamber, an inlet for admitting cold water to the chamber, and an outlet for permitting flow of hot water from the chamber. A compressor is mounted on the housing and is removed from the chamber. A condenser comprises a tube adapted to receive refrigerant from the compressor, and winding around the chamber to impart heat to water in the chamber. An evaporator is mounted on the housing and removed from the chamber, the evaporator being adapted to receive refrigerant from the condenser and to discharge refrigerant to conduits in communication with the compressor. An electric resistance element extends into the chamber, and a thermostat is disposed in the chamber and is operative to sense water temperature and to actuate the resistance element upon the water temperature dropping to a selected level. The assembly includes a first connection at an external end of the inlet, a second connection at an external end of the outlet, and a third connection for connecting the resistance element, compressor and evaporator to an electrical power source.

Dieckmann, John T. (Belmont, MA); Nowicki, Brian J. (Watertown, MA); Teagan, W. Peter (Acton, MA); Zogg, Robert (Belmont, MA)

1999-09-07T23:59:59.000Z

344

U.S. Department of Energy Onboard Storage Tank Workshop Notes  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Department of Energy U.S. Department of Energy Onboard Storage Tank Workshop Workshop Notes April 29, 2010 Sandia National Laboratories - Livermore, CA 2 Report from the Onboard Storage Tank Workshop Livermore, CA April 29 th , 2010 The Onboard Storage Tank Workshop was held on April 29 th , 2010, at Sandia National Laboratories (SNL) in Livermore, CA. The Workshop was co-hosted by SNL and the United States Department of Energy (DOE). The purpose of the Workshop was to identify key issues including research and development (R&D) needs, regulations, codes and standards (RCS), and a path forward to enable the deployment of hydrogen storage tanks in early market fuel cell applications. Background The objectives of the Workshop were to: * Provide initial follow up to the DOE and Department of Transportation (DOT)

345

Technical Assessment of Compressed Hydrogen Storage Tank Systems for Automotive Applications  

Fuel Cell Technologies Publication and Product Library (EERE)

This technical report describes DOE's assessment of the performance and cost of compressed hydrogen storage tank systems for automotive applications. The on-board performance (by Argonne National Lab)

346

NOTICE OF AVAILABILITY - INTERIM RECORD OF DECISION FOR THE F-AREA TANK FARM, WASTE TANKS 17 AND 20  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 April 30, 2013 NOTICE OF AVAILABILITY - INTERIM RECORD OF DECISION FOR THE F-AREA TANK FARM, WASTE TANKS 17 AND 20 The Interim Record of Decision (IROD) Remedial Alternative Selection for the F-Area Tank Farm (FTF), Waste Tanks 17 and 20, is being issued by the U.S. Department of Energy (DOE), the lead agency for the Savannah River Site (SRS), with concur- rence by the U.S. Environmental Protection Agency - Region 4 (EPA), and South Carolina Department of Health and Environ- mental Control (SCDHEC). The IROD was completed to facilitate the terms of the Federal Facility Agreement (FFA) for SRS governing the investigation and cleanup of waste units. The FFA integrates the requirements of Resource Conservation and Re- covery Act and the Comprehensive Environmental Response, Compensation, and Liability Act.

347

Testing of organic waste surrogate materials in support of the Hanford organic tank program. Final report  

SciTech Connect

To address safety issues regarding effective waste management efforts of underground organic waste storage tanks at the Hanford Site, the Bureau of Mines conducted a series of tests, at the request of the Westinghouse Hanford company. In this battery of tests, the thermal and explosive characteristics of surrogate materials, chosen by Hanford, were determined. The surrogate materials were mixtures of inorganic and organic sodium salts, representing fuels and oxidants. The oxidants were sodium nitrate and sodium nitrite. The fuels were sodium salts of oxalate, citrate and ethylenediamine tetraacetic acid (EDTA). Polyethylene powder was also used as a fuel with the oxidant(s). Sodium aluminate was used as a diluent. In addition, a sample of FeCN, supplied by Hanford was also investigated.

Turner, D.A. [Westinghouse Hanford Co., Richland, WA (United States); Miron, Y. [Bureau of Mines (United States)

1994-01-01T23:59:59.000Z

348

Tank characterization reference guide  

Science Conference Proceedings (OSTI)

Characterization of the Hanford Site high-level waste storage tanks supports safety issue resolution; operations and maintenance requirements; and retrieval, pretreatment, vitrification, and disposal technology development. Technical, historical, and programmatic information about the waste tanks is often scattered among many sources, if it is documented at all. This Tank Characterization Reference Guide, therefore, serves as a common location for much of the generic tank information that is otherwise contained in many documents. The report is intended to be an introduction to the issues and history surrounding the generation, storage, and management of the liquid process wastes, and a presentation of the sampling, analysis, and modeling activities that support the current waste characterization. This report should provide a basis upon which those unfamiliar with the Hanford Site tank farms can start their research.

De Lorenzo, D.S.; DiCenso, A.T.; Hiller, D.B.; Johnson, K.W.; Rutherford, J.H.; Smith, D.J. [Los Alamos Technical Associates, Kennewick, WA (United States); Simpson, B.C. [Westinghouse Hanford Co., Richland, WA (United States)

1994-09-01T23:59:59.000Z

349

Structural integrity and potential failure modes of hanford high-level waste tanks  

Science Conference Proceedings (OSTI)

Structural Integrity of the Hanford High-Level Waste Tanks were evaluated based on the existing Design and Analysis Documents. All tank structures were found adequate for the normal operating and seismic loads. Potential failure modes of the tanks were assessed by engineering interpretation and extrapolation of the existing engineering documents.

Han, F.C.

1996-09-30T23:59:59.000Z

350

Initial laboratory studies into the chemical and radiological aging of organic materials in underground storage tanks at the Hanford Complex  

SciTech Connect

The underground storage tanks at the Hanford Complex contain wastes generated over many years from plutonium production and recovery processes, and mixed wastes from radiological degradation processes. The chemical changes of the organic materials used in the extraction processes have a direct bearing on several specific safety issues, including potential energy releases from these tanks. The major portion of organic materials that have been added to the tanks consists of tributyl phosphate, dibutyl phosphate, butyl alcohol, hexone (methyl isobutyl ketone), normal paraffin hydrocarbons (NPH), ethylenediaminetetraacetic acid (EDTA), hydroxyethylethylenediaminetriadetic acid (HEDTA), other complexants, and lesser quantities of ion exchange polymers and minor organic compounds. A study of how thermal and radiological processes that may have changed the composition of organic tanks constituents has been initiated after a review of the open literature revealed little information was available about the rates and products of these processes under basic pH conditions. This paper will detail the initial findings as they relate to gas generation, e.g. H{sub 2}, CO, NH{sub 3}, CH{sub 4}, and to changes in the composition of the organic and inorganic components brought about by ``Aging`` processes.

Samuels, W.D.; Camaioni, D.M. [Pacific Northwest Lab., Richland, WA (United States); Babad, H. [Westinghouse Hanford Co., Richland, WA (United States)

1994-03-01T23:59:59.000Z

351

Caustic Recycle from Hanford Tank Waste Using NaSICON Ceramic Membrane Salt Splitting Process  

Science Conference Proceedings (OSTI)

A family of inorganic ceramic materials, called sodium (Na) Super Ion Conductors (NaSICON), has been studied at Pacific Northwest National Laboratory (PNNL) to investigate their ability to separate sodium from radioactively contaminated sodium salt solutions for treating U.S. Department of Energy (DOE) tank wastes. Ceramatec Inc. developed and fabricated a membrane containing a proprietary NAS-GY material formulation that was electrochemically tested in a bench-scale apparatus with both a simulant and a radioactive tank-waste solution to determine the membrane performance when removing sodium from DOE tank wastes. Implementing this sodium separation process can result in significant cost savings by reducing the disposal volume of low-activity wastes and by producing a NaOH feedstock product for recycle into waste treatment processes such as sludge leaching, regenerating ion exchange resins, inhibiting corrosion in carbon-steel tanks, or retrieving tank wastes.

Fountain, Matthew S.; Kurath, Dean E.; Sevigny, Gary J.; Poloski, Adam P.; Pendleton, J.; Balagopal, S.; Quist, M.; Clay, D.

2009-02-20T23:59:59.000Z

352

Effects of simulant Hanford tank waste on plastic packaging components  

Science Conference Proceedings (OSTI)

In this paper, the authors describe a chemical compatibility testing program for packaging components which might be used to transport mixed wastes. They mention the results of the screening phase of this program and then present the results of the second phase of this experimental program. This effort involved the comprehensive testing of five plastic liner materials in the aqueous mixed waste simulant. The testing protocol involved exposing the respective materials to {approximately} 140, 290, 570, and 3,670 krads of gamma radiation followed by 7, 14, 28, 180 day exposures to the waste simulant at 18, 50, and 60 C. From the data analysis performed to date in this study, they have identified the fluorocarbon Kel-F{trademark} as having the greatest chemical compatibility after being exposed to gamma radiation followed by exposure to the Hanford Tank simulant mixed waste. The most striking observation from this study was the poor performance of Teflon under these conditions. The data obtained from this testing program will be available to packaging designers for the development of mixed waste packagings. The implications of the testing results on the selection of appropriate materials as packaging components are discussed.

Nigrey, P.J.; Dickens, T.G.

1996-07-01T23:59:59.000Z

353

EA-1146: Radioactive Waste Storage at Rocky Flats Environmental Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

46: Radioactive Waste Storage at Rocky Flats Environmental 46: Radioactive Waste Storage at Rocky Flats Environmental Technology Site, Golden, Colorado EA-1146: Radioactive Waste Storage at Rocky Flats Environmental Technology Site, Golden, Colorado SUMMARY This EA evaluates the environmental impacts of the proposal to convert buildings at the U.S. Department of Energy Rocky Flats Environmental Technology Site from their former uses to interim waste storage facilities in order to increase storage capacity for low-level waste, low-level mixed waste, transuranic waste, and transuranic mixed waste. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD April 9, 1996 EA-1146: Finding of No Significant Impact Radioactive Waste Storage at Rocky Flats Environmental Technology Site, Golden, Colorado

354

Grouting Operation to Lead to First SRS Waste Tank Closures Since 1997 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grouting Operation to Lead to First SRS Waste Tank Closures Since Grouting Operation to Lead to First SRS Waste Tank Closures Since 1997 Grouting Operation to Lead to First SRS Waste Tank Closures Since 1997 April 1, 2012 - 12:00pm Addthis DOE and Savannah River Remediation team members gather in front of the first cement truck containing grout for Tank 18 at the Savannah River Site. DOE and Savannah River Remediation team members gather in front of the first cement truck containing grout for Tank 18 at the Savannah River Site. A specially formulated grout was poured into a hopper and transferred through lines to Tank 19. A specially formulated grout was poured into a hopper and transferred through lines to Tank 19. The first cement truck with the specially formulated grout arrives at the Savannah River Site earlier this month.

355

Tank waste remediation system multi-year work plan  

SciTech Connect

The Tank Waste Remediation System (TWRS) Multi-Year Work Plan (MYWP) documents the detailed total Program baseline and was constructed to guide Program execution. The TWRS MYWP is one of two elements that comprise the TWRS Program Management Plan. The TWRS MYWP fulfills the Hanford Site Management System requirement for a Multi-Year Program Plan and a Fiscal-Year Work Plan. The MYWP addresses program vision, mission, objectives, strategy, functions and requirements, risks, decisions, assumptions, constraints, structure, logic, schedule, resource requirements, and waste generation and disposition. Sections 1 through 6, Section 8, and the appendixes provide program-wide information. Section 7 includes a subsection for each of the nine program elements that comprise the TWRS Program. The foundation of any program baseline is base planning data (e.g., defendable product definition, logic, schedules, cost estimates, and bases of estimates). The TWRS Program continues to improve base data. As data improve, so will program element planning, integration between program elements, integration outside of the TWRS Program, and the overall quality of the TWRS MYWP. The MYWP establishes the TWRS baseline objectives to store, treat, and immobilize highly radioactive Hanford waste in an environmentally sound, safe, and cost-effective manner. The TWRS Program will complete the baseline mission in 2040 and will incur costs totalling approximately 40 billion dollars. The summary strategy is to meet the above objectives by using a robust systems engineering effort, placing the highest possible priority on safety and environmental protection; encouraging {open_quotes}out sourcing{close_quotes} of the work to the extent practical; and managing significant but limited resources to move toward final disposition of tank wastes, while openly communicating with all interested stakeholders.

Not Available

1994-09-01T23:59:59.000Z

356

PROBABILITY BASED CORROSION CONTROL FOR WASTE TANKS - PART II  

SciTech Connect

As part of an ongoing study to evaluate the discontinuity in the corrosion controls at the SRS tank farm, a study was conducted this year to assess the minimum concentrations below 1 molar nitrate, see Figure 1. Current controls on the tank farm solution chemistry are in place to prevent the initiation and propagation of pitting and stress corrosion cracking in the primary steel waste tanks. The controls are based upon a series of experiments performed with simulated solutions on materials used for construction of the tanks, namely ASTM A537 carbon steel (A537). During FY09, an experimental program was undertaken to investigate the risk associated with reducing the minimum molar nitrite concentration required to confidently inhibit pitting in dilute solutions (i.e., less than 1 molar nitrate). The experimental results and conclusions herein provide a statistical basis to quantify the probability of pitting for the tank wall exposed to various solutions with dilute concentrations of nitrate and nitrite. Understanding the probability for pitting will allow the facility to make tank-specific risk-based decisions for chemistry control. Based on previous electrochemical testing, a statistical test matrix was developed to refine and solidify the application of the statistical mixture/amount model to corrosion of A537 steel. A mixture/amount model was identified based on statistical analysis of recent and historically collected electrochemical data. This model provides a more complex relationship between the nitrate and nitrite concentrations and the probability of pitting than is represented by the model underlying the current chemistry control program, and its use may provide a technical basis for the utilization of less nitrite to inhibit pitting at concentrations below 1 molar nitrate. FY09 results fit within the mixture/amount model, and further refine the nitrate regime in which the model is applicable. The combination of visual observations and cyclic potentiodynamic polarization scans indicates a potential for significant inhibitor reductions at nitrate concentrations near 1.0 M without a significant increase in corrosion risk. The complete data sets from FY08 and FY09 testing have determined the statistical basis to confidently inhibit against pitting using nitrite inhibition with the current pH controls. Future testing will complete the spectrum of nitrate concentrations around 1 molar. These results will be combined to provide a complete spectrum for corrosion controls with a risk based component.

Hoffman, E.; Edwards, T.

2010-12-09T23:59:59.000Z

357

Tank 42 sludge-only process development for the Defense Waste Processing Facility (DWPF)  

SciTech Connect

Defense Waste Processing Facility (DWPF) requested the development of a sludge-only process for Tank 42 sludge since at the current processing rate, the Tank 51 sludge has been projected to be depleted as early as August 1998. Testing was completed using a non-radioactive Tank 42 sludge simulant. The testing was completed under a range of operating conditions, including worst case conditions, to develop the processing conditions for radioactive Tank 42 sludge. The existing Tank 51 sludge-only process is adequate with the exception that 10 percent additional acid is recommended during sludge receipt and adjustment tank (SRAT) processing to ensure adequate destruction of nitrite during the SRAT cycle.

Lambert, D.P.

2000-03-22T23:59:59.000Z

358

Mechanisms of gas retention and release: Experimental results for Hanford single-shell waste tanks 241-A-101, 241-S-106, and 241-U-103  

Science Conference Proceedings (OSTI)

The 177 underground waste storage tanks at the Hanford Site contain millions of gallons of radioactive waste resulting from the purification of nuclear materials and related processes. Through various mechanisms, flammable gas mixtures of hydrogen, ammonia, methane, and nitrous oxide are generated and retained in significant quantities within the waste in many ({approximately}25) of these tanks. The potential for large releases of retained gas from these wastes creates a flammability hazard. It is a critical component of the effort to understand the flammability hazard and a primary goal of this laboratory investigation to establish an understanding of the mechanisms of gas retention and release in these wastes. The results of bubble retention experimental studies using waste samples from several waste tanks and a variety of waste types support resolution of the Flammable Gas Safety Issue. Gas bubble retention information gained in the pursuit of safe storage will, in turn, benefit future waste operations including salt-well pumping, waste transfers, and sluicing/retrieval.

Rassat, S.D.; Caley, S.M.; Bredt, P.R.; Gauglitz, P.A.; Rinehart, D.E.; Forbes, S.V.

1998-09-01T23:59:59.000Z

359

Consequence analysis of a NaOH solution spray release during addition to waste tank. Revision 2  

SciTech Connect

Toxicological consequences are presented for three postulated accidents involving caustic soda (sodium hydroxide) addition to a waste tank to adjust the tank waste pH. These are spray from the skid mounted delivery system, spray from a cargo tank truck, and rupture of a cargo tank truck. Consequences for the onsite and offsite receptor are calculated.

Van Vleet, R.J.; Lancing, L.C.

1997-07-08T23:59:59.000Z

360

FITNESS-FOR-SERVICE ASSESSMENT FOR A RADIOACTIVE WASTE TANK THAT CONTAINS STRESS CORROSION CRACKS  

SciTech Connect

Radioactive wastes are confined in 49 underground storage tanks at the Savannah River Site. The tanks are examined by ultrasonic (UT) methods for thinning, pitting, and stress corrosion cracking in order to assess fitness-for-service. During an inspection in 2002, ten cracks were identified on one of the tanks. Given the location of the cracks (i.e., adjacent to welds, weld attachments, and weld repairs), fabrication details (e.g., this tank was not stress-relieved), and the service history the degradation mechanism was stress corrosion cracking. Crack instability calculations utilizing API-579 guidance were performed to show that the combination of expected future service condition hydrostatic and weld residual stresses do not drive any of the identified cracks to instability. The cracks were re-inspected in 2007 to determine if crack growth had occurred. During this re-examination, one indication that was initially reported as a 'possible perpendicular crack <25% through wall' in 2002, was clearly shown not to be a crack. Additionally, examination of a new area immediately adjacent to other cracks along a vertical weld revealed three new cracks. It is not known when these new cracks formed as they could very well have been present in 2002 as well. Therefore, a total of twelve cracks were evaluated during the re-examination. Comparison of the crack lengths measured in 2002 and 2007 revealed that crack growth had occurred in four of the nine previously measured cracks. The crack length extension ranged from 0.25 to 1.8 inches. However, in all cases the cracks still remained within the residual stress zone (i.e., within two to three inches of the weld). The impact of the cracks that grew on the future service of Tank 15 was re-assessed. API-579 crack instability calculations were again performed, based on expected future service conditions and trended crack growth rates for the future tank service cycle. The analysis showed that the combined hydrostatic and weld residual stresses do not drive the identified cracks to instability. This tank expected to be decommissioned in the near future. However, if these plans are delayed, it was recommended that a third examination of selected cracks in the tank be performed in 2014.

Wiersma, B; James Elder, J; Rodney Vandekamp, R; Charles Mckeel, C

2009-04-23T23:59:59.000Z

Note: This page contains sample records for the topic "waste storage tanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Method for storage of solid waste  

DOE Patents (OSTI)

Metal canisters for long-term storage of calcined highlevel radioactive wastes can be made self-sealing against a breach in the canister wall by the addition of powdered cement to the canister with the calcine before it is sealed for storage. Any breach in the canister wall will permit entry of water which will mix with the cement and harden to form a concrete patch, thus sealing the opening in the wall of the canister and preventing the release of radioactive material to the cooling water or atmosphere.

Mecham, William J. (La Grange, IL)

1976-01-01T23:59:59.000Z

362

High Level Waste Feed Certification in Hanford Double Shell Tanks  

SciTech Connect

The ability to effectively mix, sample, certify, and deliver consistent batches of High Level Waste (HLW) feed from the Hanford Double Shell Tanks (DST) to the Waste Treatment and Immobilization Plant (WTP) presents a significant mission risk with potential to impact mission length and the quantity of HLW glass produced. DOE’s River Protection Project (RPP) mission modeling and WTP facility modeling assume that individual 3785 cubic meter (1 million gallon) HLW feed tanks are homogenously mixed, representatively sampled, and consistently delivered to the WTP. It has been demonstrated that homogenous mixing of HLW sludge in Hanford DSTs is not likely achievable with the baseline design thereby causing representative sampling and consistent feed delivery to be more difficult. Inconsistent feed to the WTP could cause additional batch to batch operational adjustments that reduces operating efficiency and has the potential to increase the overall mission length. The Hanford mixing and sampling demonstration program will identify DST mixing performance capability, will evaluate representative sampling techniques, and will estimate feed batch consistency. An evaluation of demonstration program results will identify potential mission improvement considerations that will help ensure successful mission completion. This paper will discuss the history, progress, and future activities that will define and mitigate the mission risk.

Thien, Micheal G.; Wells, Beric E.; Adamson, Duane J.

2010-03-01T23:59:59.000Z

363

Removal of floating organic in Hanford Waste Tank 241-C-103 restart plan  

Science Conference Proceedings (OSTI)

The decision whether or not to remove the organic layer from Waste Tank 241-C-103 was deferred until May, 1995. The following restart plan was prepared for removal of the organic if the decision is to remove the organic from the waste tank 241-C-103.

Wilson, T.R.; Hanson, C.

1994-10-03T23:59:59.000Z

364

Final Hazard Categorization for the Remediation of the 116-C-3 Chemical Waste Tanks  

SciTech Connect

This final hazard categorization (FHC) document examines the hazards, identifies appropriate controls to manage the hazards, and documents the commitments for the 116-C-3 Chemical Waste Tanks Remediation Project. The remediation activities analyzed in this FHC are based on recommended treatment and disposal alternatives described in the Engineering Evaluation for the Remediation to the 116-C-3 Chemical Waste Tanks (BHI 2005e).

T. M. Blakley; W. D. Schofield

2007-09-10T23:59:59.000Z

365

Glass Science tutorial lecture No. 5: Historical review of USDOE tank waste management  

Science Conference Proceedings (OSTI)

This is a two day course whose objective is to present an unbiased historical overview of the DOE tank waste activities. World events which impacted the US nuclear program (or vise versa) will be presented. Liquid, mostly tank waste, and sludge are the primary concerns of this course.

McDaniel, E.W.

1995-02-01T23:59:59.000Z

366

Tank waste remediation system retrieval and disposal mission initial updated baseline summary  

Science Conference Proceedings (OSTI)

This document provides a summary of the proposed Tank Waste Remediation System Retrieval and Disposal Mission Initial Updated Baseline (scope, schedule, and cost) developed to demonstrate the Tank Waste Remediation System contractor`s Readiness-to-Proceed in support of the Phase 1B mission.

Swita, W.R.

1998-01-05T23:59:59.000Z

367

Minutes of the Tank Waste Science Panel meeting July 9--1, 1991  

Science Conference Proceedings (OSTI)

The fifth meeting of the Tank Waste Science Panel was held July 9--11, 1991, in Atlanta, Georgia. The subject areas included the generation, retention, and release of gases from Tank 241-SY-101 and the chemistry of ferrocyanide wastes.

Strachan, D.M. (comp.)

1992-04-01T23:59:59.000Z

368

Lessons Learned from V-Tank Waste Remediation Activities at the Idaho National Laboratory  

SciTech Connect

The purpose of this paper is to discuss major activities and lessons learned from remediation of the V-tank waste at Idaho National Laboratory's (INL's) Test Area North (TAN) complex. Remediation activities involved the on-site treatment, solidification and disposal of over 61,000 L (16,000 gal) of radioactively hazardous V-tank waste. In July, 2006, over 98% of the V-tank waste was disposed of at the Idaho CERCLA Disposal Facility (ICDF). Disposal was accomplished using the three 38,000-L (10,000-gal) V-tanks that had stored most of the V-tank waste for over 30 years. Included in V-Tank remediation was the removal of approximately 7,650 m{sup 3} (10,000 yd{sup 3}) of contaminated soil. Plans are to treat the remaining V-tank waste off-site in early 2007, with the treated residual also disposed of at the ICDF. Disposal of the treated V-tank waste at ICDF marked a major step in completing remediation of the TAN V-tanks, a task begun in 1999 when the original Record of Decision (ROD) was published. Over this time, there have been a number of stops and starts associated with remediating this waste. Although many of these stops and starts were unavoidable, there are a number of lessons learned for the V-tank remediation that could help prevent unnecessary expenses and schedule delays in future remediation activities within the Department of Energy (DOE) complex. This paper identifies major and minor lessons learned from V-tank waste remediation efforts - those that resulted in unnecessary delays/expenses, as well as those areas that accelerated V-tank remediation efforts. (authors)

Farnsworth, R.K.; Jessmore, J.J.; Eaton, D.L.; McDannel, G.E.; Sloan, P.A.; Jantz, A.E.; Tyson, D.R. [CH2M-Washington Group Idaho -Idaho Cleanup Project-a, Idaho Falls, ID (United States); Burt, B.T. [E2 Consulting Engineers, Idaho Falls ID (United States)

2007-07-01T23:59:59.000Z

369

Assessment of chemical vulnerabilities in the Hanford high-level waste tanks  

SciTech Connect

The purpose of this report is to summarize results of relevant data (tank farm and laboratory) and analysis related to potential chemical vulnerabilities of the Hanford Site waste tanks. Potential chemical safety vulnerabilities examined include spontaneous runaway reactions, condensed phase waste combustibility, and tank headspace flammability. The major conclusions of the report are the following: Spontaneous runaway reactions are not credible; condensed phase combustion is not likely; and periodic releases of flammable gas can be mitigated by interim stabilization.

Meacham, J.E. [and others

1996-02-15T23:59:59.000Z

370

Tank Waste Corporate Board Meeting 03/05/09 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tank Waste Corporate Board Meeting 03/05/09 Tank Waste Corporate Board Meeting 03/05/09 Tank Waste Corporate Board Meeting 03/05/09 The following documents are associated with the Tank Waste Corporate Board Meeting held on March 5th, 2009. Overview of Integrated Waste Treatment Unit Desired PU Loading During Vitrification HLW System Integrated Project Team Waste Determination and Section 3116 of the 2005 National Defense Authorization Act - HQ Perspective Status of Art & Practice of Performance Assessment within the DOE Complex Experience from the Short Course on Introduction to Nuclear Chemistry and Fuel Cycle Separations and Future Educational Opportunities Role of Liquid Waste Pretreatment Technologies in Solving the DOE Clean-up Mission Performance Assessment Community of Practice Action Item Review and Status

371

Characterization, Leaching, and Filtrations Testing of Ferrocyanide Tank sludge (Group 8) Actual Waste Composite  

SciTech Connect

This is the final report in a series of eight reports defining characterization, leach, and filtration testing of a wide variety of Hanford tank waste sludges. The information generated from this series is intended to supplement the Waste Treatment and Immobilization Plant (WTP) project understanding of actual waste behaviors associated with tank waste sludge processing through the pretreatment portion of the WTP. The work described in this report presents information on a high-iron waste form, specifically the ferrocyanide tank waste sludge. Iron hydroxide has been shown to pose technical challenges during filtration processing; the ferrocyanide tank waste sludge represented a good source of the high-iron matrix to test the filtration processing.

Fiskum, Sandra K.; Billing, Justin M.; Crum, J. V.; Daniel, Richard C.; Edwards, Matthew K.; Shimskey, Rick W.; Peterson, Reid A.; MacFarlan, Paul J.; Buck, Edgar C.; Draper, Kathryn E.; Kozelisky, Anne E.

2009-02-28T23:59:59.000Z

372

Waste Encapsulation Storage Facility, January 2011  

NLE Websites -- All DOE Office Websites (Extended Search)

February 11, 2011 February 11, 2011 Site Visit Report Waste Encapsulation Storage Facility, January 2011 INTRODUCTION This report documents the results of a review conducted by the Office of Health, Safety and Security (HSS) of the Waste Encapsulation Storage Facility (WESF) documented safety analysis (DSA) at the Hanford Site. During discussions with the U.S. Department of Energy Richland Operations Office (DOE- RL), the review of WESF was jointly selected by HSS and DOE-RL based on the high hazards of the facility and the need to periodically evaluate the facility and DSA by independent reviewers. SCOPE The scope of the review was to evaluate the WESF safety and support systems in detecting, preventing and mitigating analyzed events as described in the facility's DSA, PRC-EDC-10-45190, 2010, Executive

373

Waste Encapsulation Storage Facility, January 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 11, 2011 February 11, 2011 Site Visit Report Waste Encapsulation Storage Facility, January 2011 INTRODUCTION This report documents the results of a review conducted by the Office of Health, Safety and Security (HSS) of the Waste Encapsulation Storage Facility (WESF) documented safety analysis (DSA) at the Hanford Site. During discussions with the U.S. Department of Energy Richland Operations Office (DOE- RL), the review of WESF was jointly selected by HSS and DOE-RL based on the high hazards of the facility and the need to periodically evaluate the facility and DSA by independent reviewers. SCOPE The scope of the review was to evaluate the WESF safety and support systems in detecting, preventing and mitigating analyzed events as described in the facility's DSA, PRC-EDC-10-45190, 2010, Executive

374

RPP-PLAN-47325 Revision 0 Radioactive Waste Determination Process Plan for Waste Management Area C Tank  

E-Print Network (OSTI)

This plan describes the radioactive waste determination process that the U.S. Department of Energy (DOE) will use for Hanford Site Waste Management Area C (WMA C) tank waste residuals subject to DOE authority under DOE Order 435.1, Radioactive Waste Management. Preparation of this plan is a required component of actions the DOE-Office of River Protection (ORP) must take to fulfill proposed Hanford Federal Facility Agreement and Consent Order Milestone M-045-80. Waste Management Area C is comprised of various single-shell tanks, encased and direct-buried pipes, diversion boxes, pump pits, and unplanned release sites (sites contaminated as a result of spills of tank waste to the environment). Since operations began in the late 1940s, the tanks in WMA C have continuously stored waste managed as high-level waste (HLW) that was derived from defense-related nuclear research, development, and weapons production activities. Planning for the final closure of WMA C is underway. This radioactive waste determination process plan assumes that tank closure will follow retrieval of as much tank waste as technically and economically practical. It is also assumed for the purposes of this plan that after completion

Waste Residuals; J. R. Robertson

2010-01-01T23:59:59.000Z

375

Waste Clean Up 5  

Science Conference Proceedings (OSTI)

... deployment and clean-up activities of robot arms into a nuclear contaminated pit at the opening of waste storage tank C-106 at Hanford, Washington ...

2011-08-30T23:59:59.000Z

376

Headspace vapor characterization of Hanford waste tank 241-U-109: Results from samples collected on 8/10/95  

DOE Green Energy (OSTI)

This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-U-109 (Tank U-109) At the Hanford Site in Washington State. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank farm operations. This tank is on the Hydrogen Waste List. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwest National Laboratory (PNNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Analyte concentrations were based on analytical results and, where appropriate, sample volumes provided by WHC. A summary of the inorganic analytes, permanent gases and total non-methane hydrocarbons is listed in a table. The three highest concentration analytes detected in SUMMA{trademark} canister and triple sorbent trap samples is also listed in the table. Detailed descriptions of the analytical results appear in the text.

Evans, J.C.; Thomas, B.L.; Pool, K.H.; Olsen, K.B.; Fruchter, J.S.; Silvers, K.L.

1996-05-01T23:59:59.000Z

377

Configuration management plan for waste tank farms and the 242-A evaporator of tank waste remediation system  

SciTech Connect

The configuration management architecture presented in this Configuration Management Plan is based on the functional model established by DOE-STD-1073-93, ``Guide for Operational Configuration Management Program.`` The DOE Standard defines the configuration management program by the five basic program elements of ``program management,`` ``design requirements,`` ``document control,`` ``change control,`` and ``assessments,`` and the two adjunct recovery programs of ``design reconstitution,`` and ``material condition and aging management.`` The CM model of five elements and two adjunct programs strengthen the necessary technical and administrative control to establish and maintain a consistent technical relationship among the requirements, physical configuration, and documentation. Although the DOE Standard was originally developed for the operational phase of nuclear facilities, this plan has the flexibility to be adapted and applied to all life-cycle phases of both nuclear and non-nuclear facilities. The configuration management criteria presented in this plan endorses the DOE Standard and has been tailored specifically to address the technical relationship of requirements, physical configuration, and documentation during the full life cycle of the Waste Tank Farms and 242-A Evaporator of Tank Waste Remediation System.

Laney, T.

1994-08-30T23:59:59.000Z

378

Salt Waste Processing Facility Fact Sheet  

Energy.gov (U.S. Department of Energy (DOE))

Nuclear material production operations at SRS resulted in the generation of liquid radioactive waste that is being stored, on an interim basis, in 49 underground waste storage tanks in the F- and H-Area Tank Farms.

379

Tank waste remediation system (TWRS) privatization contractor samples waste envelope D material 241-C-106  

Science Conference Proceedings (OSTI)

This report represents the Final Analytical Report on Tank Waste Remediation System (TWRS) Privatization Contractor Samples for Waste Envelope D. All work was conducted in accordance with ''Addendum 1 of the Letter of Instruction (LOI) for TWRS Privatization Contractor Samples Addressing Waste Envelope D Materials - Revision 0, Revision 1, and Revision 2.'' (Jones 1996, Wiemers 1996a, Wiemers 1996b) Tank 241-C-1 06 (C-106) was selected by TWRS Privatization for the Part 1A Envelope D high-level waste demonstration. Twenty bottles of Tank C-106 material were collected by Westinghouse Hanford Company using a grab sampling technique and transferred to the 325 building for processing by the Pacific Northwest National Laboratory (PNNL). At the 325 building, the contents of the twenty bottles were combined into a single Initial Composite Material. This composite was subsampled for the laboratory-scale screening test and characterization testing, and the remainder was transferred to the 324 building for bench-scale preparation of the Privatization Contractor samples.

Esch, R.A.

1997-04-14T23:59:59.000Z

380

Tanks focus area. Annual report  

SciTech Connect

The U.S. Department of Energy Office of Environmental Management is tasked with a major remediation project to treat and dispose of radioactive waste in hundreds of underground storage tanks. These tanks contain about 90,000,000 gallons of high-level and transuranic wastes. We have 68 known or assumed leaking tanks, that have allowed waste to migrate into the soil surrounding the tank. In some cases, the tank contents have reacted to form flammable gases, introducing additional safety risks. These tanks must be maintained in the safest possible condition until their eventual remediation to reduce the risk of waste migration and exposure to workers, the public, and the environment. Science and technology development for safer, more efficient, and cost-effective waste treatment methods will speed up progress toward the final remediation of these tanks. The DOE Office of Environmental Management established the Tanks Focus Area to serve as the DOE-EM`s technology development program for radioactive waste tank remediation in partnership with the Offices of Waste Management and Environmental Restoration. The Tanks Focus Area is responsible for leading, coordinating, and facilitating science and technology development to support remediation at DOE`s four major tank sites: the Hanford Site in Washington State, Idaho National Engineering and Environmental Laboratory in Idaho, Oak Ridge Reservation in Tennessee, and the Savannah River Site in South Carolina. The technical scope covers the major functions that comprise a complete tank remediation system: waste retrieval, waste pretreatment, waste immobilization, tank closure, and characterization of both the waste and tank. Safety is integrated across all the functions and is a key component of the Tanks Focus Area program.

Frey, J.

1997-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "waste storage tanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

CHARACTERIZATION OF ACTINIDES IN SIMULATED ALKALINE TANK WASTE SLUDGES AND LEACHATES  

SciTech Connect

In this project, both the fundamental chemistry of actinides in alkaline solutions (relevant to those present in Hanford-style waste storage tanks), and their dissolution from sludge simulants (and interactions with supernatants) have been investigated under representative sludge leaching procedures. The leaching protocols were designed to go beyond conventional alkaline sludge leaching limits, including the application of acidic leachants, oxidants and complexing agents. The simulant leaching studies confirm in most cases the basic premise that actinides will remain in the sludge during leaching with 2-3 M NaOH caustic leach solutions. However, they also confirm significant chances for increased mobility of actinides under oxidative leaching conditions. Thermodynamic data generated improves the general level of experiemental information available to predict actinide speciation in leach solutions. Additional information indicates that improved Al removal can be achieved with even dilute acid leaching and that acidic Al(NO3)3 solutions can be decontaminated of co-mobilized actinides using conventional separations methods. Both complexing agents and acidic leaching solutions have significant potential to improve the effectiveness of conventional alkaline leaching protocols. The prime objective of this program was to provide adequate insight into actinide behavior under these conditions to enable prudent decision making as tank waste treatment protocols develop.

Nash, Kenneth L.

2008-11-20T23:59:59.000Z

382

Hanford Tank Safety Project: Minutes of the Tank Waste Science Panel meeting, February 7--8, 1991  

DOE Green Energy (OSTI)

The Tank Waste Science Panel met February 7--8, 1991, to review the latest data from the analyses of the October 24, 1990, gas release from Tank 241-SY-101 (101-SY) at Hanford; discuss the results of work being performed in support of the Hanford Tank Safety Project; and be briefed on the ferrocyanide issues included in the expanded scope of the Science Panel. The shapes of the gas release curves from the past three events are similar and correlate well with changes in waste level, but the correlation between the released volume of gas and the waste height is not as good. An analysis of the kinetics of gas generation from waste height measurements in Tank 101-SY suggests that the reaction giving rise to the gases in the tank is independent of the gas pressure and independent of the physical processes that give rise to the episodic release of the gases. Tank waste height data were also used to suggest that a floating crust formed early in the history of the tank and that the current crust is being made thicker in the eastern sector of the tank by repeated upheaval of waste slurry onto the surface. The correlation between the N{sub 2}O and N{sub 2} generated in the October release appears to be 1:1, suggesting a single mechanistic pathway. Analysis of other gas generation ratios, however, suggests that H{sub 2} and N{sub 2}O are evolved together, whereas N{sub 2} is from the air. If similar ratios are observed in planned radiolysis experiments are Argonne National Laboratory, radiolysis would appear to be generating most of the gases in Tank 101-SY. Data from analysis of synthetic waste crust using a dynamic x-ray diffractometer suggest that, in air, organics are being oxidized and liberating CO{sub 2} and NO{sub x}. Experiments at Savannah River Laboratory indicate that irradiation of solutions containing NO{sub 3} and organics can produce N{sub 2}O.

Strachan, D.M. (comp.)

1991-06-01T23:59:59.000Z

383

Modeling and analysis of ORNL horizontal storage tank mobilization and mixing  

SciTech Connect

The retrieval and treatment of radioactive sludges that are stored in tanks constitute a prevalent problem at several US Department of Energy sites. The tanks typically contain a settled sludge layer with non-Newtonian rheological characteristics covered by a layer of supernatant. The first step in retrieval is the mobilization and mixing of the supernatant and sludge in the storage tanks. Submerged jets have been proposed to achieve sludge mobilization in tanks, including the 189 m{sup 3} (50,000 gallon) Melton Valley Storage tanks (MVST) at Oak Ridge National Laboratory (ORNL) and the planned 378 m{sup 3} (100,000 gallon) tanks being designed as part of the MVST Capacity Increase Project (MVST-CIP). This report focuses on the modeling of mixing and mobilization in horizontal cylindrical tanks like those of the MVST design using submerged, recirculating liquid jets. The computer modeling of the mobilization and mixing processes uses the TEMPEST computational fluid dynamics program (Trend and Eyler 1992). The goals of the simulations are to determine under what conditions sludge mobilization using submerged liquid jets is feasible in tanks of this configuration, and to estimate mixing times required to approach homogeneity of the contents.

Mahoney, L.A.; Terrones, G.; Eyler, L.L.

1994-06-01T23:59:59.000Z

384

Estimation of heat load in waste tanks using average vapor space temperatures  

SciTech Connect

This report describes a method for estimating the total heat load in a high-level waste tank with passive ventilation. This method relates the total heat load in the tank to the vapor space temperature and the depth of waste in the tank. Q{sub total} = C{sub f} (T{sub vapor space {minus}} T{sub air}) where: C{sub f} = Conversion factor = (R{sub o}k{sub soil}{sup *}area)/(z{sub tank} {minus} z{sub surface}); R{sub o} = Ratio of total heat load to heat out the top of the tank (function of waste height); Area = cross sectional area of the tank; k{sub soil} = thermal conductivity of soil; (z{sub tank} {minus} z{sub surface}) = effective depth of soil covering the top of tank; and (T{sub vapor space} {minus} T{sub air}) = mean temperature difference between vapor space and the ambient air at the surface. Three terms -- depth, area and ratio -- can be developed from geometrical considerations. The temperature difference is measured for each individual tank. The remaining term, the thermal conductivity, is estimated from the time-dependent component of the temperature signals coming from the periodic oscillations in the vapor space temperatures. Finally, using this equation, the total heat load for each of the ferrocyanide Watch List tanks is estimated. This provides a consistent way to rank ferrocyanide tanks according to heat load.

Crowe, R.D.; Kummerer, M.; Postma, A.K.

1993-12-01T23:59:59.000Z

385

Radioactive waste tank Initial Pretreatment Module (IPM) technology development and selection  

Science Conference Proceedings (OSTI)

The processing of nuclear materials at the Hanford Site has resulted in the accumulation of radioactive wastes stored in 177 single- and double-shell tanks (SSTs and DSTs). Fifty-four of the 177 tanks are currently on a tank watch list because organic chemicals and ferrocyanide compounds in the tanks present a potential fire or explosion hazard. In addition, one additional SST is under consideration for placement on the watch list because of high organic concentration. Seventeen of the watch list tanks require pretreatment, and two DST complexant concentrate waste tanks not on the watch list may also need pretreatment. The proposed Initial Pretreatment Module (IPM) is expected to resolve the safety concerns by destroying the organics and ferrocyanide compounds in the tank wastes. The primary objective of the IPM is to destroy or modify constituents that cause safety concerns in the watch list tanks. A secondary objective is to enhance the cost effectiveness of processing the wastes by performing additional processing. Overall, IPM will achieve organic/ferrocyanide destruction (the primary goal) and will assist in the separation of cesium, strontium, and technetium from the tank wastes.

Beeman, G.H. [Pacific Northwest Lab., Richland, WA (United States); Hansrote, G. [Westinghouse Hanford Co., Richland, WA (United States)

1994-03-01T23:59:59.000Z

386

Underground storage tank 253-D1U1 Closure Plan  

Science Conference Proceedings (OSTI)

This report is a closure plan for a diesel fuel tank at the Lawrence Livermore National Laboratory. Included are maps of the site, work plans, and personnel information regarding training and qualification.

Mancieri, S.; Giuntoli, N.

1993-09-01T23:59:59.000Z

387

Photogrammetry and Laser Imagery Tests for Tank Waste Volume Estimates: Summary Report  

SciTech Connect

Feasibility tests were conducted using photogrammetry and laser technologies to estimate the volume of waste in a tank. These technologies were compared with video Camera/CAD Modeling System (CCMS) estimates; the current method used for post-retrieval waste volume estimates. This report summarizes test results and presents recommendations for further development and deployment of technologies to provide more accurate and faster waste volume estimates in support of tank retrieval and closure.

Field, Jim G. [Washington River Protection Solutions, LLC, Richland, WA (United States)

2013-03-27T23:59:59.000Z

388

ERS 14.3 Underground and Above Ground Diesel Fuel Storage Tanks FPS 12.1, 1/9/01  

Energy.gov (U.S. Department of Energy (DOE))

The objective of this surveillance is to verify underground and above ground diesel storage tanks are maintained, monitored, configured and marked as required.  These surveillance activities...

389

ERS 14.3 Underground and Above Ground Diesel Fuel Storage Tanks FPS 12.1, 1/9/01  

Energy.gov (U.S. Department of Energy (DOE))

 The objective of this surveillance is to verify underground and above ground diesel storage tanks are maintained, monitored, configured and marked as required.  These surveillance activities...

390

Microsoft PowerPoint - 3-03_pt 1_Davis_Waste Removal & Tank Closures.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste Removal & Tank Closure Waste Removal & Tank Closure New Technologies Neil Davis Deputy Program Manager Waste Removal & Tank Closure November 16, 2010 Print Close 2 * SRR baseline is to use 2 mechanical and 1 chemical technology on each tank - Large slurry mixer pumps - Hydrolancing/Robotic vacuum system - Oxalic acid * Technologies in hand * Incremental improvements to meet evolving mission needs and to have a defendable Maximum Extent Practical basis Point of View Print Close 3 Program Status Bulk Waste Removal Mechanical Heel Removal Chemical Cleaning Annulus Cleaning Isolation/Final Sampling Grout Tank Cooling Coil Flushing Tanks 4, 7, 9, 10, 11, 12, 13, 14, & 15 in progress 2 tanks closed 15 more in progress Tank 8 being prepped for chemical cleaning Tanks 5, 6 & 16 in progress Tanks 5&6 in progress

391

Design requirements document for Project W-465, immobilized low-activity waste interim storage  

SciTech Connect

The scope of this Design Requirements Document (DRD) is to identify the functions and associated requirements that must be performed to accept, transport, handle, and store immobilized low-activity waste (ILAW) produced by the privatized Tank Waste Remediation System (TWRS) treatment contractors. The functional and performance requirements in this document provide the basis for the conceptual design of the TWRS ILAW Interim Storage facility project and provides traceability from the program level requirements to the project design activity. Technical and programmatic risk associated with the TWRS planning basis are discussed in the Tank Waste Remediation System Decisions and Risk Assessment (Johnson 1994). The design requirements provided in this document will be augmented by additional detailed design data documented by the project.

Burbank, D.A.

1998-05-19T23:59:59.000Z

392

Hanford Site waste tank farm facilities design reconstitution program plan  

SciTech Connect

Throughout the commercial nuclear industry the lack of design reconstitution programs prior to the mid 1980`s has resulted in inadequate documentation to support operating facilities configuration changes or safety evaluations. As a result, many utilities have completed or have ongoing design reconstitution programs and have discovered that without sufficient pre-planning their program can be potentially very expensive and may result in end-products inconsistent with the facility needs or expectations. A design reconstitution program plan is developed here for the Hanford waste tank farms facility as a consequence of the DOE Standard on operational configuration management. This design reconstitution plan provides for the recovery or regeneration of design requirements and basis, the compilation of Design Information Summaries, and a methodology to disposition items open for regeneration that were discovered during the development of Design Information Summaries. Implementation of this plan will culminate in an end-product of about 30 Design Information Summary documents. These documents will be developed to identify tank farms facility design requirements and design bases and thereby capture the technical baselines of the facility. This plan identifies the methodology necessary to systematically recover documents that are sources of design input information, and to evaluate and disposition open items or regeneration items discovered during the development of the Design Information Summaries or during the verification and validation processes. These development activities will be governed and implemented by three procedures and a guide that are to be developed as an outgrowth of this plan.

Vollert, F.R.

1994-09-06T23:59:59.000Z

393

Organic tanks safety program FY95 waste aging studies  

SciTech Connect

This report gives the second year`s findings of a study of how thermal and radiological processes may change the composition of organic compounds in the underground tanks at Hanford. Efforts were focused on the global reaction kinetics in a simulated waste exposed to {gamma} rays and the reactions of organic radicals with nitrite ion. The gas production is predominantly radiolytic. Decarboxylation of carboxylates is probably an aging pathway. TBP was to