Powered by Deep Web Technologies
Note: This page contains sample records for the topic "waste storage area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

LABORATORY CHEMICAL WASTE DISPOSAL POSTER (Post Near Chemical Waste Storage Area)  

E-Print Network [OSTI]

WSTPS.rtf LABORATORY CHEMICAL WASTE DISPOSAL POSTER (Post Near Chemical Waste Storage Area) Excess Chemicals and Chemical Wastes · Toxic and Flammable Chemicals - These cannot go down the drain. Call Environmental Health and Safety (EHSO) at x-2723 for collection. · Corrosive Chemicals (Acids & Bases) - When

Oliver, Douglas L.

2

Composite analysis for solid waste storage area 6  

SciTech Connect (OSTI)

The composite analysis (CA) provides an estimate of the potential cumulative impacts to a hypothetical future member of the public from the Solid Waste Storage Area 6 (SWSA 6) disposal operations and all of the other sources of radioactive material in the ground on the ORR that may interact with contamination originating in SWSA 6.The projected annual dose to hypothetical future member of the public from all contributing sources is compared to the primary dose limit of 100 mrem per year and a dose constraint of 30 mrem per year. Consistent with the CA guidance, dose estimates for the first 1000 years after disposal are emphasized for comparison with the primary dose limit and dose constraint.The current land use plan for the ORR is being revised, and may include a reduction in the land currently controlled by DOE on the ORR. The possibility of changes in the land use boundary is considered in the CA as part of the sensitivity and uncertainty analysis of the results, the interpretation of results, and the conclusions.

Lee, D.W.

1997-09-01T23:59:59.000Z

3

Performance assessment for continuing and future operations at solid waste storage area 6  

SciTech Connect (OSTI)

This revised performance assessment (PA) for the continued disposal operations at Solid Waste Storage Area (SWSA) 6 on the Oak Ridge Reservation (ORR) has been prepared to demonstrate compliance with the performance objectives for low-level radioactive waste (LLW) disposal contained in the US Department of Energy (DOE) Order 5820.2A. This revised PA considers disposal operations conducted from September 26, 1988, through the projects lifetime of the disposal facility.

NONE

1997-09-01T23:59:59.000Z

4

Performance assessment for continuing and future operations at Solid Waste Storage Area 6  

SciTech Connect (OSTI)

This radiological performance assessment for the continued disposal operations at Solid Waste Storage Area 6 (SWSA 6) on the Oak Ridge Reservation (ORR) has been prepared to demonstrate compliance with the requirements of the US DOE. The analysis of SWSA 6 required the use of assumptions to supplement the available site data when the available data were incomplete for the purpose of analysis. Results indicate that SWSA 6 does not presently meet the performance objectives of DOE Order 5820.2A. Changes in operations and continued work on the performance assessment are expected to demonstrate compliance with the performance objectives for continuing operations at the Interim Waste Management Facility (IWMF). All other disposal operations in SWSA 6 are to be discontinued as of January 1, 1994. The disposal units at which disposal operations are discontinued will be subject to CERCLA remediation, which will result in acceptable protection of the public health and safety.

Not Available

1994-02-01T23:59:59.000Z

5

Radionuclides in shallow groundwater at Solid Waste Storage Area 5 North, Oak Ridge National Laboratory  

SciTech Connect (OSTI)

This report presents a compilation of groundwater monitoring data from Solid Waste Storage Area (SWSA) 5 North at Oak Ridge National Laboratory (ORNL) between November 1989 and September 1993. Monitoring data were collected as part of the Active Sites Environmental Monitoring Program that was implemented in 1989 in response to DOE Order 5820.2A. SWSA 5 North was established for the retrievable storage of transuranic (TRU) wastes in 1970. Four types of storage have been used within SWSA 5 North: bunkers, vaults, wells, and trenches. The fenced portion of SWSA 5 North covers about 3.7 ha (9 acres) in the White Oak Creek watershed south of ORNL. The area is bounded by White Oak Creek and two ephemeral tributaries of White Oak Creek. Since 1989, groundwater has been monitored in wells around SWSA 5 North. During that time, elevated gross alpha contamination (reaching as high as 210 Bq/L) has consistently been detected in well 516. This well is adjacent to burial trenches in the southwest corner of the area. Water level measurements in wells 516 and 518 suggest that water periodically inundates the bottom of some of those trenches. Virtually all of the gross alpha contamination is generated by Curium 244 and Americium 241. A special geochemical investigation of well 516 suggests that nearly all of the Curium 44 and Americium 241 is dissolved or associated with dissolved organic matter. These are being transported at the rate of about 2 m/year from the burial trenches, through well 516, to White Oak Creek, where Curium 244 has been detected in a few bank seeps. Concentrations at these seeps are near detection levels (<1 Bq/L).

Ashwood, T.L.; Marsh, J.D. Jr.

1994-04-01T23:59:59.000Z

6

Used Oil and Filter Disposal Used Oil: Create a segregated storage area or container. Label the container "Waste Oil Only".  

E-Print Network [OSTI]

Used Oil and Filter Disposal Used Oil: Create a segregated storage area or container. Label the container "Waste Oil Only". Maintain a written log to document all amounts and types of oil added to the container. No solvents, oil contaminated with solvents, PCBs, non-petroleum based oils, or any other

Maroncelli, Mark

7

Flood Assessment at the Area 5 Radioactive Waste Management Site and the Proposed Hazardous Waste Storage Unit, DOE/Nevada Test Site, Nye County, Nevada  

SciTech Connect (OSTI)

A flood assessment at the Radioactive Waste Management Site (RWMS) and the proposed Hazardous Waste Storage Unit (HWSU) in Area 5 of the Nevada Test Site (NTS) was performed to determine the 100-year flood hazard at these facilities. The study was conducted to determine whether the RWMS and HWSU are located within a 100-year flood hazard as defined by the Federal Emergency Management Agency, and to provide discharges for the design of flood protection.

Schmeltzer, J. S., Millier, J. J., Gustafson, D. L.

1993-01-01T23:59:59.000Z

8

Record of Technical Change for Corrective Action Plan for Corrective Action Unit 140: Waste Dumps, burn Pits, and Storage Area, Nevada Test Site, Nevada  

SciTech Connect (OSTI)

Record of Technical Change for Corrective Action Plan for Corrective Action Unit 140: Waste Dumps, Burn Pits, and Storage Area, Nevada Test Site, Nevada (DOE/NV--963-Rev 2, dated November 2004).

U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office; Bechtel Nevada

2005-01-05T23:59:59.000Z

9

Summary of environmental characterization activities at the Oak Ridge National Laboratory Solid Waste Storage Area Six, FY 1986 through 1987  

SciTech Connect (OSTI)

The Oak Ridge National Laboratory (ORNL) Remedial Action Program (RAP), has supported characterization activities in Solid Waste Storage Area (SWSA 6) to acquire information necessary for identification and planning of remedial actions that may be warranted, and to facilitate eventual closure of the site. In FY 1986 investigations began in the areas of site hydrology, geochemistry, soils, geology, and geohydrologic model application. This report summarizes work carried out in each of these areas during FY`s 1986 and 1987 and serves as a status report pulling together the large volume of data that has resulted. Characterization efforts are by no means completed; however, a sufficient data base has been generated to begin data interpretation and analysis of site contaminants.

Davis, E.C.; Solomon, D.K.; Dreier, R.B.; Lee, S.Y.; Kelmers, A.D.; Lietzke, D.A. [Oak Ridge National Lab., TN (United States); Craig, P.M. [Environmental Consulting Engineers, Inc., Knoxville, TN (United States)

1987-09-30T23:59:59.000Z

10

Summary of environmental characterization activities at the Oak Ridge National Laboratory Solid Waste Storage Area Six, FY 1986 through 1987  

SciTech Connect (OSTI)

The Oak Ridge National Laboratory (ORNL) Remedial Action Program (RAP), has supported characterization activities in Solid Waste Storage Area (SWSA 6) to acquire information necessary for identification and planning of remedial actions that may be warranted, and to facilitate eventual closure of the site. In FY 1986 investigations began in the areas of site hydrology, geochemistry, soils, geology, and geohydrologic model application. This report summarizes work carried out in each of these areas during FY's 1986 and 1987 and serves as a status report pulling together the large volume of data that has resulted. Characterization efforts are by no means completed; however, a sufficient data base has been generated to begin data interpretation and analysis of site contaminants.

Davis, E.C.; Solomon, D.K.; Dreier, R.B.; Lee, S.Y.; Kelmers, A.D.; Lietzke, D.A. (Oak Ridge National Lab., TN (United States)); Craig, P.M. (Environmental Consulting Engineers, Inc., Knoxville, TN (United States))

1987-09-30T23:59:59.000Z

11

Technical report for a fluidless directional drilling system demonstrated at Solid Waste Storage Area 6 shallow buried waste sites  

SciTech Connect (OSTI)

The purpose of the research was to demonstrate a fluidless directional drilling and monitoring system (FDD) specifically tailored to address environmental drilling concerns for shallow buried wasted. The major concerns are related to worker exposure, minimizing waste generation, and confining the spread of contamination. The FDD is potentially applicable to Environmental Restoration (ER) activities for the Oak Ridge National Laboratory Waste Area Grouping 6 (WAG 6) shallow buried waste disposed in unlined trenches. Major ER activities for directional drilling are to develop a drilling system for leachate collection directly beneath trenches, and to provide localized control over leachate release to the environment. Other ER FDD activities could include vadose zone and groundwater monitoring of contaminant transport. The operational constraints pointed the research in the direction of purchasing a steerable impact hammer, or mole, manufactured by Steer-Rite Ltd. of Racine, Wisconsin. This drill was selected due to the very low cost ($25,000) associated with procuring the drill, steering module, instrumentation and service lines. The impact hammer is a self propelled drill which penetrates the soil by compacting cut material along the sidewalls of the borehole. Essentially, it forces its way through the subsurface. Although the pneumatic hammer exhausts compressed air which must be handled at the borehole collar, it does not generate soil cuttings or liquids. This is the basis for the term fluidless. A stub casing muffler was attached to the entrance hole for controlling exhaust gas and any airborne releases. Other environmental compliance modifications made to the equipment included operating the tool without lubrication, and using water instead of hydraulic fluid to actuate the steering fins on the tool.

NONE

1995-09-01T23:59:59.000Z

12

Technical Safety Requirements for the Waste Storage Facilities  

SciTech Connect (OSTI)

This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 612 (A612) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analysis for the Waste Storage Facilities (DSA) (LLNL 2006). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., drum crushing, size reduction, and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A612 is located in the southeast quadrant of LLNL. The A612 fenceline is approximately 220 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A612 and the DWTF Storage Area are subdivided into various facilities and storage areas, consisting of buildings, tents, other structures, and open areas as described in Chapter 2 of the DSA. Section 2.4 of the DSA provides an overview of the buildings, structures, and areas in the WASTE STORAGE FACILITIES, including construction details such as basic floor plans, equipment layout, construction materials, controlling dimensions, and dimensions significant to the hazard and accident analysis. Chapter 5 of the DSA documents the derivation of the TSRs and develops the operational limits that protect the safety envelope defined for the WASTE STORAGE FACILITIES. This TSR document is applicable to the handling, storage, and treatment of hazardous waste, TRU WASTE, LLW, mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste received or generated in the WASTE STORAGE FACILITIES. Section 5, Administrative Controls, contains those Administrative Controls necessary to ensure safe operation of the WASTE STORAGE FACILITIES. Programmatic Administrative Controls are in Section 5.6. This Introduction to the WASTE STORAGE FACILITIES TSRs is not part of the TSR limits or conditions and contains no requirements related to WASTE STORAGE FACILITIES operations or to the safety analyses of the DSA.

Larson, H L

2007-09-07T23:59:59.000Z

13

Documented Safety Analysis for the Waste Storage Facilities  

SciTech Connect (OSTI)

This documented safety analysis (DSA) for the Waste Storage Facilities was developed in accordance with 10 CFR 830, Subpart B, 'Safety Basis Requirements', and utilizes the methodology outlined in DOE-STD-3009-94, Change Notice 3. The Waste Storage Facilities consist of Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area portion of the DWTF complex. These two areas are combined into a single DSA, as their functions as storage for radioactive and hazardous waste are essentially identical. The B695 Segment of DWTF is addressed under a separate DSA. This DSA provides a description of the Waste Storage Facilities and the operations conducted therein; identification of hazards; analyses of the hazards, including inventories, bounding releases, consequences, and conclusions; and programmatic elements that describe the current capacity for safe operations. The mission of the Waste Storage Facilities is to safely handle, store, and treat hazardous waste, transuranic (TRU) waste, low-level waste (LLW), mixed waste, combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL (as well as small amounts from other DOE facilities).

Laycak, D

2008-06-16T23:59:59.000Z

14

Documented Safety Analysis for the Waste Storage Facilities March 2010  

SciTech Connect (OSTI)

This Documented Safety Analysis (DSA) for the Waste Storage Facilities was developed in accordance with 10 CFR 830, Subpart B, 'Safety Basis Requirements,' and utilizes the methodology outlined in DOE-STD-3009-94, Change Notice 3. The Waste Storage Facilities consist of Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area portion of the DWTF complex. These two areas are combined into a single DSA, as their functions as storage for radioactive and hazardous waste are essentially identical. The B695 Segment of DWTF is addressed under a separate DSA. This DSA provides a description of the Waste Storage Facilities and the operations conducted therein; identification of hazards; analyses of the hazards, including inventories, bounding releases, consequences, and conclusions; and programmatic elements that describe the current capacity for safe operations. The mission of the Waste Storage Facilities is to safely handle, store, and treat hazardous waste, transuranic (TRU) waste, low-level waste (LLW), mixed waste, combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL (as well as small amounts from other DOE facilities).

Laycak, D T

2010-03-05T23:59:59.000Z

15

Technical Safety Requirements for the Waste Storage Facilities  

SciTech Connect (OSTI)

This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the 'Documented Safety Analysis for the Waste Storage Facilities' (DSA) (LLNL 2008). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A625 is located in the southeast quadrant of LLNL. The A625 fenceline is approximately 225 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A625 and the DWTF Storage Area are subdivided into various facilities and storage areas, consisting of buildings, tents, other structures, and open areas as described in Chapter 2 of the DSA. Section 2.4 of the DSA provides an overview of the buildings, structures, and areas in the WASTE STORAGE FACILITIES, including construction details such as basic floor plans, equipment layout, construction materials, controlling dimensions, and dimensions significant to the hazard and accident analysis. Chapter 5 of the DSA documents the derivation of the TSRs and develops the operational limits that protect the safety envelope defined for the WASTE STORAGE FACILITIES. This TSR document is applicable to the handling, storage, and treatment of hazardous waste, TRU WASTE, LLW, mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste received or generated in the WASTE STORAGE FACILITIES. Section 5, Administrative Controls, contains those Administrative Controls necessary to ensure safe operation of the WASTE STORAGE FACILITIES. Programmatic Administrative Controls are in Section 5.6.

Laycak, D T

2008-06-16T23:59:59.000Z

16

Mixed waste characterization, treatment & disposal focus area  

SciTech Connect (OSTI)

The mission of the Mixed Waste Characterization, Treatment, and Disposal Focus Area (referred to as the Mixed Waste Focus Area or MWFA) is to provide treatment systems capable of treating DOE`s mixed waste in partnership with users, and with continual participation of stakeholders, tribal governments, and regulators. The MWFA deals with the problem of eliminating mixed waste from current and future storage in the DOE complex. Mixed waste is waste that contains both hazardous chemical components, subject to the requirements of the Resource Conservation and Recovery Act (RCRA), and radioactive components, subject to the requirements of the Atomic Energy Act. The radioactive components include transuranic (TRU) and low-level waste (LLW). TRU waste primarily comes from the reprocessing of spent fuel and the use of plutonium in the fabrication of nuclear weapons. LLW includes radioactive waste other than uranium mill tailings, TRU, and high-level waste, including spent fuel.

NONE

1996-08-01T23:59:59.000Z

17

Corrective Action Investigation Plan for Corrective Action Unit 140: Waste Dumps, Burn Pits, and Storage Area, Nevada Test Site, Nevada, July 2002, Rev. No. 0  

SciTech Connect (OSTI)

This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 140 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 140 consists of nine Corrective Action Sites (CASs): 05-08-01, Detonation Pits; 05-08-02, Debris Pits; 05-17-01, Hazardous Waste Accumulation Site (Buried); 05-19-01, Waste Disposal Site; 05-23-01, Gravel Gertie; 05-35-01, Burn Pit; 05-99-04, Burn Pit; 22-99-04, Radioactive Waste Dump; 23-17-01, Hazardous Waste Storage Area. All nine of these CASs are located within Areas 5, 22, and 23 of the Nevada Test Site (NTS) in Nevada, approximately 65 miles northwest of Las Vegas. This CAU is being investigated because disposed waste may be present without appropriate controls (i.e., use restrictions, adequate cover) and hazardous and/or radioactive constituents may be present or migrating at concentrations and locations that could potentially pose a threat to human health and the environment. The NTS has been used for various research and development projects including nuclear weapons testing. The CASs in CAU 140 were used for testing, material storage, waste storage, and waste disposal. A two-phase approach has been selected to collect information and generate data to satisfy needed resolution criteria and resolve the decision statements. Phase I will determine if contaminants of potential concern (COPCs) are present in concentrations exceeding preliminary action levels. This data will be evaluated at all CASs. Phase II will determine the extent of the contaminant(s) of concern (COCs). This data will only be evaluated for CASs with a COC identified during Phase I. Based on process knowledge, the COPCs for CAU 140 include volatile organics, semivolatile organics, petroleum hydrocarbons, explosive residues, herbicides, pesticides, polychlorinated biphenyls, metals, and radionuclides. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.

NNSA /NV

2002-07-18T23:59:59.000Z

18

Site Visit Report, Hanford Waste Encapsulation Storage Facility...  

Office of Environmental Management (EM)

Site Visit Report, Hanford Waste Encapsulation Storage Facility - January 2011 Site Visit Report, Hanford Waste Encapsulation Storage Facility - January 2011 January 2011 Hanford...

19

Idaho Waste Vitrification Facilities Project Vitrified Waste Interim Storage Facility  

SciTech Connect (OSTI)

This feasibility study report presents a draft design of the Vitrified Waste Interim Storage Facility (VWISF), which is one of three subprojects of the Idaho Waste Vitrification Facilities (IWVF) project. The primary goal of the IWVF project is to design and construct a treatment process system that will vitrify the sodium-bearing waste (SBW) to a final waste form. The project will consist of three subprojects that include the Waste Collection Tanks Facility, the Waste Vitrification Facility (WVF), and the VWISF. The Waste Collection Tanks Facility will provide for waste collection, feed mixing, and surge storage for SBW and newly generated liquid waste from ongoing operations at the Idaho Nuclear Technology and Engineering Center. The WVF will contain the vitrification process that will mix the waste with glass-forming chemicals or frit and turn the waste into glass. The VWISF will provide a shielded storage facility for the glass until the waste can be disposed at either the Waste Isolation Pilot Plant as mixed transuranic waste or at the future national geological repository as high-level waste glass, pending the outcome of a Waste Incidental to Reprocessing determination, which is currently in progress. A secondary goal is to provide a facility that can be easily modified later to accommodate storage of the vitrified high-level waste calcine. The objective of this study was to determine the feasibility of the VWISF, which would be constructed in compliance with applicable federal, state, and local laws. This project supports the Department of Energys Environmental Management missions of safely storing and treating radioactive wastes as well as meeting Federal Facility Compliance commitments made to the State of Idaho.

Bonnema, Bruce Edward

2001-09-01T23:59:59.000Z

20

Radioactive tank waste remediation focus area  

SciTech Connect (OSTI)

EM`s Office of Science and Technology has established the Tank Focus Area (TFA) to manage and carry out an integrated national program of technology development for tank waste remediation. The TFA is responsible for the development, testing, evaluation, and deployment of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in the underground stabilize and close the tanks. The goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. Within the DOE complex, 335 underground storage tanks have been used to process and store radioactive and chemical mixed waste generated from weapon materials production and manufacturing. Collectively, thes tanks hold over 90 million gallons of high-level and low-level radioactive liquid waste in sludge, saltcake, and as supernate and vapor. Very little has been treated and/or disposed or in final form.

NONE

1996-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste storage area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

300 Area waste acid treatment system closure plan  

SciTech Connect (OSTI)

The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOERL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion includes closure plan documentation submitted for individual, treatment, storage, and/or disposal units undergoing closure, such as the 300 Area Waste Acid Treatment System. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Whenever appropriate, 300 Area Waste Acid Treatment System documentation makes cross-reference to the General Information Portion, rather than duplicating text. This 300 Area Waste Acid Treatment System Closure Plan (Revision 2) includes a Hanford Facility Dangerous Waste Permit Application, Part A, Form 3. Information provided in this closure plan is current as of April 1999.

LUKE, S.N.

1999-05-17T23:59:59.000Z

22

2401-W Waste storage building closure plan  

SciTech Connect (OSTI)

This plan describes the performance standards met and closure activities conducted to achieve clean closure of the 2401-W Waste Storage Building (2401-W) (Figure I). In August 1998, after the last waste container was removed from 2401-W, the U.S. Department of Energy, Richland Operations Office (DOE-RL) notified Washington State Department of Ecology (Ecology) in writing that the 2401-W would no longer receive waste and would be closed as a Resource Conservation and Recovery Act (RCRA) of 1976 treatment, storage, and/or disposal (TSD) unit (98-EAP-475). Pursuant to this notification, closure activities were conducted, as described in this plan, in accordance with Washington Administrative Code (WAC) 173-303-610 and completed on February 9, 1999. Ecology witnessed the closure activities. Consistent with clean closure, no postclosure activities will be necessary. Because 2401-W is a portion of the Central Waste Complex (CWC), these closure activities become the basis for removing this building from the CWC TSD unit boundary. The 2401-W is a pre-engineered steel building with a sealed concrete floor and a 15.2-centimeter concrete curb around the perimeter of the floor. This building operated from April 1988 until August 1998 storing non-liquid containerized mixed waste. All waste storage occurred indoors. No potential existed for 2401-W operations to have impacted soil. A review of operating records and interviews with cognizant operations personnel indicated that no waste spills occurred in this building (Appendix A). After all waste containers were removed, a radiation survey of the 2401-W floor for radiological release of the building was performed December 17, 1998, which identified no radiological contamination (Appendix B).

LUKE, S.M.

1999-07-15T23:59:59.000Z

23

Summary of radioactive solid waste received in the 200 Areas during calendar year 1992  

SciTech Connect (OSTI)

Westinghouse Hanford Company manages and operates the Hanford Site 200 Area radioactive solid waste storage and disposal facilities for the US Department of Energy, Richland Field Office, under contract DE-AC06-87RL10930. These facilities include radioactive solid waste disposal sites and radioactive solid waste storage areas. This document summarizes the amount of radioactive materials that have been buried and stored in the 200 Area radioactive solid waste storage and disposal facilities since startup in 1944 through calendar year 1991. This report does not include solid radioactive wastes in storage or disposed of in other areas or facilities such as the underground tank farms, or backlog wastes. Unless packaged within the scope of WHC-EP-0063, Hanford Site Solid Waste Acceptance Criteria, (WHC 1988), liquid waste data are not included in this document.

Anderson, J.D.; Hagel, D.L.

1992-05-01T23:59:59.000Z

24

Summary of radioactive solid waste received in the 200 Areas during calendar year 1994  

SciTech Connect (OSTI)

Westinghouse Hanford Company manages and operates the Hanford Site 200 Area radioactive solid waste storage and disposal facilities for the US Department of Energy, Richland Field Office, under contract DE-AC06-87RL10930. These facilities include radioactive solid waste disposal sites and radioactive solid waste storage areas. This document summarizes the amount of radioactive material that has been buried and stored in the 200 Area radioactive solid waste storage and disposal facilities from startup in 1944 through calendar year 1994. This report does not include backlog waste: solid radioactive wastes in storage or disposed of in other areas or facilities such as the underground tank farms. Unless packaged within the scope of WHC-EP-0063, Hanford Site Solid Waste Acceptance Criteria (WHC 1988), liquid waste data are not included in this document.

Anderson, J.D.; Hagel, D.L.

1995-08-01T23:59:59.000Z

25

Summary of radioactive solid waste received in the 200 Areas during calendar year 1993  

SciTech Connect (OSTI)

Westinghouse Hanford Company manages and operates the Hanford Site 200 Areas radioactive solid waste storage and disposal facilities for the US Department of Energy, Richland Operations Office. These facilities include radioactive solid waste disposal sites and radioactive solid waste storage areas. This document summarizes the amount of radioactive materials that have been buried and stored in the 200 Areas radioactive solid waste storage and disposal facilities since startup in 1944 through calendar year 1993. This report does not include backlog waste, solid radioactive waste in storage or disposed of in other areas, or facilities such as the underground tank farms. Unless packaged within the scope of WHC-EP-0063, ``Hanford Site Solid Waste Acceptance Criteria,`` (WHC 1988), liquid waste data are not included in this document.

Anderson, J.D.; Hagel, D.L.

1994-09-01T23:59:59.000Z

26

Solid low level waste forms and extended storage  

SciTech Connect (OSTI)

This paper presents regulatory, technical, and economic aspects of selecting solid waste forms for the extended on-site storage of power plant low level wastes (LLW) in the United States. The author explains current uncertainties and disposal site shortages, defines power plant waste types, addresses regulatory requirements for disposal, discusses basic waste form storage considerations, outlines possible strategies for the management of individual waste types, and offers methodological steps for selecting a waste form for extended storage. Broader issues closely associated with waste form selection are also presented.

Kohout, R. [R. Kohout & Associates, Ltd., Toronto, Ontario (Canada)

1995-11-01T23:59:59.000Z

27

Fire Hazards Analysis for the 200 Area Interim Storage Area  

SciTech Connect (OSTI)

This documents the Fire Hazards Analysis (FHA) for the 200 Area Interim Storage Area. The Interim Storage Cask, Rad-Vault, and NAC-1 Cask are analyzed for fire hazards and the 200 Area Interim Storage Area is assessed according to HNF-PRO-350 and the objectives of DOE Order 5480 7A. This FHA addresses the potential fire hazards associated with the Interim Storage Area (ISA) facility in accordance with the requirements of DOE Order 5480 7A. It is intended to assess the risk from fire to ensure there are no undue fire hazards to site personnel and the public and to ensure property damage potential from fire is within acceptable limits. This FHA will be in the form of a graded approach commensurate with the complexity of the structure or area and the associated fire hazards.

JOHNSON, D.M.

2000-01-06T23:59:59.000Z

28

Waste Encapsulation and Storage Facility (WESF) Interim Status Closure Plan  

SciTech Connect (OSTI)

This document describes the planned activities and performance standards for closing the Waste Encapsulation and Storage Facility (WESF). WESF is located within the 225B Facility in the 200 East Area on the Hanford Facility. Although this document is prepared based on Title 40 Code of Federal Regulations (CFR), Part 265, Subpart G requirements, closure of the storage unit will comply with Washington Administrative Code (WAC) 173-303-610 regulations pursuant to Section 5.3 of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Action Plan (Ecology et al. 1996). Because the intention is to clean close WESF, postclosure activities are not applicable to this interim status closure plan. To clean close the storage unit, it will be demonstrated that dangerous waste has not been left onsite at levels above the closure performance standard for removal and decontamination. If it is determined that clean closure is not possible or environmentally is impracticable, the interim status closure plan will be modified to address required postclosure activities. WESF stores cesium and strontium encapsulated salts. The encapsulated salts are stored in the pool cells or process cells located within 225B Facility. The dangerous waste is contained within a double containment system to preclude spills to the environment. In the unlikely event that a waste spill does occur outside the capsules, operating methods and administrative controls require that waste spills be cleaned up promptly and completely, and a notation made in the operating record. Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge.

SIMMONS, F.M.

2000-12-01T23:59:59.000Z

29

The necessity for permanence : making a nuclear waste storage facility  

E-Print Network [OSTI]

The United States Department of Energy is proposing to build a nuclear waste storage facility in southern Nevada. This facility will be designed to last 10,000 years. It must prevent the waste from contaminating the ...

Stupay, Robert Irving

1991-01-01T23:59:59.000Z

30

Status of the Nevada Nuclear Waste Storage investigations  

SciTech Connect (OSTI)

The Nevada Nuclear Waste Storage Investigations (NNWSI) are part of the National Waste Terminal Storage (NWTS) program being conducted by the Department of Energy. Within the NWTS program, the NNWSI is the component that focuses on siting evaluations on and near the Nevada Test Site (NTS). The objectives of the Nevada project include evaluating the suitability of a Test and Evaluation Facility (TEF) site on or near the NTS, evaluating the suitability of a commercial nuclear waste repository site on or near the NTS, and supporting the NWTS program with research that is uniquely possible at NTS. Current engineering studies suggest that TEF and repository surface facilities would need to be located on gently sloping alluvium east of Yucca Mountain. Access from surface facilities to underground waste emplacement areas would be by vertical shafts and horizontal drifts, or possibly by inclined adits. The current NNWSI schedule includes an exploratory shaft location and horizon recommendation in 12/82, with a start of exploratory shaft drilling in 9/83. Because of the complexities of horizon selection, it is possible that the exploratory shaft depth or horizon recommendation may involve the exploration of more than one horizon. Phase I of the exploratory shaft, determination of TEF site suitability, is currently scheduled for 7/85. Phase II of the exploratory shaft, determination of repository site suitability, is currently scheduled for 3/87. This schedule is consistent with the current NWTS TEF and repository site selection schedules.

Lincoln, R. C.

1982-01-01T23:59:59.000Z

31

Safety analysis report for the Waste Storage Facility. Revision 2  

SciTech Connect (OSTI)

This safety analysis report outlines the safety concerns associated with the Waste Storage Facility located in the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The three main objectives of the report are: define and document a safety basis for the Waste Storage Facility activities; demonstrate how the activities will be carried out to adequately protect the workers, public, and environment; and provide a basis for review and acceptance of the identified risk that the managers, operators, and owners will assume.

Bengston, S.J.

1994-05-01T23:59:59.000Z

32

RADIOACTIVE WASTE STORAGE IN MINED CAVERNS IN CRYSTALLINE ROCK-RESULTS OF FIELD INVESTIGATIONS AT STRIPA, SWEDEN  

E-Print Network [OSTI]

Waste Storage in Mined CavernsProgram Summary. LawrenceWASTE STORAGE IN MINED CAVERNS IN CRYSTALLINE ROCK- BESULTS

Witherspoon, P.A.

2010-01-01T23:59:59.000Z

33

Hanford facility dangerous waste permit application, 616 Nonradioactive Dangerous Waste Storage Facility. Revision 2A  

SciTech Connect (OSTI)

This permit application for the 616 Nonradioactive Dangerous Waste Storage Facility consists for 15 chapters. Topics of discussion include the following: facility description and general provisions; waste characteristics; process information; personnel training; reporting and record keeping; and certification.

Bowman, R.C.

1994-04-01T23:59:59.000Z

34

Fire protection guide for solid waste metal drum storage  

SciTech Connect (OSTI)

This guide provides a method to assess potential fire development in drum storage facilities. The mechanism of fire propagation/spread through stored drum arrays is a complex process. It involves flame heat transfer, transient conduction,convection, and radiation between drums (stored in an array configuration). There are several phenomena which may occur when drums are exposed to fire. The most dramatic is violent lid failure which results in total lid removal. When a drum loses its lid due to fire exposure, some or all of the contents may be ejected from the drum, and both the ejected combustible material and the combustible contents remaining within the container will burn. The scope of this guide is limited to storage arrays of steel drums containing combustible (primarily Class A) and noncombustible contents. Class B combustibles may be included in small amounts as free liquid within the solid waste contents.Storage arrays, which are anticipated in this guide, include single or multi-tier palletized (steel or wood pallets) drums,high rack storage of drums, and stacked arrays of drums where plywood sheets are used between tiers. The purpose of this guide is to describe a simple methodology that estimates the consequences of a fire in drum storage arrays. The extent of fire development and the resulting heat release rates can be estimated. Release fractions applicable to this type of storage are not addressed, and the transport of contaminants away from the source is not addressed. However, such assessments require the amount of combustible material consumed and the surface area of this burning material. The methods included in this guide do provide this information.

Bucci, H.M.

1996-09-16T23:59:59.000Z

35

Method of preparing nuclear wastes for tansportation and interim storage  

DOE Patents [OSTI]

Nuclear waste is formed into a substantially water-insoluble solid for temporary storage and transportation by mixing the calcined waste with at least 10 weight percent powdered anhydrous sodium silicate to form a mixture and subjecting the mixture to a high humidity environment for a period of time sufficient to form cementitious bonds by chemical reaction. The method is suitable for preparing an interim waste form from dried high level radioactive wastes.

Bandyopadhyay, Gautam (Naperville, IL); Galvin, Thomas M. (Darien, IL)

1984-01-01T23:59:59.000Z

36

100-N Area underground storage tank closures  

SciTech Connect (OSTI)

This report describes the removal/characterization actions concerning underground storage tanks (UST) at the 100-N Area. Included are 105-N-LFT, 182-N-1-DT, 182-N-2-DT, 182-N-3-DT, 100-N-SS-27, and 100-N-SS-28. The text of this report gives a summary of remedial activities. In addition, correspondence relating to UST closures can be found in Appendix B. Appendix C contains copies of Unusual Occurrence Reports, and validated sampling data results comprise Appendix D.

Rowley, C.A.

1993-08-01T23:59:59.000Z

37

SWEDISH-AMERICAN COOPERATIVE PROGRAM ON RADIOACTIVE WASTE STORAGE IN MINED CAVERNS. PROGRAM SUMMARY  

E-Print Network [OSTI]

WASTE STORAGE IN MINED CAVERNS by P. A. Witherspoon LawrenceWASTE STORAGE IN MINED CAVERNS INTRODUCTION Final and safeon the possibility of using mined caverns in salt as waste

Witherspoon, P.A.

2011-01-01T23:59:59.000Z

38

An Underwater Robotic Network for Monitoring Nuclear Waste Storage Pools  

E-Print Network [OSTI]

An Underwater Robotic Network for Monitoring Nuclear Waste Storage Pools Sarfraz Nawaz1 , Muzammil Manchester M60 1QD simon.watson@postgrad.manchester.ac.uk peter.n.green@manchester.ac.uk Abstract. Nuclear to build maps of their internal structure which can then be used for waste removal and pool decommissioning

Jeavons, Peter

39

Identifying suitable "piercement" salt domes for nuclear waste storage sites  

SciTech Connect (OSTI)

Piercement salt domes of the northern interior salt basins of the Gulf of Mexico are being considered as permanent storage sites for both nuclear and chemically toxic wastes. The suitable domes are stable and inactive, having reached their final evolutionary configuration at least 30 million years ago. They are buried to depths far below the level to which erosion will penetrate during the prescribed storage period and are not subject to possible future reactivation. The salt cores of these domes are themselves impermeable, permitting neither the entry nor exit of ground water or other unwanted materials. In part, a stable dome may be recognized by its present geometric configuration, but conclusive proof depends on establishing its evolutionary state. The evolutionary state of a dome is obtained by reconstructing the growth history of the dome as revealed by the configuration of sedimentary strata in a large area (commonly 3,000 square miles or more) surrounding the dome. A high quality, multifold CDP reflection seismic profile across a candidate dome will provide much of the necessary information when integrated with available subsurface control. Additional seismic profiles may be required to confirm an apparent configuration of the surrounding strata and an interpreted evolutionary history. High frequency seismic data collected in the near vicinity of a dome are also needed as a supplement to the CDP data to permit accurate depiction of the configuration of shallow strata. Such data must be tied to shallow drill hole control to confirm the geologic age at which dome growth ceased. If it is determined that a dome reached a terminal configuration many millions of years ago, such a dome is incapable of reactivation and thus constitutes a stable storage site for nuclear wastes.

Kehle, R.

1980-08-01T23:59:59.000Z

40

Aluminum phosphate ceramics for waste storage  

SciTech Connect (OSTI)

The present disclosure describes solid waste forms and methods of processing waste. In one particular implementation, the invention provides a method of processing waste that may be particularly suitable for processing hazardous waste. In this method, a waste component is combined with an aluminum oxide and an acidic phosphate component in a slurry. A molar ratio of aluminum to phosphorus in the slurry is greater than one. Water in the slurry may be evaporated while mixing the slurry at a temperature of about 140-200.degree. C. The mixed slurry may be allowed to cure into a solid waste form. This solid waste form includes an anhydrous aluminum phosphate with at least a residual portion of the waste component bound therein.

Wagh, Arun; Maloney, Martin D

2014-06-03T23:59:59.000Z

Note: This page contains sample records for the topic "waste storage area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

The Mixed Waste Focus Area: Status and accomplishments  

SciTech Connect (OSTI)

The Mixed Waste Focus Area began operations in February of 1995. Its mission is to provide acceptable technologies that enable implementation of mixed waste treatment systems developed in partnership with end-users, stakeholders, tribal governments, and regulators. The MWFA will develop, demonstrate, and deliver implementable technologies for treatment of mixed waste within the DOE complex. Treatment refers to all post waste-generation activities including sampling and analysis, characterization, storage, processing, packaging, transportation, and disposal. The MWFA`s mission arises from the Resources Conservation and Recovery Act (RCRA) as amended by the Federal Facility Compliance Act. Each DOE site facility that generates or stores mixed waste prepared a plan, the Site Treatment Plan, for developing treatment capacities and treating that waste. Agreements for each site were concluded with state regulators, resulting in Consent Orders providing enforceable milestones for achieving treatment of the waste. The paper discusses the implementation of the program, its status, accomplishments and goals for FY1996, and plans for 1997.

Conner, J.E. [Dept. of Energy, Idaho Falls, ID (United States). Idaho Operations Office; Williams, R.E. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

1997-08-01T23:59:59.000Z

42

TRU waste certification compliance requirements for contact-handled wastes retrieved from storage for shipment to the WIPP  

SciTech Connect (OSTI)

Compliance requirements are presented for certifying that unclassified, contact-handled (CH) transuranic (TRU) solid wastes retrieved from storage at DOE sites meet the Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC). All applicable DOE Orders must continue to be met. The compliance requirements for certified waste retrieved from certified storage are addressed in another document. The compliance requirements are divided into four sections, primarily determined by the general feature that the requirements address. These sections are General Requirements, Waste Container Requirements, Waste Form Requirements, and Waste Package Requirements. The waste package is the combination of waste container and waste.

Not Available

1982-09-01T23:59:59.000Z

43

United States National Waste Terminal Storage argillaceous rock studies  

SciTech Connect (OSTI)

The past and present argillaceous rock studies for the US National Waste Terminal Storage Program consist of: (1) evaluation of the geological characteristics of several widespread argillaceous formations in the United States; (2) laboratory studies of the physical and chemical properties of selected argillaceous rock samples; and (3) two full-scale in situ surface heater experiments that simulate the emplacement of heat-generating radioactive waste in argillaceous rock.

Brunton, G.D.

1981-01-01T23:59:59.000Z

44

1,153-ton Waste Vault Removed from 300 Area - Vault held waste...  

Energy Savers [EERE]

1,153-ton Waste Vault Removed from 300 Area - Vault held waste tanks with contamination from Hanford's former laboratory facilities 1,153-ton Waste Vault Removed from 300 Area -...

45

Waste-heat recovery in batch processes using heat storage  

SciTech Connect (OSTI)

The waste-heat recovery in batch processes has been studied using the pinch-point method. The aim of the work has been to investigate theoretical and practical approaches to the design of heat-exchanger networks, including heat storage, for waste-heat recovery in batch processes. The study is limited to the incorporation of energy-storage systems based on fixed-temperature variable-mass stores. The background for preferring this to the alternatives (variable-temperature fixed-mass and constant-mass constant-temperature (latent-heat) stores) is given. It is shown that the maximum energy-saving targets as calculated by the pinch-point method (time average model, TAM) can be achieved by locating energy stores at either end of each process stream. This theoretically large number of heat-storage tanks (twice the number of process streams) can be reduced to just a few tanks. A simple procedure for determining a number of heat-storage tanks sufficient to achieve the maximum energy-saving targets as calculated by the pinch-point method is described. This procedure relies on combinatorial considerations, and could therefore be labeled the combinatorial method for incorporation of heat storage in heat-exchanger networks. Qualitative arguments justifying the procedure are presented. For simple systems, waste-heat recovery systems with only three heat-storage temperatures (a hot storage, a cold storage, and a heat store at the pinch temperature) often can achieve the maximum energy-saving targets. Through case studies, six of which are presented, it is found that a theoretically large number of heat-storage tanks (twice the number of process streams) can be reduced to just a few tanks. The description of these six cases is intended to be sufficiently detailed to serve as benchmark cases for development of alternative methods.

Stoltze, S.; Mikkelsen, J.; Lorentzen, B.; Petersen, P.M.; Qvale, B. [Technical Univ. of Denmark, Lyngby (Denmark). Lab. for Energetics

1995-06-01T23:59:59.000Z

46

Mixed waste focus area alternative technologies workshop  

SciTech Connect (OSTI)

This report documents the Mixed Waste Focus Area (MWFA)-sponsored Alternative Technology Workshop held in Salt Lake City, Utah, from January 24--27, 1995. The primary workshop goal was identifying potential applications for emerging technologies within the Options Analysis Team (OAT) ``wise`` configuration. Consistent with the scope of the OAT analysis, the review was limited to the Mixed Low-Level Waste (MLLW) fraction of DOE`s mixed waste inventory. The Los Alamos team prepared workshop materials (databases and compilations) to be used as bases for participant review and recommendations. These materials derived from the Mixed Waste Inventory Report (MWIR) data base (May 1994), the Draft Site Treatment Plan (DSTP) data base, and the OAT treatment facility configuration of December 7, 1994. In reviewing workshop results, the reader should note several caveats regarding data limitations. Link-up of the MWIR and DSTP data bases, while representing the most comprehensive array of mixed waste information available at the time of the workshop, requires additional data to completely characterize all waste streams. A number of changes in waste identification (new and redefined streams) occurred during the interval from compilation of the data base to compilation of the DSTP data base with the end result that precise identification of radiological and contaminant characteristics was not possible for these streams. To a degree, these shortcomings compromise the workshop results; however, the preponderance of waste data was linked adequately, and therefore, these analyses should provide useful insight into potential applications of alternative technologies to DOE MLLW treatment facilities.

Borduin, L.C.; Palmer, B.A.; Pendergrass, J.A. [Los Alamos National Lab., NM (United States). Technology Analysis Group

1995-05-24T23:59:59.000Z

47

Thermoeconomic optimization of sensible heat thermal storage for cogenerated waste-to-energy recovery  

SciTech Connect (OSTI)

This paper investigates the feasibility of employing thermal storage for cogenerated waste-to-energy recovery such as using mass-burning water-wall incinerators and topping steam turbines. Sensible thermal storage is considered in rectangular cross-sectioned channels through which is passed unused process steam at 1,307 kPa/250 C (175 psig/482 F) during the storage period and feedwater at 1,307 kPa/102 C (175 psig/216 F) during the recovery period. In determining the optimum storage configuration, it is found that the economic feasibility is a function of mass and specific heat of the material and surface area of the channel as well as cost of material and fabrication. Economic considerations included typical cash flows of capital charges, energy revenues, operation and maintenance, and income taxes. Cast concrete is determined to be a potentially attractive storage medium.

Abdul-Razzak, H.A. [Texas A and M Univ., Kingsville, TX (United States). Dept. of Mechanical and Industrial Engineering; Porter, R.W. [Illinois Inst. of Tech., chicago, IL (United States). Dept. of Mechanical and Aerospace Engineering

1995-10-01T23:59:59.000Z

48

INCREASING STORAGE CAPAPCITY OF DREDGED MATERIAL MANAGEMENT AREAS  

E-Print Network [OSTI]

INCREASING STORAGE CAPAPCITY OF DREDGED MATERIAL MANAGEMENT AREAS Timothy D. Stark, Ph.D., P. The Craney Island Dredged Material Management Area near Norfolk, Virginia is used to illustrate the use of the model in estimating the long-term storage capacity of confined dredged material management facilities

49

Waste Encapsulation and Storage Facility (WESF) Hazards Assessment  

SciTech Connect (OSTI)

This report documents the hazards assessment for the Waste Encapsulation and Storage Facility (WESF) located on the U.S. Department of Energy (DOE) Hanford Site. This hazards assessment was conducted to provide the emergency planning technical basis for WESF. DOE Orders require an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification.

COVEY, L.I.

2000-11-28T23:59:59.000Z

50

Compliance of Hazardous Waste Satellite Accumulation Areas (SAAs)  

E-Print Network [OSTI]

through prevention, minimization, and recycling Classroom or one-on-one waste generator training, other DOE and University waste organizations Flammable waste cans, 30-gallon, 55-gallon drums (steelCompliance of Hazardous Waste Satellite Accumulation Areas (SAAs) All Hazardous waste generated

51

Seismic modeling and analysis of a prototype heated nuclear waste storage tunnel, Yucca Mountain, Nevada  

E-Print Network [OSTI]

Seismic modeling and analysis of a prototype heated nuclear waste storage tunnel, Yucca Mountain was heated to replicate the effects of long-term storage of decaying nuclear waste and to study the effects for the long- term storage of high-level nuclear waste from reactors and decom- missioned atomic weapons

Snieder, Roel

52

Waste Encapsulation and Storage Facility (WESF) Dangerous Waste Training Plan (DWTP)  

SciTech Connect (OSTI)

This training plan describes general requirements, worker categories, and provides course descriptions for operation of the WESF permitted miscellaneous storage units, and the < 90 day accumulation areas.

LEBARON, G.J.

1999-12-03T23:59:59.000Z

53

Biohazardous Waste Disposal GuidelinesDescriptionStorage& LabelingTreatmentDisposal  

E-Print Network [OSTI]

Waste Sharps Waste Solid Lab Waste Liquid Waste Any of these devices if contaminated with biohazardousBiohazardous Waste Disposal GuidelinesDescriptionStorage& packaging LabelingTreatmentDisposal Mixed container. Container must be leakproof, ridgid, puncture resistant, clearly marked for biohazardous waste

Wikswo, John

54

Foreign programs for the storage of spent nuclear power plant fuels, high-level waste canisters and transuranic wastes  

SciTech Connect (OSTI)

The various national programs for developing and applying technology for the interim storage of spent fuel, high-level radioactive waste, and TRU wastes are summarized. Primary emphasis of the report is on dry storage techniques for uranium dioxide fuels, but data are also provided concerning pool storage.

Harmon, K.M.; Johnson, A.B. Jr.

1984-04-01T23:59:59.000Z

55

Hanford facility dangerous waste permit application, PUREX storage tunnels  

SciTech Connect (OSTI)

The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, operating treatment, storage, and/or disposal units, such as the PUREX Storage Tunnels (this document, DOE/RL-90-24). Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the content of the Part B permit application guidance prepared by the Washington State Department of Ecology (Ecology 1996) and the US Environmental Protection Agency (40 Code of Federal Regulations 270), with additional information needs defined by the Hazardous and Solid Waste Amendments and revisions of Washington Administrative Code 173-303. For ease of reference, the Washington State Department of Ecology alpha-numeric section identifiers from the permit application guidance documentation (Ecology 1996) follow, in brackets, the chapter headings and subheadings. A checklist indicating where information is contained in the PUREX Storage Tunnels permit application documentation, in relation to the Washington State Department of Ecology guidance, is located in the Contents Section. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Wherever appropriate, the PUREX Storage Tunnels permit application documentation makes cross-reference to the General Information Portion, rather than duplicating text. Information provided in this PUREX Storage Tunnels permit application documentation is current as of April 1997.

Price, S.M.

1997-09-08T23:59:59.000Z

56

Annex D-200 Area Interim Storage Area Final Safety Analysis Report [FSAR] [Section 1 & 2  

SciTech Connect (OSTI)

The 200 Area Interim Storage Area (200 Area ISA) at the Hanford Site provides for the interim storage of non-defense reactor spent nuclear fuel (SNF) housed in aboveground dry cask storage systems. The 200 Area ISA is a relatively simple facility consisting of a boundary fence with gates, perimeter lighting, and concrete and gravel pads on which to place the dry storage casks. The fence supports safeguards and security and establishes a radiation protection buffer zone. The 200 Area ISA is nominally 200,000 ft{sup 2} and is located west of the Canister Storage Building (CSB). Interim storage at the 200 Area ISA is intended for a period of up to 40 years until the materials are shipped off-site to a disposal facility. This Final Safety Analysis Report (FSAR) does not address removal from storage or shipment from the 200 Area ISA. Three different SNF types contained in three different dry cask storage systems are to be stored at the 200 Area ISA, as follows: (1) Fast Flux Test Facility Fuel--Fifty-three interim storage casks (ISC), each holding a core component container (CCC), will be used to store the Fast Flux Test Facility (FFTF) SNF currently in the 400 Area. (2) Neutron Radiography Facility (NRF) TRIGA'--One Rad-Vault' container will store two DOT-6M3 containers and six NRF TRIGA casks currently stored in the 400 Area. (3) Commercial Light Water Reactor Fuel--Six International Standards Organization (ISO) containers, each holding a NAC-I cask4 with an inner commercial light water reactor (LWR) canister, will be used for commercial LWR SNF from the 300 Area. An aboveground dry cask storage location is necessary for the spent fuel because the current storage facilities are being shut down and deactivated. The spent fuel is being transferred to interim storage because there is no permanent repository storage currently available.

CARRELL, R.D.

2002-07-16T23:59:59.000Z

57

Pipe overpack container for trasuranic waste storage and shipment  

DOE Patents [OSTI]

A Pipe Overpack Container for transuranic waste storage and shipment. The system consists of a vented pipe component which is positioned in a vented, insulated 55 gallon steel drum. Both the vented pipe component and the insulated drum are capable of being secured to prevent the contents from leaving the vessel. The vented pipe component is constructed of 1/4 inch stainless steel to provide radiation shielding. Thus, allowing shipment having high Americium-241 content. Several Pipe Overpack Containers are then positioned in a type B, Nuclear Regulatory Commission (NRC) approved, container. In the current embodiment, a TRUPACT-II container was employed and a maximum of fourteen Pipe Overpack Containers were placed in the TRUPACT-II. The combination received NRC approval for the shipment and storage of transuranic waste.

Geinitz, Richard R. (Arvada, CO); Thorp, Donald T. (Broomfield, CO); Rivera, Michael A. (Boulder, CO)

1999-01-01T23:59:59.000Z

58

SCFA lead lab technical assistance at Oak Ridge Y-12 nationalsecurity complex: Evaluation of treatment and characterizationalternatives of mixed waste soil and debris at disposal area remedialaction DARA solids storage facility (SSF)  

SciTech Connect (OSTI)

On July 17-18, 2002, a technical assistance team from the U.S. Department of Energy (DOE) Subsurface Contaminants Focus Area (SCFA) met with the Bechtel Jacobs Company Disposal Area Remedial Action (DARA) environmental project leader to review treatment and characterization options for the baseline for the DARA Solids Storage Facility (SSF). The technical assistance request sought suggestions from SCFA's team of technical experts with experience and expertise in soil treatment and characterization to identify and evaluate (1) alternative treatment technologies for DARA soils and debris, and (2) options for analysis of organic constituents in soil with matrix interference. Based on the recommendations, the site may also require assistance in identifying and evaluating appropriate commercial vendors.

Hazen, Terry

2002-08-26T23:59:59.000Z

59

Radioactive Tank Waste Remediation Focus Area. Technology summary  

SciTech Connect (OSTI)

In February 1991, DOE`s Office of Technology Development created the Underground Storage Tank Integrated Demonstration (UST-ID), to develop technologies for tank remediation. Tank remediation across the DOE Complex has been driven by Federal Facility Compliance Agreements with individual sites. In 1994, the DOE Office of Environmental Management created the High Level Waste Tank Remediation Focus Area (TFA; of which UST-ID is now a part) to better integrate and coordinate tank waste remediation technology development efforts. The mission of both organizations is the same: to focus the development, testing, and evaluation of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in USTs at DOE facilities. The ultimate goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. The TFA has focused on four DOE locations: the Hanford Site in Richland, Washington, the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho, the Oak Ridge Reservation in Oak Ridge, Tennessee, and the Savannah River Site (SRS) in Aiken, South Carolina.

NONE

1995-06-01T23:59:59.000Z

60

Safe interim storage of Hanford tank wastes, draft environmental impact statement, Hanford Site, Richland, Washington  

SciTech Connect (OSTI)

This Draft EIS is prepared pursuant to the National Environmental Policy Act (NEPA) and the Washington State Environmental Policy Act (SEPA). DOE and Ecology have identified the need to resolve near-term tank safety issues associated with Watchlist tanks as identified pursuant to Public Law (P.L.) 101-510, Section 3137, ``Safety Measures for Waste Tanks at Hanford Nuclear Reservation,`` of the National Defense Authorization Act for Fiscal Year 1991, while continuing to provide safe storage for other Hanford wastes. This would be an interim action pending other actions that could be taken to convert waste to a more stable form based on decisions resulting from the Tank Waste Remediation System (TWRS) EIS. The purpose for this action is to resolve safety issues concerning the generation of unacceptable levels of hydrogen in two Watchlist tanks, 101-SY and 103-SY. Retrieving waste in dilute form from Tanks 101-SY and 103-SY, hydrogen-generating Watchlist double shell tanks (DSTs) in the 200 West Area, and storage in new tanks is the preferred alternative for resolution of the hydrogen safety issues.

Not Available

1994-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste storage area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility  

SciTech Connect (OSTI)

The 200 Area Effluent Treatment Facility Dangerous Waste Permit Application documentation consists of both Part A and a Part B permit application documentation. An explanation of the Part A revisions associated with this treatment and storage unit, including the current revision, is provided at the beginning of the Part A section. Once the initial Hanford Facility Dangerous Waste Permit is issued, the following process will be used. As final, certified treatment, storage, and/or disposal unit-specific documents are developed, and completeness notifications are made by the US Environmental Protection Agency and the Washington State Department of Ecology, additional unit-specific permit conditions will be incorporated into the Hanford Facility Dangerous Waste Permit through the permit modification process. All treatment, storage, and/or disposal units that are included in the Hanford Facility Dangerous Waste Permit Application will operate under interim status until final status conditions for these units are incorporated into the Hanford Facility Dangerous Waste Permit. The Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility contains information current as of May 1, 1993.

Not Available

1993-08-01T23:59:59.000Z

62

Environmental assessment, finding of no significant impact, and response to comments. Radioactive waste storage  

SciTech Connect (OSTI)

The Department of Energy`s (DOE) Rocky Flats Environmental Technology Site (the Site), formerly known as the Rocky Flats Plant, has generated radioactive, hazardous, and mixed waste (waste with both radioactive and hazardous constituents) since it began operations in 1952. Such wastes were the byproducts of the Site`s original mission to produce nuclear weapons components. Since 1989, when weapons component production ceased, waste has been generated as a result of the Site`s new mission of environmental restoration and deactivation, decontamination and decommissioning (D&D) of buildings. It is anticipated that the existing onsite waste storage capacity, which meets the criteria for low-level waste (LL), low-level mixed waste (LLM), transuranic (TRU) waste, and TRU mixed waste (TRUM) would be completely filled in early 1997. At that time, either waste generating activities must cease, waste must be shipped offsite, or new waste storage capacity must be developed.

NONE

1996-04-01T23:59:59.000Z

63

Mixed waste storage facility CDR review, Paducah Gaseous Diffusion Plant; Solid waste landfill CDR review, Paducah Gaseous Diffusion Plant  

SciTech Connect (OSTI)

This report consists of two papers reviewing the waste storage facility and the landfill projects proposed for the Paducah Gaseous Diffusion Plant complex. The first paper is a review of DOE`s conceptual design report for a mixed waste storage facility. This evaluation is to review the necessity of constructing a separate mixed waste storage facility. The structure is to be capable of receiving, weighing, sampling and the interim storage of wastes for a five year period beginning in 1996. The estimated cost is assessed at approximately $18 million. The review is to help comprehend and decide whether a new storage building is a feasible approach to the PGDP mixed waste storage problem or should some alternate approach be considered. The second paper reviews DOE`s conceptual design report for a solid waste landfill. This solid waste landfill evaluation is to compare costs and the necessity to provide a new landfill that would meet State of Kentucky regulations. The assessment considered funding for a ten year storage facility, but includes a review of other facility needs such as a radiation detection building, compactor/baler machinery, material handling equipment, along with other personnel and equipment storage buildings at a cost of approximately $4.1 million. The review is to help discern whether a landfill only or the addition of compaction equipment is prudent.

NONE

1998-08-01T23:59:59.000Z

64

SRS K-AREA MATERIAL STORAGE - EXPANDING CAPABILITIES  

SciTech Connect (OSTI)

In support of the Department of Energys continued plans to de-inventory and reduce the footprint of Cold War era weapons material production sites, the K-Area Material Storage (KAMS) facility, located in the K-Area Complex (KAC) at the Savannah River Site reservation, has expanded since its startup authorization in 2000 to accommodate DOEs material consolidation mission. During the facilitys growth and expansion, KAMS will have expanded its authorization capability of material types and storage containers to allow up to 8200 total shipping containers once the current expansion effort completes in 2014. Recognizing the need to safely and cost effectively manage other surplus material across the DOE Complex, KAC is constantly evaluating the storage of different material types within K area. When modifying storage areas in KAC, the Documented Safety Analysis (DSA) must undergo extensive calculations and reviews; however, without an extensive and proven security posture the possibility for expansion would not be possible. The KAC maintains the strictest adherence to safety and security requirements for all the SNM it handles. Disciplined Conduct of Operations and Conduct of Projects are demonstrated throughout this historical overview highlighting various improvements in capability, capacity, demonstrated cost effectiveness and utilization of the KAC as the DOE Center of Excellence for safe and secure storage of surplus SNM.

Koenig, R.

2013-07-02T23:59:59.000Z

65

Waste site grouping for 200 Areas soil investigations  

SciTech Connect (OSTI)

The purpose of this document is to identify logical waste site groups for characterization based on criteria established in the 200 Areas Soil Remediation Strategy (DOE-RL 1996a). Specific objectives of the document include the following: finalize waste site groups based on the approach and preliminary groupings identified in the 200 Areas Soil Remediation Strategy; prioritize the waste site groups based on criteria developed in the 200 Areas Soil Remediation Strategy; select representative site(s) that best represents typical and worse-case conditions for each waste group; develop conceptual models for each waste group. This document will serve as a technical baseline for implementing the 200 Areas Soil Remediation Strategy. The intent of the document is to provide a framework, based on waste site groups, for organizing soil characterization efforts in the 200 Areas and to present initial conceptual models.

NONE

1997-01-01T23:59:59.000Z

66

area factor determinations: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: 20 North Adit North Damping Ring Radioactive Material Storage Yard (RAMSY) Radioactive Waste Storage A (includes fenced RAM storage area) End Station B Heavy...

67

L AREA WASTEWATER STORAGE DRUM EVALUATION  

SciTech Connect (OSTI)

This report documents the determination of the cause of pressurization that led to bulging deformation of a 55 gallon wastewater drum stored in L-Area. Drum samples were sent to SRNL for evaluation. The interior surface of these samples revealed blistering and holes in the epoxy phenolic drum liner and corrosion of the carbon steel drum. It is suspected that osmotic pressure drove permeation of the water through the epoxy phenolic coating which was weakened from exposure to low pH water. The coating failed at locations throughout the drum interior. Subsequent corrosion of the carbon steel released hydrogen which pressurized the drum causing deformation of the drum lid. Additional samples from other wastewater drums on the same pallet were also evaluated and limited corrosion was visible on the interior surfaces. It is suspected that, with time, the corrosion would have advanced to cause pressurization of these sealed drums.

Vormelker, P; Cynthia Foreman, C; Zane Nelson, Z; David Hathcock, D; Dennis Vinson, D

2007-11-30T23:59:59.000Z

68

Nevada Nuclear-Waste-Storage Investigations. Quarterly report, April-June 1982  

SciTech Connect (OSTI)

The Nevada Nuclear Waste Storage Investigations (NNWSI) are studying the Nevada Test Site (NTS) area to establish whether it would qualify as a licensable location for a commercial nuclear waste repository; determining whether specific underground rock masses in the NTS area are technically acceptable for permanently disposing of highly radioactive solid wastes; and developing and demonstrating the capability to safely handle and store commercial spent reactor fuel and high-level waste. Progress reports for the following eight tasks are presented: systems; waste package; site; repository; regulatory and institutional; test facilities; land acquisition; and program management. Some of the highlights are: A code library was established to provide a central location for documentation of repository performance assessment codes. A two-dimensional finite element code, SAGUARO, was developed for modeling saturated/unsaturated groundwater flow. The results of an initial experiment to determine canister penetration rates due to corrosion indicate the expected strong effect of toxic environmental conditions on the corrosion rate of carbon steel in tuff-conditioned water. Wells USW-H3 and USW-H4 at Yucca Mountain have been sampled for groundwater analysis. A summary characterizing and relating the mineralogy and petrology of Yucca Mountain tuffs was compiled from the findings of studies of core samples from five drill holes.

None

1982-09-01T23:59:59.000Z

69

State waste discharge permit application for the 200 Area Effluent Treatment Facility and the State-Approved Land Disposal Site  

SciTech Connect (OSTI)

Application is being made for a permit pursuant to Chapter 173--216 of the Washington Administrative Code (WAC), to discharge treated waste water and cooling tower blowdown from the 200 Area Effluent Treatment Facility (ETF) to land at the State-Approved Land Disposal Site (SALDS). The ETF is located in the 200 East Area and the SALDS is located north of the 200 West Area. The ETF is an industrial waste water treatment plant that will initially receive waste water from the following two sources, both located in the 200 Area on the Hanford Site: (1) the Liquid Effluent Retention Facility (LERF) and (2) the 242-A Evaporator. The waste water discharged from these two facilities is process condensate (PC), a by-product of the concentration of waste from DSTs that is performed in the 242-A Evaporator. Because the ETF is designed as a flexible treatment system, other aqueous waste streams generated at the Hanford Site may be considered for treatment at the ETF. The origin of the waste currently contained in the DSTs is explained in Section 2.0. An overview of the concentration of these waste in the 242-A Evaporator is provided in Section 3.0. Section 4.0 describes the LERF, a storage facility for process condensate. Attachment A responds to Section B of the permit application and provides an overview of the processes that generated the wastes, storage of the wastes in double-shell tanks (DST), preliminary treatment in the 242-A Evaporator, and storage at the LERF. Attachment B addresses waste water treatment at the ETF (under construction) and the addition of cooling tower blowdown to the treated waste water prior to disposal at SALDS. Attachment C describes treated waste water disposal at the proposed SALDS.

Not Available

1993-08-01T23:59:59.000Z

70

2002 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites  

SciTech Connect (OSTI)

Environmental, subsidence, and meteorological monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS)(refer to Figure 1). These monitoring data include radiation exposure, air, groundwater,meteorology, vadose zone, subsidence, and biota data. Although some of these media (radiation exposure, air, and groundwater) are reported in detail in other Bechtel Nevada (BN) reports (Annual Site Environmental Report [ASER], the National Emissions Standard for Hazardous Air Pollutants [NESHAP] report, and the Annual Groundwater Monitoring Report), they are also summarized in this report to provide an overall evaluation of RWMS performance and environmental compliance. Direct radiation monitoring data indicate that exposure at and around the RWMSs is not above background levels. Air monitoring data indicate that tritium concentrations are slightly above background levels. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS has not been affected by the facility. Meteorological data indicate that 2002 was a dry year: rainfall totaled 26 mm (1.0 in) at the Area 3 RWMS and 38 mm (1.5 in) at the Area 5 RWMS. Vadose zone monitoring data indicate that 2002 rainfall infiltrated less than 30 cm (1 ft) before being returned to the atmosphere by evaporation. Soil-gas tritium monitoring data indicate slow subsurface migration, and tritium concentrations in biota were lower than in previous years. Special investigations conducted in 2002 included: a comparison between waste cover water contents measured by neutron probe and coring; and a comparison of four methods for measuring radon concentrations in air. All 2002 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing within expectations of the model and parameter assumptions for the facility Performance Assessments (PAs).

Y. E. Townsend

2003-06-01T23:59:59.000Z

71

SCFA lead lab technical assistance at Oak Ridge Y-12 national security complex: Evaluation of treatment and characterization alternatives of mixed waste soil and debris at disposal area remedial action DARA solids storage facility (SSF)  

E-Print Network [OSTI]

allowing the use of macroencapsulation technologies. SCFADemonstration of Macroencapsulation of Mixed Waste Debrisoff-site for treatment. Macroencapsulation will meet the LDR

Hazen, Terry

2002-01-01T23:59:59.000Z

72

TRU waste certification compliance requirements for acceptance of contact-handled wastes retrieved from storage to be shipped to the WIPP. Revision 1  

SciTech Connect (OSTI)

Compliance requirements are presented for certifying that unclassified, contact-handled (CH) transuranic (TRU) solid defense wastes retrieved from storage at DOE sites meet the Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC). All applicable DOE orders must continue to be met. The compliance requirements for certified waste retrieved from certified storage are addressed in another document. The compliance requirements are divided into four sections, primarily determined by the general feature that the requirements address. These sections are General Requirements, Waste Container Requirements, Waste Form Requirements, and Waste Package Requirements. The waste package is the combination of waste container and waste. 2 refs., 1 fig.

Not Available

1985-09-01T23:59:59.000Z

73

Criticality Safety Evaluation of Hanford Site High Level Waste Storage Tanks  

SciTech Connect (OSTI)

This criticality safety evaluation covers operations for waste in underground storage tanks at the high-level waste tank farms on the Hanford site. This evaluation provides the bases for criticality safety limits and controls to govern receipt, transfer, and long-term storage of tank waste. Justification is provided that a nuclear criticality accident cannot occur for tank farms operations, based on current fissile material and operating conditions.

ROGERS, C.A.

2000-02-17T23:59:59.000Z

74

Soil load above Hanford waste storage tanks (2 volumes)  

SciTech Connect (OSTI)

This document is a compilation of work performed as part of the Dome Load Control Project in 1994. Section 2 contains the calculations of the weight of the soil over the tank dome for each of the 75-feet-diameter waste-storage tanks located at the Hanford Site. The chosen soil specific weight and soil depth measured at the apex of the dome crown are the same as those used in the primary analysis that qualified the design. Section 3 provides reference dimensions for each of the tank farm sites. The reference dimensions spatially orient the tanks and provide an outer diameter for each tank. Section 4 summarizes the available soil surface elevation data. It also provides examples of the calculations performed to establish the present soil elevation estimates. The survey data and other data sources from which the elevation data has been obtained are printed separately in Volume 2 of this Supporting Document. Section 5 contains tables that provide an overall summary of the present status of dome loads. Tables summarizing the load state corresponding to the soil depth and soil specific weight for the original qualification analysis, the gravity load requalification for soil depth and soil specific weight greater than the expected actual values, and a best estimate condition of soil depth and specific weight are presented for the Double-Shell Tanks. For the Single-Shell Tanks, only the original qualification analysis is available; thus, the tabulated results are for this case only. Section 6 provides a brief overview of past analysis and testing results that given an indication of the load capacity of the waste storage tanks that corresponds to a condition approaching ultimate failure of the tank. 31 refs.

Pianka, E.W. [Advent Engineering Services, Inc., San Ramon, CA (United States)

1995-01-25T23:59:59.000Z

75

SWAMI: An Autonomous Mobile Robot for Inspection of Nuclear Waste Storage Facilities  

E-Print Network [OSTI]

SWAMI: An Autonomous Mobile Robot for Inspection of Nuclear Waste Storage Facilities Ron Fulbright Inspector (SWAMI) is a prototype mobile robot designed to perform autonomous inspection of nuclear waste user interface building tool called UIM/X. Introduction Safe disposal of nuclear waste is a difficult

Stephens, Larry M.

76

Closure Report for Corrective Action Unit 127: Areas 25 and 26 Storage Tanks, Nevada Test Site, Nevada  

SciTech Connect (OSTI)

CAU 127, Areas 25 and 26 Storage Tanks, consists of twelve CASs located in Areas 25 and 26 of the NTS. The closure alternatives included no further action, clean closure, and closure in place with administrative controls. The purpose of this Closure Report is to provide a summary of the completed closure activities, documentation of waste disposal, and analytical data to confirm that the remediation goals were met.

NSTec Environmental Restoration

2008-02-01T23:59:59.000Z

77

Nondestructive examination of DOE high-level waste storage tanks  

SciTech Connect (OSTI)

A number of DOE sites have buried tanks containing high-level waste. Tanks of particular interest am double-shell inside concrete cylinders. A program has been developed for the inservice inspection of the primary tank containing high-level waste (HLW), for testing of transfer lines and for the inspection of the concrete containment where possible. Emphasis is placed on the ultrasonic examination of selected areas of the primary tank, coupled with a leak-detection system capable of detecting small leaks through the wall of the primary tank. The NDE program is modelled after ASME Section XI in many respects, particularly with respects to the sampling protocol. Selected testing of concrete is planned to determine if there has been any significant degradation. The most probable failure mechanisms are corrosion-related so that the examination program gives major emphasis to possible locations for corrosion attack.

Bush, S.; Bandyopadhyay, K.; Kassir, M.; Mather, B.; Shewmon, P.; Streicher, M.; Thompson, B.; van Rooyen, D.; Weeks, J.

1995-05-01T23:59:59.000Z

78

Polyethylene macroencapsulation - mixed waste focus area. OST reference No. 30  

SciTech Connect (OSTI)

The lead waste inventory throughout the US Department of Energy (DOE) complex has been estimated between 17 million and 24 million kilograms. Decontamination of at least a portion of the lead is viable but at a substantial cost. Because of various problems with decontamination and its limited applicability and the lack of a treatment and disposal method, the current practice is indefinite storage, which is costly and often unacceptable to regulators. Macroencapsulation is an approved immobilization technology used to treat radioactively contaminated lead solids and mixed waste debris. (Mixed waste is waste materials containing both radioactive and hazardous components). DOE has funded development of a polyethylene extrusion macroencapsulation process at Brookhaven National Laboratory (BNL) that produces a durable, leach-resistant waste form. This innovative macroencapsulation technology uses commercially available single-crew extruders to melt, convey, and extrude molten polyethylene into a waste container in which mixed waste lead and debris are suspended or supported. After cooling to room temperature, the polyethylene forms a low-permeability barrier between the waste and the leaching media.

NONE

1998-02-01T23:59:59.000Z

79

EIS-0063: Waste Management Operations, Double-Shell Tanks for Defense High Level Radioactive Waste Storage, Hanford Site, Richland, Washington  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy developed this statement to evaluate the existing tank design and consider additional specific design and safety feature alternatives for the thirteen tanks being constructed for storage of defense high-level radioactive liquid waste at the Hanford Site in Richland, Washington. This statement supplements ERDA-1538, "Final Environmental Statement on Waste Management Operation."

80

Calcine Waste Storage at the Idaho Nuclear Technology and Engineering Center  

SciTech Connect (OSTI)

A potential option in the program for long-term management of high-level wastes at the Idaho Nuclear Technology and Engineering Center (INTEC), at the Idaho National Engineering and Environmental Laboratory, calls for retrieving calcine waste and converting it to a more stable and less dispersible form. An inventory of calcine produced during the period December 1963 to May 1999 has been prepared based on calciner run, solids storage facilities operating, and miscellaneous operational information, which gives the range of chemical compositions of calcine waste stored at INTEC. Information researched includes calciner startup data, waste solution analyses and volumes calcined, calciner operating schedules, solids storage bin capacities, calcine storage bin distributor systems, and solids storage bin design and temperature monitoring records. Unique information on calcine solids storage facilities design of potential interest to remote retrieval operators is given.

M. D. Staiger

1999-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste storage area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

SORPTION OF URANIUM, PLUTONIUM AND NEPTUNIUM ONTO SOLIDS PRESENT IN HIGH CAUSTIC NUCLEAR WASTE STORAGE TANKS  

SciTech Connect (OSTI)

Solids such as granular activated carbon, hematite and sodium phosphates, if present as sludge components in nuclear waste storage tanks, have been found to be capable of precipitating/sorbing actinides like plutonium, neptunium and uranium from nuclear waste storage tank supernatant liqueur. Thus, the potential may exists for the accumulation of fissile materials in such nuclear waste storage tanks during lengthy nuclear waste storage and processing. To evaluate the nuclear criticality safety in a typical nuclear waste storage tank, a study was initiated to measure the affinity of granular activated carbon, hematite and anhydrous sodium phosphate to sorb plutonium, neptunium and uranium from alkaline salt solutions. Tests with simulated and actual nuclear waste solutions established the affinity of the solids for plutonium, neptunium and uranium upon contact of the solutions with each of the solids. The removal of plutonium and neptunium from the synthetic salt solution by nuclear waste storage tank solids may be due largely to the presence of the granular activated carbon and transition metal oxides in these storage tank solids or sludge. Granular activated carbon and hematite also showed measurable affinity for both plutonium and neptunium. Sodium phosphate, used here as a reference sorbent for uranium, as expected, exhibited high affinity for uranium and neptunium, but did not show any measurable affinity for plutonium.

Oji, L; Bill Wilmarth, B; David Hobbs, D

2008-05-30T23:59:59.000Z

82

Design requirements document for project W-465, immobilized low activity waste interim storage  

SciTech Connect (OSTI)

The scope of this design requirements document is to identify the functions and associated requirements that must be performed to accept, transport, handle, and store immobilized low-activity waste produced by the privatized Tank Waste Remediation System treatment contractors. The functional and performance requirements in this document provide the basis for the conceptual design of the Tank Waste Remediation System Immobilized low-activity waste interim storage facility project and provides traceability from the program level requirements to the project design activity.

Burbank, D.A.

1997-01-27T23:59:59.000Z

83

Generation, storage, collection and transportation of municipal solid waste - A case study in the city of Kathmandu, capital of Nepal  

SciTech Connect (OSTI)

Solid waste management (SWM) services have consistently failed to keep up with the vast amount of solid waste produced in urban areas. There is not currently an efficient system in place for the management, storage, collection, and transportation of solid waste. Kathmandu City, an important urban center of South Asia, is no exception. In Kathmandu Metropolitan City, solid waste generation is predicted to be 1091 m{sup 3}/d (245 tons/day) and 1155 m{sup 3}/d (260 tons/day) for the years 2005 and 2006, respectively. The majority (89%) of households in Kathmandu Metropolitan City are willing to segregate the organic and non-organic portions of their waste. Overall collection efficiency was 94% in 2003. An increase in waste collection occurred due to private sector involvement, the shutdown of the second transfer station near the airport due to local protest, a lack of funding to maintain trucks/equipment, a huge increase in plastic waste, and the willingness of people to separate their waste into separate bins. Despite a substantial increase in total expenditure, no additional investments were made to the existing development plan to introduce a modern disposal system due to insufficient funding. Due to the lack of a proper lining, raw solid waste from the existing dumping site comes in contact with river water directly, causing severe river contamination and deteriorating the quality of the water.

Alam, R. [Shahjalal University of Science and Technology, Department of Civil and Environmental Engineering, Sylhet 3114 (Bangladesh)], E-mail: rakib_env@yahoo.com; Chowdhury, M.A.I.; Hasan, G.M.J.; Karanjit, B.; Shrestha, L.R. [Shahjalal University of Science and Technology, Department of Civil and Environmental Engineering, Sylhet 3114 (Bangladesh)

2008-07-01T23:59:59.000Z

84

TRU (transuranic) waste certification compliance requirements for acceptance of contact-handled wastes retrieved from storage to be shipped to the Waste Isolation Pilot Plant: Revision 2  

SciTech Connect (OSTI)

Compliance requirements are presented for certifying that unclassified, contact-handled (CH) transuranic (TRU) solid defense wastes retrieved from storage at DOE sites meet the Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC). All applicable Department of Energy (DOE) orders must continue to be met. The compliance requirements for acceptance of newly generated CH waste to be shipped to the WIPP are addressed in another document. The compliance requirements are divided into four sections, primarily determined by the general feature that the requirements address. These sections are General Requirements, Waste Container Requirements, Waste Form Requirements, and Waste Package Requirements. The waste package is the combination of waste container and waste. 10 refs., 1 fig.

Not Available

1989-01-01T23:59:59.000Z

85

State Waste Discharge Permit application: 400 Area Septic System  

SciTech Connect (OSTI)

As part of the Hanford Federal Facility Agreement and Consent Order negotiations, the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affects groundwater or has the potential to affect groundwater would be subject to permitting under the structure of Chapter 173-216 (or 173-218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. This document constitutes the State Waste Discharge Permit application for the 400 Area Septic System. The influent to the system is domestic waste water. Although the 400 Area Septic System is not a Public Owned Treatment Works, the Public Owned Treatment Works application is more applicable than the application for industrial waste water. Therefore, the State Waste Discharge Permit application for Public Owned Treatment Works Discharges to Land was used.

Not Available

1994-06-01T23:59:59.000Z

86

Progress and Status of the Ignalina Nuclear Power Plant's New Solid Waste Management and Storage Facilities  

SciTech Connect (OSTI)

A considerable amount of dry radioactive waste from former NPP operation has accumulated up to date and is presently stored at the Ignalina NPP site, Lithuania. Current storage capacities are nearly exhausted and more waste is to come from future decommissioning of the two RMBKtype reactors. Additionally, the existing storage facilities does not comply to the state-of-the-art technology for handling and storage of radioactive waste. In 2005, INPP faced this situation of a need for waste processing and subsequent interim storage of these wastes by contracting NUKEM with the design, construction, installation and commissioning of new waste management and storage facilities. The subject of this paper is to describe the scope and the status of the new solid waste management and storage facilities at the Ignalina Nuclear Power Plant. In summary: The turnkey contract for the design, supply and commission of the SWMSF was awarded in December 2005. The realisation of the project was initially planned within 48 month. The basic design was finished in August 2007 and the Technical Design Documentation and Preliminary Safety Analyses Report was provided to Authorities in October 2007. The construction license is expected in July 2008. The procurement phase was started in August 2007, start of onsite activities is expected in November 2007. The start of operation of the SWMSF is scheduled for end of 2009. (authors)

Rausch, J.; Henderson, R.W. [NUKEM Technologies GmbH, Alzenau (Germany); Penkov, V. [State Enterprise Ignalina Nuclear Power Plant, Visaginas (Lithuania)

2008-07-01T23:59:59.000Z

87

EA-0981: Solid Waste Retrieval Complex, Enhanced Radioactive and Mixed Waste Storage Facility, Infrastructure Upgrades, and Central Waste Support Complex, Hanford Site, Richland, Washington  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of the proposal to retrieve transuranic waste (TRU), provide storage capacity for retrieved and newly generated TRU, Greater-than-Category 3, and mixed...

88

Waste Encapsulation and Storage Facility (WESF) Basis for Interim Operation (BIO)  

SciTech Connect (OSTI)

The Waste Encapsulation and Storage Facility (WESF) is located in the 200 East Area adjacent to B Plant on the Hanford Site north of Richland, Washington. The current WESF mission is to receive and store the cesium and strontium capsules that were manufactured at WESF in a safe manner and in compliance with all applicable rules and regulations. The scope of WESF operations is currently limited to receipt, inspection, decontamination, storage, and surveillance of capsules in addition to facility maintenance activities. The capsules are expected to be stored at WESF until the year 2017, at which time they will have been transferred for ultimate disposition. The WESF facility was designed and constructed to process, encapsulate, and store the extracted long-lived radionuclides, {sup 90}Sr and {sup 137}Cs, from wastes generated during the chemical processing of defense fuel on the Hanford Site thus ensuring isolation of hazardous radioisotopes from the environment. The construction of WESF started in 1971 and was completed in 1973. Some of the {sup 137}Cs capsules were leased by private irradiators or transferred to other programs. All leased capsules have been returned to WESF. Capsules transferred to other programs will not be returned except for the seven powder and pellet Type W overpacks already stored at WESF.

COVEY, L.I.

2000-11-28T23:59:59.000Z

89

Underground Test Area Project Waste Management Plan (Rev. No. 2, April 2002)  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Operations Office (NNSA/NV) initiated the UGTA Project to characterize the risk posed to human health and the environment as a result of underground nuclear testing activities at the Nevada Test Site (NTS). The UGTA Project investigation sites have been grouped into Corrective Action Units (CAUs) in accordance with the most recent version of the Federal Facility Agreement and Consent Order. The primary UGTA objective is to gather data to characterize the groundwater aquifers beneath the NTS and adjacent lands. The investigations proposed under the UGTA program may involve the drilling and sampling of new wells; recompletion, monitoring, and sampling of existing wells; well development and hydrologic/ aquifer testing; geophysical surveys; and subsidence crater recharge evaluation. Those wastes generated as a result of these activities will be managed in accordance with existing federal and state regulations, DOE Orders, and NNSA/NV waste minimization and pollution prevention objectives. This Waste Management Plan provides a general framework for all Underground Test Area (UGTA) Project participants to follow for the characterization, storage/accumulation, treatment, and disposal of wastes generated by UGTA Project activities. The objective of this waste management plan is to provide guidelines to minimize waste generation and to properly manage wastes that are produced. Attachment 1 to this plan is the Fluid Management Plan and details specific strategies for management of fluids produced under UGTA operations.

IT Corporation, Las Vegas

2002-04-24T23:59:59.000Z

90

EA-0820: Construction of Mixed Waste Storage RCRA Facilities, Buildings 7668 and 7669, Oak Ridge, Tennessee  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of a proposal to construct and operate two mixed (both radioactive and hazardous) waste storage facilities (Buildings 7668 and 7669) in accordance with...

91

Conceptual design report for immobilized high-level waste interim storage facility (Phase 1)  

SciTech Connect (OSTI)

The Hanford Site Canister Storage Building (CSB Bldg. 212H) will be utilized to interim store Phase 1 HLW products. Project W-464, Immobilized High-Level Waste Interim Storage, will procure an onsite transportation system and retrofit the CSB to accommodate the Phase 1 HLW products. The Conceptual Design Report establishes the Project W-464 technical and cost basis.

Burgard, K.C.

1998-04-09T23:59:59.000Z

92

Conceptual design report for immobilized high-level waste interim storage facility (Phase 1)  

SciTech Connect (OSTI)

The Hanford Site Canister Storage Building (CSB Bldg. 212H) will be utilized to interim store Phase 1 HLW products. Project W-464, Immobilized High-Level Waste Interim Storage, will procure an onsite transportation system and retrofit the CSB to accommodate the Phase 1 HLW products. The Conceptual Design Report establishes the Project W-464 technical and cost basis.

Burgard, K.C.

1998-06-02T23:59:59.000Z

93

Nevada Test Site 2007 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site  

SciTech Connect (OSTI)

This report is a compilation of the groundwater sampling results from three monitoring wells located near the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS), Nye County, Nevada, for calendar year 2007. The NTS is an approximately 3,561 square kilometer (1,375 square mile) restricted-access federal installation located approximately 105 kilometers (65 miles) northwest of Las Vegas, Nevada (Figure 1). Pilot wells UE5PW-1, UE5PW-2, and UE5PW-3 are used to monitor the groundwater at the Area 5 RWMS (Figure 2). In addition to groundwater monitoring results, this report includes information regarding site hydrogeology, well construction, sample collection, and meteorological data measured at the Area 5 RWMS. The disposal of low-level radioactive waste and mixed low-level radioactive waste at the Area 5 RWMS is regulated by U.S. Department of Energy (DOE) Order 435.1, 'Radioactive Waste Management'. The disposal of mixed low-level radioactive waste is also regulated by the state of Nevada under the Resource Conservation and Recovery Act (RCRA) regulation Title 40 Code of Federal Regulations (CFR) Part 265, 'Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities' (CFR, 1999). The format of this report was requested by the Nevada Division of Environmental Protection (NDEP) in a letter dated August 12, 1997. The appearance and arrangement of this document have been modified slightly since that date to provide additional information and to facilitate the readability of the document. The objective of this report is to satisfy any Area 5 RWMS reporting agreements between DOE and NDEP.

NSTec Environmental Management

2008-01-01T23:59:59.000Z

94

Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center  

SciTech Connect (OSTI)

This report provides a quantitative inventory and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. From December 1963 through May 2000, liquid radioactive wastes generated by spent nuclear fuel reprocessing were converted into a solid, granular form called calcine. This report also contains a description of the calcine storage bins.

M. D. Staiger

2007-06-01T23:59:59.000Z

95

ivestock and poultry operations frequently use anaerobic lagoons as liquid waste storage and  

E-Print Network [OSTI]

L ivestock and poultry operations frequently use anaerobic lagoons as liquid waste storage and treatment structures. In a lagoon, organic waste is diluted with water and bacteria decompose the organic as fertilizer. Effluent also can be recycled for manure handling in a flush system. Efficiency To be efficient

Mukhtar, Saqib

96

EIS-0212: Safe Interim Storage of Hanford Tank Wastes, Hanford Site, Richland, WA  

Broader source: Energy.gov [DOE]

This environmental impact statement asseses Department of Energy and Washington State Department of Ecology maintanence of safe storage of high-level radioactive wastes currently stored in the older single-shell tanks, the Watchlist Tank 101-SY, and future waste volumes associated with tank farm and other Hanford facility operations, including a need to provide a modern safe, reliable, and regulatory-compliant replacement cross-site transfer capability. The purpose of this action is to prevent uncontrolled releases to the environment by maintaining safe storage of high-level tank wastes.

97

Fractured rock modeling in the National Waste Terminal Storage Program: a review of requirements and status  

SciTech Connect (OSTI)

Generalized computer codes capable of forming the basis for numerical models of fractured rock masses are being used within the NWTS program. Little additional development of these codes is considered justifiable, except in the area of representation of discrete fractures. On the other hand, model preparation requires definition of medium-specific constitutive descriptions and site characteristics and is therefore legitimately conducted by each of the media-oriented projects within the National Waste Terminal Storage program. However, it is essential that a uniform approach to the role of numerical modeling be adopted, including agreement upon the contribution of modeling to the design and licensing process and the need for, and means of, model qualification for particular purposes. This report discusses the role of numerical modeling, reviews the capabilities of several computer codes that are being used to support design or performance assessment, and proposes a framework for future numerical modeling activities within the NWTS program.

St. John, C.; Krug, A.; Key, S.; Monsees, J.

1983-05-01T23:59:59.000Z

98

METHODOLOGY & CALCULATIONS FOR THE ASSIGNMENT OF WASTE FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE  

SciTech Connect (OSTI)

Waste stored within tank farm double-shell tanks (DST) and single-shell tanks (SST) generates flammable gas (principally hydrogen) to varying degrees depending on the type, amount, geometry, and condition of the waste. The waste generates hydrogen through the radiolysis of water and organic compounds, thermolytic decomposition of organic compounds, and corrosion of a tank's carbon steel walls. Radiolysis and thermolytic decomposition also generates ammonia. Nonflammable gases, which act as dilutents (such as nitrous oxide), are also produced. Additional flammable gases (e.g., methane) are generated by chemical reactions between various degradation products of organic chemicals present in the tanks. Volatile and semi-volatile organic chemicals in tanks also produce organic vapors. The generated gases in tank waste are either released continuously to the tank headspace or are retained in the waste matrix. Retained gas may be released in a spontaneous or induced gas release event (GRE) that can significantly increase the flammable gas concentration in the tank headspace as described in RPP-7771, Flammable Gas Safety Isme Resolution. Appendices A through I provide supporting information. The document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste and characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 6 is the annual update of the flammable gas Waste Groups for DSTs and SSTs.

TU, T.A.

2007-01-04T23:59:59.000Z

99

METHODOLOGY & CALCULATIONS FOR THE ASSIGNMENT OF WASTE GROUPS FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE  

SciTech Connect (OSTI)

Waste stored within tank farm double-shell tanks (DST) and single-shell tanks (SST) generates flammable gas (principally hydrogen) to varying degrees depending on the type, amount, geometry, and condition of the waste. The waste generates hydrogen through the radiolysis of water and organic compounds, thermolytic decomposition of organic compounds, and corrosion of a tank's carbon steel walls. Radiolysis and thermolytic decomposition also generates ammonia. Nonflammable gases, which act as dilutents (such as nitrous oxide), are also produced. Additional flammable gases (e.g., methane) are generated by chemical reactions between various degradation products of organic chemicals present in the tanks. Volatile and semi-volatile organic chemicals in tanks also produce organic vapors. The generated gases in tank waste are either released continuously to the tank headspace or are retained in the waste matrix. Retained gas may be released in a spontaneous or induced gas release event (GRE) that can significantly increase the flammable gas concentration in the tank headspace as described in RPP-7771. The document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 5 is the annual update of the methodology and calculations of the flammable gas Waste Groups for DSTs and SSTs.

BARKER, S.A.

2006-07-27T23:59:59.000Z

100

Environmental assessment for the construction and operation of waste storage facilities at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky  

SciTech Connect (OSTI)

DOE is proposing to construct and operate 3 waste storage facilities (one 42,000 ft{sup 2} waste storage facility for RCRA waste, one 42,000 ft{sup 2} waste storage facility for toxic waste (TSCA), and one 200,000 ft{sup 2} mixed (hazardous/radioactive) waste storage facility) at Paducah. This environmental assessment compares impacts of this proposed action with those of continuing present practices aof of using alternative locations. It is found that the construction, operation, and ultimate closure of the proposed waste storage facilities would not significantly affect the quality of the human environment within the meaning of NEPA; therefore an environmental impact statement is not required.

NONE

1994-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste storage area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

CHARACTERIZING DOE HANFORD SITE WASTE ENCAPSULATION STORAGE FACILITY CELLS USING RADBALL  

SciTech Connect (OSTI)

RadBall{trademark} is a novel technology that can locate and quantify unknown radioactive hazards within contaminated areas, hot cells, and gloveboxes. The device consists of a colander-like outer tungsten collimator that houses a radiation-sensitive polymer semi-sphere. The collimator has a number of small holes with tungsten inserts; as a result, specific areas of the polymer are exposed to radiation becoming increasingly more opaque in proportion to the absorbed dose. The polymer semi-sphere is imaged in an optical computed tomography scanner that produces a high resolution 3D map of optical attenuation coefficients. A subsequent analysis of the optical attenuation data using a reverse ray tracing or backprojection technique provides information on the spatial distribution of gamma-ray sources in a given area forming a 3D characterization of the area of interest. RadBall{trademark} was originally designed for dry deployments and several tests, completed at Savannah River National Laboratory and Oak Ridge National Laboratory, substantiate its modeled capabilities. This study involves the investigation of the RadBall{trademark} technology during four submerged deployments in two water filled cells at the DOE Hanford Site's Waste Encapsulation Storage Facility.

Farfan, E.; Coleman, R.

2011-03-31T23:59:59.000Z

102

Radioactive waste shipments to Hanford Retrievable Storage from the General Electric Vallecitos Nuclear Center, Pleasanton, California  

SciTech Connect (OSTI)

During the next two decades the transuranic (TRU) wastes now stored in the burial trenches and storage facilities at the Hanford Site are to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant near Carlsbad, New Mexico for final disposal. Approximately 3.8% of the TRU waste to be retrieved for shipment to WIPP was generated at the General Electric (GE) Vallecitos Nuclear Center (VNC) in Pleasanton, California and shipped to the Hanford Site for storage. The purpose of this report is to characterize these radioactive solid wastes using process knowledge, existing records, and oral history interviews. The waste was generated almost exclusively from the activities, of the Plutonium Fuels Development Laboratory and the Plutonium Analytical Laboratory. Section 2.0 provides further details of the VNC physical plant, facility operations, facility history, and current status. The solid radioactive wastes were associated with two US Atomic Energy Commission/US Department of Energy reactor programs -- the Fast Ceramic Reactor (FCR) program, and the Fast Flux Test Reactor (FFTR) program. These programs involved the fabrication and testing of fuel assemblies that utilized plutonium in an oxide form. The types and estimated quantities of waste resulting from these programs are discussed in detail in Section 3.0. A detailed discussion of the packaging and handling procedures used for the VNC radioactive wastes shipped to the Hanford Site is provided in Section 4.0. Section 5.0 provides an in-depth look at this waste including the following: weight and volume of the waste, container types and numbers, physical description of the waste, radiological components, hazardous constituents, and current storage/disposal locations.

Vejvoda, E.J.; Pottmeyer, J.A.; DeLorenzo, D.S.; Weyns-Rollosson, M.I. [Los Alamos Technical Associates, Inc., NM (United States); Duncan, D.R. [Westinghouse Hanford Co., Richland, WA (United States)

1993-10-01T23:59:59.000Z

103

Magnetic survey of D-Area oil basin waste unit  

SciTech Connect (OSTI)

The D-Area Oil Basin RCRA Waste Unit is located north of D-Area on Savannah River Site. This Waste Unit was known, based on aerial photography and other historical data, to be the location for one or more trenches used for disposal of oil in steel drums and other refuse. In order to define the location of possible trenches on the site and to assess the possibility of the presence of additional buried objects a magnetic survey was conducted by the Environmental Monitoring Section/Groundwater Group during July, 1993, at the request of the Environmental Restoration Department. Prior to the conduct of the magnetic survey a Ground Penetrating Radar survey of the site consisting of several lines identified several areas of disturbed soil. Based on these data and other historical information the general orientation of the trenches could be inferred. The magnetic survey consists of a rectangular grid over the waste unit designed to maximize resolution of the trench edges. This report describes the magnetic survey of the D-Area Oil Basin Waste Unit.

Cumbest, R.J.; Marcy, D.; Hango, J.; Bently, S.; Hunter, B.; Cain, B.

1994-10-01T23:59:59.000Z

104

Mixed Waste Focus Area: Department of Energy complex needs report  

SciTech Connect (OSTI)

The Assistant Secretary for the Office of Environmental Management (EM) at the US Department of Energy (DOE) initiated a new approach in August of 1993 to environmental research and technology development. A key feature of this new approach included establishment of the Mixed Waste Characterization, Treatment, and Disposal Focus Area (MWFA). The mission of the MWFA is to identify, develop, and implement needed technologies such that the major environmental management problems related to meeting DOE`s commitments for treatment of mixed wastes under the Federal Facility Compliance Act (FFCA), and in accordance with the Land Disposal Restrictions (LDR) of the Resource Conservation and Recovery Act (RCRA), can be addressed, while cost-effectively expending the funding resources. To define the deficiencies or needs of the EM customers, the MWFA analyzed Proposed Site Treatment Plans (PSTPs), as well as other applicable documents, and conducted site visits throughout the summer of 1995. Representatives from the Office of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60) at each site visited were requested to consult with the Focus Area to collaboratively define their technology needs. This report documents the needs, deficiencies, technology gaps, and opportunities for expedited treatment activities that were identified during the site visit process. The defined deficiencies and needs are categorized by waste type, namely Wastewaters, Combustible Organics, Sludges/Soils, Debris/Solids, and Unique Wastes, and will be prioritized based on the relative affect the deficiency has on the DOE Complex.

Roach, J.A.

1995-11-16T23:59:59.000Z

105

Hanford facility dangerous waste permit application, 616 Nonradioactive dangerous waste storage facility  

SciTech Connect (OSTI)

This chapter provides information on the physical, chemical, and biological characteristics of the waste stored at the 616 NRDWSF. A waste analysis plan is included that describes the methodology used for determining waste types.

Price, S.M.

1997-04-30T23:59:59.000Z

106

Proposed rulemaking on the storage and disposal of nuclear waste. Cross-statement of the United States Department of Energy  

SciTech Connect (OSTI)

The US DOE cross-statement in the matter of proposed rulemaking in the storage and disposal of nuclear wastes is presented. It is concluded from evidence contained in the document that: (1) spent fuel can be disposed of in a manner that is safe and environmentally acceptable; (2) present plans for establishing geological repositories are an effective and reasonable means of disposal; (3) spent nuclear fuel from licensed facilities can be stored in a safe and environmentally acceptable manner on-site or off-site until disposal facilities are ready; (4) sufficient additional storage capacity for spent fuel will be established; and (5) the disposal and interim storage systems for spent nuclear fuel will be integrated into an acceptable operating system. It was recommended that the commission should promulgate a rule providing that the safety and environmental implications of spent nuclear fuel remaining on site after the anticipated expiration of the facility licenses involved need not be considered in individual facility licensing proceedings. A prompt finding of confidence in the nuclear waste disposal and storage area by the commission is also recommeded. (DMC)

None

1980-09-05T23:59:59.000Z

107

Statement of position of the United States Department of Energy in the matter of proposed rulemaking on the storage and disposal of nuclear waste (waste confidence rulemaking)  

SciTech Connect (OSTI)

Purpose of this proceeding is to assess generically the degree of assurance that the radioactive waste can be safely disposed of, to determine when such disposal or off-site storage will be available, and to determine whether wastes can be safely stored on-site past license expiration until off-site disposal/storage is available. (DLC)

None

1980-04-15T23:59:59.000Z

108

Waste status and transaction record summary for the northwest quadrant of the Hanford 200 Area  

SciTech Connect (OSTI)

This supporting document contains a database of waste transactions and waste status reports for all the waste tanks in the northwest quadrant of the 200 West Area of the Hanford Site.

Agnew, S.F.; Corbin, R.A.; Duran, T.B.; Jurgensen, K.A.; Ortiz, T.P.; Young, B.L. [Los Alamos National Lab., NM (United States)

1995-09-01T23:59:59.000Z

109

A Generalized Replica Placement Strategy to Optimize Latency in a Wide Area Distributed Storage System  

E-Print Network [OSTI]

, CT USA john.chandy at uconn.edu ABSTRACT Wide area distributed storage systems leverage the scale is a peer-to-peer system that can pool disparate distributed resources into a cohesive storage system as inspiration, many global storage systems have used a peer to peer network framework as the underlying

Chandy, John A.

110

Carbon storage and sequestration by trees in urban and community areas of the United States  

E-Print Network [OSTI]

Carbon storage and sequestration by trees in urban and community areas of the United States David J forestry Tree cover Forest inventory a b s t r a c t Carbon storage and sequestration by urban trees to determine total urban forest carbon storage and annual sequestration by state and nationally. Urban whole

111

Waste-Lithium-Liquid (WLL) Flow Battery for Stationary Energy Storage Applications Youngsik Kim* and Nina MahootcheianAsl  

E-Print Network [OSTI]

Waste-Lithium-Liquid (WLL) Flow Battery for Stationary Energy Storage Applications Youngsik Kim in a Waste-Lithium-Liquid (WLL) flow battery that can be used in a stationary energy storage application. Li* and Nina MahootcheianAsl Richard Lugar Center for Renewable Energy, Department of Mechanical Engineering

Zhou, Yaoqi

112

METHODOLOGY AND CALCULATIONS FOR THE ASSIGNMENT OF WASTE GROUPS FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE  

SciTech Connect (OSTI)

The Hanford Site contains 177 large underground radioactive waste storage tanks (28 double-shell tanks and 149 single-shell tanks). These tanks are categorized into one of three waste groups (A, B, and C) based on their waste and tank characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement gas release event. Assignments of waste groups to the 177 double-shell tanks and single-shell tanks, as reported in this document, are based on a Monte Carlo analysis of three criteria. The first criterion is the headspace flammable gas concentration following release of retained gas. This criterion determines whether the tank contains sufficient retained gas such that the well-mixed headspace flammable gas concentration would reach 100% of the lower flammability limit if the entire tank's retained gas were released. If the volume of retained gas is not sufficient to reach 100% of the lower flammability limit, then flammable conditions cannot be reached and the tank is classified as a waste group C tank independent of the method the gas is released. The second criterion is the energy ratio and considers whether there is sufficient supernatant on top of the saturated solids such that gas-bearing solids have the potential energy required to break up the material and release gas. Tanks that are not waste group C tanks and that have an energy ratio < 3.0 do not have sufficient potential energy to break up material and release gas and are assigned to waste group B. These tanks are considered to represent a potential induced flammable gas release hazard, but no spontaneous buoyant displacement flammable gas release hazard. Tanks that are not waste group C tanks and have an energy ratio {ge} 3.0, but that pass the third criterion (buoyancy ratio < 1.0, see below) are also assigned to waste group B. Even though the designation as a waste group B (or A) tank identifies the potential for an induced flammable gas release hazard, the hazard only exists for specific operations that can release the retained gas in the tank at a rate and quantity that results in reaching 100% of the lower flammability limit in the tank headspace. The identification and evaluation of tank farm operations that could cause an induced flammable gas release hazard in a waste group B (or A) tank are included in other documents. The third criterion is the buoyancy ratio. This criterion addresses tanks that are not waste group C double-shell tanks and have an energy ratio {ge} 3.0. For these double-shell tanks, the buoyancy ratio considers whether the saturated solids can retain sufficient gas to exceed neutral buoyancy relative to the supernatant layer and therefore have buoyant displacement gas release events. If the buoyancy ratio is {ge} 1.0, that double-shell tank is assigned to waste group A. These tanks are considered to have a potential spontaneous buoyant displacement flammable gas release hazard in addition to a potential induced flammable gas release hazard. This document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 8 is the annual update of the calculations of the flammable gas Waste Groups for DSTs and SSTs.

WEBER RA

2009-01-16T23:59:59.000Z

113

METHODOLOGY AND CALCULATIONS FOR THE ASSIGNMENT OF WASTE GROUPS FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE  

SciTech Connect (OSTI)

This document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 7 is the annual update of the calculations of the flammable gas Waste Groups for DSTs and SSTs. The Hanford Site contains 177 large underground radioactive waste storage tanks (28 double-shell tanks and 149 single-shell tanks). These tanks are categorized into one of three waste groups (A, B, and C) based on their waste and tank characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement gas release event. Assignments of waste groups to the 177 double-shell tanks and single-shell tanks, as reported in this document, are based on a Monte Carlo analysis of three criteria. The first criterion is the headspace flammable gas concentration following release of retained gas. This criterion determines whether the tank contains sufficient retained gas such that the well-mixed headspace flammable gas concentration would reach 100% of the lower flammability limit if the entire tank's retained gas were released. If the volume of retained gas is not sufficient to reach 100% of the lower flammability limit, then flammable conditions cannot be reached and the tank is classified as a waste group C tank independent of the method the gas is released. The second criterion is the energy ratio and considers whether there is sufficient supernatant on top of the saturated solids such that gas-bearing solids have the potential energy required to break up the material and release gas. Tanks that are not waste group C tanks and that have an energy ratio < 3.0 do not have sufficient potential energy to break up material and release gas and are assigned to waste group B. These tanks are considered to represent a potential induced flammable gas release hazard, but no spontaneous buoyant displacement flammable gas release hazard. Tanks that are not waste group C tanks and have an energy ratio {ge} 3.0, but that pass the third criterion (buoyancy ratio < 1.0, see below) are also assigned to waste group B. Even though the designation as a waste group B (or A) tank identifies the potential for an induced flammable gas release hazard, the hazard only exists for specific operations that can release the retained gas in the tank at a rate and quantity that results in reaching 100% of the lower flammability limit in the tank headspace. The identification and evaluation of tank farm operations that could cause an induced flammable gas release hazard in a waste group B (or A) tank are included in other documents. The third criterion is the buoyancy ratio. This criterion addresses tanks that are not waste group C double-shell tanks and have an energy ratio {ge} 3.0. For these double-shell tanks, the buoyancy ratio considers whether the saturated solids can retain sufficient gas to exceed neutral buoyancy relative to the supernatant layer and therefore have buoyant displacement gas release events. If the buoyancy ratio is {ge} 1.0, that double-shell tank is assigned to waste group A. These tanks are considered to have a potential spontaneous buoyant displacement flammable gas release hazard in addition to a potential induced flammable gas release hazard.

FOWLER KD

2007-12-27T23:59:59.000Z

114

Fact #775: April 15, 2013 Top Ten Urban Areas for Fuel Wasted...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Information &127;Top Ten Urban Areas for Fuel Wasted due to Traffic Congestion, 2011 Rank Urban Area Fuel Wasted due to Congestion (Million Gallons) 1 New York-Newark NY-NJ-CT...

115

Cryograb: A Novel Approach to the Retrieval of Waste from Underground Storage Tanks - 13501  

SciTech Connect (OSTI)

The UK's National Nuclear Laboratory (NNL) is investigating the use of cryogenic technology for the recovery of nuclear waste. Cryograb, freezing the waste on a 'cryo-head' and then retrieves it as a single mass which can then be treated or stabilized as necessary. The technology has a number of benefits over other retrieval approaches in that it minimizes sludge disturbance thereby reducing effluent arising and it can be used to de-water, and thereby reduce the volume of waste. The technology has been successfully deployed for a variety of nuclear and non-nuclear waste recovery operations. The application of Cryograb for the recovery of waste from US underground storage tanks is being explored through a US DOE International Technology Transfer and Demonstration programme. A sample deployment being considered involves the recovery of residual mounds of sludge material from waste storage tanks at Savannah River. Operational constraints and success criteria were agreed prior to the completion of a process down selection exercise which specified the preferred configuration of the cryo-head and supporting plant. Subsequent process modeling identified retrieval rates and temperature gradients through the waste and tank infrastructure. The work, which has been delivered in partnership with US DOE, SRNL, NuVision Engineering and Frigeo AB has demonstrated the technical feasibility of the approach (to TRL 2) and has resulted in the allocation of additional funding from DOE to take the programme to bench and cold pilot-scale trials. (authors)

O'Brien, Luke; Baker, Stephen; Bowen, Bob [UK National Nuclear Laboratory, Chadwick House, Warrington (United Kingdom)] [UK National Nuclear Laboratory, Chadwick House, Warrington (United Kingdom); Mallick, Pramod; Smith, Gary [US Department of Energy (United States)] [US Department of Energy (United States); King, Bill [Savannah River National Laboratory (United States)] [Savannah River National Laboratory (United States); Judd, Laurie [NuVision Engineering (United States)] [NuVision Engineering (United States)

2013-07-01T23:59:59.000Z

116

Solid Waste Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee)  

Broader source: Energy.gov [DOE]

The Solid Waste Disposal Laws and Regulations are found in Tenn. Code 68-211. These rules are enforced and subject to change by the Public Waste Board (PWB), which is established by the Division...

117

A Comparative Review of Hydrologic Issues Involved in Geologic Storage of CO2 and Injection Disposal of Liquid Waste  

SciTech Connect (OSTI)

The paper presents a comparison of hydrologic issues and technical approaches used in deep-well injection and disposal of liquid wastes, and those issues and approaches associated with injection and storage of CO{sub 2} in deep brine formations. These comparisons have been discussed in nine areas: (1) Injection well integrity; (2) Abandoned well problems; (3) Buoyancy effects; (4) Multiphase flow effects; (5) Heterogeneity and flow channeling; (6) Multilayer isolation effects; (7) Caprock effectiveness and hydrogeomechanics; (8) Site characterization and monitoring; and (9) Effects of CO{sub 2} storage on groundwater resources There are considerable similarities, as well as significant differences. Scientifically and technically, these two fields can learn much from each other. The discussions presented in this paper should help to focus on the key scientific issues facing deep injection of fluids. A substantial but by no means exhaustive reference list has been provided for further studies into the subject.

Tsang, C.-F.; Birkholzer, J.; Rutqvist, J.

2008-04-15T23:59:59.000Z

118

Seismic design and evaluation guidelines for the Department of Energy high-level waste storage tanks and appurtenances  

SciTech Connect (OSTI)

This document provides guidelines for the design and evaluation of underground high-level waste storage tanks due to seismic loads. Attempts were made to reflect the knowledge acquired in the last two decades in the areas of defining the ground motion and calculating hydrodynamic loads and dynamic soil pressures for underground tank structures. The application of the analysis approach is illustrated with an example. The guidelines are developed for specific design of underground storage tanks, namely double-shell structures. However, the methodology discussed is applicable for other types of tank structures as well. The application of these and of suitably adjusted versions of these concepts to other structural types will be addressed in a future version of this document.

Bandyopadhyay, K.; Cornell, A.; Costantino, C.; Kennedy, R.; Miller, C.; Veletsos, A.

1993-01-01T23:59:59.000Z

119

Borehole Miner - Extendible Nozzle Development for Radioactive Waste Dislodging and Retrieval from Underground Storage Tanks  

SciTech Connect (OSTI)

This report summarizes development of borehole-miner extendible-nozzle water-jetting technology for dislodging and retrieving salt cake, sludge} and supernate to remediate underground storage tanks full of radioactive waste. The extendible-nozzle development was based on commercial borehole-miner technology.

CW Enderlin; DG Alberts; JA Bamberger; M White

1998-09-25T23:59:59.000Z

120

The development of a management strategy for interim storage and final disposal of nuclear wastes  

SciTech Connect (OSTI)

The overall waste management strategy for alternative routes from reactor to final disposal, including dry interim storage, is discussed. Within the framework of a preliminary structure plan possible technical solutions must be investigated, and with sufficient relevant information available the future progress of the project, can be addressed on the base of a decision analysis.

Engelmann, H.J.; Popp, F.W. [Deutsche Gesellschaft zum Bau and Betrieb von Endglagern fuer Abfallostofe mbH, Peine (Germany); Arntzen, P.; Botzem, W. [NUKEM GmbH, Alzenau (Germany); Soucek, B. [Czech Power Board, Prague (Czech Republic)

1993-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "waste storage area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Thermal Energy Storage/Waste Heat Recovery Applications in the Cement Industry  

E-Print Network [OSTI]

, and the Portland Cement Association have studied the potential benefits of using waste heat recovery methods and thermal energy storage systems in the cement manufacturing process. This work was performed under DOE Contract No. EC-77-C-01-50S4. The study has been...

Beshore, D. G.; Jaeger, F. A.; Gartner, E. M.

1979-01-01T23:59:59.000Z

122

Supplemental design requirements document enhanced radioactive and mixed waste storage Phase V Project W-112  

SciTech Connect (OSTI)

This document provides additional and supplemental information to WHC-SD-W112-FDC-001, Project W-112 for radioactive and mixed waste storage. It provides additional requirements for the design and summarizes Westinghouse Hanford Company key design guidance and establishes the technical baseline agreements to be used for definitive design of the Project W-112 facilities.

Ocampo, V.P.; Boothe, G.F.; Greager, T.M.; Johnson, K.D.; Kooiker, S.L.; Martin, J.D.

1994-11-01T23:59:59.000Z

123

Spent fuel storage and waste management fuel cycle optimization using CAFCA  

SciTech Connect (OSTI)

Spent fuel storage modeling is at the intersection of nuclear fuel cycle system dynamics and waste management policy. A model that captures the economic parameters affecting used nuclear fuel storage location options, which complements fuel cycle economic assessment has been created using CAFCA (Code for Advanced Fuel Cycles Assessment) of MIT. Research has also expanded to the study on dependency of used nuclear fuel storage economics, environmental impact, and proliferation risk. Three options of local, regional, and national storage were studied. The preliminary product of this research is the creation of a system dynamics tool known as the Waste Management Module which provides an easy to use interface for education on fuel cycle waste management economic impacts. Storage options costs can be compared to literature values with simple variation available for sensitivity study. Additionally, a first of a kind optimization scheme for the nuclear fuel cycle analysis is proposed and the applications of such an optimization are discussed. The main tradeoff for fuel cycle optimization was found to be between economics and most of the other identified metrics. (authors)

Brinton, S.; Kazimi, M. [Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge MA 02139 (United States)

2013-07-01T23:59:59.000Z

124

An Underground Storage Tank Integrated Demonstration report. Volume 1, Waste Characterization Data and Technology Development Needs Assessment  

SciTech Connect (OSTI)

The Waste Characterization Data and Technology Development Needs Assessment provides direct support to the Underground Storage Tank Integrated Demonstration (UST-ID). Key users of the study`s products may also include individuals and programs within the US Department of Energy (DOE) Office of Technology Development (EM-50), the Office of Waste Operations (EM-30), and the Office of Environmental Restoration (EM-40). The goal of this work is to provide the UST-ID with a procedure for allocating funds across competing characterization technologies in a timely and defensible manner. It resulted in three primary products: 1. It organizes and summarizes information on underground storage tank characterization data needs. 2. It describes current technology development activity related to each need and flags areas where technology development may be beneficial. 3. It presents a decision process, with supporting software, for evaluating, prioritizing, and integrating possible technology development funding packages. The data presented in this document can be readily updated as the needs of the Waste Operations and Environmental Restoration programs mature and as new and promising technology development options emerge.

Quadrel, M.J.; Hunter, V.L.; Young, J.K. [Pacific Northwest Lab., Richland, WA (United States); Lini, D.C.; Goldberg, C. [Westinghouse Hanford Co., Richland, WA (United States)

1993-04-01T23:59:59.000Z

125

Radionuclide concentrations in vegetation at radioactive-waste disposal Area G during the 1994 growing season  

SciTech Connect (OSTI)

Overstory (pinon pine) and understory (grass and forb) vegetation samples were collected within and around selected points at Area G-a low-level radioactive solid-waste disposal facility at Los Alamos National Laboratory-for the analysis of tritium ({sup 3}H), strontium ({sup 90}Sr), plutonium ({sup 238} Pu and {sup 239}Pu), cesium ({sup 137}Cs), americium ({sup 241}Am), and total uranium. In general, most vegetation samples collected within and around Area G contained radionuclide levels in higher concentrations than vegetation collected from background areas. Tritium, in particular, was detected as high as 5,800 pCi/mL in overstory vegetation collected outside the fence just west of the tritium shafts; this suggests that tritium is migrating from this waste repository through subsurface pathways. Also, understory vegetation collected north of the transuranic (TRU) pads (outside the fence of Area G) contained the highest values of {sup 90}Sr, {sup 238}Pu, {sup 239}Pu, {sup 137}Cs, and {sup 241}Am, and may be a result of surface holding, storage, or disposal activities.

Fresquez, P.R.; Biggs, J.B.; Bennett, K.D.

1995-07-01T23:59:59.000Z

126

Design report for the interim waste containment facility at the Niagara Falls Storage Site. [Surplus Facilities Management Program  

SciTech Connect (OSTI)

Low-level radioactive residues from pitchblende processing and thorium- and radium-contaminated sand, soil, and building rubble are presently stored at the Niagara Falls Storage Site (NFSS) in Lewiston, New York. These residues and wastes derive from past NFSS operations and from similar operations at other sites in the United States conducted during the 1940s by the Manhattan Engineer District (MED) and subsequently by the Atomic Energy Commission (AEC). The US Department of Energy (DOE), successor to MED/AEC, is conducting remedial action at the NFSS under two programs: on-site work under the Surplus Facilities Managemnt Program and off-site cleanup of vicinity properties under the Formerly Utilized Sites Remedial Action Program. On-site remedial action consists of consolidating the residues and wastes within a designated waste containment area and constructing a waste containment facility to prevent contaminant migration. The service life of the system is 25 to 50 years. Near-term remedial action construction activities will not jeopardize or preclude implementation of any other remedial action alternative at a later date. Should DOE decide to extend the service life of the system, the waste containment area would be upgraded to provide a minimum service life of 200 years. This report describes the design for the containment system. Pertinent information on site geology and hydrology and on regional seismicity and meteorology is also provided. Engineering calculations and validated computer modeling studies based on site-specific and conservative parameters confirm the adequacy of the design for its intended purposes of waste containment and environmental protection.

Not Available

1986-05-01T23:59:59.000Z

127

Hanford Site River Protection Project High-Level Waste Safe Storage and Retrieval  

SciTech Connect (OSTI)

This paper provides an update from last year and describes project successes and issues associated with the management and work required to safely store, enhance readiness for waste feed delivery, and prepare for treated waste receipts for the approximately 53 million gallons of mixed and high-level waste currently in aging tanks at the Hanford Site. The Hanford Site is a 560 square-mile area in southeastern Washington State near Richland, Washington.

Aromi, E. S.; Raymond, R. E.; Allen, D. I.; Payne, M. A.; DeFigh-Price, C.; Kristofzski, J. G.; Wiegman, S. A.

2002-02-25T23:59:59.000Z

128

Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center  

SciTech Connect (OSTI)

This comprehensive report provides definitive volume, mass, and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. Calcine composition data are required for regulatory compliance (such as permitting and waste disposal), future treatment of the caline, and shipping the calcine to an off-Site-facility (such as a geologic repository). This report also contains a description of the calcine storage bins. The Calcined Solids Storage Facilities (CSSFs) were designed by different architectural engineering firms and built at different times. Each CSSF has a unique design, reflecting varying design criteria and lessons learned from historical CSSF operation. The varying CSSF design will affect future calcine retrieval processes and equipment. Revision 4 of this report presents refinements and enhancements of calculations concerning the composition, volume, mass, chemical content, and radioactivity of calcined waste produced and stored within the CSSFs. The historical calcine samples are insufficient in number and scope of analysis to fully characterize the entire inventory of calcine in the CSSFs. Sample data exist for all the liquid wastes that were calcined. This report provides calcine composition data based on liquid waste sample analyses, volume of liquid waste calcined, calciner operating data, and CSSF operating data using several large Microsoft Excel (Microsoft 2003) databases and spreadsheets that are collectively called the Historical Processing Model. The calcine composition determined by this method compares favorably with historical calcine sample data.

Staiger, M. Daniel, Swenson, Michael C.

2011-09-01T23:59:59.000Z

129

CSER 94-004: Criticality safety of double-shell waste storage tanks  

SciTech Connect (OSTI)

This criticality safety evaluation covers double-shell waste storage tanks (DSTs), double-contained receiver tanks (DCRTs), vault tanks, and the 242-A Evaporator located in the High Level Waste (HLW) Tank Farms on the Hanford Site. Limits and controls are specified and the basis for ensuring criticality safety is discussed. A minimum limit of 1,000 is placed upon the solids/plutonium mass ratio in incoming waste. The average solids/Pu mass ratio over all waste in tank farms is estimated to be about 74,500, about 150 times larger than required to assure subcriticality in homogeneous waste. PFP waste in Tank-102-SY has an estimated solids/Pu mass ratio of 10,000. Subcriticality is assured whenever the plutonium concentration is less than 2.6 g. The median reported plutonium concentration for 200 samples of waste solids is about 0.01 g (0.038 g/gal). A surveillance program is proposed to increase the knowledge of the waste and provide added assurance of the high degree of subcriticality.

Rogers, C.A.

1994-09-22T23:59:59.000Z

130

State waste discharge permit application 400 Area secondary cooling water. Revision 2  

SciTech Connect (OSTI)

This document constitutes the Washington Administrative Code 173-216 State Waste Discharge Permit Application that serves as interim compliance as required by Consent Order DE 91NM-177, for the 400 Area Secondary Cooling Water stream. As part of the Hanford Federal Facility Agreement and Consent Order negotiations, the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site that affect groundwater or have the potential to affect groundwater would be subject to permitting under the structure of Chapter 173-216 of the Washington Administrative Code, the State Waste Discharge Permitting Program. As a result of this decision, the Washington State Department of Ecology and the US Department of Energy, Richland Operations Office entered into Consent Order DE 91NM-177. The Consent Order DE 91NM-177 requires a series of permitting activities for liquid effluent discharges. Based upon compositional and flow rate characteristics, liquid effluent streams on the Hanford Site have been categorized into Phase 1, Phase 2, and Miscellaneous streams. This document only addresses the 400 Area Secondary Cooling Water stream, which has been identified as a Phase 2 stream. The 400 Area Secondary Cooling Water stream includes contribution streams from the Fuels and Materials Examination Facility, the Maintenance and Storage Facility, the 481-A pump house, and the Fast Flux Test Facility.

NONE

1996-01-01T23:59:59.000Z

131

EA-1962: Analysis for Below Grade Suspect Transuranic (TRU) Waste at Technical Area (TA)-54  

Broader source: Energy.gov [DOE]

DOE is preparing an EA to evaluate the legacy suspect transuranic (TRU) waste at Area G for the purposes of reclassification of waste type and determination of a final disposal path. Per DOE Order 435.1, Change 1, Radioactive Waste Management, and its associated guide, legacy waste at Los Alamos National Laboratory that contained TRU waste was stored and managed as TRU waste. The waste was given an interim classification for the purposes of applying the most restrictive standard until the waste could be adequately characterized and a final determination on the disposition classification was made.

132

Class 1 Permit Modification Notification Addition of Structures within Technical Area 54, Area G, Pad 11, Dome 375 Los Alamos National Laboratory Hazardous Waste Facility Permit, July 2012  

SciTech Connect (OSTI)

The purpose of this letter is to notify the New Mexico Environment Department-Hazardous Waste Bureau (NMED-HWB) of a Class 1 Permit Modification to the Los Alamos National Laboratory (LANL) Hazardous Waste Facility Permit issued to the Department of Energy (DOE) and Los Alamos National Security, LLC (LANS) in November 2010. The modification adds structures to the container storage unit at Technical Area (TA) 54 Area G, Pad 11. Permit Section 3.1(3) requires that changes to the location of a structure that does not manage hazardous waste shall be changed within the Permit as a Class 1 modification without prior approval in accordance with Code of Federal Regulations, Title 40 (40 CFR), {section}270.42(a)(1). Structures have been added within Dome 375 located at TA-54, Area G, Pad 11 that will be used in support of waste management operations within Dome 375 and the modular panel containment structure located within Dome 375, but will not be used as waste management structures. The Class 1 Permit Modification revises Figure 36 in Attachment N, Figures; and Figure G.12-1 in Attachment G.12, Technical Area 54, Area G, Pad 11 Outdoor Container Storage Unit Closure Plan. Descriptions of the structures have also been added to Section A.4.2.9 in Attachment A, TA - Unit Descriptions; and Section 2.0 in Attachment G.12, Technical Area 54, Area G, Pad 11 Outdoor Container Storage Unit Closure Plan. Full description of the permit modification and the necessary changes are included in Enclosure 1. The modification has been prepared in accordance with 40 CFR {section}270.42(a)(l). This package includes this letter and an enclosure containing a description of the permit modification, text edits of the Permit sections, and the revised figures (collectively LA-UR-12-22808). Accordingly, a signed certification page is also enclosed. Three hard copies and one electronic copy of this submittal will be delivered to the NMED-HWB.

Vigil-Holterman, Luciana R. [Los Alamos National Laboratory; Lechel, Robert A. [Los Alamos National Laboratory

2012-08-31T23:59:59.000Z

133

Technical area status report for low-level mixed waste final waste forms. Volume 1  

SciTech Connect (OSTI)

The Final Waste Forms (FWF) Technical Area Status Report (TASR) Working Group, the Vitrification Working Group (WG), and the Performance Standards Working Group were established as subgroups to the FWF Technical Support Group (TSG). The FWF TASR WG is comprised of technical representatives from most of the major DOE sites, the Nuclear Regulatory Commission (NRC), the EPA Office of Solid Waste, and the EPA`s Risk Reduction Engineering Laboratory (RREL). The primary activity of the FWF TASR Working Group was to investigate and report on the current status of FWFs for LLNM in this TASR. The FWF TASR Working Group determined the current status of the development of various waste forms described above by reviewing selected articles and technical reports, summarizing data, and establishing an initial set of FWF characteristics to be used in evaluating candidate FWFS; these characteristics are summarized in Section 2. After an initial review of available information, the FWF TASR Working Group chose to study the following groups of final waste forms: hydraulic cement, sulfur polymer cement, glass, ceramic, and organic binders. The organic binders included polyethylene, bitumen, vinyl ester styrene, epoxy, and urea formaldehyde. Section 3 provides a description of each final waste form. Based on the literature review, the gaps and deficiencies in information were summarized, and conclusions and recommendations were established. The information and data presented in this TASR are intended to assist the FWF Production and Assessment TSG in evaluating the Technical Task Plans (TTPs) submitted to DOE EM-50, and thus provide DOE with the necessary information for their FWF decision-making process. This FWF TASR will also assist the DOE and the MWIP in establishing the most acceptable final waste forms for the various LLMW streams stored at DOE facilities.

Mayberry, J.L.; DeWitt, L.M. [Science Applications International Corp., Idaho Falls, ID (United States); Darnell, R. [EG and G Idaho, Inc., Idaho Falls, ID (United States)] [and others

1993-08-01T23:59:59.000Z

134

Nevada National Security Site 2012 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Site  

SciTech Connect (OSTI)

Environmental monitoring data are collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada National Security Site (NNSS). These data are associated with radiation exposure, air, groundwater, meteorology, and vadose zone. This report summarizes the 2012 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports (National Security Technologies, LLC, 2012; 2013a; 2013b). Direct radiation monitoring data indicate exposure levels at the RWMSs are within the range of background levels measured at the NNSS. Slightly elevated exposure levels outside the Area 3 RWMS are attributed to nearby historical aboveground nuclear weapons tests. Air monitoring data show tritium concentrations in water vapor and americium and plutonium concentrations in air particles are only slightly above detection limits and background levels. The measured levels of radionuclides in air particulates and moisture are below Derived Concentration Standards for these radionuclides. Groundwater monitoring data indicate the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by RWMS operations. Results of groundwater analysis from wells around the Area 5 RWMS were all below established investigation levels. Leachate samples collected from the leachate collection system at the mixed low-level waste cell were below established contaminant regulatory limits. The 133.9 millimeters (mm) (5.27 inches [in.]) of precipitation at the Area 3 RWMS during 2012 is 12% below the average of 153.0 mm (6.02 in.), and the 137.6 mm (5.42 in.) of precipitation at the Area 5 RWMS during 2012 is 11% below the average of 122.4 mm (4.82 in.). Water balance measurements indicate that evapotranspiration from the vegetated weighing lysimeter dries the soil and prevents downward percolation of precipitation more effectively than evaporation from the bare-soil weighing lysimeter. Automated vadose zone monitoring on Area 5 and Area 3 RWMS cell covers show no evidence of precipitation percolating through the cover to the waste. Moisture from precipitation did not percolate below 60 centimeters (cm) (2 feet [ft]) in the vegetated final cover on the U-3ax/bl disposal unit at the Area 3 RWMS, and moisture from precipitation and irrigation did not percolate below 45 cm (1.5 ft) on the 92-Acre Area final cover. Irrigation was applied to this cover for seed germination and plant growth. During 2012, there was no drainage through 2.4 meters (8 ft) of soil from the Area 3 drainage lysimeters that received only natural precipitation. Twenty percent of the applied precipitation and irrigation drained from the bare-soil drainage lysimeter that received 3 times natural precipitation. All 2012 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing within expectations of the model and parameter assumptions for the facility PAs.

Hudson, David B.

2013-09-10T23:59:59.000Z

135

Nevada National Security Site 2013 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Site  

SciTech Connect (OSTI)

Environmental monitoring data are collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) within the Nevada National Security Site (NNSS). These data are associated with radiation exposure, air, groundwater, meteorology, and vadose zone. This report summarizes the 2013 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports (National Security Technologies, LLC, 2013; 2014a; 2014b). Direct radiation monitoring data indicate exposure levels at the RWMSs are within the range of background levels measured at the NNSS. Slightly elevated exposure levels outside the Area 3 RWMS are attributed to nearby historical aboveground nuclear weapons tests. Air monitoring data show tritium concentrations in water vapor and americium and plutonium concentrations in air particles are close to detection limits and background levels. The measured levels of radionuclides in air particulates and moisture are below Derived Concentration Standards for these radionuclides. Groundwater monitoring data indicate the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by RWMS operations. Results of groundwater analysis from wells around the Area 5 RWMS were all below established investigation levels. Leachate samples collected from the leachate collection system at the mixed low-level waste cell were below established contaminant regulatory limits. The 105.8 millimeters (mm) (4.17 inches [in.]) of precipitation at the Area 3 RWMS during 2013 is 30% below the average of 150.3 mm (5.92 in.), and the 117.5 mm (4.63 in.) of precipitation at the Area 5 RWMS during 2013 is 5% below the average of 123.6 mm (4.86 in.). Water balance measurements indicate that evapotranspiration from the vegetated weighing lysimeter dries the soil and prevents downward percolation of precipitation more effectively than evaporation from the bare-soil weighing lysimeter. Automated vadose zone monitoring on Area 5 and Area 3 RWMS cell covers show no evidence of precipitation percolating through the cover to the waste. Moisture from precipitation did not percolate below 60 centimeters (cm) (2 feet [ft]) in the vegetated final cover on the U-3ax/bl disposal unit at the Area 3 RWMS, and moisture from precipitation and irrigation did not percolate below 45 cm (1.5 ft) on the 92-Acre Area final cover. Irrigation was applied to this cover for seed germination and plant growth. During 2013, there was no drainage through 2.4 meters (8 ft) of soil from the Area 3 drainage lysimeters that received only natural precipitation. Twenty percent of the applied precipitation and irrigation drained from the bare-soil drainage lysimeter that received 3-times natural precipitation. All 2013 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing within expectations of the model and parameter assumptions for the facility PAs.

Hudson, D. B.

2014-08-19T23:59:59.000Z

136

A Short History of Hanford Waste Generation, Storage, and Release  

SciTech Connect (OSTI)

Nine nuclear reactors and four reprocessing plants at Hanford produced nearly two-thirds of the plutonium used in the United States for government purposes . These site operations also created large volumes of radioactive and chemical waste. Some contaminants were released into the environment, exposing people who lived downwind and downstream. Other contaminants were stored. The last reactor was shut down in 1987, and the last reprocessing plant closed in 1990. Most of the human-made radioactivity and about half of the chemicals remaining onsite are kept in underground tanks and surface facilities. The rest exists in the soil, groundwater, and burial grounds. Hanford contains about 40% of all the radioactivity that exists across the nuclear weapons complex. Today, environmental restoration activities are under way.

Gephart, Roy E.

2003-10-01T23:59:59.000Z

137

Steam reforming as a method to treat Hanford underground storage tank (UST) wastes  

SciTech Connect (OSTI)

This report summarizes a Sandia program that included partnerships with Lawrence Livermore National Laboratory and Synthetica Technologies, Inc. to design and test a steam reforming system for treating Hanford underground storage tank (UST) wastes. The benefits of steam reforming the wastes include the resolution of tank safety issues and improved radionuclide separations. Steam reforming destroys organic materials by first gasifying, then reacting them with high temperature steam. Tests indicate that up to 99% of the organics could be removed from the UST wastes by steam exposure. In addition, it was shown that nitrates in the wastes could be destroyed by steam exposure if they were first distributed as a thin layer on a surface. High purity alumina and nickel alloys were shown to be good candidates for materials to be used in the severe environment associated with steam reforming the highly alkaline, high nitrate content wastes. Work was performed on designing, building, and demonstrating components of a 0.5 gallon per minute (gpm) system suitable for radioactive waste treatment. Scale-up of the unit to 20 gpm was also considered and is feasible. Finally, process demonstrations conducted on non-radioactive waste surrogates were carried out, including a successful demonstration of the technology at the 0.1 gpm scale.

Miller, J.E.; Kuehne, P.B. [eds.] [and others

1995-07-01T23:59:59.000Z

138

Assessment of the Electrical Power Requirements for Continued Safe Storage and Waste Feed Delivery Phase 1  

SciTech Connect (OSTI)

This study evaluated the ability of the electrical distribution system to support safe storage as well as the first phase of the Waste Feed Delivery. Several recommendations are made to improve the electrical system. The ability to assure adequate Waste Feed Delivery (WFD) to the Privatization Contractor's vitrification facility is a key element in the overall Hanford cleanup schedule. An important aspect of this WFD is the availability of sufficient and appropriate electrical power in the single- and double-shell tank farms. The methodology for performing this review and the results are described.

MAY, T.H.

2000-04-07T23:59:59.000Z

139

A ground-coupled storage heat pump system with waste heat recovery  

SciTech Connect (OSTI)

This paper reports on an experimental single-family residence that was constructed to demonstrate integration of waste heat recovery and seasonal energy storage using both a ventilating and a ground-coupled heat pump. Called the Idaho energy Conservation Technology House, it combines superinsulated home construction with a ventilating hot water heater and a ground coupled water-to-water heat pump system. The ground heat exchangers are designed to economically promote seasonal and waste heat storage. Construction of the house was completed in the spring of 1989. Located in Moscow, Idaho, the house is occupied by a family of three. The 3,500 ft{sup 2} (325 m{sup 2}) two-story house combines several unique sub-systems that all interact to minimize energy consumption for space heating and cooling, and domestic hot water.

Drown, D.C.; Braven, K.R.D. (Univ. of Idaho, ID (US)); Kast, T.P. (Thermal Dynamic Towers, Boulder, CO (US))

1992-02-01T23:59:59.000Z

140

Waste encapsulation storage facility (WESF) standards/requirements identification document (S/RIDS)  

SciTech Connect (OSTI)

This Standards/Requirements Identification Document (S/RID) sets forth the Environmental Safety and Health (ES{ampersand}H) standards/requirements for the Waste Encapsulation Storage Facility (WESF). This S/RID is applicable to the appropriate life cycle phases of design, construction, operation, and preparation for decommissioning. These standards/requirements are adequate to ensure the protection of the health and safety of workers, the public, and the environment.

Maddox, B.S., Westinghouse Hanford

1996-07-29T23:59:59.000Z

Note: This page contains sample records for the topic "waste storage area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Waste Encapsulation and Storage Facility (WESF) Quality Assurance Program Plan (QAPP)  

SciTech Connect (OSTI)

This Quality Assurance Plan describes how the Waste Encapsulation and Storage Facility (WESF) implements the quality assurance (QA) requirements of the Quality Assurance Program Description (QAPD) (HNF-Mp-599) for Project Hanford activities and products. This QAPP also describes the organizational structure necessary to successfully implement the program. The QAPP provides a road map of applicable Project Hanford Management System Procedures, and facility specific procedures, that may be utilized by WESF to implement the requirements of the QAPD.

ROBINSON, P.A.

2000-04-17T23:59:59.000Z

142

Analysis of long-term impacts of TRU waste remaining at generator/storage sites for No Action Alternative 2  

SciTech Connect (OSTI)

This report is a supplement to the Waste Isolation Pilot Plant Disposal-Phase Final Supplemental Environmental Impact Statement (SEIS-II). Described herein are the underlying information, data, and assumptions used to estimate the long-term human-health impacts from exposure to radionuclides and hazardous chemicals in transuranic (TRU) waste remaining at major generator/storage sites after loss of institutional control under No Action Alternative 2. Under No Action Alternative 2, TRU wastes would not be emplaced at the Waste Isolation Pilot Plant (WIPP) but would remain at generator/storage sites in surface or near-surface storage. Waste generated at smaller sites would be consolidated at the major generator/storage sites. Current TRU waste management practices would continue, but newly generated waste would be treated to meet the WIPP waste acceptance criteria. For this alternative, institutional control was assumed to be lost 100 years after the end of the waste generation period, with exposure to radionuclides and hazardous chemicals in the TRU waste possible from direct intrusion and release to the surrounding environment. The potential human-health impacts from exposure to radionuclides and hazardous chemicals in TRU waste were analyzed for two different types of scenarios. Both analyses estimated site-specific, human-health impacts at seven major generator/storage sites: the Hanford Site (Hanford), Idaho National Engineering and Environmental Laboratory (INEEL), Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), Rocky Flats Environmental Technology Site (RFETS), and Savannah River Site (SRS). The analysis focused on these seven sites because 99 % of the estimated TRU waste volume and inventory would remain there under the assumptions of No Action Alternative 2.

Buck, J.W.; Bagaasen, L.M.; Bergeron, M.P.; Streile, G.P. [and others

1997-09-01T23:59:59.000Z

143

Nevada National Security Site 2011 Waste Management Monitoring Report, Area 3 and Area 5 Radioactive Waste Management Site  

SciTech Connect (OSTI)

Environmental monitoring data are collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada National Security Site (NNSS). These data are associated with radiation exposure, air, groundwater, meteorology, and vadose zone. This report summarizes the 2011 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports. Direct radiation monitoring data indicate exposure levels at the RWMSs are within the range of background levels measured at the NNSS. Slightly elevated exposure levels outside the Area 3 RWMS are attributed to nearby historical aboveground nuclear weapons tests. Air monitoring data show tritium concentrations in water vapor and americium and plutonium concentrations in air particles are only slightly above detection limits and background levels. The measured levels of radionuclides in air particulates and moisture are below derived concentration guides for these radionuclides. During the last 2 weeks of March 2011, gamma spectroscopy results for air particles showed measurable activities of iodine-131 (131I), cesium-134 (134Cs), and cesium-137 (137Cs). These results are attributed to the release of fission products from the damaged Fukushima Daiichi power plant in Japan. The remaining gamma spectroscopy results for air particulates collected at the Area 3 and Area 5 RWMS were below minimum detectable concentrations. Groundwater monitoring data indicate the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by RWMS operations. Results of groundwater analysis from wells around the Area 5 RWMS were all below established investigation levels. The 86.3 millimeters (mm) (3.40 inches [in.]) of precipitation at the Area 3 RWMS during 2011 is 44% below the average of 154.1 mm (6.07 in.), and the 64.8 mm (2.55 in.) of precipitation at the Area 5 RWMS during 2011 is 47% below the average of 122.4 mm (4.82 in.). Water balance measurements indicate that evapotranspiration from the vegetated weighing lysimeter dries the soil and prevents downward percolation of precipitation more effectively than evaporation from the bare-soil weighing lysimeter. Automated vadose zone monitoring on Area 5 RWMS operational waste covers was not done during 2011 due to construction of the final evapotranspiration cover at these monitoring locations. Moisture from precipitation did not percolate below 122 centimeters (4 feet) in the vegetated final mono-layer cover on the U-3ax/bl disposal unit at the Area 3 RWMS before being removed by evapotranspiration. During 2011, there was no drainage through 2.4 meters (8 feet) of soil from the Area 3 drainage lysimeters that received only natural precipitation. Ten percent of the applied precipitation and irrigation drained from the bare-soil drainage lysimeter that received 3 times natural precipitation. All 2011 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing within expectations of the model and parameter assumptions for the facility PAs.

NSTec Environmental Management

2012-07-31T23:59:59.000Z

144

Nevada National Security Site 2010 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites  

SciTech Connect (OSTI)

Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada National Security Site (NNSS). These data are associated with radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota. This report summarizes the 2010 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports (National Security Technologies, LLC, 2010a; 2010b; 2011). Direct radiation monitoring data indicate exposure levels at the RWMSs are within the range of background levels measured at the NNSS. Air monitoring data at the Area 3 and Area 5 RWMSs indicate that tritium concentrations are slightly above background levels. All gamma spectroscopy results for air particulates collected at the Area 3 and Area 5 RWMS were below the minimum detectable concentrations, and concentrations of americium and plutonium are only slightly above detection limits. The measured levels of radionuclides in air particulates and moisture are below derived concentration guides for these radionuclides. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by facility operations. The 246.9 millimeters (mm) (9.72 inches [in.]) of precipitation at the Area 3 RWMS during 2010 is 56 percent above the average of 158.7 mm (6.25 in.), and the 190.4 mm (7.50 in.) of precipitation at the Area 5 RWMS during 2010 is 50 percent above the average of 126.7 mm (4.99 in.). Soil-gas tritium monitoring at borehole GCD-05 continues to show slow subsurface migration consistent with previous results. Water balance measurements indicate that evapotranspiration from the vegetated weighing lysimeter dries the soil and prevents downward percolation of precipitation more effectively than evaporation from the bare-soil weighing lysimeter. Data from the automated vadose zone monitoring system for the operational waste pit covers show that moisture from precipitation did not percolate below 90 centimeters (cm) (3 feet [ft]) before being removed by evaporation. Moisture from precipitation did not percolate below 61 cm (2 ft) in the vegetated final mono-layer cover on the U-3ax/bl disposal unit at the Area 3 RWMS before being removed by evapotranspiration. During 2010, there was no drainage through 2.4 meters (8 ft) of soil from the Area 3 drainage lysimeters that received only natural precipitation. Water drained from both the bare-soil drainage lysimeter and the invader species drainage lysimeter that received 3 times natural precipitation. All 2010 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing within expectations of the model and parameter assumptions for the facility PAs.

NSTec Environmental Management

2011-06-01T23:59:59.000Z

145

Design requirements document for Project W-465, immobilized low-activity waste interim storage  

SciTech Connect (OSTI)

The scope of this Design Requirements Document (DRD) is to identify the functions and associated requirements that must be performed to accept, transport, handle, and store immobilized low-activity waste (ILAW) produced by the privatized Tank Waste Remediation System (TWRS) treatment contractors. The functional and performance requirements in this document provide the basis for the conceptual design of the TWRS ILAW Interim Storage facility project and provides traceability from the program level requirements to the project design activity. Technical and programmatic risk associated with the TWRS planning basis are discussed in the Tank Waste Remediation System Decisions and Risk Assessment (Johnson 1994). The design requirements provided in this document will be augmented by additional detailed design data documented by the project.

Burbank, D.A.

1998-05-19T23:59:59.000Z

146

area interim storage: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Spot Height Northern British Columbia, University of 3 In Situ Bioremediation Interim Remedial Action Report, Test Area North, Operable Unit 1-07B CiteSeer Summary: This...

147

High level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 6  

SciTech Connect (OSTI)

The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 6) outlines the standards and requirements for the sections on: Environmental Restoration and Waste Management, Research and Development and Experimental Activities, and Nuclear Safety.

Not Available

1994-04-01T23:59:59.000Z

148

EIS-0109: Long-Term Management of the Existing Radioactive Wastes and Residues at the Niagara Falls Storage Site  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy developed this statement to evaluate the environmental impacts of several alternatives for management and control of the radioactive wastes and residues at the Niagara Falls Storage Site, including a no action alternative, an alternative to manage wastes on-site, and two off-site management alternatives.

149

Geochemical information for sites contaminated with low-level radioactive wastes. III. Weldon Spring Storage Site  

SciTech Connect (OSTI)

The Weldon Spring Storage Site (WSSS), which includes both the chemical site and the quarry, became radioactively contaminated as the result of wastes that were being stored from operations to recover uranium from pitchblende ores in the 1940s and 1950s. The US Department of Energy (DOE) is considering various remedial action options for the WSSS. This report describes the results of geochemical investigations carried out at Oak Ridge National Laboratory (ORNL) to support these activities and to help quantify various remedial action options. Soil and groundwater samples were characterized, and uranium and radium sorption ratios were measured in site soil/groundwater systems by batch contact methodology. Soil samples from various locations around the raffinate pits were found to contain major amounts of silica, along with illite as the primary clay constituent. Particle sizes of the five soil samples were variable (50% distribution point ranging from 12 to 81 ..mu..m); the surface areas varied from 13 to 62 m/sup 2//g. Elemental analysis of the samples showed them to be typical of sandy clay and silty clay soils. Groundwater samples included solution from Pit 3 and well water from Well D. Anion analyses showed significant concentrations of sulfate and nitrate (>350 and >7000 mg/L, respectively) in the solution from Pit 3. These anions were also present in the well water, but in lower concentrations. Uranium sorption ratios for four of the soil samples contacted with the solution from Pit 3 were moderate to high (approx. 300 to approx. 1000 mL/g). The fifth sample had a ratio of only 12 mL/g. Radium sorption ratios for the five samples were moderate to high (approx. 600 to approx. 1000 mL/g). These values indicate that soil at the WSSS may show favorable retardation of uranium and radium in the groundwater. 13 references, 13 figures, 10 tables.

Seeley, F.G.; Kelmers, A.D.

1985-02-01T23:59:59.000Z

150

Application of Quantitative NDE Techniques to High Level Waste Storage Tanks  

SciTech Connect (OSTI)

As various issues make the continued usage of high-level waste storage tanks attractive, there is an increasing need to sharpen the assessment of their structural integrity. One aspect of a structural integrity program, nondestructive evaluation, is the focus of this paper. In September 2000, a program to support the sites was initiated jointly by Tanks Focus Area and Characterization, Monitoring, and Sensor Technologies Crosscutting Program of the Office of Environmental Management, Department of Energy (DOE). The vehicle was the Center for Nondestructive Evaluation, one of the National Science Foundation's Industry/University Cooperative Research Centers that is operated in close collaboration with the Ames Laboratory, USDOE. The support activities that have been provided by the center will be reviewed. Included are the organization of a series of annual workshops to allow the sites to share experiences and develop coordinated approaches to common problems, the development of an electronic source of relevant information, and assistance of the sites on particular technical problems. Directions and early results on some of these technical assistance projects are emphasized. Included are the discussion of theoretical analysis of ultrasonic wave propagation in curved plates to support the interpretation of tandem synthetic aperture focusing data to detect flaws in the knuckle region of double shell tanks; the evaluation of guided ultrasonic waves, excited by couplant free, electromagnetic acoustic transducers, to rapidly screen for inner wall corrosion in tanks; the use of spread spectrum techniques to gain information about the structural integrity of concrete domes; and the use of magnetic techniques to identify the alloys used in the construction of tanks.

Thompson, R. B.; Rehbein, D. K.; Bastiaans, G.; Terry, M.; Alers, R.

2002-02-25T23:59:59.000Z

151

US Department of Energy Storage of Spent Fuel and High Level Waste  

SciTech Connect (OSTI)

ABSTRACT This paper provides an overview of the Department of Energy's (DOE) spent nuclear fuel (SNF) and high level waste (HLW) storage management. Like commercial reactor fuel, DOE's SNF and HLW were destined for the Yucca Mountain repository. In March 2010, the DOE filed a motion with the Nuclear Regulatory Commission (NRC) to withdraw the license application for the repository at Yucca Mountain. A new repository is now decades away. The default for the commercial and DOE research reactor fuel and HLW is on-site storage for the foreseeable future. Though the motion to withdraw the license application and delay opening of a repository signals extended storage, DOE's immediate plans for management of its SNF and HLW remain the same as before Yucca Mountain was designated as the repository, though it has expanded its research and development efforts to ensure safe extended storage. This paper outlines some of the proposed research that DOE is conducting and will use to enhance its storage systems and facilities.

Sandra M Birk

2010-10-01T23:59:59.000Z

152

EIS-0062: Double-Shell Tanks for Defense High Level Waste Storage, Savannah River Site, Aiken, SC  

Broader source: Energy.gov [DOE]

This EIS analyzes the impacts of the various design alternatives for the construction of fourteen 1.3 million gallon high-activity radioactive waste tanks. The EIS further evaluates the effects of these alternative designs on tank durability, on the ease of waste retrieval from such tanks, and the choice of technology and timing for long-term storage or disposal of the wastes.

153

Characterization of decontamination and decommissioning wastes expected from the major processing facilities in the 200 Areas  

SciTech Connect (OSTI)

This study was intended to characterize and estimate the amounts of equipment and other materials that are candidates for removal and subsequent processing in a solid waste facility when the major processing and handling facilities in the 200 Areas of the Hanford Site are decontaminated and decommissioned. The facilities in this study were selected based on processing history and on the magnitude of the estimated decommissioning cost cited in the Surplus Facilities Program Plan; Fiscal Year 1993 (Winship and Hughes 1992). The facilities chosen for this study include B Plant (221-B), T Plant (221-T), U Plant (221-U), the Uranium Trioxide (UO{sub 3}) Plant (224-U and 224-UA), the Reduction Oxidation (REDOX) or S Plant (202-S), the Plutonium Concentration Facility for B Plant (224-B), and the Concentration Facility for the Plutonium Finishing Plant (PFP) and REDOX (233-S). This information is required to support planning activities for current and future solid waste treatment, storage, and disposal operations and facilities.

Amato, L.C.; Franklin, J.D.; Hyre, R.A.; Lowy, R.M.; Millar, J.S.; Pottmeyer, J.A. [Los Alamos Technical Associates, Kennewick, WA (United States); Duncan, D.R. [Westinghouse Hanford Co., Richland, WA (United States)

1994-08-01T23:59:59.000Z

154

Mixed waste focus area technical baseline report. Volume 2  

SciTech Connect (OSTI)

As part of its overall program, the MWFA uses a national mixed waste data set to develop approaches for treating mixed waste that cannot be treated using existing capabilities at DOE or commercial facilities. The current data set was originally compiled under the auspices of the 1995 Mixed Waste Inventory Report. The data set has been updated over the past two years based on Site Treatment Plan revisions and clarifications provided by individual sites. The current data set is maintained by the MWFA staff and is known as MWFA97. In 1996, the MWFA developed waste groupings, process flow diagrams, and treatment train diagrams to systematically model the treatment of all mixed waste in the DOE complex. The purpose of the modeling process was to identify treatment gaps and corresponding technology development needs for the DOE complex. Each diagram provides the general steps needed to treat a specific type of waste. The NWFA categorized each MWFA97 waste stream by waste group, treatment train, and process flow. Appendices B through F provide the complete listing of waste streams by waste group, treatment train, and process flow. The MWFA97 waste strewn information provided in the appendices is defined in Table A-1.

NONE

1997-04-01T23:59:59.000Z

155

Equipment design guidance document for flammable gas waste storage tank new equipment  

SciTech Connect (OSTI)

This document is intended to be used as guidance for design engineers who are involved in design of new equipment slated for use in Flammable Gas Waste Storage Tanks. The purpose of this document is to provide design guidance for all new equipment intended for application into those Hanford storage tanks in which flammable gas controls are required to be addressed as part of the equipment design. These design criteria are to be used as guidance. The design of each specific piece of new equipment shall be required, as a minimum to be reviewed by qualified Unreviewed Safety Question evaluators as an integral part of the final design approval. Further Safety Assessment may be also needed. This guidance is intended to be used in conjunction with the Operating Specifications Documents (OSDs) established for defining work controls in the waste storage tanks. The criteria set forth should be reviewed for applicability if the equipment will be required to operate in locations containing unacceptable concentrations of flammable gas.

Smet, D.B.

1996-04-11T23:59:59.000Z

156

Mixed waste focus area integrated technical baseline report. Phase I, Volume 2: Revision 0  

SciTech Connect (OSTI)

This document (Volume 2) contains the Appendices A through J for the Mixed Waste Focus Area Integrated Technical Baseline Report Phase I for the Idaho National Engineering Laboratory. Included are: Waste Type Managers` Resumes, detailed information on wastewater, combustible organics, debris, unique waste, and inorganic homogeneous solids and soils, and waste data information. A detailed list of technology deficiencies and site needs identification is also provided.

NONE

1996-01-16T23:59:59.000Z

157

DOE underground storage tank waste remediation chemical processing hazards. Part I: Technology dictionary  

SciTech Connect (OSTI)

This document has been prepared to aid in the development of Regulating guidelines for the Privatization of Hanford underground storage tank waste remediation. The document has been prepared it two parts to facilitate their preparation. Part II is the primary focus of this effort in that it describes the technical basis for established and potential chemical processing hazards associated with Underground Storage Tank (UST) nuclear waste remediation across the DOE complex. The established hazards involve those at Sites for which Safety Analysis Reviews (SARs) have already been prepared. Potential hazards are those involving technologies currently being developed for future applications. Part I of this document outlines the scope of Part II by briefly describing the established and potential technologies. In addition to providing the scope, Part I can be used as a technical introduction and bibliography for Regulatory personnel new to the UST waste remediation, and in particular Privatization effort. Part II of this document is not intended to provide examples of a SAR Hazards Analysis, but rather provide an intelligence gathering source for Regulatory personnel who must eventually evaluate the Privatization SAR Hazards Analysis.

DeMuth, S.F.

1996-10-01T23:59:59.000Z

158

Site characterization plan for groundwater in Waste Area Grouping 1 at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

The Waste Area Grouping (WAG) 1 Groundwater Operable Unit (OU) at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, is undergoing a site characterization to identify environmental contamination that may be present. This document, Site Characterization Report for Groundwater in Waste Area Grouping I at Oak Ridge National Laboratory, Oak Ridge, Tennessee, identifies areas of concern with respect to WAG 1 groundwater and presents the rationale, justification, and objectives for conducting this continuing site characterization. This report summarizes the operations that have taken place at each of the areas of concern in WAG 1, summarizes previous characterization studies that have been performed, presents interpretations of previously collected data and information, identifies contaminants of concern, and presents an action plan for further site investigations and early actions that will lead to identification of contaminant sources, their major groundwater pathways, and reduced off-site migration of contaminated groundwater to surface water. Site characterization Activities performed to date at WAG I have indicated that groundwater contamination, principally radiological contamination, is widespread. An extensive network of underground pipelines and utilities have contributed to the dispersal of contaminants to an unknown extent. The general absence of radiological contamination in surface water at the perimeter of WAG 1 is attributed to the presence of pipelines and underground waste storage tank sumps and dry wells distributed throughout WAG 1 which remove more than about 40 million gal of contaminated groundwater per year.

Lee, R.R.; Curtis, A.H.; Houlberg, L.M.; Purucker, S.T.; Singer, M.L.; Tardiff, M.F.; Wolf, D.A.

1994-07-01T23:59:59.000Z

159

M-Area hazardous waste management facility groundwater monitoring report -- first quarter 1994. Volume 1  

SciTech Connect (OSTI)

This report describes the groundwater monitoring and corrective action program at the M-Area Hazardous Waste Management Facility (HWMF) at the Savannah River Site (SRS) during first quarter 1994 as required by South Carolina Hazardous Waste Permit SC1-890-008-989 and section 264.100(g) of the South Carolina Hazardous Waste Management Regulations. During first quarter 1994, 42 point-of-compliance (POC) wells at the M-Area HWMF were sampled for drinking water parameters.

Evans, C.S.; Washburn, F.; Jordan, J.; Van Pelt, R.

1994-05-01T23:59:59.000Z

160

2005 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site  

SciTech Connect (OSTI)

This report is a compilation of the calendar year 2005 groundwater sampling results from the Area 5 Radioactive Waste Management Site. In additon to providing groundwater monitoring results, this report also includes information regarding site hydrogeology, well construction, sample collection, and meteorological data measured at the Area 5 Radioactive Waste Management Site at the Nevada Test Site, Ny County, Nevada.

Bechtel Nevada

2006-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste storage area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

A brief analysis and description of transuranic wastes in the Subsurface Disposal Area of the radioactive waste management complex at INEL  

SciTech Connect (OSTI)

This document presents a brief summary of the wastes and waste types disposed of in the transuranic contaminated portions of the Subsurface Disposal Area of the radioactive waste management complex at Idaho National Engineering Laboratory from 1954 through 1970. Wastes included in this summary are organics, inorganics, metals, radionuclides, and atypical wastes. In addition to summarizing amounts of wastes disposed and describing the wastes, the document also provides information on disposal pit and trench dimensions and contaminated soil volumes. The report also points out discrepancies that exist in available documentation regarding waste and soil volumes and make recommendations for future efforts at waste characterization. 19 refs., 3 figs., 17 tabs.

Arrenholz, D.A.; Knight, J.L.

1991-08-01T23:59:59.000Z

162

Radiolytic effects on ion exchangers during the storage of radioactive wastes  

SciTech Connect (OSTI)

Radiolytic effects on ion exchangers are being recognized as a significant problem in the processing and storage of high-specific-activity radioactive waste forms. Two major literature surveys and a series of scoping experiments conducted during this investigation indicate that radiation decomposition of ion exchange materials has the potential for a variety of undesirable consequences. These include the ready dispersion of adsorbed radionuclides to the environment, corrosion and pressurization of waste canisters, and generation of flammable and explosive gases, as well as agglomeration of ion exchangers to a rigid monolith with the partitioning of a liquid phase. Some of the highlights of the literature surveys and the major findings of the experimental studies are reported here.

Pillay, K.K.S.; Palau, G.L.

1982-01-01T23:59:59.000Z

163

Fast facility spent-fuel and waste assay instrument. [Fluorinel Dissolution and Fuel Storage (FAST) Facility  

SciTech Connect (OSTI)

A delayed-neutron assay instrument was installed in the Fluorinel Dissolution and Fuel Storage Facility at Idaho National Engineering Laboratory. The dual-assay instrument is designed to measure both spent fuel and waste solids that are produced from fuel processing. A set of waste standards, fabricated by Los Alamos using uranium supplied by Exxon Nuclear Idaho Company, was used to calibrate the small-sample assay region of the instrument. Performance testing was completed before installation of the instrument to determine the effects of uranium enrichment, hydrogenous materials, and neutron poisons on assays. The unit was designed to measure high-enriched uranium samples in the presence of large neutron backgrounds. Measurements indicate that the system can assay low-enriched uranium samples with moderate backgrounds if calibrated with proper standards.

Eccleston, G.W.; Johnson, S.S.; Menlove, H.O.; Van Lyssel, T.; Black, D.; Carlson, B.; Decker, L.; Echo, M.W.

1983-01-01T23:59:59.000Z

164

Assessing the Feasibility of Interrogating Nuclear Waste Storage Silos using Cosmic-ray Muons  

E-Print Network [OSTI]

Muon radiography is a fast growing field in applied scientific research. In recent years, many detector technologies and imaging techniques using the Coulomb scattering and absorption properties of cosmic-ray muons have been developed for the non-destructive assay of various structures across a wide range of applications. This work presents the first results that assess the feasibility of using muons to interrogate waste silos within the UK Nuclear Industry. Two such approaches, using different techniques that exploit each of these properties, have previously been published, and show promising results from both simulation and experimental data for the detection of shielded high-Z materials and density variations from volcanic assay. Both detector systems are based on scintillator and photomultiplier technologies. Results from dedicated simulation studies using both these technologies and image reconstruction techniques are presented for an intermediate-sized nuclear waste storage facility filled with concrete...

Ambrosino, F; Cimmino, L; D'Alessandro, R; Ireland, D G; Kaiser, R; Mahon, D F; Mori, N; Noli, P; Saracino, G; Shearer, C; Viliani, L; Yang, G

2014-01-01T23:59:59.000Z

165

ADMINISTRATIVE AND ENGINEERING CONTROLS FOR THE OPERATION OF VENTILATION SYSTEMS FOR UNDERGROUND RADIOACTIVE WASTE STORAGE TANKS  

SciTech Connect (OSTI)

Liquid radioactive wastes from the Savannah River Site are stored in large underground carbon steel tanks. The majority of the waste is confined in double shell tanks, which have a primary shell, where the waste is stored, and a secondary shell, which creates an annular region between the two shells, that provides secondary containment and leak detection capabilities should leakage from the primary shell occur. Each of the DST is equipped with a purge ventilation system for the interior of the primary shell and annulus ventilation system for the secondary containment. Administrative flammability controls require continuous ventilation to remove hydrogen gas and other vapors from the waste tanks while preventing the release of radionuclides to the atmosphere. Should a leak from the primary to the annulus occur, the annulus ventilation would also serve this purpose. The functionality of the annulus ventilation is necessary to preserve the structural integrity of the primary shell and the secondary. An administrative corrosion control program is in place to ensure integrity of the tank. Given the critical functions of the purge and annulus ventilation systems, engineering controls are also necessary to ensure that the systems remain robust. The system consists of components that are constructed of metal (e.g., steel, stainless steel, aluminum, copper, etc.) and/or polymeric (polypropylene, polyethylene, silicone, polyurethane, etc.) materials. The performance of these materials in anticipated service environments (e.g., normal waste storage, waste removal, etc.) was evaluated. The most aggressive vapor space environment occurs during chemical cleaning of the residual heels by utilizing oxalic acid. The presence of NO{sub x} and mercury in the vapors generated from the process could potentially accelerate the degradation of aluminum, carbon steel, and copper. Once identified, the most susceptible materials were either replaced and/or plans for discontinuing operations are executed.

Wiersma, B.; Hansen, A.

2013-11-13T23:59:59.000Z

166

Analysis of accident sequences and source terms at treatment and storage facilities for waste generated by US Department of Energy waste management operations  

SciTech Connect (OSTI)

This report documents the methodology, computational framework, and results of facility accident analyses performed for the US Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies assessed, and the resultant radiological and chemical source terms evaluated. A personal-computer-based computational framework and database have been developed that provide these results as input to the WM PEIS for the calculation of human health risk impacts. The WM PEIS addresses management of five waste streams in the DOE complex: low-level waste (LLW), hazardous waste (HW), high-level waste (HLW), low-level mixed waste (LLMW), and transuranic waste (TRUW). Currently projected waste generation rates, storage inventories, and treatment process throughputs have been calculated for each of the waste streams. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated, and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. Key assumptions in the development of the source terms are identified. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also discuss specific accident analysis data and guidance used or consulted in this report.

Mueller, C.; Nabelssi, B.; Roglans-Ribas, J.; Folga, S.; Policastro, A.; Freeman, W.; Jackson, R.; Mishima, J.; Turner, S.

1996-12-01T23:59:59.000Z

167

Assessment of degradation concerns for spent fuel, high-level wastes, and transuranic wastes in monitored retrievalbe storage  

SciTech Connect (OSTI)

It has been concluded that there are no significant degradation mechanisms that could prevent the design, construction, and safe operation of monitored retrievable storage (MRS) facilities. However, there are some long-term degradation mechanisms that could affect the ability to maintain or readily retrieve spent fuel (SF), high-level wastes (HLW), and transuranic wastes (TRUW) several decades after emplacement. Although catastrophic failures are not anticipated, long-term degradation mechanisms have been identified that could, under certain conditions, cause failure of the SF cladding and/or failure of TRUW storage containers. Stress rupture limits for Zircaloy-clad SF in MRS range from 300 to 440/sup 0/C, based on limited data. Additional tests on irradiated Zircaloy (3- to 5-year duration) are needed to narrow this uncertainty. Cladding defect sizes could increase in air as a result of fuel density decreases due to oxidation. Oxidation tests (3- to 5-year duration) on SF are also needed to verify oxidation rates in air and to determine temperatures below which monitoring of an inert cover gas would not be required. Few, if any, changes in the physical state of HLW glass or canisters or their performance would occur under projected MRS conditions. The major uncertainty for HLW is in the heat transfer through cracked glass and glass devitrification above 500/sup 0/C. Additional study of TRUW is required. Some fraction of present TRUW containers would probably fail within the first 100 years of MRS, and some TRUW would be highly degraded upon retrieval, even in unfailed containers. One possible solution is the design of a 100-year container. 93 references, 28 figures, 17 tables.

Guenther, R.J.; Gilbert, E.R.; Slate, S.C.; Partain, W.L.; Divine, J.R.; Kreid, D.K.

1984-01-01T23:59:59.000Z

168

Mixed Waste Focus Area mercury contamination product line: An integrated approach to mercury waste treatment and disposal  

SciTech Connect (OSTI)

The US Department of Energy (DOE) Mixed Waste Focus Area (MWFA) is tasked with ensuring that solutions are available for the mixed waste treatment problems of the DOE complex. During the MWFA`s initial technical baseline development process, three of the top four technology deficiencies identified were related to the need for amalgamation, stabilization, and separation/removal technologies for the treatment of mercury and mercury-contaminated mixed waste. The focus area grouped mercury-waste-treatment activities into the mercury contamination product line under which development, demonstration, and deployment efforts are coordinated to provide tested technologies to meet the site needs. The Mercury Working Group (HgWG), a selected group of representatives from DOE sites with significant mercury waste inventories, is assisting the MWFA in soliciting, identifying, initiating, and managing efforts to address these areas. Based on the scope and magnitude of the mercury mixed waste problem, as defined by HgWG, solicitations and contract awards have been made to the private sector to demonstrate amalgamation and stabilization processes using actual mixed wastes. Development efforts are currently being funded under the product line that will address DOE`s needs for separation/removal processes. This paper discusses the technology selection process, development activities, and the accomplishments of the MWFA to date through these various activities.

Hulet, G.A. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States); Conley, T.B.; Morris, M.I. [Oak Ridge National Lab., TN (United States)

1998-07-01T23:59:59.000Z

169

Seismic design and evaluation guidelines for the Department of Energy High-Level Waste Storage Tanks and Appurtenances  

SciTech Connect (OSTI)

This document provides seismic design and evaluation guidelines for underground high-level waste storage tanks. The guidelines reflect the knowledge acquired in the last two decades in defining seismic ground motion and calculating hydrodynamic loads, dynamic soil pressures and other loads for underground tank structures, piping and equipment. The application of the guidelines is illustrated with examples. The guidelines are developed for a specific design of underground storage tanks, namely double-shell structures. However, the methodology discussed is applicable for other types of tank structures as well. The application of these and of suitably adjusted versions of these concepts to other structural types will be addressed in a future version of this document. The original version of this document was published in January 1993. Since then, additional studies have been performed in several areas and the results are included in this revision. Comments received from the users are also addressed. Fundamental concepts supporting the basic seismic criteria contained in the original version have since then been incorporated and published in DOE-STD-1020-94 and its technical basis documents. This information has been deleted in the current revision.

Bandyopadhyay, K.; Cornell, A.; Costantino, C.; Kennedy, R.; Miller, C.; Veletsos, A.

1995-10-01T23:59:59.000Z

170

LANL Virtual Center for Chemical Hydrogen Storage: Chemical Hydrogen Storage Using Ultra-high Surface Area Main Group Materials  

SciTech Connect (OSTI)

The focus of the project was to design and synthesize light element compounds and nanomaterials that will reversibly store molecular hydrogen for hydrogen storage materials. The primary targets investigated during the last year were amine and hydrogen terminated silicon (Si) nanoparticles, Si alloyed with lighter elements (carbon (C) and boron (B)) and boron nanoparticles. The large surface area of nanoparticles should facilitate a favorable weight to volume ratio, while the low molecular weight elements such as B, nitrogen (N), and Si exist in a variety of inexpensive and readily available precursors. Furthermore, small NPs of Si are nontoxic and non-corrosive. Insights gained from these studies will be applied toward the design and synthesis of hydrogen storage materials that meet the DOE 2010 hydrogen storage targets: cost, hydrogen capacity and reversibility. Two primary routes were explored for the production of nanoparticles smaller than 10 nm in diameter. The first was the reduction of the elemental halides to achieve nanomaterials with chloride surface termination that could subsequently be replaced with amine or hydrogen. The second was the reaction of alkali metal Si or Si alloys with ammonium halides to produce hydrogen capped nanomaterials. These materials were characterized via X-ray powder diffraction, TEM, FTIR, TG/DSC, and NMR spectroscopy.

Susan M. Kauzlarich; Phillip P. Power; Doinita Neiner; Alex Pickering; Eric Rivard; Bobby Ellis, T. M.; Atkins, A. Merrill; R. Wolf; Julia Wang

2010-09-05T23:59:59.000Z

171

RH-TRU Waste Shipments from Battelle Columbus Laboratories to the Hanford Nuclear Facility for Interim Storage  

SciTech Connect (OSTI)

Battelle Columbus Laboratories (BCL), located in Columbus, Ohio, must complete decontamination and decommissioning (D&D) activities for nuclear research buildings and grounds by 2006, as directed by Congress. Most of the resulting waste (approximately 27 cubic meters [m3]) is remote-handled (RH) transuranic (TRU) waste destined for disposal at the Waste Isolation Pilot Plant (WIPP). The BCL, under a contract to the U.S. Department of Energy (DOE) Ohio Field Office, has initiated a plan to ship the TRU waste to the DOE Hanford Nuclear Facility (Hanford) for interim storage pending the authorization of WIPP for the permanent disposal of RH-TRU waste. The first of the BCL RH-TRU waste shipments was successfully completed on December 18, 2002. This BCL shipment of one fully loaded 10-160B Cask was the first shipment of RH-TRU waste in several years. Its successful completion required a complex effort entailing coordination between different contractors and federal agencies to establish necessary supporting agreements. This paper discusses the agreements and funding mechanisms used in support of the BCL shipments of TRU waste to Hanford for interim storage. In addition, this paper presents a summary of the efforts completed to demonstrate the effectiveness of the 10-160B Cask system. Lessons learned during this process are discussed and may be applicable to other TRU waste site shipment plans.

Eide, J.; Baillieul, T. A.; Biedscheid, J.; Forrester, T,; McMillan, B.; Shrader, T.; Richterich, L.

2003-02-26T23:59:59.000Z

172

Test Area for Remedial Actions (TARA) site characterization and dynamic compaction of low-level radioactive waste trenches  

SciTech Connect (OSTI)

As part of a low-level radioactive waste burial ground stabilization and closure technology demonstration project, a group of five burial trenches in Oak Ridge National Laboratory (ORNL) Solid Waste Storage Area (SWSA) 6 was selected as a demonstration site for testing trench compaction, trench grouting, and trench cap installation and performance. This report focuses on site characterization, trench compaction, and grout-trench leachate compatibility. Trench grouting and cap design and construction will be the subject of future reports. The five trenches, known as the Test Area for Remedial Actions (TARA) site, are contained within a hydrologically isolated area of SWSA 6; for that reason, any effects of stabilization activities on site performance and groundwater quality will be separable from the influence of other waste disposal units in SWSA 6. To obviate the chronic problem of burial trench subsidence and to provide support for an infiltration barrier cap, these five trenches were dynamically compacted by repeated dropping of a 4-ton weight onto each trench from heights of approximately 7 m.

Davis, E.C.; Spalding, B.P.; Lee, S.Y.; Hyder, L.K.

1989-01-01T23:59:59.000Z

173

Flexible, Wide-Area Storage for Distributed Systems with WheelFS  

E-Print Network [OSTI]

WheelFS is a wide-area distributed storage system intended to help multi-site applications share data and gain fault tolerance. WheelFS takes the form of a distributed file system with a familiar POSIX interface. Its design ...

Stribling, Jeremy

174

M-Area Hazardous Waste Management Facility. Fourth Quarter 1994, Groundwater Monitoring Report  

SciTech Connect (OSTI)

The unlined settling basin operated from 1958 until 1985, receiving waste water that contained volatile organic solvents used for metal degreasing and chemical constituents and depleted uranium from fuel fabrication process in M Area. The underground process sewer line transported M-Area process waste waters to the basin. Water periodically overflowed from the basin through the ditch to the seepage area adjacent to the ditch and to Lost Lake.

Chase, J.A.

1995-04-20T23:59:59.000Z

175

al mixed waste: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and characterization alternatives of mixed waste soil and debris at disposal area remedial action DARA solids storage facility (SSF) University of California eScholarship...

176

Site-specific EIS ordered but injunctive relief deined in nuclear waste storage case  

SciTech Connect (OSTI)

The Energy Research and Development Administration (ERDA) received appropriations in 1976-77 to construct 22 tanks for storage of high level radioactive wastes generated by its nuclear weapons materials production program. The tanks were to replace older, leaking tanks at the Hanford Reservation in Richland, Washington and the Savannah River Plant in Aiken, South Carolina. The Natural Resources Defense Council (NRDC) had unsuccessfully requested that ERDA obtain a construction permit from the Nuclear Regulatory Commission (NRC). NRDC also petitioned NRC to exercise its licensing authority over the tanks under Section 202(4) of the Energy Reorganization Act of 1974. In response to the NRDC request, ERDA claimed the tanks were only for short-term storage and therefore a license was unnecessary. NRC claimed it lacked jurisdiction over the tanks. NRDC filed suit in United States District Court for the District of Columbia, alleging that ERDA had violated Section 102(2)(C) of the National Environmental Policy Act, and that both ERDA and NRC had violated Section 202(4) of the Energy Reorganization Act. NRDC requested an injunction against further construction of the tanks. Although ERDA did not have to obtain an NRC construction permit for the nuclear waste storage tanks at Hanford Reservation and Savannah River Plant, the programmatic Environmental Impact Statement submitted was insufficient and site-specific statements must be prepared. Injunctive relief pending the statements was denied for the social and economic costs of delaying the tanks project. NRC decisions even remotely connected to its licensing power should be contested in federal courts of appeals, not district courts. The court gave NRDC a hollow victory by ordering a more specific EIS, but denying an injunction.

Barnhart y Chavez, S.

1980-01-01T23:59:59.000Z

177

Hanford Site Waste Management Area C Performance Assessment ...  

Office of Environmental Management (EM)

Exchange December 11-12, 2014 To view all the P&RA CoP 2014 Technical Exchange Meeting videos click here. Video Presentation - Part 1 Video Presentation - Part 2 Hanford Site Waste...

178

Carlsbad Area Office Waste Isolation Division Transition Plan  

SciTech Connect (OSTI)

In October 1993, the US Department of Energy (DOE) announced the Revised Test Strategy for the Waste Isolation Pilot Plant (WIPP). The new strategy involves conducting additional radioactive waste tests in laboratories instead of the underground at the WIPP. It will likely result in an acceleration of regulatory compliance activities needed for a disposal decision, which could result in permanent disposal of transuranic waste earlier than the previous test program and regulatory compliance strategy. The Revised Test Strategy changes the near-term program activities for the WIPP site. The revised strategy deletes radioactive waste tests at the WIPP, prior to completing all activities for initiating disposal operations, and consequently the need to maintain readiness to receive waste in the near-term. However, the new strategy enables the DOE to pursue an earlier disposal decision, supported by an accelerated regulatory compliance strategy. With the new strategy, the WIPP must prepare for disposal operations in early 1998. This Westinghouse Waste Isolation Division (WID) Transition Plan addresses the WID programmatic, budgetary, and personnel changes to conform to the Revised Test Strategy, and to support the accelerated compliance strategy and earlier disposal operations at the WIPP.

Not Available

1994-01-01T23:59:59.000Z

179

Central Waste Complex (CWC) Waste Analysis Plan  

SciTech Connect (OSTI)

The purpose of this waste analysis plan (WAP) is to document the waste acceptance process, sampling methodologies, analytical techniques, and overall processes that are undertaken for waste accepted for storage at the Central Waste Complex (CWC), which is located in the 200 West Area of the Hanford Facility, Richland, Washington. Because dangerous waste does not include the source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge.

ELLEFSON, M.D.

1999-12-01T23:59:59.000Z

180

Update Direct-Strike Lightning Environment for Stockpile-to-Target Sequence: Supplement LLNL Subcontract #B568621 Lightning Protection at the Yucca Mountain Waste Storage Facility  

SciTech Connect (OSTI)

The University of Florida has surveyed all relevant publications reporting lightning damage to metals, metals which could be used as components of storage containers for nuclear waste materials. We show that even the most severe lightning could not penetrate the stainless steel thicknesses proposed for nuclear waste storage casks.

Uman, M A

2008-10-09T23:59:59.000Z

Note: This page contains sample records for the topic "waste storage area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Application to ship nonmixed transuranic waste to the Nevada Test Site for interim storage. Waste Cerification Program  

SciTech Connect (OSTI)

This report documents various regulations on radioactive waste processing and discusses how the Waste Isolation Pilot Plant will comply with and meet these requirements. Specific procedures are discussed concerning transuranic, metal scrap, salt block, solid, and glove box wastes.

Not Available

1993-12-01T23:59:59.000Z

182

AREA 5 WASTE DISPOSAL RESEARCH ARTICLE Biomass reduction and arsenic transformation  

E-Print Network [OSTI]

AREA 5 · WASTE DISPOSAL · RESEARCH ARTICLE Biomass reduction and arsenic transformation during X-ray diffraction (XRD) and scanning electron microscopy equipped with X-ray energy dispersive Arsenic-rich biomass . Arsenic speciation . Composting . Phytoextraction . Pteris vittata L . Waste

Ma, Lena

183

Engineering evaluation of alternatives for the disposition of Niagara Falls Storage Site, its residues and wastes  

SciTech Connect (OSTI)

The final disposition scenarios selected by DOE for assessment in this document are consistent with those stated in the Notice of Intent to prepare an Environmental Impact Statement (EIS) for the Niagara Falls Storage Site (NFSS) (DOE, 1983d) and the modifications to the alternatives resulting from the public scoping process. The scenarios are: take no action beyond interim remedial measures other than maintenance and surveillance of the NFSS; retain and manage the NFSS as a long-term waste management facility for the wastes and residues on the site; decontaminate, certify, and release the NFSS for other use, with long-term management of the wastes and residues at other DOE sites; and partially decontaminate the NFSS by removal and transport off site of only the more radioactive residues, and upgrade containment of the remaining wastes and residues on site. The objective of this document is to present to DOE the conceptual engineering, occupational radiation exposure, construction schedule, maintenance and surveillance requirements, and cost information relevant to design and implementation of each of the four scenarios. The specific alternatives within each scenario used as the basis for discussion in this document were evaluated on the bases of engineering considerations, technical feasibility, and regulatory requirements. Selected alternatives determined to be acceptable for each of the four final disposition scenarios for the NFSS were approved by DOE to be assessed and costed in this document. These alternatives are also the subject of the EIS for the NFSS currently being prepared by Argonne National Laboratory (ANL). 40 figures, 38 tables.

Not Available

1984-01-01T23:59:59.000Z

184

Guidelines for development of structural integrity programs for DOE high-level waste storage tanks  

SciTech Connect (OSTI)

Guidelines are provided for developing programs to promote the structural integrity of high-level waste storage tanks and transfer lines at the facilities of the Department of Energy. Elements of the program plan include a leak-detection system, definition of appropriate loads, collection of data for possible material and geometric changes, assessment of the tank structure, and non-destructive examination. Possible aging degradation mechanisms are explored for both steel and concrete components of the tanks, and evaluated to screen out nonsignificant aging mechanisms and to indicate methods of controlling the significant aging mechanisms. Specific guidelines for assessing structural adequacy will be provided in companion documents. Site-specific structural integrity programs can be developed drawing on the relevant portions of the material in this document.

Bandyopadhyay, K.; Bush, S.; Kassir, M.; Mather, B.; Shewmon, P.; Streicher, M.; Thompson, B.; Rooyen, D. van; Weeks, J.

1997-01-01T23:59:59.000Z

185

Assessment of concentration mechanisms for organic wastes in underground storage tanks at Hanford  

SciTech Connect (OSTI)

Pacific Northwest Laboratory (PNL) has conducted an initial conservative evaluation of physical and chemical processes that could lead to significant localized concentrations of organic waste constituents in the Hanford underground storage tanks (USTs). This evaluation was part of ongoing studies at Hanford to assess potential safety risks associated with USTs containing organics. Organics in the tanks could pose a potential problem if localized concentrations are high enough to propagate combustion and are in sufficient quantity to produce a large heat and/or gas release if in contact with a suitable oxidant. The major sources of oxidants are oxygen in the overhead gas space of the tanks and sodium nitrate and nitrite either as salt cake solids or dissolved in the supernatant and interstitial liquids.

Gerber, M.A.; Burger, L.L.; Nelson, D.A.; Ryan, J.L. [Pacific Northwest Lab., Richland, WA (United States); Zollars, R.L. [Washington State Univ., Pullman, WA (United States)

1992-09-01T23:59:59.000Z

186

High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 4  

SciTech Connect (OSTI)

The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 4) presents the standards and requirements for the following sections: Radiation Protection and Operations.

Not Available

1994-04-01T23:59:59.000Z

187

High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 2  

SciTech Connect (OSTI)

The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Document (S/RID) is contained in multiple volumes. This document (Volume 2) presents the standards and requirements for the following sections: Quality Assurance, Training and Qualification, Emergency Planning and Preparedness, and Construction.

Not Available

1994-04-01T23:59:59.000Z

188

Regional geological assessment of the Devonian-Mississippian shale sequence of the Appalachian, Illinois, and Michigan basins relative to potential storage/disposal of radioactive wastes  

SciTech Connect (OSTI)

The thick and regionally extensive sequence of shales and associated clastic sedimentary rocks of Late Devonian and Early Mississippian age has been considered among the nonsalt geologies for deep subsurface containment of high-level radioactive wastes. This report examines some of the regional and basin-specific characteristics of the black and associated nonblack shales of this sequence within the Appalachian, Illinois, and Michigan basins of the north-central and eastern United States. Principal areas where the thickness and depth of this shale sequence are sufficient to warrant further evaluation are identified, but no attempt is made to identify specific storage/disposal sites. Also identified are other areas with less promise for further study because of known potential conflicts such as geologic-hydrologic factors, competing subsurface priorities involving mineral resources and groundwater, or other parameters. Data have been compiled for each basin in an effort to indicate thickness, distribution, and depth relationships for the entire shale sequence as well as individual shale units in the sequence. Included as parts of this geologic assessment are isopach, depth information, structure contour, tectonic elements, and energy-resource maps covering the three basins. Summary evaluations are given for each basin as well as an overall general evaluation of the waste storage/disposal potential of the Devonian-Mississippian shale sequence,including recommendations for future studies to more fully characterize the shale sequence for that purpose. Based on data compiled in this cursory investigation, certain rock units have reasonable promise for radioactive waste storage/disposal and do warrant additional study.

Lomenick, T.F.; Gonzales, S.; Johnson, K.S.; Byerly, D.

1983-01-01T23:59:59.000Z

189

Characterization Report for the 92-Acre Area of the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nevada  

SciTech Connect (OSTI)

The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office manages two low-level Radioactive Waste Management Sites at the Nevada Test Site. The Area 5 RWMS uses engineered shallow-land burial cells to dispose of packaged waste. This report summarizes characterization and monitoring work pertinent to the 92-Acre Area in the southeast part of the Area 5 Radioactive Waste Management Sites. The decades of characterization and assessment work at the Area 5 RWMS indicate that the access controls, waste operation practices, site design, final cover design, site setting, and arid natural environment contribute to a containment system that meets regulatory requirements and performance objectives for the short- and long-term protection of the environment and public. The available characterization and Performance Assessment information is adequate to support design of the final cover and development of closure plans. No further characterization is warranted to demonstrate regulatory compliance. U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office is proceeding with the development of closure plans for the six closure units of the 92-Acre Area.

Bechtel Nevada; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

2006-06-01T23:59:59.000Z

190

Technical area status report for low-level mixed waste final waste forms. Volume 2, Appendices  

SciTech Connect (OSTI)

This report presents information on low-level mixed waste forms.The descriptions of the low-level mixed waste (LLMW) streams that are considered by the Mixed Waste Integrated Program (MWIP) are given in Appendix A. This information was taken from descriptions generated by the Mixed Waste Treatment Program (MWTP). Appendix B provides a list of characteristic properties initially considered by the Final Waste Form (FWF) Working Group (WG). A description of facilities available to test the various FWFs discussed in Volume I of DOE/MWIP-3 are given in Appendix C. Appendix D provides a summary of numerous articles that were reviewed on testing of FWFS. Information that was collected by the tests on the characteristic properties considered in this report are documented in Appendix D. The articles reviewed are not a comprehensive list, but are provided to give an indication of the data that are available.

Mayberry, J.L.; Huebner, T.L. [Science Applications International Corp., Idaho Falls, ID (United States); Ross, W. [Pacific Northwest Lab., Richland, WA (United States); Nakaoka, R. [Los Alamos National Lab., NM (United States); Schumacher, R. [Westinghouse Savannah River Co., Aiken, SC (United States); Cunnane, J.; Singh, D. [Argonne National Lab., IL (United States); Darnell, R. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Greenhalgh, W. [Westinghouse Hanford Co., Richland, WA (United States)

1993-08-01T23:59:59.000Z

191

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network [OSTI]

F. J. Molz. Subsurface Waste Heat Storage, Experimentalfor land disposal of waste heat and waste water. Inst. forfor land disposal of waste heat and waste water. Inst. for

Authors, Various

2011-01-01T23:59:59.000Z

192

Submergible barge retrievable storage and permanent disposal system for radioactive waste  

DOE Patents [OSTI]

A submergible barge and process for submerging and storing radioactive waste material along a seabed. A submergible barge receives individual packages of radwaste within segregated cells. The cells are formed integrally within the barge, preferably surrounded by reinforced concrete. The cells are individually sealed by a concrete decking and by concrete hatch covers. Seawater may be vented into the cells for cooling, through an integral vent arrangement. The vent ducts may be attached to pumps when the barge is bouyant. The ducts are also arranged to promote passive ventilation of the cells when the barge is submerged. Packages of the radwaste are loaded into individual cells within the barge. The cells are then sealed and the barge is towed to the designated disposal-storage site. There, the individual cells are flooded and the barge will begin descent controlled by a powered submarine control device to the seabed storage site. The submerged barge will rest on the seabed permanently or until recovered by a submarine control device.

Goldsberry, Fred L. (Spring, TX); Cawley, William E. (Richland, WA)

1981-01-01T23:59:59.000Z

193

TWRS retrieval and disposal mission, immobilized high-level waste storage plan  

SciTech Connect (OSTI)

This project plan has a two fold purpose. First, it provides a plan specific to the Hanford Tank Waste Remediation System (TWRS) Immobilized High-Level Waste (EMW) Storage Subproject for the Washington State Department of Ecology (Ecology) that meets the requirements of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) milestone M-90-01 (Ecology et al. 1996) and is consistent with the project plan content guidelines found in Section 11.5 of the Tri-Party Agreement action plan. Second, it provides an upper tier document that can be used as the basis for future subproject line item construction management plans. The planning elements for the construction management plans are derived from applicable U.S. Department of Energy (DOE) planning guidance documents (DOE Orders 4700.1 (DOE 1992a) and 430.1 (DOE 1995)). The format and content of this project plan are designed to accommodate the plan`s dual purpose. A cross-check matrix is provided in Appendix A to explain where in the plan project planning elements required by Section 11.5 of the Tri-Party Agreement are addressed.

Calmus, R.B.

1998-01-07T23:59:59.000Z

194

Central Facilities Area Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables  

SciTech Connect (OSTI)

Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Central Facilities Area facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facilityspecific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

Lisa Harvego; Brion Bennett

2011-11-01T23:59:59.000Z

195

Use of depleted uranium metal as cask shielding in high-level waste storage, transport, and disposal systems  

SciTech Connect (OSTI)

The US DOE has amassed over 555,000 metric tons of depleted uranium from its uranium enrichment operations. Rather than dispose of this depleted uranium as waste, this study explores a beneficial use of depleted uranium as metal shielding in casks designed to contain canisters of vitrified high-level waste. Two high-level waste storage, transport, and disposal shielded cask systems are analyzed. The first system employs a shielded storage and disposal cask having a separate reusable transportation overpack. The second system employs a shielded combined storage, transport, and disposal cask. Conceptual cask designs that hold 1, 3, 4 and 7 high-level waste canisters are described for both systems. In all cases, cask design feasibility was established and analyses indicate that these casks meet applicable thermal, structural, shielding, and contact-handled requirements. Depleted uranium metal casting, fabrication, environmental, and radiation compatibility considerations are discussed and found to pose no serious implementation problems. About one-fourth of the depleted uranium inventory would be used to produce the casks required to store and dispose of the nearly 15,400 high-level waste canisters that would be produced. This study estimates the total-system cost for the preferred 7-canister storage and disposal configuration having a separate transportation overpack would be $6.3 billion. When credits are taken for depleted uranium disposal cost, a cost that would be avoided if depleted uranium were used as cask shielding material rather than disposed of as waste, total system net costs are between $3.8 billion and $5.5 billion.

Yoshimura, H.R.; Ludwigsen, J.S.; McAllaster, M.E. [and others

1996-09-01T23:59:59.000Z

196

Geochemical information for sites contaminated with low-level radioactive wastes: II. St. Louis Airport Storage Site  

SciTech Connect (OSTI)

The St. Louis Airport Storage Site (SLASS) became radioactively contaminated as a result of wastes that were being stored from operations to recover uranium from pitchblende ores in the 1940s and 1950s. The US Department of Energy is considering various remedial action options for the SLASS under the Formerly Utilized Site Remedial Action Program (FUSRAP). This report describes the results of geochemical investigations, carried out to support the FUSRAP activities and to aid in quantifying various remedial action options. Soil and groundwater samples from the site were characterized, and sorption ratios for uranium and radium and apparent concentration limit values for uranium were measured in soil/groundwater systems by batch contact methodology. The uranium and radium concentrations in soil samples were significantly above background near the old contaminated surface horizon (now at the 0.3/sup -/ to 0.9/sup -/m depth); the maximum values were 1566 ..mu..g/g and 101 pCi/g, respectively. Below about the 6/sup -/m depth, the concentrations appeared to be typical of those naturally present in soils of this area (3.8 +- 1.2 ..mu..g/g and 3.1 +- 0.6 pCi/g). Uranium sorption ratios showed stratigraphic trends but were generally moderate to high (100 to 1000 L/kg). The sorption isotherm suggested an apparent uranium concentration limit of about 200 mg/L. This relatively high solubility can probably be correlated with the carbonate content of the soil/groundwater systems. The lower sorption ratio values obtained from the sorption isotherm may have resulted from changes in the experimental procedure or the groundwater used. The SLASS appears to exhibit generally favorable behavior for the retardation of uranium solubilized from waste in the site. Parametric tests were conducted to estimate the sensitivity of uranium sorption and solubility to the pH and carbonate content of the system.

Seeley, F.G.; Kelmers, A.D.

1985-01-01T23:59:59.000Z

197

Benefits from flywheel energy storage for area regulation in California - demonstration results : a study for the DOE Energy Storage Systems program.  

SciTech Connect (OSTI)

This report documents a high-level analysis of the benefit and cost for flywheel energy storage used to provide area regulation for the electricity supply and transmission system in California. Area regulation is an 'ancillary service' needed for a reliable and stable regional electricity grid. The analysis was based on results from a demonstration, in California, of flywheel energy storage developed by Beacon Power Corporation (the system's manufacturer). Demonstrated was flywheel storage systems ability to provide 'rapid-response' regulation. Flywheel storage output can be varied much more rapidly than the output from conventional regulation sources, making flywheels more attractive than conventional regulation resources. The performance of the flywheel storage system demonstrated was generally consistent with requirements for a possible new class of regulation resources - 'rapid-response' energy-storage-based regulation - in California. In short, it was demonstrated that Beacon Power Corporation's flywheel system follows a rapidly changing control signal (the ACE, which changes every four seconds). Based on the results and on expected plant cost and performance, the Beacon Power flywheel storage system has a good chance of being a financially viable regulation resource. Results indicate a benefit/cost ratio of 1.5 to 1.8 using what may be somewhat conservative assumptions. A benefit/cost ratio of one indicates that, based on the financial assumptions used, the investment's financial returns just meet the investors target.

Eyer, James M. (Distributed Utility Associates, Livermore, CA)

2009-10-01T23:59:59.000Z

198

Criticality Safety Evaluations on the Use of 200-gram Pu Mass Limit for RHWM Waste Storage Operations  

SciTech Connect (OSTI)

This work establishes the criticality safety technical basis to increase the fissile mass limit from 120 grams to 200 grams for Type A 55-gallon drums and their equivalents. Current RHWM fissile mass limit is 120 grams Pu for Type A 55-gallon containers and their equivalent. In order to increase the Type A 55-gallon drum limit to 200 grams, a few additional criticality safety control requirements are needed on moderators, reflectors, and array controls to ensure that the 200-gram Pu drums remain criticality safe with inadvertent criticality remains incredible. The purpose of this work is to analyze the use of 200-gram Pu drum mass limit for waste storage operations in Radioactive and Hazardous Waste Management (RHWM) Facilities. In this evaluation, the criticality safety controls associated with the 200-gram Pu drums are established for the RHWM waste storage operations. With the implementation of these criticality safety controls, the 200-gram Pu waste drum storage operations are demonstrated to be criticality safe and meet the double-contingency-principle requirement per DOE O 420.1.

Chou, P

2011-12-14T23:59:59.000Z

199

HWMA/RCRA Closure Plan for the CPP-648 Radioactive Solid and Liquid Waste Storage Tank System (VES-SFE-106)  

SciTech Connect (OSTI)

This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan for the Radioactive Solid and Liquid Waste Storage Tank System located in the adjacent to the Sludge Tank Control House (CPP-648), Idaho Nuclear Technology and Engineering Center, Idaho National Laboratory, was developed to meet the interim status closure requirements for a tank system. The system to be closed includes a tank and associated ancillary equipment that were determined to have managed hazardous waste. The CPP-648 Radioactive Solid and Liquid Waste Storage Tank System will be "cleaned closed" in accordance with the requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act as implemented by the Idaho Administrative Procedures Act and 40 Code of Federal Regulations 265. This closure plan presents the closure performance standards and methods of acheiving those standards for the CPP-648 Radioactive Solid and Liquid Waste Storage Tank System.

S. K. Evans

2006-08-15T23:59:59.000Z

200

RCRA Facility Investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This report presents compiled information concerning a facility investigation of waste area group 6(WAG-6), of the solid waste management units (SWMU'S) at Oak Ridge National Laboratory (ORNL). The WAG is a shallow ground disposal area for low-level radioactive wastes and chemical wastes. The report contains information on hydrogeological data, contaminant characterization, radionuclide concentrations, risk assessment from doses to humans and animals and associated cancer risks, exposure via food chains, and historical data. (CBS)

Not Available

1991-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste storage area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Estimating Radiological Doses to Predators Foraging in a Low-Level Radioactive Waste Management Area  

SciTech Connect (OSTI)

Since 1957, Los Alamos National Laboratory has operated Area G as its low-level, solid radioactive waste management and disposal area. Although the waste management area is developed, plants, small mammals, and avian and mammalian predators still occupy the less disturbed and revegetated portions of the land. For almost a decade, we have monitored the concentrations of selected radionuclides in soils, plants, and small mammals at Area G. The radionuclides tritium, plutonium-238, and plutonium-239 are regularly found at levels above regional background in all three media. Based on radionuclide concentrations in mice collected from 1994 to 1999, we calculated doses to higher trophic levels (owl, hawk, kestrel, and coyote) that forage on the waste management area. These predators play important functions in the regional ecosystems and are an important part of local Native American traditional tales that identify the uniqueness of their culture. The estimated doses are compared to Department of Energy's interim limit of 0.1 rad/day for the protection of terrestrial wildlife. We used exposure parameters that were derived from the literature for each receptor, including Environmental Protection Agency's exposure factors handbook. Estimated doses to predators ranged from 9E-06 to 2E-04 rad/day, assuming that they forage entirely on the waste management area. These doses are greater than those calculated for predators foraging exclusively in reference areas, but are still well below the interim dose limit. We believe that these calculated doses represent upper-bound estimates of exposure for local predators because the larger predators forage over areas that are much greater than the 63-acre waste management area. Based on these results, we concluded that predators foraging on this area do not face a hazard from radiological exposure under current site conditions.

L.Soholt; G.Gonzales; P.Fresquez; K.Bennett; E.Lopez

2003-03-01T23:59:59.000Z

202

Remedial investigation/feasibility study analysis asphalt storage area, Elmendorf AFB, Alaska. Master's thesis  

SciTech Connect (OSTI)

This report is focused on an abandoned material storage area located on Elmendorf Air Force Base (EAFB), Alaska. The site is located approximately 2000 feet from the east end of the east/west runway and includes approximately 25 acres. The site was used for asphalt storage and preparation activities during the 1940s and 1950s. Approximately 4,500 drums of asphalt and 29 drums of unknown materials have been abandoned at the site. The drums are located in 32 areas throughout the 25-acre site. Following several decades of exposure to the elements, many of the drums have corroded and leaked to the ground surface. Several acres of soil are inundated with liquid asphalt that has leaked from the drums. Depths of the asphalt range from 6 to 10 inches in areas where surface anomalies have created depressions, and thus a collection point for the asphalt. A 14-x 18-x 4 foot wood frame pit used to support previous asphalt operations is located at the north end of the site. The pit contains approximately 2300 gallons of asphalt. There are also locations where the soil appears to be contaminated by petroleum products other than asphalt.

Miller, N.S.

1993-01-01T23:59:59.000Z

203

DOE/LX/07-0057&D1 Secondary Document DMSA-331-18 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for this SWMU, since no hazardous wastes were stored in this unit, per the 2003 Agreed Order. SITEPROCESS DESCRIPTION: An inside DOE material storage area located on the...

204

Corrective Action Investigation Plan for Corrective Action Unit 135: Area 25 Underground Storage Tanks Nevada Test Site, Nevada  

SciTech Connect (OSTI)

This Corrective Action Investigation Plan (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the US Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the US Department of Defense (FFACO, 1996). The CAIP is a document that provides or references all of the specific information for investigation activities associated with Corrective Action Units (CAUs) or Corrective Action Sites (CASs). According to the FFACO, CASs are sites potentially requiring corrective action(s) and may include solid waste management units or individual disposal or release sites (FFACO, 1996). Corrective Action Units consist of one or more CASs grouped together based on geography, technical similarity, or agency responsibility for the purpose of determining corrective actions. This CAIP contains the environmental sample collection objectives and the criteria for conducting site investigation activities at CAU 135, Area 25 Underground Storage Tanks (USTs), which is located on the Nevada Test Site (NTS). The NTS is approximately 105 kilometers (km) (65 miles [mi]) northwest of Las Vegas, Nevada.

U.S. Department of Energy, Nevada Operations Office

1999-05-05T23:59:59.000Z

205

SAVANNAH RIVER SITE INCIPIENT SLUDGE MIXING IN RADIOACTIVE LIQUID WASTE STORAGE TANKS DURING SALT SOLUTION BLENDING  

SciTech Connect (OSTI)

This paper is the second in a series of four publications to document ongoing pilot scale testing and computational fluid dynamics (CFD) modeling of mixing processes in 85 foot diameter, 1.3 million gallon, radioactive liquid waste, storage tanks at Savannah River Site (SRS). Homogeneous blending of salt solutions is required in waste tanks. Settled solids (i.e., sludge) are required to remain undisturbed on the bottom of waste tanks during blending. Suspension of sludge during blending may potentially release radiolytically generated hydrogen trapped in the sludge, which is a safety concern. The first paper (Leishear, et. al. [1]) presented pilot scale blending experiments of miscible fluids to provide initial design requirements for a full scale blending pump. Scaling techniques for an 8 foot diameter pilot scale tank were also justified in that work. This second paper describes the overall reasons to perform tests, and documents pilot scale experiments performed to investigate disturbance of sludge, using non-radioactive sludge simulants. A third paper will document pilot scale CFD modeling for comparison to experimental pilot scale test results for both blending tests and sludge disturbance tests. That paper will also describe full scale CFD results. The final paper will document additional blending test results for stratified layers in salt solutions, scale up techniques, final full scale pump design recommendations, and operational recommendations. Specifically, this paper documents a series of pilot scale tests, where sludge simulant disturbance due to a blending pump or transfer pump are investigated. A principle design requirement for a blending pump is UoD, where Uo is the pump discharge nozzle velocity, and D is the nozzle diameter. Pilot scale test results showed that sludge was undisturbed below UoD = 0.47 ft{sup 2}/s, and that below UoD = 0.58 ft{sup 2}/s minimal sludge disturbance was observed. If sludge is minimally disturbed, hydrogen will not be released. Installation requirements were also determined for a transfer pump which will remove tank contents, and which is also required to not disturb sludge. Testing techniques and test results for both types of pumps are presented.

Leishear, R.; Poirier, M.; Lee, S.; Steeper, T.; Fowley, M.; Parkinson, K.

2011-01-12T23:59:59.000Z

206

Closure Plan for the Area 5 Radioactive Waste Management Site at the Nevada Test Site  

SciTech Connect (OSTI)

The Area 5 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the preliminary closure plan for the Area 5 RWMS at the NTS that was presented in the Integrated Closure and Monitoring Plan (DOE, 2005a). The major updates to the plan include a new closure schedule, updated closure inventory, updated site and facility characterization data, the Title II engineering cover design, and the closure process for the 92-Acre Area of the RWMS. The format and content of this site-specific plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). This interim closure plan meets closure and post-closure monitoring requirements of the order DOE O 435.1, manual DOE M 435.1-1, Title 40 Code of Federal Regulations (CFR) Part 191, 40 CFR 265, Nevada Administrative Code (NAC) 444.743, and Resource Conservation and Recovery Act (RCRA) requirements as incorporated into NAC 444.8632. The Area 5 RWMS accepts primarily packaged low-level waste (LLW), low-level mixed waste (LLMW), and asbestiform low-level waste (ALLW) for disposal in excavated disposal cells.

NSTec Environmental Management

2008-09-01T23:59:59.000Z

207

Waste Disposal (Illinois)  

Broader source: Energy.gov [DOE]

This article lays an outline of waste disposal regulations, permits and fees, hazardous waste management and underground storage tank requirements.

208

Graphical visualization of implemented storage databases  

SciTech Connect (OSTI)

The PC-program LANUC, developed from Admintec, supports a decentralized or centralized storage management of radioactive waste. It gives the storekeeper a graphical view of a storage area and its contents which are otherwise only represented in lists and databases. The storekeeper can plan any movements within the storage area and once they are confirmed, the data in the database are automatically altered. Any implemented database can be represented by simulating a human operator with a program.

Fischer, C.; Hamp, H.P. [Admintec GmbH, Pforzheim (Germany)

1993-12-31T23:59:59.000Z

209

RCRA Assessment Plan for Single-Shell Tank Waste Management Area A-AX at the Hanford Site  

SciTech Connect (OSTI)

This document describes a groundwater assessment plan for the single-shell tank systems in Waste Management Area A-AX at the Hanford Site.

Narbutovskih, Susan M.; Chou, Charissa J.

2006-03-03T23:59:59.000Z

210

Closure Report for Corrective Action Unit 143: Area 25 Contaminated Waste Dumps, Nevada Test Site, Nevada  

SciTech Connect (OSTI)

This Closure Report (CR) has been prepared for the Area 25 Contaminated Waste Dumps (CWD), Corrective Action Unit (CAU) 143 in accordance with the Federal Facility Agreement and Consent Order [FFACO] (FFACO, 1996) and the Nevada Division of Environmental Protection (NDEP)-approved Corrective Action Plan (CAP) for CAU 143: Area 25, Contaminated Waste Dumps, Nevada Test Site, Nevada. CAU 143 consists of two Corrective Action Sites (CASs): 25-23-09 CWD No.1, and 25-23-03 CWD No.2. The Area 25 CWDs are historic disposal units within the Area 25 Reactor Maintenance, Assembly, and Disassembly (R-MAD), and Engine Maintenance, Assembly, and Disassembly (E-MAD) compounds located on the Nevada Test Site (NTS). The R-MAD and E-MAD facilities originally supported a portion of the Nuclear Rocket Development Station in Area 25 of the NTS. CWD No.1 CAS 25-23-09 received solid radioactive waste from the R-MAD Compound (East Trestle and West Trench Berms) and 25-23-03 CWD No.2 received solid radioactive waste from the E-MAD Compound (E-MAD Trench).

D. S. Tobiason

2002-03-01T23:59:59.000Z

211

LIQUID PROPANE GAS (LPG) STORAGE AREA BOILING LIQUID EXPANDING VAPOR EXPLOSION (BLEVE) ANALYSIS  

SciTech Connect (OSTI)

The PHA and the FHAs for the SWOC MDSA (HNF-14741) identified multiple accident scenarios in which vehicles powered by flammable gases (e.g., propane), or combustible or flammable liquids (e.g., gasoline, LPG) are involved in accidents that result in an unconfined vapor cloud explosion (UVCE) or in a boiling liquid expanding vapor explosion (BLEVE), respectively. These accident scenarios are binned in the Bridge document as FIR-9 scenarios. They are postulated to occur in any of the MDSA facilities. The LPG storage area will be in the southeast corner of CWC that is relatively remote from store distaged MAR. The location is approximately 30 feet south of MO-289 and 250 feet east of 2401-W by CWC Gate 10 in a large staging area for unused pallets and equipment.

PACE, M.E.

2004-01-13T23:59:59.000Z

212

Preliminary technique assessment for nondestructive evaluation certification of the NNWSI [Nevada Nuclear Waste Storage Investigations] disposal container closure  

SciTech Connect (OSTI)

Under the direction of the Department of Energy`s (DOE) Office of Civilian Radioactive Waste Management (OCRWM) program, the Nevada Nuclear Waste Storage Investigations (NNWSI) project is evaluating a candidate repository site at Yucca Mountain, Nevada, for permanent disposal of high-level nuclear waste. The Lawrence Livermore National Laboratory (LLNL), a participant in the NNWSI project, is developing waste package designs to meet the NRC requirements. One aspect of this waste package is the nondestructive testing of the final closure of the waste container. The container closure weld can best be nondestructively examined (NDE) by a combination of ultrasonics and liquid penetrants. This combination can be applied remotely and can meet stringent quality control requirements common to nuclear applications. Further development in remote systems and inspection will be required to meet anticipated requirements for flaw detection reliability and sensitivity. New research is not required but might reduce cost or inspection time. Ultrasonic and liquid penetrant methods can examine all closure methods currently being considered, which include fusion welding and inertial welding, among others. These NDE methods also have a history of application in high radiation environments and a well developed technology base for remote operation that can be used to reduce development and design costs. 43 refs., 23 figs., 3 tabs.

Day, R.A.

1988-12-31T23:59:59.000Z

213

NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA  

SciTech Connect (OSTI)

This document establishes the U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive and mixed waste for disposal. Mixed waste generated within the State of Nevada by NNSA/NSO activities is accepted for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Site for storage or disposal.

U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION, NEVADA SITE OFFICE

2005-07-01T23:59:59.000Z

214

PEGASUS, a European research project on the effects of gas in underground storage facilities for radioactive waste  

SciTech Connect (OSTI)

Whereas the subject of gas generation and possible gas release from radioactive waste repositories has gained in interest on the international scene, the Commission of the European Communities has increased its research efforts on this issue. In particular in the 4th five year R and D program on Management and Storage of Radioactive Waste (1990--1994), a framework has been set up in which research efforts on the subject of gas generation and migration, supported by the CEC, are brought together and coordinated. In this project, called PEGASUS, Project on the Effects of GAS in Underground Storage facilities for radioactive waste, about 20 organizations and research institutes from 7 European countries are involved. The project covers both experimental and theoretical studies of the processes of gas formation and possible gas release from the different waste types, LLW, ILW and HLW, under typical repository conditions in suitable geological formations as clay, salt and granite. In this paper an overview is given of the various studies undertaken in the project as well as some first results presented.

Haijtink, B.; McMenamin, T. [Commission of the European Communities, Brussels (Belgium)

1993-12-31T23:59:59.000Z

215

Nevada Nuclear Waste Storage Investigations: Exploratory Shaft Facility fluids and materials evaluation  

SciTech Connect (OSTI)

The objective of this study was to determine if any fluids or materials used in the Exploratory Shaft Facility (ESF) of Yucca Mountain will make the mountain unsuitable for future construction of a nuclear waste repository. Yucca Mountain, an area on and adjacent to the Nevada Test Site in southern Nevada, USA, is a candidate site for permanent disposal of high-level radioactive waste from commercial nuclear power and defense nuclear activities. To properly characterize Yucca Mountain, it will be necessary to construct an underground test facility, in which in situ site characterization tests can be conducted. The candidate repository horizon at Yucca Mountain, however, could potentially be compromised by fluids and materials used in the site characterization tests. To minimize this possibility, Los Alamos National Laboratory was directed to evaluate the kinds of fluids and materials that will be used and their potential impacts on the site. A secondary objective was to identify fluids and materials, if any, that should be prohibited from, or controlled in, the underground. 56 refs., 19 figs., 11 tabs.

West, K.A.

1988-11-01T23:59:59.000Z

216

Plutonium Equivalent Inventory for Belowground Radioactive Waste at the Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2011  

SciTech Connect (OSTI)

The Los Alamos National Laboratory (LANL) generates radioactive waste as a result of various activities. Many aspects of the management of this waste are conducted at Technical Area 54 (TA-54); Area G plays a key role in these management activities as the Laboratory's only disposal facility for low-level radioactive waste (LLW). Furthermore, Area G serves as a staging area for transuranic (TRU) waste that will be shipped to the Waste Isolation Pilot Plant for disposal. A portion of this TRU waste is retrievably stored in pits, trenches, and shafts. The radioactive waste disposed of or stored at Area G poses potential short- and long-term risks to workers at the disposal facility and to members of the public. These risks are directly proportional to the radionuclide inventories in the waste. The Area G performance assessment and composite analysis (LANL, 2008a) project long-term risks to members of the public; short-term risks to workers and members of the public, such as those posed by accidents, are addressed by the Area G Documented Safety Analysis (LANL, 2011a). The Documented Safety Analysis uses an inventory expressed in terms of plutonium-equivalent curies, referred to as the PE-Ci inventory, to estimate these risks. The Technical Safety Requirements for Technical Area 54, Area G (LANL, 2011b) establishes a belowground radioactive material limit that ensures the cumulative projected inventory authorized for the Area G site is not exceeded. The total belowground radioactive waste inventory limit established for Area G is 110,000 PE-Ci. The PE-Ci inventory is updated annually; this report presents the inventory prepared for 2011. The approach used to estimate the inventory is described in Section 2. The results of the analysis are presented in Section 3.

French, Sean B. [Los Alamos National Laboratory; Shuman, Rob [WPS: WASTE PROJECTS AND SERVICES

2012-04-18T23:59:59.000Z

217

Assessment groundwater monitoring plan for single shell tank waste management area B-BX-BY  

SciTech Connect (OSTI)

Single Shell Tank Waste Management Area B-BX-BY has been placed into groundwater quality assessment monitoring under interim-status regulations. This document presents background and an assessment groundwater monitoring plan to evaluate any impacts of risks/spills from these Single Shell Tanks in WMA B-BX-BY on groundwater quality.

Caggiano, J.A.

1996-09-27T23:59:59.000Z

218

Nevada Test Site 2000 Annual Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site  

SciTech Connect (OSTI)

This report is a compilation of the calendar year 2000 groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). Contamination indicator data are presented in control chart and tabular form with investigation levels (IL) indicated. Gross water chemistry data are presented in graphical and tabular form. Other information in the report includes, the Cumulative Chronology for Area 5 RWMS Groundwater Monitoring Program, a brief description of the site hydrogeology, and the groundwater sampling procedure.

Y. E.Townsend

2001-02-01T23:59:59.000Z

219

Remaining Sites Verification Package for the 100-B-1 Surface Chemical and Solid Waste Dumping Area, Waste Site Reclassification Form 2006-003  

SciTech Connect (OSTI)

The 100-B-1 waste site was a dumping site that was divided into two areas. One area was used as a laydown area for construction materials, and the other area was used as a chemical dumping area. The 100-B-1 Surface Chemical and Solid Waste Dumping Area site meets the remedial action objectives specified in the Remaining Sites ROD. The results demonstrate that residual contaminant concentrations support future unrestricted land uses that can be represented by a rural-residential scenario. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

R. A. Carlson

2006-04-24T23:59:59.000Z

220

Remaining Sites Verification Package for the 126-B-3, 184-B Coal Pit Dumping Area, Waste Site Reclassification Form 2005-028  

SciTech Connect (OSTI)

The 126-B-3 waste site is the former coal storage pit for the 184-B Powerhouse. During demolition operations in the 1970s, the site was used for disposal of demolition debris from 100-B/C Area facilities. The site has been remediated by removing debris and contaminated soils. The results of verification sampling demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also showed that residual contaminant concentrations are protective of groundwater and the Columbia River.

L. M. Dittmer

2006-08-07T23:59:59.000Z

Note: This page contains sample records for the topic "waste storage area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Results from NNWSI [Nevada Nuclear Waste Storage Investigations] Series 2 bare fuel dissolution tests  

SciTech Connect (OSTI)

The dissolution and radionuclide release behavior of spent fuel in groundwater is being studied by the Nevada Nuclear Waste Storage Investigations (NNWSI) Project. Two bare spent fuel specimens plus the empty cladding hulls were tested in NNWSI J-13 well water in unsealed fused silica vessels under ambient hot cell air conditions (25{degree}C) in the currently reported tests. One of the specimens was prepared from a rod irradiated in the H. B. Robinson Unit 2 reactor and the other from a rod irradiated in the Turkey Point Unit 3 reactor. Results indicate that most radionuclides of interest fall into three groups for release modeling. The first group principally includes the actinides (U, Np, Pu, Am, and Cm), all of which reached solubility-limited concentrations that were orders of magnitude below those necessary to meet the NRC 10 CFR 60.113 release limits for any realistic water flux predicted for the Yucca Mountain repository site. The second group is nuclides of soluble elements such as Cs, Tc, and I, for which release rates do not appear to be solubility-limited and may depend on the dissolution rate of fuel. In later test cycles, {sup 137}Cs, {sup 90}Sr, {sup 99}Tc, and {sup 129}I were continuously released at rates between about 5 {times} 10{sup {minus}5} and 1 {times} 10{sup {minus}4} of inventory per year. The third group is radionuclides that may be transported in the vapor phase, of which {sup 14}C is of primary concern. Detailed test results are presented and discussed. 17 refs., 15 figs., 21 tabs.

Wilson, C.N.

1990-09-01T23:59:59.000Z

222

Mixed waste focus area integrated master schedule (current as of May 6, 1996)  

SciTech Connect (OSTI)

The mission of the Mixed Waste Characterization, Treatment, and Disposal Focus Area (MWFA) is to provide acceptable treatment systems, developed in partnership with users and with the participation of stakeholders, tribal governments, and regulators, that are capable of treating the Department of Energy`s (DOE`s) mixed wastes. In support of this mission, the MWTA produced the Mixed Waste Focus Area Integrated Technical Baseline Report, Phase I Volume 1, January 16, 1996, which identified a prioritized list of 30 national mixed waste technology deficiencies. The MWFA is targeting funding toward technology development projects that address the current list of deficiencies. A clear connection between the technology development projects and the EM-30 and EM-40 treatment systems that they support is essential for optimizing the MWFA efforts. The purpose of the Integrated Master Schedule (IMS) is to establish and document these connections and to ensure that all technology development activities performed by the MWFA are developed for timely use in those treatment systems. The IMS is a list of treatment systems from the Site Treatment Plans (STPs)/Consent Orders that have been assigned technology development needs with associated time-driven schedules, Technology deficiencies and associated technology development (TD) needs have been identified for each treatment system based on the physical, chemical, and radiological characteristics of the waste targeted for the treatment system. The schedule, the technology development activities, and the treatment system have been verified through the operations contact from the EM-30 organization at the site.

NONE

1996-05-01T23:59:59.000Z

223

Verification survey report of the south waste tank farm training/test tower and hazardous waste storage lockers at the West Valley demonstration project, West Valley, New York  

SciTech Connect (OSTI)

A team from ORAU's Independent Environmental Assessment and Verification Program performed verification survey activities on the South Test Tower and four Hazardous Waste Storage Lockers. Scan data collected by ORAU determined that both the alpha and alpha-plus-beta activity was representative of radiological background conditions. The count rate distribution showed no outliers that would be indicative of alpha or alpha-plus-beta count rates in excess of background. It is the opinion of ORAU that independent verification data collected support the site?s conclusions that the South Tower and Lockers sufficiently meet the site criteria for release to recycle and reuse.

Weaver, Phyllis C.

2012-08-29T23:59:59.000Z

224

Corrective Action Decision Document/Corrective Action Plan for the 92-Acre Area and Corrective Action Unit 111: Area 5 WMD Retired Mixed Waste Pits, Nevada Test Site, Nevada  

SciTech Connect (OSTI)

This Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) has been prepared for the 92-Acre Area, the southeast quadrant of the Radioactive Waste Management Site, located in Area 5 of the Nevada Test Site (NTS). The 92-Acre Area includes Corrective Action Unit (CAU) 111, 'Area 5 WMD Retired Mixed Waste Pits.' Data Quality Objectives (DQOs) were developed for the 92-Acre Area, which includes CAU 111. The result of the DQO process was that the 92-Acre Area is sufficiently characterized to provide the input data necessary to evaluate corrective action alternatives (CAAs) without the collection of additional data. The DQOs are included as Appendix A of this document. This CADD/CAP identifies and provides the rationale for the recommended CAA for the 92-Acre Area, provides the plan for implementing the CAA, and details the post-closure plan. When approved, this CADD/CAP will supersede the existing Pit 3 (P03) Closure Plan, which was developed in accordance with Title 40 Code of Federal Regulations (CFR) Part 265, 'Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities.' This document will also serve as the Closure Plan and the Post-Closure Plan, which are required by 40 CFR 265, for the 92-Acre Area. After closure activities are complete, a request for the modification of the Resource Conservation and Recovery Act Permit that governs waste management activities at the NTS will be submitted to the Nevada Division of Environmental Protection to incorporate the requirements for post-closure monitoring. Four CAAs, ranging from No Further Action to Clean Closure, were evaluated for the 92-Acre Area. The CAAs were evaluated on technical merit focusing on performance, reliability, feasibility, safety, and cost. Based on the evaluation of the data used to develop the conceptual site model; a review of past, current, and future operations at the site; and the detailed and comparative analysis of the potential CAAs, Closure in Place with Administrative Controls is the preferred CAA for the 92-Acre Area. Closure activities will include the following: (1) Constructing an engineered evapotranspiration cover over the 92-Acre Area; (2) Installing use restriction (UR) warning signs, concrete monuments, and subsidence survey monuments; (3) Establishing vegetation on the cover; (4) Implementing a UR; and (5) Implementing post-closure inspections and monitoring. The Closure in Place with Administrative Controls alternative meets all requirements for the technical components evaluated, fulfills all applicable federal and state regulations for closure of the site, and will minimize potential future exposure pathways to the buried waste at the site.

NSTec Environmental Restoration

2009-07-31T23:59:59.000Z

225

Corrective Action Decision Document/Corrective Action Plan for the 92-Acre Area and Corrective Action Unit 111: Area 5 WMD Retired Mixed Waste Pits, Nevada National Security Site, Nevada  

SciTech Connect (OSTI)

This Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) has been prepared for the 92-Acre Area, the southeast quadrant of the Radioactive Waste Management Site, located in Area 5 of the Nevada National Security Site (NNSS). The 92-Acre Area includes Corrective Action Unit (CAU) 111, 'Area 5 WMD Retired Mixed Waste Pits.' Data Quality Objectives (DQOs) were developed for the 92-Acre Area, which includes CAU 111. The result of the DQO process was that the 92-Acre Area is sufficiently characterized to provide the input data necessary to evaluate corrective action alternatives (CAAs) without the collection of additional data. The DQOs are included as Appendix A of this document. This CADD/CAP identifies and provides the rationale for the recommended CAA for the 92-Acre Area, provides the plan for implementing the CAA, and details the post-closure plan. When approved, this CADD/CAP will supersede the existing Pit 3 (P03) Closure Plan, which was developed in accordance with Title 40 Code of Federal Regulations (CFR) Part 265, 'Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities.' This document will also serve as the Closure Plan and the Post-Closure Plan, which are required by 40 CFR 265, for the 92-Acre Area. After closure activities are complete, a request for the modification of the Resource Conservation and Recovery Act Permit that governs waste management activities at the NNSS will be submitted to the Nevada Division of Environmental Protection to incorporate the requirements for post-closure monitoring. Four CAAs, ranging from No Further Action to Clean Closure, were evaluated for the 92-Acre Area. The CAAs were evaluated on technical merit focusing on performance, reliability, feasibility, safety, and cost. Based on the evaluation of the data used to develop the conceptual site model; a review of past, current, and future operations at the site; and the detailed and comparative analysis of the potential CAAs, Closure in Place with Administrative Controls is the preferred CAA for the 92-Acre Area. Closure activities will include the following: (1) Constructing an engineered evapotranspiration cover over the 92-Acre Area; (2) Installing use restriction (UR) warning signs, concrete monuments, and subsidence survey monuments; (3) Establishing vegetation on the cover; (4) Implementing a UR; and (5) Implementing post-closure inspections and monitoring. The Closure in Place with Administrative Controls alternative meets all requirements for the technical components evaluated, fulfills all applicable federal and state regulations for closure of the site, and will minimize potential future exposure pathways to the buried waste at the site.

NSTec Environmental Restoration

2010-11-22T23:59:59.000Z

226

Criticality Safety Evaluation for TRU Waste In Storage at the RWMC  

SciTech Connect (OSTI)

Stored containers (drums, boxes, and bins) of transuranic waste at the Radioactive Waste Management Complex (RWMC) facility located at the Idaho National Engineering Laboratory (INEL) were evaluated based on inherent neutron absorption characteristics of the waste materials. It was demonstrated that these properties are sufficient to preclude a criticality accident at the actual fissile levels present in the waste stored at the RWMC. Based on the database information available, the results reported herein confirm that the waste drums, boxes, and bins currently stored at the RWMC will remain safely subcritical if rearranged, restacked, or otherwise handled. Acceptance criteria for receiving future drum shipments were established based on fully infinite systems.

M. E. Shaw; J. B. Briggs; C. A. Atkinson; G. J. Briscoe

1994-04-01T23:59:59.000Z

227

Central Waste Complex (CWC) Waste Analysis Plan  

SciTech Connect (OSTI)

The purpose of this waste analysis plan (WAP) is to document the waste acceptance process, sampling methodologies, analytical techniques, and overall processes that are undertaken for waste accepted for storage at the Central Waste Complex (CWC), which is located in the 200 West Area of the Hanford Facility, Richland, Washington. Because dangerous waste does not include the source special nuclear and by-product material components of mixed waste, radionuclides are not within the scope of this document. The information on radionuclides is provided only for general knowledge. This document has been revised to meet the interim status waste analysis plan requirements of Washington Administrative Code (WAC) 173 303-300(5). When the final status permit is issued, permit conditions will be incorporated and this document will be revised accordingly.

ELLEFSON, M.D.

2000-01-06T23:59:59.000Z

228

Restoration of areas disturbed by site studies for a mined commercial radioactive waste repository: The Basalt Waste Isolation Project (BWIP)  

SciTech Connect (OSTI)

The Basalt Waste Isolation Project (BWIP) was undertaken to environmentally characterize a portion of the US Department of Energy's Hanford Site in Washington State as a potential host for the nation's first mined commercial nuclear waste repository. Studies were terminated by Congress in 1987. Between 1976 and 1987, 72 areas located across the Hanford Site were disturbed by the BWIP. These areas include borehole pads, a large Exploratory Shaft Facility, and the Near Surface Test Facility. Most boreholes were cleared of vegetation, leveled, and stabilized with a thick layer of compacted pit-run gravel and sand. The Near Surface Test Facility consists of three mined adits, a rock-spoils bench, and numerous support facilities. Restoration began in 1988 with the objective of returning sites to pre-existing conditions using native species. The Hanford Site retains some of the last remnants of the shrub-steppe ecosystem in Washington. The primary constraints to restoring native vegetation at Hanford are low precipitation and the presence of cheatgrass, an extremely capable alien competitor. 5 figs.

Brandt, C.A.; Rickard, W.H. Jr.; Biehert, R.W.; Newell, R.L.; Page, T.L.

1989-01-01T23:59:59.000Z

229

Plutonium finishing plant dangerous waste training plan  

SciTech Connect (OSTI)

This training plan describes general requirements, worker categories, and provides course descriptions for operation of the Plutonium Finish Plant (PFP) waste generation facilities, permitted treatment, storage and disposal (TSD) units, and the 90-Day Accumulation Areas.

ENTROP, G.E.

1999-05-24T23:59:59.000Z

230

Stormwater Pollution Prevention Plan (SWPPP) for Coal Storage Area Stabilization Project  

SciTech Connect (OSTI)

The scope of this project is to stabilize the abandoned coal storage area and redirect the storm water runoff from sanitary sewer system to the storm drain system. Currently, the existing storm water runoff is directed to a perimeter concrete drainage swale and collected in a containment basin. The collected water is then pumped to a treatment facility and after treatment, is discharged to the Y-12 sanitary sewer system. The existing drainage swale and collection basin along with silt fencing will be used during aggregate placement and grading to provide erosion and sediment control. Inlet protection will also be installed around existing structures during the storm water diversion construction. This project scope will include the installation of a non-woven geotextile fabric and compacted mineral aggregate base (paving optional) to stabilize the site. The geotextile specifications are provided on the vendor cut sheets in Appendix B. The installation of a storm water collection/retention area will also be installed on the southern side of the site in accordance with EPA Technical Guidance on Implementing the Stormwater Runoff Requirements for federal Projects under Section 438 of the Energy Independence and Security Act. The total area to be disturbed is approximately 2.5 acres. The order of activities for this Stormwater Pollution Prevention Plan (SWPPP) will be: (1) post notice of coverage (NOC) in a prominent display near entrance of the site; (2) install rain gauge on site or contact Y-12 Plant Shift Superintendent daily for Met tower rain gauge readings; (3) install stabilized construction exit on site; (4) install silt fencing along perimeter as indicated on the attached site plan; (5) regrade site; (6) install geotextile fabric and compacted mineral aggregate base; (7) install catch basin inlet protection where required; (8) excavate and lower existing catch basin tops, re-grade and asphalt to drain; and (9) when all disturbed areas are re-stabilized, remove silt fencing and any other temporary erosion control.

Project and Design Engineering

2011-03-01T23:59:59.000Z

231

E AREA LOW LEVEL WASTE FACILITY DOE 435.1 PERFORMANCE ASSESSMENT  

SciTech Connect (OSTI)

This Performance Assessment for the Savannah River Site E-Area Low-Level Waste Facility was prepared to meet requirements of Chapter IV of the Department of Energy Order 435.1-1. The Order specifies that a Performance Assessment should provide reasonable assurance that a low-level waste disposal facility will comply with the performance objectives of the Order. The Order also requires assessments of impacts to water resources and to hypothetical inadvertent intruders for purposes of establishing limits on radionuclides that may be disposed near-surface. According to the Order, calculations of potential doses and releases from the facility should address a 1,000-year period after facility closure. The point of compliance for the performance measures relevant to the all pathways and air pathway performance objective, as well as to the impact on water resources assessment requirement, must correspond to the point of highest projected dose or concentration beyond a 100-m buffer zone surrounding the disposed waste following the assumed end of active institutional controls 100 years after facility closure. During the operational and institutional control periods, the point of compliance for the all pathways and air pathway performance measures is the SRS boundary. However, for the water resources impact assessment, the point of compliance remains the point of highest projected dose or concentration beyond a 100-m buffer zone surrounding the disposed waste during the operational and institutional control periods. For performance measures relevant to radon and inadvertent intruders, the points of compliance are the disposal facility surface for all time periods and the disposal facility after the assumed loss of active institutional controls 100 years after facility closure, respectively. The E-Area Low-Level Waste Facility is located in the central region of the SRS known as the General Separations Area. It is an elbow-shaped, cleared area, which curves to the northwest, situated immediately north of the Mixed Waste Management Facility. The E-Area Low-Level Waste Facility is comprised of 200 acres for waste disposal and a surrounding buffer zone that extends out to the 100-m point of compliance. Disposal units within the footprint of the low-level waste facilities include the Slit Trenches, Engineered Trenches, Component-in-Grout Trenches, the Low-Activity Waste Vault, the Intermediate-Level Vault, and the Naval Reactor Component Disposal Area. Radiological waste disposal operations at the E-Area Low-Level Waste Facility began in 1994. E-Area Low-Level Waste Facility closure will be conducted in three phases: operational closure, interim closure, and final closure. Operational closure will be conducted during the 25-year operation period (30-year period for Slit and Engineered Trenches) as disposal units are filled; interim closure measures will be taken for some units. Interim closure will take place following the end of operations and will consist of an area-wide runoff cover along with additional grading over the trench units. Final closure of all disposal units in the E-Area Low-Level Waste Facility will take place at the end of the 100-year institutional control period and will consist of the installation of an integrated closure system designed to minimize moisture contact with the waste and to serve as a deterrent to intruders. Radiological dose to human receptors is analyzed in this PA in the all-pathways analysis, the inadvertent intruder analysis and the air pathway analysis, and the results are compared to the relevant performance measures. For the all-pathways analysis, the performance measure of relevance is a 25-mrem/yr EDE to representative members of the public, excluding dose from radon and its progeny in air. For the inadvertent intruder, the applicable performance measures are 100-mrem/yr EDE and 500 mrem/yr EDE for chronic and exposure scenarios, respectively. The relevant performance measure for the air pathway is 10-mrem/yr EDE via the air pathway, excluding dose from radon and its progeny in air. Protecti

Wilhite, E

2008-03-31T23:59:59.000Z

232

E-Print Network 3.0 - area material storage Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion and Utilization ; Renewable Energy 3 Safety Issues Chemical...

233

Test Area for Remedial Actions (TARA) site characterization and dynamic compaction of low-level radioactive waste trenches. FY 1988 progress report  

SciTech Connect (OSTI)

As part of a low-level radioactive waste burial ground stabilization and closure technology demonstration project, a group of five burial trenches in Oak Ridge National Laboratory (ORNL) Solid Waste Storage Area (SWSA) 6 was selected as a demonstration site for testing trench compaction, trench grouting, and trench cap installation and performance. This report focuses on site characterization, trench compaction, and grout-trench leachate compatibility. Trench grouting and cap design and construction will be the subject of future reports. The five trenches, known as the Test Area for Remedial Actions (TARA) site, are contained within a hydrologically isolated area of SWSA 6; for that reason, any effects of stabilization activities on site performance and groundwater quality will be separable from the influence of other waste disposal units in SWSA 6. To obviate the chronic problem of burial trench subsidence and to provide support for an infiltration barrier cap, these five trenches were dynamically compacted by repeated dropping of a 4-ton weight onto each trench from heights of approximately 7 m.

Davis, E.C.; Spalding, B.P.; Lee, S.Y.; Hyder, L.K.

1989-01-01T23:59:59.000Z

234

LABORATORY TESTING TO SIMULATE VAPOR SPACE CORROSION IN RADIOACTIVE WASTE STORAGE TANKS  

SciTech Connect (OSTI)

Radioactive liquid waste has been stored in underground carbon steel tanks for nearly 70 years at the Hanford nuclear facility. Vapor space corrosion of the tank walls has emerged as an ongoing challenge to overcome in maintaining the structural integrity of these tanks. The interaction between corrosive and inhibitor species in condensates/supernates on the tank wall above the liquid level, and their interaction with vapor phase constituents as the liquid evaporates from the tank wall influences the formation of corrosion products and the corrosion of the carbon steel. An effort is underway to gain an understanding of the mechanism of vapor space corrosion. Localized corrosion, in the form of pitting, is of particular interest in the vapor space. CPP testing was utilized to determine the susceptibility of the steel in a simulated vapor space environment. The tests also investigated the impact of ammonia gas in the vapor space area on the corrosion of the steel. Vapor space coupon tests were also performed to investigate the evolution of the corrosion products during longer term exposures. These tests were also conducted at vapor space ammonia levels of 50 and 550 ppm NH{sub 3} (0.005, and 0.055 vol.%) in air. Ammonia was shown to mitigate vapor space corrosion.

Wiersma, B.; Garcia-Diaz, B.; Gray, J.

2013-08-30T23:59:59.000Z

235

THE WIDE-AREA ENERGY STORAGE AND MANAGEMENT SYSTEM PHASE II Final Report - Flywheel Field Tests  

SciTech Connect (OSTI)

This research was conducted by Pacific Northwest National Laboratory (PNNL) operated for the U.S. department of Energy (DOE) by Battelle Memorial Institute for Bonneville Power Administration (BPA), California Institute for Energy and Environment (CIEE) and California Energy Commission (CEC). A wide-area energy management system (WAEMS) is a centralized control system that operates energy storage devices (ESDs) located in different places to provide energy and ancillary services that can be shared among balancing authorities (BAs). The goal of this research is to conduct flywheel field tests, investigate the technical characteristics and economics of combined hydro-flywheel regulation services that can be shared between Bonneville Power Administration (BPA) and California Independent System Operator (CAISO) controlled areas. This report is the second interim technical report for Phase II of the WAEMS project. This report presents: 1) the methodology of sharing regulation service between balancing authorities, 2) the algorithm to allocate the regulation signal between the flywheel and hydro power plant to minimize the wear-and-tear of the hydro power plants, 3) field results of the hydro-flywheel regulation service (conducted by the Beacon Power), and 4) the performance metrics and economic analysis of the combined hydro-flywheel regulation service.

Lu, Ning; Makarov, Yuri V.; Weimar, Mark R.; Rudolph, Frank; Murthy, Shashikala; Arseneaux, Jim; Loutan, Clyde; Chowdhury, S.

2010-08-31T23:59:59.000Z

236

Nevada Test Site Waste Acceptance Criteria  

SciTech Connect (OSTI)

This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive (LLW) and mixed waste (MW) for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex (RWMC) for storage or disposal.

U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office

2005-10-01T23:59:59.000Z

237

Caustic Recycle from Hanford Tank Waste Using Large Area NaSICON Structures (LANS)  

SciTech Connect (OSTI)

This report presents the results of a 5-day test of an electrochemical bench-scale apparatus using a proprietary (NAS-GY) material formulation of a (Na) Super Ion Conductor (NaSICON) membrane in a Large Area NaSICON Structures (LANS) configuration. The primary objectives of this work were to assess system performance, membrane seal integrity, and material degradation while removing Na from Group 5 and 6 tank waste from the Hanford Site.

Fountain, Matthew S.; Sevigny, Gary J.; Balagopal, S.; Bhavaraju, S.

2009-03-31T23:59:59.000Z

238

Turning the Corner on Hanford Tank Waste Cleanup-From Safe Storage to Closure  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE), Office of River Protection (ORP) is leading the River Protection Project (RPP) which is responsible for the disposition of 204,000 cubic meters (54 million gallons) of high-level radioactive waste that have accumulated in large underground tanks at the Hanford Site since 1944. ORP continues to make good progress on improving the capability to treat Hanford tank waste. Design of the waste vitrification facilities is proceeding well and construction will begin within the next year. Progress is also being made in reducing risk to the worker and the environment from the waste currently stored in the tank farms. Removal of liquids from single-shell tanks (SSTs) is on schedule and we will begin removing solids (salt cake) from a tank (241-U-107) in 2002. There is a sound technical foundation for the waste vitrification facilities. These initial facilities will be capable of treating (vitrifying) the bulk of Hanford tank waste and are the corners tone of the clean-up strategy. ORP recognizes that as the near-term work is performed, it is vital that there be an equally strong and defensible plan for completing the mission. ORP is proceeding on a three-pronged approach for moving the mission forward. First, ORP will continue to work aggressively to complete the waste vitrification facilities. ORP intends to provide the most capable and robust facilities to maximize the amount of waste treated by these initial facilities by 2028 (regulatory commitment for completion of waste treatment). Second, and in parallel with completing the waste vitrification facilities, ORP is beginning to consider how best to match the hazard of the waste to the disposal strategy. The final piece of our strategy is to continue to move forward with actions to reduce risk in the tank farms and complete cleanup.

Boston, H. L.; Cruz, E. J.; Coleman, S. J.

2002-02-25T23:59:59.000Z

239

2003 Data Report: Groundwater Monitoring Program, Area 5 Radioactive Waste Management Site, Nevada Test Site  

SciTech Connect (OSTI)

This report is a compilation of the calendar year 2003 groundwater sampling results from the Area 5 Radioactive Waste Management Site, Nevada Test Site. Wells Ue5PW-1, Ue5PW-2, and Ue5PW-3 were sampled semi-annually for the required analytes: pH, specific conductance, total organic carbon (TOC), total organic halides (TOX), tritium, and major cations/anions. Results from all samples collected in 2003 were within established criteria. These data indicate that there has been no measurable impact to the uppermost aquifer from the Resource Conservation and Recovery Act (RCRA) regulated unit within the Area 5 Radioactive Waste Management Site and confirm that any previous detections of TOC and TOX were false positives. Contamination indicator data are presented in control chart and tabular form with investigation levels indicated. Gross water chemistry data are presented in graphical and tabular form. There were no major changes noted in the monitored groundwater elevations. There continues to be an extremely small gradient to the northeast with an average flow velocity of less than one foot per year. Other information in the report includes a Cumulative Chronology for the Area 5 Radioactive Waste Management Site Groundwater Monitoring Program, a brief description of the site hydrogeology, and the current groundwater sampling procedure.

Bechtel Nevada

2004-02-01T23:59:59.000Z

240

Development of biological and chemical methods for environmental monitoring of DOE waste disposal and storage facilities. Final report  

SciTech Connect (OSTI)

Hazardous chemicals in the environment have received ever increasing attention in recent years. In response to ongoing problems with hazardous waste management, Congress enacted the Resource Conservation and Recovery Act (RCRA) in 1976. In 1980, Congress adopted the Comprehensive Environmental Response Compensation, and Liability Act (CERCLA), commonly called Superfund to provide for emergency spill response and to clean up closed or inactive hazardous waste sites. Scientists and engineers have begun to respond to the hazardous waste challenge with research and development on treatment of waste streams as well as cleanup of polluted areas. The magnitude of the problem is just now beginning to be understood. The U.S. Environmental Protection Agency (USEPA) National Priorities List as of September 13 1985, contained 318 proposed sites and 541 final sites (USEPA, 1985). Estimates of up to 30,000 sites containing hazardous wastes (1,200 to 2,000 of which present a serious threat to public health) have been made (Public Law 96-150). In addition to the large number of sites, the costs of cleanup using available technology are phenomenal. For example, a 10-acre toxic waste site in Ohio is to be cleaned up by removing chemicals from the site and treating the contaminated groundwater. The federal government has already spent more than $7 million to remove the most hazardous wastes and the groundwater decontamination alone is expected to take at least 10 years and cost $12 million. Another example of cleanup costs comes from the State of California Commission for Economic Development which predicts a bright economic future for the state except for the potential outlay of $40 billion for hazardous waste cleanup mandated by federal and state laws.

NONE

1989-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste storage area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Evaluation of Low-Level Waste Disposal Receipt Data for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2011  

SciTech Connect (OSTI)

The Los Alamos National Laboratory (LANL or the Laboratory) generates radioactive waste as a result of various activities. Operational or institutional waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research. Environmental restoration (ER), and decontamination and decommissioning (D and D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility. U.S. Department of Energy (DOE) Order 435.1 (DOE, 2001) requires that radioactive waste be managed in a manner that protects public health and safety, and the environment. To comply with this order, DOE field sites must prepare and maintain site-specific radiological performance assessments for LLW disposal facilities that accept waste after September 26, 1988. Furthermore, sites are required to conduct composite analyses that account for the cumulative impacts of all waste that has been (or will be) disposed of at the facilities and other sources of radioactive material that may interact with the facilities. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 (LANL, 2008). These analyses estimate rates of radionuclide release from the waste disposed of at the facility, simulate the movement of radionuclides through the environment, and project potential radiation doses to humans for several on-site and off-site exposure scenarios. The assessments are based on existing site and disposal facility data and on assumptions about future rates and methods of waste disposal. The accuracy of the performance assessment and composite analysis depends upon the validity of the data used and assumptions made in conducting the analyses. If changes in these data and assumptions are significant, they may invalidate or call into question certain aspects of the analyses. For example, if the volumes and activities of waste disposed of during the remainder of the disposal facility's lifetime differ significantly from those projected, the doses projected by the analyses may no longer apply. DOE field sites are required to implement a performance assessment and composite analysis maintenance program. The purpose of this program is to ensure the continued applicability of the analyses through incremental improvement of the level of understanding of the disposal site and facility. Site personnel are required to conduct field and experimental work to reduce the uncertainty in the data and models used in the assessments. Furthermore, they are required to conduct periodic reviews of waste receipts, comparing them to projected waste disposal rates. The radiological inventory for Area G was updated in conjunction with Revision 4 of the performance assessment and composite analysis (Shuman, 2008). That effort used disposal records and other sources of information to estimate the quantities of radioactive waste that have been disposed of at Area G from 1959, the year the facility started receiving waste on a routine basis, through 2007. It also estimated the quantities of LLW that will require disposal from 2008 through 2044, the year in which it is assumed that disposal operations at Area G will cease. This report documents the fourth review of Area G disposal receipts since the inventory was updated and examines information for waste placed in the ground during fiscal years (FY) 2008 through 2011. The primary objective of the disposal receipt review is to ensure that the future waste inventory projections developed for the performance assessment and composite analysis are consistent with the actual types and quantities of waste being disposed of at Area G. Toward this end, the disposal data that are the subject of this review are used to update the future waste inventory projections for the disposal facility. These projections are compared to the future inventory projections that were develope

French, Sean B. [Los Alamos National Laboratory; Shuman, Robert [WPS: WASTE PROJECTS AND SERVICES

2012-04-17T23:59:59.000Z

242

Characterization ReportOperational Closure Covers for the Area 5 Radioactive Waste Management Site at the Nevada Test Site  

SciTech Connect (OSTI)

Bechtel Nevada (BN) manages two low-level Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS) for the U.S. Department of Energy (DOE) National Nuclear Security Administration Nevada Site Office (NNSA/NSO). The Area 3 RWMS is located in south-central Yucca Flat and the Area 5 RWMS is located about 15 miles south, in north-central Frenchman Flat. Though located in two separate topographically closed basins, they are similar in climate and hydrogeologic setting. The Area 5 RWMS uses engineered shallow-land burial cells to dispose of packaged waste, while the Area 3 RWMS uses subsidence craters formed from underground testing of nuclear weapons for the disposal of packaged and unpackaged bulk waste. Over the next several decades, most waste disposal units at both the Area 3 and Area 5 RWMSs are anticipated to be closed. Closure of the Area 3 and Area 5 RWMSs will proceed through three phases: operational closure, final closure, and institutional control. Many waste disposal units at the Area 5RWMS are operationally closed and final closure has been placed on one unit at the Area 3 RWMS (U-3ax/bl). Because of the similarities between the two sites (e.g., type of wastes, environmental factors, operational closure cover designs, etc.), many characterization studies and data collected at the Area 3 RWMS are relevant and applicable to the Area 5 RWMS. For this reason, data and closure strategies from the Area 3 RWMS are referred to as applicable. This document is an interim Characterization Report Operational Closure Covers, for the Area 5 RWMS. The report briefly describes the Area 5 RWMS and the physical environment where it is located, identifies the regulatory requirements, reviews the approach and schedule for closing, summarizes the monitoring programs, summarizes characterization studies and results, and then presents conclusions and recommendations.

Bechtel Nevada Geotechnical Sciences

2005-06-01T23:59:59.000Z

243

Decontamination and inspection plan for Phase 3 closure of the 300 area waste acid treatment system  

SciTech Connect (OSTI)

This decontamination and inspection plan (DIP) describes decontamination and verification activities in support of Phase 3 closure of the 300 Area Waste Acid Treatment System (WATS). Phase 3 is the third phase of three WATS closure phases. Phase 3 attains clean closure conditions for WATS portions of the 334 and 311 Tank Farms (TF) and the 333 and 303-F Buildings. This DIP also describes designation and management of waste and debris generated during Phase 3 closure activities. Information regarding Phase 1 and Phase 2 for decontamination and verification activities closure can be found in WHC-SD-ENV-AP-001 and HNF-1784, respectively. This DIP is provided as a supplement to the closure plan (DOE/RL-90-11). This DIP provides the documentation for Ecology concurrence with Phase 3 closure methods and activities. This DIP is intended to provide greater detail than is contained in the closure plan to satisfy Ecology Dangerous Waste Regulations, Washington Administrative Code (WAC) 173-303-610 requirement that closure documents describe the methods for removing, transporting, storing, and disposing of all dangerous waste at the unit. The decontamination and verification activities described in this DIP are based on the closure plan and on agreements reached between Ecology and the U.S. Department of Energy, Richland Operations Office (DOE-RL) during Phase 3 closure activity workshops and/or project manager meetings (PMMs).

LUKE, S.N.

1999-02-01T23:59:59.000Z

244

Mixed Waste Focus Area integrated technical baseline report, Phase 1: Volume 1  

SciTech Connect (OSTI)

The Department of Energy (DOE) established the Mixed Waste Characterization, Treatment, and Disposal Focus Area (MWFA) to develop and facilitate implementation of technologies required to meet the Department`s commitments for treatment of mixed low-level and transuranic wastes. The mission of the MWFA is to provide acceptable treatment systems, developed in partnership with users and with participation of stakeholders, tribal governments, and regulators, that are capable of treating DOE`s mixed waste. These treatment systems include all necessary steps such as characterization, pretreatment, and disposal. To accomplish this mission, a technical baseline is being established that forms the basis for determining which technology development activities will be supported by the MWFA. The technical baseline is the prioritized list of deficiencies, and the resulting technology development activities needed to overcome these deficiencies. This document presents Phase I of the technical baseline development process, which resulted in the prioritized list of deficiencies that the MWFA will address. A summary of the data and the assumptions upon which this work was based is included, as well as information concerning the DOE Office of Environmental Management (EM) mixed waste technology development needs. The next phase in the technical baseline development process, Phase II, will result in the identification of technology development activities that will be conducted through the MWFA to resolve the identified deficiencies.

NONE

1996-01-16T23:59:59.000Z

245

Integrity assessment plan for PNL 300 area radioactive hazardous waste tank system. Final report  

SciTech Connect (OSTI)

The Pacific Northwest Laboratory (PNL), operated by Battelle Memorial Institute under contract to the U.S. Department of Energy, operates tank systems for the U.S. Department of Energy, Richland Operations Office (DOE-RL), that contain dangerous waste constituents as defined by Washington State Department of Ecology (WDOE) Dangerous Waste Regulations, Washington Administrative Code (WAC) 173-303-040(18). Chapter 173-303-640(2) of the WAC requires the performance of integrity assessments for each existing tank system that treats or stores dangerous waste, except those operating under interim status with compliant secondary containment. This Integrity Assessment Plan (IAP) identifies all tasks that will be performed during the integrity assessment of the PNL-operated Radioactive Liquid Waste Systems (RLWS) associated with the 324 and 325 Buildings located in the 300 Area of the Hanford Site. It describes the inspections, tests, and analyses required to assess the integrity of the PNL RLWS (tanks, ancillary equipment, and secondary containment) and provides sufficient information for adequate budgeting and control of the assessment program. It also provides necessary information to permit the Independent, Qualified, Registered Professional Engineer (IQRPE) to approve the integrity assessment program.

NONE

1996-03-01T23:59:59.000Z

246

WIPP Sampling and Analysis Plan for Solid Waste Management Units and Areas of Concern.  

SciTech Connect (OSTI)

This Sampling and Analysis Plan (SAP) has been prepared to fulfill requirements of Module VII, Section VII.M.2 and Table VII.1, requirement 4 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Permit, NM4890139088-TSDF (the Permit); (NMED [New Mexico Environment Department], 1999a). This SAP describes the approach for investigation of the Solid Waste Management Units (SWMU) and Areas of Concern (AOC) specified in the Permit. This SAP addresses the current Permit requirements for a RCRA Facility Investigation(RFI) investigation of SWMUs and AOCs. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the RFI specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI work plan and report sequence with a more flexible decision-making approach. The ACAA process allows a facility to exit the schedule of compliance contained in the facility's Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can beentered either before or after a RFI work plan. According to NMED's guidance, a facility can prepare a RFI work plan or SAP for any SWMU or AOC (NMED, 1998).

Washington TRU Solutions LLC

2000-05-23T23:59:59.000Z

247

Transuranic waste inventory, characteristics, generation, and facility assessment for treatment, storage, and disposal alternatives considered in the U.S. Department of Energy Waste Management Programmatic Environmental Impact Statement  

SciTech Connect (OSTI)

Transuranic waste (TRUW) loads and potential contaminant releases at and en route to treatment, storage, and disposal sites in the US Department of Energy (DOE) complex are important considerations in DOE`s Waste Management Programmatic Environmental Impact Statement (WM PEIS). Waste loads are determined in part by the level of treatment the waste has undergone and the complex-wide configuration of origination, treatment, storage, and disposal sites selected for TRUW management. Other elements that impact waste loads are treatment volumes, waste characteristics, and the unit operation parameters of the treatment technologies. Treatment levels and site configurations have been combined into six TRUW management alternatives for study in the WM PEIS. This supplemental report to the WM PEIS gives the projected waste loads and contaminant release profiles for DOE treatment sites under each of the six TRUW management alternatives. It gives TRUW characteristics and inventories for current DOE generation and storage sites, describes the treatment technologies for three proposed levels of TRUW treatment, and presents the representative unit operation parameters of the treatment technologies. The data presented are primary inputs to developing the costs, health risks, and socioeconomic and environmental impacts of treating, packaging, and shipping TRUW for disposal.

Hong, K.; Kotek, T.; Folga, S.; Koebnick, B.; Wang, Y.; Kaicher, C.

1996-12-01T23:59:59.000Z

248

Mixed waste characterization reference document  

SciTech Connect (OSTI)

Waste characterization and monitoring are major activities in the management of waste from generation through storage and treatment to disposal. Adequate waste characterization is necessary to ensure safe storage, selection of appropriate and effective treatment, and adherence to disposal standards. For some wastes characterization objectives can be difficult and costly to achieve. The purpose of this document is to evaluate costs of characterizing one such waste type, mixed (hazardous and radioactive) waste. For the purpose of this document, waste characterization includes treatment system monitoring, where monitoring is a supplement or substitute for waste characterization. This document establishes a cost baseline for mixed waste characterization and treatment system monitoring requirements from which to evaluate alternatives. The cost baseline established as part of this work includes costs for a thermal treatment technology (i.e., a rotary kiln incinerator), a nonthermal treatment process (i.e., waste sorting, macronencapsulation, and catalytic wet oxidation), and no treatment (i.e., disposal of waste at the Waste Isolation Pilot Plant (WIPP)). The analysis of improvement over the baseline includes assessment of promising areas for technology development in front-end waste characterization, process equipment, off gas controls, and monitoring. Based on this assessment, an ideal characterization and monitoring configuration is described that minimizes costs and optimizes resources required for waste characterization.

NONE

1997-09-01T23:59:59.000Z

249

Environmental permits and approvals plan for high-level waste interim storage, Project W-464  

SciTech Connect (OSTI)

This report discusses the Permitting Plan regarding NEPA, SEPA, RCRA, and other regulatory standards and alternatives, for planning the environmental permitting of the Canister Storage Building, Project W-464.

Deffenbaugh, M.L.

1998-05-28T23:59:59.000Z

250

RADIOACTIVE WASTE STORAGE IN MINED CAVERNS IN CRYSTALLINE ROCK-RESULTS OF FIELD INVESTIGATIONS AT STRIPA, SWEDEN  

E-Print Network [OSTI]

for Nuclear Waste Management, Materials Research Society.for Nuclear Waste Management, Materials Research Society.

Witherspoon, P.A.

2010-01-01T23:59:59.000Z

251

Structural Integrity Program for the 300,000-Gallon Radioactive Liquid Waste Storage Tanks at the Idaho Nuclear Technology and Engineering Center  

SciTech Connect (OSTI)

This report provides a record of the Structural Integrity Program for the 300,000-gal liquid waste storage tanks and associated equipment at the Idaho Nuclear Technology and Engineering Center, as required by U.S. Department of Energy M 435.1-1, ''Radioactive Waste Management Manual.'' This equipment is known collectively as the Tank Farm Facility. The conclusion of this report is that the Tank Farm Facility tanks, vaults, and transfer systems that remain in service for storage are structurally adequate, and are expected to remain structurally adequate over the remainder of their planned service life through 2012. Recommendations are provided for continued monitoring of the Tank Farm Facility.

Bryant, J.W.; Nenni, J.A.; Yoder, T.S.

2003-04-22T23:59:59.000Z

252

Optimization of the Area 5 Radioactive Waste Management Site Closure Cover  

SciTech Connect (OSTI)

The U.S. Department of Energy Manual DOE M 435.1-1, Radioactive Waste Management Manual, requires that performance assessments demonstrate that releases of radionuclides to the environment are as low as reasonably achievable (ALARA). Quantitative cost benefit analysis of radiation protection options is one component of the ALARA process. This report summarizes a quantitative cost benefit analysis of closure cover thickness for the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada Test Site. The optimum cover thickness that maintains doses ALARA is shown to be the thickness with the minimum total closure cost. Total closure cost is the sum of cover construction cost and the health detriment cost. Cover construction cost is estimated based on detailed cost estimates for closure of the 92-acre Low-Level Waste Management Unit (LLWMU). The health detriment cost is calculated as the product of collective dose and a constant monetary value of health detriment in units of dollars per unit collective dose. Collective dose is the sum of all individual doses in an exposed population and has units of person-sievert (Sv). Five discrete cover thickness options ranging from 2.5 to 4.5 meters (m) (8.2 to 15 feet [ft]) are evaluated. The optimization was subject to the constraints that (1) options must meet all applicable regulatory requirements and that (2) individual doses be a small fraction of background radiation dose. Total closure cost is found to be a monotonically increasing function of cover thickness for the 92-ac LLWMU, the Northern Expansion Area, and the entire Area 5 RWMS. The cover construction cost is orders of magnitude greater than the health detriment cost. Two-thousand Latin hypercube sampling realizations of the relationship between total closure cost and cover thickness are generated. In every realization, the optimum cover thickness is 2.5 m (8.2 ft) for the 92-ac Low-Level Waste Management Unit, the Northern Expansion Area, and the entire Area 5 RWMS. The conclusions of the optimization are found to be insensitive to all input parameters, the monetary value of the health detriment over a range of values from $200,000 to $15,000,000 per person-Sv, and the period of integration of collective dose. A 2.5 m (8.2 ft) closure cover at the Area 5 RWMS can meet all applicable regulatory requirements and maintain radionuclide releases ALARA.

Shott, Greg; Yucel, Vefa

2009-04-01T23:59:59.000Z

253

EA-1146: Radioactive Waste Storage at Rocky Flats Environmental Technology Site, Golden, Colorado  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of the proposal to convert buildings at the U.S. Department of Energy Rocky Flats Environmental Technology Site from their former uses to interim waste...

254

Closure Plan for the Area 3 Radioactive Waste Management Site at the Nevada Test Site  

SciTech Connect (OSTI)

The Area 3 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec) for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the interim closure plan for the Area 3 RWMS, which was presented in the Integrated Closure and Monitoring Plan (ICMP) (DOE, 2005). The format and content of this plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). The major updates to the plan include a new closure date, updated closure inventory, the new institutional control policy, and the Title II engineering cover design. The plan identifies the assumptions and regulatory requirements, describes the disposal sites and the physical environment in which they are located, presents the design of the closure cover, and defines the approach and schedule for both closing and monitoring the site. The Area 3 RWMS accepts low-level waste (LLW) from across the DOE Complex in compliance with the NTS Waste Acceptance Criteria (NNSA/NSO, 2006). The Area 3 RWMS accepts both packaged and unpackaged unclassified bulk LLW for disposal in subsidence craters that resulted from deep underground tests of nuclear devices in the early 1960s. The Area 3 RWMS covers 48 hectares (119 acres) and comprises seven subsidence craters--U-3ax, U-3bl, U-3ah, U-3at, U-3bh, U-3az, and U-3bg. The area between craters U-3ax and U-3bl was excavated to form one large disposal unit (U-3ax/bl); the area between craters U-3ah and U-3at was also excavated to form another large disposal unit (U-3ah/at). Waste unit U-3ax/bl is closed; waste units U-3ah/at and U-3bh are active; and the remaining craters, although currently undeveloped, are available for disposal of waste if required. This plan specifically addresses the closure of the U-3ah/at and the U-3bh LLW units. A final closure cover has been placed on unit U-3ax/bl (Corrective Action Unit 110) at the Area 3 RWMS. Monolayer-evapotranspirative closure cover designs for the U-3ah/at and U-3bh units are provided in this plan. The current-design closure cover thickness is 3 meters (10 feet). The final design cover will have an optimized cover thickness, which is expected to be less than 3 m (10 ft). Although waste operations at the Area 3 RWMS have ceased at the end of June 2006, disposal capacity is available for future disposals at the U-3ah/at and U-3bh units. The Area 3 RWMS is expected to start closure activities in fiscal year 2025, which include the development of final performance assessment and composite analysis documents, closure plan, closure cover design for construction, cover construction, and initiation of the post-closure care and monitoring activities. Current monitoring at the Area 3 RWMS includes monitoring the cover of the closed mixed waste unit U-3ax/bl as required by the Nevada Department of Environmental Protection, and others required under federal regulations and DOE orders. Monitoring data, collected via sensors and analysis of samples, are needed to evaluate radiation doses to the general public, for performance assessment maintenance, to demonstrate regulatory compliance, and to evaluate the actual performance of the RWMSs. Monitoring provides data to ensure the integrity and performance of waste disposal units. The monitoring program is designed to forewarn management and regulators of any failure and need for mitigating actions. The plan describes the program for monitoring direct radiation, air, vadose zone, biota, groundwater, meteorology, and subsidence. The requirements of post-closure cover maintenance and monitoring will be determined in the final closure plan.

NSTec Environmental Management

2007-09-01T23:59:59.000Z

255

ASME AG-1 REQUIREMENT EXEMPTION JUSTIFICATIONS FOR VENTILATION SYSTEMS AT NUCLEAR WASTE STORAGE TANKS AT THE HANFORD SITE  

SciTech Connect (OSTI)

Washington State Department of Health regulations require compliance with the American Society of Mechanical Engineers (ASME) AG-1, ''Code on Nuclear Air and Gas Treatment,'' for all new radioactive air emission units. As a result, these requirements have been applied to systems that ventilate the radioactive waste storage tanks in the tank farm facilities on the U.S. Department of Energy's Hanford Site. ASME AG-1 is applied as a regulatory constraint to waste tank ventilation systems at the Hanford Site, even though the code was not intended for these systems. An assessment was performed to identify which requirements should be exempted for waste tank ventilation systems. The technical justifications for requirement exemptions were prepared and presented to the regulator. The technical justifications were documented so that select requirement exemptions for specific projects and systems can be sought through the regulator's permitting process. This paper presents the rationale for attempting to receive requirement exemption and presents examples of the technical justifications that form the basis for these exemptions.

GUSTAVSON, R.D.

2004-09-03T23:59:59.000Z

256

Supplemental analysis of accident sequences and source terms for waste treatment and storage operations and related facilities for the US Department of Energy waste management programmatic environmental impact statement  

SciTech Connect (OSTI)

This report presents supplemental information for the document Analysis of Accident Sequences and Source Terms at Waste Treatment, Storage, and Disposal Facilities for Waste Generated by US Department of Energy Waste Management Operations. Additional technical support information is supplied concerning treatment of transuranic waste by incineration and considering the Alternative Organic Treatment option for low-level mixed waste. The latest respirable airborne release fraction values published by the US Department of Energy for use in accident analysis have been used and are included as Appendix D, where respirable airborne release fraction is defined as the fraction of material exposed to accident stresses that could become airborne as a result of the accident. A set of dominant waste treatment processes and accident scenarios was selected for a screening-process analysis. A subset of results (release source terms) from this analysis is presented.

Folga, S.; Mueller, C.; Nabelssi, B.; Kohout, E.; Mishima, J.

1996-12-01T23:59:59.000Z

257

Result Summary for the Area 5 Radioactive Waste Management Site Performance Assessment Model Version 4.113  

SciTech Connect (OSTI)

Preliminary results for Version 4.113 of the Nevada National Security Site Area 5 Radioactive Waste Management Site performance assessment model are summarized. Version 4.113 includes the Fiscal Year 2011 inventory estimate.

Shott, G. J.

2012-04-15T23:59:59.000Z

258

Interim Status Groundwater Monitoring Plan for Low-Level Waste Management Areas 1 to 4, RCRA Facilities, Hanford,Washington  

SciTech Connect (OSTI)

This document describes the monitoring plan to meet the requirements for interim status groundwater monitoring at Hanford Site low-level waste burial grounds as specified by 40 CFR 265, incorporated by reference in WAC 173-303-400. The monitoring will take place at four separate low-level waste management areas in the 200-West and 200-East Areas, in the central part of the site. This plan replaces the previous monitoring plan.

Dresel, P Evan

2004-10-25T23:59:59.000Z

259

2006 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site  

SciTech Connect (OSTI)

This report is a compilation of the groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS) for calendar year 2006. Pilot wells UE5PW-1, UE5PW-2, and UE5PW-3 were sampled in April and October 2006 for the following indicators of contamination: pH, specific conductance, total organic carbon, total organic halides, and tritium. Indicators of general water chemistry (cations and anions) were also monitored. Results from all samples collected in 2006 were within the limits established by agreement with the Nevada Division of Environmental Protection for each analyte. These data indicate that there has been no measurable impact to the uppermost aquifer from the Area 5 RWMS. There were no significant changes in measured groundwater parameters compared to previous years. Other information in the report includes an updated Cumulative Chronology for the Area 5 RWMS Groundwater Monitoring Program and a brief description of the site hydrogeology.

David B. Hudson

2007-02-01T23:59:59.000Z

260

2008 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site  

SciTech Connect (OSTI)

This report is a compilation of the groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS) including calendar year 2008 results. Each of the three Pilot Wells was sampled on March 11, 2008, and September 10, 2008. These wells were sampled for the following indicators of contamination: pH, specific conductance, total organic carbon, total organic halides, and tritium. Indicators of general water chemistry (cations and anions) were also monitored. Results from all samples collected in 2008 were within the limits established by agreement with the Nevada Division of Environmental Protection for each analyte. These data indicate that there has been no measurable impact to the uppermost aquifer from the Area 5 RWMS. There were no significant changes in measured groundwater parameters compared to previous years. Other information in the report includes an updated Cumulative Chronology for the Area 5 RWMS Groundwater Monitoring Program and a brief description of the site hydrogeology.

NSTec Environmental Management

2009-01-13T23:59:59.000Z

Note: This page contains sample records for the topic "waste storage area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Fate of Brine Applied to Unpaved Roads at a Radioactive Waste Subsurface Disposal Area  

SciTech Connect (OSTI)

Between 1984 and 1993, MgCl2 brine was used to suppress dust on unpaved roads at a radioactive waste subsurface disposal area. Because Cl might enhance corrosion of buried metals in the waste, we investigated the distribution and fate of Cl in the vadose zone using pore water samples collected from suction lysimeters and soluble salt concentrations extracted from sediment samples. The Cl/Br mass ratio and the total dissolved Cl concentration of pore water show that brine contamination occurs primarily within 13 m of treated roads, but can extend as much as 30 m laterally in near-surface sedimentary deposits. Within the deep vadose zone, which consists of interlayered basalt lava flows and sedimentary interbeds, brine has moved up to 110 m laterally. This lateral migration suggests formation of perched water and horizontal transport during periods of high recharge. In a few locations, brine migrated to depths of 67 m within 3 to 5 yr. Elevated Cl concentrations were found to depths of 2 m in roadbed material. In drainage ditches along roads, where runoff accumulates and recharge of surface water is high, Cl was flushed from the sediments in 3 to 4 yr. In areas of lower recharge, Cl remained in the sediments after 5 yr. Vertical brine movement is directly related to surface recharge through sediments. The distribution of Cl in pore water and sediments is consistent with estimates of vadose zone residence times and spatial distribution of surface water recharge from other investigations at the subsurface disposal area.

Larry C. Hull; Carolyn W. Bishop

2004-02-01T23:59:59.000Z

262

Brine and Gas Flow Patterns Between Excavated Areas and Disturbed Rock Zone in the 1996 Performance Assessment for the Waste Isolation Pilot Plant for a Single Drilling Intrusion that Penetrates Repository and Castile Brine Reservoir  

SciTech Connect (OSTI)

The Waste Isolation Pilot Plant (WIPP), which is located in southeastern New Mexico, is being developed for the geologic disposal of transuranic (TRU) waste by the U.S. Department of Energy (DOE). Waste disposal will take place in panels excavated in a bedded salt formation approximately 2000 ft (610 m) below the land surface. The BRAGFLO computer program which solves a system of nonlinear partial differential equations for two-phase flow, was used to investigate brine and gas flow patterns in the vicinity of the repository for the 1996 WIPP performance assessment (PA). The present study examines the implications of modeling assumptions used in conjunction with BRAGFLO in the 1996 WIPP PA that affect brine and gas flow patterns involving two waste regions in the repository (i.e., a single waste panel and the remaining nine waste panels), a disturbed rock zone (DRZ) that lies just above and below these two regions, and a borehole that penetrates the single waste panel and a brine pocket below this panel. The two waste regions are separated by a panel closure. The following insights were obtained from this study. First, the impediment to flow between the two waste regions provided by the panel closure model is reduced due to the permeable and areally extensive nature of the DRZ adopted in the 1996 WIPP PA, which results in the DRZ becoming an effective pathway for gas and brine movement around the panel closures and thus between the two waste regions. Brine and gas flow between the two waste regions via the DRZ causes pressures between the two to equilibrate rapidly, with the result that processes in the intruded waste panel are not isolated from the rest of the repository. Second, the connection between intruded and unintruded waste panels provided by the DRZ increases the time required for repository pressures to equilibrate with the overlying and/or underlying units subsequent to a drilling intrusion. Third, the large and areally extensive DRZ void volumes is a significant source of brine to the repository, which is consumed in the corrosion of iron and thus contributes to increased repository pressures. Fourth, the DRZ itself lowers repository pressures by providing storage for gas and access to additional gas storage in areas of the repository. Fifth, given the pathway that the DRZ provides for gas and brine to flow around the panel closures, isolation of the waste panels by the panel closures was not essential to compliance with the U.S. Environment Protection Agency's regulations in the 1996 WIPP PA.

ECONOMY,KATHLEEN M.; HELTON,JON CRAIG; VAUGHN,PALMER

1999-10-01T23:59:59.000Z

263

Remedial investigation report on Waste Area Grouping 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 3 -- Appendix B: Technical findings and conclusions  

SciTech Connect (OSTI)

This document provides the Environmental Restoration Program with information about the results of investigations performed at Waste Area Grouping (WAG) 5. It includes information on risk assessments that have evaluated long-term impacts to human health and the environment. Information provided in this document forms the basis for decisions regarding the need for subsequent remediation work at WAG 5. Sections B1.1 through B1.4 present an overview of the environmental setting of WAG 5, including location, population, land uses, ecology, and climate, and Sects. B1.5 through B1.7 give site-specific details (e.g., topography, soils, geology, and hydrology). The remediation investigation (RI) of WAG 5 did not entail en exhaustive characterization of all physical attributes of the site; the information presented here focuses on those most relevant to the development and verification of the WAG 5 conceptual model. Most of the information presented in this appendix was derived from the RI field investigation, which was designed to complement the existing data base from earlier, site-specific studies of Solid Waste Storage Area (SWSA) 5 and related areas.

NONE

1995-09-01T23:59:59.000Z

264

Method for extracting metals from aqueous waste streams for long term storage  

DOE Patents [OSTI]

A liquid-liquid extraction method for removing metals and hydrous metal colloids from waste streams is provided wherein said waste streams are contacted with a solvent system containing a water-in-oil microemulsion wherein the inverted micelles contain the extracted metal. A silicon alkoxide, either alone or in combination with other metal alkoxide compounds is added to the water-in-oil microemulsion, thereby allowing encapsulation of the extracted metal within a silicon oxide network. Lastly, the now-encapsulated metal is precipitated from the water-in-oil microemulsion phase to yield aggregates of metal-silicate particles having average. individual particle sizes of approximately 40 manometers.

Chaiko, D.J.

1993-01-01T23:59:59.000Z

265

Corrosion Control Measures For Liquid Radioactive Waste Storage Tanks At The Savannah River Site  

SciTech Connect (OSTI)

The Savannah River Site has stored radioactive wastes in large, underground, carbon steel tanks for approximately 60 years. An assessment of potential degradation mechanisms determined that the tanks may be vulnerable to nitrate- induced pitting corrosion and stress corrosion cracking. Controls on the solution chemistry and temperature of the wastes are in place to mitigate these mechanisms. These controls are based upon a series of experiments performed using simulated solutions on materials used for construction of the tanks. The technical bases and evolution of these controls is presented in this paper.

Wiersma, B. J.; Subramanian, K. H.

2012-11-27T23:59:59.000Z

266

Method for extracting metals from aqueous waste streams for long term storage  

DOE Patents [OSTI]

A liquid-liquid extraction method for removing metals and hydrous metal colloids from waste streams is provided wherein said waste streams are contacted with a solvent system containing a water-in-oil microemulsion wherein the inverted micelles contain the extracted metal. A silicon alkoxide, either alone or in combination with other metal alkoxide compounds is added to the water-in-oil microemulsion, thereby allowing encapsulation of the extracted metal within a silicon oxide network. Lastly, the now-encapsulated metal is precipitated from the water-in-oil microemulsion phase to yield aggregates of metal-silicate particles having average individual particle sizes of approximately 40 nanometers. 2 figs.

Chaiko, D.J.

1995-03-07T23:59:59.000Z

267

Method for extracting metals from aqueous waste streams for long term storage  

DOE Patents [OSTI]

A liquid--liquid extraction method for removing metals and hydrous metal colloids from waste streams is provided wherein said waste streams are contacted with a solvent system containing a water-in-oil microemulsion wherein the inverted micelles contain the extracted metal. A silicon alkoxide, either alone or in combination with other metal alkoxide compounds is added to the water-in-oil microemulsion, thereby allowing encapsulation of the extracted metal within a silicon oxide network. Lastly, the now-encapsulated metal is precipitated from the water-in-oil microemulsion phase to yield aggregates of metal-silicate particles having average individual particle sizes of approximately 40 nanometers.

Chaiko, David J. (Woodridge, IL)

1995-01-01T23:59:59.000Z

268

Functional requirements of the borrow area and haul route for the Waste Area Grouping projects at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This report describes the mission and functional requirements for the development of a borrow area and the associated haul route to support closure and/or remediation of Waste Area Grouping (WAG) 6 and other WAGs at Oak Ridge National Laboratory. This document specifies the basic functional requirements that must be met by the borrow area and haul route developed to produce low-permeability soil for the covers or caps at WAG 6.

Miller, D.G.

1992-09-01T23:59:59.000Z

269

Composite Analysis for the Area 5 Radioactive Waste Management Site at the Nevada Test Site, Nye County, Nevada  

SciTech Connect (OSTI)

This report summarizes the results of a Composite Analysis (CA) for the Area 5 Radioactive Waste Management Site (RWMS). The Area 5 RWMS is a US Department of Energy (DOE)-operated low-level radioactive waste (LLW) management site located in northern Frenchman Flat on the Nevada Test Site (NTS). The Area 5 RWMS has disposed of low-level radioactive waste in shallow unlined pits and trenches since 1960. Transuranic waste (TRU) and high-specific activity waste was disposed in Greater Confinement Disposal (GCD) boreholes from 1983 to 1989. The purpose of this CA is to determine if continuing operation of the Area 5 RWMS poses an acceptable or unacceptable risk to the public considering the total waste inventory and all other interacting sources of radioactive material in the vicinity. Continuing operation of the Area 5 RWMS will be considered acceptable if the total effective dose equivalent (TEDE) is less than 100 mrem in a year. If the TEDE exceeds 30 mrem in a year, a cost-benefit options analysis must be performed to determine if cost-effective management options exist to reduce the dose further. If the TEDE is found to be less than 30 mrem in a year, an analysis may be performed if warranted to determine if doses are as low as reasonably achievable (ALARA).

V. Yucel

2001-09-01T23:59:59.000Z

270

Special Analysis of Transuranic Waste in Trench T04C at the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nye County, Nevada, Revision 1  

SciTech Connect (OSTI)

This Special Analysis (SA) was prepared to assess the potential impact of inadvertent disposal of a limited quantity of transuranic (TRU) waste in classified Trench 4 (T04C) within the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS). The Area 5 RWMS is a low-level radioactive waste disposal site in northern Frenchman Flat on the Nevada Test Site (NTS). The Area 5 RWMS is regulated by the U.S. Department of Energy (DOE) under DOE Order 435.1 and DOE Manual (DOE M) 435.1-1. The primary objective of the SA is to evaluate if inadvertent disposal of limited quantities of TRU waste in a shallow land burial trench at the Area 5 RWMS is in compliance with the existing, approved Disposal Authorization Statement (DAS) issued under DOE M 435.1-1. In addition, supplemental analyses are performed to determine if there is reasonable assurance that the requirements of Title 40, Code of Federal Regulations (CFR), Part 191, Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level, and Transuranic Radioactive Wastes, can be met. The 40 CFR 191 analyses provide supplemental information regarding the risk to human health and the environment of leaving the TRU waste in T04C. In 1989, waste management personnel reviewing classified materials records discovered that classified materials buried in trench T04C at the Area 5 RWMS contained TRU waste. Subsequent investigations determined that a total of 102 55-gallon drums of TRU waste from Rocky Flats were buried in trench T04C in 1986. The disposal was inadvertent because unclassified records accompanying the shipment indicated that the waste was low-level. The exact location of the TRU waste in T04C was not recorded and is currently unknown. Under DOE M 435.1-1, Chapter IV, Section P.5, low-level waste disposal facilities must obtain a DAS. The DAS specifies conditions that must be met to operate within the radioactive waste management basis, consisting of a performance assessment (PA), composite analysis (CA), closure plan, monitoring plan, waste acceptance criteria, and a PA/CA maintenance plan. The DOE issued a DAS for the Area 5 RWMS in 2000. The Area 5 RWMS DAS was, in part, based on review of a CA as required under DOE M 435.1-1, Chapter IV, Section P.(3). A CA is a radiological assessment required for DOE waste disposed before 26 September 1988 and includes the radiological dose from all sources of radioactive material interacting with all radioactive waste disposed at the Area 5 RWMS. The approved Area 5 RWMS CA, which includes the inventory of TRU waste in T04C, indicates that the Area 5 RWMS waste inventory and all interacting sources of radioactive material can meet the 0.3 mSv dose constraint. The composite analysis maximum annual dose for a future resident at the Area 5 RWMS was estimated to be 0.01 mSv at 1,000 years. Therefore, the inadvertent disposal of TRU in T04C is protective of the public and the environment, and compliant with all the applicable requirements in DOE M 435.1-1 and the DAS. The U.S. Environmental Protection Agency promulgated 40 CFR 191 to establish standards for the planned disposal of spent nuclear fuel, high level, and transuranic wastes in geologic repositories. Although not required, the National Nuclear Security Administration Nevada Site Office requested a supplemental analysis to evaluate the likelihood that the inadvertent disposal of TRU waste in T04C meets the requirements of 40 CFR 191. The SA evaluates the likelihood of meeting the 40 CFR 191 containment requirements (CRs), assurance requirements, individual protection requirements (IPRs), and groundwater protection standards. The results of the SA indicate that there is a reasonable expectation of meeting all the requirements of 40 CFR 191. The conclusion of the SA is that the Area 5 RWMS with the TRU waste buried in T04C is in compliance with all requirements in DOE M 435.1-1 and the DAS. Compliance with the DAS is demonstrated by the results of the Area 5 RWMS CA. Supplemental analyses in the SA indicate there is a

Greg Shott, Vefa Yucel, Lloyd Desotell

2008-05-01T23:59:59.000Z

271

High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 7  

SciTech Connect (OSTI)

This Requirements Identification Document (RID) describes an Occupational Health and Safety Program as defined through the Relevant DOE Orders, regulations, industry codes/standards, industry guidance documents and, as appropriate, good industry practice. The definition of an Occupational Health and Safety Program as specified by this document is intended to address Defense Nuclear Facilities Safety Board Recommendations 90-2 and 91-1, which call for the strengthening of DOE complex activities through the identification and application of relevant standards which supplement or exceed requirements mandated by DOE Orders. This RID applies to the activities, personnel, structures, systems, components, and programs involved in maintaining the facility and executing the mission of the High-Level Waste Storage Tank Farms.

Not Available

1994-04-01T23:59:59.000Z

272

High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 7. Revision 1  

SciTech Connect (OSTI)

The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 7) presents the standards and requirements for the following sections: Occupational Safety and Health, and Environmental Protection.

Burt, D.L.

1994-04-01T23:59:59.000Z

273

Georgia Hazardous Waste Management Act  

Broader source: Energy.gov [DOE]

The Georgia Hazardous Waste Management Act (HWMA) describes a comprehensive, Statewide program to manage hazardous wastes through regulating hazardous waste generation, transportation, storage,...

274

Hydrogen storage for vehicular applications: Technology status and key development areas  

SciTech Connect (OSTI)

The state-of-the-art of hydrogen storage technology is reviewed, including gaseous, liquid, hydride, surface adsorbed media, glass microsphere, chemical reaction, and liquid chemical technologies. The review of each technology includes a discussion of advantages, disadvantages, likelihood of success, and key research and development activities. A preferred technological path for the development of effective near-term hydrogen storage includes both cur-rent DOT qualified and advanced compressed storage for down-sized highly efficient but moderate range vehicles, and liquid storage for fleet vehicle applications. Adsorbate media are also suitable for fleet applications but not for intermittent uses. Volume-optimized transition metal hydride beds are also viable for short range applications. Long-term development of coated nanoparticulate or metal matrix high conductivity magnesium alloy, is recommended. In addition, a room temperature adsorbate medium should be developed to avoid cryogenic storage requirements. Chemical storage and oxidative schemes present serious obstacles which must be addressed for these technologies to have a future role.

Robinson, S.L.; Handrock, J.L.

1994-04-01T23:59:59.000Z

275

Waste processing air cleaning  

SciTech Connect (OSTI)

Waste processing and preparing waste to support waste processing relies heavily on ventilation. Ventilation is used at the Hanford Site on the waste storage tanks to provide confinement, cooling, and removal of flammable gases.

Kriskovich, J.R.

1998-07-27T23:59:59.000Z

276

Use of Thermal Energy Storage to Enhance the Recovery and Utilization of Industrial Waste Heat  

E-Print Network [OSTI]

The recovery and reuse of industrial waste heat may be limited if an energy source cannot be fully utilized in an otherwise available out of phase or unequal capacity end-use process. This paper summarizes the results of a technical and economic...

McChesney, H. R.; Bass, R. W.; Landerman, A. M.; Obee, T. N.; Sgamboti, C. T.

1982-01-01T23:59:59.000Z

277

Comparative assessment of status and opportunities for carbon Dioxide Capture and storage and Radioactive Waste Disposal In North America  

SciTech Connect (OSTI)

Aside from the target storage regions being underground, geologic carbon sequestration (GCS) and radioactive waste disposal (RWD) share little in common in North America. The large volume of carbon dioxide (CO{sub 2}) needed to be sequestered along with its relatively benign health effects present a sharp contrast to the limited volumes and hazardous nature of high-level radioactive waste (RW). There is well-documented capacity in North America for 100 years or more of sequestration of CO{sub 2} from coal-fired power plants. Aside from economics, the challenges of GCS include lack of fully established legal and regulatory framework for ownership of injected CO{sub 2}, the need for an expanded pipeline infrastructure, and public acceptance of the technology. As for RW, the USA had proposed the unsaturated tuffs of Yucca Mountain, Nevada, as the region's first high-level RWD site before removing it from consideration in early 2009. The Canadian RW program is currently evolving with options that range from geologic disposal to both decentralized and centralized permanent storage in surface facilities. Both the USA and Canada have established legal and regulatory frameworks for RWD. The most challenging technical issue for RWD is the need to predict repository performance on extremely long time scales (10{sup 4}-10{sup 6} years). While attitudes toward nuclear power are rapidly changing as fossil-fuel costs soar and changes in climate occur, public perception remains the most serious challenge to opening RW repositories. Because of the many significant differences between RWD and GCS, there is little that can be shared between them from regulatory, legal, transportation, or economic perspectives. As for public perception, there is currently an opportunity to engage the public on the benefits and risks of both GCS and RWD as they learn more about the urgent energy-climate crisis created by greenhouse gas emissions from current fossil-fuel combustion practices.

Oldenburg, C.; Birkholzer, J.T.

2011-07-22T23:59:59.000Z

278

Composite analysis for low-level waste disposal in the 200 area plateau of the Hanford Site  

SciTech Connect (OSTI)

This report presents the first iteration of the Composite Analysis for Low-Level Waste Disposal in the 200 Area Plateau of the Hanford Site (Composite Analysis) prepared in response to the U.S. Department of Energy Implementation Plan for the Defense Nuclear Facility Safety Board Recommendation 94-2. The Composite Analysis is a companion document to published analyses of four active or planned low-level waste disposal actions: the solid waste burial grounds in the 200 West Area, the solid waste burial grounds in the 200 East Area, the Environmental Restoration Disposal Facility, and the disposal facilities for immobilized low-activity waste. A single Composite Analysis was prepared for the Hanford Site considering only sources on the 200 Area Plateau. The performance objectives prescribed in U.S. Department of Energy guidance for the Composite Analysis were 100 mrem in a year and examination of a lower dose (30 mrem in a year) to ensure the {open_quotes}as low as reasonably achievable{close_quotes} concept is followed. The 100 mrem in a year limit was the maximum allowable all-pathways dose for 1000 years following Hanford Site closure, which is assumed to occur in 2050. These performance objectives apply to an accessible environment defined as the area between a buffer zone surrounding an exclusive waste management area on the 200 Area Plateau, and the Columbia River. Estimating doses to hypothetical future members of the public for the Composite Analysis was a multistep process involving the estimation or simulation of inventories; waste release to the environment; migration through the vadose zone, groundwater, and atmospheric pathways; and exposure and dose. Doses were estimated for scenarios based on agriculture, residential, industrial, and recreational land use. The radionuclides included in the vadose zone and groundwater pathway analyses of future releases were carbon-14, chlorine-36, selenium-79, technetium-99, iodine-129, and uranium isotopes.

Kincaid, C.T.; Bergeron, M.P.; Cole, C.R. [and others

1998-03-01T23:59:59.000Z

279

Wide-Area Energy Storage and Management system to Balance Intermittent Resources in the Bonneville Power Administration and California ISO Control Areas  

SciTech Connect (OSTI)

The entire project addresses the issue of mitigating additional intermittency and fast ramps that occur at higher penetration of intermittent resources, including wind genera-tion, in the Bonneville Power Administration (BPA) and the California Independent Sys-tem Operator (California ISO) control areas. The proposed Wide Area Energy Storage and Management System (WAEMS) will address the additional regulation requirement through the energy exchange between the participating control areas and through the use of energy storage and other generation resources. For the BPA and California ISO control centers, the new regulation service will look no different comparing with the traditional regulation resources. The proposed project will benefit the regulation service in these service areas, regardless of the actual degree of penetration of the intermittent resources in the regions. The project develops principles, algorithms, market integration rules, functional de-sign and technical specifications for the WAEMS system. The project is sponsored by BPA and supported in kind by California ISO, Beacon Power Corporation, and the Cali-fornia Energy Commission (CEC).

Makarov, Yuri V.; Yang, Bo; DeSteese, John G.; Lu, Shuai; Miller, Carl H.; Nyeng, Preben; Ma, Jian; Hammerstrom, Donald J.; Vishwanathan, Vilanyur V.

2008-06-30T23:59:59.000Z

280

Supplemental design requirements document, Multifunction Waste Tank Facility, Project W-236A. Revision 1  

SciTech Connect (OSTI)

The Multi-Function Waste Tank Facility (MWTF) consists of four, nominal 1 million gallon, underground double-shell tanks, located in the 200-East area, and two tanks of the same capacity in the 200-West area. MWTF will provide environmentally safe storage capacity for wastes generated during remediation/retrieval activities of existing waste storage tanks. This document delineates in detail the information to be used for effective implementation of the Functional Design Criteria requirements.

Groth, B.D.

1995-01-11T23:59:59.000Z

Note: This page contains sample records for the topic "waste storage area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Preservation of artifacts in salt mines as a natural analog for the storage of transuranic wastes at the WIPP repository  

SciTech Connect (OSTI)

Use of nature`s laboratory for scientific analysis of complex systems is a largely untapped resource for understanding long-term disposal of hazardous materials. The Waste Isolation Pilot Plant (WIPP) in the US is a facility designed and approved for storage of transuranic waste in a salt medium. Isolation from the biosphere must be ensured for 10,000 years. Natural analogs provide a means to interpret the evolution of the underground disposal setting. Investigations of ancient sites where manmade materials have experienced mechanical and chemical processes over millennia provide scientific information unattainable by conventional laboratory methods. This paper presents examples of these pertinent natural analogs, provides examples of features relating to the WIPP application, and identifies potential avenues of future investigations. This paper cites examples of analogical information pertaining to the Hallstatt salt mine in Austria and Wieliczka salt mine in Poland. This paper intends to develop an appreciation for the applicability of natural analogs to the science and engineering of a long-term disposal facility in geomedia.

Martell, M.A.; Hansen, F.; Weiner, R.

1998-10-01T23:59:59.000Z

282

Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act  

SciTech Connect (OSTI)

Chapter six describes the basis for facility design, the completed facility conceptual design, the completed analytical work relating to the resolution of design issues, and future design-related work. The basis for design and the conceptual design information presented in this chapter meet the requirements of the Nuclear Waste Policy Act of 1982, for a conceptual repository design that takes into account site-specific requirements. This information is presented to permit a critical evaluation of planned site characterization activities. Chapter seven describes waste package components, emplacement environment, design, and status of research and development that support the Nevada Nuclear Waste Storage Investigation (NNWSI) Project. The site characterization plan (SCP) discussion of waste package components is contained entirely within this chapter. The discussion of emplacement environment in this chapter is limited to considerations of the environment that influence, or which may influence, if perturbed, the waste packages and their performance (particularly hydrogeology, geochemistry, and borehole stability). The basis for conceptual waste package design as well as a description of the design is included in this chapter. The complete design will be reported in the advanced conceptual design (ACD) report and is not duplicated in the SCP. 367 refs., 173 figs., 68 tabs.

NONE

1988-01-01T23:59:59.000Z

283

H-Area Hazardous Waste Management Facility Corrective Action Report, Third and Fourth Quarter 1998, Volumes I and II  

SciTech Connect (OSTI)

The groundwater in the uppermost aquifer beneath the H-Area Hazardous Waste Management Facility (HWMF), also known as the H-Area Seepage Basins, at the Savannah Site (SRS) is monitored periodically for selected hazardous and radioactive constituents. This report presents the results of the required groundwater monitoring program.

Chase, J.

1999-04-23T23:59:59.000Z

284

Emptying of the Storage for Solid Radioactive Waste in the Greifswald Nuclear Power Plant  

SciTech Connect (OSTI)

On the Greifswald site, 8 WWER 440 reactor units are located and also several facilities to handle fuel and radwaste. After the reunification of Germany, the final decision was taken to decommission all these Russian designed reactors. Thus, EWN is faced with a major decommissioning project in the field of nuclear power stations. One of the major tasks before the dismantling of the plant is the complete disposal of the operational waste. Among other facilities, a store for solid radioactive waste is located on the site, which has been filled over 17 years of operation of units 1 to 4. The paper presents the disposal technology development and results achieved. This activity is the first project in the operational history of the Russian type serial reactor line WWER-440.

Hartmann, B.; Fischer, J.

2002-02-26T23:59:59.000Z

285

TWRS Retrieval and Storage Mission and Immobilized Low Activity Waste (ILAW) Disposal Plan  

SciTech Connect (OSTI)

This project plan has a twofold purpose. First, it provides a waste stream project plan specific to the River Protection Project (RPP) (formerly the Tank Waste Remediation System [TWRS] Project) Immobilized Low-Activity Waste (LAW) Disposal Subproject for the Washington State Department of Ecology (Ecology) that meets the requirements of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-90-01 (Ecology et al. 1994) and is consistent with the project plan content guidelines found in Section 11.5 of the Tri-Party Agreement action plan (Ecology et al. 1998). Second, it provides an upper tier document that can be used as the basis for future subproject line-item construction management plans. The planning elements for the construction management plans are derived from applicable U.S. Department of Energy (DOE) planning guidance documents (DOE Orders 4700.1 [DOE 1992] and 430.1 [DOE 1995a]). The format and content of this project plan are designed to accommodate the requirements mentioned by the Tri-Party Agreement and the DOE orders. A cross-check matrix is provided in Appendix A to explain where in the plan project planning elements required by Section 11.5 of the Tri-Party Agreement are addressed.

BURBANK, D.A.

1999-09-01T23:59:59.000Z

286

CHARACTERIZATION THROUGH DATA QUALITY OBJECTIVES AND CERTIFICATION OF REMOTE-HANDLED TRANSURANIC WASTE GENERATOR/STORAGE SITES FOR SHIPMENT TO THE WIPP  

SciTech Connect (OSTI)

The Waste Isolation Pilot Plant (WIPP) is operating to receive and dispose of contact-handled (CH) transuranic (TRU) waste. The Department of Energy (DOE) Carlsbad Field Office (CBFO) is seeking approval from the Environmental Protection Agency (EPA) and the New Mexico Environment Department (NMED) of the remote-handled (RH) TRU characterization plan to allow disposal of RH TRU waste in the WIPP repository. In addition, the DOE-CBFO has received approval from the Nuclear Regulatory Commission (NRC) to use two shipping casks for transporting RH TRU waste. Each regulatory agency (i.e., EPA, NMED, and NRC) has different requirements that will have to be met through the use of information collected by characterizing the RH TRU waste. Therefore, the DOE-CBFO has developed a proposed characterization program for obtaining the RH TRU waste information necessary to demonstrate that the waste meets the applicable regulatory requirements. This process involved the development of a comprehensive set of Data Quality Objectives (DQOs) comprising the various regulatory requirements. The DOE-CBFO has identified seven DQOs for use in the RH TRU waste characterization program. These DQOs are defense waste determination, TRU waste determination, RH TRU determination, activity determination, RCRA physical and chemical properties, prohibited item determination, and EPA physical and chemical properties. The selection of the DQOs were based on technical, legal and regulatory drivers that assure the health and safety of the workers, the public, to protect the environment, and to comply with the requirements of the regulatory agencies. The DOE-CBFO also has the responsibility for the certification of generator/storage sites to ship RH TRU mixed waste to the WIPP for disposal. Currently, thirteen sites across the DOE complex are generators of RH TRU waste or store the waste at their location for other generators. Generator/storage site certification involves review and approval of site-specific programmatic documents that demonstrate compliance with the WIPP waste characterization and transportation requirements. Additionally, procedures must be developed to implement programmatic requirements and adequacy of those procedures determined. Finally, on-site audits evaluate the technical and administrative implementation and effectiveness of the operating procedures.

Spangler, L.R.; Most, Wm.A.; Kehrman, R.F.; Gist, C.S.

2003-02-27T23:59:59.000Z

287

Los Alamos National Laboratory Waste Management Program  

SciTech Connect (OSTI)

Los Alamos National Laboratory's (LANL) waste management program is responsible for disposition of waste generated by many of the LANL programs and operations. LANL generates liquid and solid waste that can include radioactive, hazardous, and other constituents. Where practical, LANL hazardous and mixed wastes are disposed through commercial vendors; low-level radioactive waste (LLW) and radioactive asbestos-contaminated waste are disposed on site at LANL's Area G disposal cells, transuranic (TRU) waste is disposed at the Waste Isolation Pilot Plant (WIPP), and high-activity mixed wastes are disposed at the Nevada Test Site (NTS) after treatment by commercial vendors. An on-site radioactive liquid waste treatment facility (RLWTF) removes the radioactive constituents from liquid wastes and treated water is released through an NPDES permitted outfall. LANL has a very successful waste minimization program. Routine hazardous waste generation has been reduced over 90% since 1993. LANL has a DOE Order 450.1-compliant environmental management system (EMS) that is ISO 14001 certified; waste minimization is integral to setting annual EMS improvement objectives. Looking forward, under the new LANL management and operating contractor, Los Alamos National Security (LANS) LLC, a Zero Liquid Discharge initiative is being planned that should eliminate flow to the RLWTF NPDES-permitted outfall. The new contractor is also taking action to reduce the number of permitted waste storage areas, to charge generating programs directly for the cost to disposition waste, and to simplify/streamline the waste system. (authors)

Lopez-Escobedo, G.M.; Hargis, K.M.; Douglass, C.R. [Los Alamos National Laboratory, NM (United States)

2007-07-01T23:59:59.000Z

288

Nevada National Security Site 2012 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site  

SciTech Connect (OSTI)

This report is a compilation of the groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). The data have been collected since 1993 and include calendar year 2012 results. During 2012, groundwater samples were collected and static water levels were measured at the three pilot wells surrounding the Area 5 RWMS. Groundwater samples were collected at UE5PW-1, UE5PW-2, and UE5PW-3 on March 21, August 7, August 21, and September 11, 2012, and static water levels were measured at each of the three pilot wells on March 19, June 6, August 2, and October 15, 2012. Groundwater samples were analyzed for the following indicators of contamination: pH, specific conductance, total organic carbon, total organic halides, and tritium. Indicators of general water chemistry (cations and anions) were also measured. Final results from samples collected in 2012 were within the limits established by agreement with the Nevada Division of Environmental Protection for each analyte. These data indicate that there has been no measurable impact to the uppermost aquifer from the Area 5 RWMS. There were no significant changes in measured groundwater parameters compared to previous years. The report contains an updated cumulative chronology for the Area 5 RWMS Groundwater Monitoring Program and a brief description of the site hydrogeology.

NSTec Environmental Management

2013-02-11T23:59:59.000Z

289

Nevada National Security Site 2010 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site  

SciTech Connect (OSTI)

This report is a compilation of the groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). The data have been collected since 1993 and include calendar year 2010 results. During 2010, groundwater samples were collected and static water levels were measured at the three pilot wells surrounding the Area 5 RWMS. Samples were collected at UE5PW-1 on March 10 and August 10, 2010; at UE5PW-2 on March 10, August 10, and August 25, 2010; and at UE5PW-3 on March 31, August 10, and August 25, 2010. Static water levels were measured at each of the three pilot wells on March 1, April 26, August 9, and November 9, 2010. Groundwater samples were analyzed for the following indicators of contamination: pH, specific conductance, total organic carbon, total organic halides, and tritium. Indicators of general water chemistry (cations and anions) were also measured. Results from all samples collected in 2010 were within the limits established by agreement with the Nevada Division of Environmental Protection for each analyte. These data indicate that there has been no measurable impact to the uppermost aquifer from the Area 5 RWMS. There were no significant changes in measured groundwater parameters compared to previous years. The report contains an updated cumulative chronology for the Area 5 RWMS Groundwater Monitoring Program and a brief description of the site hydrogeology.

NSTec Environmental Management

2011-01-01T23:59:59.000Z

290

RCRA Facility Investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 3, Appendixes 1 through 8: Environmental Restoration Program  

SciTech Connect (OSTI)

This report presents compiled information concerning a facility investigation of waste area group 6(WAG-6), of the solid waste management units (SWMU`S) at Oak Ridge National Laboratory (ORNL). The WAG is a shallow ground disposal area for low-level radioactive wastes and chemical wastes. The report contains information on hydrogeological data, contaminant characterization, radionuclide concentrations, risk assessment from doses to humans and animals and associated cancer risks, exposure via food chains, and historical data. (CBS)

Not Available

1991-09-01T23:59:59.000Z

291

Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada Test Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site  

SciTech Connect (OSTI)

The NTS solid waste disposal sites must be permitted by the state of Nevada Solid Waste Management Authority (SWMA). The SWMA for the NTS is the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). The U.S. Department of Energy's National Nuclear Security Administration Nevada Site Office (NNSA/NSO) as land manager (owner), and National Security Technologies (NSTec), as operator, will store, collect, process, and dispose all solid waste by means that do not create a health hazard, a public nuisance, or cause impairment of the environment. NTS disposal sites will not be included in the Nye County Solid Waste Management Plan. The NTS is located approximately 105 kilometers (km) (65 miles [mi]) northwest of Las Vegas, Nevada (Figure 1). The U.S. Department of Energy (DOE) is the federal lands management authority for the NTS, and NSTec is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS has signs posted along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The Area 5 RWMS is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NTS (Figure 2), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. A Notice of Intent to operate the disposal site as a Class III site was submitted to the state of Nevada on January 28, 1994, and was acknowledged as being received in a letter to the NNSA/NSO on August 30, 1994. Interim approval to operate a Class III SWDS for regulated asbestiform low-level waste (ALLW) was authorized on August 12, 1996 (in letter from Paul Liebendorfer to Runore Wycoff), with operations to be conducted in accordance with the ''Management Plan for the Disposal of Low-Level Waste with Regulated Asbestos Waste.'' A requirement of the authorization was that on or before October 9, 1999, a permit was required to be issued. Because of NDEP and NNSA/NSO review cycles, the final permit was issued on April 5, 2000, for the operation of the Area 5 Low-Level Waste Disposal Site, utilizing Pit 7 (P07) as the designated disposal cell. The original permit applied only to Pit 7, with a total design capacity of 5,831 cubic yards (yd{sup 3}) (157,437 cubic feet [ft{sup 3}]). NNSA/NSO is expanding the SWDS to include the adjacent Upper Cell of Pit 6 (P06), with an additional capacity of 28,037 yd{sup 3} (756,999 ft{sup 3}) (Figure 3). The proposed total capacity of ALLW in Pit 7 and P06 will be approximately 33,870 yd{sup 3} (0.9 million ft{sup 3}). The site will be used for the disposal of regulated ALLW, small quantities of low-level radioactive hydrocarbon-burdened (LLHB) media and debris, LLW, LLW that contains PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, and small quantities of LLHB demolition and construction waste (hereafter called permissible waste). Waste containing free liquids, or waste that is regulated as hazardous waste under the Resource Conservation and Recovery Act (RCRA) or state-of-generation hazardous waste regulations, will not be accepted for disposal at the site. The only waste regulated under the Toxic Substances Control Act (TSCA) that will be accepted at the disposal site is regulated asbestos-containing materials (RACM). The term asbestiform is used throughout this document to describe this waste. Other TSCA waste (i.e., polychlorinated biphenyls [PCBs]) will not be accepted for disposal at the SWDS. The disposal site will be used as a depository of permissible waste generated both on site and off site. All generators designated by NNSA/NSO will be eligible to dispose regulated ALLW at the Asbestiform Low-Level Waste Disposal Site in accordance with the U.S. Department of Energy, Nevada Operations Office (DOE/NV) 325

NSTec Environmental Programs

2010-09-14T23:59:59.000Z

292

NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA, JUNE 2006  

SciTech Connect (OSTI)

This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive (LLW) and mixed waste (MW) for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex (RWMC) for storage or disposal.

U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION NEVADA SITE OFFICE

2006-06-01T23:59:59.000Z

293

DEPLOYING TECHNOLOGY ADVANCEMENTS FOR CHARACTERIZING THE VADOSE ZONE IN SINGLE-SHELL TANK WASTE MANAGEMENT AREAS  

SciTech Connect (OSTI)

As much as one million gallons of waste is believed to have leaked from tanks, pipelines or other equipment in the single-shell tank farm waste management areas (WMAs) within the 200 East and West areas of the U.S. Department of Energy's Hanford Site near Richland, Washington. Although some contamination has reached groundwater, most contamination still resides in the vadose zone. The magnitude ofthis problem requires new approaches for soil characterization if we are to understand the nature and extent of the contamination and take action to protect the enviromnent. Because of the complexity and expense of drilling traditional boreholes in contaminated soil, direct push characterization using a hydraulic hammer has been extensively employed. Direct push probe holes <3-inch diameter have been pushed to a maximum depth of 240 feet below ground surface in 200 East area. Previously gross gamma and moisture logging of these narrow probe holes was perfonned to identify the location of cesium-137 ({sup 137}Cs) (which has limited mobility in Hanford soil) and moisture peaks. Recently a bismuth germinate detector has been deployed for detecting and quantifying the spectrum of cobalt-60 ({sup 60}Co) (a more mobile contaminant), which provides additional information. The direct push system is configured to allow the collection ofmultiple soil core samples throughout the depth ofthe probe hole. The direct push unit has been used to place individual electrodes at a variety of depths as the probe hole is being decommissioned. These deep electrodes enable the use of soil resistivity measurement methods between surface and deep electrodes as-well-as between sets of deep electrodes. Initial testing of surface-to-deep electrode resistivity measurements in WMA C demonstrated significant improvement in defining the three dimensional extent of a contamination plume. A multiple-electrode string is presently being developed to further enhance the resolution of resistivity data. The combined use of direct push logging/sampling and soil resistivity measurement allows more extensive characterization of the large tank farm WMAs with less cost and time commitment than required by traditional methods. An additional tool is in the laboratory testing stage to support these investigations. A beta detection tool is being evaluated to determine if it might be deployed with the direct push unit to identify technetium-99 ({sup 99}Tc) contamination. {sup 99}Tc is a mobile, long-lived contaminant that is the major risk driver from tank waste contamination. A screening tool to locate {sup 99}Tc contamination is anticipated to further increase the cost-effectiveness ofvadose zone characterization efforts.

EBERLEIN SJ; SYDNOR HA; DA MYERS

2010-01-14T23:59:59.000Z

294

Data Package for Past and Current Groundwater Flow and Contamination beneath Single-Shell Tank Waste Management Areas  

SciTech Connect (OSTI)

This appendix summarizes historic and recent groundwater data collected from the uppermost aquifer beneath the 200 East and 200 West Areas. Although the area of interest is the Hanford Site Central Plateau, most of the information discussed in this appendix is at the scale of individual single-shell tank waste management areas. This is because the geologic, and thus the hydraulic, properties and the geochemical properties (i.e., groundwater composition) are different in different parts of the Central Plateau.

Horton, Duane G.

2007-03-16T23:59:59.000Z

295

Resource Conservation and Recovery Act (RCRA) Closure Plan Summary for Interim reasctive Waste Treatment Area (IRWTA)  

SciTech Connect (OSTI)

This closure plan has been prepared for the interim Reactive Waste Treatment Area (IRWT'A) located at the Y-12 Pkmt in oak Ridge, Tennessee (Environmental Protection Agency [EPA] Identification TN 389-009-0001). The actions required to achieve closure of the IRWTA are outlined in this plan, which is being submitted in accordance with Tennessee Ruie 1200- 1-1 1-.0S(7) and Title 40, Code of Federal Regulations (CFR), Part 265, Subpart G. The IRWTA was used to treat waste sodium and potassium (NaK) that are regulated by the Resource Conservation and Recovery Act (RCRA). The location of the IRWT'A is shown in Figures 1 and 2, and a diagram is shown in Figure 3. This pkm details all steps that wdi be petiormed to close the IRWTA. Note that this is a fmai ciosure.and a diagram is shown in Figure 3. This pkm details all steps that wdi be petiormed to close the IRWTA. Note that this is a fmai ciosure.

Collins, E.T.

1997-07-01T23:59:59.000Z

296

Site characterization plan: Conceptual design report: Volume 4, Appendices F-O: Nevada Nuclear Waste Storage Investigations Project  

SciTech Connect (OSTI)

The site for the prospective repository is located at Yucca Mountain in southwestern Nevada, and the waste emplacement area will be constructed in the underlying volcanic tuffs. The target horizon for waste emplacement is a sloping bed of densely welded tuff more than 650 ft below the surface and typically more than 600 ft above the water table. The conceptual design described in this report is unique among repository designs in that it uses ramps in addition to shafts to gain access to the underground facility, the emplacement horizon is located above the water table, and it is possible that 300- to 400-ft-long horizontal waste emplacement boreholes will be used. This report summarizes the design bases, design and performance criteria, and the design analyses performed. The current status of meeting the preclosure performance objectives for licensing and of resolving the repository design and preclosure issues is presented. The repository design presented in this report will be expanded and refined during the advanced conceptual design, the license application design, and the final procurement and construction design phases. Volume 4 contains Appendices F to O.

MacDougall, H R; Scully, L W; Tillerson, J R [comps.] [comps.

1987-09-01T23:59:59.000Z

297

Hazardous-waste analysis plan for LLNL operations  

SciTech Connect (OSTI)

The Lawrence Livermore National Laboratory is involved in many facets of research ranging from nuclear weapons research to advanced Biomedical studies. Approximately 80% of all programs at LLNL generate hazardous waste in one form or another. Aside from producing waste from industrial type operations (oils, solvents, bottom sludges, etc.) many unique and toxic wastes are generated such as phosgene, dioxin (TCDD), radioactive wastes and high explosives. One key to any successful waste management program must address the following: proper identification of the waste, safe handling procedures and proper storage containers and areas. This section of the Waste Management Plan will address methodologies used for the Analysis of Hazardous Waste. In addition to the wastes defined in 40 CFR 261, LLNL and Site 300 also generate radioactive waste not specifically covered by RCRA. However, for completeness, the Waste Analysis Plan will address all hazardous waste.

Roberts, R.S.

1982-02-12T23:59:59.000Z

298

1999 data report: Groundwater monitoring program Area 5 Radioactive Waste Management Site  

SciTech Connect (OSTI)

This report is a compilation of the annual 1999 groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). Contamination indicator data are presented in control chart and tabular form with investigation levels indicated. Gross water chemistry data are presented in graphical and tabular form. Other information in the report includes, the Cumulative Chronology for Area 5 RWMS Groundwater Monitoring Program, a brief description of the site hydrogeology and the groundwater sampling procedure. Wells Ue5PW-1, Ue5PW-2, and Ue5PW-3 were sampled semiannually for pH, specific conductance, major cations/anions, metals, tritium, total organic carbon (TOC), and total organic halogen (TOX). Results indicate that there has been no measurable impact to the uppermost aquifer from the Resource Conservation and Recovery Act (RCRA) regulated unit within the Area 5 RWMS. Groundwater elevation was monitored quarterly with no major changes noted. There continues to be an extremely small gradient to the northeast with a flow velocity less than one foot per year; however, this is subject to change because the wells have a similar groundwater elevation.

Yvonne Townsend

2000-03-01T23:59:59.000Z

299

Nevada Test Site 2001 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site  

SciTech Connect (OSTI)

This report is a compilation of the calendar year 2001 groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). Contamination indicator data are presented in control chart and tabular form with investigation levels (ILs) indicated. Gross water chemistry data are presented in graphical and tabular form. Other information in the report includes, the Cumulative Chronology for Area 5 RWMS Groundwater Monitoring Program, a brief description of the site hydrogeology, and the groundwater sampling procedure. Wells Ue5PW-1, Ue5PW-2, and Ue5PW-3 were sampled semiannually for the required analytes: pH, specific conductance, major cations/anions, metals, tritium, total organic carbon (TOC), and total organic halogen (TOX). Due to detections of TOC and TOX in some samples collected in 2000, a plan, as approved by the Nevada Division of Environmental Protection (NDEP), was executed to collect an increased number and type of samples in 2001. Results from all samples collected in 2001 were below ILs. These data indicate that there has been no measurable impact to the uppermost aquifer from the Resource Conservation and Recovery Act (RCRA) regulated unit within the Area 5 RWMS and confirm that the detections of TOC and TOX in 2000 were false positives. There were no major changes noted in the monitored groundwater elevation. There continues to be an extremely small gradient to the northeast with an average flow velocity of less than one foot per year.

Y. E. Townsend

2002-02-01T23:59:59.000Z

300

Nevada Test Site 2009 Data Report: Groundwater Monitoring Program, Area 5 Radioactive Waste Management Site  

SciTech Connect (OSTI)

This report is a compilation of the groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). The data have been collected since 1993 and include calendar year 2009 results. During 2009, groundwater at each of the three pilot wells was sampled on March 10, 2009, and August 18, 2009, and water levels at each of the three pilot wells were measured on February 17, May 6, August 17, and November 10, 2009. Groundwater samples were analyzed for the following indicators of contamination: pH, specific conductance, total organic carbon, total organic halides, and tritium. Indicators of general water chemistry (cations and anions) were also measured. Results from all samples collected in 2009 were within the limits established by agreement with the Nevada Division of Environmental Protection for each analyte. These data indicate that there has been no measurable impact to the uppermost aquifer from the Area 5 RWMS. There were no significant changes in measured groundwater parameters compared to previous years. The report contains an updated cumulative chronology for the Area 5 RWMS Groundwater Monitoring Program and a brief description of the site hydrogeology.

NSTec Environmental Management

2010-01-19T23:59:59.000Z

Note: This page contains sample records for the topic "waste storage area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Source document for waste area groupings at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This document serves as a source document for Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and other types of documents developed for and pertaining to Environmental Restoration (ER) Program activities at Oak Ridge National Laboratory (ORNL). It contains descriptions of the (1) regulatory requirements for the ORR ER Program, (2) Oak Ridge Reservation (ORR) ER Program, (3) ORNL site history and characterization, and (4) history and characterization of Waste Area Groupings (WAGS) 1-20. This document was created to save time, effort, and money for persons and organizations drafting documents for the ER Program and to improve consistency in the documents prepared for the program. By eliminating the repetitious use of selected information about the program, this document will help reduce the time and costs associated with producing program documents. By serving as a benchmark for selected information about the ER Program, this reference will help ensure that information presented in future documents is accurate and complete.

Osborne, P.L.; Kuhaida, A.J., Jr.

1996-09-01T23:59:59.000Z

302

WIPP Facility Work Plan for Solid Waste Management Units and Areas of Concern  

SciTech Connect (OSTI)

This 2002 Facility Work Plan (FWP) has been prepared as required by Module VII, Permit Condition VII.U.3 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit, NM4890139088-TSDF (the Permit) (New Mexico Environment Department [NMED], 1999a), and incorporates comments from the NMED received on December 6, 2000 (NMED, 2000a). This February 2002 FWP describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMU) and Areas of Concern (AOC) specified in the Permit. The Permittees are evaluating data from previous investigations of the SWMUs and AOCs against the most recent guidance proposed by the NMED. Based on these data, and completion of the August 2001 sampling requested by the NMED, the Permittees expect that no further sampling will be required and that a request for No Further Action (NFA) at the SWMUs and AOCs will be submitted to the NMED. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a facility to exit the schedule of compliance contained in the facility's Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA processcan be entered either before or after an RFI Work Plan. According to the NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit. The NMED accepted that the Permittees are using the ACAA in a letter dated April 20, 2000.

Washington TRU Solutions LLC

2002-03-05T23:59:59.000Z

303

WIPP Facility Work Plan for Solid Waste Management Units and Areas of Concern  

SciTech Connect (OSTI)

his 2002 Facility Work Plan (FWP) has been prepared as required by Module VII,Permit Condition VII.U.3 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit, NM4890139088-TSDF (the Permit) (New Mexico Environment Department [NMED], 1999a), and incorporates comments from the NMED received onDecember 6, 2000 (NMED, 2000a). This February 2002 FWP describes the program-matic facility-wide approach to future investigations at Solid Waste Management Units (SWMU) and Areas of Concern (AOC) specified in the Permit. The Permittees are evaluating data from previous investigations of the SWMUs and AOCs against the mostrecent guidance proposed by the NMED. Based on these data, and completion of the August 2001 sampling requested by the NMED, the Permittees expect that no further sampling will be required and that a request for No Further Action (NFA) at the SWMUs and AOCs will be submitted to the NMED. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA)Facility Investigation (RFI) specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may beused for any SWMU or AOC (NMED, 1998). This accelerated approach is used toreplace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a facility to exit the schedule of compliance contained in the facility's Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can be entered either before or after an RFI Work Plan. According to the NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit. The NMED accepted that the Permittees are using the ACAA in a letter dated April 20, 2000.

Washington TRU Solutions LLC

2002-03-05T23:59:59.000Z

304

Low-Level Burial Grounds Waste Analysis Plan  

SciTech Connect (OSTI)

The purpose of this waste analysis plan (WAP) is to document the waste acceptance process, sampling methodologies, analytical techniques, and overall processes that are undertaken for waste accepted for storage and/or disposal at the Low-Level Burial Grounds which are located in the 200 East and West Areas of the Hanford Facility, Richland, Washington. This WAP documents the methods used to characterize, obtain and analyze representative samples of waste managed at this unit.

ELLEFSON, M.D.

2000-03-02T23:59:59.000Z

305

MANAGEMENT OF TRANSURANIC (TRU) WASTE RETRIEVAL PROJECT RISKS SUCCESSES IN THE STARTUP OF THE HANFORD 200 AREA TRU WASTE RETRIEVAL PROJECT  

SciTech Connect (OSTI)

A risk identification and mitigation method applied to the Transuranic (TRU) Waste Retrieval Project performed at the Hanford 200 Area burial grounds is described. Retrieval operations are analyzed using process flow diagramming. and the anticipated project contingencies are included in the Authorization Basis and operational plans. Examples of uncertainties assessed include degraded container integrity, bulged drums, unknown containers, and releases to the environment. Identification and mitigation of project risks contributed to the safe retrieval of over 1700 cubic meters of waste without significant work stoppage and below the targeted cost per cubic meter retrieved. This paper will be of interest to managers, project engineers, regulators, and others who are responsible for successful performance of waste retrieval and other projects with high safety and performance risks.

GREENWLL, R.D.

2005-01-20T23:59:59.000Z

306

Nevada National Security Site 2011 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site  

SciTech Connect (OSTI)

This report is a compilation of the groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). The data have been collected since 1993 and include calendar year 2011 results. During 2011, groundwater samples were collected and static water levels were measured at the three pilot wells surrounding the Area 5 RWMS. Samples were collected at UE5PW-1 on March 8, August 2, August 24, and October 19, 2011; at UE5PW-2 on March 8, August 2, August 23, and October 19, 2011; and at UE5PW-3 on March 8, August 2, August 23, and October 19, 2011. Static water levels were measured at each of the three pilot wells on March 1, June 7, August 1, and October 17, 2011. Groundwater samples were analyzed for the following indicators of contamination: pH, specific conductance, total organic carbon, total organic halides, and tritium. Indicators of general water chemistry (cations and anions) were also measured. Initial total organic carbon and total organic halides results for samples collected in August 2011 were above previous measurements and, in some cases, above the established investigation limits. However, after field sample pumps and tubing were disinfected with Clorox solution, the results returned to normal levels. Final results from samples collected in 2011 were within the limits established by agreement with the Nevada Division of Environmental Protection for each analyte. These data indicate that there has been no measurable impact to the uppermost aquifer from the Area 5 RWMS. There were no significant changes in measured groundwater parameters compared to previous years. The report contains an updated cumulative chronology for the Area 5 RWMS Groundwater Monitoring Program and a brief description of the site hydrogeology.

NSTec Environmental Management

2012-02-27T23:59:59.000Z

307

Special Analysis for the Disposal of the Neutron Products Incorporated Sealed Source Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada  

SciTech Connect (OSTI)

The purpose of this special analysis (SA) is to determine if the Neutron Products Incorporated (NPI) Sealed Sources waste stream (DRTK000000056, Revision 0) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS). The NPI Sealed Sources waste stream consists of 850 60Co sealed sources (Duratek [DRTK] 2013). The NPI Sealed Sources waste stream requires a special analysis (SA) because the waste stream 60Co activity concentration exceeds the Nevada National Security Site (NNSS) Waste Acceptance Criteria (WAC) Action Levels.

Shott, Gregory

2014-08-31T23:59:59.000Z

308

Structural Integrity Program for the 300,000-Gallon Radioactive Liquid Waste Storage Tanks at the Idaho Nuclear Technology and Engineering Center  

SciTech Connect (OSTI)

This report provides a record of the Structural Integrity Program for the 300,000-gal liquid waste storage tanks and associated equipment at the Idaho Nuclear Technology and Engineering Center, as required by U.S. Department of Energy M 435.1-1, Radioactive Waste Management Manual. This equipment is known collectively as the Tank Farm Facility. This report is an update, and replaces the previous report by the same title issued April 2003. The conclusion of this report is that the Tank Farm Facility tanks, vaults, and transfer systems that remain in service for storage are structurally adequate, and are expected to remain structurally adequate over the remainder of their planned service life through 2012. Recommendations are provided for continued monitoring of the Tank Farm Facility.

Bryant, Jeffrey W.

2010-08-12T23:59:59.000Z

309

Nevada Test Site 2002 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site  

SciTech Connect (OSTI)

This report is a compilation of the calendar year 2002 groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). Wells Ue5PW-1, Ue5PW-2, and Ue5PW-3 were sampled semiannually for the required analytes: pH, specific conductance, major cations/anions, metals, tritium, total organic carbon (TOC), and total organic halogen (TOX). Results from all samples collected in 2002 were within established criteria. These data indicate that there has been no measurable impact to the uppermost aquifer from the Resource Conservation and Recovery Act(RCRA) regulated unit within the RWMS-5 and confirm that the detections of TOC and TOX in 2000 were false positives. Contamination indicator data are presented in control chart and tabular form with investigation levels (ILs) indicated. Gross water chemistry data are presented in graphical and tabular form. There were no major changes noted in the monitored groundwater elevation. There continues to be an extremely small gradient to the northeast with an average flow velocity of less than one foot per year. Other information in the report includes, the Cumulative Chronology for Area 5 RWMS Groundwater Monitoring Program, a brief description of the site hydrogeology, and the groundwater sampling procedure.

Y. E. Townsend

2003-02-01T23:59:59.000Z

310

Screening of contaminants in Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

Waste Area Grouping 2 (WAG 2) of the Oak Ridge National Laboratory (ORNL) is located in the White Oak Creek Watershed and is composed of White Oak Creek Embayment, White Oak Lake and associated floodplain, and portions of White Oak Creek (WOC) and Melton Branch downstream of ORNL facilities. Contaminants leaving other ORNL WAGs in the WOC watershed pass through WAG 2 before entering the Clinch River. Health and ecological risk screening analyses were conducted on contaminants in WAG 2 to determine which contaminants were of concern and would require immediate consideration for remedial action and which contaminants could be assigned a low priority or further study. For screening purposes, WAG 2 was divided into four geographic reaches: Reach 1, a portion of WOC; Reach 2, Melton Branch; Reach 3, White Oak Lake and the floodplain area to the weirs on WOC and Melton Branch; and Reach 4, the White Oak Creek Embayment, for which an independent screening analysis has been completed. Screening analyses were conducted using data bases compiled from existing data on carcinogenic and noncarcinogenic contaminants, which included organics, inorganics, and radionuclides. Contaminants for which at least one ample had a concentration above the level of detection were placed in a detectable contaminants data base. Those contaminants for which all samples were below the level of detection were placed in a nondetectable contaminants data base.

Blaylock, B.G.; Frank, M.L.; Hoffman, F.O.; Hook, L.A.; Suter, G.W.; Watts, J.A.

1992-07-01T23:59:59.000Z

311

EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive...  

Broader source: Energy.gov (indexed) [DOE]

00: Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste SUMMARY This...

312

High level waste storage tanks 242-A evaporator S/RID phase II assessment report  

SciTech Connect (OSTI)

This document, the Standards/Requirements Identification Document (S/RID) Phase 2 Assessment Report for the subject facility, represents the results of a Performance Assessment to determine whether procedures containing S/RID requirements are fully implemented by field personnel in the field. It contains a summary report and three attachments; an assessment schedule, performance objectives, and assessments for selected functional areas.

Biebesheimer, E.

1996-09-27T23:59:59.000Z

313

Probabilistic risk analysis for Test Area North Hot Shop Storage Pool Facility  

SciTech Connect (OSTI)

A storage pool facility used for storing spent fuel and radioactive debris from the Three Mile Island (TMI) accident was evaluated to determine the risk associated with its normal operations. Several hazards were identified and examined to determine if any any credible accident scenarios existed. Expected annual occurrence frequencies were calculated for hazards for which accident scenarios were identified through use of fault trees modeling techniques. Fault tree models were developed for two hazards: (1) increased radiation field and (2) spread of contamination. The models incorporated facets of the operations within the facility as well as the facility itself. 6 refs.

Meale, B.M.; Satterwhite, D.G.

1990-01-01T23:59:59.000Z

314

Quality Assurance Program Plan (QAPP) Waste Management Project  

SciTech Connect (OSTI)

This document is the Quality Assurance Program Plan (QAPP) for Waste Management Federal Services of Hanford, Inc. (WMH), that implements the requirements of the Project Hanford Management Contract (PHMC), HNF-MP-599, Project Hanford Quality Assurance Program Description (QAPD) document, and the Hanford Federal Facility Agreement with Consent Order (Tri-Party Agreement), Sections 6.5 and 7.8. WHM is responsible for the treatment, storage, and disposal of liquid and solid wastes generated at the Hanford Site as well as those wastes received from other US Department of Energy (DOE) and non-DOE sites. WMH operations include the Low-Level Burial Grounds, Central Waste Complex (a mixed-waste storage complex), a nonradioactive dangerous waste storage facility, the Transuranic Storage Facility, T Plant, Waste Receiving and Processing Facility, 200 Area Liquid Effluent Facility, 200 Area Treated Effluent Disposal Facility, the Liquid Effluent Retention Facility, the 242-A Evaporator, 300 Area Treatment Effluent Disposal Facility, the 340 Facility (a radioactive liquid waste handling facility), 222-S Laboratory, the Waste Sampling and Characterization Facility, and the Hanford TRU Waste Program.

VOLKMAN, D.D.

1999-10-27T23:59:59.000Z

315

Supplemental design requirements document enhanced radioactive and mixed waste storage: Phase 5, Project W-113  

SciTech Connect (OSTI)

This Supplemental Design Requirements Document (SDRD) is used to communicate Project W-113 specific plant design information from Westinghouse Hanford Company (WHC) to the United States Department of Energy (DOE) and the cognizant Architect Engineer (A/E). The SDRD is prepared after the completion of the project Conceptual Design report (CDR) and prior to the initiation of definitive design. Information in the SDRD serves two purposes: to convey design requirements that are too detailed for inclusion in the Functional Design Criteria (FDC) report and to serve as a means of change control for design commitments in the Title I and Title II design. The Solid Waste Retrieval Project (W-113) SDRD has been restructured from the equipment based outline used in previous SDRDs to a functional systems outline. This was done to facilitate identification of deficiencies in the information provided in the initial draft SDRD and aid design confirmation. The format and content of this SDRD adhere as closely as practicable to the requirements of WHC-CM-6-1, Standard Engineering Practices for Functional Design Criteria.

Ocampo, V.P.

1994-11-01T23:59:59.000Z

316

H-Area Hazardous Waste Management Facility groundwater monitoring report. Third and fourth quarters 1996, Volume 1  

SciTech Connect (OSTI)

The groundwater in the uppermost aquifer beneath the H-Area Hazardous Waste Management Facility (HWMF), also known as the H-Area Seepage Basins, at the Savannah River Site (SRS) is monitored periodically for various hazardous and radioactive constituents as required by Module III, Section D, of the 1995 Resource Conservation and Recovery ACT (RCRA) Renewal Permit (South Carolina Hazardous and Mixed Waste Permit SC1-890-008-989), effective October 5, 1995. Currently, the H-Area HWMF monitoring network consists of 130 wells of the HSB series and 8 wells of the HSL series screened in the three hydrostratigraphic units that make up the uppermost aquifer beneath the H-Area HWMF. This report presents the results of the required groundwater monitoring program as identified in provision IIIDH.11.c

NONE

1997-03-01T23:59:59.000Z

317

Maintenance Plan for the Performance Assessments and Composite Analyses for the Area 3 and Area 5 Radioactive Waste Management Sites at the NTS  

SciTech Connect (OSTI)

U.S. Department of Energy (DOE) Manual M 435.1-1 requires that performance assessments (PAs) and composite analyses (CAs) for low-level waste (LLW) disposal facilities be maintained by the field offices. This plan describes the activities performed to maintain the PA and the CA for the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS). This plan supersedes the Maintenance Plan for the Performance Assessments and Composite Analyses for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site (DOE/NV/11718--491-REV 1, dated September 2002). The plan is based on U.S. Department of Energy (DOE) Order 435.1 (DOE, 1999a), DOE Manual M 435.1-1 (DOE, 1999b), the DOE M 435.1-1 Implementation Guide DOE G 435.1-1 (DOE, 1999c), and the Maintenance Guide for PAs and CAs (DOE, 1999d). The plan includes a current update on PA/CA documentation, a revised schedule, and a section on Quality Assurance.

Vefa Yucel

2007-01-03T23:59:59.000Z

318

RCRA Assessment Plan for Single-Shell Tank Waste Management Area S-SX at the Hanford Site  

SciTech Connect (OSTI)

A groundwater quality assessment plan was prepared for waste management area S-SX at the Hanford Site. Groundwater monitoring is conducted at this facility in accordance with Title 40, Code of Federal Regulation (CFR) Part 265, Subpart F [and by reference of Washington Administrative Code (WAC) 173-303-400(3)]. The facility was placed in assessment groundwater monitoring program status after elevated waste constituents and indicator parameter measurements (i.e., chromium, technetium-99 and specific conductance) in downgradient monitoring wells were observed and confirmed. A first determination, as allowed under 40 CFR 265.93(d), provides the owner/operator of a facility an opportunity to demonstrate that the regulated unit is not the source of groundwater contamination. Based on results of the first determination it was concluded that multiple source locations in the waste management area could account for observed spatial and temporal groundwater contamination patterns. Consequently, a continued investigation is required. This plan, developed using the data quality objectives process, is intended to comply with the continued investigation requirement. Accordingly, the primary purpose of the present plan is to determine the rate and extent of dangerous waste (hexavalent chromium and nitrate) and radioactive constituents (e.g., technetium-99) in groundwater and to determine their concentrations in groundwater beneath waste management area S-SX. Comments and concerns expressed by the Washington State Department of Ecology on the initial waste management area S-SX assessment report were addressed in the descriptive narrative of this plan as well as in the planned activities. Comment disposition is documented in a separate addendum to this plan.

Chou, C.J.; Johnson, V.G.

1999-10-06T23:59:59.000Z

319

M-Area Hazardous Waste Management Facility groundwater monitoring and corrective-action report. Second quarter 1995, Volume 1  

SciTech Connect (OSTI)

This report describes the corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) at the Savannah River Site during second quarter 1995. Topics include: changes in sampling, analysis, and reporting; water levels; remedial action of groundwater; and hydrology of the affected aquifer zones.

NONE

1995-08-01T23:59:59.000Z

320

RCRA Assessment Plan for Single-Shell Tank Waste Management Area TX-TY at the Hanford Site  

SciTech Connect (OSTI)

A groundwater quality assessment plan was prepared to investigate the rate and extent of aquifer contamination beneath Waste Management Area TX-TY on the Hanford Site in Washington State. This plan is an update of a draft plan issued in February 1999, which guided work performed in fiscal year 2000.

Hodges, Floyd N.; Chou, Charissa J.

2001-02-23T23:59:59.000Z

Note: This page contains sample records for the topic "waste storage area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Phase 1 RCRA Facility Investigation and Corrective Measures Study Work Plan for Single Shell Tank Waste Management Areas  

SciTech Connect (OSTI)

This document is the master work plan for the Resource Conservation and Recovery Act of 1976 (RCRA) for single-shell tank (SST) farms at the Hanford Site. Evidence indicates that releases at four of the seven SST waste management areas have impacted.

ROGERS, P.M.

2000-06-01T23:59:59.000Z

322

2004 Annual Summary Report for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site, Nye County, Nevada  

SciTech Connect (OSTI)

The Maintenance Plan for the Performance Assessments and Composite Analyses for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site (Bechtel Nevada, 2000) requires an annual review to assess the adequacy of the performance assessments (PAs) and composite analyses (CAs) for each of the facilities, and reports the results in an annual summary report to the U.S. Department of Energy Headquarters. The Disposal Authorization Statements for the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) also require that such reviews be made and that secondary or minor unresolved issues be tracked and addressed as part of the maintenance plan (U.S. Department of Energy [DOE]). The U.S. Department of Energy National Nuclear Security Administration Nevada Site Office performed annual reviews in fiscal year (FY) 2004 by evaluating operational factors and research results that impact the continuing validity of the PA and CA results. This annual summary report presents data and conclusions from the FY 2004 review, and determines the adequacy of the PAs and CAs. Operational factors, such as the waste form and containers, facility design, waste receipts, closure plans, as well as monitoring results and research and development (R&D) activities were reviewed in FY 2004 for the determination of the adequacy of the PAs. Likewise, the environmental restoration activities at the Nevada Test Site relevant to the sources of residual radioactive material that are considered in the CAs, the land-use planning, and the results of the environmental monitoring and R&D activities were reviewed for the determination of the adequacy of the CAs.

Vefa Yucel

2005-01-01T23:59:59.000Z

323

Preliminary engineering report waste area grouping 5, Old Hydrofracture Facility Tanks content removal project, Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

The Superfund Amendments and Reauthorization Act of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requires a Federal Facilities Agreement (FFA) for federal facilities placed on the National Priorities List. The Oak Ridge Reservation was placed on that list on December 21, 1989, and the agreement was signed in November 1991 by the U.S. Department of Energy (DOE) Oak Ridge Operations Office, the U.S. Environmental Protection Agency (EPA) Region IV, and the Tennessee Department of Environment and Conservation (TDEC). The effective date of the FFA is January 1, 1992. One objective of the FFA is to ensure that liquid low-level waste (LLLW) tanks that are removed from service are evaluated and remediated through the CERCLA process. Five inactive LLLW tanks, designated T-1, T-2, T-3, T-4, and T-9, located at the Old Hydrofracture (OHF) Facility in the Melton Valley area of Oak Ridge National Laboratory (ORNL) have been evaluated and are now entering the remediation phase. As a precursor to final remediation, this project will remove the current liquid and sludge contents of each of the five tanks (System Requirements Document, Appendix A). It was concluded in the Engineering Evaluation/Cost Analysis [EE/CA] for the Old Hydrofracture Facility Tanks (DOE 1996) that sluicing and pumping the contaminated liquid and sludge from the five OHF tanks was the preferred removal action. Evaluation indicated that this alternative meets the removal action objective and can be effective, implementable, and cost-effective. Sluicing and removing the tank contents was selected because this action uses (1) applicable experience, (2) the latest information about technologies and techniques for removing the wastes from the tanks, and (3) activities that are currently acceptable for storage of transuranic (TRU) mixed waste.

NONE

1996-06-01T23:59:59.000Z

324

Toward New Candidates for Hydrogen Storage: High Surface Area Carbon Aerogels  

SciTech Connect (OSTI)

We report the hydrogen surface excess sorption saturation value of 5.3 wt% at 30 bar pressure at 77 K, from an activated carbon aerogel with a surface area of 3200 m{sup 2}/g as measured by Brunauer-Emmett-Teller (BET) analysis. This sorption value is one of the highest we have measured in a material of this type, comparable to values obtained in high surface area activated carbons. We also report, for the first time, the surface area dependence of hydrogen surface excess sorption isotherms of carbon aerogels at 77 K. Activated carbon aerogels with surface areas ranging from 1460 to 3200 m{sup 2}/g are evaluated and we find a linear dependence of the saturation of the gravimetric density with BET surface area for carbon aerogels up to 2550 m{sup 2}/g, in agreement with data from other types of carbons reported in the literature. Our measurements show these materials to have a differential enthalpy of adsorption at zero coverage of {approx}5 to 7 kJ/mole. We also show that the introduction of metal nanoparticles of nickel improves the sorption capacity while cobalt additions have no effect.

Kabbour, H; Baumann, T F; Satcher, J H; Saulnier, A; Ahn, C C

2007-02-05T23:59:59.000Z

325

Investigation of Accelerated Casing Corrosion in Two Wells at Waste Management Area A-AX  

SciTech Connect (OSTI)

This report was revised in September 2008 to remove acid-extractable sodium data from Tables 3.13 and 3.14. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in August 2005. An overall goal of the Groundwater Performance Assessment Project, led by Pacific Northwest National Laboratory (PNNL) and per guidance in DOE Order 5400.1, includes characterizing and defining trends in the physical, chemical, and biological condition of the environment. To meet these goals, numerous Resource Conservation and Recovery Act (RCRA) monitoring wells have been installed throughout the Hanford Site. In 2003, it was determined that two RCRA monitoring wells (299-E24-19 and 299-E25-46) in Waste Management Area (WMA) A-AX failed due to rapid corrosion of the stainless steel casing over a significant length of the wells. Complete casing corrosion occurred between 276.6 and 277.7 feet below ground surface (bgs) in well 299- E24-19 and from 274.4 to 278.6 feet bgs in well 299-E25-46. CH2M HILL Hanford Group, Inc., asked scientists from PNNL to perform detailed analyses of vadose zone sediment samples collected in the vicinity of the WMA A-AX from depths comparable to those where the rapid corrosion occurred in hopes of ascertaining the cause of the rapid corrosion.

Brown, Christopher F.; Serne, R. Jeffrey; Schaef, Herbert T.; Williams, Bruce A.; Valenta, Michelle M.; Legore, Virginia L.; Lindberg, Michael J.; Geiszler, Keith N.; Baum, Steven R.; Kutnyakov, Igor V.; Vickerman, Tanya S.; Clayton, Ray E.

2008-09-11T23:59:59.000Z

326

Software Quality Assurance Plan for GoldSim Models Supporting the Area 3 and Area 5 Radioactive Waste Management Sites Performance Assessment Program  

SciTech Connect (OSTI)

This Software Quality Assurance Plan (SQAP) applies to the development and maintenance of GoldSim models supporting the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) performance assessments (PAs) and composite analyses (CAs). Two PA models have been approved by the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) as of November 2006 for the PA maintenance work undertaken by National Security Technologies, LLC (NSTec). NNSA/NSO asked NSTec to assume the custodianship of the models for future development and maintenance. The models were initially developed by Neptune and Company (N&C).

Gregory J. Shott, Vefa Yucel

2007-01-03T23:59:59.000Z

327

SPECIAL ANALYSIS AIR PATHWAY MODELING OF E-AREA LOW-LEVEL WASTE FACILITY  

SciTech Connect (OSTI)

This Special Analysis (SA) was initiated to address a concern expressed by the Department of Energy's Low Level Waste Disposal Facility Federal Review Group (LFRG) Review Team during their review of the 2008 E-Area Performance Assessment (PA) (WSRC, 2008). Their concern was the potential for overlapping of atmospheric plumes, emanating from the soil surface above SRS LLW disposal facilities within the E-Area, to contribute to the dose received by a member of the public during the Institutional Control (IC) period. The implication of this concern was that the dose to the maximally-exposed individual (MEI) located at the SRS boundary might be underestimated during this time interval. To address this concern a re-analysis of the atmospheric pathway releases from E-Area was required. In the process of developing a new atmospheric release model (ARM) capable of addressing the LFRG plume overlap concern, it became obvious that new and better atmospheric pathway disposal limits should be developed for each of the E-Area disposal facilities using the new ARM. The scope of the SA was therefore expanded to include the generation of these new limits. The initial work conducted in this SA was to develop a new ARM using the GoldSim{reg_sign} program (GTG, 2009). The model simulates the subsurface vapor diffusion of volatile radionuclides as they release from E-Area disposal facility waste zones and migrate to the land surface. In the process of this work, many new features, including several new physical and chemical transport mechanisms, were incorporated into the model. One of the most important improvements was to incorporate a mechanism to partition volatile contaminants across the water-air interface within the partially saturated pore space of the engineered and natural materials through which vapor phase transport occurs. A second mechanism that was equally important was to incorporate a maximum concentration of 1.9E-07 Ci/m{sup 3} of {sup 14}CO{sub 2} in the air-filled pores of cementitious materials. The ARM also combines the individual transport models constructed for each E-Area disposal facility into a single model, and was ultimately used to analyze the LFRG concern regarding the potential for atmospheric plume overlap at the SRS boundary during the IC period. To evaluate the plume overlap issue, a conservative approach was adopted whereby the MEI at the SRS boundary was exposed to the releases from all E-Area disposal facilities simultaneously. This is equivalent to a 100% overlap of all atmospheric plumes emanating from E-Area. Should the dose received from this level of atmospheric plume overlap still fall below the permissible exposure level of 10 mrem/yr, then the LFRG concern would be alleviated. The structuring of the ARM enables this evaluation to be easily performed. During the IC period, the peak of the 'total plume overlap dose' was computed to be 1.9E-05 mrem/yr, which is five orders of magnitude lower than the 10 mrem/yr PA performance objective for the atmospheric release pathway. The main conclusion of this study is that for atmospheric releases from the E-Area disposal facilities, plume overlap does not cause the total dose to the MEI at the SRS boundary during the IC to exceed the Performance Assessment (PA) performance objective. Additionally, the potential for plume overlap was assessed in the post-Institutional Control period. Atmospheric plume overlap is less likely to occur during this period but conceivably could occur if the prevailing wind direction shifted so as to pass directly over all EArea disposal facilities and transport airborne radionuclides to the MEI at the 100 m point of compliance (POC). This concern was also demonstrated of little concern, as the maximum plume overlap dose was found to be 1.45E+00 mrem/yr (or {approx}15% of the performance measure) during this period and under these unlikely conditions.

Hiergesell, R.; Taylor, G.

2011-08-30T23:59:59.000Z

328

Groundwater quality assessment plan for single-shell waste management area B-BX-BY at the Hanford Site  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory conducted a first determination groundwater quality assessment at the Hanford Site. This work was performed for the US Department of Energy, Richland Operations Office, in accordance with the Federal Facility Compliance Agreement during the time period 1996--1998. The purpose of the assessment was to determine if waste from the Single-Shell Tank (SST) Waste Management Area (WMA) B-BX-BY had entered the groundwater at levels above the drinking water standards (DWS). The resulting assessment report documented evidence demonstrating that waste from the WMA has, most likely, impacted groundwater quality. Based on 40 CFR 265.93 [d] paragraph (7), the owner-operator must continue to make the minimum required determinations of contaminant level and of rate/extent of migrations on a quarterly basis until final facility closure. These continued determinations are required because the groundwater quality assessment was implemented prior to final closure of the facility.

SM Narbutovskih

2000-03-31T23:59:59.000Z

329

Performance assessment for the disposal of low-level waste in the 200 West Area Burial Grounds  

SciTech Connect (OSTI)

This document reports the findings of a performance assessment (PA) analysis for the disposal of solid low-level radioactive waste (LLW) in the 200 West Area Low-Level Waste Burial Grounds (LLBG) in the northwest corner of the 200 West Area of the Hanford Site. This PA analysis is required by US Department of Energy (DOE) Order 5820.2A (DOE 1988a) to demonstrate that a given disposal practice is in compliance with a set of performance objectives quantified in the order. These performance objectives are applicable to the disposal of DOE-generated LLW at any DOE-operated site after the finalization of the order in September 1988. At the Hanford Site, DOE, Richland Operations Office (RL) has issued a site-specific supplement to DOE Order 5820.2A, DOE-RL 5820.2A (DOE 1993), which provides additiona I ce objectives that must be satisfied.

Wood, M.I.; Khaleel, R.; Rittmann, P.D.; Lu, A.H.; Finfrock, S.H.; DeLorenzo, T.H. [Westinghouse Hanford Co., Richland, WA (United States); Serne, R.J.; Cantrell, K.J. [Pacific Northwest Lab., Richland, WA (United States)

1995-06-01T23:59:59.000Z

330

A highly stable zirconium-based metal-organic framework material with high surface area and gas storage capacities  

E-Print Network [OSTI]

, MOFs have attracted much interest for on-board hydrogen or methane storage in vehicles. Both methane and hydrogen are promising candidates as replacements for gasoline (petrol). However, their compact storage in molecular form, especially...

Gutov, Oleksii V.; Bury, Wojciech; Gomez-Gualdron, Diego A.; Krungleviciute, Vaiva; Fairen-Jimenez, David; Sarjeant, Amy A.; Snurr, Randall Q.; Hupp, Joseph T.; Yildirim, Taner; Farha, Omar K.

2014-08-14T23:59:59.000Z

331

Post-Closure Evaluation of the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada National Security Site in Support of the Site-Wide Environmental Impact Statement  

SciTech Connect (OSTI)

The post-closure performance of the Area 3 Radioactive Waste Management Site (RWMS) and Area 5 RWMS are evaluated for the Site-Wide Environmental Impact Statement using current performance assessment and composite analysis methods and models. Two alternatives with different future waste volumes and inventories are evaluated. The No Action Alternative evaluates the inventory disposed through fiscal year (FY) 2010 plus an additional 4.5E5 cubic meters (m3) (1.59E7 cubic feet [ft3]) of waste disposed at the Area 5 RWMS. The Expanded Operations Alternative evaluates the FY 2010 inventory plus an additional 1.42E6 m3 (5.03E7 ft3) of waste disposed at the Area 5 RWMS and 4.93E4 m3 (1.74E6 ft3) disposed at the Area 3 RWMS. Both the No Action and Expanded Operations Alternatives have a reasonable expectation of meeting all performance objectives of U.S. Department of Energy Order DOE O 435.1, Radioactive Waste Management. No significant difference between the two alternatives was found because the waste concentrations are similar. The performance assessment model assesses radiological risk for residents at the RWMS boundary where risk is more closely related to waste concentration than total waste inventory. Results for the composite analysis also indicate that the dose constraint and dose limit can be met for both alternatives.

NSTec Environmental Restoration

2011-04-26T23:59:59.000Z

332

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 30, NO. 2, FEBRUARY 2012 433 Secure Cooperative Data Storage and Query  

E-Print Network [OSTI]

mobile-sink visit. Despite rapid progress in storage technology, this approach remains economically Cooperative Data Storage and Query Processing in Unattended Tiered Sensor Networks Rui Zhang, Student Member. Such a cooperative data storage and query processing paradigm offers a number of advantages over traditional

Zhang, Rui

333

Review of private sector and Department of Energy treatment, storage, and disposal capabilities for low-level and mixed low-level waste  

SciTech Connect (OSTI)

Private sector capacity for treatment, storage, and disposal (TSD) of various categories of radioactive waste has been researched and reviewed for the Idaho National Engineering Laboratory (INEL) by Lockheed Idaho Technologies Company, the primary contractor for the INEL. The purpose of this document is to provide assistance to the INEL and other US Department of Energy (DOE) sites in determining if private sector capabilities exist for those waste streams that currently cannot be handled either on site or within the DOE complex. The survey of private sector vendors was limited to vendors currently capable of, or expected within the next five years to be able to perform one or more of the following services: low-level waste (LLW) volume reduction, storage, or disposal; mixed LLW treatment, storage, or disposal; alpha-contaminated mixed LLW treatment; LLW decontamination for recycling, reclamation, or reuse; laundering of radioactively-contaminated laundry and/or respirators; mixed LLW treatability studies; mixed LLW treatment technology development. Section 2.0 of this report will identify the approach used to modify vendor information from previous revisions of this report. It will also illustrate the methodology used to identify any additional companies. Section 3.0 will identify, by service, specific vendor capabilities and capacities. Because this document will be used to identify private sector vendors that may be able to handle DOE LLW and mixed LLW streams, it was decided that current DOE capabilities should also be identified. This would encourage cooperation between DOE sites and the various states and, in some instances, may result in a more cost-effective alternative to privatization. The DOE complex has approximately 35 sites that generate the majority of both LLW and mixed LLW. Section 4.0 will identify these sites by Operations Office, and their associated LLW and mixed LLW TSD units.

Willson, R.A.; Ball, L.W.; Mousseau, J.D.; Piper, R.B.

1996-03-01T23:59:59.000Z

334

Comparative Assessment of Status and Opportunities for CO2 Capture and Storage and Radioactive Waste Disposal in North America  

E-Print Network [OSTI]

and liability for carbon capture and sequestration, Environ.Wilson and Gerard, editors, Carbon Capture and SequestrationSpecial Report on carbon dioxide capture and storage, ISBN

Oldenburg, C.

2010-01-01T23:59:59.000Z

335

Report of biological investigations at the Los Medanos Waste Isolation Pilot Plant (WIPP) area of New Mexico during FY 1978  

SciTech Connect (OSTI)

The US Department of Energy is considering the construction of a Waste Isolation Pilot Plant (WIPP) in Eddy County, NM. This location is approximately 40 km east of Carlsbad, NM. Biological studies during FY 1978 were concentrated within a 5-mi radius of drill hole ERDA 9. Additional study areas have been established at other sites in the vicinity, e.g., the Gnome site, the salt lakes and several stations along the Pecos River southward from Carlsbad, NM, to the dam at Red Bluff Reservoir in Texas. The precise locations of all study areas are presented and their biology discussed.

Best, T.L.; Neuhauser, S. (eds.)

1980-03-01T23:59:59.000Z

336

Integrated Closure and Monitoring Plan for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site  

SciTech Connect (OSTI)

Bechtel Nevada (BN) manages two low-level Radioactive Waste Management Sites (RWMSs) (one site is in Area 3 and the other is in Area 5) at the Nevada Test Site (NTS) for the U.S. Department of Energy's (DOE's) National Nuclear Security Administration Nevada Operations Office (NNSA/NV). The current DOE Order governing management of radioactive waste is 435.1. Associated with DOE Order 435.1 is a Manual (DOE M 435.1-1) and Guidance (DOE G 435.1-1). The Manual and Guidance specify that preliminary closure and monitoring plans for a low-level waste (LLW) management facility be developed and initially submitted with the Performance Assessment (PA) and Composite Analysis (CA) for that facility. The Manual and Guidance, and the Disposal Authorization Statement (DAS) issued for the Area 3 RWMS further specify that the preliminary closure and monitoring plans be updated within one year following issuance of a DAS. This Integrated Closure and Monitoring Plan (ICMP) fulfills both requirements. Additional updates will be conducted every third year hereafter. This document is an integrated plan for closing and monitoring both RWMSs, and is based on guidance issued in 1999 by the DOE for developing closure plans. The plan does not follow the format suggested by the DOE guidance in order to better accommodate differences between the two RWMSs, especially in terms of operations and site characteristics. The modification reduces redundancy and provides a smoother progression of the discussion. The closure and monitoring plans were integrated because much of the information that would be included in individual plans is the same, and integration provides efficient presentation and program management. The ICMP identifies the regulatory requirements, describes the disposal sites and the physical environment where they are located, and defines the approach and schedule for both closing and monitoring the sites.

S. E. Rawlinson

2001-09-01T23:59:59.000Z

337

Maintain all SAA weekly inspection forms in your laboratory. Forms must be readily available for review. Satellite Accumulation Area -Weekly Inspection Form  

E-Print Network [OSTI]

to the corresponding date of the SAA inspection. A. Good Condition - Containers in good condition, properly labeled containment. No Corrective Action Required. B. Missing Labels - Containers not labeled in compliance with SAA storage requirements. Satellite Accumulation Area ­ Waste Storage Requirements Label Requirements: · Waste

338

EIS-0189: Tank Waste Remediation System (TWRS), Richland, WA (Programmatic)  

Broader source: Energy.gov [DOE]

This environmental impact statement evaluates the Department of Energy (DOE)'s, in cooperation with the Washington State Department of Ecology (Ecology), decisions on how to properly manage and dispose of Hanford Site tank waste and encapsulated cesium and strontium to reduce existing and potential future risk to the public, Site workers, and the environment. The waste includes radioactive, hazardous, and mixed waste currently stored in 177 underground storage tanks, approximately 60 other smaller active and inactive miscellaneous underground storage tanks (MUSTs), and additional Site waste likely to be added to the tank waste, which is part of the tank farm system. In addition, DOE proposes to manage and dispose of approximately 1,930 cesium and strontium capsules that are by-products of tank waste. The tank waste and capsules are located in the 200 Areas of the Hanford Site near Richland, Washington.

339

Geologic processes in the RWMC area, Idaho National Engineering Laboratory: Implications for long term stability and soil erosion at the radioactive waste management complex  

SciTech Connect (OSTI)

The Radioactive Waste Management Complex (RWMC) is the disposal and storage facility for low-level radioactive waste at the Idaho National Engineering Laboratory (INEL). Transuranic waste and mixed wastes were also disposed at the RWMC until 1970. It is located in the southwestern part of the INEL about 80 km west of Idaho Falls, Idaho. The INEL occupies a portion of the Eastern Snake River Plain (ESRP), a low-relief, basalt, and sediment-floored basin within the northern Rocky Mountains and northeastern Basin and Range Province. It is a cool and semiarid, sagebrush steppe desert characterized by irregular, rolling terrain. The RWMC began disposal of INEL-generated wastes in 1952, and since 1954, wastes have been accepted from other Federal facilities. Much of the waste is buried in shallow trenches, pits, and soil vaults. Until about 1970, trenches and pits were excavated to the basalt surface, leaving no sediments between the waste and the top of the basalt. Since 1970, a layer of sediment (about 1 m) has been left between the waste and the basalt. The United States Department of Energy (DOE) has developed regulations specific to radioactive-waste disposal, including environmental standards and performance objectives. The regulation applicable to all DOE facilities is DOE Order 5820.2A (Radioactive Waste Management). An important consideration for the performance assessment of the RWMC is the long-term geomorphic stability of the site. Several investigators have identified geologic processes and events that could disrupt a radioactive waste disposal facility. Examples of these {open_quotes}geomorphic hazards{close_quotes} include changes in stream discharge, sediment load, and base level, which may result from climate change, tectonic processes, or magmatic processes. In the performance assessment, these hazards are incorporated into scenarios that may affect the future performance of the RWMC.

Hackett, W.R.; Tullis, J.A.; Smith, R.P. [and others

1995-09-01T23:59:59.000Z

340

Addendum 1 Composite Analysis for the Area 5 Radioactive Waste Management Site at the Nevada Test Site, Nye County, Nevada  

SciTech Connect (OSTI)

A disposal authorization statement (DAS) was issued by the U.S. Department of Energy/Headquarters (DOE/HQ) on December 5, 2000, authorizing the DOE's National Nuclear Security Administration Nevada Operations Office to continue the operation of the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site for the disposal of low-level waste and mixed low-level waste. Prior to the issuance of the DAS, the Low-Level Waste Disposal Facility Federal Review Group (LFRG) had conducted reviews of the performance assessment (PA) and the composite analysis (CA) for the Area 5 RWMS, in accordance with the requirements of the DOE Radioactive Waste Management Order DOE O 435.1. A brief history of the reviews is as follows. (The reviews were conducted by independent review teams chartered by the LFRG; the review findings and recommendations were issued in review team reports to the LFRG.) The LFRG accepted the initial PA, with conditions, on August 30, 1996. Revision 2.1 to the PA was issued in January 1998, implementing the conditions of acceptance of the 1996 PA. The LFRG reviewed Revision 2.1 as part of the Area 5 RWMS CA review during 2000, and found it acceptable. The CA and the Supplemental Information provided in response to issues identified during the initial review of the CA were accepted by the LFRG. The Supplemental Information (including the responses to four key issues) is included in the Review Team Report to the LFRG, which recommends that it be incorporated into the CA and issued to all known holders of the CA. The Area 5 RWMS DAS requires that the Supplemental Information generated during the DOE/HQ review of the CA be incorporated into the CA within one year of the date of issuance of the DAS. This report, the first addendum to the Area 5 CA, is prepared to fulfill that requirement. The Supplemental Information includes the following: Issues Identified in the Review Team Report; Crosswalk Presentation; and Maintaining Doses As Low As Reasonably Achievable. A summary of this information is included in this report, with the complete text presented in the appendices.

Vefa Yucel

2001-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste storage area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Final Environmental Impact Statement for the Tank Waste Remediation...  

Broader source: Energy.gov (indexed) [DOE]

hazardous, and mixed waste. This waste is stored in 177 large underground storage tanks and in approximately 60 smaller active and inactive miscellaneous underground storage...

342

Safety Analysis Report for packaging (onsite) steel waste package  

SciTech Connect (OSTI)

The steel waste package is used primarily for the shipment of remote-handled radioactive waste from the 324 Building to the 200 Area for interim storage. The steel waste package is authorized for shipment of transuranic isotopes. The maximum allowable radioactive material that is authorized is 500,000 Ci. This exceeds the highway route controlled quantity (3,000 A{sub 2}s) and is a type B packaging.

BOEHNKE, W.M.

2000-07-13T23:59:59.000Z

343

Design review report FFTF interim storage cask  

SciTech Connect (OSTI)

Final Design Review Report for the FFTF Interim Storage Cask. The Interim Storage Cask (ISC) will be used for long term above ground dry storage of FFTF irradiated fuel in Core Component Containers (CCC)s. The CCC has been designed and will house assemblies that have been sodium washed in the IEM Cell. The Solid Waste Cask (SWC) will transfer a full CCC from the IEM Cell to the RSB Cask Loading Station where the ISC will be located to receive it. Once the loaded ISC has been sealed at the RSB Cask Loading Station, it will be transferred by facility crane to the DSWC Transporter. After the ISC has been transferred to the Interim Storage Area (ISA), which is yet to be designed, a mobile crane will be used to place the ISC in its final storage location.

Scott, P.L.

1995-01-03T23:59:59.000Z

344

Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada National Security Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site  

SciTech Connect (OSTI)

The Nevada National Security Site (NNSS) is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. The U.S. Department of Energy National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is the federal lands management authority for the NNSS and National Security Technologies, LLC (NSTec) is the Management and Operations contractor. Access on and off the NNSS is tightly controlled, restricted, and guarded on a 24-hour basis. The NNSS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NNSS. The Area 5 Radioactive Waste Management Site (RWMS) is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NNSS (Figure 1), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. The site will be used for the disposal of regulated Asbestiform Low-Level Waste (ALLW), small quantities of low-level radioactive hydrocarbon-burdened (LLHB) media and debris, LLW, LLW that contains Polychlorinated Biphenyl (PCB) Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, and small quantities of LLHB demolition and construction waste (hereafter called permissible waste). Waste containing free liquids, or waste that is regulated as hazardous waste under the Resource Conservation and Recovery Act (RCRA) or state-of-generation hazardous waste regulations, will not be accepted for disposal at the site. Waste regulated under the Toxic Substances Control Act (TSCA) that will be accepted at the disposal site is regulated asbestos-containing materials (RACM) and PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water. The term asbestiform is used throughout this document to describe RACM. The disposal site will be used as a depository of permissible waste generated both on site and off site. All generators designated by NNSA/NSO will be eligible to dispose regulated ALLW at the Asbestiform Low-Level Waste Disposal Site in accordance with the DOE/NV-325, Nevada National Security Site Waste Acceptance Criteria (NNSSWAC, current revision). Approval will be given by NNSA/NSO to generators that have successfully demonstrated through process knowledge (PK) and/or sampling and analysis that the waste is low-level, contains asbestiform material, or contains PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, or small quantities of LLHB demolition and construction waste and does not contain prohibited waste materials. Each waste stream will be approved through the Radioactive Waste Acceptance Program (RWAP), which ensures that the waste meets acceptance requirements outlined in the NNSSWAC.

NSTec Environmental Programs

2010-10-04T23:59:59.000Z

345

Corrective Action Plan for Corrective Action Unit 143: Area 25 Contaminated Waste Dumps, Nevada Test Site, Nevada  

SciTech Connect (OSTI)

This Corrective Action Plan (CAP) has been prepared for Corrective Action Unit (CAU) 143: Area 25 Contaminated Waste Dumps, Nevada Test Site, Nevada, in accordance with the Federal Facility Agreement and Consent Order of 1996. This CAP provides the methodology for implementing the approved corrective action alternative as listed in the Corrective Action Decision Document (U.S. Department of Energy, Nevada Operations Office, 2000). The CAU includes two Corrective Action Sites (CASs): 25-23-09, Contaminated Waste Dump Number 1; and 25-23-03, Contaminated Waste Dump Number 2. Investigation of CAU 143 was conducted in 1999. Analytes detected during the corrective action investigation were evaluated against preliminary action levels to determine constituents of concern for CAU 143. Radionuclide concentrations in disposal pit soil samples associated with the Reactor Maintenance, Assembly, and Disassembly Facility West Trenches, the Reactor Maintenance, Assembly, and Disassembly Facility East Trestle Pit, and the Engine Maintenance, Assembly, and Disassembly Facility Trench are greater than normal background concentrations. These constituents are identified as constituents of concern for their respective CASs. Closure-in-place with administrative controls involves use restrictions to minimize access and prevent unauthorized intrusive activities, earthwork to fill depressions to original grade, placing additional clean cover material over the previously filled portion of some of the trenches, and placing secondary or diversion berm around pertinent areas to divert storm water run-on potential.

D. L. Gustafason

2001-02-01T23:59:59.000Z

346

RCRA Assessment Plan for Single-Shell Tank Waste Management Area B-BX-BY at the Hanford Site  

SciTech Connect (OSTI)

This document was prepared as a groundwater quality assessment plan revision for the single-shell tank systems in Waste Management Area B-BX-BY at the Hanford Site. Groundwater monitoring is conducted at this facility in accordance with 40 CFR Part 265, Subpart F. In FY 1996, the groundwater monitoring program was changed from detection-level indicator evaluation to a groundwater quality assessment program when elevated specific conductance in downgradient monitoring well 299 E33-32 was confirmed by verification sampling. During the course of the ensuing investigation, elevated technetium-99 and nitrate were observed above the drinking water standard at well 299-E33-41, a well located between 241-B and 241-BX Tank Farms. Earlier observations of the groundwater contamination and tank farm leak occurrences combined with a qualitative analysis of possible solutions, led to the conclusion that waste from the waste management area had entered the groundwater and were observed in this well. Based on 40 CFR 265.93 [d] paragraph (7), the owner-operator must continue to make the minimum required determinations of contaminant level and rate/extent of migrations on a quarterly basis until final facility closure. These continued determinations are required because the groundwater quality assessment was implemented prior to final closure of the facility.

Narbutovskih, Susan M.

2006-09-29T23:59:59.000Z

347

Potential for Subsidence at the Low-level Waste Disposal Area  

SciTech Connect (OSTI)

U.S. Department of Energy (DOE) Order 435.1, Radioactive Waste Management requires that DOE low-level radioactive waste (LLW) disposal facilities receive a Disposal Authorization Statement (DAS) from DOE-Headquarters. The DAS for the LLW disposal facility at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering and Environmental Laboratory (INEEL) was granted in April 2000 and included a number of conditions that must be addressed. A maintenance plan (Schuman 2000) was prepared that identifies the tasks to be completed to address the conditions in the DAS as well as a schedule for their completion. The need for a subsidence analysis was one of the conditions identified for the DAS, and thus, a task to prepare a subsidence analysis was included in the maintenance plan. This document provides the information necessary to satisfy that requirement.

Keck, Karen Nina; Seitz, Roger Ray

2002-09-01T23:59:59.000Z

348

Potential for Subsidence at the Low-Level Radioactive Waste Disposal Area  

SciTech Connect (OSTI)

U.S. Department of Energy (DOE) Order 435.1, Radioactive Waste Management requires that DOE low-level radioactive waste (LLW) disposal facilities receive a Disposal Authorization Statement (DAS) from DOE-Headquarters. The DAS for the LLW disposal facility at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering and Environmental Laboratory (INEEL) was granted in April 2000 and included a number of conditions that must be addressed. A maintenance plan (Schuman 2000) was prepared that identifies the tasks to be completed to address the conditions in the DAS as well as a schedule for their completion. The need for a subsidence analysis was one of the conditions identified for the DAS, and thus, a task to prepare a subsidence analysis was included in the maintenance plan. This document provides the information necessary to satisfy that requirement.

Keck, K.A.; Seitz, R.R.

2002-09-26T23:59:59.000Z

349

Interim storage study report  

SciTech Connect (OSTI)

High-level radioactive waste (HLW) stored at the Idaho Chemical Processing Plant (ICPP) in the form of calcine and liquid and liquid sodium-bearing waste (SBW) will be processed to provide a stable waste form and prepare the waste to be transported to a permanent repository. Because a permanent repository will not be available when the waste is processed, the waste must be stored at ICPP in an Interim Storage Facility (ISF). This report documents consideration of an ISF for each of the waste processing options under consideration.

Rawlins, J.K.

1998-02-01T23:59:59.000Z

350

M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities groundwater monitoring and corrective-action report (U). Third and fourth quarters 1996, Vol. I  

SciTech Connect (OSTI)

This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River Site (SRS) during 1996.

NONE

1997-03-01T23:59:59.000Z

351

Phase 1 RCRA Facility Investigation & Corrective Measures Study Work Plan for Single Shell Tank (SST) Waste Management Areas  

SciTech Connect (OSTI)

This document is the master work plan for the Resource Conservation and Recovery Act of 1976 (RCRA) Corrective Action Program (RCAP) for single-shell tank (SST) farms at the US. Department of Energy's (DOE'S) Hanford Site. The DOE Office of River Protection (ORP) initiated the RCAP to address the impacts of past and potential future tank waste releases to the environment. This work plan defines RCAP activities for the four SST waste management areas (WMAs) at which releases have contaminated groundwater. Recognizing the potential need for future RCAP activities beyond those specified in this master work plan, DOE has designated the currently planned activities as ''Phase 1.'' If a second phase of activities is needed for the WMAs addressed in Phase 1, or if releases are detected at other SST WMAs, this master work plan will be updated accordingly.

MCCARTHY, M.M.

1999-08-01T23:59:59.000Z

352

Evaluation of concepts for monitored retrievable storage of spent nuclear fuel and high-level radioactive waste  

SciTech Connect (OSTI)

The primary mission selected by DOE for the monitored retrieval storage (MRS) system is to provide an alternative means of storage in the event that the repository program is delayed. The MRS concepts considered were the eight concepts included in the MRS Research and Development Report to Congress (DOE 1983). These concepts are: metal cask (stationary and transportable); concrete cask (sealed storage cask); concrete cask-in-trench; field drywell; tunnel drywell; open cycle vault; closed cycle vault; and tunnel rack vault. Conceptual design analyses were performed for the candidate concepts using a common set of design requirements specified in consideration of the MRS mission.

Triplett, M.B.; Smith, R.I.

1984-04-01T23:59:59.000Z

353

Closure Plan for the E-Area Low-Level Waste Facility  

SciTech Connect (OSTI)

A closure plan has been developed to comply with the applicable requirements of the U.S. Department of Energy Order 435.2 Manual and Guidance. The plan is organized according to the specifications of the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans.

Cook, J.R.

2000-10-30T23:59:59.000Z

354

2007 Annual Summary Report for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site, Nye County, Nevada  

SciTech Connect (OSTI)

This report summarizes the results of an annual review of conditions affecting the operation of the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) and a determination of the continuing adequacy of the performance assessments (PAs) and composite analyses (CAs). The Area 5 RWMS PA documentation consists of the original PA (Shott et al., 1998), referred to as the 1998 Area 5 RWMS PA and supporting addenda (Bechtel Nevada [BN], 2001b; 2006a). The Area 5 RWMS CA was issued as a single document (BN, 2001a) and has a single addendum (BN, 2001c). The Area 3 PA and CA were issued in a single document (Shott et al., 2000). The Maintenance Plan for the PAs and CAs (National Security Technologies, LLC [NSTec], 2006) and the Disposal Authorization Statements (DASs) for the Area 3 and 5 RWMSs (U.S. Department of Energy [DOE], 2000; 2002) require preparation of an annual summary and a determination of the continuing adequacy of the PAs and CAs. The annual summary report is submitted to DOE Headquarters. Following the annual report format in the DOE PA/CA Maintenance Guide (DOE, 1999), this report presents the annual summary for the PAs in Section 2.0 and the CAs in Section 3.0. The annual summary for the PAs includes the following: Section 2.1 summarizes changes in waste disposal operations; Section 2.1.5 provides an evaluation of the new estimates of the closure inventories derived from the actual disposals through fiscal year (FY) 2007; Section 2.2 summarizes the results of the monitoring conducted under the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's (NNSA/NSO's) Integrated Closure and Monitoring Plan for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site (BN, 2005), and the research and development (R&D) activities; Section 2.4 is a summary of changes in facility design, operation, or expected future conditions; monitoring and R&D activities; and the maintenance program; and Section 2.5 discusses the recommended changes in disposal facility design and operations, monitoring and R&D activities, and the maintenance program. Similarly, the annual summary for the CAs (presented in Section 3.0) includes the following: Section 3.1 presents the assessment of the adequacy of the CAs, with a summary of the relevant factors reviewed in FY 2007; Section 3.2 presents an assessment of the relevant site activities at the Nevada Test Site (NTS) that would impact the sources of residual radioactive material considered in the CAs; Section 3.3 summarizes the monitoring and R&D results that were reviewed in FY 2007; Section 3.4 presents a summary of changes in relevant site programs (including monitoring, R&D, and the maintenance program) that occurred since the CAs were prepared; and Section 3.5 summarizes the recommended changes to these programs.

NSTec Environmental Management

2008-01-01T23:59:59.000Z

355

M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities Groundwate Monitoring and Corrective-Action Report, First and Second Quarters 1998, Volumes I, II, & III  

SciTech Connect (OSTI)

This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah river Site (SRS) during first and second quarters 1998. This program is required by South Carolina Hazardous Waste Permit SC1-890-008-989 and Section 264.100(g) of the South Carolina Hazardous Waste Management Regulations. Report requirements are described in the 1995 RCRA Renewal Permit, effective October 5, 1995, Section IIIB.H.11.b for the M-Area HWMF and Section IIIG.H.11.b for the Met Lab HWMF.

Chase, J.

1998-10-30T23:59:59.000Z

356

EA-0942: Return of Isotope Capsules to the Waste Encapsulation and Storage Facility, Hanford Site, Richland, Washington  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of the proposal for the return of all leased cesium-137 and strontium-90 leased capsules to the U.S. Department of Energy's Waste Encapsulation and...

357

Increasing subsurface water storage in discontinuous permafrost areas of the Lena River basin, Eurasia, detected from GRACE  

E-Print Network [OSTI]

or no change in ground water storage. Therefore, we con-ground- water table from 2002 through 2010 would be required to account for the subsurface water storageground water level over the same period repre- sents 1.9 cm of potential additional soil water storage

Velicogna, I.; Tong, J.; Zhang, T.; Kimball, J. S

2012-01-01T23:59:59.000Z

358

Closure Report for the 92-Acre Area and Corrective Action Unit 111: Area 5 WMD Retired Mixed Waste Pits, Nevada National Security Site, Nevada  

SciTech Connect (OSTI)

This Closure Report (CR) presents information supporting closure of the 92-Acre Area, which includes Corrective Action Unit (CAU) 111, 'Area 5 WMD Retired Mixed Waste Pits.' This CR provides documentation supporting the completed corrective actions and confirmation that the closure objectives were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) (FFACO, 1996 [as amended March 2010]). Closure activities began in January 2011 and were completed in January 2012. Closure activities were conducted according to Revision 1 of the Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) for the 92-Acre Area and CAU 111 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2010). The following closure activities were performed: (1) Construct an engineered evapotranspiration cover over the boreholes, trenches, and pits in the 92-Acre Area; (2) Install use restriction (UR) warning signs, concrete monuments, and subsidence survey monuments; and (3) Establish vegetation on the covers. UR documentation is included as Appendix C of this report. The post-closure plan is presented in detail in Revision 1 of the CADD/CAP for the 92-Acre Area and CAU 111, and the requirements are summarized in Section 5.2 of this document. When the next request for modification of Resource Conservation and Recovery Act Permit NEV HW0101 is submitted to the Nevada Division of Environmental Protection (NDEP), the requirements for post-closure monitoring of the 92-Acre Area will be included. NNSA/NSO requests the following: (1) A Notice of Completion from NDEP to NNSA/NSO for closure of CAU 111; and (2) The transfer of CAU 111 from Appendix III to Appendix IV, Closed Corrective Action Units, of the FFACO.

NSTec Environmental Restoration

2012-02-21T23:59:59.000Z

359

Problems and Tasks of TRAINING at Courses for Enhancement of Qualification in the Radioactive Waste Management Area  

SciTech Connect (OSTI)

Requirements to the professional competence of the personnel engaged in the area of the radioactive waste management are increased. Higher school cannot supply the branch with the qualified personnel; therefore special attention should be given to the system of staff retraining and to the increase of their qualification. In that paper the analysis of SIA ''Radon'' experience on the organization and carrying out training at courses of qualification improvement is represented. The main criterion of the analysis is the research of an education efficiency. Also here the basic directions of the training process improving are submitted as well as the requirements that should be considered when forming the teaching staff and trainees groups.

Sobolev, I. A.; Dmitriev, S. A.; Batyukhnova, O. G.; Shcherbatova, T. D.; Ojovan, M. I.; Arustamov, A. E.

2002-02-25T23:59:59.000Z

360

State Waste Discharge Permit application for industrial discharge to land: 200 East Area W-252 streams  

SciTech Connect (OSTI)

This document constitutes the WAC 173-216 State Waste Discharge Permit application for six W-252 liquid effluent streams at the Hanford Site. Appendices B through H correspond to Section B through H in the permit application form. Within each appendix, sections correspond directly to the respective questions on the application form. The appendices include: Product or service information; Plant operational characteristics; Water consumption and waterloss; Wastewater information; Stormwater; Other information; and Site assessment.

Not Available

1993-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste storage area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Composite Analysis for Low-Level Waste Disposal in the 200 Area Plateau of the Hanford Site, Southeast Washington  

SciTech Connect (OSTI)

A composite analysis of low-level radioactive waste disposal and other radioactive sources was recently completed for the Hanford Site in Southeast Washington State. Impacts from source release and environmental transport were estimated for a 1000-year period following Site closure in a multi-step process involving 1) estimation of radiological inventories and release, 2) assessment of contaminant migration through the vadose zone, groundwater, and atmospheric pathways, 3) and estimation of doses. The analysis showed that most of the radionuclide inventory in past-practice liquid discharge sites and pre-1988 solid waste burial grounds on the 200 Area Plateau will be released in the first several hundred years following Hanford Site closure, well before projected releases from active and planned disposals of solid waste. The maximum predicted agricultural dose was less than 6 mrem/y in 2050 and declined thereafter. The maximum doses for the residential, industrial, and recreational scenarios, were 2.2, 0.7, and 0.04 mrem/y, respectively, and also declined after 2050.

Kincaid, Charles T.; Bergeron, Marcel P.; Cole, Charles R.; Freshley, Mark D.; Johnson, Vernon G.; Kaplan, D. I.; Serne, R. Jeffrey; Streile, Gary P.; Strenge, Dennis L.; Thorne, Paul D.; Vail, Lance W.; Whyatt, Greg A.; Wurstner, Signe K.

2000-03-01T23:59:59.000Z

362

RCRA Assessment Plan for Single-Shell Tank Waste Management Area TX-TY  

SciTech Connect (OSTI)

WMA TX-TY contains underground, single-shell tanks that were used to store liquid waste that contained chemicals and radionuclides. Most of the liquid has been removed, and the remaining waste is regulated under the RCRA as modified in 40 CFR Part 265, Subpart F and Washington States Hazardous Waste Management Act . WMA TX-TY was placed in assessment monitoring in 1993 because of elevated specific conductance. A groundwater quality assessment plan was written in 1993 describing the monitoring activities to be used in deciding whether WMA TX-TY had affected groundwater. That plan was updated in 2001 for continued RCRA groundwater quality assessment as required by 40 CFR 265.93 (d)(7). This document further updates the assessment plan for WMA TX-TY by including (1) information obtained from ten new wells installed at the WMA after 1999 and (2) information from routine quarterly groundwater monitoring during the last five years. Also, this plan describes activities for continuing the groundwater assessment at WMA TX TY.

Horton, Duane G.

2007-03-26T23:59:59.000Z

363

Waste Analysis Plan for the Waste Receiving and Processing (WRAP) Facility  

SciTech Connect (OSTI)

The purpose of this waste analysis plan (WAP) is to document the waste acceptance process, sampling methodologies, analytical techniques, and overall processes that are undertaken for dangerous, mixed, and radioactive waste accepted for confirmation, nondestructive examination (NDE) and nondestructive assay (NDA), repackaging, certification, and/or storage at the Waste Receiving and Processing Facility (WRAP). Mixed and/or radioactive waste is treated at WRAP. WRAP is located in the 200 West Area of the Hanford Facility, Richland, Washington. Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge.

TRINER, G.C.

1999-11-01T23:59:59.000Z

364

Evaluation of Final Radiological Conditions at Areas of the Niagara Falls Storage Site Remediated under the Formerly Utilized Sites Remedial Action Program -12184  

SciTech Connect (OSTI)

The U. S. Department of Energy (DOE) methods and protocols allow evaluation of remediation and final site conditions to determine if remediated sites remain protective. Two case studies are presented that involve the Niagara Falls Storage Site (NFSS) and associated vicinity properties (VPs), which are being remediated under the Formerly Utilized Sites Remedial Action Program (FUSRAP). These properties are a part of the former Lake Ontario Ordnance Works (LOOW). In response to stakeholders concerns about whether certain remediated NFSS VPs were putting them at risk, DOE met with stakeholders and agreed to evaluate protectiveness. Documentation in the DOE records collection adequately described assessed and final radiological conditions at the completed VPs. All FUSRAP wastes at the completed sites were cleaned up to meet DOE guidelines for unrestricted use. DOE compiled the results of the investigation in a report that was released for public comment. In conducting the review of site conditions, DOE found that stakeholders were also concerned about waste from the Separations Process Research Unit (SPRU) at the Knolls Atomic Power Laboratory (KAPL) that was handled at LOOW. DOE agreed to determine if SPRU waste remained at that needed to be remediated. DOE reviewed records of waste characterization, historical handling locations and methods, and assessment and remediation data. DOE concluded that the SPRU waste was remediated on the LOOW to levels that pose no unacceptable risk and allow unrestricted use and unlimited exposure. This work confirms the following points as tenets of an effective long-term surveillance and maintenance (LTS&M) program: ? Stakeholder interaction must be open and transparent, and DOE must respond promptly to stakeholder concerns. ? DOE, as the long-term custodian, must collect and preserve site records in order to demonstrate that remediated sites pose no unacceptable risk. ? DOE must continue to maintain constructive relationships with the U.S. Army Corps of Engineers and state and federal regulators.

Clayton, Christopher [U.S Department of Energy Office of Legacy Management, Washington, DC; Kothari, Vijendra [U.S Department of Energy Office of Legacy Management, Morgantown, West Virginia; Starr, Ken [U.S Department of Energy Office of Legacy Management, Westminster, Colorado; Widdop, Michael; Gillespie, Joey [SM Stoller Corporation, Grand Junction, Colorado

2012-02-26T23:59:59.000Z

365

H-Area Hazardous Waste Management Facility groundwater monitoring report, Third and fourth quarters 1995: Volume 1  

SciTech Connect (OSTI)

Groundwater at the H-Area Hazardous Waste Management Facility (HWMF) is monitored in compliance with applicable regulations. Monitoring results are compared to the South Carolina Department of Health and Environmental control (SCDHEC) Groundwater Protection Standard (GWPS). Historically as well as currently, nitrate-nitrite as nitrogen, nonvolatile beta, and tritium have been among the primary constituents to exceed standards. Other radionuclides and hazardous constituents also exceeded the GWPS in the second half of 1995. Elevated constituents were found primarily in the water table (Aquifer Zone IIB{sub 2}), however, constitutents exceeding standards also occurred in several different aquifer zones monitoring wells. Water-level maps indicate that the groundwater flow rates and directions at the H-Area HWMF have remained relatively constant since the basins ceased to be active in 1988.

NONE

1996-03-01T23:59:59.000Z

366

Carlsbad Area Office unveils full-scale model of new WIPP waste transportation cask  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation Sites Proposed RouteNanotube TemplatedStorageCarlos Hernandez

367

Tank Waste Remediation System fiscal year 1996 multi-year program plan WBS 1.1. Revision 1, Appendix A  

SciTech Connect (OSTI)

This document is a compilation of data relating to the Tank Waste Remediation System Multi-Year Program. Topics discussed include: management systems; waste volume, transfer and evaporation management; transition of 200 East and West areas; ferricyanide, volatile organic vapor, and flammable gas management; waste characterization; retrieval from SSTs and DSTs; heat management; interim storage; low-level and high-level radioactive waste management; and tank farm closure.

NONE

1995-09-01T23:59:59.000Z

368

Waste Area Group 10, Operable Unit 10-08, Annual Monitoring Status Report for Fiscal Year 2009  

SciTech Connect (OSTI)

This report documents the status of Fiscal Year 2009 groundwater monitoring performed in Waste Area Group 10 at the U.S. Department of Energy Idaho National Laboratory Site, as identified in the Groundwater Monitoring and Field Sampling Plan for Operable Unit 10-08. Twelve of the fourteen required wells were sampled, and all ten required intervals from the Westbay wells were sampled. Two wells were not sampled because they were in the process of being converted into multiple-sample-interval Westbay wells by the U.S. Geological Survey. Groundwater samples were analyzed for volatile organic compounds identified on the Contract Laboratory Program target analyte list as well as metals (filtered), anions, and radionuclides (i.e., I-129, tritium, Tc-99, gross alpha, gross beta, and Sr-90). No contaminant exceeded maximum contaminant levels in wells along the southern boundary of the Idaho National Laboratory Site or in guard wells. Iron was above its secondary maximum contaminant level of 300 ug/L in one well. The cause of the elevated iron concentration is uncertain. Lead was detected just below its action level. However, the zinc concentration was also elevated in these wells, and the source of the lead is probably galvanized riser pipe in the wells. Once the galvanized pipe is replaced, both lead and zinc concentrations should decline, as has been observed at other Waste Area Group 10 wells.

Howard Forsythe

2010-02-04T23:59:59.000Z

369

Special Analysis for the Disposal of the Idaho National Laboratory Unirradiated Light Water Breeder Reactor Rods and Pellets Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada  

SciTech Connect (OSTI)

The purpose of this special analysis (SA) is to determine if the Idaho National Laboratory (INL) Unirradiated Light Water Breeder Reactor (LWBR) Rods and Pellets waste stream (INEL103597TR2, Revision 2) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS). The INL Unirradiated LWBR Rods and Pellets waste stream consists of 24 containers with unirradiated fabricated rods and pellets composed of uranium oxide (UO2) and thorium oxide (ThO2) fuel in zirconium cladding. The INL Unirradiated LWBR Rods and Pellets waste stream requires an SA because the 229Th, 230Th, 232U, 233U, and 234U activity concentrations exceed the Nevada National Security Site (NNSS) Waste Acceptance Criteria (WAC) Action Levels.

Shott, Gregory [NSTec

2014-08-31T23:59:59.000Z

370

Hazardous Waste Management (Oklahoma)  

Broader source: Energy.gov [DOE]

This article states regulations for the disposal of hazardous waste. It also provides information about permit requirements for the transport, treatment and storage of such waste. It also mentions...

371

Solid Waste Permits (Louisiana)  

Broader source: Energy.gov [DOE]

The Louisiana Department of Environmental Quality administers the rules and regulations governing the storage, collection, processing, recovery, and reuse of solid waste protect the air,...

372

Characterization of Direct Push Vadose Zone Sediments from the T and TY Waste Management Areas  

SciTech Connect (OSTI)

This report contains all the geochemical and selected physical characterization data collected on vadose zone sediment recovered from 5 direct push characterization holes emplaced to investigate vadose zone contamination associated with leaks from tanks 241-TY-105 (UPR-200-W-152) and 241-TY-106 (UPR-200-W-153). Tank 241-TY-105 is estimated to have leaked 35,000 gal of tributyl phosphate (TBP) waste from the uranium recovery process to the vadose zone in 1960. Tank 241-TY-106 is estimated to have leaked 20,000 gal of TBP-uranium recovery waste to the vadose zone in 1959. Although several drywells in the vicinity of tank 241-TY-106 contain measurable quantities of cesium-137 and/or cobalt-60, their relatively low concentrations indicate that the contaminant inventory in the vadose zone around tank 241-TY-106 is quite small. Additionally, this report contains all the geochemical and selected physical characterization data collected on vadose zone sediment recovered from 7 direct push characterization holes emplaced to investigate vadose zone contamination associated with an overfill event and leak from tank 241-T-101.

Brown, Christopher F.; Valenta, Michelle M.; Serne, R. Jeffrey; Bjornstad, Bruce N.; Lanigan, David C.; Iovin, Cristian; Clayton, Ray E.; Geiszler, Keith N.; Clayton, Eric T.; Kutnyakov, Igor V.; Baum, Steven R.; Lindberg, Michael J.; Orr, Robert D.

2007-06-08T23:59:59.000Z

373

Radionuclide Concentrations in soils an Vegetation at Low-Level Radioactive Waste Disposal Area G During 2004  

SciTech Connect (OSTI)

Soil samples were collected at 15 locations and unwashed overstory and understory vegetation samples were collected at nine locations within and around the perimeter of Area G, the primary disposal facility for low-level radioactive solid waste at Los Alamos National Laboratory (LANL). These samples were analyzed for {sup 3}H, {sup 238}Pu, {sup 239,240}Pu, {sup 90}Sr, {sup 241}Am, {sup 137}Cs, {sup 234}U, {sup 235}U, and {sup 238}U. Soil samples collected at Area G contained detectable concentrations of 3H (27%), {sup 239,240}Pu (60%), {sup 238}Pu (40%), and {sup 241}Am (47%) above regional statistical reference levels (RSRLs). In contrast, the levels of {sup 137}Cs, {sup 90}Sr, and U in all of the soil samples at Area G were either nondetectable or within RSRLs. The highest levels of {sup 3}H in soils were detected in the southwestern portion of Area G near the {sup 3}H shafts, whereas the highest concentrations of the Pu isotopes were detected in the northern and northeastern portions. All concentrations of {sup 3}H and Pu in soils, however, were far below LANL screening action levels. As for vegetation, most radionuclides in/on plants were either nondetectable or within RSRLs. The exceptions were {sup 3}H in overstory and some understory vegetation, particularly in the southwestern portion of Area G, which correlated very well with the soils data in that area. Also, there was some foliar contamination from {sup 241}Am and Pu isotopes in/on a few plant samples--the highest concentrations occurring in the northern section of Area G.

P.R. Fresquez; E.A. Lopez

2004-11-01T23:59:59.000Z

374

Native Plant Uptake Model for Radioactive Waste Disposal Areas at the Nevada Test Site  

SciTech Connect (OSTI)

This report defines and defends the basic framework, methodology, and associated input parameters for modeling plant uptake of radionuclides for use in Performance Assessment (PA) activities of Radioactive Waste Management Sites (RWMS) at the Nevada Test Site (NTS). PAs are used to help determine whether waste disposal configurations meet applicable regulatory standards for the protection of human health, the environment, or both. Plants adapted to the arid climate of the NTS are able to rapidly capture infiltrating moisture. In addition to capturing soil moisture, plant roots absorb nutrients, minerals, and heavy metals, transporting them within the plant to the above-ground biomass. In this fashion, plant uptake affects the movement of radionuclides. The plant uptake model presented reflects rooting characteristics important to plant uptake, biomass turnover rates, and the ability of plants to uptake radionuclides from the soil. Parameters are provided for modeling plant uptake and estimating surface contaminant flux due to plant uptake under both current and potential future climate conditions with increased effective soil moisture. The term ''effective moisture'' is used throughout this report to indicate the soil moisture that is available to plants and is intended to be inclusive of all the variables that control soil moisture at a site (e.g., precipitation, temperature, soil texture, and soil chemistry). Effective moisture is a concept used to simplify a number of complex, interrelated soil processes for which there are too little data to model actual plant available moisture. The PA simulates both the flux of radionuclides across the land surface and the potential dose to humans from that flux. Surface flux is modeled here as the amount of soil contamination that is transferred from the soil by roots and incorporated into aboveground biomass. Movement of contaminants to the surface is the only transport mechanism evaluated with the model presented here. Parameters necessary for estimating surface contaminant flux due to native plants expected to inhabit the NTS RWMSS are developed in this report. The model is specific to the plant communities found at the NTS and is designed for both short-term (<1,000 years) and long-term (>1,000 years) modeling efforts. While the model has been crafted for general applicability to any NTS PA, the key radionuclides considered are limited to the transuranic (TRU) wastes disposed of at the NTS.

BROWN,THERESA J.; WIRTH,SHARON

1999-09-01T23:59:59.000Z

375

FY2010 ANNUAL REVIEW E-AREA LOW-LEVEL WASTE FACILITY PERFORMANCE ASSESSMENT AND COMPOSITE ANALYSIS  

SciTech Connect (OSTI)

The E-Area Low-Level Waste Facility (ELLWF) consists of a number of disposal units described in the Performance Assessment (PA)(WSRC, 2008b) and Composite Analysis (CA)(WSRC, 1997; WSRC, 1999): Low-Activity Waste (LAW) Vault, Intermediate Level (IL) Vault, Trenches (Slit Trenches [STs], Engineered Trenches [ETs], and Component-in-Grout [CIG] Trenches), and Naval Reactor Component Disposal Areas (NRCDAs). This annual review evaluates the adequacy of the approved 2008 ELLWF PA along with the Special Analyses (SAs) approved since the PA was issued. The review also verifies that the Fiscal Year (FY) 2010 low-level waste (LLW) disposal operations were conducted within the bounds of the PA/SA baseline, the Savannah River Site (SRS) CA, and the Department of Energy (DOE) Disposal Authorization Statement (DAS). Important factors considered in this review include waste receipts, results from monitoring and research and development (R&D) programs, and the adequacy of controls derived from the PA/SA baseline. Sections 1.0 and 2.0 of this review are a summary of the adequacy of the PA/SA and CA, respectively. An evaluation of the FY2010 waste receipts and the resultant impact on the ELLWF is summarized in Section 3.1. The results of the monitoring program, R&D program, and other relevant factors are found in Section 3.2, 3.3 and 3.4, respectively. Section 4.0 contains the CA annual determination similarly organized. SRS low-level waste management is regulated under DOE Order 435.1 (DOE, 1999a) and is authorized under a DAS as a federal permit. The original DAS was issued by the DOE-Headquarters (DOE-HQ) on September 28, 1999 (DOE, 1999b) for the operation of the ELLWF and the Saltstone Disposal Facility (SDF). The 1999 DAS remains in effect for the regulation of the SDF. Those portions of that DAS applicable to the ELLWF were superseded by revision 1 of the DAS on July 15, 2008 (DOE, 2008b). The 2008 PA and DAS were officially implemented by the facility on October 31, 2008 and are the authorization documents for this FY2010 Annual Review. Department of Energy Headquarters approval of the 2008 DAS was subject to numerous conditions specified in the document. Two of those conditions are to update the ELLWF closure plan and monitoring plan to align with the conceptual model analyzed in the PA. Both of these conditions were met with the issuance of the PA Monitoring Plan (Millings, 2009a) and the Closure Plan (Phifer et al, 2009a). The PA Monitoring Plan was approved by DOE on July 22, 2009 and the Closure Plan was approved by DOE on May 21, 2009. Both will be updated as needed to remain consistent with the PA. The DAS also specifies that the maintenance plan include activities to resolve each of the secondary issues identified in the DOEHQ review of the 2008 PA that were not completely addressed either with supplemental material provided to the review team or in final revisions to the PA. These outstanding issues were originally documented in the 2008 update of the PA/CA Maintenance Plan (WSRC, 2008a) and in subsequent PA/CA Maintenance Plans (most recently SRNS, 2010a) as required and are actively being worked.

Butcher, T.; Swingle, R.; Crapse, K.; Millings, M.; Sink, D.

2011-01-01T23:59:59.000Z

376

High level waste characterization in support of low level waste certification. I. HLW supernate radionuclide characterization  

SciTech Connect (OSTI)

High Level Waste Programs has radioactive waste storage, treatment and processing facilities that are located in the F and H Areas at the Savannah River Site. These facilities include the Effluent Treatment Facility (ETF), F and H Area Tank Farms, Extended Sludge Processing (ESP), and In-Tank Precipitation (ITP). Job wastes are generated from operation, maintenance, and construction activities inside radiological areas. These items may have been contaminated with radioactive supernate, salt, and sludge material. Most of these wastes will be disposed of in the E-area Vaults. Therefore, an isotopic and hazardous characterization must be performed. The characterization of HLW supernate radionuclides is discussed in Chapter I. The characterization for salt and sludge phases, which can also contaminate LLW, will be included in other Chapters.

Jamison, M.E.; d`Entremont, P.D.; Clemmons, J.S.; Bess, C.E.; Brown, D.F.

1994-07-08T23:59:59.000Z

377

Idaho National Engineering Laboratory Waste Area Groups 1-7 and 10 Technology Logic Diagram. Volume 3  

SciTech Connect (OSTI)

The Idaho National Engineering Laboratory (INEL) Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates Environmental Restoration (ER) and Waste Management (WM) problems at the INEL to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to an environmental restoration need. It is essential that follow-on engineering and system studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in this TLD and finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk to meet the site windows of opportunity. The TLD consists of three separate volumes: Volume I includes the purpose and scope of the TLD, a brief history of the INEL Waste Area Groups, and environmental problems they represent. A description of the TLD, definitions of terms, a description of the technology evaluation process, and a summary of each subelement, is presented. Volume II describes the overall layout and development of the TLD in logic diagram format. This section addresses the environmental restoration of contaminated INEL sites. Volume III (this volume) provides the Technology Evaluation Data Sheets (TEDS) for Environmental Restoration and Waste Management (EM) activities that are reference by a TEDS code number in Volume II. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than provided for technologies in Volume II. Data sheets are arranged alphanumerically by the TEDS code number in the upper right corner of each sheet.

O`Brien, M.C.; Meservey, R.H.; Little, M.; Ferguson, J.S.; Gilmore, M.C.

1993-09-01T23:59:59.000Z

378

DC Hazardous Waste Management (District of Columbia)  

Broader source: Energy.gov [DOE]

This regulation regulates the generation, storage, transportation, treatment, and disposal of hazardous waste, and wherever feasible, reduces or eliminates waste at the source. It is the policy of...

379

Geology Data Package for the Single-Shell Tank Waste Management Areas at the Hanford Site  

SciTech Connect (OSTI)

This data package discusses the geology of the single-shell tank (SST) farms and the geologic history of the area. The focus of this report is to provide the most recent geologic information available for the SST farms. This report builds upon previous reports on the tank farm geology and Integrated Disposal Facility geology with information available after those reports were published.

Reidel, Steve P.; Chamness, Mickie A.

2007-01-01T23:59:59.000Z

380

Recharge Data Package for Hanford Single-Shell Tank Waste Management Areas  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory (PNNL) assists CH2M HILL Hanford Group, Inc., in its preparation of the Resource Conservation and Recovery Act (RCRA) Facility Investigation report. One of the PNNL tasks is to use existing information to estimate recharge rates for past and current conditions as well as future scenarios involving cleanup and closure of tank farms. The existing information includes recharge-relevant data collected during activities associated with a host of projects, including those of RCRA, the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), the CH2M HILL Tank Farm Vadose Zone Project, and the PNNL Remediation and Closure Science Project. As new information is published, the report contents can be updated. The objective of this data package was to use published data to provide recharge estimates for the scenarios being considered in the RCRA Facility Investigation. Recharge rates were estimated for areas that remain natural and undisturbed, areas where the vegetation has been disturbed, areas where both the vegetation and the soil have been disturbed, and areas that are engineered (e.g., surface barrier). The recharge estimates supplement the estimates provided by PNNL researchers in 2006 for the Hanford Site using additional field measurements and model analysis using weather data through 2006.

Fayer, Michael J.; Keller, Jason M.

2007-09-24T23:59:59.000Z

Note: This page contains sample records for the topic "waste storage area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Characterization of Vadose Zone Sediments from C Waste Management Area: Investigation of the C-152 Transfer Line Leak  

SciTech Connect (OSTI)

The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in January 2007. The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at Hanford. To meet this goal, CH2M HILL Hanford Group, Inc., tasked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediments from within waste management area (WMA) C. Specifically, this report contains all the geologic, geochemical, and selected physiochemical characterization data compiled on vadose zone sediment recovered from direct-push samples collected around the site of an unplanned release (UPR), UPR-200-E-82, adjacent to the 241-C-152 Diversion Box located in WMA C.

Brown, Christopher F.; Serne, R. Jeffrey; Bjornstad, Bruce N.; Valenta, Michelle M.; Lanigan, David C.; Vickerman, Tanya S.; Clayton, Ray E.; Geiszler, Keith N.; Iovin, Cristian; Clayton, Eric T.; Kutnyakov, Igor V.; Baum, Steven R.; Lindberg, Michael J.; Orr, Robert D.

2008-09-11T23:59:59.000Z

382

M-area hazardous waste management facility groundwater monitoring and corrective-action report, First quarter 1995, Volume 1  

SciTech Connect (OSTI)

This report, in three volumes, describes the ground water monitoring and c corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) at the Savannah River Site (SRS) during the fourth quarter 1994 and first quarter 1995. Concise description of the program and considerable data documenting the monitoring and remedial activities are included in the document. This is Volume 1 covering the following topics: sampling and results; hydrogeologic assessment; water quality assessment; effectiveness of the corrective-action program; corrective-action system operation and performance; monitoring and corrective-action program assessment; proposed monitoring and corrective-action program modifications. Also included are the following appendicies: A-standards; B-flagging criteria; C-figures; D-monitoring results tables; E-data quality/usability assessment.

NONE

1995-05-01T23:59:59.000Z

383

Alpha low-level stored waste systems design study  

SciTech Connect (OSTI)

The Stored Waste System Design Study (SWSDS), commissioned by the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examines relative life-cycle costs associated with three system concepts for processing the alpha low-level waste (alpha-LLW) stored at the Radioactive Waste Management Complex`s Transuranic Storage Area at the INEL. The three system concepts are incineration/melting; thermal treatment/solidification; and sort, treat, and repackage. The SWSDS identifies system functional and operational requirements and assesses implementability; effectiveness; cost; and demonstration, testing, and evaluation (DT&E) requirements for each of the three concepts.

Feizollahi, F.; Teheranian, B. [Morrison Knudson Corp., San Francisco, CA (United States). Environmental Services Div.; Quapp, W.J. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

1992-08-01T23:59:59.000Z

384

Alpha low-level stored waste systems design study  

SciTech Connect (OSTI)

The Stored Waste System Design Study (SWSDS), commissioned by the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examines relative life-cycle costs associated with three system concepts for processing the alpha low-level waste (alpha-LLW) stored at the Radioactive Waste Management Complex's Transuranic Storage Area at the INEL. The three system concepts are incineration/melting; thermal treatment/solidification; and sort, treat, and repackage. The SWSDS identifies system functional and operational requirements and assesses implementability; effectiveness; cost; and demonstration, testing, and evaluation (DT E) requirements for each of the three concepts.

Feizollahi, F.; Teheranian, B. (Morrison Knudson Corp., San Francisco, CA (United States). Environmental Services Div.); Quapp, W.J. (EG and G Idaho, Inc., Idaho Falls, ID (United States))

1992-08-01T23:59:59.000Z

385

Basic Data Report -- Defense Waste Processing Facility Sludge Plant, Savannah River Plant 200-S Area  

SciTech Connect (OSTI)

This Basic Data Report for the Defense Waste Processing Facility (DWPF)--Sludge Plant was prepared to supplement the Technical Data Summary. Jointly, the two reports were intended to form the basis for the design and construction of the DWPF. To the extent that conflicting information may appear, the Basic Data Report takes precedence over the Technical Data Summary. It describes project objectives and design requirements. Pertinent data on the geology, hydrology, and climate of the site are included. Functions and requirements of the major structures are described to provide guidance in the design of the facilities. Revision 9 of the Basic Data Report was prepared to eliminate inconsistencies between the Technical Data Summary, Basic Data Report and Scopes of Work which were used to prepare the September, 1982 updated CAB. Concurrently, pertinent data (material balance, curie balance, etc.) have also been placed in the Basic Data Report. It is intended that these balances be used as a basis for the continuing design of the DWPF even though minor revisions may be made in these balances in future revisions to the Technical Data Summary.

Amerine, D.B.

1982-09-01T23:59:59.000Z

386

Characterization of 618-11 solid waste burial ground, disposed waste, and description of the waste generating facilities  

SciTech Connect (OSTI)

The 618-11 (Wye or 318-11) burial ground received transuranic (TRTJ) and mixed fission solid waste from March 9, 1962, through October 2, 1962. It was then closed for 11 months so additional burial facilities could be added. The burial ground was reopened on September 16, 1963, and continued operating until it was closed permanently on December 31, 1967. The burial ground received wastes from all of the 300 Area radioactive material handling facilities. The purpose of this document is to characterize the 618-11 solid waste burial ground by describing the site, burial practices, the disposed wastes, and the waste generating facilities. This document provides information showing that kilogram quantities of plutonium were disposed to the drum storage units and caissons, making them transuranic (TRU). Also, kilogram quantities of plutonium and other TRU wastes were disposed to the three trenches, which were previously thought to contain non-TRU wastes. The site burial facilities (trenches, caissons, and drum storage units) should be classified as TRU and the site plutonium inventory maintained at five kilograms. Other fissile wastes were also disposed to the site. Additionally, thousands of curies of mixed fission products were also disposed to the trenches, caissons, and drum storage units. Most of the fission products have decayed over several half-lives, and are at more tolerable levels. Of greater concern, because of their release potential, are TRU radionuclides, Pu-238, Pu-240, and Np-237. TRU radionuclides also included slightly enriched 0.95 and 1.25% U-231 from N-Reactor fuel, which add to the fissile content. The 618-11 burial ground is located approximately 100 meters due west of Washington Nuclear Plant No. 2. The burial ground consists of three trenches, approximately 900 feet long, 25 feet deep, and 50 feet wide, running east-west. The trenches constitute 75% of the site area. There are 50 drum storage units (five 55-gallon steel drums welded together) buried in three rows in the northeast comer. In addition, five eight-foot diameter caissons are located at the west end of the center row of the drum storage units. Initially, wastes disposed to the caissons and drum storage units were from the 325 and 327 building hot cells. Later, a small amount of remote-handled (RH) waste from the 309 building Plutonium Recycle Test Reactor (PRTR) cells, and the newly built 324 building hot cells, was disposed at the site.

Hladek, K.L.

1997-10-07T23:59:59.000Z

387

Waste Treatment Plant - 12508  

SciTech Connect (OSTI)

The Waste Treatment Plant (WTP) will immobilize millions of gallons of Hanford's tank waste into solid glass using a proven technology called vitrification. The vitrification process will turn the waste into a stable glass form that is safe for long-term storage. Our discussion of the WTP will include a description of the ongoing design and construction of this large, complex, first-of-a-kind project. The concept for the operation of the WTP is to separate high-level and low-activity waste fractions, and immobilize those fractions in glass using vitrification. The WTP includes four major nuclear facilities and various support facilities. Waste from the Tank Farms is first pumped to the Pretreatment Facility at the WTP through an underground pipe-in-pipe system. When construction is complete, the Pretreatment Facility will be 12 stories high, 540 feet long and 215 feet wide, making it the largest of the four major nuclear facilities that compose the WTP. The total size of this facility will be more than 490,000 square feet. More than 8.2 million craft hours are required to construct this facility. Currently, the Pretreatment Facility is 51 percent complete. At the Pretreatment Facility the waste is pumped to the interior waste feed receipt vessels. Each of these four vessels is 55-feet tall and has a 375,000 gallon capacity, which makes them the largest vessels inside the Pretreatment Facility. These vessels contain a series of internal pulse-jet mixers to keep incoming waste properly mixed. The vessels are inside the black-cell areas, completely enclosed behind thick steel-laced, high strength concrete walls. The black cells are designed to be maintenance free with no moving parts. Once hot operations commence the black-cell area will be inaccessible. Surrounded by black cells, is the 'hot cell canyon'. The hot cell contains all the moving and replaceable components to remove solids and extract liquids. In this area, there is ultrafiltration equipment, cesium-ion exchange columns, evaporator boilers and recirculation pumps, and various mechanical process pumps for transferring process fluids. During the first phase of pretreatment, the waste will be concentrated using an evaporation process. Solids will be filtered out, and the remaining soluble, highly radioactive isotopes will be removed using an ion-exchange process. The high-level solids will be sent to the High-Level Waste (HLW) Vitrification Facility, and the low activity liquids will be sent to the Low-Activity Waste (LAW) Vitrification Facility for further processing. The high-level waste will be transferred via underground pipes to the HLW Facility from the Pretreatment Facility. The waste first arrives at the wet cell, which rests inside a black-cell area. The pretreated waste is transferred through shielded pipes into a series of melter preparation and feed vessels before reaching the melters. Liquids from various facility processes also return to the wet cell for interim storage before recycling back to the Pretreatment Facility. (authors)

Harp, Benton; Olds, Erik [US DOE (United States)

2012-07-01T23:59:59.000Z

388

Guidelines for mixed waste minimization  

SciTech Connect (OSTI)

Currently, there is no commercial mixed waste disposal available in the United States. Storage and treatment for commercial mixed waste is limited. Host States and compacts region officials are encouraging their mixed waste generators to minimize their mixed wastes because of management limitations. This document provides a guide to mixed waste minimization.

Owens, C.

1992-02-01T23:59:59.000Z

389

Upgrading the Radioactive Waste Management Infrastructure in Azerbaijan  

SciTech Connect (OSTI)

Radionuclide uses in Azerbaijan are limited to peaceful applications in the industry, medicine, agriculture and research. The Baku Radioactive Waste Site (BRWS) 'IZOTOP' is the State agency for radioactive waste management and radioactive materials transport. The radioactive waste processing, storage and disposal facility is operated by IZOTOP since 1963 being significantly upgraded from 1998 to be brought into line with international requirements. The BRWS 'IZOTOP' is currently equipped with state-of-art devices and equipment contributing to the upgrade the radioactive waste management infrastructure in Azerbaijan in line with current internationally accepted practices. The IAEA supports Azerbaijan specialists in preparing syllabus and methodological materials for the Training Centre that is currently being organized on the base of the Azerbaijan BRWS 'IZOTOPE' for education of specialists in the area of safety management of radioactive waste: collection, sorting, processing, conditioning, storage and transportation. (authors)

Huseynov, A. [Baku Radioactive Waste Site IZOTOP, Baku (Azerbaijan); Batyukhnova, O. [State Unitary Enterprise Scientific and Industrial Association Radon, Moscow (Russian Federation); Ojovan, M. [Sheffield Univ., Immobilisation Science Lab. (United Kingdom); Rowat, J. [International Atomic Energy Agency, Dept. of Nuclear Safety and Security, Vienna (Austria)

2007-07-01T23:59:59.000Z

390

Integrated Closure and Monitoring Plan for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site  

SciTech Connect (OSTI)

This document is an integrated plan for closing and monitoring two low-level radioactive waste disposal sites at the Nevada Test Site.

Bechtel Nevada

2005-06-01T23:59:59.000Z

391

Design report on the test system used to assess treatment of trench water from Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

New liquid waste streams will be generated as a consequence of closure activities at Waste Area Grouping (WAG) 6 at Oak Ridge National Laboratory (ORNL). It is proposed that these waste streams be treated for removal of contaminants by adding them to the ORNL wastewater treatment facilities. Previous bench-scale treatability studies indicate that ORNL treatment operations will adequately remove the contaminants, although additional study is required to characterize the secondary waste materials produced as a result of the treatment. A larger scale treatment system was constructed to produce secondary wastes in the quantities necessary for characterization and US Environmental protection Agency toxicity characteristic leaching procedure (TCLP) testing. The test system is designed to simulate the operation of the ORNL process waste treatment facilities and to treat a mixture of ORNL process wastewater and WAG 6 wastewater at a combined flow rate of 0.5 L/min. The system is designed to produce the necessary quantities of waste sludges and spent carbon for characterization studies and TCLP testing.

Kent, T.E.; Taylor, P.A.

1992-09-01T23:59:59.000Z

392

Implementing waste minimization at an active plutonium processing facility: Successes and progress at technical area (TA) -55 of the Los Alamos National Laboratory  

SciTech Connect (OSTI)

The Los Alamos National Laboratory has ongoing national security missions that necessitate increased plutonium processing. The bulk of this activity occurs at Technical Area -55 (TA-55), the nations only operable plutonium facility. TA-55 has developed and demonstrated a number of technologies that significantly minimize waste generation in plutonium processing (supercritical CO{sub 2}, Mg(OH){sub 2} precipitation, supercritical H{sub 2}O oxidation, WAND), disposition of excess fissile materials (hydride-dehydride, electrolytic decontamination), disposition of historical waste inventories (salt distillation), and Decontamination & Decommissioning (D&D) of closed nuclear facilities (electrolytic decontamination). Furthermore, TA-55 is in the process of developing additional waste minimization technologies (molten salt oxidation, nitric acid recycle, americium extraction) that will significantly reduce ongoing waste generation rates and allow volume reduction of existing waste streams. Cost savings from reduction in waste volumes to be managed and disposed far exceed development and deployment costs in every case. Waste minimization is also important because it reduces occupational exposure to ionizing radiation, risks of transportation accidents, and transfer of burdens from current nuclear operations to future generations.

Balkey, J.J.; Robinson, M.A.; Boak, J.

1997-12-01T23:59:59.000Z

393

Idaho Cold War Waste Removal Advancing as Work on Eighth Area Begins  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area.Portaldefault Sign In About | Careers

394

Plan for integrated testing for NNWSI [Nevada Nuclear Waste Storage Investigations] non EQ3/6 data base portion  

SciTech Connect (OSTI)

The purposes of the Integrated Testing Task are to develop laboratory data on thermodynamic properties for actinide and fission product elements for use in the EQ3/6 geochemical modelling code; to determine the transport properties of radionuclides in the near-field environment; and develop and validate a model to describe the rate of release of radionuclides from the near-field environment. Activities to achieve the firs item have been described in the Scientific Investigation Plan for EQ3/6, where quality assurance levels were assigned to the acitivities. This Scientific Investigation Plan describes activities to achieve the second and third purposes. The information gathered in these activities will be used to assess compliance with the performance objective for the Engineered Barrier System (EBS) to control the rate of release of radionuclides if the repository license application includes part of the host rock; to provide a source term for release of radionuclides from the waste package near-field environment to the system performance assessment task for use in showing compliance with the Environmental Protection Agency requirements; and to provide a source term for release of radionculides from the waste package near-field environment to the system performance assessment task for use in doing calculations of cumulative releases of radionuclides from the repository over 100,000 years as required by the site evaluation process. 5 refs.

Oversby, V.M.

1987-05-29T23:59:59.000Z

395

Sodium-Bearing Waste Treatment Alternatives Implementation Study  

SciTech Connect (OSTI)

The purpose of this document is to discuss issues related to the implementation of each of the five down-selected INEEL/INTEC radioactive liquid waste (sodium-bearing waste - SBW) treatment alternatives and summarize information in three main areas of concern: process/technical, environmental permitting, and schedule. Major implementation options for each treatment alternative are also identified and briefly discussed. This report may touch upon, but purposely does not address in detail, issues that are programmatic in nature. Examples of these include how the SBW will be classified with respect to the Nuclear Waste Policy Act (NWPA), status of Waste Isolation Pilot Plant (WIPP) permits and waste storage availability, available funding for implementation, stakeholder issues, and State of Idaho Settlement Agreement milestones. It is assumed in this report that the SBW would be classified as a transuranic (TRU) waste suitable for disposal at WIPP, located in New Mexico, after appropriate treatment to meet transportation requirements and waste acceptance criteria (WAC).

Charles M. Barnes; James B. Bosley; Clifford W. Olsen

2004-07-01T23:59:59.000Z

396

Hydrogeochemical studies of the Rustler Formation and related rocks in the Waste Isolation Pilot Plant Area, Southeastern New Mexico  

SciTech Connect (OSTI)

Chemical, mineralogical, isotopic, and hydrological studies of the Culebra dolomite member of the Rustler Formation and related rocks are used to delineate hydrochemical facies and form the basis for a conceptual model for post-Pleistocene groundwater flow and chemical evolution. Modern flow within the Culebra in the Waste Isolation Pilot Plant (WIPP) area appears to be largely north-to-south; however, these flow directions under confined conditions are not consistent with the salinity distribution in the region surrounding the WIPP Site. Isotopic, mineralogical, and hydrological data suggest that vertical recharge to the Culebra in the WIPP area and to the immediate east and south has not occurred for several thousand years. Eastward increasing {sup 234}U/{sup 238}U activity ratios suggest recharge from a near-surface Pleistocene infiltration zone flowing from the west-northwest and imply a change in flow direction in the last 30,000 to 12,000 years. 49 refs., 34 figs., 4 tabs.

Siegel, M.D.; Lambert, S.J.; Robinson, K.L. (eds.)

1991-08-01T23:59:59.000Z

397

Screening of contaminants in Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program  

SciTech Connect (OSTI)

Waste Area Grouping 2 (WAG 2) of the Oak Ridge National Laboratory (ORNL) is located in the White Oak Creek Watershed and is composed of White Oak Creek Embayment, White Oak Lake and associated floodplain, and portions of White Oak Creek (WOC) and Melton Branch downstream of ORNL facilities. Contaminants leaving other ORNL WAGs in the WOC watershed pass through WAG 2 before entering the Clinch River. Health and ecological risk screening analyses were conducted on contaminants in WAG 2 to determine which contaminants were of concern and would require immediate consideration for remedial action and which contaminants could be assigned a low priority or further study. For screening purposes, WAG 2 was divided into four geographic reaches: Reach 1, a portion of WOC; Reach 2, Melton Branch; Reach 3, White Oak Lake and the floodplain area to the weirs on WOC and Melton Branch; and Reach 4, the White Oak Creek Embayment, for which an independent screening analysis has been completed. Screening analyses were conducted using data bases compiled from existing data on carcinogenic and noncarcinogenic contaminants, which included organics, inorganics, and radionuclides. Contaminants for which at least one ample had a concentration above the level of detection were placed in a detectable contaminants data base. Those contaminants for which all samples were below the level of detection were placed in a nondetectable contaminants data base.

Blaylock, B.G.; Frank, M.L.; Hoffman, F.O.; Hook, L.A.; Suter, G.W.; Watts, J.A.

1992-07-01T23:59:59.000Z

398

Organic Tank Safety Project: development of a method to measure the equilibrium water content of Hanford organic tank wastes and demonstration of method on actual waste  

SciTech Connect (OSTI)

Some of Hanford`s underground waste storage tanks contain Organic- bearing high level wastes that are high priority safety issues because of potentially hazardous chemical reactions of organics with inorganic oxidants in these wastes such as nitrates and nitrites. To ensure continued safe storage of these wastes, Westinghouse Hanford Company has placed affected tanks on the Organic Watch List and manages them under special rules. Because water content has been identified as the most efficient agent for preventing a propagating reaction and is an integral part of the criteria developed to ensure continued safe storage of Hanford`s organic-bearing radioactive tank wastes, as part of the Organic Tank Safety Program the Pacific Northwest National Laboratory developed and demonstrated a simple and easily implemented procedure to determine the equilibrium water content of these potentially reactive wastes exposed to the range of water vapor pressures that might be experienced during the wastes` future storage. This work focused on the equilibrium water content and did not investigate the various factors such as @ ventilation, tank surface area, and waste porosity that control the rate that the waste would come into equilibrium, with either the average Hanford water partial pressure 5.5 torr or other possible water partial pressures.

Scheele, R.D.; Bredt, P.R.; Sell, R.L.

1996-09-01T23:59:59.000Z

399

Resource Conservation and Recovery Act (RCRA) Part B permit application for container storage units at the Oak Ridge Y-12 Plant  

SciTech Connect (OSTI)

This document contains Part B of the Permit Application for Container Storage Units at the Oak Ridge Y-12 Plant. Sections cover the following areas: Facility description; Waste characteristics; Process information; Ground water monitoring; Procedures to prevent hazards; Contingency plan; Personnel training; Closure plan, post closure plan, and financial requirements; Recordkeeping; Other federal laws; Organic air emissions; Solid waste management units; and Certification.

Not Available

1994-08-01T23:59:59.000Z

400

A Comparative Review of Hydrologic Issues Involved in Geologic Storage of CO2 and Injection Disposal of Liquid Waste  

E-Print Network [OSTI]

J. , and Jammes, L. , Well integrity in CO 2 environments:nine areas: Injection well integrity Abandoned well problemswastes. A number of well-integrity failures in the 1960s and

Tsang, C.-F.

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste storage area" from the Natio