Sample records for waste solutions garth

  1. Nuclear waste solutions

    DOE Patents [OSTI]

    Walker, Darrel D. (1684 Partridge Dr., Aiken, SC 29801); Ebra, Martha A. (129 Hasty Rd., Aiken, SC 29801)

    1987-01-01T23:59:59.000Z

    High efficiency removal of technetium values from a nuclear waste stream is achieved by addition to the waste stream of a precipitant contributing tetraphenylphosphonium cation, such that a substantial portion of the technetium values are precipitated as an insoluble pertechnetate salt.

  2. Sandia National Laboratories: radioactive waste solution cleanup

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solution cleanup ECIS and UOP (a Honewell Company): CSTs Clean Radioactive Waste in Fukushima and Worldwide On February 14, 2013, in Energy, Materials Science, Nuclear Energy,...

  3. active waste solutions: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solutions Computer Technologies and Information Sciences Websites Summary: -mining or radioactive waste storage. Despite the constraints imposed by geological considerations,...

  4. Scientific Solutions to Nuclear Waste Environmental Challenges

    SciTech Connect (OSTI)

    Johnson, Bradley R.

    2014-01-30T23:59:59.000Z

    The Hidden Cost of Nuclear Weapons The Cold War arms race drove an intense plutonium production program in the U.S. This campaign produced approximately 100 tons of plutonium over 40 years. The epicenter of plutonium production in the United States was the Hanford site, a 586 square mile reservation owned by the Department of Energy and located on the Colombia River in Southeastern Washington. Plutonium synthesis relied on nuclear reactors to convert uranium to plutonium within the reactor fuel rods. After a sufficient amount of conversion occurred, the rods were removed from the reactor and allowed to cool. They were then dissolved in an acid bath and chemically processed to separate and purify plutonium from the rest of the constituents in the used reactor fuel. The acidic waste was then neutralized using sodium hydroxide and the resulting mixture of liquids and precipitates (small insoluble particles) was stored in huge underground waste tanks. The byproducts of the U.S. plutonium production campaign include over 53 million gallons of high-level radioactive waste stored in 177 large underground tanks at Hanford and another 34 million gallons stored at the Savannah River Site in South Carolina. This legacy nuclear waste represents one of the largest environmental clean-up challenges facing the world today. The nuclear waste in the Hanford tanks is a mixture of liquids and precipitates that have settled into sludge. Some of these tanks are now over 60 years old and a small number of them are leaking radioactive waste into the ground and contaminating the environment. The solution to this nuclear waste challenge is to convert the mixture of solids and liquids into a durable material that won't disperse into the environment and create hazards to the biosphere. What makes this difficult is the fact that the radioactive half-lives of some of the radionuclides in the waste are thousands to millions of years long. (The half-life of a radioactive substance is the amount of time it takes for one-half of the material to undergo radioactive decay.) In general, the ideal material would need to be durable for approximately 10 half-lives to allow the activity to decay to negligible levels. However, the potential health effects of each radionuclide vary depending on what type of radiation is emitted, the energy of that emission, and the susceptibility for the human body to accumulate and concentrate that particular element. Consequently, actual standards tend to be based on limiting the dose (energy deposited per unit mass) that is introduced into the environment. The Environmental Protection Agency (EPA) has the responsibility to establish standards for nuclear waste disposal to protect the health and safety of the public. For example, the Energy Policy Act of 1992 directed the EPA to establish radiation protection standards for the Yucca Mountain geologic repository for nuclear wastes. The standards for Yucca Mountain were promulgated in 2008, and limit the dose to 15 millirem per year for the first 10,000 years, and 100 milirem per year between 10,000 years and 1 million years (40 CFR Part 197; http://www.epa.gov/radiation/yucca/2008factsheet.html). So, the challenge is two-fold: (1) develop a material (a waste form) that is capable of immobilizing the waste over geologic time scales, and (2) develop a process to convert the radioactive sludge in the tanks into this durable waste form material. Glass: Hard, durable, inert, and with infinite chemical versatility Molten glass is a powerful solvent liquid, which can be designed to dissolve almost anything. When solidified, it can be one of the most chemically inert substances known to man. Nature's most famous analogue to glass is obsidian, a vitreous product of volcanic activity; formations over 17 million years old have been found. Archaeologists have found man-made glass specimens that are five thousand years old.

  5. Submergible torch for treating waste solutions and method thereof

    DOE Patents [OSTI]

    Mattus, Alfred J. (Oak Ridge, TN)

    1995-01-01T23:59:59.000Z

    A submergible torch for removing nitrate and/or nitrite ions from a waste solution containing nitrate and/or nitrite ions comprises: a torch tip, a fuel delivery mechanism, a fuel flow control mechanism, a catalyst, and a combustion chamber. The submergible torch is ignited to form a flame within the combustion chamber of the submergible torch. The torch is submerged in a waste solution containing nitrate and/or nitrite ions in such a manner that the flame is in contact with the waste solution and the catalyst and is maintained submerged for a period of time sufficient to decompose the nitrate and/or nitrite ions present in the waste solution.

  6. Submergible torch for treating waste solutions and method thereof

    DOE Patents [OSTI]

    Mattus, Alfred J. (Oak Ridge, TN)

    1994-01-01T23:59:59.000Z

    A submergible torch for removing nitrate and/or nitrite ions from a waste solution containing nitrate and/or nitrite ions comprises: a torch tip, a fuel delivery mechanism, a fuel flow control mechanism, a catalyst, and a combustion chamber. The submergible torch is ignited to form a flame within the combustion chamber of the submergible torch. The torch is submerged in a waste solution containing nitrate and/or nitrite ions in such a manner that the flame is in contact with the waste solution and the catalyst and is maintained submerged for a period of time sufficient to decompose the nitrate and/or nitrite ions present in the waste solution.

  7. Submergible torch for treating waste solutions and method thereof

    DOE Patents [OSTI]

    Mattus, A.J.

    1994-12-06T23:59:59.000Z

    A submergible torch is described for removing nitrate and/or nitrite ions from a waste solution containing nitrate and/or nitrite ions comprises: a torch tip, a fuel delivery mechanism, a fuel flow control mechanism, a catalyst, and a combustion chamber. The submergible torch is ignited to form a flame within the combustion chamber of the submergible torch. The torch is submerged in a waste solution containing nitrate and/or nitrite ions in such a manner that the flame is in contact with the waste solution and the catalyst and is maintained submerged for a period of time sufficient to decompose the nitrate and/or nitrite ions present in the waste solution. 2 figures.

  8. Development of iron phosphate ceramic waste form to immobilize radioactive waste solution

    SciTech Connect (OSTI)

    Choi, Jongkwon; Um, Wooyong; Choung, Sungwook

    2014-05-09T23:59:59.000Z

    The objective of this research was to develop an iron phosphate ceramic (IPC) waste form using converter slag obtained as a by-product of the steel industry as a source of iron instead of conventional iron oxide. Both synthetic off-gas scrubber solution containing technetium-99 (or Re as a surrogate) and LiCl-KCl eutectic salt, a final waste solution from pyrochemical processing of spent nuclear fuel, were used as radioactive waste streams. The IPC waste form was characterized for compressive strength, reduction capacity, chemical durability, and contaminant leachability. Compressive strengths of the IPC waste form prepared with different types of waste solutions were 16 MPa and 19 MPa for LiCl-KCl eutectic salt and the off-gas scrubber simulant, respectively, which meet the minimum compressive strength of 3.45 MPa (500 psi) for waste forms to be accepted into the radioactive waste repository. The reduction capacity of converter slag, a main dry ingredient used to prepare the IPC waste form, was 4,136 meq/kg by the Ce(IV) method, which is much higher than those of the conventional Fe oxides used for the IPC waste form and the blast furnace slag materials. Average leachability indexes of Tc, Li, and K for the IPC waste form were higher than 6.0, and the IPC waste form demonstrated stable durability even after 63-day leaching. In addition, the Toxicity Characteristic Leach Procedure measurements of converter slag and the IPC waste form with LiCl-KCl eutectic salt met the universal treatment standard of the leachability limit for metals regulated by the Resource Conservation and Recovery Act. This study confirms the possibility of development of the IPC waste form using converter slag, showing its immobilization capability for radionuclides in both LiCl-KCl eutectic salt and off-gas scrubber solutions with significant cost savings.

  9. Stabilization solutions to hazardous metals laden waste

    SciTech Connect (OSTI)

    Kramer, M. [Ashland Chemical Co., Boonton, NJ (United States)

    1996-12-31T23:59:59.000Z

    This paper is limited to treatment of bottom and fly ash waste resulting from WTE and RTE Cogeneration plants, commonly known as trash burners. The body of the paper defines waste generation and conventional treatment schemes. This paper does not identify a best treatment, however, it does offer a general perspective of the treatments to lead the reader to further investigation. Advantages and disadvantages of the ash treatments is discussed in each treatment section. 29 refs., 1 fig.

  10. Sustainable solutions for solid waste management in Southeast Asian countries

    SciTech Connect (OSTI)

    Uyen Nguyen Ngoc [Institute for Process Engineering (IPE), Graz University of Technology, Inffeldgasse 21a, A8010 Graz (Austria)], E-mail: utemvnn2003@yahoo.com; Schnitzer, Hans [Institute for Process Engineering (IPE), Graz University of Technology, Inffeldgasse 21a, A8010 Graz (Austria)

    2009-06-15T23:59:59.000Z

    Human activities generate waste and the amounts tend to increase as the demand for quality of life increases. Today's rate in the Southeast Asian Nations (ASEANs) is alarming, posing a challenge to governments regarding environmental pollution in the recent years. The expectation is that eventually waste treatment and waste prevention approaches will develop towards sustainable waste management solutions. This expectation is for instance reflected in the term 'zero emission systems'. The concept of zero emissions can be applied successfully with today's technical possibilities in the agro-based processing industry. First, the state-of-the-art of waste management in Southeast Asian countries will be outlined in this paper, followed by waste generation rates, sources, and composition, as well as future trends of waste. Further on, solutions for solid waste management will be reviewed in the discussions of sustainable waste management. The paper emphasizes the concept of waste prevention through utilization of all wastes as process inputs, leading to the possibility of creating an ecosystem in a loop of materials. Also, a case study, focusing on the citrus processing industry, is displayed to illustrate the application of the aggregated material input-output model in a widespread processing industry in ASEAN. The model can be shown as a closed cluster, which permits an identification of opportunities for reducing environmental impacts at the process level in the food processing industry. Throughout the discussion in this paper, the utilization of renewable energy and economic aspects are considered to adapt to environmental and economic issues and the aim of eco-efficiency. Additionally, the opportunities and constraints of waste management will be discussed.

  11. Simple Waste Solutions for Complex Facilities - 12433

    SciTech Connect (OSTI)

    King, Terry I. [Washington Closure Hanford, Richland, Washington 99352 (United States); Stephan, Clifford J. [Lucas Engineering and Management Services, Richland Washington 99352 (United States)

    2012-07-01T23:59:59.000Z

    The buildings in the 300 Area, including several Category 3 nuclear facilities are undergoing deactivation, decommissioning, decontamination and demolition (D4) by Washington Closure Hanford (WCH) as part of the River Corridor Closure Contract (RCCC). The D4 process has generated a wide variety of low-level radioactive and low-level radioactive mixed waste as well as TRU. The Hanford Site-wide Transportation Safety Document (TSD) has been successfully utilized to transport waste streams that otherwise would not be able to be shipped. The TSD accomplished this by establishing a comprehensive set of onsite transportation and packaging performance standards and risk-based standards. The requirements and standards presented are equivalent to DOT and NRC standards (10 CFR 71). (authors)

  12. Malonamides as new extractants for nuclear waste solutions

    SciTech Connect (OSTI)

    Cuillerdier, C.; Musikas, C.; Hoel, P.; Nigond, L.; Vitart, X. (Commissariat a L'Energie Atomique, Fontenay-aux-Roses (France))

    1991-09-01T23:59:59.000Z

    A new class of extractants has been investigated: pentaalkylpropane diamides. Due to their chelating effect on metallic cations, they extract trivalent actinides such as Am{sup 3+} and Cm{sup 3+} from acidic nitrate nuclear waste solutions. These solvents are completely incinerable and do not generate large amounts of waste. A review is provided of their chemical properties, leading to the choice of the proper molecule. The results of a bench-scale experiment performed in a mixer-settler battery are presented.

  13. Byzantinetolerant erasurecoded storage Garth R. Goodson, Jay J. Wylie, Gregory R. Ganger, Michael K. Reiter

    E-Print Network [OSTI]

    Pittsburgh, PA 15213 Abstract This paper describes a decentralized consistency protocol for survivable­99­2­0539­AFRL. Garth Goodson was supported by an IBM Fellowship. #12; Keywords: survivable storage, Byzantine fault­tolerance, atomic registers, erasure codes #12; 1 Introduction Survivable storage systems spread

  14. PLUTONIUM SOLUBILITY IN SIMULATED SAVANNAH RIVER SITE WASTE SOLUTIONS

    SciTech Connect (OSTI)

    Rudisill, T.; Hobbs, D.; Edwards, T.

    2010-09-27T23:59:59.000Z

    To address the accelerated disposition of the supernate and salt portions of Savannah River Site (SRS) high level waste (HLW), solubility experiments were performed to develop a predictive capability for plutonium (Pu) solubility. A statistically designed experiment was used to measure the solubility of Pu in simulated solutions with salt concentrations and temperatures which bounded those observed in SRS HLW solutions. Constituents of the simulated waste solutions included: hydroxide (OH{sup -}), aluminate (Al(OH){sub 4}{sup -}), sulfate (SO{sub 4}{sup 2-}), carbonate (CO{sub 3}{sup 2-}), nitrate (NO{sub 3}{sup -}), and nitrite (NO{sub 2}{sup -}) anions. Each anion was added to the waste solution in the sodium form. The solubilities were measured at 25 and 80 C. Five sets of samples were analyzed over a six month period and a partial sample set was analyzed after nominally fifteen months of equilibration. No discernable time dependence of the measured Pu concentrations was observed except for two salt solutions equilibrated at 80 C which contained OH{sup -} concentrations >5 mol/L. In these solutions, the Pu solubility increased with time. This observation was attributed to the air oxidation of a portion of the Pu from Pu(IV) to the more soluble Pu(V) or Pu(VI) valence states. A data driven approach was subsequently used to develop a modified response surface model for Pu solubility. Solubility data from this study and historical data from the literature were used to fit the model. The model predicted the Pu solubility of the solutions from this study within the 95% confidence interval for individual predictions and the analysis of variance indicated no statistically significant lack of fit. The Savannah River National Laboratory (SRNL) model was compared with predicted values from the Aqueous Electrolyte (AQ) model developed by OLI Systems, Inc. and a solubility prediction equation developed by Delegard and Gallagher for Hanford tank waste. The agreement between measured or values predicted by the SRNL model and values predicted by the OLI AG model was very poor. The much higher predicted concentrations by the OLI AQ model appears to be the result of the model predicting the predominate Pu oxidation state is Pu(V) which is reported as unstable below sodium hydroxide (NaOH) concentrations of 6 M. There was very good agreement between the predicted Pu concentrations using the SRNL model and the model developed by Delegard and Gallagher with the exception of solutions that had very high OH{sup -} (15 M) concentrations. The lower Pu solubilities in these solutions were attributed to the presence of NO{sub 3}{sup -} and NO{sub 2}{sup -} which limit the oxidation of Pu(IV) to Pu(V).

  15. Solvent extraction and recovery of the transuranic elements from waste solutions using the TRUEX process

    SciTech Connect (OSTI)

    Horwitz, E.P.; Schulz, W.W.

    1985-01-01T23:59:59.000Z

    High-level liquid waste is produced during the processing of irradiated nuclear fuel by the PUREX process. In some cases the treatment of metallurgical scrap to recover the plutonium values also generates a nitric acid waste solution. Both waste solutions contain sufficient concentrations of transuranic elements (mostly /sup 241/Am) to require handling and disposal as a TRU waste. This paper describes a recently developed solvent extraction/recovery process called TRUEX (transuranium extraction) which is designed to reduce the TRU concentration in nitric waste solutions to <100 nCi/g of disposed form (1,2). (In the USA, non-TRU waste is defined as <100 nCi of TRU/g of disposed form.) The process utilizes PUREX process solvent (TBP in a normal paraffinic hydrocarbon or carbon tetrachloride) modified by a small concentration of octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (abbrev. CMPO). The presence of CMPO enables the modified PUREX process solvent to extract trivalent actinides as well as tetra- and hexavalent actinides. A major feature of the TRUEX process is that is is applicable to waste solutions containing a wide range of nitric acid, salt, and fission product concentrations and at the same time is very compatible with existing liquid-liquid extraction technology as usually practiced in a fuel reprocessing plant. To date the process has been tested on two different types of synthetic waste solutions. The first solution is a typical high-level nitric acid waste and the second a typical waste solution generated in metallurgical scrap processing. Results are discussed. 4 refs., 1 fig., 4 tabs.

  16. alkaline waste solutions: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geosciences Websites Summary: -solid waste for CO2 mitigation and reduction of greenhouse effect gases into the atmosphere. ? 2008 ElsevierCarbonation of alkaline paper mill...

  17. Byzantine-tolerant erasure-coded storage Garth R. Goodson, Jay J. Wylie, Gregory R. Ganger, Michael K. Reiter

    E-Print Network [OSTI]

    Pittsburgh, PA 15213 Abstract This paper describes a decentralized consistency protocol for survivable-99-2-0539-AFRL. Garth Goodson was supported by an IBM Fellowship. #12;Keywords: survivable storage, Byzantine fault-tolerance, atomic registers, erasure codes #12;1 Introduction Survivable storage systems spread

  18. Mixed waste landfill cell construction at energy solutions LLC: a regulator's perspective

    SciTech Connect (OSTI)

    Lukes, G.C.; Willoughby, O.H. [Utah Department of Environmental Quality, Div. of Solid and Hazardous Waste (United States)

    2007-07-01T23:59:59.000Z

    A small percentage of the property that EnergySolutions' (formerly Envirocare) operates at Clive, Utah is permitted by the State of Utah as a treatment, storage and disposal facility for mixed waste. Mixed Waste is defined as a hazardous waste (Title 40 Code of Federal Regulations Part 261.3) that also has a radioactive component. Typically, the waste EnergySolutions receives at its mixed waste facility is contaminated with heavy metals and organic compounds while also contaminated with radioactivity. For EnergySolutions, the largest generator of mixed waste is the United States Department of Energy. However, EnergySolutions also accepts a wide variety of mixed waste from other generators. For many wastes, EnergySolutions goes through the process of characterization and acceptance (if appropriate) of the waste, treating the waste (if necessary), confirmation that the waste meets Land Disposal Restriction, and disposal of the waste in its mixed waste landfill cell (MWLC). EnergySolutions originally received its State-issued Part B (RCRA) permit in 1990. The Permit allows a mixed waste landfill cell footprint that covers roughly 10 hectares and includes 20 individual 'sumps'. EnergySolutions chose to build small segments of the landfill cell as waste receipts dictated. Nearly 16 years later, EnergySolutions has just completed its Phase V construction project. 18 of the 20 sumps in the original design have been constructed. The last two sumps are anticipated to be its Phase VI construction project. Further expansion of its mixed waste disposal landfill capacity beyond the current design would require a permit modification request and approval by the Executive Secretary of the Utah Solid and Hazardous Waste Control Board. Construction of the landfill cell is governed by the Construction Quality Assurance/Quality Control manual of its State-issued Permit. The construction of each sump is made up of (from the bottom up): a foundation; three feet of engineered clay; primary and secondary geo-synthetics (60 mil HDPE, geo-fabric and geo-textile); a two foot soil protective cover; tertiary geo-synthetics (80 mil HDPE, geo-fabric and geo-textile); and a final two foot soil protective cover. The Utah Department of Environmental Quality Division of Solid and Hazardous Waste (UDEQ/DSHW) oversees the construction process and reviews the documentation after the construction is complete. If all aspects of the construction process are met, the Executive Secretary of the Utah Solid and Hazardous Waste Control Board approves the landfill cell for disposal. It is the role of the regulator to ensure to the stakeholders that the landfill cell has been constructed in accordance with the State-issued permit and that the cell is protective of human health and the environment. A final determination may require conflict resolution between the agency and the facility. (authors)

  19. Calixarene crown ether solvent composition and use thereof for extraction of cesium from alkaline waste solutions

    DOE Patents [OSTI]

    Moyer, Bruce A. (Oak Ridge, TN); Sachleben, Richard A. (Knoxville, TN); Bonnesen, Peter V. (Knoxville, TN); Presley, Derek J. (Ooltewah, TN)

    2001-01-01T23:59:59.000Z

    A solvent composition and corresponding method for extracting cesium (Cs) from aqueous neutral and alkaline solutions containing Cs and perhaps other competing metal ions is described. The method entails contacting an aqueous Cs-containing solution with a solvent consisting of a specific class of lipophilic calix[4]arene-crown ether extractants dissolved in a hydrocarbon-based diluent containing a specific class of alkyl-aromatic ether alcohols as modifiers. The cesium values are subsequently recovered from the extractant, and the solvent subsequently recycled, by contacting the Cs-containing organic solution with an aqueous stripping solution. This combined extraction and stripping method is especially useful as a process for removal of the radionuclide cesium-137 from highly alkaline waste solutions which are also very concentrated in sodium and potassium. No pre-treatment of the waste solution is necessary, and the cesium can be recovered using a safe and inexpensive stripping process using water, dilute (millimolar) acid solutions, or dilute (millimolar) salt solutions. An important application for this invention would be treatment of alkaline nuclear tank wastes. Alternatively, the invention could be applied to decontamination of acidic reprocessing wastes containing cesium-137.

  20. Construction materials as a waste management solution for cellulose sludge

    SciTech Connect (OSTI)

    Modolo, R., E-mail: regina.modolo@ua.pt [University of Aveiro, Civil Engineering Department/CICECO, 3810-193 Aveiro (Portugal); Ferreira, V.M. [University of Aveiro, Civil Engineering Department/CICECO, 3810-193 Aveiro (Portugal); Machado, L.M. [RAIZ - Forest and Paper Research Institute, Portucel-Soporcel, Eixo (Portugal); Rodrigues, M.; Coelho, I. [CIMIANTO - Sociedade Tecnica Hidraulica, S.A., Alhandra (Portugal)

    2011-02-15T23:59:59.000Z

    Sustainable waste management system for effluents treatment sludge has been a pressing issue for pulp and paper sector. Recycling is always recommended in terms of environmental sustainability. Following an approach of waste valorisation, this work aims to demonstrate the technical viability of producing fiber-cement roof sheets incorporating cellulose primary sludge generated on paper and pulp mills. From the results obtained with preliminary studies it was possible to verify the possibility of producing fiber-cement sheets by replacing 25% of the conventional used virgin long fiber by primary effluent treatment cellulose sludge. This amount of incorporation was tested on an industrial scale. Environmental parameters related to water and waste, as well as tests for checking the quality of the final product was performed. These control parameters involved total solids in suspension, dissolved salts, chlorides, sulphates, COD, metals content. In the product, parameters like moisture, density and strength were controlled. The results showed that it is possible to replace the virgin long fibers pulp by primary sludge without impacts in final product characteristics and on the environment. This work ensures the elimination of significant waste amounts, which are nowadays sent to landfill, as well as reduces costs associated with the standard raw materials use in the fiber-cement industrial sector.

  1. Waste heat recovery in automobile engines : potential solutions and benefits

    E-Print Network [OSTI]

    Ruiz, Joaquin G., 1981-

    2005-01-01T23:59:59.000Z

    Less than 30% of the energy in a gallon of gasoline reaches the wheels of a typical car; most of the remaining energy is lost as heat. Since most of the energy consumed by an internal combustion engine is wasted, capturing ...

  2. analytical waste solutions: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    extent. The homogeneous Barrash, Warren 227 Analytical solutions to a hillslope-storage kinematic wave equation for subsurface flow Environmental Sciences and Ecology Websites...

  3. Radiolytic and radiolytically induced generation of gases in simulated waste solutions

    SciTech Connect (OSTI)

    Meisel, D.; Sauer, M.C. Jr.; Jonah, C.D.; Diamond, H.; Matheson, M.S.; Barnabas, F.; Cerny, E.; Cheng, Y.

    1990-12-31T23:59:59.000Z

    The radiolytic generation of gases in simulated mixed waste solutions was studied. Computer modeling of the non-homogeneous kinetic processes in these highly concentrated homogeneous solutions was attempted. The predictions of the modeling simulations were verified experimentally. Two sources for the radiolytic generation of H{sub 2} are identified: direct dissociation of highly energetic water molecules and hydrogen abstraction from the organic molecules by hydrogen atoms. Computer simulation of the homogeneous kinetics of the NO{sub X} system indicate that no N{sub 2}O will be produced in the absence of organic solutes and none was experimentally detected. It was also found that long term pre-irradiation of the simulated waste solutions leads to enhanced thermal production of these two gases. 22 refs., 5 figs., 3 tabs.

  4. Radiolytic and radiolytically induced generation of gases in simulated waste solutions

    SciTech Connect (OSTI)

    Meisel, D.; Sauer, M.C. Jr.; Jonah, C.D.; Diamond, H.; Matheson, M.S.; Barnabas, F.; Cerny, E.; Cheng, Y.

    1990-01-01T23:59:59.000Z

    The radiolytic generation of gases in simulated mixed waste solutions was studied. Computer modeling of the non-homogeneous kinetic processes in these highly concentrated homogeneous solutions was attempted. The predictions of the modeling simulations were verified experimentally. Two sources for the radiolytic generation of H{sub 2} are identified: direct dissociation of highly energetic water molecules and hydrogen abstraction from the organic molecules by hydrogen atoms. Computer simulation of the homogeneous kinetics of the NO{sub X} system indicate that no N{sub 2}O will be produced in the absence of organic solutes and none was experimentally detected. It was also found that long term pre-irradiation of the simulated waste solutions leads to enhanced thermal production of these two gases. 22 refs., 5 figs., 3 tabs.

  5. MODELING AN ION EXCHANGE PROCESS FOR CESIUM REMOVAL FROM ALKALINE RADIOACTIVE WASTE SOLUTIONS

    SciTech Connect (OSTI)

    Smith, F; Luther Hamm, L; Sebastian Aleman, S; Johnston Michael, J

    2008-08-26T23:59:59.000Z

    The performance of spherical Resorcinol-Formaldehyde ion-exchange resin for the removal of cesium from alkaline radioactive waste solutions has been investigated through computer modeling. Cesium adsorption isotherms were obtained by fitting experimental data using a thermodynamic framework. Results show that ion-exchange is an efficient method for cesium removal from highly alkaline radioactive waste solutions. On average, two 1300 liter columns operating in series are able to treat 690,000 liters of waste with an initial cesium concentration of 0.09 mM in 11 days achieving a decontamination factor of over 50,000. The study also tested the sensitivity of ion-exchange column performance to variations in flow rate, temperature and column dimensions. Modeling results can be used to optimize design of the ion exchange system.

  6. SHARING AND DEPLOYING INNOVATIVE INFORMATION TECHNOLOGY SOLUTIONS TO MANAGE WASTE ACROSS THE DOE COMPLEX

    SciTech Connect (OSTI)

    Crolley, R.; Thompson, M.

    2011-01-31T23:59:59.000Z

    There has been a need for a faster and cheaper deployment model for information technology (IT) solutions to address waste management needs at US Department of Energy (DOE) complex sites for years. Budget constraints, challenges in deploying new technologies, frequent travel, and increased job demands for existing employees have prevented IT organizations from staying abreast of new technologies or deploying them quickly. Despite such challenges, IT organizations have added significant value to waste management handling through better worker safety, tracking, characterization, and disposition at DOE complex sites. Systems developed for site-specific missions have broad applicability to waste management challenges and in many cases have been expanded to meet other waste missions. Radio frequency identification (RFID) and global positioning satellite (GPS)-enabled solutions have reduced the risk of radiation exposure and safety risks. New web-based and mobile applications have enabled precision characterization and control of nuclear materials. These solutions have also improved operational efficiencies and shortened schedules, reduced cost, and improved regulatory compliance. Collaboration between US Department of Energy (DOE) complex sites is improving time to delivery and cost efficiencies for waste management missions with new information technologies (IT) such as wireless computing, global positioning satellite (GPS), and radio frequency identification (RFID). Integrated solutions developed at separate DOE complex sites by new technology Centers of Excellence (CoE) have increased material control and accountability, worker safety, and environmental sustainability. CoEs offer other DOE sister sites significant cost and time savings by leveraging their technology expertise in project scoping, implementation, and ongoing operations.

  7. Coding Techniques for Handling Failures in Large Disk Arrays 1 Lisa Hellerstein, 2 Garth A. Gibson, 3 Richard M. Karp, 4

    E-Print Network [OSTI]

    Coding Techniques for Handling Failures in Large Disk Arrays 1 Lisa Hellerstein, 2 Garth A. Gibson in the design of very large disk arrays is the protection of data against catastrophic disk failures. Although failures in large disk arrays. We describe how such codes can be used to encode data in disk arrays

  8. Waste treatment process for removal of contaminants from aqueous, mixed-waste solutions using sequential chemical treatment and crossflow microfiltration, followed by dewatering

    DOE Patents [OSTI]

    Vijayan, Sivaraman (Deep River, CA); Wong, Chi F. (Pembroke, CA); Buckley, Leo P. (Deep River, CA)

    1994-01-01T23:59:59.000Z

    In processes of this invention aqueous waste solutions containing a variety of mixed waste contaminants are treated to remove the contaminants by a sequential addition of chemicals and adsorption/ion exchange powdered materials to remove the contaminants including lead, cadmium, uranium, cesium-137, strontium-85/90, trichloroethylene and benzene, and impurities including iron and calcium. Staged conditioning of the waste solution produces a polydisperse system of size enlarged complexes of the contaminants in three distinct configurations: water-soluble metal complexes, insoluble metal precipitation complexes, and contaminant-bearing particles of ion exchange and adsorbent materials. The volume of the waste is reduced by separation of the polydisperse system by cross-flow microfiltration, followed by low-temperature evaporation and/or filter pressing. The water produced as filtrate is discharged if it meets a specified target water quality, or else the filtrate is recycled until the target is achieved.

  9. Waste treatment process for removal of contaminants from aqueous, mixed-waste solutions using sequential chemical treatment and crossflow microfiltration, followed by dewatering

    DOE Patents [OSTI]

    Vijayan, S.; Wong, C.F.; Buckley, L.P.

    1994-11-22T23:59:59.000Z

    In processes of this invention aqueous waste solutions containing a variety of mixed waste contaminants are treated to remove the contaminants by a sequential addition of chemicals and adsorption/ion exchange powdered materials to remove the contaminants including lead, cadmium, uranium, cesium-137, strontium-85/90, trichloroethylene and benzene, and impurities including iron and calcium. Staged conditioning of the waste solution produces a polydisperse system of size enlarged complexes of the contaminants in three distinct configurations: water-soluble metal complexes, insoluble metal precipitation complexes, and contaminant-bearing particles of ion exchange and adsorbent materials. The volume of the waste is reduced by separation of the polydisperse system by cross-flow microfiltration, followed by low-temperature evaporation and/or filter pressing. The water produced as filtrate is discharged if it meets a specified target water quality, or else the filtrate is recycled until the target is achieved. 1 fig.

  10. THERMODYNAMIC TABLES FOR NUCLEAR WASTE ISOLATION, V.1: AQUEOUS SOLUTIONS DATABASE

    E-Print Network [OSTI]

    Phillips, S.L.; Hale, F.V.; Silvester, L.F.

    2008-01-01T23:59:59.000Z

    National Laboratory Nuclear Waste Nanagement Division Upton,~ermodynamic Tables for Nuclear Waste Isolation Vol. I. Aq~Thermodynamic Tables for Nuclear Waste Isolation. Vol 1.

  11. RADIOACTIVE HIGH LEVEL WASTE TANK PITTING PREDICTIONS: AN INVESTIGATION INTO CRITICAL SOLUTION CONCENTRATIONS

    SciTech Connect (OSTI)

    Hoffman, E.

    2012-11-08T23:59:59.000Z

    A series of cyclic potentiodynamic polarization tests was performed on samples of ASTM A537 carbon steel in support of a probability-based approach to evaluate the effect of chloride and sulfate on corrosion the steel?s susceptibility to pitting corrosion. Testing solutions were chosen to systemically evaluate the influence of the secondary aggressive species, chloride, and sulfate, in the nitrate based, high-level wastes. The results suggest that evaluating the combined effect of all aggressive species, nitrate, chloride, and sulfate, provides a consistent response for determining corrosion susceptibility. The results of this work emphasize the importance for not only nitrate concentration limits, but also chloride and sulfate concentration limits.

  12. STABLE SR VS 85SR SORPTION FROM SIMULATED WASTE SOLUTIONS BY MST AND MMST

    SciTech Connect (OSTI)

    Taylor-Pashow, K.; Hobbs, D.

    2012-04-02T23:59:59.000Z

    A series of tests were performed to examine the sorption of stable Sr versus the sorption of {sup 85}Sr by monosodium titanate (MST) and modified monosodium titanate (mMST) from simulated waste solutions. Earlier testing indicated a discrepancy between the decontamination factors (DFs) obtained by measuring the stable Sr concentrations by inductively coupled plasma - mass spectroscopy (ICP-MS) and the {sup 85}Sr activities by gamma spectroscopy. One hypothesis to explain this discrepancy was that the stable Sr and {sup 85}Sr were in different chemical forms in the simulated solutions. Several simulants were prepared using different methods for adding the Sr and performance tests were carried out using MST and mMST to determine the Sr and {sup 85}Sr DFs with the various simulants. Testing indicated no discrepancy between the Sr and {sup 85}Sr DFs in tests with these simulants.

  13. Influence of Acidic and Alkaline Waste Solution Properties on Uranium Migration in Subsurface Sediments

    SciTech Connect (OSTI)

    Szecsody, James E.; Truex, Michael J.; Qafoku, Nikolla; Wellman, Dawn M.; Resch, Charles T.; Zhong, Lirong

    2013-08-01T23:59:59.000Z

    This study shows that acidic and alkaline wastes co-disposed with uranium into subsurface sediments has significant impact on changes in uranium retardation, concentration, and mass during downward migration. For uranium co-disposal with acidic wastes, significant rapid (i.e., hours) carbonate and slow (i.e., 100s of hours) clay dissolution resulted, releasing significant sediment-associated uranium, but the extent of uranium release and mobility change was controlled by the acid mass added relative to the sediment proton adsorption capacity. Mineral dissolution in acidic solutions (pH 2) resulted in a rapid (< 10 h) increase in aqueous carbonate (with Ca2+, Mg2+) and phosphate and a slow (100s of hours) increase in silica, Al3+, and K+, likely from 2:1 clay dissolution. Infiltration of uranium with a strong acid resulted in significant shallow uranium mineral dissolution and deeper uranium precipitation (likely as phosphates and carbonates) with downward uranium migration of three times greater mass at a faster velocity relative to uranium infiltration in pH neutral groundwater. In contrast, mineral dissolution in an alkaline environment (pH 13) resulted in a rapid (< 10 h) increase in carbonate, followed by a slow (10s to 100s of hours) increase in silica concentration, likely from montmorillonite, muscovite, and kaolinite dissolution. Infiltration of uranium with a strong base resulted in uranium-silicate precipitation (presumed Na-boltwoodite) but also desorption of natural uranium on the sediment due to the high ionic strength solution, or 60% greater mass with greater retardation compared with groundwater. Overall, these results show that acidic or alkaline co-contaminant disposal with uranium can result in complex depth- and time-dependent changes in uranium dissolution/precipitation reactions and uranium sorption, which alter the uranium migration mass, concentration, and velocity.

  14. SAVANNAH RIVER SITE INCIPIENT SLUDGE MIXING IN RADIOACTIVE LIQUID WASTE STORAGE TANKS DURING SALT SOLUTION BLENDING

    SciTech Connect (OSTI)

    Leishear, R.; Poirier, M.; Lee, S.; Steeper, T.; Fowley, M.; Parkinson, K.

    2011-01-12T23:59:59.000Z

    This paper is the second in a series of four publications to document ongoing pilot scale testing and computational fluid dynamics (CFD) modeling of mixing processes in 85 foot diameter, 1.3 million gallon, radioactive liquid waste, storage tanks at Savannah River Site (SRS). Homogeneous blending of salt solutions is required in waste tanks. Settled solids (i.e., sludge) are required to remain undisturbed on the bottom of waste tanks during blending. Suspension of sludge during blending may potentially release radiolytically generated hydrogen trapped in the sludge, which is a safety concern. The first paper (Leishear, et. al. [1]) presented pilot scale blending experiments of miscible fluids to provide initial design requirements for a full scale blending pump. Scaling techniques for an 8 foot diameter pilot scale tank were also justified in that work. This second paper describes the overall reasons to perform tests, and documents pilot scale experiments performed to investigate disturbance of sludge, using non-radioactive sludge simulants. A third paper will document pilot scale CFD modeling for comparison to experimental pilot scale test results for both blending tests and sludge disturbance tests. That paper will also describe full scale CFD results. The final paper will document additional blending test results for stratified layers in salt solutions, scale up techniques, final full scale pump design recommendations, and operational recommendations. Specifically, this paper documents a series of pilot scale tests, where sludge simulant disturbance due to a blending pump or transfer pump are investigated. A principle design requirement for a blending pump is UoD, where Uo is the pump discharge nozzle velocity, and D is the nozzle diameter. Pilot scale test results showed that sludge was undisturbed below UoD = 0.47 ft{sup 2}/s, and that below UoD = 0.58 ft{sup 2}/s minimal sludge disturbance was observed. If sludge is minimally disturbed, hydrogen will not be released. Installation requirements were also determined for a transfer pump which will remove tank contents, and which is also required to not disturb sludge. Testing techniques and test results for both types of pumps are presented.

  15. Extraction chromatographic separation of promethium from high active waste solutions of Purex origin

    SciTech Connect (OSTI)

    Ramanujam, A.; Achuthan, P.V.; Dhami, P.S.; Gopalakrishnan, V.; Kannan, R.; Mathur, J.N. [Bhabha Atomic Research Centre, Bombay (India)

    1995-03-01T23:59:59.000Z

    An extraction chromatographic procedure for the separation of {sup 147}Pm from High Active Waste solutions of Purex process has been developed. Octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide(CMPO) and 2-ethylhexyl-2-ethylhexylphosphonic acid (KSM-17), both sorbed separately on an inert support(chromosorb-102) have been sequentially employed for this purpose. In the CMPO column, the rare earths and the trivalent actinides are sorbed together with uranium, plutonium and traces of few other fission products. The elution of this column with 0.04 M HNO{sub 3} gives an eluate containing trivalent actinides and lanthanides. This solution, after adjusting the pH to 2.0, is used as feed for the second extraction chromatographic column based on KSM-17. All the trivalent metal ions are sorbed on the column leaving the trace impurities in the effluent. Fractional elution of the metal ions from this column is carried out with nitric acid of varying concentrations. At 0.09 M HNO{sub 3}, the pure beta emitting fraction of {sup 147}Pm has been obtained. 16 refs., 3 figs., 2 tabs.

  16. Modeling Solute Thermokinetics in LiCI-KCI Molten Salt for Nuclear Waste Separation

    SciTech Connect (OSTI)

    Morgan, Dane; Eapen, Jacob

    2013-10-01T23:59:59.000Z

    Recovery of actinides is an integral part of a closed nuclear fuel cycle. Pyrometallurgical nuclear fuel recycling processes have been developed in the past for recovering actinides from spent metallic and nitride fuels. The process is essentially to dissolve the spent fuel in a molten salt and then extract just the actinides for reuse in a reactor. Extraction is typically done through electrorefining, which involves electrochemical reduction of the dissolved actinides and plating onto a cathode. Knowledge of a number of basic thermokinetic properties of salts and salt-fuel mixtures is necessary for optimizing present and developing new approaches for pyrometallurgical waste processing. The properties of salt-fuel mixtures are presently being studied, but there are so many solutes and varying concentrations that direct experimental investigation is prohibitively time consuming and expensive (particularly for radioactive elements like Pu). Therefore, there is a need to reduce the number of required experiments through modeling of salt and salt-fuel mixture properties. This project will develop first-principles-based molecular modeling and simulation approaches to predict fundamental thermokinetic properties of dissolved actinides and fission products in molten salts. The focus of the proposed work is on property changes with higher concentrations (up to 5 mol%) of dissolved fuel components, where there is still very limited experimental data. The properties predicted with the modeling will be density, which is used to assess the amount of dissolved material in the salt; diffusion coefficients, which can control rates of material transport during separation; and solute activity, which determines total solubility and reduction potentials used during electrorefining. The work will focus on La, Sr, and U, which are chosen to include the important distinct categories of lanthanides, alkali earths, and actinides, respectively. Studies will be performed using LiCl-KCl salt at the eutectic composition (58 mol% LiCl, 42 mol% KCl), which is used for treating spent EBR-II fuel. The same process being used for EBRII fuel is currently being studied for widespread international implementation. The methods will focus on first-principles and first- principles derived interatomic potential based simulations, primarily using molecular dynamics. Results will be validated against existing literature and parallel ongoing experimental efforts. The simulation results will be of value for interpreting experimental results, validating analytical models, and for optimizing waste separation by potentially developing new salt configurations and operating conditions.

  17. Navy aquatic hazardous waste sites: the problem and possible solutions. Final report

    SciTech Connect (OSTI)

    Johnston, R.K.; Wild, W.J.; Richter, K.E.; Lapota, D.; Stang, P.M.

    1989-08-01T23:59:59.000Z

    Data on 367 hazardous waste disposal sites at 58 Navy Marine Corps activities, located in the coastal zone, were reviewed to characterize the contaminants, disposal methods, and potentially impacted environments present at navy aquatic hazardous waste sites. This report identifies Navy aquatic hazardous waste site problems, assesses technology requirements, and describes remedial pilot projects being initiated at impacted aquatic sites.

  18. Detection of localized and general corrosion of mild steel in simulated defense nuclear waste solutions using electrochemical noise analysis

    SciTech Connect (OSTI)

    Edgemon, G.L.; Ohl, P.C. [Westinghouse Hanford Co., Richland, WA (United States); Bell, G.E.C. [M.J. Schiff and Associates, Inc., Claremont, CA (United States); Wilson, D.F. [Oak Ridge National Lab., TN (United States)

    1995-12-01T23:59:59.000Z

    Underground waste tanks fabricated from mild steel store more than 60 million gallons of radioactive waste from 50 years of weapons production. Leaks are suspected in a significant number of tanks. The probable modes of corrosion failures are reported to be localized corrosion (e.g. nitrate stress corrosion cracking and pitting). The use of electrochemical noise (EN) for the monitoring and detection of localized corrosion processes has received considerable attention and application over the last several years. Proof of principle laboratory tests were conducted to verify the capability of EN evaluation to detect localized corrosion and to compare the predictions of general corrosion obtained from EN with those derived from other sources. Simple, pre-fabricated flat and U-bend specimens of steel alloys A516-Grade 60 (UNS K02100) and A537-CL 1 (UNS K02400) were immersed in temperature controlled simulated waste solutions. The simulated waste solution was either 5M NaNO{sub 3} with 0.3M NaOH at 90 C or 11M NaNO{sub 3} with 0.15M NaOH at 95 C. The electrochemical noise activity from the specimens was monitored and recorded for periods ranging between 140 and 240 hours. At the end of each test period, the specimens were metallographically examined to correlated EN data with corrosion damage.

  19. Precipitation process for the removal of technetium values from nuclear waste solutions

    DOE Patents [OSTI]

    Walker, D.D.; Ebra, M.A.

    1985-11-21T23:59:59.000Z

    High efficiency removal of techetium values from a nuclear waste stream is achieved by addition to the waste stream of a precipitant contributing tetraphenylphosphonium cation, such that a substantial portion of the technetium values are precipitated as an insoluble pertechnetate salt.

  20. THERMODYNAMIC TABLES FOR NUCLEAR WASTE ISOLATION, V.1: AQUEOUS SOLUTIONS DATABASE

    E-Print Network [OSTI]

    Phillips, S.L.; Hale, F.V.; Silvester, L.F.

    2008-01-01T23:59:59.000Z

    Vol. I. Aq~leous Solutions Database D L S.1,. Philiips, F.V.Vol 1. Aqueous Solutions Database Sidney L. Phillips, FrankDatabase ..

  1. SOLUTIONS

    E-Print Network [OSTI]

    2012-07-04T23:59:59.000Z

    MA 162 - Quiz 5 (20 minutes). SOLUTIONS. The solutions I present are not necessarily the only solutions. As long as you give a correct method of solving a ...

  2. "Control-Alt-Delete": Rebooting Solutions for the E-waste Problem.

    E-Print Network [OSTI]

    Li, J; Zeng, X; Chen, M; Ogunseitan, OA; Stevels, AL

    2015-01-01T23:59:59.000Z

    metals from spent lithium-ion batteries. Waste Manage. 2012,Singh, N. Recycling of Spent Lithium-Ion Battery: A Criticaland lithium from spent lithium-ion battery using oxalic

  3. Solute transport under steady and transient conditions in biodegraded municipal solid waste

    E-Print Network [OSTI]

    Bendz, David; Singh, Vijay P.

    , Sweden Vijay P. Singh Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge Abstract. The transport of a conservative tracer (lithium) in a large (3.5 m 3) undisturbed municipal solid waste sample has been...

  4. Nickel recovery from electronic waste II Electrodeposition of Ni and Ni–Fe alloys from diluted sulfate solutions

    SciTech Connect (OSTI)

    Robotin, B. [Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos Street, RO-400028 Cluj-Napoca (Romania); Ispas, A. [Fachgebiet Elektrochemie und Galvanotechnik II, Technische Universität Ilmenau, D-98693 Ilmenau (Germany); Coman, V. [Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos Street, RO-400028 Cluj-Napoca (Romania); Bund, A. [Fachgebiet Elektrochemie und Galvanotechnik II, Technische Universität Ilmenau, D-98693 Ilmenau (Germany); Ilea, P., E-mail: pilea@chem.ubbcluj.ro [Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos Street, RO-400028 Cluj-Napoca (Romania)

    2013-11-15T23:59:59.000Z

    Highlights: • Ni can be recovered from EG wastes as pure Ni or as Ni–Fe alloys. • The control of the experimental conditions gives a certain alloy composition. • Unusual deposits morphology shows different nucleation mechanisms for Ni vs Fe. • The nucleation mechanism was progressive for Ni and instantaneous for Fe and Ni–Fe. - Abstract: This study focuses on the electrodeposition of Ni and Ni–Fe alloys from synthetic solutions similar to those obtained by the dissolution of electron gun (an electrical component of cathode ray tubes) waste. The influence of various parameters (pH, electrolyte composition, Ni{sup 2+}/Fe{sup 2+} ratio, current density) on the electrodeposition process was investigated. Scanning electron microscopy (SEM) and X-ray fluorescence analysis (XRFA) were used to provide information about the obtained deposits’ thickness, morphology, and elemental composition. By controlling the experimental parameters, the composition of the Ni–Fe alloys can be tailored towards specific applications. Complementarily, the differences in the nucleation mechanisms for Ni, Fe and Ni–Fe deposition from sulfate solutions have been evaluated and discussed using cyclic voltammetry and potential step chronoamperometry. The obtained results suggest a progressive nucleation mechanism for Ni, while for Fe and Ni–Fe, the obtained data points are best fitted to an instantaneous nucleation model.

  5. Solution-borne colloids from drip tests using actinide-doped and fully-radioactive waste glasses

    SciTech Connect (OSTI)

    Fortner, J.A.; Wolf, S.F.; Buck, E.C.; Mertz, C.J.; Bates, J.K.

    1996-12-31T23:59:59.000Z

    Drip tests designed to replicate the synergistic interactions between waste glass, repository groundwater, water vapor, and sensitized 304L stainless steel in the potential Yucca Mountain Repository have been ongoing in our laboratory for over ten years. Results will be presented from three sets of these drip tests: two with actinide-doped glasses, and one with a fully-radioactive glass. Periodic sampling of these tests have revealed trends in actinide release behavior that are consistent with their entrainment in colloidal material when as-cast glass is reacted. Results from vapor hydrated glass show that initially the actinides are completely dissolved in solution, but as the reaction proceeds, the actinides become suspended in solution. Sequential filtering and alpha spectroscopy of colloid-bearing leachate solutions indicate that more than 80 percent of the plutonium and americium are bound to particles that are captured by a 0. 1 gm filter, while less than 10 percent of the neptunium is stopped by a 0. 1 gm filter. Analytical transmission electron microscopy has been used to examine particles from leachate solutions and to identify several actinide-bearing phases which are responsible for the majority of actinide release during glass corrosion.

  6. SOLUBILITY OF URANIUM AND PLUTONIUM IN ALKALINE SAVANNAH RIVER SITE HIGH LEVEL WASTE SOLUTIONS

    SciTech Connect (OSTI)

    King, W.; Hobbs, D.; Wilmarth, B.; Edwards, T.

    2010-03-10T23:59:59.000Z

    Five actual Savannah River Site tank waste samples and three chemically-modified samples were tested to determine solubility limits for uranium and plutonium over a one year time period. Observed final uranium concentrations ranged from 7 mg U/L to 4.5 g U/L. Final plutonium concentrations ranged from 4 {micro}g Pu/L to 12 mg Pu/L. Actinide carbonate complexation is believed to result in the dramatic solubility increases observed for one sample over long time periods. Clarkeite, NaUO{sub 2}(O)OH {center_dot} H{sub 2}O, was found to be the dominant uranium solid phase in equilibrium with the waste supernate in most cases.

  7. Solution

    E-Print Network [OSTI]

    2011-09-09T23:59:59.000Z

    Solution: We're looking for the presale cost of the shirt, so let x be the price of ... The sale price is $10 and we've called the presale price x, so we need to solve.

  8. The Influence of Pre-oxidation on the Corrosion of Copper Nuclear Waste Canisters in Aqueous Anoxic Sulphide Solutions

    SciTech Connect (OSTI)

    Smith, J.M.; Qin, Z.; Wren, J.C.; Shoesmith, D.W. [Chemistry, The University of Western Ontario, 1151 Richmond St., London, N6A5B7 (Canada)

    2007-07-01T23:59:59.000Z

    Scandinavian/Canadian high-level nuclear waste repository conditions are expected to evolve from initially warm and oxic to eventually cool and anoxic. During the warm, oxic period corrosion products will accumulate on the container surface. These deposits could impede the reaction of Cu with aqueous sulphide, the only reaction that could lead to the significant accumulation of additional corrosion damage under the long-term anoxic conditions. The kinetics of the reaction of Cu with aqueous sulphide solutions have been studied using electrochemical and surface analytical techniques. Corrosion potential measurements were used to follow the evolution of the surface as oxides/hydroxides were converted to sulphides in the sulphide concentration range 10{sup -5} to 10{sup -3} mol/L. Changes in composition were followed by in-situ Raman spectroscopy. Of critical importance is whether or not a period of pre-oxidation of a Cu container surface can prevent subsequent reaction of the surface with remotely produced sulphide. (authors)

  9. Waste reduction for electroless nickel-plating solutions at U. S. Army depots. Final report, Oct 91-Apr 92

    SciTech Connect (OSTI)

    Davis, J.S.

    1992-06-10T23:59:59.000Z

    Waste minimization is one of the most pressing environmental issues currently facing U.S. Army depots. The U.S. Army Toxic and Hazardous Materials Agency (USATHAMA) conducts research and development to support Army depots in implementing technologies to reduce waste generation. The Joint Depot Environmental Panel (JDEP) identified electroless nickel (EN) plating, which is currently used at Corpus Christi Army Depot (CCAD), Red River Army Depot (RRAD), and Sacramento Army Depot (SAAD) as a target for waste minimization research. This report presents the results of an evaluation conducted by USA regarding minimizing waste from EN-plating operations. The objective of this evaluation was to formulate recommendations for depots regarding implementation of waste minimization technologies. This evaluation was performed through site visits, a literature search, and discussions with vendors of EN processes and decontamination technologies.

  10. Energy from Waste UK Joint Statement on Energy from Waste

    E-Print Network [OSTI]

    Energy from Waste UK Joint Statement on Energy from Waste Read more overleaf Introduction Energy from waste provides us with an opportunity for a waste solution and a local source of energy rolled,itcan onlyaddressaportionofthewastestream andisnotsufficientonitsown. Energy obtained from the combustion of residual waste (Energy from

  11. Development of Dodecaniobate Keggin Chain Materials as Alternative Sorbents for SR and Actinide Removal from High-Level Nuclear Waste Solutions

    SciTech Connect (OSTI)

    Nyman, May; Bonhomme, Francois

    2004-03-28T23:59:59.000Z

    The current baseline sorbent (monosodium titanate) for Sr and actinide removal from Savannah River Site's high level wastes has excellent adsorption capabilities for Sr but poor performance for the actinides. We are currently investigating the development of alternative materials that sorb radionuclides based on chemical affinity and/or size selectivity. The polyoxometalates, negatively-charged metal oxo clusters, have known metal binding properties and are of interest for radionuclide sequestration. We have developed a class of Keggin-ion based materials, where the Keggin ions are linked in 1- dimensional chains separated by hydrated, charge-balancing cations. These Nb-based materials are stable in the highly basic nuclear waste solutions and show good selectivity for Sr and Pu. Synthesis, characterization and structure of these materials in their native forms and Sr-exchanged forms will be presented.

  12. Process for the elimination of waste water produced upon the desulfurization of coking oven gas by means of wash solution containing organic oxygen-carrier, with simultaneous recovery of elemental sulfur

    SciTech Connect (OSTI)

    Diemer, P.; Brake, W.; Dittmer, R.

    1985-04-16T23:59:59.000Z

    A process is disclosed for the elimination of waste water falling out with the desulfurization of coking oven gas by means of an organic oxygen carrier-containing washing solution with simultaneous recovery of elemental sulfur. The waste water is decomposed in a combustion chamber in a reducing atmosphere at temperatures between about 1000/sup 0/ and 1100/sup 0/ C. under such conditions that the mole ratio of H/sub 2/S:SO/sub 2/ in the exhaust gas of the combustion chamber amounts to at least 2:1. Sulfur falling out is separated and the sensible heat of the exhaust gas is utilized for steam generation. The cooled and desulfurized exhaust gas is added to the coking oven gas before the pre-cooling. Sulfur falling out from the washing solution in the oxidizer is separated out and lead into the combustion chamber together with the part of the washing solution discharged as waste water from the washing solution circulation. Preferred embodiments include that the sulfur loading of the waste water can amount to up to about 370 kg sulfur per m/sup 3/ waste water; having the cooling of sulfur-containing exhaust gas leaving the combustion chamber follow in a waste heat boiler and a sulfur condenser heated by pre-heated boiler feed water, from which condenser sulfur is discharged in liquid state.

  13. SELECTIVE REMOVAL OF STRONTIUM AND CESIUM FROM SIMULATED WASTE SOLUTION WITH TITANATE ION EXCHANGERS IN A FILTER CARTRIDGE CONFIGURATION

    SciTech Connect (OSTI)

    Oji, L.; Martin, K.; Hobbs, D.

    2011-05-26T23:59:59.000Z

    This report describes experimental results for the selective removal of strontium and cesium from simulated waste solutions using monosodium titanate (MST) and crystalline silicotitanate (CST)-laden filter cartridges. Four types of ion exchange cartridge media (CST and MST designed by both 3M and POROX{reg_sign}) were evaluated. In these proof-of-principle tests effective uptake of both Sr-85 and Cs-137 was observed. However, the experiments were not performed long enough to determine the saturation levels or breakthrough curve for each filter cartridge. POREX{reg_sign} MST cartridges, which by design were based on co-sintering of the active titanates with polyethylene particles, seem to perform as well as the 3M-designed MST cartridges (impregnated filter membrane design) in the uptake of strontium. At low salt simulant conditions (0.29 M Na{sup +}), the instantaneous decontamination factor (D{sub F}) for Sr-85 with the 3M-design MST cartridge measured 26, representing the removal of 96% of the Sr-85. On the other hand, the Sr-85 instantaneous D{sub F} with the POREX{reg_sign} design MST cartridge measured 40 or 98% removal of the Sr-85. Strontium removal with the 3M-design MST and CST cartridges placed in series filter arrangement produced an instantaneous decontamination factor of 41 or 97.6% removal compared to an instantaneous decontamination factor of 368 or 99.7% removal of the strontium with the POREX{reg_sign} MST and CST cartridge design placed in series. At high salt simulant conditions (5.6 M Na{sup +}), strontium removal with 3M-designed MST cartridge only and with 3M-designed MST and CST cartridges operated in a series configuration were identical. The instantaneous decontamination factor and the strontium removal efficiency, under the above configuration, averaged 8.6 and 88%, respectively. There were no POREX{reg_sign} cartridge experiments using the higher ionic strength simulant solution. At low salt simulant conditions, the uptake of Cs-137 with POREX{reg_sign} CST cartridge out performed the 3M-designed CST cartridges. The POREX{reg_sign} CST cartridge, with a Cs-137 instantaneous decontamination factor of 55 and a Cs-137 removal efficiency of 98% does meet the Cs-137 decontamination goals in the low salt simulant liquor. The Cs-137 removal with 3M-designed CST cartridge produced a decontamination factor of 2 or 49% removal efficiency. The Cs-137 performance graph for the 3M-designed CST cartridge showed an early cessation in the uptake of cesium-137. This behavior was not observed with the POREX{reg_sign} CST cartridges. No Cs-137 uptake tests were performed with the POREX{reg_sign} CST cartridges at high salt simulant conditions. The 3M-designed CST cartridges, with an instantaneous Cs-137 decontamination factor of less than 3 and a Cs-137 removal efficiency of less than 50% failed to meet the Cs-137 decontamination goals in both the low and high salt simulant liquors. This poor performance in the uptake of Cs-137 by the 3M CST cartridges may be attributed to fabrication flaws for the 3M-designed CST cartridges. The reduced number of CST membrane wraps per cartridge during the cartridge design phase, from 3-whole wraps to about 1.5, may have contributed to Cs-137 laden simulant channeling/by-pass which led to the poor performance in terms of Cs-137 sorption characteristics for the 3M designed CST cartridges. The grinding of CST ion exchange materials, to reduce the particle size distribution and thus enhance their easy incorporation into the filter membranes and the co-sintering of MST with polyethylene particles, did not adversely affect the sorption kinetics of both CST and MST in the uptake of Cs-137 and Sr-85, respectively. In general, the POREX{reg_sign} based cartridges showed more resistance to simulant flow through the filter cartridges as evidenced by higher pressure differences across the cartridges. Based on these findings they conclude that incorporating MST and CST sorbents into filter membranes represent a promising method for the semi-continuous removal of radioisotopes of strontium a

  14. RESORCINOL-FORMALDEHYDE ADSORPTION OF CESIUM (Cs+) FROM HANFORD WASTE SOLUTIONS-PART I: BATCH EQUILIBRIUM STUDY

    SciTech Connect (OSTI)

    HASSAN, NEGUIBM

    2004-03-30T23:59:59.000Z

    Batch equilibrium measurements were conducted with a granular Resorcinol-Formaldehyde (RF) resin to determine the distribution coefficients (Kds) for cesium. In the tests, Hanford Site actual waste sample containing radioactive cesium and a pretreated waste sample that was spiked with non-radioactive cesium were used. Initial concentrations of non-radioactive cesium in the waste sample were varied to generate an equilibrium isotherm for cesium. Two additional tests were conducted using a liquid to solid phase ratio of 10 and a contact time of 120 hours. The measured distribution coefficient (Kd) for radioactive cesium (137Cs) was 948 mL/g; the Kd for non-radioactive cesium (133Cs) was 1039 mL/g. The Kd for non-radioactive cesium decreased from 1039 to 691 mL/g as the initial cesium concentration increased. Very little change of the Kd was observed at initial cesium concentrations above 64 mg/mL. The maximum sorption capacity for cesium on granular RF resin was 1.17 mmole/g dry resin. T his value was calculated from the fit of the equilibrium isotherm data to the Dubinin-Radushkevich equation. Previously, a total capacity of 2.84 mmole/g was calculated by Bibler and Wallace for air-dried RF resin.

  15. Management of Legacy Spent Nuclear Fuel Wastes at the Chalk River Laboratories: The Challenges and Innovative Solutions Implemented - 13301

    SciTech Connect (OSTI)

    Schruder, Kristan [Atomic Energy of Canada Limited - Chalk River Laboratories, Chalk River, Ontario (Canada)] [Atomic Energy of Canada Limited - Chalk River Laboratories, Chalk River, Ontario (Canada); Goodwin, Derek [Rolls-Royce Civil Nuclear Canada Limited, 678 Neal Dr., Peterborough, Ontario (Canada)] [Rolls-Royce Civil Nuclear Canada Limited, 678 Neal Dr., Peterborough, Ontario (Canada)

    2013-07-01T23:59:59.000Z

    AECL's Fuel Packaging and Storage (FPS) Project was initiated in 2004 to retrieve, transfer, and stabilize an identified inventory of degraded research reactor fuel that had been emplaced within in-ground 'Tile Hole' structures in Chalk River Laboratories' Waste Management Area in the 1950's and 60's. Ongoing monitoring of the legacy fuel storage conditions had identified that moisture present in the storage structures had contributed to corrosion of both the fuel and the storage containers. This prompted the initiation of the FPS Project which has as its objective to design, construct, and commission equipment and systems that would allow for the ongoing safe storage of this fuel until a final long-term management, or disposition, pathway was available. The FPS Project provides systems and technologies to retrieve and transfer the fuel from the Waste Management Area to a new facility that will repackage, dry, safely store and monitor the fuel for a period of 50 years. All equipment and the new storage facility are designed and constructed to meet the requirements for Class 1 Nuclear Facilities in Canada. (authors)

  16. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions

    SciTech Connect (OSTI)

    Reeves, T.L.; Turner, J.P.; Hasfurther, V.R.; Skinner, Q.D.

    1992-06-01T23:59:59.000Z

    The scope of this program is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 {times} 3.0 {times} 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by RBOSC to carry out this study. Research objectives were designed to evaluate hydrologic, geotechnical, and chemical properties and conditions which would affect the design and performance of large-scale embankments. The objectives of this research are: assess the unsaturated movement and redistribution of water and the development of potential saturated zones and drainage in disposed processed oil shale under natural and simulated climatic conditions; assess the unsaturated movement of solubles and major chemical constituents in disposed processed oil shale under natural and simulated climatic conditions; assess the physical and constitutive properties of the processed oil shale and determine potential changes in these properties caused by disposal and weathering by natural and simulated climatic conditions; assess the use of previously developed computer model(s) to describe the infiltration, unsaturated movement, redistribution, and drainage of water in disposed processed oil shale; evaluate the stability of field scale processed oil shale solid waste embankments using computer models.

  17. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions

    SciTech Connect (OSTI)

    Reeves, T.L.; Turner, J.P.; Hasfurther, V.R.; Skinner, Q.D.

    1992-06-01T23:59:59.000Z

    The scope of this program is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 [times] 3.0 [times] 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by RBOSC to carry out this study. Research objectives were designed to evaluate hydrologic, geotechnical, and chemical properties and conditions which would affect the design and performance of large-scale embankments. The objectives of this research are: assess the unsaturated movement and redistribution of water and the development of potential saturated zones and drainage in disposed processed oil shale under natural and simulated climatic conditions; assess the unsaturated movement of solubles and major chemical constituents in disposed processed oil shale under natural and simulated climatic conditions; assess the physical and constitutive properties of the processed oil shale and determine potential changes in these properties caused by disposal and weathering by natural and simulated climatic conditions; assess the use of previously developed computer model(s) to describe the infiltration, unsaturated movement, redistribution, and drainage of water in disposed processed oil shale; evaluate the stability of field scale processed oil shale solid waste embankments using computer models.

  18. SELECTIVE REMOVAL OF STRONTIUM AND CESIUM FROM SIMULATED WASTE SOLUTION WITH TITANATE ION-EXCHANGERS IN A FILTER CARTRIDGE CONFIGURATIONS-12092

    SciTech Connect (OSTI)

    Oji, L.; Martin, K.; Hobbs, D.

    2011-11-10T23:59:59.000Z

    Experimental results for the selective removal of strontium and cesium from simulated waste solutions with monosodium titanate (MST) and crystalline silicotitanate (CST) laden filter cartridges are presented. In these proof-of-principle tests, effective uptake of both Sr-85 and Cs-137 were observed using ion-exchangers in this filter cartridge configuration. At low salt simulant conditions, the instantaneous decontamination factor (D{sub F}) for Sr-85 with MST impregnated filter membrane cartridges measured 26, representing 96% Sr-85 removal efficiency. On the other hand, the Sr-85 instantaneous D{sub F} with co-sintered active MST cartridges measured 40 or 98% Sr-85 removal efficiency. Strontium-85 removal with the MST impregnated membrane cartridges and CST impregnated membrane cartridges, placed in series arrangement, produced an instantaneous decontamination factor of 41 compared to an instantaneous decontamination factor of 368 for strontium-85 with co-sintered active MST cartridges and co-sintered active CST cartridges placed in series. Overall, polyethylene co-sintered active titanates cartridges performed as well as titanate impregnated filter membrane cartridges in the uptake of strontium. At low ionic strength conditions, there was a significant uptake of Cs-137 with co-sintered CST cartridges. Tests results with CST impregnated membrane cartridges for Cs-137 decontamination are currently being re-evaluated. Based on these preliminary findings we conclude that incorporating MST and CST sorbents into membranes represent a promising method for the semi-continuous removal of radioisotopes of strontium and cesium from nuclear waste solutions.

  19. SELECTIVE REMOVAL OF STRONTIUM AND CESIUM FROM SIMULATED WASTE SOLUTION WITH TITANATE ION-EXCHANGERS IN A FILTER CARTRIDGE CONFIGURATIONS-12092

    SciTech Connect (OSTI)

    Oji, L.; Martin, K.; Hobbs, D.

    2012-01-03T23:59:59.000Z

    Experimental results for the selective removal of strontium and cesium from simulated waste solutions with monosodium titanate and crystalline silicotitanate laden filter cartridges are presented. In these proof-of-principle tests, effective uptake of both strontium-85 and cesium-137 were observed using ion-exchangers in this filter cartridge configuration. At low salt simulant conditions, the instantaneous decontamination factor for strontium-85 with monosodium titanate impregnated filter membrane cartridges measured 26, representing 96% strontium-85 removal efficiency. On the other hand, the strontium-85 instantaneous decontamination factor with co-sintered active monosodium titanate cartridges measured 40 or 98% Sr-85 removal efficiency. Strontium-85 removal with the monosodium titanate impregnated membrane cartridges and crystalline silicotitanate impregnated membrane cartridges, placed in series arrangement, produced an instantaneous decontamination factor of 41 compared to an instantaneous decontamination factor of 368 for strontium-85 with co-sintered active monosodium titanate cartridges and co-sintered active crystalline silicotitanate cartridges placed in series. Overall, polyethylene co-sintered active titanates cartridges performed as well as titanate impregnated filter membrane cartridges in the uptake of strontium. At low ionic strength conditions, there was a significant uptake of cesium-137 with co-sintered crystalline silicotitanate cartridges. Tests results with crystalline silicotitanate impregnated membrane cartridges for cesium-137 decontamination are currently being re-evaluated. Based on these preliminary findings we conclude that incorporating monosodium titanate and crystalline silicotitanate sorbents into membranes represent a promising method for the semicontinuous removal of radioisotopes of strontium and cesium from nuclear waste solutions.

  20. The component slope linear model for calculating intensive partial molar properties /application to waste glasses and aluminate solutions

    SciTech Connect (OSTI)

    Reynolds, Jacob G. [Washington River Protection Solutions, LLC, Richland, WA (United States)

    2013-01-11T23:59:59.000Z

    Partial molar properties are the changes occurring when the fraction of one component is varied while the fractions of all other component mole fractions change proportionally. They have many practical and theoretical applications in chemical thermodynamics. Partial molar properties of chemical mixtures are difficult to measure because the component mole fractions must sum to one, so a change in fraction of one component must be offset with a change in one or more other components. Given that more than one component fraction is changing at a time, it is difficult to assign a change in measured response to a change in a single component. In this study, the Component Slope Linear Model (CSLM), a model previously published in the statistics literature, is shown to have coefficients that correspond to the intensive partial molar properties. If a measured property is plotted against the mole fraction of a component while keeping the proportions of all other components constant, the slope at any given point on a graph of this curve is the partial molar property for that constituent. Actually plotting this graph has been used to determine partial molar properties for many years. The CSLM directly includes this slope in a model that predicts properties as a function of the component mole fractions. This model is demonstrated by applying it to the constant pressure heat capacity data from the NaOH-NaAl(OH){sub 4}-H{sub 2}O system, a system that simplifies Hanford nuclear waste. The partial molar properties of H{sub 2}O, NaOH, and NaAl(OH){sub 4} are determined. The equivalence of the CSLM and the graphical method is verified by comparing results determined by the two methods. The CSLM model has been previously used to predict the liquidus temperature of spinel crystals precipitated from Hanford waste glass. Those model coefficients are re-interpreted here as the partial molar spinel liquidus temperature of the glass components.

  1. Purification of alkaline solutions and wastes from actinides and technetium by coprecipitation with some carriers using the method of appearing reagents: Final Report

    SciTech Connect (OSTI)

    Peretrukhin, V.F.; Silin, V.I.; Kareta, A.V.; Gelis, A.V.; Shilov, V.P.; German, K.E.; Firsova, E.V.; Maslennikov, A.G.; Trushina, V.E. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Physical Chemistry

    1998-09-01T23:59:59.000Z

    The coprecipitation of transuranium elements (TRU) and technetium from alkaline solutions and from simulants of Hanford Site tank wastes has been studied in reducing and oxidizing conditions on uranium(IV,VI) hydroxocompounds, tetraalkylammonium perrhenate and perchlorate, and on hydroxides of Fe(III), Co(III), Mn(II), and Cr(III) using the method of appearing reagents (MAR). Coprecipitations in alkaline solution have been shown to give high decontamination factors (DF) at low content of carrier and in the presence of high salt concentrations. Uranium(IV) hydroxide in concentrations higher than 3 {times} 10{sup {minus}3} M coprecipitates Pu and Cm in any oxidation state from 0.2 to 4 M NaOH with DFs of 110 to 1000 and Np and Tc with DFs of 51 to 176. Technetium (VII) coprecipitates with (5 to 8) {times} 10{sup {minus}4} M tetrabutylammonium (TBA) perrhenate in 0.01 to 0.02 M TBA hydroxide from 0.5 to 1.5 M NaOH to give DFs of 150 to 200. Coprecipitations of Np and Pu with Co(OH){sub 3}, Fe(OH){sub 3}, Cr(OH){sub 3}, and Mn(OH){sub 2} obtained by the MAR from precursors in the range from pH 10.5 to 0.4 M NaOH give DFs from 80 to 400.

  2. Initial comparison of leach behavior between fully radioactive and simulated nuclear waste glasses through long-term testing. Part 1, Solution analysis

    SciTech Connect (OSTI)

    Feng, Xiangdong; Bates, J.K.

    1992-04-01T23:59:59.000Z

    A comparison of glass reactivity between radioactive sludge based and simulated nuclear waste glasses has been made through long-term testing of both glass types for SRL 165, SRL 131, and SRL 200 frit compositions. The data demonstrate that for time periods through 280 days, differences in elemental release to solution up to 400% are observed. However, in general, differences in glass reactivity as measured by the release of boron, lithium, and sodium are less than a factor of two. The differences in reactivity are not large enough to alter the order of glass durability for the different compositions or to change the controlling glass dissolution mechanism. A radiation effect exists, mainly in the influence on the leachate pH, which in turn affects the glass reaction mechanism and rate. The differences in reactivity between fully radioactive and the simulated glasses can be reasonably explained if the controlling reaction mechanism is accounted for. Those differences are glass composition and leaching mechanism dependent. Lithium is found to have the highest elemental release in an ion-exchange dominated glass reaction process, while lithium has a lower release than boron and sodium in a matrix dissolution dominated process, where boron and sodium are usually among the most concentrated solution species.

  3. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions

    SciTech Connect (OSTI)

    Turner, J.P.; Hasfurther, V.

    1992-05-04T23:59:59.000Z

    The scope of the research program and the continuation is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 [times] 3.0 [times] 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by Rio Blanco Oil Shale Co., Inc. (RBOSC) through a separate cooperative agreement with the University of Wyoming (UW) to carry out this study. Three of the lysimeters were established at the RBOSC Tract C-a in the Piceance Basin of Colorado. Two lysimeters were established in the Environmental Simulation Laboratory (ESL) at UW. The ESL was specifically designed and constructed so that a large range of climatic conditions could be physically applied to the processed oil shale which was filled in the lysimeter cells.

  4. Radioactive Waste Radioactive Waste

    E-Print Network [OSTI]

    Slatton, Clint

    form · Separate liquid from solid · Radionuclide · Separate all but H3/C14 #12;#12;Radioactive Waste;Radioactive Waste H3/C14 solids Type B (non-incinerable) metal glass hazardous materials #12;#12;Radioactive#12;Radioactive Waste at UF Bldg 831 392-8400 #12;Radioactive Waste · Program is designed to

  5. Method for aqueous radioactive waste treatment

    DOE Patents [OSTI]

    Bray, L.A.; Burger, L.L.

    1994-03-29T23:59:59.000Z

    Plutonium, strontium, and cesium found in aqueous waste solutions resulting from nuclear fuel processing are removed by contacting the waste solutions with synthetic zeolite incorporating up to about 5 wt % titanium as sodium titanate in an ion exchange system. More than 99.9% of the plutonium, strontium, and cesium are removed from the waste solutions. 3 figures.

  6. Method for aqueous radioactive waste treatment

    DOE Patents [OSTI]

    Bray, Lane A. (Richland, WA); Burger, Leland L. (Richland, WA)

    1994-01-01T23:59:59.000Z

    Plutonium, strontium, and cesium found in aqueous waste solutions resulting from nuclear fuel processing are removed by contacting the waste solutions with synthetic zeolite incorporating up to about 5 wt % titanium as sodium titanate in an ion exchange system. More than 99.9% of the plutonium, strontium, and cesium are removed from the waste solutions.

  7. Waste and Recycling

    ScienceCinema (OSTI)

    McCarthy, Kathy

    2013-05-28T23:59:59.000Z

    Nuclear engineer Dr. Kathy McCarthy talks about nuclear energy, the challenge of nuclear waste and the research aimed at solutions. For more information about nuclear energy research, visit http://www.facebook.com/idahonationallaboratory.

  8. Heidi Ochsner Lakin Garth Cadmus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    commutated motors (ECMs) for display cases, network PC power management, and light-emitting diode (LED) traffic signals. However, reviews of both the 6thPlan and RTF UES...

  9. Heidi Ochsner Lakin Garth Cadmus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cn SunnybankD.jpgHanfordDepartment ofHeat TransferStartup America

  10. Investigation on the coprecipitation of transuranium elements from alkaline solutions by the method of appearing reagents. Study of the effects of waste components on decontamination from Np(IV) and Pu(IV)

    SciTech Connect (OSTI)

    Bessonov, A.A.; Budantseva, N.A.; Gelis, A.V.; Nikonov, M.V.; Shilov, V.P. [Russian Academy of Sciences, Moscow (Russian Federation). Institute of Physical Chemistry

    1997-09-01T23:59:59.000Z

    The third stage of the study on the homogeneous coprecipitation of neptunium and plutonium from alkaline high-level radioactive waste solutions by the Method of Appearing Reagents has been completed. Alkaline radioactive wastes exist at the U.S. Department of Energy Hanford Site. The recent studies investigated the effects of neptunium chemical reductants, plutonium(IV) concentration, and the presence of bulk tank waste solution components on the decontamination from tetravalent neptunium and plutonium achieved by homogeneous coprecipitation. Data on neptunium reduction to its tetravalent state in alkaline solution of different NaOH concentrations are given. Eleven reductants were tested to find those most suited to remove neptunium, through chemical reduction, from alkaline solution by homogeneous coprecipitation. Hydrazine, VOSO{sub 4}, and Na{sub 2}S{sub 2}O{sub 4} were found to be the most effective reductants. The rates of reduction with these reductants were comparable with the kinetics of carrier formation. Solution decontamination factors of about 400 were attained for 10{sup -6}M neptunium. Coprecipitation of plutonium(IV) with carriers obtained as products of thermal hydrolysis, redox transformations, and catalytic decomposition of [Co(NH{sub 3}){sub 6}]{sup 3+}, [Fe(CN){sub 5}NO]{sup 2-}, Cr(NO{sub 3}){sub 3}, KMnO{sub 4}, and Li{sub 4}UO{sub 2}(O{sub 2}){sub 3} was studied and results are described. Under optimum conditions, a 100-fold decrease of plutonium concentration was possible with each of these reagents.

  11. Modeling Coupled Processes in Clay Formations for Radioactive Waste Disposal

    E-Print Network [OSTI]

    Liu, Hui-Hai

    2010-01-01T23:59:59.000Z

    sorption including waste heat, hyperalkaline solutions frome.g. , heat production from the decay of the waste, re-waste packages along the tunnels, to achieve a distributed heat

  12. Treatment of halogen-containing waste and other waste materials

    DOE Patents [OSTI]

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1997-03-18T23:59:59.000Z

    A process is described for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes. 3 figs.

  13. Treatment of halogen-containing waste and other waste materials

    DOE Patents [OSTI]

    Forsberg, Charles W. (Oak Ridge, TN); Beahm, Edward C. (Oak Ridge, TN); Parker, George W. (Concord, TN)

    1997-01-01T23:59:59.000Z

    A process for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes.

  14. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions. Final report, November 1995

    SciTech Connect (OSTI)

    NONE

    1995-12-31T23:59:59.000Z

    A study is described on the hydrological and geotechnical behavior of an oil shale solid waste. The objective was to obtain information which can be used to assess the environmental impacts of oil shale solid waste disposal in the Green River Basin. The spent shale used in this study was combusted by the Lurgi-Ruhrgas process by Rio Blanco Oil Shale Company, Inc. Laboratory bench-scale testing included index properties, such as grain size distribution and Atterberg limits, and tests for engineering properties including hydraulic conductivity and shear strength. Large-scale tests were conducted on model spent shale waste embankments to evaluate hydrological response, including infiltration, runoff, and seepage. Large-scale tests were conducted at a field site in western Colorado and in the Environmental Simulation Laboratory (ESL)at the University of Wyoming. The ESL tests allowed the investigators to control rainfall and temperature, providing information on the hydrological response of spent shale under simulated severe climatic conditions. All experimental methods, materials, facilities, and instrumentation are described in detail, and results are given and discussed. 34 refs.

  15. Phosphate bonded structural products from high volume wastes

    DOE Patents [OSTI]

    Singh, D.; Wagh, A.S.

    1998-12-08T23:59:59.000Z

    A method to produce structural products from benign waste is provided comprising mixing pretreated oxide with phosphoric acid to produce an acid solution, mixing the acid solution with waste particles to produce a slurry, and allowing the slurry to cure. The invention also provides for a structural material comprising waste particles enveloped by an inorganic binder. 1 fig.

  16. Radioactive waste processing apparatus

    DOE Patents [OSTI]

    Nelson, Robert E. (Lombard, IL); Ziegler, Anton A. (Darien, IL); Serino, David F. (Maplewood, MN); Basnar, Paul J. (Western Springs, IL)

    1987-01-01T23:59:59.000Z

    Apparatus for use in processing radioactive waste materials for shipment and storage in solid form in a container is disclosed. The container includes a top, and an opening in the top which is smaller than the outer circumference of the container. The apparatus includes an enclosure into which the container is placed, solution feed apparatus for adding a solution containing radioactive waste materials into the container through the container opening, and at least one rotatable blade for blending the solution with a fixing agent such as cement or the like as the solution is added into the container. The blade is constructed so that it can pass through the opening in the top of the container. The rotational axis of the blade is displaced from the center of the blade so that after the blade passes through the opening, the blade and container can be adjusted so that one edge of the blade is adjacent the cylindrical wall of the container, to insure thorough mixing. When the blade is inside the container, a substantially sealed chamber is formed to contain vapors created by the chemical action of the waste solution and fixant, and vapors emanating through the opening in the container.

  17. Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste

    E-Print Network [OSTI]

    Tsien, Roger Y.

    Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste Description Biohazard symbol Address: UCSD 9500 Gilman Drive La Jolla, CA 92093 (858) 534) and identity of liquid waste Biohazard symbol Address: UCSD 9500 Gilman Drive La Jolla, CA 92093 (858) 534

  18. Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste

    E-Print Network [OSTI]

    Tsien, Roger Y.

    2/2009 Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste Description Biohazard symbol Address: UCSD 200 West Arbor Dr. San Diego, CA 92103 (619 (9:1) OR Biohazard symbol (if untreated) and identity of liquid waste Biohazard symbol Address

  19. Efficacy of a solution-based approach for making sodalite waste forms for an oxide reduction salt utilized in the reprocessing of used uranium oxide fuel

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Riley, Brian J.; Pierce, David A.; Frank, Steven M.; Matyáš, Josef; Burns, Carolyne A.

    2015-04-01T23:59:59.000Z

    This paper describes the various approaches attempted to make solution-derived sodalite with a LiCl-Li2O oxide reduction salt used to dissolve used uranium oxide fuel so the uranium can be recovered and recycled. The approaches include modified sol-gel and solutionbased synthesis processes. As-made products were mixed with 5 and 10 mass% of a Na2O-B2O3- SiO2 glass binder and these, along with product without a binder, were heated using either a cold-press-and-sinter method or hot uniaxial pressing. The results demonstrate the limitation of sodalite yield due to the fast intermediate reactions between Na+ and Cl- to form halite in solution and Li2Omore »and SiO2 to form lithium silicates (e.g., Li2SiO3 or Li2Si2O5) in the calcined and sintered pellets. The results show that pellets can be made with high sodalite fractions in the crystalline product (~92 mass%) and low porosities using a solution-based approach and this LiCl-Li2O salt but that the incorporation of Li into the sodalite is low.« less

  20. Efficacy of a Solution-Based Approach for Making Sodalite Waste Forms for an Oxide Reduction Salt Used in the Reprocessing of Used Uranium Oxide Fuel

    SciTech Connect (OSTI)

    Brian J. Riley; David A. Pierce; Steven M. Frank; Josef Matyas; Carolyne A. Burns

    2014-09-01T23:59:59.000Z

    This paper describes the various approaches attempted to make solution-derived sodalite with a LiCl-Li2O oxide reduction salt used to dissolve used uranium oxide fuel so the uranium can be recovered and recycled. The approaches include modified sol-gel and solutionbased synthesis processes. As-made products were mixed with 5 and 10 mass% of a Na2O-B2O3- SiO2 glass binder and these, along with product without a binder, were heated using either a cold-press-and-sinter method or hot uniaxial pressing. The results demonstrate the limitation of sodalite yield due to the fast intermediate reactions between Na+ and Cl- to form halite in solution and Li2O and SiO2 to form lithium silicates (e.g., Li2SiO3 or Li2Si2O5) in the calcined and sintered pellets. The results show that pellets can be made with high sodalite fractions in the crystalline product (~92 mass%) and low porosities using a solution-based approach and this LiCl-Li2O salt but that the incorporation of Li into the sodalite is low.

  1. The Waste Isolation Pilot Plant Hazardous Waste Facility Permit...

    Office of Environmental Management (EM)

    The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste Analysis Plan The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste Analysis Plan This...

  2. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions. Third quarterly report, April 1993--June 1993

    SciTech Connect (OSTI)

    Reeves, T.L.; Turner, J.P.; Rangarajan, S.; Skinner, Q.D.; Hasfurther, V.

    1993-08-11T23:59:59.000Z

    This report presents research objectives, discusses activities, and presents technical progress for the period April 1, 1993 through June 31, 1993 on Contract No. DE-FC21-86LC11084 with the Department of Energy, Laramie Project Office. The scope of the research program and the continuation is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 {times} 3.0 {times} 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by Rio Blanco Oil Shale Co., Inc. (RBOSC) through a separate cooperative agreement with the University of Wyoming (UW) to carry out this study. Three of the lysimeters were established at the RBOSC Tract C-a in the Piceance Basin of Colorado. Two lysimeters were established in the Environmental Simulation Laboratory (ESL) at UW. The ESL was specifically designed and constructed so that a large range of climatic conditions could be physically applied to the processed oil shale which was filled in the lysimeter cells.

  3. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions. Fourth quarterly report, July--September 1993

    SciTech Connect (OSTI)

    Turner, J.P.; Hasfurther, V.

    1993-10-08T23:59:59.000Z

    The scope of the research program and the continuation is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 {times} 3.0 {times} 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by Rio Blanco Oil Shale Co., Inc. (RBOSC) through a separate cooperative agreement with the University of Wyoming (UW) to carry out this study. Three of the lysimeters were established at the RBOSC Tract C-a in the Piceance Basin of Colorado. Two lysimeters were established in the Environmental Simulation Laboratory (ESL) at UW. The ESL was specifically designed and constructed so that a large range of climatic conditions could be physically applied to the processed oil shale which was filled in the lysimeter cells.

  4. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions. Second quarterly report, January 1, 1992--March 31, 1992

    SciTech Connect (OSTI)

    Turner, J.P.; Hasfurther, V.

    1992-05-04T23:59:59.000Z

    The scope of the research program and the continuation is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 {times} 3.0 {times} 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by Rio Blanco Oil Shale Co., Inc. (RBOSC) through a separate cooperative agreement with the University of Wyoming (UW) to carry out this study. Three of the lysimeters were established at the RBOSC Tract C-a in the Piceance Basin of Colorado. Two lysimeters were established in the Environmental Simulation Laboratory (ESL) at UW. The ESL was specifically designed and constructed so that a large range of climatic conditions could be physically applied to the processed oil shale which was filled in the lysimeter cells.

  5. Recycling of CdTe photovoltaic waste

    DOE Patents [OSTI]

    Goozner, Robert E. (Charlotte, NC); Long, Mark O. (Charlotte, NC); Drinkard, Jr., William F. (Charlotte, NC)

    1999-01-01T23:59:59.000Z

    A method for extracting and reclaiming metals from scrap CdTe photovoltaic cells and manufacturing waste by leaching the waste with a leaching solution comprising nitric acid and water, skimming any plastic material from the top of the leaching solution, separating the glass substrate from the liquid leachate and electrolyzing the leachate to separate Cd from Te, wherein the Te is deposits onto a cathode while the Cd remains in solution.

  6. Hazardous Waste Program (Alabama)

    Broader source: Energy.gov [DOE]

    This rule states criteria for identifying the characteristics of hazardous waste and for listing hazardous waste, lists of hazardous wastes, standards for the management of hazardous waste and...

  7. Extraction of cesium and strontium from nuclear waste

    DOE Patents [OSTI]

    Davis, Jr., Milton W. (Lexington, SC); Bowers, Jr., Charles B. (Columbia, SC)

    1988-01-01T23:59:59.000Z

    Cesium is extracted from acidified nuclear waste by contacting the waste with a bis 4,4'(5) [1-hydroxy-2-ethylhexyl]benzo 18-crown-6 compound and a cation exchanger in a matrix solution. Strontium is extracted from acidified nuclear waste by contacting the waste with a bis 4,4'(5') [1-hydroxyheptyl]cyclohexo 18-crown-6 compound, and a cation exchanger in a matrix solution.

  8. Extraction of cesium and strontium from nuclear waste

    DOE Patents [OSTI]

    Davis, M.W. Jr.; Bowers, C.B. Jr.

    1988-06-07T23:59:59.000Z

    Cesium is extracted from acidified nuclear waste by contacting the waste with a bis 4,4[prime](5) [1-hydroxy-2-ethylhexyl]benzo 18-crown-6 compound and a cation exchanger in a matrix solution. Strontium is extracted from acidified nuclear waste by contacting the waste with a bis 4,4[prime](5[prime]) [1-hydroxyheptyl]cyclohexo 18-crown-6 compound, and a cation exchanger in a matrix solution. 3 figs.

  9. Bioelectrochemical Integration of Waste Heat Recovery, Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioelectrochemical Integration of Waste Heat Recovery, Waste-to-Energy Conversion, and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes...

  10. Bioelectrochemical Integration of Waste Heat Recovery, Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MHRC System Concept ADVANCED MANUFACTURING OFFICE Bioelectrochemical Integration of Waste Heat Recovery, Waste-to-Energy Conversion, and Waste-to-Chemical Conversion with...

  11. Radioactive waste processing apparatus

    DOE Patents [OSTI]

    Nelson, R.E.; Ziegler, A.A.; Serino, D.F.; Basnar, P.J.

    1985-08-30T23:59:59.000Z

    Apparatus for use in processing radioactive waste materials for shipment and storage in solid form in a container is disclosed. The container includes a top, and an opening in the top which is smaller than the outer circumference of the container. The apparatus includes an enclosure into which the container is placed, solution feed apparatus for adding a solution containing radioactive waste materials into the container through the container opening, and at least one rotatable blade for blending the solution with a fixing agent such as cement or the like as the solution is added into the container. The blade is constructed so that it can pass through the opening in the top of the container. The rotational axis of the blade is displaced from the center of the blade so that after the blade passes through the opening, the blade and container can be adjusted so that one edge of the blade is adjacent the cylindrical wall of the container, to insure thorough mixing. When the blade is inside the container, a substantially sealed chamber is formed to contain vapors created by the chemical action of the waste solution and fixant, and vapors emanating through the opening in the container. The chamber may be formed by placing a removable extension over the top of the container. The extension communicates with the apparatus so that such vapors are contained within the container, extension and solution feed apparatus. A portion of the chamber includes coolant which condenses the vapors. The resulting condensate is returned to the container by the force of gravity.

  12. MUSHROOM WASTE MANAGEMENT PROJECT LIQUID WASTE MANAGEMENT

    E-Print Network [OSTI]

    of solid and liquid wastes generated at mushroom producing facilities. Environmental guidelines#12;MUSHROOM WASTE MANAGEMENT PROJECT LIQUID WASTE MANAGEMENT PHASE I: AUDIT OF CURRENT PRACTICE The Mushroom Waste Management Project (MWMP) was initiated by Environment Canada, the BC Ministry

  13. Secondary Waste Form Down-Selection Data Package—Fluidized Bed Steam Reforming Waste Form

    SciTech Connect (OSTI)

    Qafoku, Nikolla; Westsik, Joseph H.; Strachan, Denis M.; Valenta, Michelle M.; Pires, Richard P.

    2011-09-12T23:59:59.000Z

    The Hanford Site in southeast Washington State has 56 million gallons of radioactive and chemically hazardous wastes stored in 177 underground tanks (ORP 2010). The U.S. Department of Energy (DOE), Office of River Protection (ORP), through its contractors, is constructing the Hanford Tank Waste Treatment and Immobilization Plant (WTP) to convert the radioactive and hazardous wastes into stable glass waste forms for disposal. Within the WTP, the pretreatment facility will receive the retrieved waste from the tank farms and separate it into two treated process streams. These waste streams will be vitrified, and the resulting waste canisters will be sent to offsite (high-level waste [HLW]) and onsite (immobilized low-activity waste [ILAW]) repositories. As part of the pretreatment and ILAW processing, liquid secondary wastes will be generated that will be transferred to the Effluent Treatment Facility (ETF) on the Hanford Site for further treatment. These liquid secondary wastes will be converted to stable solid waste forms that will be disposed of in the Integrated Disposal Facility (IDF). To support the selection of a waste form for the liquid secondary wastes from WTP, Washington River Protection Solutions (WRPS) has initiated secondary waste form testing work at Pacific Northwest National Laboratory (PNNL). In anticipation of a down-selection process for a waste form for the Solidification Treatment Unit to be added to the ETF, PNNL is developing data packages to support that down-selection. The objective of the data packages is to identify, evaluate, and summarize the existing information on the four waste forms being considered for stabilizing and solidifying the liquid secondary wastes. At the Hanford Site, the FBSR process is being evaluated as a supplemental technology for treating and immobilizing Hanford LAW radioactive tank waste and for treating secondary wastes from the WTP pretreatment and LAW vitrification processes.

  14. The Bow Leg Hopping Robot Garth Zeglin

    E-Print Network [OSTI]

    Zeglin, Garth

    structure, elasticity, and energy storage. The high forces of ground impact are carried conservatively that is automatically released during stance. During ground contact all the strings become slack, and the hopper bounces passively off the ground with no forces or torques supported by actuators. The hip joint is attached

  15. The Bow Leg Hopping Robot Garth Zeglin

    E-Print Network [OSTI]

    Zeglin, Garth

    that is automatically released during stance. During ground contact all the strings become slack, and the hopper bounces student. This thesis would not have been possible without his guidance and resources, and I am grateful

  16. Camargo Waste to Energy Power Plant Hamed Zamenian1

    E-Print Network [OSTI]

    Zhou, Yaoqi

    are discarded in landfills. The Camargo Waste to Energy (WTE) power station is an opportunity to continue pyrolysis technology to convert organic-based wastes into valuable products like pyro-gas, pyro products. This facility provides a nearly zero-landfill carbon neutral solution to the waste management

  17. Hydraulic waste energy recovery

    SciTech Connect (OSTI)

    Lederer, C.C.; Thomas, A.H.; McGuire, J.L. (Detroit Buildings and Safety Engineering Dept., MI (USA))

    1990-12-01T23:59:59.000Z

    Water distribution systems are typically a municipality's largest consumer of energy and greatest expense. The water distribution network has varying pressure requirements due to the age of the pipeline and topographical differences. Certain circumstances require installation of pressure reducing devices in the pipeline to lower the water pressure in the system. The consequence of this action is that the hydraulic energy supplied by the high lift or booster pumps is wasted in the process of reducing the pressure. A possible solution to capture the waste hydraulic energy is to install an in-line electricity generating turbine. Energy recovery using in-line turbine systems is an emerging technology. Due to the lack of technical and other relevant information on in-line turbine system installations, questions of constructability and legal issues over the power service contract have yet to be answered. This study seeks to resolve these questions and document the findings so that other communities may utilize this information. 10 figs.

  18. Stability of High-Level Waste Forms

    SciTech Connect (OSTI)

    Besmann, Theodore M.; Vienna, John D.

    2006-11-10T23:59:59.000Z

    The objective of the proposed effort is to use a new approach to develop solution models of complex waste glass systems and spent fuel that are predictive with regard to composition, phase separation, and volatility. The effort will also yield thermodynamic values for waste components that are fundamentally required for corrosion models used to predict the leaching/corrosion behavior for waste glass and spent fuel material. This basic information and understanding of chemical behavior can subsequently be used directly in computational models of leaching and transport in geologic media, in designing and engineering waste forms and barrier systems, and in prediction of chemical interactions.

  19. Biochar: A Solution to Oakland's Green Waste?

    E-Print Network [OSTI]

    Villar, Amanda

    2012-01-01T23:59:59.000Z

    house gas emissions for composting has often been found toproblem is to do both composting and pyrolysis at Groverpyrolyis plant and the composting facility. This extra cost

  20. Biochar: A Solution to Oakland's Green Waste?

    E-Print Network [OSTI]

    Villar, Amanda

    2012-01-01T23:59:59.000Z

    thousands of years, unlike carbon in compost and thus may bebetter alternative than compost in reaching a city’s carbonor Zbest and turned into compost. It is then then sold to

  1. Biochar: A Solution to Oakland's Green Waste?

    E-Print Network [OSTI]

    Villar, Amanda

    2012-01-01T23:59:59.000Z

    produces by- products, syngas and bio-oil, which can bebyproducts of pyrolyis, syngas and bio-oil. Additionally,produced from bio-oil and syngas [7] were used to determine

  2. Waste processing air cleaning

    SciTech Connect (OSTI)

    Kriskovich, J.R.

    1998-07-27T23:59:59.000Z

    Waste processing and preparing waste to support waste processing relies heavily on ventilation. Ventilation is used at the Hanford Site on the waste storage tanks to provide confinement, cooling, and removal of flammable gases.

  3. HAZARDOUS WASTE [Written Program

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    HAZARDOUS WASTE MANUAL [Written Program] Cornell University [10/7/13 #12;Hazardous Waste Program................................................... 8 3.0 MINIMIZING HAZARDOUS WASTE GENERATION.........................................................10 4.0 HAZARDOUS WASTE GENERATOR REQUIREMENTS.....................................................10

  4. Waste-to-Energy 25 Years Later: Technology with a Past, Present

    E-Print Network [OSTI]

    Columbia University

    solution Quite a Ride: UpsQuite a Ride: Ups MacArthur Resource Recovery Facility Islip, New York #12; Waste-to-energy Falls, New York #12; European Union: waste-to- energy preferable to landfills European Union directives and Consulting Federation of New York Solid Waste Associations Solid Waste/Recycling Conference Federation of New

  5. Waste Disposal (Illinois)

    Broader source: Energy.gov [DOE]

    This article lays an outline of waste disposal regulations, permits and fees, hazardous waste management and underground storage tank requirements.

  6. Precipitation-adsorption process for the decontamination of nuclear waste supernates

    DOE Patents [OSTI]

    Lee, Lien-Mow (North Augusta, SC); Kilpatrick, Lester L. (Aiken, SC)

    1984-01-01T23:59:59.000Z

    High-level nuclear waste supernate is decontaminated of cesium by precipitation of the cesium and potassium with sodium tetraphenyl boron. Simultaneously, strontium-90 is removed from the waste supernate sorption of insoluble sodium titanate. The waste solution is then filtered to separate the solution decontaminated of cesium and strontium.

  7. Precipitation-adsorption process for the decontamination of nuclear waste supernates

    DOE Patents [OSTI]

    Lee, L.M.; Kilpatrick, L.L.

    1982-05-19T23:59:59.000Z

    High-level nuclear waste supernate is decontaminated of cesium by precipitation of the cesium and potassium with sodium tetraphenyl boron. Simultaneously, strontium-90 is removed from the waste supernate sorption of insoluble sodium titanate. The waste solution is then filtered to separate the solution decontaminated of cesium and strontium.

  8. Method for treating liquid wastes

    DOE Patents [OSTI]

    Katti, K.V.; Volkert, W.A.; Singh, P.; Ketring, A.R.

    1995-12-26T23:59:59.000Z

    The method of treating liquid waste in a media is accomplished by exposing the media to phosphinimines and sequestering {sup 99}Tc from the media by the phosphinimine (PN) functionalities. The system for treating the liquid waste in the media includes extraction of {sup 99}TcO{sub 4}{sup {minus}} from aqueous solutions into organic solvents or mixed organic/polar media, extraction of {sup 99}Tc from solutions on a solid matrix by using a container containing PN functionalities on solid matrices including an inlet and outlet for allowing flow of media through an immobilized phosphinimine ligand system contained within the container. Also, insoluble suspensions of phosphinimine functionalities on solid matrices in liquid solutions or present on supported liquid membranes (SLM) can be used to sequester {sup 99}Tc from those liquids. 6 figs.

  9. Method for treating liquid wastes

    DOE Patents [OSTI]

    Katti, Kattesh V. (Columbia, MO); Volkert, Wynn A. (Columbia, MO); Singh, Prahlad (Columbia, MO); Ketring, Alan R. (Columbia, MO)

    1995-01-01T23:59:59.000Z

    The method of treating liquid waste in a media is accomplished by exposing the media to phosphinimines and sequestering .sup.99 Tc from the media by the phosphinimine (PN) functionalities. The system for treating the liquid waste in the media includes extraction of .sup.99 TcO.sub.4.sup.- from aqueous solutions into organic solvents or mixed organic/polar media, extraction of .sup.99 Tc from solutions on a solid matrix by using a container containing PN functionalities on solid matrices including an inlet and outlet for allowing flow of media through an immobilized phosphinimine ligand system contained within the container. Also, insoluble suspensions of phosphinimine functionalities on solid matrices in liquid solutions or present on supported liquid membranes (SLM) can be used to sequester .sup.99 Tc from those liquids.

  10. Recycling Of Cis Photovoltaic Waste

    DOE Patents [OSTI]

    Drinkard, Jr., William F. (Charlotte, NC); Long, Mark O. (Charlotte, NC); Goozner; Robert E. (Charlotte, NC)

    1998-07-14T23:59:59.000Z

    A method for extracting and reclaiming metals from scrap CIS photovoltaic cells and associated photovoltaic manufacturing waste by leaching the waste with dilute nitric acid, skimming any plastic material from the top of the leaching solution, separating glass substrate from the leachate, electrolyzing the leachate to plate a copper and selenium metal mixture onto a first cathode, replacing the cathode with a second cathode, re-electrolyzing the leachate to plate cadmium onto the second cathode, separating the copper from selenium, and evaporating the depleted leachate to yield a zinc and indium containing solid.

  11. Unresolved issues for the disposal of remote-handled transuranic waste in the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Silva, M.K.; Neill, R.H.

    1994-09-01T23:59:59.000Z

    The purpose of the Waste Isolation Pilot Plant (WIPP) is to dispose of 176,000 cubic meters of transuranic (TRU) waste generated by the defense activities of the US Government. The envisioned inventory contains approximately 6 million cubic feet of contact-handled transuranic (CH TRU) waste and 250,000 cubic feet of remote handled transuranic (RH TRU) waste. CH TRU emits less than 0.2 rem/hr at the container surface. Of the 250,000 cubic feet of RH TRU waste, 5% by volume can emit up to 1,000 rem/hr at the container surface. The remainder of RH TRU waste must emit less than 100 rem/hr. These are major unresolved problems with the intended disposal of RH TRU waste in the WIPP. (1) The WIPP design requires the canisters of RH TRU waste to be emplaced in the walls (ribs) of each repository room. Each room will then be filled with drums of CH TRU waste. However, the RH TRU waste will not be available for shipment and disposal until after several rooms have already been filled with drums of CH TRU waste. RH TRU disposal capacity will be loss for each room that is first filled with CH TRU waste. (2) Complete RH TRU waste characterization data will not be available for performance assessment because the facilities needed for waste handling, waste treatment, waste packaging, and waste characterization do not yet exist. (3) The DOE does not have a transportation cask for RH TRU waste certified by the US Nuclear Regulatory Commission (NRC). These issues are discussed along with possible solutions and consequences from these solutions. 46 refs.

  12. Process for recovery of palladium from nuclear fuel reprocessing wastes

    DOE Patents [OSTI]

    Campbell, D.O.; Buxton, S.R.

    1980-06-16T23:59:59.000Z

    Palladium is selectively removed from spent nuclear fuel reprocessing waste by adding sugar to a strong nitric acid solution of the waste to partially denitrate the solution and cause formation of an insoluble palladium compound. The process includes the steps of: (a) adjusting the nitric acid content of the starting solution to about 10 M; (b) adding 50% sucrose solution in an amount sufficient to effect the precipitation of the palladium compound; (c) heating the solution at reflux temperature until precipitation is complete; and (d) centrifuging the solution to separate the precipitated palladium compound from the supernatant liquid.

  13. Transfer Lines to Connect Liquid Waste Facilities and Salt Waste...

    Office of Environmental Management (EM)

    Transfer Lines to Connect Liquid Waste Facilities and Salt Waste Processing Facility Transfer Lines to Connect Liquid Waste Facilities and Salt Waste Processing Facility October...

  14. Chemical species of plutonium in Hanford radioactive tank waste

    SciTech Connect (OSTI)

    Barney, G.S.

    1997-10-22T23:59:59.000Z

    Large quantities of radioactive wastes have been generated at the Hanford Site over its operating life. The wastes with the highest activities are stored underground in 177 large (mostly one million gallon volume) concrete tanks with steel liners. The wastes contain processing chemicals, cladding chemicals, fission products, and actinides that were neutralized to a basic pH before addition to the tanks to prevent corrosion of the steel liners. Because the mission of the Hanford Site was to provide plutonium for defense purposes, the amount of plutonium lost to the wastes was relatively small. The best estimate of the amount of plutonium lost to all the waste tanks is about 500 kg. Given uncertainties in the measurements, some estimates are as high as 1,000 kg (Roetman et al. 1994). The wastes generally consist of (1) a sludge layer generated by precipitation of dissolved metals from aqueous wastes solutions during neutralization with sodium hydroxide, (2) a salt cake layer formed by crystallization of salts after evaporation of the supernate solution, and (3) an aqueous supernate solution that exists as a separate layer or as liquid contained in cavities between sludge or salt cake particles. The identity of chemical species of plutonium in these wastes will allow a better understanding of the behavior of the plutonium during storage in tanks, retrieval of the wastes, and processing of the wastes. Plutonium chemistry in the wastes is important to criticality and environmental concerns, and in processing the wastes for final disposal. Plutonium has been found to exist mainly in the sludge layers of the tanks along with other precipitated metal hydrous oxides. This is expected due to its low solubility in basic aqueous solutions. Tank supernate solutions do not contain high concentrations of plutonium even though some tanks contain high concentrations of complexing agents. The solutions also contain significant concentrations of hydroxide which competes with other potential complexants. The sodium nitrate and sodium phosphate salts that form most of the salt cake layers have little interaction with plutonium in the wastes and contain relatively small plutonium concentrations. For these reasons the authors consider plutonium species in the sludges and supernate solutions only. The low concentrations of plutonium in waste tank supernate solutions and in the solid sludges prevent identification of chemical species of plutonium by ordinary analytical techniques. Spectrophotometric measurements are not sensitive enough to identify plutons oxidation states or complexes in these waste solutions. Identification of solid phases containing plutonium in sludge solids by x-ray diffraction or by microscopic techniques would be extremely difficult. Because of these technical problems, plutonium speciation was extrapolated from known behavior observed in laboratory studies of synthetic waste or of more chemically simple systems.

  15. WASTE TO WATTS Waste is a Resource!

    E-Print Network [OSTI]

    Columbia University

    to Climate protection in light of the· Waste Framework Directive. The "energy package", e.g. the RenewablesWASTE TO WATTS Waste is a Resource! energy forum Case Studies from Estonia, Switzerland, Germany Bossart,· ABB Waste-to-Energy Plants Edmund Fleck,· ESWET Marcel van Berlo,· Afval Energie Bedrijf From

  16. Hanford Site annual dangerous waste report: Volume 1, Part 1, Generator dangerous waste report, dangerous waste

    SciTech Connect (OSTI)

    NONE

    1994-12-31T23:59:59.000Z

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation.

  17. Breaking the Code on Challenging Waste - 13267

    SciTech Connect (OSTI)

    Witzeman, John; Estes, Charles [URS - CH2M Oak Ridge LLC (United States)] [URS - CH2M Oak Ridge LLC (United States); White, Aaron [U.S. Department of Energy (United States)] [U.S. Department of Energy (United States)

    2013-07-01T23:59:59.000Z

    Mixed low-level wastes (MLLW) with no available path to treatment or disposal have been longstanding challenges for DOE facilities. Today, mixed wastes with no path to treatment or disposal frequently present themselves in the form of combinations of problematic matrixes, problematic EPA Hazardous Waste Codes, and security classification requirements. In order to successfully treat and disposition these challenging wastes, waste management personnel must be more inquisitive and challenge the status quo more than ever before. All aspects of the waste from how it was generated to how the waste is currently being managed must be revisited. Each fact, the basis of each decision, and each regulatory determination must be investigated and validated. Since many of the difficult waste streams were generated several years ago, it can be quite challenging to locate knowledgeable generators from the time of generation. Significant investigation is often required to obtain the needed information to evaluate legacy waste streams. Special attention must be paid to the little things that may not seem central to the issues being investigated. Solutions are sometimes found in these details. (authors)

  18. Waste Description Pounds Reduced,

    E-Print Network [OSTI]

    -labeled oligonucleotides Waste minimization 3,144 Radiological waste (396 ft3 ); Mixed waste (35 gallons); Hazardous Waste of radioactivity, thus avoiding radiological waste generation. This process won a 2008 DOE P2 Star Award environmentally friendly manor. BNL pays shipping fees to the recycling facility. Building demolition recycling

  19. Foaming and Antifoaming in Radioactive Waste Pretreatment and Immobilization Processes

    SciTech Connect (OSTI)

    Darsh T. Wasan; Alex D. Nikolov; D.P. Lamber; T. Bond Calloway; M.E. Stone

    2005-03-12T23:59:59.000Z

    Savannah River National Laboratory (SRNL) has reported severe foaminess in the bench scale evaporation of the Hanford River Protection - Waste Treatment Plant (RPP-WPT) envelope C waste. Excessive foaming in waste evaporators can cause carryover of radionuclides and non-radioactive waste to the condensate system. The antifoams used at Hanford and tested by SRNL are believed to degrade and become inactive in high pH solutions. Hanford wastes have been known to foam during evaporation causing excessive down time and processing delays.

  20. Comparison of Waste Feed Delivery Small Scale Mixing Demonstration Simulant to Hanford Waste

    SciTech Connect (OSTI)

    Wells, Beric E.; Gauglitz, Phillip A.; Rector, David R.

    2012-07-10T23:59:59.000Z

    The Hanford double-shell tank (DST) system provides the staging location for waste that will be transferred to the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Specific WTP acceptance criteria for waste feed delivery describe the physical and chemical characteristics of the waste that must be met before the waste is transferred from the DSTs to the WTP. One of the more challenging requirements relates to the sampling and characterization of the undissolved solids (UDS) in a waste feed DST because the waste contains solid particles that settle and their concentration and relative proportion can change during the transfer of the waste in individual batches. A key uncertainty in the waste feed delivery system is the potential variation in UDS transferred in individual batches in comparison to an initial sample used for evaluating the acceptance criteria. To address this uncertainty, a number of small-scale mixing tests have been conducted as part of Washington River Protection Solutions' Small Scale Mixing Demonstration (SSMD) project to determine the performance of the DST mixing and sampling systems. A series of these tests have used a five-part simulant composed of particles of different size and density and designed to be equal or more challenging than AY-102 waste. This five-part simulant, however, has not been compared with the broad range of Hanford waste, and thus there is an additional uncertainty that this simulant may not be as challenging as the most difficult Hanford waste. The purpose of this study is to quantify how the current five-part simulant compares to all of the Hanford sludge waste, and to suggest alternate simulants that could be tested to reduce the uncertainty in applying the current testing results to potentially more challenging wastes.

  1. Comparison of Waste Feed Delivery Small Scale Mixing Demonstration Simulant to Hanford Waste

    SciTech Connect (OSTI)

    Wells, Beric E.; Gauglitz, Phillip A.; Rector, David R.

    2011-09-01T23:59:59.000Z

    The Hanford double-shell tank (DST) system provides the staging location for waste that will be transferred to the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Specific WTP acceptance criteria for waste feed delivery describe the physical and chemical characteristics of the waste that must be met before the waste is transferred from the DSTs to the WTP. One of the more challenging requirements relates to the sampling and characterization of the undissolved solids (UDS) in a waste feed DST because the waste contains solid particles that settle and their concentration and relative proportion can change during the transfer of the waste in individual batches. A key uncertainty in the waste feed delivery system is the potential variation in UDS transferred in individual batches in comparison to an initial sample used for evaluating the acceptance criteria. To address this uncertainty, a number of small-scale mixing tests have been conducted as part of Washington River Protection Solutions' Small Scale Mixing Demonstration (SSMD) project to determine the performance of the DST mixing and sampling systems. A series of these tests have used a five-part simulant composed of particles of different size and density and designed to be equal or more challenging than AY-102 waste. This five-part simulant, however, has not been compared with the broad range of Hanford waste, and thus there is an additional uncertainty that this simulant may not be as challenging as the most difficult Hanford waste. The purpose of this study is to quantify how the current five-part simulant compares to all of the Hanford sludge waste, and to suggest alternate simulants that could be tested to reduce the uncertainty in applying the current testing results to potentially more challenging wastes.

  2. Modeling Ventilation in Multifamily Buildings John Markley, University of California, Davis -Western Cooling Efficiency Center

    E-Print Network [OSTI]

    California at Davis, University of

    Modeling Ventilation in Multifamily Buildings John Markley, University of California, Davis Efficiency Center Garth Torvestad, Benningfield Group, inc. ABSTRACT Proper ventilation is an essential that require special consideration in order to avoid excessive ventilation and energy waste. Two issues

  3. Central Waste Complex (CWC) Waste Analysis Plan

    SciTech Connect (OSTI)

    ELLEFSON, M.D.

    1999-12-01T23:59:59.000Z

    The purpose of this waste analysis plan (WAP) is to document the waste acceptance process, sampling methodologies, analytical techniques, and overall processes that are undertaken for waste accepted for storage at the Central Waste Complex (CWC), which is located in the 200 West Area of the Hanford Facility, Richland, Washington. Because dangerous waste does not include the source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge.

  4. Radioactive Waste Management (Minnesota)

    Broader source: Energy.gov [DOE]

    This section regulates the transportation and disposal of high-level radioactive waste in Minnesota, and establishes a Nuclear Waste Council to monitor the federal high-level radioactive waste...

  5. Permeability of consolidated incinerator facility wastes stabilized with portland cement

    SciTech Connect (OSTI)

    Walker, B.W.

    2000-04-19T23:59:59.000Z

    The Consolidated Incinerator Facility (CIF) at the Savannah River Site (SRS) burns low-level radioactive wastes and mixed wastes as a method of treatment and volume reduction. The CIF generates secondary waste, which consists of ash and offgas scrubber solution. Currently the ash is stabilized/solidified in the Ashcrete process. The scrubber solution (blowdown) is sent to the SRS Effluent Treatment Facility (ETF) for treatment as wastewater. In the past, the scrubber solution was also stabilized/solidified in the Ashcrete process as blowcrete, and will continue to be treated this way for listed waste burns and scrubber solutions that do not meet the ETF Waste Acceptance Criteria (WAC). The disposal plan for Ashcrete and special case blowcrete is to bury these containerized waste forms in shallow unlined trenches in E-Area. The WAC for intimately mixed, cement-based wasteforms intended for direct disposal specifies limits on compressive strength and permeability. Simulated waste and actual CIF ash and scrubber solution were mixed in the laboratory and cast into wasteforms for testing. Test results and related waste disposal consequences are given in this report.

  6. Waste Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1DOE AwardsDNitrate Salt Bearing Waste

  7. An overview of the sustainability of solid waste management at military installations

    SciTech Connect (OSTI)

    Borglin, S.; Shore, J.; Worden, H.; Jain, R.

    2009-08-15T23:59:59.000Z

    Sustainable municipal solid waste management at military solutions necessitates a combined approach that includes waste reduction, alternative disposal techniques, and increased recycling. Military installations are unique because they often represent large employers in the region in which they are located, thereby making any practices they employ impact overall waste management strategies of the region. Solutions for waste sustainability will be dependent on operational directives and base location, availability of resources such as water and energy, and size of population. Presented in this paper are descriptions of available waste strategies that can be used to support sustainable waste management. Results presented indicate source reduction and recycling to be the most sustainable solutions. However, new waste-to-energy plants and composting have potential to improve on these well proven techniques and allow military installations to achieve sustainable waste management.

  8. Solid Waste (New Mexico)

    Broader source: Energy.gov [DOE]

    The New Mexico Environment Department's Solid Waste Bureau manages solid waste in the state. The Bureau implements and enforces the rules established by the Environmental Improvement Board.

  9. Radioactive Waste Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1984-02-06T23:59:59.000Z

    To establish policies and guidelines by which the Department of Energy (DOE) manages tis radioactive waste, waste byproducts, and radioactively contaminated surplus facilities.

  10. Hazardous Wastes Management (Alabama)

    Broader source: Energy.gov [DOE]

    This legislation gives regulatory authority to the Department of Environmental Management to monitor commercial sites for hazardous wastes; fees on waste received at such sites; hearings and...

  11. Transuranic Waste Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09T23:59:59.000Z

    The guide provides criteria for determining if a waste is to be managed in accordance with DOE M 435.1-1, Chapter III, Transuranic Waste Requirements.

  12. Salt Waste Processing Initiatives

    Office of Environmental Management (EM)

    1 Patricia Suggs Salt Processing Team Lead Assistant Manager for Waste Disposition Project Office of Environmental Management Savannah River Site Salt Waste Processing Initiatives...

  13. Waste Treatment Plant Overview

    Office of Environmental Management (EM)

    contracted Bechtel National, Inc., to design and build the world's largest radioactive waste treatment plant. The Waste Treatment and Immobilization Plant (WTP), also known as the...

  14. Testing and Disposal Strategy for Secondary Wastes from Vitrification of Sodium-Bearing Waste at Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    Herbst, Alan K.

    2002-01-02T23:59:59.000Z

    The Idaho National Engineering and Environmental Laboratory (INEEL) is considering vitrification to process liquid sodium-bearing waste. Preliminary studies were completed to evaluate the potential secondary wastes comprise acidic and caustic scrubber solutions, HEPA filters, activated carbon, and ion exchange media. Possible treatment methods, waste forms, and disposal sites are evaluated from radiological and mercury contamination estimates.

  15. Testing and Disposal Strategy for Secondary Wastes from Vitrification of Sodium-Bearing Waste at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    Herbst, Alan Keith

    2002-01-01T23:59:59.000Z

    The Idaho National Engineering and Environmental Laboratory (INEEL) is considering vitrification to process liquid sodium-bearing waste. Preliminary studies were completed to evaluate the potential secondary wastes comprise acidic and caustic scrubber solutions, HEPA filters, activated carbon, and ion exchange media. Possible treatment methods, waste forms, and disposal sites are evaluated from radiological and mercury contamination estimates.

  16. Unreviewed Safety Question Determination - Processing Waste in...

    Office of Environmental Management (EM)

    Unreviewed Safety Question Determination - Processing Waste in the Waste Characterization Glovebox Unreviewed Safety Question Determination - Processing Waste in the Waste...

  17. Effects of soluble organic complexants and their degradation products on the removal of selected radionuclides from high-level waste. Part II: Distributions of Sr, Cs, Tc, and Am onto 32 absorbers from four variations of Hanford tank 101-SY simulant solution

    SciTech Connect (OSTI)

    Marsh, S.F. [Sandia National Labs., Albuquerque, NM (United States); Svitra, Z.V.; Bowen, S.M. [Los Alamos National Lab., NM (United States)

    1995-04-01T23:59:59.000Z

    Many of the radioactive waste storage tanks at U.S. Department of Energy facilities contain organic compounds that have been degraded by radiolysis and chemical reactions during decades of storage. In this second part of our three-part investigation of the effects of soluble organic complexants and their degradation products, we measured the sorption of strontium, cesium, technetium, and americium onto 32 absorbers that offer high sorption of these elements in the absence of organic complexants. The four solutions tested were (1) a simulant for a 3:1 dilution of Hanford Tank 101-SY contents that initially contained ethylenediaminetetraacetic acid (EDTA), (2) this simulant after gamma-irradiation to 34 Mrads, (3) the unirradiated simulant after treatment with a hydrothermal organic-destruction process, and (4) the irradiated simulant after hydrothermal processing. For each of 512 element/absorber/solution combinations, we measured distribution coefficients (Kds) twice for each period for dynamic contact periods of 30 min, 2 h, and 6 h to obtain information about sorption kinetics. On the basis of our 3,072 measured Kd values, the sorption of strontium and americium is significantly decreased by the organic components of the simulant solutions, whereas the sorption of cesium and technetium appears unaffected by the organic components of the simulant solutions.

  18. Solid Waste and Infectious Waste Regulations (Ohio)

    Broader source: Energy.gov [DOE]

    This chapter of the law that establishes the Ohio Environmental Protection Agency establishes the rules and regulations regarding solid waste.

  19. Radioactive and chemotoxic wastes: Only radioactive wastes?

    SciTech Connect (OSTI)

    Eletti, G.F.; Tocci, M. [ENEA DISP, Rome (Italy)

    1993-12-31T23:59:59.000Z

    Radioactive waste arising from Italian Nuclear Power Plants and Research Centers, classified as 1st and 2nd Category wastes, are managed only as radioactive wastes following the Technical Guide No. 26 issued by the Italian Regulatory Body: ENEA DISP on 1987. A very important Regulatory Regime revision for Italian Nuclear Activities started at the end of 1991. This paper considers the need to develop a new strategy dedicated to mixed waste in line with current international trends.

  20. Recycling of CdTe photovoltaic waste

    DOE Patents [OSTI]

    Goozner, R.E.; Long, M.O.; Drinkard, W.F. Jr.

    1999-04-27T23:59:59.000Z

    A method for extracting and reclaiming metals from scrap CdTe photovoltaic cells and manufacturing waste by leaching the metals in dilute nitric acid, leaching the waste with a leaching solution comprising nitric acid and water, skimming any plastic material from the top of the leaching solution, separating the glass substrate from the liquid leachate, adding a calcium containing base to the leachate to precipitate Cd and Te, separating the precipitated Cd and Te from the leachate, and recovering the calcium-containing base. 3 figs.

  1. Recycling of CdTe photovoltaic waste

    DOE Patents [OSTI]

    Goozner, Robert E. (Charlotte, NC); Long, Mark O. (Charlotte, NC); Drinkard, Jr., William F. (Charlotte, NC)

    1999-04-27T23:59:59.000Z

    A method for extracting and reclaiming metals from scrap CdTe photovoltaic cells and manufacturing waste by leaching the metals in dilute nitric acid, leaching the waste with a leaching solution comprising nitric acid and water, skimming any plastic material from the top of the leaching solution, separating the glass substrate from the liquid leachate, adding a calcium containing base to the leachate to precipitate Cd and Te, separating the precipitated Cd and Te from the leachate, and recovering the calcium-containing base.

  2. Hanford Site annual dangerous waste report: Volume 4, Waste Management Facility report, Radioactive mixed waste

    SciTech Connect (OSTI)

    NONE

    1994-12-31T23:59:59.000Z

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation and amount of waste.

  3. Hanford Site annual dangerous waste report: Volume 2, Generator dangerous waste report, radioactive mixed waste

    SciTech Connect (OSTI)

    NONE

    1994-12-31T23:59:59.000Z

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, waste designation, weight, and waste designation.

  4. HAZARDOUS WASTE MANAGEMENT REFERENCE

    E-Print Network [OSTI]

    Faraon, Andrei

    Principal Investigators 7 Laboratory Personnel 8 EH&S Personnel 8 HAZARDOUS WASTE ACCUMULATION AREAS 9 Satellite Accumulation Area 9 Waste Accumulation Facility 10 HAZARDOUS WASTE CONTAINER MANAGEMENT LabelingHAZARDOUS WASTE MANAGEMENT REFERENCE GUIDE Prepared by Environment, Health and Safety Office

  5. Hazardous Waste Management Training

    E-Print Network [OSTI]

    Dai, Pengcheng

    records. The initial training of Hazardous Waste Management and Waste Minimization is done in a classHazardous Waste Management Training Persons (including faculty, staff and students) working before handling hazardous waste. Departments are re- quired to keep records of training for as long

  6. aqueous waste management: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Microbiological Waste Steam Sterilization 1. temperature of at least 121 of household bleach diluted 1:10 with water or b. a solution of 70% by volume of 2-propanol...

  7. agricultural waste management: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Microbiological Waste Steam Sterilization 1. temperature of at least 121 of household bleach diluted 1:10 with water or b. a solution of 70% by volume of 2-propanol...

  8. Central Waste Complex (CWC) Waste Analysis Plan

    SciTech Connect (OSTI)

    ELLEFSON, M.D.

    2000-01-06T23:59:59.000Z

    The purpose of this waste analysis plan (WAP) is to document the waste acceptance process, sampling methodologies, analytical techniques, and overall processes that are undertaken for waste accepted for storage at the Central Waste Complex (CWC), which is located in the 200 West Area of the Hanford Facility, Richland, Washington. Because dangerous waste does not include the source special nuclear and by-product material components of mixed waste, radionuclides are not within the scope of this document. The information on radionuclides is provided only for general knowledge. This document has been revised to meet the interim status waste analysis plan requirements of Washington Administrative Code (WAC) 173 303-300(5). When the final status permit is issued, permit conditions will be incorporated and this document will be revised accordingly.

  9. Understanding radioactive waste

    SciTech Connect (OSTI)

    Murray, R.L.

    1981-12-01T23:59:59.000Z

    This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes). (ATT)

  10. Radioactive mixed waste disposal

    SciTech Connect (OSTI)

    Jasen, W.G.; Erpenbeck, E.G.

    1993-02-01T23:59:59.000Z

    Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act of 1954 (AEA), the Resource Conservation and Recovery Act of 1976 (RCRA), and the Hazardous and Solid Waste Amendments (HSWA) have led to the definition of radioactive mixed wastes (RMW). The radioactive and hazardous properties of these wastes have resulted in the initiation of special projects for the management of these wastes. Other solid wastes at the Hanford Site include low-level wastes, transuranic (TRU), and nonradioactive hazardous wastes. This paper describes a system for the treatment, storage, and disposal (TSD) of solid radioactive waste.

  11. Hanford Waste Physical and Rheological Properties: Data and Gaps

    SciTech Connect (OSTI)

    Wells, Beric E.; Kurath, Dean E.; Mahoney, Lenna A.; Onishi, Yasuo; Huckaby, James L.; Cooley, Scott K.; Burns, Carolyn A.; Buck, Edgar C.; Tingey, Joel M.; Daniel, Richard C.; Anderson, K. K.

    2011-08-01T23:59:59.000Z

    The Hanford Site in Washington State manages 177 underground storage tanks containing approximately 250,000 m3 of waste generated during past defense reprocessing and waste management operations. These tanks contain a mixture of sludge, saltcake and supernatant liquids. The insoluble sludge fraction of the waste consists of metal oxides and hydroxides and contains the bulk of many radionuclides such as the transuranic components and 90Sr. The saltcake, generated by extensive evaporation of aqueous solutions, consists primarily of dried sodium salts. The supernates consist of concentrated (5-15 M) aqueous solutions of sodium and potassium salts. The 177 storage tanks include 149 single-shell tanks (SSTs) and 28 double -hell tanks (DSTs). Ultimately the wastes need to be retrieved from the tanks for treatment and disposal. The SSTs contain minimal amounts of liquid wastes, and the Tank Operations Contractor is continuing a program of moving solid wastes from SSTs to interim storage in the DSTs. The Hanford DST system provides the staging location for waste feed delivery to the Department of Energy (DOE) Office of River Protection’s (ORP) Hanford Tank Waste Treatment and Immobilization Plant (WTP). The WTP is being designed and constructed to pretreat and then vitrify a large portion of the wastes in Hanford’s 177 underground waste storage tanks.

  12. Energy implications of the thermal recovery of biodegradable municipal waste materials in the United Kingdom

    SciTech Connect (OSTI)

    Burnley, Stephen, E-mail: s.j.burnley@open.ac.uk [Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Phillips, Rhiannon, E-mail: rhiannon.jones@environment-agency.gov.uk [Strategy Unit, Welsh Assembly Government, Ty Cambria, 29 Newport Road, Cardiff CF24 0TP (United Kingdom); Coleman, Terry, E-mail: terry.coleman@erm.com [Environmental Resources Management Ltd, Eaton House, Wallbrook Court, North Hinksey Lane, Oxford OX2 0QS (United Kingdom); Rampling, Terence, E-mail: twa.rampling@hotmail.com [7 Thurlow Close, Old Town Stevenage, Herts SG1 4SD (United Kingdom)

    2011-09-15T23:59:59.000Z

    Highlights: > Energy balances were calculated for the thermal treatment of biodegradable wastes. > For wood and RDF, combustion in dedicated facilities was the best option. > For paper, garden and food wastes and mixed waste incineration was the best option. > For low moisture paper, gasification provided the optimum solution. - Abstract: Waste management policies and legislation in many developed countries call for a reduction in the quantity of biodegradable waste landfilled. Anaerobic digestion, combustion and gasification are options for managing biodegradable waste while generating renewable energy. However, very little research has been carried to establish the overall energy balance of the collection, preparation and energy recovery processes for different types of wastes. Without this information, it is impossible to determine the optimum method for managing a particular waste to recover renewable energy. In this study, energy balances were carried out for the thermal processing of food waste, garden waste, wood, waste paper and the non-recyclable fraction of municipal waste. For all of these wastes, combustion in dedicated facilities or incineration with the municipal waste stream was the most energy-advantageous option. However, we identified a lack of reliable information on the energy consumed in collecting individual wastes and preparing the wastes for thermal processing. There was also little reliable information on the performance and efficiency of anaerobic digestion and gasification facilities for waste.

  13. Method of waste stabilization via chemically bonded phosphate ceramics

    DOE Patents [OSTI]

    Wagh, A.S.; Singh, D.; Jeong, S.Y.

    1998-11-03T23:59:59.000Z

    A method for regulating the reaction temperature of a ceramic formulation process is provided comprising supplying a solution containing a monovalent alkali metal; mixing said solution with an oxide powder to create a binder; contacting said binder with bulk material to form a slurry; and allowing the slurry to cure. A highly crystalline waste form is also provided consisting of a binder containing potassium and waste substrate encapsulated by the binder. 3 figs.

  14. Radioactive Waste Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09T23:59:59.000Z

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. Change 1 dated 6/19/01 removes the requirement that Headquarters is to be notified and the Office of Environment, Safety and Health consulted for exemptions for use of non-DOE treatment facilities. Certified 1-9-07.

  15. Radium bearing waste disposal

    SciTech Connect (OSTI)

    Tope, W.G.; Nixon, D.A.; Smith, M.L.; Stone, T.J.; Vogel, R.A. [Fernald Environmental Restoration Management Corp., Cincinnati, OH (United States); Schofield, W.D. [Foster Wheeler Environmental Corp. (United States)

    1995-07-01T23:59:59.000Z

    Fernald radium bearing ore residue waste, stored within Silos 1 and 2 (K-65) and Silo 3, will be vitrified for disposal at the Nevada Test Site (NTS). A comprehensive, parametric evaluation of waste form, packaging, and transportation alternatives was completed to identify the most cost-effective approach. The impacts of waste loading, waste form, regulatory requirements, NTS waste acceptance criteria, as-low-as-reasonably-achievable principles, and material handling costs were factored into the recommended approach.

  16. Waste Acceptance Testing of Secondary Waste Forms: Cast Stone, Ceramicrete and DuraLith

    SciTech Connect (OSTI)

    Mattigod, Shas V.; Westsik, Joseph H.; Chung, Chul-Woo; Lindberg, Michael J.; Parker, Kent E.

    2011-08-12T23:59:59.000Z

    To support the selection of a waste form for the liquid secondary wastes from WTP, Washington River Protection Solutions has initiated secondary-waste-form testing work at Pacific Northwest National Laboratory (PNNL). In anticipation of a down-selection process for a waste form for the Solidification Treatment Unit to be added to the ETF, PNNL is conducting tests on four candidate waste forms to evaluate their ability to meet potential waste acceptance criteria for immobilized secondary wastes that would be placed in the IDF. All three waste forms demonstrated compressive strengths above the minimum 3.45 MPa (500 psi) set as a target for cement-based waste forms. Further, none of the waste forms showed any significant degradation in compressive strength after undergoing thermal cycling (30 cycles in a 10 day period) between -40 C and 60 C or water immersion for 90 days. The three leach test methods are intended to measure the diffusion rates of contaminants from the waste forms. Results are reported in terms of diffusion coefficients and a leachability index (LI) calculated based on the diffusion coefficients. A smaller diffusion coefficient and a larger LI are desired. The NRC, in its Waste Form Technical Position (NRC 1991), provides recommendations and guidance regarding methods to demonstrate waste stability for land disposal of radioactive waste. Included is a recommendation to conduct leach tests using the ANS 16.1 method. The resulting leachability index (LI) should be greater than 6.0. For Hanford secondary wastes, the LI > 6.0 criterion applies to sodium leached from the waste form. For technetium and iodine, higher targets of LI > 9 for Tc and LI > 11 for iodine have been set based on early waste-disposal risk and performance assessment analyses. The results of these three leach tests conducted for a total time between 11days (ASTM C1308) to 90 days (ANS 16.1) showed: (1) Technetium diffusivity: ANSI/ANS 16.1, ASTM C1308, and EPA 1315 tests indicated that all the waste forms had leachability indices better than the target LI > 9 for technetium; (2) Rhenium diffusivity: Cast Stone 2M specimens, when tested using EPA 1315 protocol, had leachability indices better than the target LI > 9 for technetium based on rhenium as a surrogate for technetium. All other waste forms tested by ANSI/ANS 16.1, ASTM C1308, and EPA 1315 test methods had leachability indices that were below the target LI > 9 for Tc based on rhenium release. These studies indicated that use of Re(VII) as a surrogate for 99Tc(VII) in low temperature secondary waste forms containing reductants will provide overestimated diffusivity values for 99Tc. Therefore, it is not appropriate to use Re as a surrogate 99Tc in future low temperature waste form studies. (3) Iodine diffusivity: ANSI/ANS 16.1, ASTM C1308, and EPA 1315 tests indicated that the three waste forms had leachability indices that were below the target LI > 11 for iodine. Therefore, it may be necessary to use a more effective sequestering material than silver zeolite used in two of the waste forms (Ceramicrete and DuraLith); (4) Sodium diffusivity: All the waste form specimens tested by the three leach methods (ANSI/ANS 16.1, ASTM C1308, and EPA 1315) exceeded the target LI value of 6; (5) All three leach methods (ANS 16.1, ASTM C1308 and EPA 1315) provided similar 99Tc diffusivity values for both short-time transient diffusivity effects as well as long-term ({approx}90 days) steady diffusivity from each of the three tested waste forms (Cast Stone 2M, Ceramicrete and DuraLith). Therefore, any one of the three methods can be used to determine the contaminant diffusivities from a selected waste form.

  17. Radioactive tank waste remediation focus area

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    EM`s Office of Science and Technology has established the Tank Focus Area (TFA) to manage and carry out an integrated national program of technology development for tank waste remediation. The TFA is responsible for the development, testing, evaluation, and deployment of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in the underground stabilize and close the tanks. The goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. Within the DOE complex, 335 underground storage tanks have been used to process and store radioactive and chemical mixed waste generated from weapon materials production and manufacturing. Collectively, thes tanks hold over 90 million gallons of high-level and low-level radioactive liquid waste in sludge, saltcake, and as supernate and vapor. Very little has been treated and/or disposed or in final form.

  18. Hazardous Waste Act (New Mexico)

    Broader source: Energy.gov [DOE]

    "Hazardous waste" means any solid waste or combination of solid wastes that because of their quantity, concentration or physical, chemical or infectious characteristics may:  cause or significantly...

  19. Georgia Hazardous Waste Management Act

    Broader source: Energy.gov [DOE]

    The Georgia Hazardous Waste Management Act (HWMA) describes a comprehensive, Statewide program to manage hazardous wastes through regulating hazardous waste generation, transportation, storage,...

  20. Waste Management Quality Assurance Plan

    E-Print Network [OSTI]

    Waste Management Group

    2006-01-01T23:59:59.000Z

    Revision 6 Waste Management Quality Assurance Plan Waste6 WM QA Plan Waste Management Quality Assurance Plan LBNL/4 Management Quality Assurance

  1. waste | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AlternativesSupplements to Coal - Feedstock Flexibility Waste Streams Gasification can be applied to a variety of waste streams, of which municipal solid waste (MSW) and...

  2. Management of hazardous medical waste in Croatia

    SciTech Connect (OSTI)

    Marinkovic, Natalija [Medical School University of Zagreb, Department for Chemistry and Biochemistry, Salata 3b, 10 000 Zagreb (Croatia)], E-mail: nmarinko@snz.hr; Vitale, Ksenija; Holcer, Natasa Janev; Dzakula, Aleksandar ['Andrija Stampar' School of Public Health, Medical School University of Zagreb, Rockefellerova 4, 10 000 Zagreb (Croatia); Pavic, Tomo [Ministry of Health and Social Welfare, Ksaver 200, 10 000 Zagreb (Croatia)

    2008-07-01T23:59:59.000Z

    This article provides a review of hazardous medical waste production and its management in Croatia. Even though Croatian regulations define all steps in the waste management chain, implementation of those steps is one of the country's greatest issues. Improper practice is evident from the point of waste production to final disposal. The biggest producers of hazardous medical waste are hospitals that do not implement existing legislation, due to the lack of education and funds. Information on quantities, type and flow of medical waste are inadequate, as is sanitary control. We propose an integrated approach to medical waste management based on a hierarchical structure from the point of generation to its disposal. Priority is given to the reduction of the amounts and potential for harm. Where this is not possible, management includes reduction by sorting and separating, pretreatment on site, safe transportation, final treatment and sanitary disposal. Preferred methods should be the least harmful for human health and the environment. Integrated medical waste management could greatly reduce quantities and consequently financial strains. Landfilling is the predominant route of disposal in Croatia, although the authors believe that incineration is the most appropriate method. In a country such as Croatia, a number of small incinerators would be the most economical solution.

  3. Process for the extraction of strontium from acidic solutions

    DOE Patents [OSTI]

    Horwitz, E.P.; Dietz, M.L.

    1993-01-01T23:59:59.000Z

    The invention is a process for selectively extracting strontium values from aqueous nitric acid waste solutions containing these and other fission product values. The extractant solution is a macrocyclic polyether in an aliphatic hydrocarbon diluent containing a phase modifier. The process will selectively extract strontium values from nitric acid solutions which are up to 6 molar in nitric acid.

  4. Process for the extraction of strontium from acidic solutions

    DOE Patents [OSTI]

    Horwitz, E.P.; Dietz, M.L.

    1994-09-06T23:59:59.000Z

    The invention is a process for selectively extracting strontium values from aqueous nitric acid waste solutions containing these and other fission product values. The extractant solution is a macrocyclic polyether in an aliphatic hydrocarbon diluent containing a phase modifier. The process will selectively extract strontium values from nitric acid solutions which are up to 6 molar in nitric acid. 4 figs.

  5. Colloid Formation at Waste Plume Fronts

    SciTech Connect (OSTI)

    Wan, Jiamin; Tokunaga, Tetsu K.; Saiz, Eduardo; Larsen, Joern T.; Zheng, Zuoping; Couture, Rex A.

    2004-05-22T23:59:59.000Z

    Highly saline and caustic tank waste solutions containing radionuclides and toxic metals have leaked into sediments at U. S. Department of Energy (DOE) facilities such as the Hanford Site (Washington State). Colloid transport is frequently invoked to explain migration of radionuclides and metals in the subsurface. To understand colloid formation during interactions between highly reactive fluids and sediments and its impact on contaminant transport, we simulated tank waste solution (TWS) leakage processes in laboratory columns at ambient and elevated (70 C) temperatures. We found that maximum formation of mobile colloids occurred at the plume fronts (hundreds to thousands times higher than within the plume bodies or during later leaching). Concentrations of suspended solids were as high as 3 mass%, and their particle-sizes ranged from tens of nm to a few {micro}m. Colloid chemical composition and mineralogy depended on temperature. During infiltration of the leaked high Na{sup +} waste solution, rapid and completed Na{sup +} replacement of exchangeable Ca{sup 2+} and Mg{sup 2+} from the sediment caused accumulation of these divalent cations at the moving plume front. Precipitation of supersaturated Ca{sup 2+}/Mg{sup 2+}-bearing minerals caused dramatic pH reduction at the plume front. In turn, the reduced pH caused precipitation of other minerals. This understanding can help predict the behavior of contaminant trace elements carried by the tank waste solutions, and could not have been obtained through conventional batch studies.

  6. Hanford's Simulated Low Activity Waste Cast Stone Processing

    SciTech Connect (OSTI)

    Kim, Young

    2013-08-20T23:59:59.000Z

    Cast Stone is undergoing evaluation as the supplemental treatment technology for Hanford’s (Washington) high activity waste (HAW) and low activity waste (LAW). This report will only cover the LAW Cast Stone. The programs used for this simulated Cast Stone were gradient density change, compressive strength, and salt waste form phase identification. Gradient density changes show a favorable outcome by showing uniformity even though it was hypothesized differently. Compressive strength exceeded the minimum strength required by Hanford and greater compressive strength increase seen between the uses of different salt solution The salt waste form phase is still an ongoing process as this time and could not be concluded.

  7. Westinghouse Waste Simulation and Optimization Software Tool - 13493

    SciTech Connect (OSTI)

    Mennicken, Kim [Westinghouse Electric Germany GmbH, Global Waste Management, Dudenstrasse 44, D-68167 Mannheim (Germany)] [Westinghouse Electric Germany GmbH, Global Waste Management, Dudenstrasse 44, D-68167 Mannheim (Germany); Aign, Joerg [Westinghouse Electric Germany GmbH, Global Waste Management, Tarpenring 6, D-22419 Hamburg (Germany)] [Westinghouse Electric Germany GmbH, Global Waste Management, Tarpenring 6, D-22419 Hamburg (Germany)

    2013-07-01T23:59:59.000Z

    Radioactive waste is produced during NPP operation and NPP D and D. Different kinds of waste with different volumes and properties have to be treated. Finding a technically and commercially optimized waste treatment concept is a difficult and time consuming process. The Westinghouse waste simulation and optimization software tool is an approach to study the total life cycle cost of any waste management facility. The tool enables the user of the simulation and optimization software to plan processes and storage buildings and to identify bottlenecks in the overall waste management design before starting detailed planning activities. Furthermore, application of the software enables the user to optimize the number of treatment systems, to determine the minimum design capacity for onsite storage facilities, to identify bottlenecks in the overall design and to identify the most cost-effective treatment paths by maintaining optimal waste treatment technologies. In combination with proven waste treatment equipment and integrated waste management solutions, the waste simulation and optimization software provides reliable qualitative results that lead to an effective planning and minimization of the total project planning risk of any waste management activity. (authors)

  8. Waste-to-Energy: Waste Management and Energy Production Opportunities...

    Office of Environmental Management (EM)

    Waste-to-Energy: Waste Management and Energy Production Opportunities Waste-to-Energy: Waste Management and Energy Production Opportunities July 24, 2014 9:00AM to 3:30PM EDT U.S....

  9. Radioactive Waste Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09T23:59:59.000Z

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. The purpose of the Manual is to catalog those procedural requirements and existing practices that ensure that all DOE elements and contractors continue to manage DOE's radioactive waste in a manner that is protective of worker and public health and safety, and the environment. Does not cancel other directives.

  10. Ozone decomposition in water solutions 

    E-Print Network [OSTI]

    Hewes, Cecil Grayson

    1969-01-01T23:59:59.000Z

    OF LITERATUR 1V Vi ~ V111 III ~ EXPERIMENTAL SYSTEM AND ITS OPERATION 14 IV. DISCUSS10N OF RESULTS AND COiJCLUSION. . . 24 i~JOMENCLATUHE. BIBLIOGRAPIFY APPENDIX I. WASTE WATER REGENERATION BY OZONATION. II. AMINE REMOVAL BY OZONATION...ATER SOLUTIONS OF pH 8. XIII. REACTION RATE CONSTANTS FOR THE D'COMPOSITION OF OZONE IN INTER SOLUTIONS OF pH 8. XIV COD REMOVAL BY OZONE XV. OZONIZATION OF MATER CONTAINIiNG RESIDUAL AMINE. 57 60 LIST OF FIGURES FIGURE 1. FIOW DIAGRAM OF THZ...

  11. Using benchmarking to minimize common DOE waste streams. Volume 1, Methodology and liquid photographic waste

    SciTech Connect (OSTI)

    Levin, V.

    1994-04-01T23:59:59.000Z

    Finding innovative ways to reduce waste streams generated at Department of Energy (DOE) sites by 50% by the year 2000 is a challenge for DOE`s waste minimization efforts. This report examines the usefulness of benchmarking as a waste minimization tool, specifically regarding common waste streams at DOE sites. A team of process experts from a variety of sites, a project leader, and benchmarking consultants completed the project with management support provided by the Waste Minimization Division EM-352. Using a 12-step benchmarking process, the team examined current waste minimization processes for liquid photographic waste used at their sites and used telephone and written questionnaires to find ``best-in-class`` industrv partners willing to share information about their best waste minimization techniques and technologies through a site visit. Eastman Kodak Co., and Johnson Space Center/National Aeronautics and Space Administration (NASA) agreed to be partners. The site visits yielded strategies for source reduction, recycle/recovery of components, regeneration/reuse of solutions, and treatment of residuals, as well as best management practices. An additional benefit of the work was the opportunity for DOE process experts to network and exchange ideas with their peers at similar sites.

  12. Managing Solutions

    E-Print Network [OSTI]

    Baker, Emily

    2007-01-01T23:59:59.000Z

    , and Texas Water --------------------------------------------- Project Managers Cecilia Wagner, Kevin Wagner, Danielle Supercinski, Dr. Bill Fox and Lucas Gregory work to link university researchers and Extension specialists to appropriate funding agen... Irrigators Network. Kevin Wagner, who joined TWRI in 2005 from TSSWCB, has spent several years working with environmental issues. He is currently pursuing his doctorate evaluating best management practices for reducing bacterial runoff from cattle wastes...

  13. Applicability of slags as waste forms for hazardous waste

    SciTech Connect (OSTI)

    Bates, J.K.; Buck, E.C.; Dietz, N.L.; Wronkiewicz, D.J.; Feng, X. [Argonne National Lab., IL (United States); Whitworth, C.; Filius, K.; Battleson, D. [MSE, Inc., Butte, MT (United States)

    1994-07-01T23:59:59.000Z

    Slags, which are a combination of glassy and ceramic phases, were produced by the Component Development and Integration Facility, using a combination of soil and metal feeds. The slags were tested for durability using accelerated test methods in both water vapor and liquid water for time periods up to 179 days. The results indicated that under both conditions there was little reaction of the slag, in terms of material released to solution, or the reaction of the slag to form secondary mineral phases. The durability of the slags tested exceeded that of current high-level nuclear glass formulations and are viable materials, for waste disposal.

  14. Solid Waste Management Written Program

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Solid Waste Management Program Written Program Cornell University 8/28/2012 #12;Solid Waste.................................................................... 4 4.2.1 Compost Solid Waste Treatment Facility.................................................................... 4 4.2.2 Pathological Solid Waste Treatment Facility

  15. UrbanSolutionsCenter Soil Organic Matter and Compost Utilization

    E-Print Network [OSTI]

    UrbanSolutionsCenter Soil Organic Matter and Compost Utilization Background High clay content soils is yard waste compost, and composting is becoming increasingly common in urban areas due to municipal yard waste collection and composting programs such as the one in Plano, Texas. Wastewater biosolids

  16. Waste Management and WasteWaste Management and Waste--toto--EnergyEnergy Status in SingaporeStatus in Singapore

    E-Print Network [OSTI]

    Columbia University

    ;20031970 The Solid Waste Challenge Waste Explosion 1,200 t/d1,200 t/d 6,900 t/d6,900 t/d #12;Waste ManagementWaste Management and WasteWaste Management and Waste--toto--EnergyEnergy Status in Singapore #12;Singapore's Waste Management · In 2003, 6877 tonnes/day (2.51 M tonnes/year) of MSW collected

  17. DOE/LX/07-0268&D1 Secondary Document DMSA C-400-01 Solid Waste...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from the SWMU. Newly generated RCRA hazardousmixed waste formerly stored included two plastic bottles marked Penetone (a cleaning solution) and a five gal container of oil...

  18. Migration of saline solutions in variably saturated porous media

    E-Print Network [OSTI]

    Selker, John

    more than 4 million liters of highly saline solutions have leaked from radioactive waste storage tanks environments; it is uncommon for concentrations resulting from agrochemicals and other contaminants to 0169

  19. Hazardous Waste Management (Arkansas)

    Broader source: Energy.gov [DOE]

    The Hazardous Waste Program is carried out by the Arkansas Department of Environmental Quality which administers its' program under the Hazardous Waste management Act (Arkansas Code Annotated 8-7...

  20. Hazardous Waste Management (Delaware)

    Broader source: Energy.gov [DOE]

    The act authorizes the Delaware Department of Natural Resources and Environment Control (DNREC) to regulate hazardous waste and create a program to manage sources of hazardous waste. The act...

  1. Hazardous Waste Management (Oklahoma)

    Broader source: Energy.gov [DOE]

    This article states regulations for the disposal of hazardous waste. It also provides information about permit requirements for the transport, treatment and storage of such waste. It also mentions...

  2. Process for removing sulfate anions from waste water

    DOE Patents [OSTI]

    Nilsen, David N. (Lebanon, OR); Galvan, Gloria J. (Albany, OR); Hundley, Gary L. (Corvallis, OR); Wright, John B. (Albany, OR)

    1997-01-01T23:59:59.000Z

    A liquid emulsion membrane process for removing sulfate anions from waste water is disclosed. The liquid emulsion membrane process includes the steps of: (a) providing a liquid emulsion formed from an aqueous strip solution and an organic phase that contains an extractant capable of removing sulfate anions from waste water; (b) dispersing the liquid emulsion in globule form into a quantity of waste water containing sulfate anions to allow the organic phase in each globule of the emulsion to extract and absorb sulfate anions from the waste water and (c) separating the emulsion including its organic phase and absorbed sulfate anions from the waste water to provide waste water containing substantially no sulfate anions.

  3. Solid waste handling

    SciTech Connect (OSTI)

    Parazin, R.J.

    1995-05-31T23:59:59.000Z

    This study presents estimates of the solid radioactive waste quantities that will be generated in the Separations, Low-Level Waste Vitrification and High-Level Waste Vitrification facilities, collectively called the Tank Waste Remediation System Treatment Complex, over the life of these facilities. This study then considers previous estimates from other 200 Area generators and compares alternative methods of handling (segregation, packaging, assaying, shipping, etc.).

  4. Waste disposal package

    DOE Patents [OSTI]

    Smith, M.J.

    1985-06-19T23:59:59.000Z

    This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.

  5. Final Report Waste Incineration

    E-Print Network [OSTI]

    solid waste, the composition and com- bustion of it. A main focus is on the European emission from municipal solid waste incineration. In the latter area, concepts of treatment, such as physical with municipal solid waste incineration (MSWI) and the problems that occur in connection to this. The emphasis

  6. Rethinking the Waste Hierarchy

    E-Print Network [OSTI]

    principles of EU waste policies. The environmental damage caused by waste depends on which type of manage, Environmental Assessment Institute For further information please contact: Environmental Assessment Institute.imv.dk #12;Environmental Assessment Institute Rethinking the Waste Hierarchy March 2005 Recommendations

  7. TECHNOLOGY SUMMARY ADVANCING TANK WASTE RETRIEVAL AND PROCESSING

    SciTech Connect (OSTI)

    SAMS TL; MENDOZA RE

    2010-08-11T23:59:59.000Z

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

  8. TECHNOLOGY SUMMARY ADVANCING TANK WASTE RETREIVAL AND PROCESSING

    SciTech Connect (OSTI)

    SAMS TL

    2010-07-07T23:59:59.000Z

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

  9. BIOREMEDIATION OF URANIUM CONTAMINATED SOILS AND WASTES.

    SciTech Connect (OSTI)

    FRANCIS,A.J.

    1998-09-17T23:59:59.000Z

    Contamination of soils, water, and sediments by radionuclides and toxic metals from uranium mill tailings, nuclear fuel manufacturing and nuclear weapons production is a major concern. Studies of the mechanisms of biotransformation of uranium and toxic metals under various microbial process conditions has resulted in the development of two treatment processes: (i) stabilization of uranium and toxic metals with reduction in waste volume and (ii) removal and recovery of uranium and toxic metals from wastes and contaminated soils. Stabilization of uranium and toxic metals in wastes is accomplished by exploiting the unique metabolic capabilities of the anaerobic bacterium, Clostridium sp. The radionuclides and toxic metals are solubilized by the bacteria directly by enzymatic reductive dissolution, or indirectly due to the production of organic acid metabolites. The radionuclides and toxic metals released into solution are immobilized by enzymatic reductive precipitation, biosorption and redistribution with stable mineral phases in the waste. Non-hazardous bulk components of the waste such as Ca, Fe, K, Mg and Na released into solution are removed, thus reducing the waste volume. In the second process uranium and toxic metals are removed from wastes or contaminated soils by extracting with the complexing agent citric acid. The citric-acid extract is subjected to biodegradation to recover the toxic metals, followed by photochemical degradation of the uranium citrate complex which is recalcitrant to biodegradation. The toxic metals and uranium are recovered in separate fractions for recycling or for disposal. The use of combined chemical and microbiological treatment process is more efficient than present methods and should result in considerable savings in clean-up and disposal costs.

  10. Development of Alternative Technetium Waste Forms

    SciTech Connect (OSTI)

    Czerwinski, Kenneth

    2013-09-13T23:59:59.000Z

    The UREX+1 process is under consideration for the separation of transuranic elements from spent nuclear fuel. The first steps of this process extract the fission product technicium-99 ({sup 99}Tc) into an organic phase containing tributylphosphate together with uranium. Treatment of this stream requires the separation of Tc from U and placement into a suitable waste storage form. A potential candidate waste form involves immobilizing the Tc as an alloy with either excess metallic zirconium or stainless steel. Although Tc-Zr alloys seem to be promising waste forms, alternative materials must be investigated. Innovative studies related to the synthesis and behavior of a different class of Tc materials will increase the scientific knowledge related to development of Tc waste forms. These studies will also provide a better understanding of the behavior of {sup 99}Tc in repository conditions. A literature survey has selected promising alternative waste forms for further study: technetium metallic alloys, nitrides, oxides, sulfides, and pertechnetate salts. The goals of this project are to 1) synthesize and structurally characterize relevant technetium materials that may be considered as waste forms, 2) investigate material behavior in solution under different conditions of temperature, electrochemical potential, and radiation, and 3) predict the long-term behavior of these materials.

  11. Economic disposal of solid oilfield wastes

    SciTech Connect (OSTI)

    Bruno, M.S.; Qian, H.X.

    1995-09-01T23:59:59.000Z

    A variety of solid oilfield wastes, including produced sand, tank bottoms, and crude contaminated soils, are generated during drilling, production, and storage processes. Crude oil and crude-contaminated sands or soils are generally designated as nonhazardous wastes. However, these materials still must be disposed of in an environmentally acceptable manner. The problems can become most pressing as oil fields in urban areas reach the end of their productive lives and the productive lives and the properties are redeveloped for residential use. An economically and environmentally sound solution is to reinject the solid waste into sand formations through slurry fracture muds and cuttings in Alaska, the Gulf of Mexico, and the North Sea; naturally occurring radioactive materials in Alaska and the Gulf of Mexico; and large volumes of produced oily sand in the provinces of Alberta and Saskatchewan, Canada. The technique offers a number of economic and environmental advantages for disposal of solid oilfield wastes. When reinjecting into depleted oil sands, the crude waste is simply being returned to its place of origin. The long-term liability to the operator is eliminated, in marked contrast to surface storage or landfill disposal. Finally, fracture-injection costs are less than typical transport and landfill disposal costs for moderate to large quantities of solid waste

  12. Bioremediation of uranium contaminated soils and wastes

    SciTech Connect (OSTI)

    Francis, A.J.

    1998-12-31T23:59:59.000Z

    Contamination of soils, water, and sediments by radionuclides and toxic metals from uranium mill tailings, nuclear fuel manufacturing and nuclear weapons production is a major concern. Studies of the mechanisms of biotransformation of uranium and toxic metals under various microbial process conditions has resulted in the development of two treatment processes: (1) stabilization of uranium and toxic metals with reduction in waste volume and (2) removal and recovery of uranium and toxic metals from wastes and contaminated soils. Stabilization of uranium and toxic metals in wastes is accomplished by exploiting the unique metabolic capabilities of the anaerobic bacterium, Clostridium sp. The radionuclides and toxic metals are solubilized by the bacteria directly by enzymatic reductive dissolution, or indirectly due to the production of organic acid metabolites. The radionuclides and toxic metals released into solution are immobilized by enzymatic reductive precipitation, biosorption and redistribution with stable mineral phases in the waste. Non-hazardous bulk components of the waste volume. In the second process uranium and toxic metals are removed from wastes or contaminated soils by extracting with the complexing agent citric acid. The citric-acid extract is subjected to biodegradation to recover the toxic metals, followed by photochemical degradation of the uranium citrate complex which is recalcitrant to biodegradation. The toxic metals and uranium are recovered in separate fractions for recycling or for disposal. The use of combined chemical and microbiological treatment process is more efficient than present methods and should result in considerable savings in clean-up and disposal costs.

  13. Eco-efficient waste glass recycling: Integrated waste management and green product development through LCA

    SciTech Connect (OSTI)

    Blengini, Gian Andrea, E-mail: blengini@polito.it [DISPEA - Department of Production Systems and Business Economics, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); CNR-IGAG, Institute of Environmental Geology and Geo-Engineering, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); Busto, Mirko, E-mail: mirko.busto@polito.it [DISPEA - Department of Production Systems and Business Economics, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); Fantoni, Moris, E-mail: moris.fantoni@polito.it [DITAG - Department of Land, Environment and Geo-Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); Fino, Debora, E-mail: debora.fino@polito.it [DISMIC - Department of Materials Science and Chemical Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy)

    2012-05-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer A new eco-efficient recycling route for post-consumer waste glass was implemented. Black-Right-Pointing-Pointer Integrated waste management and industrial production are crucial to green products. Black-Right-Pointing-Pointer Most of the waste glass rejects are sent back to the glass industry. Black-Right-Pointing-Pointer Recovered co-products give more environmental gains than does avoided landfill. Black-Right-Pointing-Pointer Energy intensive recycling must be limited to waste that cannot be closed-loop recycled. - Abstract: As part of the EU Life + NOVEDI project, a new eco-efficient recycling route has been implemented to maximise resources and energy recovery from post-consumer waste glass, through integrated waste management and industrial production. Life cycle assessment (LCA) has been used to identify engineering solutions to sustainability during the development of green building products. The new process and the related LCA are framed within a meaningful case of industrial symbiosis, where multiple waste streams are utilised in a multi-output industrial process. The input is a mix of rejected waste glass from conventional container glass recycling and waste special glass such as monitor glass, bulbs and glass fibres. The green building product is a recycled foam glass (RFG) to be used in high efficiency thermally insulating and lightweight concrete. The environmental gains have been contrasted against induced impacts and improvements have been proposed. Recovered co-products, such as glass fragments/powders, plastics and metals, correspond to environmental gains that are higher than those related to landfill avoidance, whereas the latter is cancelled due to increased transportation distances. In accordance to an eco-efficiency principle, it has been highlighted that recourse to highly energy intensive recycling should be limited to waste that cannot be closed-loop recycled.

  14. Radioactive Waste Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09T23:59:59.000Z

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. Change 1 dated 6/19/01 removes the requirement that Headquarters is to be notified and the Office of Environment, Safety and Health consulted for exemptions for use of non-DOE treatment facilities. Certified 1-9-07. Admin Chg 2, dated 6-8-11, cancels DOE M 435.1-1 Chg 1.

  15. Radioactive Waste Management Basis

    SciTech Connect (OSTI)

    Perkins, B K

    2009-06-03T23:59:59.000Z

    The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  16. Municipal waste processing apparatus

    DOE Patents [OSTI]

    Mayberry, J.L.

    1988-04-13T23:59:59.000Z

    This invention relates to apparatus for processing municipal waste, and more particularly to vibrating mesh screen conveyor systems for removing grit, glass, and other noncombustible materials from dry municipal waste. Municipal waste must be properly processed and disposed of so that it does not create health risks to the community. Generally, municipal waste, which may be collected in garbage trucks, dumpsters, or the like, is deposited in processing areas such as landfills. Land and environmental controls imposed on landfill operators by governmental bodies have increased in recent years, however, making landfill disposal of solid waste materials more expensive. 6 figs.

  17. Solution dewatering with concomitant ion removal

    DOE Patents [OSTI]

    Peterson, Eric S.; Marshall, Douglas W.; Stone, Mark L.

    2003-08-05T23:59:59.000Z

    One of the biggest needs in the separations and waste handling and reduction area is a method for dewatering ion-containing solutions. Unexpectedly, it has been found that phosphazene polymers can discriminate between water and metal ions, allowing water to pass through the membrane while retaining the ions. This unexpected result, along with the inherent chemical and thermal stability of the phosphazene polymers, yields a powerful tool for separating and dewatering metal-ion-containing solutions.

  18. Mixed waste: Proceedings

    SciTech Connect (OSTI)

    Moghissi, A.A.; Blauvelt, R.K.; Benda, G.A.; Rothermich, N.E. [eds.] [Temple Univ., Philadelphia, PA (United States). Dept. of Environmental Safety and Health

    1993-12-31T23:59:59.000Z

    This volume contains the peer-reviewed and edited versions of papers submitted for presentation a the Second International Mixed Waste Symposium. Following the tradition of the First International Mixed Waste Symposium, these proceedings were prepared in advance of the meeting for distribution to participants. The symposium was organized by the Mixed Waste Committee of the American Society of Mechanical Engineers. The topics discussed at the symposium include: stabilization technologies, alternative treatment technologies, regulatory issues, vitrification technologies, characterization of wastes, thermal technologies, laboratory and analytical issues, waste storage and disposal, organic treatment technologies, waste minimization, packaging and transportation, treatment of mercury contaminated wastes and bioprocessing, and environmental restoration. Individual abstracts are catalogued separately for the data base.

  19. Method for stabilizing low-level mixed wastes at room temperature

    DOE Patents [OSTI]

    Wagh, A.S.; Singh, D.

    1997-07-08T23:59:59.000Z

    A method to stabilize solid and liquid waste at room temperature is provided comprising combining solid waste with a starter oxide to obtain a powder, contacting the powder with an acid solution to create a slurry, said acid solution containing the liquid waste, shaping the now-mixed slurry into a predetermined form, and allowing the now-formed slurry to set. The invention also provides for a method to encapsulate and stabilize waste containing cesium comprising combining the waste with Zr(OH){sub 4} to create a solid-phase mixture, mixing phosphoric acid with the solid-phase mixture to create a slurry, subjecting the slurry to pressure; and allowing the now pressurized slurry to set. Lastly, the invention provides for a method to stabilize liquid waste, comprising supplying a powder containing magnesium, sodium and phosphate in predetermined proportions, mixing said powder with the liquid waste, such as tritium, and allowing the resulting slurry to set. 4 figs.

  20. Method for stabilizing low-level mixed wastes at room temperature

    DOE Patents [OSTI]

    Wagh, Arun S. (Joliet, IL); Singh, Dileep (Westmont, IL)

    1997-01-01T23:59:59.000Z

    A method to stabilize solid and liquid waste at room temperature is provided comprising combining solid waste with a starter oxide to obtain a powder, contacting the powder with an acid solution to create a slurry, said acid solution containing the liquid waste, shaping the now-mixed slurry into a predetermined form, and allowing the now-formed slurry to set. The invention also provides for a method to encapsulate and stabilize waste containing cesium comprising combining the waste with Zr(OH).sub.4 to create a solid-phase mixture, mixing phosphoric acid with the solid-phase mixture to create a slurry, subjecting the slurry to pressure; and allowing the now pressurized slurry to set. Lastly, the invention provides for a method to stabilize liquid waste, comprising supplying a powder containing magnesium, sodium and phosphate in predetermined proportions, mixing said powder with the liquid waste, such as tritium, and allowing the resulting slurry to set.

  1. The WIPP journey to waste receipt

    SciTech Connect (OSTI)

    Barnes, G.J.; Whatley, M.E.

    1997-04-01T23:59:59.000Z

    In the early 1970s the federal government selected an area in southeastern New Mexico containing large underground salt beds as potentially suitable for radioactive waste disposal. An extensive site characterization program was initiated by the federal government. This site became the Waste Isolation Pilot Plant, better known as WIPP. It is now 1997, over two decades after the initial selection of the New Mexico site as a potential radioactive waste repository. Numerous scientific studies, construction activities, and environmental compliance documents have been completed. The US Department of Energy (DOE) has addressed all relevant issues regarding the safety of WIPP and its ability to isolate radioactive waste from the accessible environment. Throughout the last two decades up to the present time, DOE has negotiated through a political, regulatory, and legal maze with regard to WIPP. New regulations have been issued, litigation initiated, and public involvement brought to the forefront of the DOE decision-making process. All of these factors combined to bring WIPP to its present status--at the final stages of working through the licensing requirements for receipt of transuranic (TRU) waste for disposal. Throughout its history, the DOE has stayed true to Congress` mandates regarding WIPP. Steps taken have been necessary to demonstrate to Congress, the State of New Mexico, and the public in general, that the nation`s first radioactive waste repository will be safe and environmentally sound. DOE`s compliance demonstrations are presently under consideration by the cognizant regulatory agencies and DOE is closer than ever to waste receipt. This paper explores the DOE`s journey towards implementing a permanent disposal solution for defense-related TRU waste, including major Congressional mandates and other factors that contributed to program changes regarding the WIPP project.

  2. Waste Characterization, Reduction, and Repackaging Facility ...

    Office of Environmental Management (EM)

    Waste Characterization, Reduction, and Repackaging Facility (WCRRF) Waste Characterization Glovebox Operations Waste Characterization, Reduction, and Repackaging Facility (WCRRF)...

  3. Solid Waste Management Plan. Revision 4

    SciTech Connect (OSTI)

    NONE

    1995-04-26T23:59:59.000Z

    The waste types discussed in this Solid Waste Management Plan are Municipal Solid Waste, Hazardous Waste, Low-Level Mixed Waste, Low-Level Radioactive Waste, and Transuranic Waste. The plan describes for each type of solid waste, the existing waste management facilities, the issues, and the assumptions used to develop the current management plan.

  4. EM Waste and Materials Disposition & Transportation | Department...

    Office of Environmental Management (EM)

    EM Waste and Materials Disposition & Transportation EM Waste and Materials Disposition & Transportation DOE's Radioactive Waste Management Priorities: Continue to manage waste...

  5. Transuranic (TRU) Waste | Department of Energy

    Office of Environmental Management (EM)

    Transuranic (TRU) Waste Transuranic (TRU) Waste Transuranic (TRU) Waste Defined by the WIPP Land Withdrawal Act as "waste containing more than 100 nanocuries of alpha-emitting...

  6. Municipal Solid Waste Landfills The following Oklahoma landfills currently accept dead livestock. As each facility has different guidelines and

    E-Print Network [OSTI]

    Balasundaram, Balabhaskar "Baski"

    Municipal Solid Waste Landfills The following Oklahoma landfills currently accept dead livestock-581-3468 Garfield City of Enid Landfill 580-249-4917 Garvin Foster Waste Disposal Landfill 405-238-2012 Jackson City-436-1403 Call ahead, may limit qty. Pottawatomie Absolute Waste Solutions 405-598-3893 Call ahead Seminole

  7. New Waste Calcining Facility (NWCF) Waste Streams

    SciTech Connect (OSTI)

    K. E. Archibald

    1999-08-01T23:59:59.000Z

    This report addresses the issues of conducting debris treatment in the New Waste Calcine Facility (NWCF) decontamination area and the methods currently being used to decontaminate material at the NWCF.

  8. Waste IncIneratIon and Waste PreventIon

    E-Print Network [OSTI]

    and heat. In 2005/2006, German waste incineration plants provided some 6 terawatt hours (TWh-/Abfallgesetz) continues to hold: Waste prevention has priority over recovery and disposal. Nevertheless, the use of waste for en- ergy recovery is an indispensable element of sus- tainable waste management. Waste incineration

  9. www.d-waste.com info@d-waste.com

    E-Print Network [OSTI]

    marketplace, about 47 grams of waste is produced-- with worldwide municipal solid waste generation totaling, the International Solid Waste Association, GIZ/SWEEP-Net, the Waste to Energy Research Council (WTERT) and the Solid management data available". According to David Newman, president of the International Solid Waste Association

  10. Aluminum Waste Reaction Indicators in a Municipal Solid Waste Landfill

    E-Print Network [OSTI]

    Aluminum Waste Reaction Indicators in a Municipal Solid Waste Landfill Timothy D. Stark, F.ASCE1 landfills may contain aluminum from residential and commercial solid waste, industrial waste, and aluminum American Society of Civil Engineers. CE Database subject headings: Solid wastes; Leaching; Aluminum

  11. Waste Disposal Guide HOW TO PROPERLY DISPOSE OF WASTE MATERIALS

    E-Print Network [OSTI]

    Schaefer, Marcus

    Waste Disposal Guide HOW TO PROPERLY DISPOSE OF WASTE MATERIALS GENERATED AT DEPAUL UNIVERSITY.4 Hazardous Waste Defined p.5 Chemical Waste Procedure for Generating Departments p.6 o A of Containers p.8 o E. Disposal of Empty Containers p.8 o F. Storage of Waste Chemicals p.8,9 o G

  12. WRPS MEETING THE CHALLENGE OF TANK WASTE

    SciTech Connect (OSTI)

    BRITTON JC

    2012-02-21T23:59:59.000Z

    Washington River Protection Solutions (WRPS) is the Hanford tank operations contractor, charged with managing one of the most challenging environmental cleanup projects in the nation. The U.S. Department of Energy hired WRPS to manage 56 million gallons of high-level radioactive waste stored in 177 underground tanks. The waste is the legacy of 45 years of plutonium production for the U. S. nuclear arsenal. WRPS mission is three-fold: safely manage the waste until it can be processed and immobilized; develop the tools and techniques to retrieve the waste from the tanks, and build the infrastructure needed to deliver the waste to the Waste Treatment Plant (WTP) when it begins operating. WTP will 'vitrify' the waste by mixing it with silica and other materials and heating it in an electric melter. Vitrification turns the waste into a sturdy glass that will isolate the radioactivity from the environment. It will take more than 20 years to process all the tank waste. The tank waste is a complex highly radioactive mixture of liquid, sludge and solids. The radioactivity, chemical composition of the waste and the limited access to the underground storage tanks makes retrieval a challenge. Waste is being retrieved from aging single-shell tanks and transferred to newer, safer double-shell tanks. WRPS is using a new technology known as enhanced-reach sluicing to remove waste. A high-pressure stream of liquid is sprayed at 100 gallons per minute through a telescoping arm onto a hard waste layer several inches thick covering the waste. The waste is broken up, moved to a central pump suction and removed from the tank. The innovative Mobile Arm Retrieval System (MARS) is also being used to retrieve waste. MARS is a remotely operated, telescoping arm installed on a mast in the center of the tank. It uses multiple technologies to scrape, scour and rake the waste toward a pump for removal. The American Reinvestment and Recovery Act (ARRA) provided nearly $326 million over two-and-a-half years to modernize the infrastructure in Hanford's tank farms. WRPS issued 850 subcontracts totaling more than $152 million with nearly 76 percent of that total awarded to small businesses. WRPS used the funding to upgrade tank farm infrastructure, develop technologies to retrieve and consolidate tank waste and extend the life of two critical operating facilities needed to feed waste to the WTP. The 222-S Laboratory analyzes waste to support waste retrievals and transfers. The laboratory was upgraded to support future WTP operations with a new computer system, new analytical equipment, a new office building and a new climate-controlled warehouse. The 242-A Evaporator was upgraded with a control-room simulator for operator training and several upgrades to aging equipment. The facility is used to remove liquid from the tank waste, creating additional storage space, necessary for continued waste retrievals and WTP operation. The One System Integrated Project Team is ajoint effort ofWRPS and Bechtel National to identify and resolve common issues associated with commissioning, feeding and operating the Waste Treatment Plant. Two new facilities are being designed to support WTP hot commlsslomng. The Interim Hanford Storage project is planned to store canisters of immobilized high-level radioactive waste glass produced by the vitrification plant. The facility will use open racks to store the 15-foot long, two-foot diameter canisters of waste, which require remote handling. The Secondary Liquid Waste Treatment Project is a major upgrade to the existing Effluent Treatment Facility at Hanford so it can treat about 10 million gallons of liquid radioactive and hazardous effluent a year from the vitrification plant. The One System approach brings the staff of both companies together to identify and resolve WTP safety issues. A questioning attitude is encouraged and an open forum is maintained for employees to raise issues. WRPS is completing its mission safely with record-setting safety performance. Since WRPS took over the Hanford Tank Operations Contract in October 2

  13. Comparison of Waste Feed Delivery Small Scale Mixing Demonstration Simulant to Hanford Waste

    SciTech Connect (OSTI)

    Wells, Beric E.; Gauglitz, Phillip A.; Rector, David R.

    2011-08-15T23:59:59.000Z

    'The Hanford double-shell tank (DST) system provides the staging location for waste feed delivery to the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Hall (2008) includes WTP acceptance criteria that describe physical and chemical characteristics of the waste that must be certified as acceptable before the waste is transferred from the DSTs to the WTP. One of the more challenging requirements relates to the sampling and characterization of the undissolved solids (UDS) in a waste feed DST. The objectives of Washington River Protection Solutions' (WRPS) Small Scale Mixing Demonstration (SSMD) project are to understand and demonstrate the DST sampling and batch transfer performance at multiple scales using slurry simulants comprised of UDS particles and liquid (Townson 2009). The SSMD project utilizes geometrically scaled DST feed tanks to generate mixing, sampling, and transfer test data. In Phase 2 of the testing, RPP-49740, the 5-part simulant defined in RPP-48358 was used as the waste slurry simulant. The Phase 2 test data are being used to estimate the expected performance of the prototypic systems in the full-scale DSTs. As such, understanding of the how the small-scale systems as well as the simulant relate to the full-scale DSTs and actual waste is required. The focus of this report is comparison of the size and density of the 5-part SSMD simulant to that of the Hanford waste. This is accomplished by computing metrics for particle mobilization, suspension, settling, transfer line intake, and pipeline transfer from the characterization of the 5-part SSMD simulant and characterizations of the Hanford waste. In addition, the effects of the suspending fluid characteristics on the test results are considered, and a computational fluid dynamics tool useful to quantify uncertainties from simulant selections is discussed.'

  14. Challenges when performing economic optimization of waste treatment: A review

    SciTech Connect (OSTI)

    Juul, N., E-mail: njua@dtu.dk [DTU Management, Risø Campus, Technical University of Denmark (Denmark); Münster, M., E-mail: maem@dtu.dk [DTU Management, Risø Campus, Technical University of Denmark (Denmark); Ravn, H., E-mail: hans.ravn@aeblevangen.dk [RAM-løse edb, Æblevangen 55, 2765 Smørum (Denmark); Söderman, M. Ljunggren, E-mail: maria.ljunggren@chalmers.se [Energy and Environment, Chalmers University of Technology, Gothenburg (Sweden); IVL Swedish Environmental Research Institute, Gothenburg (Sweden)

    2013-09-15T23:59:59.000Z

    Highlights: • Review of main optimization tools in the field of waste management. • Different optimization methods are applied. • Different fractions are analyzed. • There is focus on different parameters in different geographical regions. • More research is needed which encompasses both recycling and energy solutions. - Abstract: Strategic and operational decisions in waste management, in particular with respect to investments in new treatment facilities, are needed due to a number of factors, including continuously increasing amounts of waste, political demands for efficient utilization of waste resources, and the decommissioning of existing waste treatment facilities. Optimization models can assist in ensuring that these investment strategies are economically feasible. Various economic optimization models for waste treatment have been developed which focus on different parameters. Models focusing on transport are one example, but models focusing on energy production have also been developed, as well as models which take into account a plant’s economies of scale, environmental impact, material recovery and social costs. Finally, models combining different criteria for the selection of waste treatment methods in multi-criteria analysis have been developed. A thorough updated review of the existing models is presented, and the main challenges and crucial parameters that need to be taken into account when assessing the economic performance of waste treatment alternatives are identified. The review article will assist both policy-makers and model-developers involved in assessing the economic performance of waste treatment alternatives.

  15. Nuclear Waste Management Program summary document, FY 1981

    SciTech Connect (OSTI)

    Meyers, Sheldon

    1980-03-01T23:59:59.000Z

    The Nuclear Waste Management Program Summary Document outlines the operational and research and development (R and D) activities of the Office of Nuclear Waste Management (NEW) under the Assistant Secretary for Nuclear Energy, US Department of Energy (DOE). This document focuses on the current and planned activities in waste management for FY 1981. This Program Summary Document (PSD) was prepared in order to explain the Federal nuclear waste management and spent fuel storage programs to Congress and its committees and to interested members of the public, the private sector, and the research community. The national energy policy as it applies to waste management and spent fuel storage is presented first. The program strategy, structure, budget, management approach, and public participation programs are then identified. The next section describes program activities and outlines their status. Finally, the applicability of departmental policies to NEW programs is summarized, including field and regional activities, commercialization plans, and environmental and socioeconomic implications of waste management activities, and international programs. This Nuclear Waste Management Program Summary Document is meant to serve as a guide to the progress of R and D and other energy technology programs in radioactive waste management. The R and D objective is to provide the Nation with acceptable solutions to short- and long-term management problems for all forms of radioactive waste and spent fuel.

  16. Guidelines for mixed waste minimization

    SciTech Connect (OSTI)

    Owens, C.

    1992-02-01T23:59:59.000Z

    Currently, there is no commercial mixed waste disposal available in the United States. Storage and treatment for commercial mixed waste is limited. Host States and compacts region officials are encouraging their mixed waste generators to minimize their mixed wastes because of management limitations. This document provides a guide to mixed waste minimization.

  17. Underground waste barrier structure

    DOE Patents [OSTI]

    Saha, Anuj J. (Hamburg, NY); Grant, David C. (Gibsonia, PA)

    1988-01-01T23:59:59.000Z

    Disclosed is an underground waste barrier structure that consists of waste material, a first container formed of activated carbonaceous material enclosing the waste material, a second container formed of zeolite enclosing the first container, and clay covering the second container. The underground waste barrier structure is constructed by forming a recessed area within the earth, lining the recessed area with a layer of clay, lining the clay with a layer of zeolite, lining the zeolite with a layer of activated carbonaceous material, placing the waste material within the lined recessed area, forming a ceiling over the waste material of a layer of activated carbonaceous material, a layer of zeolite, and a layer of clay, the layers in the ceiling cojoining with the respective layers forming the walls of the structure, and finally, covering the ceiling with earth.

  18. Operational Waste Volume Projection

    SciTech Connect (OSTI)

    STRODE, J.N.

    1999-08-24T23:59:59.000Z

    Waste receipts to the double-shell tank system are analyzed and wastes through the year 2018 are projected based on assumption as of July 1999. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the Tri-Party Agreement.

  19. Operational Waste Volume Projection

    SciTech Connect (OSTI)

    STRODE, J.N.

    2000-08-28T23:59:59.000Z

    Waste receipts to the double-shell tank system are analyzed and wastes through the year 2015 are projected based on generation trends of the past 12 months. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the Tri-Party Agreement. Assumptions were current as of June. 2000.

  20. Operational waste volume projection

    SciTech Connect (OSTI)

    Koreski, G.M.

    1996-09-20T23:59:59.000Z

    Waste receipts to the double-shell tank system are analyzed and wastes through the year 2015 are projected based on generation trends of the past 12 months. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the Tri-Party Agreement. Assumptions were current as of June 1996.

  1. MEASUREMENT OF WASTE LOADING IN SALTSTONE

    SciTech Connect (OSTI)

    Harbour, J; Vickie Williams, V

    2008-07-18T23:59:59.000Z

    One of the goals of the Saltstone variability study is to identify the operational and compositional variables that control or influence the important processing and performance properties of Saltstone grout mixtures. One of those properties of importance is the Waste Loading (WL) of the decontaminated salt solution (DSS) in the Saltstone waste form. Waste loading is a measure of the amount of waste that can be incorporated within a waste form. The value of the Saltstone waste loading ultimately determines the number of vaults that will be required to disposition all of the DSS. In this report, the waste loading is defined as the volume in milliliters of DSS per liter of Saltstone waste form. The two most important parameters that determine waste loading for Saltstone are water to cementitious material (w/cm) ratio and the cured grout density. Data are provided that show the dependence of waste loading on the w/cm ratio for a fixed DSS composition using the current premix material (45% Blast Furnace Slag (BFS), 45% Fly Ash (FA) and 10% Ordinary Portland Cement (OPC)). The impact of cured grout density on waste loading was also demonstrated. Mixes (at 0.60 w/cm) made with a Modular Caustic side extraction Unit (MCU) simulant and either OPC or BFS have higher cured grout densities than mixes made with premix and increase the WL to 709 mL/L for the OPC mix and 689 mL/L for the BFS mix versus the value of 653 mL/L for MCU in premix at 0.60 w/cm ratio. Bleed liquid reduces the waste loading and lowers the effective w/cm ratio of Saltstone. A method is presented (and will be used in future tasks) for correcting the waste loading and the w/cm ratio of the as-batched mixes in those cases where bleed liquid is present. For example, the Deliquification, Dissolution and Adjustment (DDA) mix at an as-batched 0.60 w/cm ratio, when corrected for % bleed, gives a mix with a 0.55 w/cm ratio and a WL that has been reduced from 662 to 625 mL/L. An example is provided that demonstrated the quantitative impact of WL on the number of cells (each Saltstone vault contains two cells) required to disposition all of the {approx}100 million gallons of DSS available in the tanks. This calculation revealed that the number of cells required over the range of 0.48 to 0.62 w/cm ratio (equivalent to a WL range of 591 to 666 mL/L) varies from 65 to 57 cells (33 to 29 vaults). The intent of this oversimplified example was to show the range of variation in vaults expected due to w/cm ratio rather than to estimate the actual number of vaults required. There is a tradeoff between the waste loading and the processing and performance properties of Saltstone. The performance properties improve in general as the w/cm ratio decreases whereas the waste loading is reduced at lower w/cm ratios resulting in a larger number of Saltstone vaults. The final performance and processing requirements of Saltstone will determine the maximum waste loading achievable.

  2. Vitrification of waste

    DOE Patents [OSTI]

    Wicks, George G. (Aiken, SC)

    1999-01-01T23:59:59.000Z

    A method for encapsulating and immobilizing waste for disposal. Waste, preferably, biologically, chemically and radioactively hazardous, and especially electronic wastes, such as circuit boards, are placed in a crucible and heated by microwaves to a temperature in the range of approximately 300.degree. C. to 800.degree. C. to incinerate organic materials, then heated further to a temperature in the range of approximately 1100.degree. C. to 1400.degree. C. at which temperature glass formers present in the waste will cause it to vitrify. Glass formers, such as borosilicate glass, quartz or fiberglass can be added at the start of the process to increase the silicate concentration sufficiently for vitrification.

  3. Vitrification of waste

    DOE Patents [OSTI]

    Wicks, G.G.

    1999-04-06T23:59:59.000Z

    A method is described for encapsulating and immobilizing waste for disposal. Waste, preferably, biologically, chemically and radioactively hazardous, and especially electronic wastes, such as circuit boards, are placed in a crucible and heated by microwaves to a temperature in the range of approximately 300 C to 800 C to incinerate organic materials, then heated further to a temperature in the range of approximately 1100 C to 1400 C at which temperature glass formers present in the waste will cause it to vitrify. Glass formers, such as borosilicate glass, quartz or fiberglass can be added at the start of the process to increase the silicate concentration sufficiently for vitrification.

  4. Solid Waste Management (Connecticut)

    Broader source: Energy.gov [DOE]

    Solid waste facilities operating in Connecticut must abide by these regulations, which describe requirements and procedures for issuing construction and operating permits; environmental...

  5. Solid Waste Policies (Iowa)

    Broader source: Energy.gov [DOE]

    This statute establishes the support of the state for alternative waste management practices that reduce the reliance upon land disposal and incorporate resource recovery. Cities and counties are...

  6. Solid Waste Permits (Louisiana)

    Broader source: Energy.gov [DOE]

    The Louisiana Department of Environmental Quality administers the rules and regulations governing the storage, collection, processing, recovery, and reuse of solid waste protect the air,...

  7. Norcal Waste Systems, Inc.

    SciTech Connect (OSTI)

    Not Available

    2002-12-01T23:59:59.000Z

    Fact sheet describes the LNG long-haul heavy-duty trucks at Norcal Waste Systems Inc.'s Sanitary Fill Company.

  8. Hazardous Waste Management (Indiana)

    Broader source: Energy.gov [DOE]

    The state supports the implementation of source reduction, recycling, and other alternative solid waste management practices over incineration and land disposal. The Department of Environmental...

  9. Solid Waste Management (Indiana)

    Broader source: Energy.gov [DOE]

    The state supports the implementation of source reduction, recycling, and other alternative solid waste management practices over incineration and land disposal. The Indiana Department of...

  10. Solid Waste Management (Michigan)

    Broader source: Energy.gov [DOE]

    This Act encourages the Department of Environmental Quality and Health Department representatives to develop and encourage methods for disposing solid waste that are environmentally sound, that...

  11. Waste Heat Recovery

    Office of Environmental Management (EM)

    DRAFT - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. Introduction to the TechnologySystem ......

  12. Using Photogrammetry to Estimate Tank Waste Volumes from Video

    SciTech Connect (OSTI)

    Field, Jim G. [Washington River Protection Solutions, LLC, Richland, WA (United States)

    2013-03-27T23:59:59.000Z

    Washington River Protection Solutions (WRPS) contracted with HiLine Engineering & Fabrication, Inc. to assess the accuracy of photogrammetry tools as compared to video Camera/CAD Modeling System (CCMS) estimates. This test report documents the results of using photogrammetry to estimate the volume of waste in tank 241-C-I04 from post-retrieval videos and results using photogrammetry to estimate the volume of waste piles in the CCMS test video.

  13. Secondary Waste Cast Stone Waste Form Qualification Testing Plan

    SciTech Connect (OSTI)

    Westsik, Joseph H.; Serne, R. Jeffrey

    2012-09-26T23:59:59.000Z

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 56 million gallons of radioactive waste stored in 177 underground tanks at the Hanford Site. The WTP includes a pretreatment facility to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions for vitrification and disposal. The LAW will be converted to glass for final disposal at the Integrated Disposal Facility (IDF). Cast Stone – a cementitious waste form, has been selected for solidification of this secondary waste stream after treatment in the ETF. The secondary-waste Cast Stone waste form must be acceptable for disposal in the IDF. This secondary waste Cast Stone waste form qualification testing plan outlines the testing of the waste form and immobilization process to demonstrate that the Cast Stone waste form can comply with the disposal requirements. Specifications for the secondary-waste Cast Stone waste form have not been established. For this testing plan, Cast Stone specifications are derived from specifications for the immobilized LAW glass in the WTP contract, the waste acceptance criteria for the IDF, and the waste acceptance criteria in the IDF Permit issued by the State of Washington. This testing plan outlines the testing needed to demonstrate that the waste form can comply with these waste form specifications and acceptance criteria. The testing program must also demonstrate that the immobilization process can be controlled to consistently provide an acceptable waste form product. This testing plan also outlines the testing needed to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support performance assessment analyses of the long-term environmental impact of the secondary-waste Cast Stone waste form in the IDF

  14. Improved method for extracting lanthanides and actinides from acid solutions

    DOE Patents [OSTI]

    Horwitz, E.P.; Kalina, D.G.; Kaplan, L.; Mason, G.W.

    1983-07-26T23:59:59.000Z

    A process for the recovery of actinide and lanthanide values from aqueous acidic solutions uses a new series of neutral bi-functional extractants, the alkyl(phenyl)-N,N-dialkylcarbamoylmethylphosphine oxides. The process is suitable for the separation of actinide and lanthanide values from fission product values found together in high-level nuclear reprocessing waste solutions.

  15. Waste Isolation Pilot Plant (WIPP) Waste Isolation Pilot Plant...

    National Nuclear Security Administration (NNSA)

    licensed to safely and permanently dispose of transuranic radioactive waste, or TRU waste, left over from the production of nuclear weapons. After more than 20 years of...

  16. Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania)

    Broader source: Energy.gov [DOE]

    This act provides for planning for the processing and disposal of municipal waste; requires counties to submit plans for municipal waste management systems within their boundaries; authorizes...

  17. Pyrolysis for waste management: A life cycle assesment of biodegradable waste, bioenergy generation and biochar production in Glasgow and Clyde valley 

    E-Print Network [OSTI]

    Ibarrola, Rodrigo

    2009-01-01T23:59:59.000Z

    Biochar production and waste treatment by pyrolysis represent an attractive solution to decrease carbon dioxide atmospheric concentrations and to enhance the enrichment of soils by treating in a more sustainable way the ...

  18. Solid Waste Act (New Mexico)

    Broader source: Energy.gov [DOE]

    The main purpose of the Solid Waste Act is to authorize and direct the establishment of a comprehensive solid waste management program. The act states details about specific waste management...

  19. Virginia Waste Management Act (Virginia)

    Broader source: Energy.gov [DOE]

    Solid waste and hazardous waste are regulated under a number of programs at the Department of Environmental Quality. These programs are designed to encourage the reuse and recycling of solid waste...

  20. Hazardous Waste Management (North Carolina)

    Broader source: Energy.gov [DOE]

    These rules identify and list hazardous waste and set standards for the generators and operators of such waste as well as owners or operators of waste facilities. They also stats standards for...

  1. Solid Waste Disposal Act (Texas)

    Broader source: Energy.gov [DOE]

    The Texas Commission on Environmental Quality is responsible for the regulation and management of municipal solid waste and hazardous waste. A fee is applied to all solid waste disposed in the...

  2. Georgia Waste Control Law (Georgia)

    Broader source: Energy.gov [DOE]

    The Waste Control Law makes it unlawful to dump waste in any lakes, streams or surfaces waters of the State or on any private property without consent of the property owner. Waste is very broadly...

  3. Meeting Department of Defense non-hazardous solid waste goals

    SciTech Connect (OSTI)

    Eakes, W.S.; Comstock, J.

    1999-07-01T23:59:59.000Z

    This paper will discuss the previous and present Department of Defense (DOD) non-hazardous solid waste goals and how Navy and Marine Corps installation collect solid waste data and measure the goals. The installation and central data collection systems used, data collection problems and solutions, data quality, and the yearly measure. The paper will also discuss the original solid waste reduction and diversion goal and how the Navy and Marine Corps performed. The new DOD landfill and incineration diversion goal will be discussed and some techniques the Navy will use to meet the new goals.

  4. Measurements and Models for Hazardous chemical and Mixed Wastes

    SciTech Connect (OSTI)

    Laurel A. Watts; Cynthia D. Holcomb; Stephanie L. Outcalt; Beverly Louie; Michael E. Mullins; Tony N. Rogers

    2002-08-21T23:59:59.000Z

    Mixed solvent aqueous waste of various chemical compositions constitutes a significant fraction of the total waste produced by industry in the United States. Not only does the chemical process industry create large quantities of aqueous waste, but the majority of the waste inventory at the DOE sites previously used for nuclear weapons production is mixed solvent aqueous waste. In addition, large quantities of waste are expected to be generated in the clean-up of those sites. In order to effectively treat, safely handle, and properly dispose of these wastes, accurate and comprehensive knowledge of basic thermophysical properties is essential. The goal of this work is to develop a phase equilibrium model for mixed solvent aqueous solutions containing salts. An equation of state was sought for these mixtures that (a) would require a minimum of adjustable parameters and (b) could be obtained from a available data or data that were easily measured. A model was developed to predict vapor composition and pressure given the liquid composition and temperature. It is based on the Peng-Robinson equation of state, adapted to include non-volatile and salt components. The model itself is capable of predicting the vapor-liquid equilibria of a wide variety of systems composed of water, organic solvents, salts, nonvolatile solutes, and acids or bases. The representative system o water + acetone + 2-propanol + NaNo3 was selected to test and verify the model. Vapor-liquid equilibrium and phase density measurements were performed for this system and its constituent binaries.

  5. Engineering-Scale Demonstration of DuraLith and Ceramicrete Waste Forms

    SciTech Connect (OSTI)

    Josephson, Gary B.; Westsik, Joseph H.; Pires, Richard P.; Bickford, Jody; Foote, Martin W.

    2011-09-23T23:59:59.000Z

    To support the selection of a waste form for the liquid secondary wastes from the Hanford Waste Immobilization and Treatment Plant, Washington River Protection Solutions (WRPS) has initiated secondary waste form testing on four candidate waste forms. Two of the candidate waste forms have not been developed to scale as the more mature waste forms. This work describes engineering-scale demonstrations conducted on Ceramicrete and DuraLith candidate waste forms. Both candidate waste forms were successfully demonstrated at an engineering scale. A preliminary conceptual design could be prepared for full-scale production of the candidate waste forms. However, both waste forms are still too immature to support a detailed design. Formulations for each candidate waste form need to be developed so that the material has a longer working time after mixing the liquid and solid constituents together. Formulations optimized based on previous lab studies did not have sufficient working time to support large-scale testing. The engineering-scale testing was successfully completed using modified formulations. Further lab development and parametric studies are needed to optimize formulations with adequate working time and assess the effects of changes in raw materials and process parameters on the final product performance. Studies on effects of mixing intensity on the initial set time of the waste forms are also needed.

  6. Solid Waste Paul Woodson, East Central University

    E-Print Network [OSTI]

    of groundwater contamination, air pollution, and odor. Solid wastes may be displeasing to the public either, industrial and medical wastes, food wastes, mineral waste, and nonhazardous wastes. In addition/reservoirs, special wastes, such as medical wastes, low level radioactive wastes, construction/demolition debris

  7. Hazardous Waste Management (New Mexico)

    Broader source: Energy.gov [DOE]

    The New Mexico Environment Department's Hazardous Waste Bureau is responsible for the management of hazardous waste in the state. The Bureau enforces the rules established by the Environmental...

  8. Solid Waste Management (South Dakota)

    Broader source: Energy.gov [DOE]

    This statute contains provisions for solid waste management systems, groundwater monitoring, liability for pollution, permitting, inspections, and provisions for waste reduction and recycling...

  9. RADIOACTIVE WASTE DISPOSAL IN GRANITE

    E-Print Network [OSTI]

    Witherspoon, P.A.

    2010-01-01T23:59:59.000Z

    RADIOACTIVE WASTE DISPOSAL IN GRANITE Paul A. WitherspoonRADIOACTIVE WASTE DISPOSAL IN GRANITE Paul A. Wither spoona repository site in granite are to evaluate the suitability

  10. Solid Waste Management Act (Oklahoma)

    Broader source: Energy.gov [DOE]

    This Act establishes rules for the permitting, posting of security, construction, operation, closure, maintenance and remediation of solid waste disposal sites; disposal of solid waste in ways that...

  11. Animal Waste Technology Fund (Maryland)

    Broader source: Energy.gov [DOE]

    A bill passed in 2012 transferred responsibility for animal waste management technology projects to the Maryland Department of Agriculture. The Department will maintain the Animal Waste Technology...

  12. Solid Waste Rules (New Hampshire)

    Broader source: Energy.gov [DOE]

    The solid waste statute applies to construction and demolition debris, appliances, recyclables, and the facilities that collect, process, and dispose of solid waste. DES oversees the management of...

  13. Nebraska Hazardous Waste Regulations (Nebraska)

    Broader source: Energy.gov [DOE]

    These regulations, promulgated by the Department of Environmental Quality, contain provisions pertaining to hazardous waste management, waste standards, permitting requirements, and land disposal...

  14. Solid Waste Management (North Carolina)

    Broader source: Energy.gov [DOE]

    The Solid Waste Program regulates safe management of solid waste through guidance, technical assistance, regulations, permitting, environmental monitoring, compliance evaluation and enforcement....

  15. Waste classification sampling plan

    SciTech Connect (OSTI)

    Landsman, S.D.

    1998-05-27T23:59:59.000Z

    The purpose of this sampling is to explain the method used to collect and analyze data necessary to verify and/or determine the radionuclide content of the B-Cell decontamination and decommissioning waste stream so that the correct waste classification for the waste stream can be made, and to collect samples for studies of decontamination methods that could be used to remove fixed contamination present on the waste. The scope of this plan is to establish the technical basis for collecting samples and compiling quantitative data on the radioactive constituents present in waste generated during deactivation activities in B-Cell. Sampling and radioisotopic analysis will be performed on the fixed layers of contamination present on structural material and internal surfaces of process piping and tanks. In addition, dose rate measurements on existing waste material will be performed to determine the fraction of dose rate attributable to both removable and fixed contamination. Samples will also be collected to support studies of decontamination methods that are effective in removing the fixed contamination present on the waste. Sampling performed under this plan will meet criteria established in BNF-2596, Data Quality Objectives for the B-Cell Waste Stream Classification Sampling, J. M. Barnett, May 1998.

  16. Radioactive waste disposal package

    DOE Patents [OSTI]

    Lampe, Robert F. (Bethel Park, PA)

    1986-01-01T23:59:59.000Z

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  17. Heterogeneous waste processing

    DOE Patents [OSTI]

    Vanderberg, Laura A. (Los Alamos, NM); Sauer, Nancy N. (Los Alamos, NM); Brainard, James R. (Los Alamos, NM); Foreman, Trudi M. (Los Alamos, NM); Hanners, John L. (Los Alamos, NM)

    2000-01-01T23:59:59.000Z

    A combination of treatment methods are provided for treatment of heterogeneous waste including: (1) treatment for any organic compounds present; (2) removal of metals from the waste; and, (3) bulk volume reduction, with at least two of the three treatment methods employed and all three treatment methods emplyed where suitable.

  18. AVLIS production plant waste management plan

    SciTech Connect (OSTI)

    Not Available

    1984-11-15T23:59:59.000Z

    Following the executive summary, this document contains the following: (1) waste management facilities design objectives; (2) AVLIS production plant wastes; (3) waste management design criteria; (4) waste management plan description; and (5) waste management plan implementation. 17 figures, 18 tables.

  19. Waste Minimization Study on Pyrochemical Reprocessing Processes

    SciTech Connect (OSTI)

    Boussier, H.; Conocar, O.; Lacquement, J. [CEA/DEN Valrho Marcoule/DRCP/SCPS/Pyrochemical Processes Laboratory, BP 17171 30207 Bagnols-sur-Ceze (France)

    2006-07-01T23:59:59.000Z

    Ideally a new pyro-process should not generate more waste, and should be at least as safe and cost effective as the hydrometallurgical processes currently implemented at industrial scale. This paper describes the thought process, the methodology and some results obtained by process integration studies to devise potential pyro-processes and to assess their capability of achieving this challenging objective. As example the assessment of a process based on salt/metal reductive extraction, designed for the reprocessing of Generation IV carbide spent fuels, is developed. Salt/metal reductive extraction uses the capability of some metals, aluminum in this case, to selectively reduce actinide fluorides previously dissolved in a fluoride salt bath. The reduced actinides enter the metal phase from which they are subsequently recovered; the fission products remain in the salt phase. In fact, the process is not so simple, as it requires upstream and downstream subsidiary steps. All these process steps generate secondary waste flows representing sources of actinide leakage and/or FP discharge. In aqueous processes the main solvent (nitric acid solution) has a low boiling point and evaporate easily or can be removed by distillation, thereby leaving limited flow containing the dissolved substance behind to be incorporated in a confinement matrix. From the point of view of waste generation, one main handicap of molten salt processes, is that the saline phase (fluoride in our case) used as solvent is of same nature than the solutes (radionuclides fluorides) and has a quite high boiling point. So it is not so easy, than it is with aqueous solutions, to separate solvent and solutes in order to confine only radioactive material and limit the final waste flows. Starting from the initial block diagram devised two years ago, the paper shows how process integration studies were able to propose process fittings which lead to a reduction of the waste variety and flows leading at an 'ideal' new block diagram allowing internal solvent recycling, and self eliminating reactants. This new flowsheet minimizes the quantity of inactive inlet flows that would have inevitably to be incorporated in a final waste form. The study identifies all knowledge gaps to be filled and suggest some possible R and D issues to confirm or infirm the feasibility of the proposed process fittings. (authors)

  20. Hanford Tank Waste Information Enclosure 1 Hanford Tank Waste Information

    E-Print Network [OSTI]

    ) and the definition of HLW from the Nuclear Waste Policy Act of 1982, as amended (NWPA). The WIPP Land Withdrawal Act by the disposal regulations; or #12;Hanford Tank Waste Information Enclosure 1 2 (C) waste that the Nuclear 10, Code of Federal Regulations. The Nuclear Waste Policy Act of 1982 (42 U.S.C. 10101

  1. Annual report on the development and characterization of solidified forms for nuclear wastes, 1979

    SciTech Connect (OSTI)

    Chick, L.A.; McVay, G.L.; Mellinger, G.B.; Roberts, F.P.

    1980-12-01T23:59:59.000Z

    Development and characterization of solidified nuclear waste forms is a major continuing effort at Pacific Northwest Laboratory. Contributions from seven programs directed at understanding chemical composition, process conditions, and long-term behaviors of various nuclear waste forms are included in this report. The major findings of the report are included in extended figure captions that can be read as brief technical summaries of the research, with additional information included in a traditional narrative format. Waste form development proceeded on crystalline and glass materials for high-level and transuranic (TRU) wastes. Leaching studies emphasized new areas of research aimed at more basic understanding of waste form/aqueous solution interactions. Phase behavior and thermal effects research included studies on crystal phases in defense and TRU waste glasses and on liquid-liquid phase separation in borosilicate waste glasses. Radiation damage effects in crystals and glasses from alpha decay and from transmutation are reported.

  2. A multi-echelon supply chain model for municipal solid waste management system

    SciTech Connect (OSTI)

    Zhang, Yimei, E-mail: yimei.zhang1@gmail.com [Energy and Environmental Research Academy, North China Electric Power University, Beijing 102206 (China); Huang, Guo He [Environmental Systems Engineering Program, Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2 (Canada); He, Li [Energy and Environmental Research Academy, North China Electric Power University, Beijing 102206 (China)

    2014-02-15T23:59:59.000Z

    In this paper, a multi-echelon multi-period solid waste management system (MSWM) was developed by inoculating with multi-echelon supply chain. Waste managers, suppliers, industries and distributors could be engaged in joint strategic planning and operational execution. The principal of MSWM system is interactive planning of transportation and inventory for each organization in waste collection, delivery and disposal. An efficient inventory management plan for MSWM would lead to optimized productivity levels under available capacities (e.g., transportation and operational capacities). The applicability of the proposed system was illustrated by a case with three cities, one distribution and two waste disposal facilities. Solutions of the decision variable values under different significant levels indicate a consistent trend. With an increased significant level, the total generated waste would be decreased, and the total transported waste through distribution center to waste to energy and landfill would be decreased as well.

  3. Automation of waste recycling using hyperspectral image analysis Artzai Picon1

    E-Print Network [OSTI]

    Whelan, Paul F.

    Automation of waste recycling using hyperspectral image analysis Artzai Picon1 Ovidiu Ghita2 Pedro. In this paper we present a novel methodology to automate the recycling process of non-ferrous metal Waste from that the proposed solution can be used to replace the manual procedure that is currently used in WEEE recycling

  4. Decentralized Storage Consistency via Versioning Servers Garth Goodson,

    E-Print Network [OSTI]

    , consistency protocol, versioning servers, distributed systems #12; Introduction Survivable storage systems (e produce garbage. Protocols exist for achieving such consistency, they generally involve significant extra], survival client compromises [34]. Further, implemented with minimal performance cost ( [34] and capacity

  5. Waste to Energy Time Activities

    E-Print Network [OSTI]

    SEMINAR Waste to Energy Time Activities 9:30-9:40 Brief introduction of participants 9:40-10:10 Presentation of Dr. Kalogirou, "Waste to Energy: An Integral Part of Worldwide Sustainable Waste Management" 10. Sofia Bethanis, "Production of synthetic aggregates for use in structural concrete from waste to energy

  6. Hazardous Waste Disposal Sites (Iowa)

    Broader source: Energy.gov [DOE]

    These sections contain information on fees and monitoring relevant to operators of hazardous waste disposal sites.

  7. Contained recovery of oily waste

    DOE Patents [OSTI]

    Johnson, Jr., Lyle A. (Laramie, WY); Sudduth, Bruce C. (Laramie, WY)

    1989-01-01T23:59:59.000Z

    A method is provided for recovering oily waste from oily waste accumulations underground comprising sweeping the oily waste accumulation with hot water to recover said oily waste, wherein said area treated is isolated from surrounding groundwater hydraulically. The hot water may be reinjected after the hot-water displacement or may be treated to conform to any discharge requirements.

  8. Methane generation from waste materials

    DOE Patents [OSTI]

    Samani, Zohrab A. (Las Cruces, NM); Hanson, Adrian T. (Las Cruces, NM); Macias-Corral, Maritza (Las Cruces, NM)

    2010-03-23T23:59:59.000Z

    An organic solid waste digester for producing methane from solid waste, the digester comprising a reactor vessel for holding solid waste, a sprinkler system for distributing water, bacteria, and nutrients over and through the solid waste, and a drainage system for capturing leachate that is then recirculated through the sprinkler system.

  9. Secondary Waste Form Down Selection Data Package – Ceramicrete

    SciTech Connect (OSTI)

    Cantrell, Kirk J.; Westsik, Joseph H.

    2011-08-31T23:59:59.000Z

    As part of high-level waste pretreatment and immobilized low activity waste processing, liquid secondary wastes will be generated that will be transferred to the Effluent Treatment Facility on the Hanford Site for further treatment. These liquid secondary wastes will be converted to stable solid waste forms that will be disposed in the Integrated Disposal Facility. Currently, four waste forms are being considered for stabilization and solidification of the liquid secondary wastes. These waste forms are Cast Stone, Ceramicrete, DuraLith, and Fluidized Bed Steam Reformer. The preferred alternative will be down selected from these four waste forms. Pacific Northwest National Laboratory is developing data packages to support the down selection process. The objective of the data packages is to identify, evaluate, and summarize the existing information on the four waste forms being considered for stabilization and solidification of the liquid secondary wastes. The information included will be based on information available in the open literature and from data obtained from testing currently underway. This data package is for the Ceramicrete waste form. Ceramicrete is a relatively new engineering material developed at Argonne National Laboratory to treat radioactive and hazardous waste streams (e.g., Wagh 2004; Wagh et al. 1999a, 2003; Singh et al. 2000). This cement-like waste form can be used to treat solids, liquids, and sludges by chemical immobilization, microencapsulation, and/or macroencapsulation. The Ceramicrete technology is based on chemical reaction between phosphate anions and metal cations to form a strong, dense, durable, low porosity matrix that immobilizes hazardous and radioactive contaminants as insoluble phosphates and microencapsulates insoluble radioactive components and other constituents that do not form phosphates. Ceramicrete is a type of phosphate-bonded ceramic, which are also known as chemically bonded phosphate ceramics. The Ceramicrete binder is formed through an acid-base reaction between calcined magnesium oxide (MgO; a base) and potassium hydrogen phosphate (KH{sub 2}PO{sub 4}; an acid) in aqueous solution. The reaction product sets at room temperature to form a highly crystalline material. During the reaction, the hazardous and radioactive contaminants also react with KH{sub 2}PO{sub 4} to form highly insoluble phosphates. In this data package, physical property and waste acceptance data for Ceramicrete waste forms fabricated with wastes having compositions that were similar to those expected for secondary waste effluents, as well as secondary waste effluent simulants from the Hanford Tank Waste Treatment and Immobilization Plant were reviewed. With the exception of one secondary waste form formulation (25FA+25 W+1B.A. fabricated with the mixed simulant did not meet the compressive strength requirement), all the Ceramicrete waste forms that were reviewed met or exceeded Integrated Disposal Facility waste acceptance criteria.

  10. Flexible Distributed Energy and Water from Waste for the Food and Beverage Industry

    Broader source: Energy.gov [DOE]

    Waste-to-value is a promising and comprehensive wastewater processing solution being pursued by GE that recovers valuable energy and purified water from the abundant wastewater generated and...

  11. Radioactive waste material disposal

    DOE Patents [OSTI]

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1995-10-24T23:59:59.000Z

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide. 3 figs.

  12. Radioactive waste material disposal

    DOE Patents [OSTI]

    Forsberg, Charles W. (155 Newport Dr., Oak Ridge, TN 37830); Beahm, Edward C. (106 Cooper Cir., Oak Ridge, TN 37830); Parker, George W. (321 Dominion Cir., Knoxville, TN 37922)

    1995-01-01T23:59:59.000Z

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

  13. Specifying Waste Heat Boilers

    E-Print Network [OSTI]

    Ganapathy, V.

    or hydrochloric acid vapor should be mentioned upfront so the HRSG designer can take proper precauations while designing the unit.Material selection is also impacted by the presence of corrosive gases.If partial pressure of hydrogen is high in the gas stream...SPECIFYING WASTE HEAT BOILERS V.Ganapathy.ABCO Industries Abilene,Texas ABSTRACT Waste heat boilers or Heat Recovery Steam 'Generators(HRSGs) as they are often called are used to recover energy from waste gas streams in chemical plants...

  14. Active Waste Materials Corrosion and Decontamination Tests

    SciTech Connect (OSTI)

    MJ Danielson; MR Elmore; SG Pitman

    2000-08-15T23:59:59.000Z

    Stainless steel alloys, 304L and 316L, were corrosion tested in representative radioactive samples of three actual Hanford tank waste solutions (Tanks AW-101, C-104, AN-107). Both the 304L and 316L exhibited good corrosion performance when immersed in boiling waste solutions. The maximum general corrosion rate was 0.015 mm/y (0.60 mils per year). Generally, the 304L had a slightly higher rate than the 316L. No localized attack was observed after 122 days of testing in the liquid phase, liquid/vapor phase, or vapor phase. Radioactive plate-out decontamination tests indicated that a 24-hour exposure to 1 {und M} HNO{sub 3} could remove about 99% of the radioactive components in the metal film when exposed to the C-104 and AN-107 solutions. The decontamination results are less certain for the AW-101 solution, since the initial contamination readings exceeded the capacity of the meter used for this test.

  15. Certification Plan, low-level waste Hazardous Waste Handling Facility

    SciTech Connect (OSTI)

    Albert, R.

    1992-06-30T23:59:59.000Z

    The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. This plan provides guidance from the HWHF to waste generators, waste handlers, and the Waste Certification Specialist to enable them to conduct their activities and carry out their responsibilities in a manner that complies with the requirements of WHC-WAC. Waste generators have the primary responsibility for the proper characterization of LLW. The Waste Certification Specialist verifies and certifies that LBL LLW is characterized, handled, and shipped in accordance with the requirements of WHC-WAC. Certification is the governing process in which LBL personnel conduct their waste generating and waste handling activities in such a manner that the Waste Certification Specialist can verify that the requirements of WHC-WAC are met.

  16. Hanford Site Secondary Waste Roadmap

    SciTech Connect (OSTI)

    Westsik, Joseph H.

    2009-01-29T23:59:59.000Z

    Summary The U.S. Department of Energy (DOE) is making plans to dispose of 54 million gallons of radioactive tank wastes at the Hanford Site near Richland, Washington. The high-level wastes and low-activity wastes will be vitrified and placed in permanent disposal sites. Processing of the tank wastes will generate secondary wastes, including routine solid wastes and liquid process effluents, and these need to be processed and disposed of also. The Department of Energy Office of Waste Processing sponsored a meeting to develop a roadmap to outline the steps necessary to design the secondary waste forms. Representatives from DOE, the U.S. Environmental Protection Agency, the Washington State Department of Ecology, the Oregon Department of Energy, Nuclear Regulatory Commission, technical experts from the DOE national laboratories, academia, and private consultants convened in Richland, Washington, during the week of July 21-23, 2008, to participate in a workshop to identify the risks and uncertainties associated with the treatment and disposal of the secondary wastes and to develop a roadmap for addressing those risks and uncertainties. This report describes the results of the roadmap meeting in Richland. Processing of the tank wastes will generate secondary wastes, including routine solid wastes and liquid process effluents. The secondary waste roadmap workshop focused on the waste streams that contained the largest fractions of the 129I and 99Tc that the Integrated Disposal Facility risk assessment analyses were showing to have the largest contribution to the estimated IDF disposal impacts to groundwater. Thus, the roadmapping effort was to focus on the scrubber/off-gas treatment liquids with 99Tc to be sent to the Effluent Treatment Facility for treatment and solidification and the silver mordenite and carbon beds with the captured 129I to be packaged and sent to the IDF. At the highest level, the secondary waste roadmap includes elements addressing regulatory and performance requirements, waste composition, preliminary waste form screening, waste form development, process design and support, and validation. The regulatory and performance requirements activity will provide the secondary waste-form performance requirements. The waste-composition activity will provide workable ranges of secondary waste compositions and formulations for simulants and surrogates. Preliminary waste form screening will identify candidate waste forms for immobilizing the secondary wastes. The waste form development activity will mature the waste forms, leading to a selected waste form(s) with a defensible understanding of the long-term release rate and input into the critical decision process for a secondary waste treatment process/facility. The process and design support activity will provide a reliable process flowsheet and input to support a robust facility design. The validation effort will confirm that the selected waste form meets regulatory requirements. The final outcome of the implementation of the secondary waste roadmap is the compliant, effective, timely, and cost-effective disposal of the secondary wastes. The work necessary to address the programmatic, regulatory, and technical risks and uncertainties identified through the Secondary Waste Roadmap Workshop are assembled into several program needs elements. Programmatic/Regulatory needs include: • Select and deploy Hanford tank waste supplemental treatment technology • Provide treatment capability for secondary waste streams from tank waste treatment • Develop consensus on secondary waste form acceptance. Technology needs include: • Define secondary waste composition ranges and uncertainties • Identify and develop waste forms for secondary waste immobilization and disposal • Develop test methods to characterize secondary waste form performance. Details for each of these program elements are provided.

  17. Development of an Integrated Raman and Turbidity Fiber Optic Sensor for the In-Situ Analysis of High Level Nuclear Waste - 13532

    SciTech Connect (OSTI)

    Gasbarro, Christina; Bello, Job [EIC Laboratories, Inc., 111 Downey St., Norwood, MA, 02062 (United States)] [EIC Laboratories, Inc., 111 Downey St., Norwood, MA, 02062 (United States); Bryan, Samuel; Lines, Amanda; Levitskaia, Tatiana [Pacific Northwest National Laboratory, PO Box 999, Richland, WA, 99352 (United States)] [Pacific Northwest National Laboratory, PO Box 999, Richland, WA, 99352 (United States)

    2013-07-01T23:59:59.000Z

    Stored nuclear waste must be retrieved from storage, treated, separated into low- and high-level waste streams, and finally put into a disposal form that effectively encapsulates the waste and isolates it from the environment for a long period of time. Before waste retrieval can be done, waste composition needs to be characterized so that proper safety precautions can be implemented during the retrieval process. In addition, there is a need for active monitoring of the dynamic chemistry of the waste during storage since the waste composition can become highly corrosive. This work describes the development of a novel, integrated fiber optic Raman and light scattering probe for in situ use in nuclear waste solutions. The dual Raman and turbidity sensor provides simultaneous chemical identification of nuclear waste as well as information concerning the suspended particles in the waste using a common laser excitation source. (authors)

  18. Development of an Integrated Raman and Turbidity Fiber Optic Sensor for the In-Situ Analysis of High Level Nuclear Waste

    SciTech Connect (OSTI)

    Gasbarro, Christina; Bello, Job M.; Bryan, Samuel A.; Lines, Amanda M.; Levitskaia, Tatiana G.

    2013-02-24T23:59:59.000Z

    Stored nuclear waste must be retrieved from storage, treated, separated into low- and high-level waste streams, and finally put into a disposal form that effectively encapsulates the waste and isolates it from the environment for a long period of time. Before waste retrieval can be done, waste composition needs to be characterized so that proper safety precautions can be implemented during the retrieval process. In addition, there is a need for active monitoring of the dynamic chemistry of the waste during storage since the waste composition can become highly corrosive. This work describes the development of a novel, integrated fiber optic Raman and light scattering probe for in situ use in nuclear waste solutions. The dual Raman and turbidity sensor provides simultaneous chemical identification of nuclear waste as well as information concerning the suspended particles in the waste using a common laser excitation source.

  19. Hazardous Waste Management (Michigan)

    Broader source: Energy.gov [DOE]

    A person shall not generate, dispose, store, treat, or transport hazardous waste in this state without complying with the requirements of this article. The department, in the conduct of its duties...

  20. Solid Waste Management (Kansas)

    Broader source: Energy.gov [DOE]

    This act aims to establish and maintain a cooperative state and local program of planning and technical and financial assistance for comprehensive solid waste management. No person shall construct,...

  1. WASTE DESCRIPTION TYPE OF PROJECT POUNDS REDUCED,

    E-Print Network [OSTI]

    labeled chemicals Waste Minimization/ Volume Reduction 0 Solid Radioactive Waste $2,168 $3,795 $2,168 VialWASTE DESCRIPTION TYPE OF PROJECT POUNDS REDUCED, REUSED, RECYCLED OR CONSERVED IN 2003 WASTE TYPE DESCRIPTION DETAILS * Radioactive Waste Source Reduction 1,500 Radioactive Waste $6,000 $2,500 $6,000 Waste

  2. Hanford Site annual dangerous waste report. Volume 1, Part 2, Generator dangerous waste report dangerous waste: Calendar Year 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-31T23:59:59.000Z

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, weight, waste description, and waste designation.

  3. Hanford Site annual dangerous waste report. Volume 1, Part 1, Generator dangerous waste report dangerous waste: Calendar Year 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-31T23:59:59.000Z

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, weight, waste description, and waste designation.

  4. Hazardous waste minimization report for CY 1986

    SciTech Connect (OSTI)

    Kendrick, C.M.

    1990-12-01T23:59:59.000Z

    Oak Ridge National Laboratory (ORNL) is a multipurpose research and development facility. Its primary role is the support of energy technology through applied research and engineering development and scientific research in basic and physical sciences. ORNL also is a valuable resource in the solution of problems of national importance, such as nuclear and chemical waste management. In addition, useful radioactive and stable isotopes which are unavailable from the private sector are produced at ORNL. As a result of these activities, hazardous, radioactive, and mixed wastes are generated at ORNL. A formal hazardous waste minimization program for ORNL was launched in mid 1985 in response to the requirements of Section 3002 of the Resource Conservation and Recovery Act (RCRA). During 1986, a task plan was developed. The six major tasks include: planning and implementation of a laboratory-wide chemical inventory and the subsequent distribution, treatment, storage, and/or disposal (TSD) of unneeded chemicals; establishment and implementation of a distribution system for surplus chemicals to other (internal and external) organizations; training and communication functions necessary to inform and motivate laboratory personnel; evaluation of current procurement and tracking systems for hazardous materials and recommendation and implementation of improvements; systematic review of applicable current and proposed ORNL procedures and ongoing and proposed activities for waste volume and/or toxicity reduction potential; and establishment of criteria by which to measure progress and reporting of significant achievements. 8 refs., 1 fig., 5 tabs.

  5. Citrus Waste Biomass Program

    SciTech Connect (OSTI)

    Karel Grohman; Scott Stevenson

    2007-01-30T23:59:59.000Z

    Renewable Spirits is developing an innovative pilot plant bio-refinery to establish the commercial viability of ehtanol production utilizing a processing waste from citrus juice production. A novel process based on enzymatic hydrolysis of citrus processing waste and fermentation of resulting sugars to ethanol by yeasts was successfully developed in collaboration with a CRADA partner, USDA/ARS Citrus and Subtropical Products Laboratory. The process was also successfully scaled up from laboratory scale to 10,000 gal fermentor level.

  6. Industrial Waste Heat Recovery

    E-Print Network [OSTI]

    Ward, M. E.; Solomon, N. G.; Tabb, E. S.

    1980-01-01T23:59:59.000Z

    INDUSTRIAL WASTE HEAT RECOVREY M. E. Ward and N. G. Solomon E. S. Tabb Solar Turbines International and Gas Research Institute San Diego, California Chicago, Illinois ABSTRACT i I One hundred fifty reports were reviewed along with interviews... tests, promising low temperature heat exchanger tube alloys and coated surfaces were identified. 1INTROUCTION of advanced technology heat recovery techniques 1_ Recovering waste heat from the flue gases of the pr~ary objective. Specific objectives...

  7. Method of recovering hazardous waste from phenolic resin filters

    DOE Patents [OSTI]

    Meikrantz, David H. (Idaho Falls, ID); Bourne, Gary L. (Idaho Falls, ID); McFee, John N. (Albuquerque, NM); Burdge, Bradley G. (Idaho Falls, ID); McConnell, Jr., John W. (Idaho Falls, ID)

    1991-01-01T23:59:59.000Z

    The invention is a process for the recovery of hazardous wastes such as heavy metals and radioactive elements from phenolic resin filter by a circulating a solution of 8 to 16 molar nitric acid at a temperature of 110 to 190 degrees F. through the filter. The hot solution dissolves the filter material and releases the hazardous material so that it can be recovered or treated for long term storage in an environmentally safe manner.

  8. Cold Dissolved Saltcake Waste Simulant Development, Preparation, and Analysis

    SciTech Connect (OSTI)

    Rassat, Scot D.; Mahoney, Lenna A.; Russell, Renee L.; Bryan, Samuel A.; Sell, Rachel L.

    2003-05-13T23:59:59.000Z

    CH2M HILL Hanford Group, Inc. is identifying and developing supplemental process technologies to accelerate the Hanford tank waste cleanup mission. Bulk vitrification, containerized grout, and steam reforming are three technologies under consideration for treatment of the radioactive saltcake wastes in 68 single-shell tanks. To support development and testing of these technologies, Pacific Northwest National Laboratory (PNNL) was tasked with developing a cold dissolved saltcake simulant formulation to be representative of an actual saltcake waste stream, preparing 25- and 100-L batches of the simulant, and analyzing the composition of the batches to ensure conformance to formulation targets. Lacking a defined composition for dissolved actual saltcake waste, PNNL used available tank waste composition information and an equilibrium chemistry model (Environmental Simulation Program [ESP{trademark}]) to predict the concentrations of analytes in solution. Observations of insoluble solids in initial laboratory preparations for the model-predicted formulation prompted reductions in the concentration of phosphate and silicon in the final simulant formulation. The analytical results for the 25- and 100-L simulant batches, prepared by an outside vendor to PNNL specifications, agree within the expected measurement accuracy ({approx}10%) of the target concentrations and are highly consistent for replicate measurements, with a few minor exceptions. In parallel with the production of the 2nd simulant batch (100-L), a 1-L laboratory control sample of the same formulation was carefully prepared at PNNL to serve as an analytical standard. The instrumental analyses indicate that the vendor prepared batches of solution adequately reflect the as-formulated simulant composition. In parallel with the simulant development effort, a nominal 5-M (molar) sodium actual waste solution was prepared at the Hanford Site from a limited number of tank waste samples. Because this actual waste solution w as also to be used for testing the supplemental treatment technologies, the modeled simulant formulation was predicated on the composite of waste samples used to prepare it. Subsequently, the actual waste solution was filtered and pretreated to remove radioactive cesium at PNNL and then analyzed using the same instrumentation and procedures applied to the simulant samples. The overall agreement of measured simulant and actual waste solution compositions is better than {+-}10% for the most concentrated species including sodium, nitrate, hydroxide, carbonate, and nitrite. While the magnitude of the relative difference in the simulant and actual waste composition is large (>20% difference) for a few analytes (aluminum, chromium, fluoride, potassium, and total organic carbon), the absolute differences in concentration are in general not appreciable. Our evaluation is that these differences in simulant and actual waste solutions should have a negligible impact on bulk vitrification and containerized grout process testing, while the impact of the low aluminum concentration on steam reforming is yet to be determined.

  9. Idaho Waste Vitrification Facilities Project Vitrified Waste Interim Storage Facility

    SciTech Connect (OSTI)

    Bonnema, Bruce Edward

    2001-09-01T23:59:59.000Z

    This feasibility study report presents a draft design of the Vitrified Waste Interim Storage Facility (VWISF), which is one of three subprojects of the Idaho Waste Vitrification Facilities (IWVF) project. The primary goal of the IWVF project is to design and construct a treatment process system that will vitrify the sodium-bearing waste (SBW) to a final waste form. The project will consist of three subprojects that include the Waste Collection Tanks Facility, the Waste Vitrification Facility (WVF), and the VWISF. The Waste Collection Tanks Facility will provide for waste collection, feed mixing, and surge storage for SBW and newly generated liquid waste from ongoing operations at the Idaho Nuclear Technology and Engineering Center. The WVF will contain the vitrification process that will mix the waste with glass-forming chemicals or frit and turn the waste into glass. The VWISF will provide a shielded storage facility for the glass until the waste can be disposed at either the Waste Isolation Pilot Plant as mixed transuranic waste or at the future national geological repository as high-level waste glass, pending the outcome of a Waste Incidental to Reprocessing determination, which is currently in progress. A secondary goal is to provide a facility that can be easily modified later to accommodate storage of the vitrified high-level waste calcine. The objective of this study was to determine the feasibility of the VWISF, which would be constructed in compliance with applicable federal, state, and local laws. This project supports the Department of Energy’s Environmental Management missions of safely storing and treating radioactive wastes as well as meeting Federal Facility Compliance commitments made to the State of Idaho.

  10. Organic tanks safety program FY96 waste aging studies

    SciTech Connect (OSTI)

    Camaioni, D.M.; Samuels, W.D.; Linehan, J.C.; Clauss, S.A.; Sharma, A.K.; Wahl, K.L.; Campbell, J.A.

    1996-10-01T23:59:59.000Z

    Uranium and plutonium production at the Hanford Site produced large quantities of radioactive by-products and contaminated process chemicals, which are stored in underground tanks awaiting treatment and disposal. Having been made strongly alkaline and then subjected to successive water evaporation campaigns to increase storage capacity, the wastes now exist in the physical forms of salt cakes, metal oxide sludges, and partially saturated aqueous brine solutions. The tanks that contain organic process chemicals mixed with nitrate/nitrite salt wastes may be at risk for fuel- nitrate combustion accidents. The purpose of the Waste Aging Task is to elucidate how chemical and radiological processes will have aged or degraded the organic compounds stored in the tanks. Ultimately, the task seeks to develop quantitative measures of how aging changes the energetic properties of the wastes. This information will directly support efforts to evaluate the hazard as well as to develop potential control and mitigation strategies.

  11. Hanford Tank Farms Waste Certification Flow Loop Test Plan

    SciTech Connect (OSTI)

    Bamberger, Judith A.; Meyer, Perry A.; Scott, Paul A.; Adkins, Harold E.; Wells, Beric E.; Blanchard, Jeremy; Denslow, Kayte M.; Greenwood, Margaret S.; Morgen, Gerald P.; Burns, Carolyn A.; Bontha, Jagannadha R.

    2010-01-01T23:59:59.000Z

    A future requirement of Hanford Tank Farm operations will involve transfer of wastes from double shell tanks to the Waste Treatment Plant. As the U.S. Department of Energy contractor for Tank Farm Operations, Washington River Protection Solutions anticipates the need to certify that waste transfers comply with contractual requirements. This test plan describes the approach for evaluating several instruments that have potential to detect the onset of flow stratification and critical suspension velocity. The testing will be conducted in an existing pipe loop in Pacific Northwest National Laboratory’s facility that is being modified to accommodate the testing of instruments over a range of simulated waste properties and flow conditions. The testing phases, test matrix and types of simulants needed and the range of testing conditions required to evaluate the instruments are described

  12. NUCLEAR WASTE GLASSES CONTINUOUS MELTING AND BULK VITRIFICAITON

    SciTech Connect (OSTI)

    KRUGER AA; HRMA PR

    2008-03-24T23:59:59.000Z

    This contribution addresses various aspects of nuclear waste vitrification. Nuclear wastes have a variety of components and composition ranges. For each waste composition, the glass must be formulated to possess acceptable processing and product behavior defined in terms of physical and chemical properties that guarantee the glass can be easily made and resist environmental degradation. Glass formulation is facilitated by developing property-composition models, and the strategy of model development and application is reviewed. However, the large variability of waste compositions presents numerous additional challenges: insoluble solids and molten salts may segregate; foam may hinder heat transfer and slow down the process; molten salts may accumulate in container refractory walls; the glass on cooling may precipitate crystalline phases. These problems need targeted exploratory research. Examples of specific problems and their possible solutions are discussed.

  13. Nuclear Waste Glasses: Continuous Melting and Bulk Vitrification

    SciTech Connect (OSTI)

    Hrma, Pavel R.; Kruger, Albert A.

    2008-02-25T23:59:59.000Z

    This contribution addresses various aspects of nuclear waste vitrification. Nuclear wastes have a variety of components and composition ranges. For each waste composition, the glass must be formulated to possess acceptable processing and product behavior defined in terms of physical and chemical properties that guarantee that the glass can be easily made and resist environmental degradation. Glass formulation is facilitated by developing property-composition models, and the strategy of model development and application is reviewed. However, the large variability of waste compositions presents numerous additional challenges: insoluble solids and molten salts may segregate; foam may hinder heat transfer and slow down the process; molten salts may accumulate in container refractory walls; on cooling, the glass may precipitate crystalline phases. These problems need targeted exploratory research. Examples of specific problems and their possible solutions are discussed.

  14. Nuclear Waste Glasses: Continuous Melting and Bulk Vitrification

    SciTech Connect (OSTI)

    Hrma, Pavel R.; Kruger, Albert A.

    2009-01-15T23:59:59.000Z

    This contribution addresses various aspects of nuclear waste vitrification. Composition of nuclear wastes varies in the number of components and their composition ranges. For each waste composition, the glass must be formulated to possess acceptable processing and product behavior defined in terms of physical and chemical properties that guarantee that the glass is easily made and resists environmental degradation. Glass formulation is facilitated by developing property-composition models. The strategy of model development and application is reviewed. However, the large variability of waste composition presents numerous additional challenges: insoluble solids and molten salts may segregate; foam may hinder heat transfer and slows down the process; molten salts may accumulate in container refractory walls; on cooling, the glass may precipitate crystalline phases. These problems need targeted exploratory research. Examples of specific problems and their possible solutions are discussed.

  15. Hazardous waste sites and housing appreciation rates

    E-Print Network [OSTI]

    McCluskey, Jill; Rausser, Gordon C.

    2000-01-01T23:59:59.000Z

    WORKING PAPER NO. 906 HAZARDOUS WASTE SITES AND HOUSINGEconomics January 2000 Hazardous Waste Sites and Housingand RF. Anderson, Hazardous waste sites: the credibility

  16. Solid Waste Management Program (South Dakota)

    Broader source: Energy.gov [DOE]

    South Dakota's Solid Waste Management Program offers loans and grants for solid waste disposal, recycling, and waste tire projects. Funds are available for private or public projects, and...

  17. WIPP Remote Handled Waste Facility: Performance Dry Run Operations

    SciTech Connect (OSTI)

    Burrington, T. P.; Britain, R. M.; Cassingham, S. T.

    2003-02-24T23:59:59.000Z

    The Remote Handled (RH) TRU Waste Handling Facility at the Waste Isolation Pilot Plant (WIPP) was recently upgraded and modified in preparation for handling and disposal of RH Transuranic (TRU) waste. This modification will allow processing of RH-TRU waste arriving at the WIPP site in two different types of shielded road casks, the RH-TRU 72B and the CNS 10-160B. Washington TRU Solutions (WTS), the WIPP Management and Operation Contractor (MOC), conducted a performance dry run (PDR), beginning August 19, 2002 and successfully completed it on August 24, 2002. The PDR demonstrated that the RHTRU waste handling system works as designed and demonstrated the handling process for each cask, including underground disposal. The purpose of the PDR was to develop and implement a plan that would define in general terms how the WIPP RH-TRU waste handling process would be conducted and evaluated. The PDR demonstrated WIPP operations and support activities required to dispose of RH-TRU waste in the WIPP underground.

  18. Hanford Waste Vitrification Plant Project Waste Form Qualification Program Plan

    SciTech Connect (OSTI)

    Randklev, E.H.

    1993-06-01T23:59:59.000Z

    The US Department of Energy has created a waste acceptance process to help guide the overall program for the disposal of high-level nuclear waste in a federal repository. This Waste Form Qualification Program Plan describes the hierarchy of strategies used by the Hanford Waste Vitrification Plant Project to satisfy the waste form qualification obligations of that waste acceptance process. A description of the functional relationship of the participants contributing to completing this objective is provided. The major activities, products, providers, and associated scheduling for implementing the strategies also are presented.

  19. SECONDARY WASTE MANAGEMENT STRATEGY FOR EARLY LOW ACTIVITY WASTE TREATMENT

    SciTech Connect (OSTI)

    CRAWFORD TW

    2008-07-17T23:59:59.000Z

    This study evaluates parameters relevant to River Protection Project secondary waste streams generated during Early Low Activity Waste operations and recommends a strategy for secondary waste management that considers groundwater impact, cost, and programmatic risk. The recommended strategy for managing River Protection Project secondary waste is focused on improvements in the Effiuent Treatment Facility. Baseline plans to build a Solidification Treatment Unit adjacent to Effluent Treatment Facility should be enhanced to improve solid waste performance and mitigate corrosion of tanks and piping supporting the Effiuent Treatment Facility evaporator. This approach provides a life-cycle benefit to solid waste performance and reduction of groundwater contaminants.

  20. Mineral formation during simulated leaks of Hanford waste tanks

    E-Print Network [OSTI]

    Flury, Markus

    Mineral formation during simulated leaks of Hanford waste tanks Youjun Deng a , James B. Harsh a at the US DOE Hanford Site, Washington, caus- ing mineral dissolution and re-precipitation upon contact with subsurface sediments. The main mineral precipitation and transformation pathways were studied in solutions

  1. Process for immobilizing radioactive boric acid liquid wastes

    DOE Patents [OSTI]

    Greenhalgh, Wilbur O. (Richland, WA)

    1986-01-01T23:59:59.000Z

    A method of immobilizing boric acid liquid wastes containing radionuclides by neutralizing the solution and evaporating the resulting precipitate to near dryness. The dry residue is then fused into a reduced volume, insoluble, inert, solid form containing substantially all the radionuclides.

  2. Process for immobilizing radioactive boric acid liquid wastes

    DOE Patents [OSTI]

    Greenhalgh, W.O.

    1984-05-10T23:59:59.000Z

    Disclosed is a method of immobilizing boric acid liquid wastes containing radionuclides by neutralizing the solution and evaporating the resulting precipitate to near dryness. The dry residue is then fused into a reduced volume, insoluble, inert, solid form containing substantially all the radionuclides.

  3. Analytical solutions to matrix diffusion problems

    SciTech Connect (OSTI)

    Kekäläinen, Pekka, E-mail: pekka.kekalainen@helsinki.fi [Laboratory of Radiochemistry, Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki (Finland)

    2014-10-06T23:59:59.000Z

    We report an analytical method to solve in a few cases of practical interest the equations which have traditionally been proposed for the matrix diffusion problem. In matrix diffusion, elements dissolved in ground water can penetrate the porous rock surronuding the advective flow paths. In the context of radioactive waste repositories this phenomenon provides a mechanism by which the area of rock surface in contact with advecting elements is greatly enhanced, and can thus be an important delay mechanism. The cases solved are relevant for laboratory as well for in situ experiments. Solutions are given as integral representations well suited for easy numerical solution.

  4. Mixed waste characterization reference document

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    Waste characterization and monitoring are major activities in the management of waste from generation through storage and treatment to disposal. Adequate waste characterization is necessary to ensure safe storage, selection of appropriate and effective treatment, and adherence to disposal standards. For some wastes characterization objectives can be difficult and costly to achieve. The purpose of this document is to evaluate costs of characterizing one such waste type, mixed (hazardous and radioactive) waste. For the purpose of this document, waste characterization includes treatment system monitoring, where monitoring is a supplement or substitute for waste characterization. This document establishes a cost baseline for mixed waste characterization and treatment system monitoring requirements from which to evaluate alternatives. The cost baseline established as part of this work includes costs for a thermal treatment technology (i.e., a rotary kiln incinerator), a nonthermal treatment process (i.e., waste sorting, macronencapsulation, and catalytic wet oxidation), and no treatment (i.e., disposal of waste at the Waste Isolation Pilot Plant (WIPP)). The analysis of improvement over the baseline includes assessment of promising areas for technology development in front-end waste characterization, process equipment, off gas controls, and monitoring. Based on this assessment, an ideal characterization and monitoring configuration is described that minimizes costs and optimizes resources required for waste characterization.

  5. Robust Waste-to-Value Solution Using Advanced Monitoring and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    water to desired purity for reuse, moving through filtration, an aerobic membrane bioreactor (MBR), and reverse osmosis (RO). Predictive monitoring and supervisory controls are...

  6. A practical solution to Hanford's tank waste problem

    SciTech Connect (OSTI)

    Siemer, D.D. [Idaho National Laboratory, 12 N 3167 E, Idaho Falls, ID (United States)

    2013-07-01T23:59:59.000Z

    The main characteristics of the Hanford radwaste are: -) it is extremely dilute and generates little heat, -) it is comprised of materials incompatible with high loading in borosilicate glass, and -) it is already situated at a good geological repository site. We propose that Hanford's radwaste should be homogenized (not separated), converted to an iron phosphate (Fe-P) glass 'aggregate' (marbles, gems, or cullet), that is then slurried up with a cementitious grout and pumped into Hanford's 'best preserved' tanks for disposal. This proposal is efficient, safe and cheap.

  7. acid waste solutions: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    authors 130 PROPOSAL FOR AN INNOVATIVE APPROACH TO PREVENT ACID DRAINAGE FROM URANIUM MILL TAILINGS BASED ON THE APPLICATION OF NA-FERRATE (IRON VI) 1 CiteSeer Summary: Abstract...

  8. acidic waste solutions: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    authors 130 PROPOSAL FOR AN INNOVATIVE APPROACH TO PREVENT ACID DRAINAGE FROM URANIUM MILL TAILINGS BASED ON THE APPLICATION OF NA-FERRATE (IRON VI) 1 CiteSeer Summary: Abstract...

  9. NREL: Technology Deployment - Biopower and Waste-to-Energy Solutions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid Integration NRELCost

  10. Agricultural Waste Solutions Inc AWS | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifangwikiAgoura Hills, California:AgriFuel Company

  11. Solution Package Scope Definition, Report 72, Salt Waste (SP #72) |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium Transfer toSensorSoftware Helps KentuckyRenewableDepartment of

  12. Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste (Volume 1) Introduction

    SciTech Connect (OSTI)

    R.A. Levich; J.S. Stuckless

    2006-09-25T23:59:59.000Z

    Yucca Mountain in Nevada represents the proposed solution to what has been a lengthy national effort to dispose of high-level radioactive waste, waste which must be isolated from the biosphere for tens of thousands of years. This chapter reviews the background of that national effort and includes some discussion of international work in order to provide a more complete framework for the problem of waste disposal. Other chapters provide the regional geologic setting, the geology of the Yucca Mountain site, the tectonics, and climate (past, present, and future). These last two chapters are integral to prediction of long-term waste isolation.

  13. Waste segregation procedures and benefits

    SciTech Connect (OSTI)

    Fish, J.D.; Massey, C.D.; Ward, S.J.

    1990-01-01T23:59:59.000Z

    Segregation is a critical first step in handling hazardous and radioactive materials to minimize the generation of regulated wastes. In addition, segregation can significantly reduce the complexity and the total cost of managing waste. Procedures at Sandia National Laboratories, Albuquerque require that wastes be segregated, first, by waste type (acids, solvents, low level radioactive, mixed, classified, etc.). Higher level segregation requirements, currently under development, are aimed at enhancing the possibilities for recovery, recycle and reapplication; reducing waste volumes; reducing waste disposal costs, and facilitating packaging storage, shipping and disposal. 2 tabs.

  14. ZERO WASTE STANFORD WASTE REDUCTION, RECYCLING AND COMPOSTING GUIDELINES

    E-Print Network [OSTI]

    Gerdes, J. Christian

    ZERO WASTE STANFORD WASTE REDUCTION, RECYCLING AND COMPOSTING GUIDELINES PLASTICS, METALS & GLASS pleaseemptyandflatten COMPOSTABLES kitchenandyardwasteonly LANDFILL ONLY ifallelsefails All Plastic Containers Metal Material All Food Paper Plates & Napkins *including pizza & donut boxes Compostable & Biodegradable

  15. Preliminary technical and legal evaluation of disposing of nonhazardous oil field waste into salt caverns

    SciTech Connect (OSTI)

    Veil, J.; Elcock, D.; Raivel, M.; Caudle, D.; Ayers, R.C. Jr.; Grunewald, B.

    1996-06-01T23:59:59.000Z

    Caverns can be readily formed in salt formations through solution mining. The caverns may be formed incidentally, as a result of salt recovery, or intentionally to create an underground chamber that can be used for storing hydrocarbon products or compressed air or disposing of wastes. The purpose of this report is to evaluate the feasibility, suitability, and legality of disposing of nonhazardous oil and gas exploration, development, and production wastes (hereafter referred to as oil field wastes, unless otherwise noted) in salt caverns. Chapter 2 provides background information on: types and locations of US subsurface salt deposits; basic solution mining techniques used to create caverns; and ways in which salt caverns are used. Later chapters provide discussion of: federal and state regulatory requirements concerning disposal of oil field waste, including which wastes are considered eligible for cavern disposal; waste streams that are considered to be oil field waste; and an evaluation of technical issues concerning the suitability of using salt caverns for disposing of oil field waste. Separate chapters present: types of oil field wastes suitable for cavern disposal; cavern design and location; disposal operations; and closure and remediation. This report does not suggest specific numerical limits for such factors or variables as distance to neighboring activities, depths for casings, pressure testing, or size and shape of cavern. The intent is to raise issues and general approaches that will contribute to the growing body of information on this subject.

  16. Waste generator services implementation plan

    SciTech Connect (OSTI)

    Mousseau, J.; Magleby, M.; Litus, M.

    1998-04-01T23:59:59.000Z

    Recurring waste management noncompliance problems have spurred a fundamental site-wide process revision to characterize and disposition wastes at the Idaho National Engineering and Environmental Laboratory. The reengineered method, termed Waste Generator Services, will streamline the waste acceptance process and provide waste generators comprehensive waste management services through a single, accountable organization to manage and disposition wastes in a timely, cost-effective, and compliant manner. This report outlines the strategy for implementing Waste Generator Services across the INEEL. It documents the culmination of efforts worked by the LMITCO Environmental Management Compliance Reengineering project team since October 1997. These efforts have included defining problems associated with the INEEL waste management process; identifying commercial best management practices; completing a review of DOE Complex-wide waste management training requirements; and involving others through an Integrated Process Team approach to provide recommendations on process flow, funding/charging mechanisms, and WGS organization. The report defines the work that will be performed by Waste Generator Services, the organization and resources, the waste acceptance process flow, the funding approach, methods for measuring performance, and the implementation schedule and approach. Field deployment will occur first at the Idaho Chemical Processing Plant in June 1998. Beginning in Fiscal Year 1999, Waste Generator Services will be deployed at the other major INEEL facilities in a phased approach, with implementation completed by March 1999.

  17. RECYCLING AND GENERAL WASTE MANAGEMENT OPERATIONAL PROCEDURE

    E-Print Network [OSTI]

    Harman, Neal.A.

    RECYCLING AND GENERAL WASTE MANAGEMENT OPERATIONAL PROCEDURE Swansea University Estates Services.6.1/1 Recycling & General Waste Management Department: Estates & Facilities Management Site: Swansea University recycling and waste management facilities in Swansea university To ensure that Waste Management Objectives

  18. Page 1 of 2 UNIVERSAL WASTE

    E-Print Network [OSTI]

    Jia, Songtao

    (laboratories should follow hazardous waste procedures) or thorough central battery recycling receptaclesPage 1 of 2 UNIVERSAL WASTE and OTHER ENVIRONMENTALLY DELETERIOUS PRODUCTS Batteries All Universal Waste Batteries generated in laboratories must be collected through the hazardous waste program

  19. FRACTIONAL CRYSTALLIZATION OF HANFORD SINGLE SHELL TANK (SST) WASTES FROM CONCEPT TO PILOT PLANT

    SciTech Connect (OSTI)

    GENIESSE, D.J.; NELSON, E.A.; HAMILTON, D.W.; MAJORS, J.H.; NORDAHL, T.K.

    2006-12-08T23:59:59.000Z

    The Hanford site has 149 underground single-shell tanks (SST) storing mostly soluble, multi-salt mixed wastes resulting from Cold War era weapons material production. These wastes must be retrieved and the salts immobilized before the tanks can be closed to comply with an overall site-closure consent order entered into by the US Department of Energy, the Environmental Protection Agency, and the State of Washington. Water will be used to retrieve the wastes and the resulting solution will be pumped to a proposed pretreatment process where a high-curie (primarily {sup 137}Cs) waste fraction will be separated from the other waste constituents. The separated waste streams will then be vitrified to allow for safe storage as an immobilized high-level waste, or low-level waste, borosilicate glass. Fractional crystallization, a common unit operation for production of industrial chemicals and pharmaceuticals, was proposed as the method to separate the salt wastes; it works by evaporating excess water until the solubilities of various species in the solution are exceeded (the solubility of a particular species depends on its concentration, temperature of the solution, and the presence of other ionic species in the solution). By establishing the proper conditions, selected pure salts can be crystallized and separated from the radioactive liquid phase. The aforementioned parameters, along with evaporation rate, proper agitation, and residence time, determine nucleation and growth kinetics and the resulting habit and size distribution of the product crystals. These crystals properties are important considerations for designing the crystallizer and solid/liquid separation equipment. A structured program was developed to (a) demonstrate that fractional crystallization could be used to pre-treat Hanford tank wastes and (b) provide data to develop a pilot plant design.

  20. FROM WASTE TO WORTH: THE ROLE OF WASTE DIVERSION IN

    E-Print Network [OSTI]

    Columbia University

    ;Canadian Energy-From-Waste Coalition (CEFWC) 1 There is considerable merit to the ideas outlined commitment to foster a green and sustainable economy. The Canadian Energy-From-Waste Coalition (CEFWC sign that the system is failing. #12;Canadian Energy-From-Waste Coalition (CEFWC) 2 Like you, the CEFWC

  1. L/O/G/OL/O/G/O Waste Waste

    E-Print Network [OSTI]

    Laksanacharoen, Sathaporn

    L/O/G/OL/O/G/O #12;· Waste Waste · Value () · · Flow #12;Genchi GenbutsuGenchi Genbutsu of waste) Zero Inventory #12;Just in Time in HealthcareJust in Time in Healthcare Takt time (pitch), one Electronic Call 3. #12;Poka-Yoke ?Poka-Yoke ? · Poka-Yoke yokeru = to avoid poka = inadvertent errors 1

  2. Geochemical evolution of highly alkaline and saline tank waste plumes during seepage through vadose zone sediments

    SciTech Connect (OSTI)

    Wan, Jiamin; Tokunaga, Tetsu K.; Larsen, Joern T.; Serne, R JEFFREY.

    2004-02-01T23:59:59.000Z

    Leakage of highly saline and alkaline radioactive waste from storage tanks into underlying sediments is a serious environmental problem at the Hanford Site in Washington State. This study focuses on geochemical evolution of tank waste plumes resulting from interactions between the waste solution and sediment. A synthetic tank waste solution was infused into unsaturated Hanford sediment columns (0.2, 0.6, and 2 m) maintained at 70C to simulate the field contamination process. Spatially and temporally resolved geochemical profiles of the waste plume were obtained. Thorough OH neutralization (from an initial pH 14 down to 6.3) was observed. Three broad zones of pore solutions were identified to categorize the dominant geochemical reactions: the silicate dissolution zone (pH > 10), pH-neutralized zone (pH 10 to 6.5), and displaced native sediment pore water (pH 6.5 to 8). Elevated concentrations of Si, Fe, and K in plume fluids and their depleted concentrations in plume sediments reflected dissolution of primary minerals within the silicate dissolution zone. The very high Na concentrations in the waste solution resulted in rapid and complete cation exchange, reflected in high concentrations of Ca and Mg at the plume front. The plume-sediment profiles also showed deposition of hydrated solids and carbonates. Fair correspondence was obtained between these results and analyses of field borehole samples from a waste plume at the Hanford Site. Results of this study provide a well-defined framework for understanding waste plumes in the more complex field setting and for understanding geochemical factors controlling transport of contaminant species carried in waste solutions that leaked from single-shell storage tanks in the past.

  3. Waste Heat Recovery Opportunities for Thermoelectric Generators...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Recovery Opportunities for Thermoelectric Generators Waste Heat Recovery Opportunities for Thermoelectric Generators Thermoelectrics have unique advantages for...

  4. Skutterudite Thermoelectric Generator For Automotive Waste Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite TE modules were...

  5. Waste Management | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Cleanup Waste Management Waste Management July 15, 2014 Energy Expos Students work in groups to create hands-on exhibits about the energy sources that power the nation, ways to...

  6. High-Level Waste Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09T23:59:59.000Z

    The guide provides the criteria for determining which DOE radioactive wastes are to be managed as high-level waste in accordance with DOE M 435.1-1.

  7. Low-Level Waste Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09T23:59:59.000Z

    The guide provides criteria for determining which DOE radioactive wastes are to be managed as low-level waste in accordance with DOE M 435.1-1, Chapter IV.

  8. Copenhagen Waste Management and Incineration

    E-Print Network [OSTI]

    ownership of treatment facilities · Incineration plants · Land fill · Disposal of hazardous waste · Source waste prevention · Focus areas · Changes in behaviour among consumers and producers · City schemes almost fully developed · Collection of hazardous substances, paper, cardboard, gardening and bulky

  9. Waste Management Assistance Act (Iowa)

    Broader source: Energy.gov [DOE]

    This section promotes the proper and safe storage, treatment, and disposal of solid, hazardous, and low-level radioactive wastes in Iowa, and calls on Iowans to assume responsibility for waste...

  10. Solid Waste Management Program (Missouri)

    Broader source: Energy.gov [DOE]

    The Solid Waste Management Program in the Department of Natural Resources regulates the management of solid waste in the state of Missouri. A permit is required prior to the construction or...

  11. Delaware Solid Waste Authority (Delaware)

    Broader source: Energy.gov [DOE]

    The Delaware Solid Waste Authority (DSWA) runs three landfills, all of which recover methane and generate electricity with a total capacity of 24 MWs. The DSWA Solid Waste Plan includes goals,...

  12. Solid Waste Facilities Regulations (Massachusetts)

    Broader source: Energy.gov [DOE]

    This chapter of the Massachusetts General Laws governs the operation of solid waste facilities. It seeks to encourage sustainable waste management practices and to mitigate adverse effects, such as...

  13. Hazardous Waste Management (North Dakota)

    Broader source: Energy.gov [DOE]

    The Department of Health is the designated agency to administer and coordinate a hazardous waste management program to provide for the reduction of hazardous waste generation, reuse, recovery, and...

  14. Montana Hazardous Waste Act (Montana)

    Broader source: Energy.gov [DOE]

    This Act addresses the safe and proper management of hazardous wastes and used oil, the permitting of hazardous waste facilities, and the siting of facilities. The Department of Environmental...

  15. Hydrothermal Processing of Wet Wastes

    Broader source: Energy.gov [DOE]

    Breakout Session 3A—Conversion Technologies III: Energy from Our Waste—Will we Be Rich in Fuel or Knee Deep in Trash by 2025? Hydrothermal Processing of Wet Wastes James R. Oyler, President, Genifuel Corporation

  16. Management of Solid Waste (Oklahoma)

    Broader source: Energy.gov [DOE]

    The Solid Waste Management Division of the Department of Environmental Quality regulates solid waste disposal or any person who generates, collects, transports, processes, and/or disposes of solid...

  17. THE ROLE OF LIQUID WASTE PRETREATMENT TECHNOLOGIES IN SOLVING THE DOE CLEAN-UP MISSION

    SciTech Connect (OSTI)

    Wilmarth, B; Sheryl Bush, S

    2008-10-31T23:59:59.000Z

    The objective of this report is to describe the pretreatment solutions that allow treatment to be tailored to specific wastes, processing ahead of the completion schedules for the main treatment facilities, and reduction of technical risks associated with future processing schedules. Wastes stored at Hanford and Savannah River offer challenging scientific and engineering tasks. At both sites, space limitations confound the ability to effectively retrieve and treat the wastes. Additionally, the radiation dose to the worker operating and maintaining the radiochemical plants has a large role in establishing the desired radioactivity removal. However, the regulatory requirements to treat supernatant and saltcake tank wastes differ at the two sites. Hanford must treat and remove radioactivity from the tanks based on the TriParty Agreement and Waste Incidental to Reprocessing (WIR) documentation. These authorizing documents do not specify treatment technologies; rather, they specify endstate conditions. Dissimilarly, Waste Determinations prepared at SRS in accordance with Section 3116 of the 2005 National Defense Authorization Act along with state operating permits establish the methodology and amounts of radioactivity that must be removed and may be disposed of in South Carolina. After removal of entrained solids and site-specific radionuclides, supernatant and saltcake wastes are considered to be low activity waste (LAW) and are immobilized in glass and disposed of at the Hanford Site Integrated Disposal Facility (IDF) or formulated into a grout for disposal at the Savannah River Site Saltstone Disposal Facility. Wastes stored at the Hanford Site or SRS comprise saltcake, supernate, and sludges. The supernatant and saltcake waste fractions contain primarily sodium salts, metals (e.g., Al, Cr), cesium-137 (Cs-137), technetium-99 (Tc-99) and entrained solids containing radionuclides such as strontium-90 (Sr-90) and transuranic elements. The sludges contain many of the transition metal hydroxides that precipitate when the spent acidic process solutions are rendered alkaline with sodium hydroxide. The sludges contain Sr-90 and transuranic elements. The wastes stored at each site have been generated and stored for over fifty years. Although the majority of the wastes were generated to support nuclear weapons production and reprocessing, the wastes differ substantially between the sites. Table 5 shows the volumes and total radioactivity (including decay daughters) of the waste phases stored in tanks at each site. At Hanford, there are 177 tanks that contain 56.5 Mgal of waste. SRS has 51 larger tanks, of which 2 are closed, that contain 36.5 Mgal. Mainly due to recovery operations, the waste stored at Hanford has less total curies than that stored at Savannah River. The total radioactivity of the Hanford wastes contains approximately 190 MCi, and the total radioactivity of the Savannah River wastes contains 400 MCi.

  18. Electroplating waste minimization at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Dini, J.W.; Steffani, C.P.

    1992-04-01T23:59:59.000Z

    This paper describes efforts on waste minimization in the electroplating facility at Lawrence Livermore National Laboratory (LLNL). Issues that are covered include: elimination of cadmium plating, copper cyanide plating, hexavalent chromium plating and vapor degreasing, segregation of cyanide solutions, changing rinsing practices, recycling of rinse water, changing cleaning of aluminum parts and rejuvenation of gold plating solutions. Discussion is also presented on other issues currently being worked and these include: combining electroplating and physical vapor deposition, elimination of all cyanide plating processes, and recycling of electroless nickel and spent acid solutions.

  19. Chemotherapy waste may be a hazardous chemical waste or biomedical waste. Proper classification is necessary to be in compliance with the laws regulating each waste type.

    E-Print Network [OSTI]

    George, Steven C.

    Chemotherapy waste may be a hazardous chemical waste or biomedical waste. Proper classification is necessary to be in compliance with the laws regulating each waste type. Hazardous Chemical Chemotherapy Waste: A number of chemotherapy drugs are regulated as a hazardous chemical waste. These include

  20. Hazardous Waste Management Overview The Five L's

    E-Print Network [OSTI]

    Jia, Songtao

    Hazardous Waste Management Overview The Five L's CoLLect CoLLect all hazardous chemical waste are unsure if your chemical waste is a Hazardous Waste, consult EH&S at hazmat@columbia.edu. DO NOT - Dispose of Hazardous Waste inappropriately or prior to determining its hazards. Hazardous Waste must never

  1. Low-level waste forum meeting reports

    SciTech Connect (OSTI)

    NONE

    1995-12-31T23:59:59.000Z

    This paper provides highlights from the 1995 summer meeting of the Low Level radioactive Waste Forum. Topics included: new developments in state and compacts; federal waste management; DOE plans for Greater-Than-Class C waste management; mixed wastes; commercial mixed waste management; international export of rad wastes for disposal; scintillation cocktails; license termination; pending legislation; federal radiation protection standards.

  2. Evaluation of interim and final waste forms for the newly generated liquid low-level waste flowsheet

    SciTech Connect (OSTI)

    Abotsi, G.M.K. [Clark Atlanta Univ., GA (United States); Bostick, D.T.; Beck, D.E. [Oak Ridge National Lab., TN (United States)] [and others

    1996-05-01T23:59:59.000Z

    The purpose of this review is to evaluate the final forms that have been proposed for radioactive-containing solid wastes and to determine their application to the solid wastes that will result from the treatment of newly generated liquid low-level waste (NGLLLW) and Melton Valley Storage Tank (MVST) supernate at the Oak Ridge National Laboratory (ORNL). Since cesium and strontium are the predominant radionuclides in NGLLLW and MVST supernate, this review is focused on the stabilization and solidification of solid wastes containing these radionuclides in cement, glass, and polymeric materials-the principal waste forms that have been tested with these types of wastes. Several studies have shown that both cesium and strontium are leached by distilled water from solidified cement, although the leachabilities of cesium are generally higher than those of strontium under similar conditions. The situation is exacerbated by the presence of sulfates in the solution, as manifested by cracking of the grout. Additives such as bentonite, blast-furnace slag, fly ash, montmorillonite, pottery clay, silica, and zeolites generally decrease the cesium and strontium release rates. Longer cement curing times (>28 d) and high ionic strengths of the leachates, such as those that occur in seawater, also decrease the leach rates of these radionuclides. Lower cesium leach rates are observed from vitrified wastes than from grout waste forms. However, significant quantities of cesium are volatilized due to the elevated temperatures required to vitrify the waste. Hence, vitrification will generally require the use of cleanup systems for the off-gases to prevent their release into the atmosphere.

  3. Heat Recovery From Solid Waste

    E-Print Network [OSTI]

    Underwood, O. W.

    1981-01-01T23:59:59.000Z

    areas of evaluation, including the cost of fuel, cost of solid waste disposal, plant energy requirements, available technology, etc....

  4. RETHINKING WASTE, RECYCLING, AND HOUSEKEEPING

    E-Print Network [OSTI]

    Howitt, Ivan

    RETHINKING WASTE, RECYCLING, AND HOUSEKEEPING EFFICIENCY.EFFICIENCY. A l GA leaner Green #12 t R li Management Recycling Staff The Office of Waste Reduction & Recycling started in The Office of Waste Reduction & Recycling started in 1990, we have 14 full time staff positions. ·We collect over 40

  5. HAZARDOUS WASTE LABEL DEPAUL UNIVERSITY

    E-Print Network [OSTI]

    Schaefer, Marcus

    - Hazardous Ignitable Reactive Toxic Oxidizer Other ( explain ) Generator Building Dept. HAZARDOUS WASTE LABEL: Generator Building Dept. Please fill out the hazardous waste label on line and download labels on to a plainHAZARDOUS WASTE LABEL DEPAUL UNIVERSITY ENVIRONMENTAL HEALTH & SAFETY 5-4170 Corrosive Non

  6. Method for regeneration of electroless nickel plating solution

    DOE Patents [OSTI]

    Eisenmann, Erhard T. (5423 Vista Sandia, NE., Albuquerque, NM 87111)

    1997-01-01T23:59:59.000Z

    An electroless nickel(EN)/hypophosphite plating bath is provided employing acetic acid/acetate as a buffer and which is, as a result, capable of perpetual regeneration while avoiding the production of hazardous waste. A regeneration process is provided to process the spent EN plating bath solution. A concentrated starter and replenishment solution is provided for ease of operation of the plating bath. The regeneration process employs a chelating ion exchange system to remove nickel cations from spent EN plating solution. Phosphites are then removed from the solution by precipitation. The nickel cations are removed from the ion exchange system by elution with hypophosphorous acid and the nickel concentration of the eluate adjusted by addition of nickel salt. The treated solution and adjusted eluate are combined, stabilizer added, and the volume of resulting solution reduced by evaporation to form the bath starter and replenishing solution.

  7. Method for regeneration of electroless nickel plating solution

    DOE Patents [OSTI]

    Eisenmann, E.T.

    1997-03-11T23:59:59.000Z

    An electroless nickel(EN)/hypophosphite plating bath is provided employing acetic acid/acetate as a buffer and which is, as a result, capable of perpetual regeneration while avoiding the production of hazardous waste. A regeneration process is provided to process the spent EN plating bath solution. A concentrated starter and replenishment solution is provided for ease of operation of the plating bath. The regeneration process employs a chelating ion exchange system to remove nickel cations from spent EN plating solution. Phosphites are then removed from the solution by precipitation. The nickel cations are removed from the ion exchange system by elution with hypophosphorus acid and the nickel concentration of the eluate adjusted by addition of nickel salt. The treated solution and adjusted eluate are combined, stabilizer added, and the volume of resulting solution reduced by evaporation to form the bath starter and replenishing solution. 1 fig.

  8. Focus Sheet | Hazardous Waste Checklist How to be ready for state hazardous waste

    E-Print Network [OSTI]

    Wilcock, William

    storage cabinet. Avoid accumulating a lot of waste ­ keep areas clear. EPO ­ Hazardous Waste Checklist 07Focus Sheet | Hazardous Waste Checklist How to be ready for state hazardous waste inspectors. See a hazardous waste inspection. ons, rrosive. n hemicals? ical waste. Waste-like chemicals have als Are you

  9. Measurement and Model for Hazardous Chemical and Mixed Waste

    SciTech Connect (OSTI)

    Michael E. Mullins; Tony N. Rogers; Stephanie L. Outcalt; Beverly Louie; Laurel A. Watts; Cynthia D. Holcomb

    2002-07-30T23:59:59.000Z

    Mixed solvent aqueous waste of various chemical compositions constitutes a significant fraction of the total waste produced by industry in the United States. Not only does the chemical process industry create large quantities of aqueous waste, but the majority of the waste inventory at the Department of Energy (DOE) sites previously used for nuclear weapons production is mixed solvent aqueous waste. In addition, large quantities of waste are expected to be generated in the clean-up of those sites. In order to effectively treat, safely handle, and properly dispose of these wastes, accurate and comprehensive knowledge of basic thermophysical properties is essential. The goal of this work is to develop a phase equilibrium model for mixed solvent aqueous solutions containing salts. An equation of state was sought for these mixtures that (a) would require a minimum of adjustable parameters and (b) could be obtained from a available data or data that were easily measured. A model was developed to predict vapor composition and pressure given the liquid composition and temperature. It is based on the Peng-Robinson equation of state, adapted to include non-volatile and salt components. The model itself is capable of predicting the vapor-liquid equilibria of a wide variety of systems composed of water, organic solvents, salts, nonvolatile solutes, and acids or bases. The representative system of water + acetone + 2-propanol + NaNO3 was selected to test and verify the model. Vapor-liquid equilibrium and phase density measurements were performed for this system and its constituent binaries.

  10. IMPACT OF THE SMALL COLUMN ION EXCHANGE PROCESS ON THE DEFENSE WASTE PROCESSING FACILITY - 12112

    SciTech Connect (OSTI)

    Koopman, D.; Lambert, D.; Fox, K.; Stone, M.

    2011-11-07T23:59:59.000Z

    The Savannah River Site (SRS) is investigating the deployment of a parallel technology to the Salt Waste Processing Facility (SWPF, presently under construction) to accelerate high activity salt waste processing. The proposed technology combines large waste tank strikes of monosodium titanate (MST) to sorb strontium and actinides with two ion exchange columns packed with crystalline silicotitanate (CST) resin to sorb cesium. The new process was designated Small Column Ion Exchange (SCIX), since the ion exchange columns were sized to fit within a waste storage tank riser. Loaded resins are to be combined with high activity sludge waste and fed to the Defense Waste Processing Facility (DWPF) for incorporation into the current glass waste form. Decontaminated salt solution produced by SCIX will be fed to the SRS Saltstone Facility for on-site immobilization as a grout waste form. Determining the potential impact of SCIX resins on DWPF processing was the basis for this study. Accelerated salt waste treatment is projected to produce a significant savings in the overall life cycle cost of waste treatment at SRS.

  11. Environmental assessment of garden waste management in the Municipality of Aarhus, Denmark

    SciTech Connect (OSTI)

    Boldrin, Alessio, E-mail: aleb@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby (Denmark); Andersen, Jacob K.; Christensen, Thomas H. [Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby (Denmark)

    2011-07-15T23:59:59.000Z

    An environmental assessment of six scenarios for handling of garden waste in the Municipality of Aarhus (Denmark) was performed from a life cycle perspective by means of the LCA-model EASEWASTE. In the first (baseline) scenario, the current garden waste management system based on windrow composting was assessed, while in the other five scenarios alternative solutions including incineration and home composting of fractions of the garden waste were evaluated. The environmental profile (normalised to Person Equivalent, PE) of the current garden waste management in Aarhus is in the order of -6 to 8 mPE Mg{sup -1} ww for the non-toxic categories and up to 100 mPE Mg{sup -1} ww for the toxic categories. The potential impacts on non-toxic categories are much smaller than what is found for other fractions of municipal solid waste. Incineration (up to 35% of the garden waste) and home composting (up to 18% of the garden waste) seem from an environmental point of view suitable for diverting waste away from the composting facility in order to increase its capacity. In particular the incineration of woody parts of the garden waste improved the environmental profile of the garden waste management significantly.

  12. Ion exchange columns for selective removal of cesium from aqueous radioactive waste using hydrous crystalline silico-titanates

    E-Print Network [OSTI]

    Ricci, David Michael

    1995-01-01T23:59:59.000Z

    conscious society. In Hanford, WA, hundreds of underground storage tanks hold tens of millions of gallons of aqueous radioactive waste. This liquid waste, which has a very high sodium content, contains trace amounts of radioactive cesium 137. Since... the material for batch ion exchange of the nuclear waste solution. More research was needed to investigate the material's effectiveness in a column operation. An ion exchange column system was developed to study column performance. The column design...

  13. Process for the recovery of strontium from acid solutions

    DOE Patents [OSTI]

    Horwitz, E.P.; Dietz, M.L.

    1992-03-31T23:59:59.000Z

    The invention is a process for selectively extracting strontium and technetium values from aqueous nitric acid waste solutions containing these and other fission product values. The extractant is a macrocyclic polyether in a diluent which is insoluble in water, but which will itself dissolve a small amount of water. The process will extract strontium and technetium values from nitric acid solutions which are up to 6 molar in nitric acid. 5 figs.

  14. Disposal of oil field wastes and NORM wastes into salt caverns.

    SciTech Connect (OSTI)

    Veil, J. A.

    1999-01-27T23:59:59.000Z

    Salt caverns can be formed through solution mining in the bedded or domal salt formations that are found in many states. Salt caverns have traditionally been used for hydrocarbon storage, but caverns have also been used to dispose of some types of wastes. This paper provides an overview of several years of research by Argonne National Laboratory on the feasibility and legality of using salt caverns for disposing of nonhazardous oil field wastes (NOW) and naturally occurring radioactive materials (NORM), the risk to human populations from this disposal method, and the cost of cavern disposal. Costs are compared between the four operating US disposal caverns and other commercial disposal options located in the same geographic area as the caverns. Argonne's research indicates that disposal of NOW into salt caverns is feasible and, in most cases, would not be prohibited by state agencies (although those agencies may need to revise their wastes management regulations). A risk analysis of several cavern leakage scenarios suggests that the risk from cavern disposal of NOW and NORM wastes is below accepted safe risk thresholds. Disposal caverns are economically competitive with other disposal options.

  15. Radioactive Waste Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09T23:59:59.000Z

    The objective of this Order is to ensure that all Department of Energy (DOE) radioactive waste is managed in a manner that is protective of worker and public health and safety and the environment. Cancels DOE O 5820.2A. Chg 1 dated 8-28-01. Certified 1-9-07.

  16. Radioactive Waste Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09T23:59:59.000Z

    The objective of this Order is to ensure that all Department of Energy (DOE) radioactive waste is managed in a manner that is protective of worker and public health and safety and the environment. Cancels DOE O 5820.2A

  17. Hanford Tank Waste - Near Source Treatment of Low Activity Waste

    SciTech Connect (OSTI)

    Ramsey, William Gene

    2013-08-15T23:59:59.000Z

    Abstract only. Treatment and disposition of Hanford Site waste as currently planned consists of 100+ waste retrievals, waste delivery through up to 8+ miles of dedicated, in-ground piping, centralized mixing and blending operations- all leading to pre-treatment combination and separation processes followed by vitrification at the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The sequential nature of Tank Farm and WTP operations requires nominally 15-20 years of continuous operations before all waste can be retrieved from many Single Shell Tanks (SSTs). Also, the infrastructure necessary to mobilize and deliver the waste requires significant investment beyond that required for the WTP. Treating waste as closely as possible to individual tanks or groups- as allowed by the waste characteristics- is being investigated to determine the potential to 1) defer, reduce, and/or eliminate infrastructure requirements, and 2) significantly mitigate project risk by reducing the potential and impact of single point failures. The inventory of Hanford waste slated for processing and disposition as LAW is currently managed as high-level waste (HLW), i.e., the separation of fission products and other radionuclides has not commenced. A significant inventory of this waste (over 20M gallons) is in the form of precipitated saltcake maintained in single shell tanks, many of which are identified as potential leaking tanks. Retrieval and transport (as a liquid) must be staged within the waste feed delivery capability established by site infrastructure and WTP. Near Source treatment, if employed, would provide for the separation and stabilization processing necessary for waste located in remote farms (wherein most of the leaking tanks reside) significantly earlier than currently projected. Near Source treatment is intended to address the currently accepted site risk and also provides means to mitigate future issues likely to be faced over the coming decades. This paper describes the potential near source treatment and waste disposition options as well as the impact these options could have on reducing infrastructure requirements, project cost and mission schedule.

  18. Physical property parameter set for modeling ICPP aqueous wastes with ASPEN electrolyte NRTL model

    SciTech Connect (OSTI)

    Schindler, R.E.

    1996-09-01T23:59:59.000Z

    The aqueous waste evaporators at the Idaho Chemical Processing Plant (ICPP) are being modeled using ASPEN software. The ASPEN software calculates chemical and vapor-liquid equilibria with activity coefficients calculated using the electrolyte Non-Random Two Liquid (NRTL) model for local excess Gibbs free energies of interactions between ions and molecules in solution. The use of the electrolyte NRTL model requires the determination of empirical parameters for the excess Gibbs free energies of the interactions between species in solution. This report covers the development of a set parameters, from literature data, for the use of the electrolyte NRTL model with the major solutes in the ICPP aqueous wastes.

  19. Analysis of alternatives for immobilized low activity waste disposal

    SciTech Connect (OSTI)

    Burbank, D.A.

    1997-10-28T23:59:59.000Z

    This report presents a study of alternative disposal system architectures and implementation strategies to provide onsite near-surface disposal capacity to receive the immobilized low-activity waste produced by the private vendors. The analysis shows that a flexible unit strategy that provides a suite of design solutions tailored to the characteristics of the immobilized low-activity waste will provide a disposal system that best meets the program goals of reducing the environmental, health, and safety impacts; meeting the schedule milestones; and minimizing the life-cycle cost of the program.

  20. TRU waste characterization chamber gloveboxes.

    SciTech Connect (OSTI)

    Duncan, D. S.

    1998-07-02T23:59:59.000Z

    Argonne National Laboratory-West (ANL-W) is participating in the Department of Energy's (DOE) National Transuranic Waste Program in support of the Waste Isolation Pilot Plant (WIPP). The Laboratory's support currently consists of intrusive characterization of a selected population of drums containing transuranic waste. This characterization is performed in a complex of alpha containment gloveboxes termed the Waste Characterization Gloveboxes. Made up of the Waste Characterization Chamber, Sample Preparation Glovebox, and the Equipment Repair Glovebox, they were designed as a small production characterization facility for support of the Idaho National Engineering and Environmental Laboratory (INEEL). This paper presents salient features of these gloveboxes.

  1. Linking two modeling approaches for the strategic municipal waste management planning. The MIMES/Waste model and LCA

    SciTech Connect (OSTI)

    Sundberg, J.; Ljunggren, M. [Chalmers Univ. of Technology, Goeteborg (Sweden). Energy Systems Technology Div.

    1997-12-31T23:59:59.000Z

    This paper describes how a systems engineering model for the strategic waste management, the MIMES/Waste model, is improved by using fife cycle assessment (LCA). The MIMES/Waste model, which is an one-step nonlinear optimization model, is designed to facilitate new solutions for future waste management systems that are both cost-efficient and environmentally acceptable. The objective of the model is cost minimization. Emissions control has so far been analyzed by using emissions restrictions and fees. However, emissions control is not sufficient in order to evaluate the environmental impacts from different waste management strategies. The method proposed in this paper shows how a linkage between the two modeling approaches can be used in order to find solutions that minimizes both costs and environmental impacts. Two parts of the MIMES/Waste model is improved by using LCA. The first improvement is to use LCA methodology for describing and comparing environmental impacts. The main improvement here, is the results gained from using the methods for impacts assessment (i.e. classification, characterization and valuation). The integration of the two objectives, the existing cost minimization and the impact assessment, opens new and interesting opportunities for the model since it couples the two main decision criteria used for the strategic planning. The second improvement is to link complete life-cycles for the separated and recovered materials. This expansion of the system boundary makes it possible, for the MIMES/Waste model to compare different material recovery options from an environmental point of view. A procedure with soft linking is used where existing and evaluated LCA descriptions are linked. Results from a case study that illustrates the benefits from using the new model for the strategic planning is presented.

  2. WASTE/BY-PRODUCT HYDROGEN DOE/DOD Workshop

    E-Print Network [OSTI]

    ; 6 Waste/Byproduct HydrogenWaste/By product Hydrogen Waste H2 sources include: Waste biomass: biogas Waste/Byproduct Hydrogen Waste/By product Hydrogen Fuel FlexibilityFuel Flexibility Biogas: generated

  3. Quality Services: Solid Wastes, Part 360: Solid Waste Management Facilities (New York)

    Broader source: Energy.gov [DOE]

    These regulations apply to all solid wastes with the exception of hazardous or radioactive waste. Proposed solid waste processing facilities are required to obtain permits prior to construction,...

  4. Waste minimization handbook, Volume 1

    SciTech Connect (OSTI)

    Boing, L.E.; Coffey, M.J.

    1995-12-01T23:59:59.000Z

    This technical guide presents various methods used by industry to minimize low-level radioactive waste (LLW) generated during decommissioning and decontamination (D and D) activities. Such activities generate significant amounts of LLW during their operations. Waste minimization refers to any measure, procedure, or technique that reduces the amount of waste generated during a specific operation or project. Preventive waste minimization techniques implemented when a project is initiated can significantly reduce waste. Techniques implemented during decontamination activities reduce the cost of decommissioning. The application of waste minimization techniques is not limited to D and D activities; it is also useful during any phase of a facility`s life cycle. This compendium will be supplemented with a second volume of abstracts of hundreds of papers related to minimizing low-level nuclear waste. This second volume is expected to be released in late 1996.

  5. SEPARATION AND EXTRACTION OF PLUTONIUM IN MIXED WASTE

    SciTech Connect (OSTI)

    Arthur E. Desrosiers, ScD, CHP; Robert Kaiser, ScD; Jason Antkowiak; Justin Desrosiers; Josh Jondro; Adam Kulczyk

    2002-12-13T23:59:59.000Z

    The Sonatol process uses ultrasonic agitation in fluorinated surfactant solutions to remove radioactive particles from surfaces. Filtering the suspended particles allows the solutions to be reused indefinitely. The current work applies the Sonatol process to the decontamination of heterogeneous legacy Pu-238 waste that exhibits excessive hydrogen gas generation, which prevents transportation of the waste to the Waste Isolation Pilot Plant. Bartlett Services, Inc. (BSI) designed and fabricated a prototype decontamination system within a replica of a Savannah River Site glovebox. In Phase I, BSI conducted cold testing with surrogate waste material to verify that the equipment, operating procedures, and test protocols would support testing with Pu-238 in Phase II. The surrogate waste material is representative of known constituents of legacy job control waste. Two sub-micron sized Pu-238 simulants were added to the surrogate waste so that decontamination could be tested. The first simulant was an Osram Sylvania Phosphor 2284C powder that fluoresces under ultraviolet light. The use of the fluorescent simulant allows rapid, inexpensive system startup testing because residuals can be assayed using a digital camera. The results of digital pixel analysis (DPA) are available immediately and do not require use of licensed material. The second simulant, which was used for integrated cold testing, was a cerium oxide powder that was activated in a research reactor neutron flux and assayed by photon spectroscopy. The surrogate transuranic (TRU) waste material was contaminated with Pu-238 simulants and loaded into the cleaning chamber, where the surrogates were ultrasonically agitated and rinsed. The decontaminated materials were then assayed for surface contamination by DPA to establish optimum operating parameters and provide process quality control. Selected samples were sent to the Massachusetts Institute of Technology for neutron activation analysis (NAA). NAA testing resulted in weighted average decontamination factors (DFs) in the range of 125 to 157 for the surrogate waste mixtures. The weighted DFs for the organic portion of the surrogate waste mixtures ranged from 66 to 140. The NAA DF for inorganic material was 370. Other than the removal of particulate contamination, the processed samples were unchanged by decontamination. Most NAA samples were irradiated after decontamination. However, several samples were irradiated in the reactor core prior to decontamination in order to investigate the possible interference of radiation induced imbedding of particles in organic materials. The radiation dose was in excess of 110 Mrad. The NAA DF for samples irradiated before decontamination was six.

  6. EM-21 Retrieval Knowledge Center: Waste Retrieval Challenges

    SciTech Connect (OSTI)

    Fellinger, Andrew P.; Rinker, Michael W.; Berglin, Eric J.; Minichan, Richard L.; Poirier, Micheal R.; Gauglitz, Phillip A.; Martin, Bruce A.; Hatchell, Brian K.; Saldivar, Eloy; Mullen, O Dennis; Chapman, Noel F.; Wells, Beric E.; Gibbons, Peter W.

    2009-04-10T23:59:59.000Z

    EM-21 is the Waste Processing Division of the Office of Engineering and Technology, within the U.S. Department of Energy’s (DOE) Office of Environmental Management (EM). In August of 2008, EM-21 began an initiative to develop a Retrieval Knowledge Center (RKC) to provide the DOE, high level waste retrieval operators, and technology developers with centralized and focused location to share knowledge and expertise that will be used to address retrieval challenges across the DOE complex. The RKC is also designed to facilitate information sharing across the DOE Waste Site Complex through workshops, and a searchable database of waste retrieval technology information. The database may be used to research effective technology approaches for specific retrieval tasks and to take advantage of the lessons learned from previous operations. It is also expected to be effective for remaining current with state-of-the-art of retrieval technologies and ongoing development within the DOE Complex. To encourage collaboration of DOE sites with waste retrieval issues, the RKC team is co-led by the Savannah River National Laboratory (SRNL) and the Pacific Northwest National Laboratory (PNNL). Two RKC workshops were held in the Fall of 2008. The purpose of these workshops was to define top level waste retrieval functional areas, exchange lessons learned, and develop a path forward to support a strategic business plan focused on technology needs for retrieval. The primary participants involved in these workshops included retrieval personnel and laboratory staff that are associated with Hanford and Savannah River Sites since the majority of remaining DOE waste tanks are located at these sites. This report summarizes and documents the results of the initial RKC workshops. Technology challenges identified from these workshops and presented here are expected to be a key component to defining future RKC-directed tasks designed to facilitate tank waste retrieval solutions.

  7. Feasibility of using biological degradation for the on-sitetreatment of mixed wastes

    SciTech Connect (OSTI)

    Stringfellow, William T.; Komada, Tatsuyuki; Chang, Li-Yang

    2004-04-20T23:59:59.000Z

    This research was conducted to investigate the feasibility of applying microbial biodegradation as a treatment technology for wastes containing radioactive elements and organic solvents (mixed wastes). In this study, we focused our efforts on the treatment of wastes generated by biomedical research as the result of purifying tritium labeled compounds by high-performance liquid chromatography (HPLC). These wastes are typically 80 percent water with 20 percent acetonitrile or methanol or a mixture of both. The objective was to determine the potential of using biodegradation to treat the solvent component of tritiated mixed waste to a concentration below the land disposal restriction standard (1mg/L for acetonitrile). Once the standard is reached, the remaining radioactive waste is no longer classified as a mixed waste and it can then be solidified and placed in a secure landfill. This investigation focused on treating a 10 percent acetonitrile solution, which was used as a non-radioactive surrogate for HPLC waste, in a bioreactor. The results indicated that the biodegradation process could treat this solution down to less than 1 mg/L to meet the land disposal restriction standard.

  8. Waste Treatment Technology Process Development Plan For Hanford Waste Treatment Plant Low Activity Waste Recycle

    SciTech Connect (OSTI)

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.

    2013-08-29T23:59:59.000Z

    The purpose of this Process Development Plan is to summarize the objectives and plans for the technology development activities for an alternative path for disposition of the recycle stream that will be generated in the Hanford Waste Treatment Plant Low Activity Waste (LAW) vitrification facility (LAW Recycle). This plan covers the first phase of the development activities. The baseline plan for disposition of this stream is to recycle it to the WTP Pretreatment Facility, where it will be concentrated by evaporation and returned to the LAW vitrification facility. Because this stream contains components that are volatile at melter temperatures and are also problematic for the glass waste form, they accumulate in the Recycle stream, exacerbating their impact on the number of LAW glass containers. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and reducing the halides in the Recycle is a key component of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, this stream does not have a proven disposition path, and resolving this gap becomes vitally important. This task seeks to examine the impact of potential future disposition of this stream in the Hanford tank farms, and to develop a process that will remove radionuclides from this stream and allow its diversion to another disposition path, greatly decreasing the LAW vitrification mission duration and quantity of glass waste. The origin of this LAW Recycle stream will be from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover or precipitates of scrubbed components (e.g. carbonates). The soluble components are mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet, and will not be available until the WTP begins operation, causing uncertainty in its composition, particularly the radionuclide content. This plan will provide an estimate of the likely composition and the basis for it, assess likely treatment technologies, identify potential disposition paths, establish target treatment limits, and recommend the testing needed to show feasibility. Two primary disposition options are proposed for investigation, one is concentration for storage in the tank farms, and the other is treatment prior to disposition in the Effluent Treatment Facility. One of the radionuclides that is volatile and expected to be in high concentration in this LAW Recycle stream is Technetium-99 ({sup 99}Tc), a long-lived radionuclide with a half-life of 210,000 years. Technetium will not be removed from the aqueous waste in the Hanford Waste Treatment and Immobilization Plant (WTP), and will primarily end up immobilized in the LAW glass, which will be disposed in the Integrated Disposal Facility (IDF). Because {sup 99}Tc has a very long half-life and is highly mobile, it is the largest dose contributor to the Performance Assessment (PA) of the IDF. Other radionuclides that are also expected to be in appreciable concentration in the LAW Recycle are {sup 129}I, {sup 90}Sr, {sup 137}Cs, and {sup 241}Am. The concentrations of these radionuclides in this stream will be much lower than in the LAW, but they will still be higher than limits for some of the other disposition pathways currently available. Although the baseline process will recycle this stream to the Pretreatment Facility, if the LAW facility begins operation first, this stream will not have a disposition path internal to WTP. One potential solution is to return the stream to the tank farms where it can be evaporated in the 242-A evaporator, or perhaps deploy an auxiliary evaporator to concentrate it prior to return to the tank farms. In either case, testing is needed to evaluat

  9. Commercial treatability study capabilities for application to the US Department of Energy`s anticipated mixed waste streams

    SciTech Connect (OSTI)

    NONE

    1996-07-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) has established the Mixed Waste Focus Area (MWFA), which represents a national effort to develop and coordinate treatment solutions for mixed waste among all DOE facilities. The hazardous waste component of mixed waste is regulated under the Resource Conservation and Recovery Act (RCRA), while the radioactive component is regulated under the Atomic Energy Act, as implemented by the DOE, making mixed waste one of the most complex types of waste for the DOE to manage. The MWFA has the mission to support technologies that meet the needs of the DOE`s waste management efforts to characterize, treat, and dispose of mixed waste being generated and stored throughout the DOE complex. The technologies to be supported must meet all regulatory requirements, provide cost and risk improvements over available technologies, and be acceptable to the public. The most notable features of the DOE`s mixed-waste streams are the wide diversity of waste matrices, volumes, radioactivity levels, and RCRA-regulated hazardous contaminants. Table 1-1 is constructed from data from the proposed site treatment plans developed by each DOE site and submitted to DOE Headquarters. The table shows the number of mixed-waste streams and their corresponding volumes. This table illustrates that the DOE has a relatively small number of large-volume mixed-waste streams and a large number of small-volume mixed-waste streams. There are 1,033 mixed-waste streams with volumes less than 1 cubic meter; 1,112 mixed-waste streams with volumes between 1 and 1,000 cubic meters; and only 61 mixed-waste streams with volumes exceeding 1,000 cubic meters.

  10. Nuclear waste management. Semiannual progress report, October 1983-March 1984

    SciTech Connect (OSTI)

    McElroy, J.L.; Powell, J.A.

    1984-06-01T23:59:59.000Z

    Progress in the following studies on radioactive waste management is reported: defense waste technology; Nuclear Waste Materials Characterization Center; waste isolation; and supporting studies. 58 figures, 22 tables.

  11. Medical and Biohazardous Waste Generator's Guide (Revision 2)

    E-Print Network [OSTI]

    Waste Management Group

    2006-01-01T23:59:59.000Z

    Waste Supplies 8. Solid Medical Waste Disposal ProceduresMedical/Biohazardous Waste Pickup Containers Solid Medical/Security Notice 8. Solid Medical Waste Disposal Procedures

  12. Waste Management in Dsseldorf Combination of separate collection,

    E-Print Network [OSTI]

    Columbia University

    Waste Management in Düsseldorf Combination of separate collection, recycling and waste-to-energy Biowaste Garden waste Light packaging Paper Glass Wood from bulky waste Bulky waste Rest / mixed waste Bio- Garden- Paper Glass Light Metals Wood Bulky Rest waste waste Card- Pack. waste board Saved CO2

  13. Tritium waste package

    DOE Patents [OSTI]

    Rossmassler, R.; Ciebiera, L.; Tulipano, F.J.; Vinson, S.; Walters, R.T.

    1995-11-07T23:59:59.000Z

    A containment and waste package system for processing and shipping tritium oxide waste received from a process gas includes an outer drum and an inner drum containing a disposable molecular sieve bed (DMSB) seated within the outer drum. The DMSB includes an inlet diffuser assembly, an outlet diffuser assembly, and a hydrogen catalytic recombiner. The DMSB absorbs tritium oxide from the process gas and converts it to a solid form so that the tritium is contained during shipment to a disposal site. The DMSB is filled with type 4A molecular sieve pellets capable of adsorbing up to 1000 curies of tritium. The recombiner contains a sufficient amount of catalyst to cause any hydrogen and oxygen present in the process gas to recombine to form water vapor, which is then adsorbed onto the DMSB. 1 fig.

  14. Tritium waste package

    DOE Patents [OSTI]

    Rossmassler, Rich (Cranbury, NJ); Ciebiera, Lloyd (Titusville, NJ); Tulipano, Francis J. (Teaneck, NJ); Vinson, Sylvester (Ewing, NJ); Walters, R. Thomas (Lawrenceville, NJ)

    1995-01-01T23:59:59.000Z

    A containment and waste package system for processing and shipping tritium xide waste received from a process gas includes an outer drum and an inner drum containing a disposable molecular sieve bed (DMSB) seated within outer drum. The DMSB includes an inlet diffuser assembly, an outlet diffuser assembly, and a hydrogen catalytic recombiner. The DMSB absorbs tritium oxide from the process gas and converts it to a solid form so that the tritium is contained during shipment to a disposal site. The DMSB is filled with type 4A molecular sieve pellets capable of adsorbing up to 1000 curies of tritium. The recombiner contains a sufficient amount of catalyst to cause any hydrogen add oxygen present in the process gas to recombine to form water vapor, which is then adsorbed onto the DMSB.

  15. Method for processing aqueous wastes

    DOE Patents [OSTI]

    Pickett, J.B.; Martin, H.L.; Langton, C.A.; Harley, W.W.

    1993-12-28T23:59:59.000Z

    A method is presented for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply. 4 figures.

  16. Method for processing aqueous wastes

    DOE Patents [OSTI]

    Pickett, John B. (3922 Wood Valley Dr., Aiken, SC 29803); Martin, Hollis L. (Rt. 1, Box 188KB, McCormick, SC 29835); Langton, Christine A. (455 Sumter St. SE., Aiken, SC 29801); Harley, Willie W. (110 Fairchild St., Batesburg, SC 29006)

    1993-01-01T23:59:59.000Z

    A method for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply.

  17. Degradation modeling of the ANL ceramic waste form

    SciTech Connect (OSTI)

    Fanning, T. H.; Morss, L. R.

    2000-03-28T23:59:59.000Z

    A ceramic waste form composed of glass-bonded sodalite is being developed at Argonne National Laboratory (ANL) for immobilization and disposition of the molten salt waste stream from the electrometallurgical treatment process for metallic DOE spent nuclear fuel. As part of the spent fuel treatment program at ANL, a model is being developed to predict the long-term release of radionuclides under repository conditions. Dissolution tests using dilute, pH-buffered solutions have been conducted at 40, 70, and 90 C to determine the temperature and pH dependence of the dissolution rate. Parameter values measured in these tests have been incorporated into the model, and preliminary repository performance assessment modeling has been completed. Results indicate that the ceramic waste form should be acceptable in a repository environment.

  18. Waste products in highway construction. Final report

    SciTech Connect (OSTI)

    Han, C.

    1993-04-01T23:59:59.000Z

    The report presents waste materials and products for highway construction. The general legislation, local liability, and research projects related to waste materials are outlined. The waste materials and products presented include waste paving materials, industrial ash materials, taconite tailing materials, waste tire rubber materials and products, building rubble materials, incinerator ash products and materials, waste glass materials, waste shingle materials and products, waste plastics products, and slag materials. For each waste category, the legislation and restrictions, material properties, construction and application, field performance, and recycling at the end of service life if available are discussed.

  19. Municipal Waste Planning, Recycling and Waste Reduction Act ...

    Open Energy Info (EERE)

    Recycling and Waste Reduction Act (Pennsylvania) Policy Category Other Policy Policy Type Environmental Regulations Affected Technologies BiomassBiogas, Coal with CCS,...

  20. Pharmaceutical waste may be a hazardous chemical waste, controlled substance or biomedical waste. Proper classification is necessary to be in compliance with the laws regulating each waste type.

    E-Print Network [OSTI]

    George, Steven C.

    Pharmaceutical waste may be a hazardous chemical waste, controlled substance or biomedical waste. Hazardous Chemical Pharmaceutical Waste: A number of common pharmaceuticals are regulated as hazardous or more of the EPA characteristics of a hazardous chemical waste are also regulated as a hazardous

  1. WASTE DESCRIPTION TYPE OF PROJECT POUNDS REDUCED,

    E-Print Network [OSTI]

    Minimization/ Volume Reduction 0 Solid Radioactive Waste $2,168 $0 $2,168 Vial Crusher for glass vialsWASTE DESCRIPTION TYPE OF PROJECT POUNDS REDUCED, REUSED, RECYCLED OR CONSERVED IN 2004 WASTE TYPE DESCRIPTION DETAILS * Automotive Waste Substitution 510 Hazardous Waste $1,020 $1,000 $1,000 Aqueous Solvent

  2. Waste Toolkit A-Z Light bulbs

    E-Print Network [OSTI]

    Melham, Tom

    Waste Toolkit A-Z Light bulbs Can I recycle light bulbs? It depends what type of bulbs you have of in the normal University waste bins (landfill waste). Energy saving bulbs and fluorescent tubes are classified light bulbs? Standard filament bulbs Put in the waste bin (landfill waste) as these are not classified

  3. Interface control document between the Tank Waste Remediation System and the Solid Waste Disposal Division

    SciTech Connect (OSTI)

    Duncan, D.R.

    1995-04-01T23:59:59.000Z

    This document discusses the interface between the Tank Waste Remediation System (TWRS) and the Solid Waste Division (SWD).

  4. Optimal planning for the sustainable utilization of municipal solid waste

    SciTech Connect (OSTI)

    Santibañez-Aguilar, José Ezequiel [Chemical Engineering Department, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán 58060 (Mexico); Ponce-Ortega, José María, E-mail: jmponce@umich.mx [Chemical Engineering Department, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán 58060 (Mexico); Betzabe González-Campos, J. [Institute of Chemical and Biological Researches, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán 58060 (Mexico); Serna-González, Medardo [Chemical Engineering Department, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán 58060 (Mexico); El-Halwagi, Mahmoud M. [Chemical Engineering Department, Texas A and M University, College Station, TX 77843 (United States); Adjunct Faculty at the Chemical and Materials Engineering Department, Faculty of Engineering, King Abdulaziz University, P.O. Box 80204, Jeddah 21589 (Saudi Arabia)

    2013-12-15T23:59:59.000Z

    Highlights: • An optimization approach for the sustainable management of municipal solid waste is proposed. • The proposed model optimizes the entire supply chain network of a distributed system. • A case study for the sustainable waste management in the central-west part of Mexico is presented. • Results shows different interesting solutions for the case study presented. - Abstract: The increasing generation of municipal solid waste (MSW) is a major problem particularly for large urban areas with insufficient landfill capacities and inefficient waste management systems. Several options associated to the supply chain for implementing a MSW management system are available, however to determine the optimal solution several technical, economic, environmental and social aspects must be considered. Therefore, this paper proposes a mathematical programming model for the optimal planning of the supply chain associated to the MSW management system to maximize the economic benefit while accounting for technical and environmental issues. The optimization model simultaneously selects the processing technologies and their location, the distribution of wastes from cities as well as the distribution of products to markets. The problem was formulated as a multi-objective mixed-integer linear programing problem to maximize the profit of the supply chain and the amount of recycled wastes, where the results are showed through Pareto curves that tradeoff economic and environmental aspects. The proposed approach is applied to a case study for the west-central part of Mexico to consider the integration of MSW from several cities to yield useful products. The results show that an integrated utilization of MSW can provide economic, environmental and social benefits.

  5. Vitrification of high sulfate wastes

    SciTech Connect (OSTI)

    Merrill, R.A.; Whittington, K.F.; Peters, R.D.

    1994-09-01T23:59:59.000Z

    The US Department of Energy (DOE) through the Mixed Waste Integrated Program (MWIP) is investigating the application of vitrification technology to mixed wastes within the DOE system This work involves identifying waste streams, laboratory testing to identify glass formulations and characterize the vitrified product, and demonstration testing with the actual waste in a pilot-scale system. Part of this program is investigating process limits for various waste components, specifically those components that typically create problems for the application of vitrification, such as sulfate, chloride, and phosphate. This work describes results from vitrification testing for a high-sulfate waste, the 183-H Solar Evaporation Basin waste at Hanford. A low melting phosphate glass formulation has been developed for a waste stream high in sodium and sulfate. At melt temperatures in the range of 1,000 C to 1,200 C, sulfate in the waste is decomposed to gaseous oxides and driven off during melting, while the remainder of the oxides stay in the melt. Decomposition of the sulfates eliminates the processing problems typically encountered in vitrification of sulfate-containing wastes, resulting in separation of the sulfate from the remainder of the waste and allowing the sulfate to be collected in the off-gas system and treated as a secondary waste stream. Both the vitreous product and intentionally devitrified samples are durable when compared to reference glasses by TCLP and DI water leach tests. Simple, short tests to evaluate the compatibility of the glasses with potential melter materials found minimal corrosion with most materials.

  6. Waste Toolkit A-Z Food waste (recycling on-site)

    E-Print Network [OSTI]

    Melham, Tom

    into compost in 14 days, when mixed with wood chippings (from your grounds/gardens). The waste is heated usingWaste Toolkit A-Z Food waste (recycling on-site) How can I recycle food waste on-site? Recycling food waste on-site is a new concept as the University typically has its waste collected and taken away

  7. Treatment of mercury containing waste

    DOE Patents [OSTI]

    Kalb, Paul D. (Wading River, NY); Melamed, Dan (Gaithersburg, MD); Patel, Bhavesh R (Elmhurst, NY); Fuhrmann, Mark (Babylon, NY)

    2002-01-01T23:59:59.000Z

    A process is provided for the treatment of mercury containing waste in a single reaction vessel which includes a) stabilizing the waste with sulfur polymer cement under an inert atmosphere to form a resulting mixture and b) encapsulating the resulting mixture by heating the mixture to form a molten product and casting the molten product as a monolithic final waste form. Additional sulfur polymer cement can be added in the encapsulation step if needed, and a stabilizing additive can be added in the process to improve the leaching properties of the waste form.

  8. Progress Update: TRU Waste Shipping

    ScienceCinema (OSTI)

    Cody, Tom

    2012-06-14T23:59:59.000Z

    A progress update at the Savannah River Site. A continued effort on shipping TRU waste to WIPP in Carlsbad, New Mexico.

  9. Process for preparing liquid wastes

    DOE Patents [OSTI]

    Oden, Laurance L. (Albany, OR); Turner, Paul C. (Albany, OR); O'Connor, William K. (Lebanon, OR); Hansen, Jeffrey S. (Corvallis, OR)

    1997-01-01T23:59:59.000Z

    A process for preparing radioactive and other hazardous liquid wastes for treatment by the method of vitrification or melting is provided for.

  10. Solid Waste Management Act (Pennsylvania)

    Broader source: Energy.gov [DOE]

    This Act provides for the planning and regulation of solid waste storage, collection, transportation, processing, treatment, and disposal. It requires that municipalities submit plans for municipal...

  11. Performance Assessment for Transuranic Waste

    National Nuclear Security Administration (NNSA)

    Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High- Level, and Transuranic Radioactive Wastes, can be met. The 40 CFR 191 analyses...

  12. Hazardous Waste Facilities Siting (Connecticut)

    Broader source: Energy.gov [DOE]

    These regulations describe the siting and permitting process for hazardous waste facilities and reference rules for construction, operation, closure, and post-closure of these facilities.

  13. Hazardous Waste Transporter Permits (Connecticut)

    Broader source: Energy.gov [DOE]

    Transportation of hazardous wastes into or through the State of Connecticut requires a permit. Some exceptions apply. The regulations provide information about obtaining permits and other permit...

  14. Reporting Fraud, Waste, and Abuse

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-09-15T23:59:59.000Z

    This Notice reminds all DOE employees of their duty to report allegations of fraud, waste, and abuse to the Office of Inspector General. No cancellation.

  15. Nuclear waste incineration technology status

    SciTech Connect (OSTI)

    Ziegler, D.L.; Lehmkuhl, G.D.; Meile, L.J.

    1981-07-15T23:59:59.000Z

    The incinerators developed and/or used for radioactive waste combustion are discussed and suggestions are made for uses of incineration in radioactive waste management programs and for incinerators best suited for specific applications. Information on the amounts and types of radioactive wastes are included to indicate the scope of combustible wastes being generated and in existence. An analysis of recently developed radwaste incinerators is given to help those interested in choosing incinerators for specific applications. Operating information on US and foreign incinerators is also included to provide additional background information. Development needs are identified for extending incinerator applications and for establishing commercial acceptance.

  16. Organic tanks safety program, FY97 waste aging studies. Revision 1

    SciTech Connect (OSTI)

    Camaioni, D.M.; Samuels, W.D.; Linehan, J.C.; Sharma, A.K.; Hogan, M.O.; Lilga, M.A.; Clauss, S.A.; Wahl, K.L.; Campbell, J.A.

    1998-02-01T23:59:59.000Z

    To model tank waste aging and interpret tank waste speciation results, the authors began measuring the reactivity of organic complexants and related compounds towards radiation-induced oxidation reactions. Because of the high efficiency of scavenging of the primary radicals of water radiolysis by nitrate and nitrite ion, the major radiolytically-generated radicals in these solutions, and in Hanford tank wastes, are NO{sub 2}, NO and O{sup {minus}}. Prior to this effort, little quantitative information existed for the reactions of these radicals with organic compounds such as those that were used in Hanford processes. Therefore, modeling of actual waste aging, or even simulated waste aging, was not feasible without measuring reactivities and determining reaction paths. The authors have made the first rate measurements of complexant aging and determined some of their degradation products.

  17. Corrosion of Chromium-Rich Oxide Refractories in Molten Waste Glasses

    SciTech Connect (OSTI)

    Hao Gan; Xiaodong Lu; Andrew C. Buechele; M. Catherine Paul; Ian L. Pegg

    2002-03-20T23:59:59.000Z

    The DOE is faced with a wide variety of waste treatment problems throughout the complex. The diversity in physical, chemical, and radiological characteristics of these waste streams will necessitate an array of treatment technologies since, at present, there exists no single solution. Thermal treatment technologies have an important, but by no means singular, role to play in addressing this problem since they generally offer the potential for significant volume reductions, leach resistant waste forms, considerable versatility, and are relatively well developed. In particular, DOE has made significant investments in the development and deployment of vitrification technologies for the treatment of high-level nuclear wastes and, more recently, for mixed wastes. The general area of materials of construction is especially important for thermal processes due to the inherently high-temperature and the often-corrosive environments involved. The performance of these materials directly impacts treatment costs since this determines maintenance downtime and the useful service life of the treatment unit.

  18. Radioactive waste management in the USSR: A review of unclassified sources. Volume 2

    SciTech Connect (OSTI)

    Bradley, D.J.

    1991-03-01T23:59:59.000Z

    The Soviet Union does not currently have an overall radioactive waste management program or national laws that define objectives, procedures, and standards, although such a law is being developed, according to the Soviets. Occupational health and safety does not appear to receive major attention as it does in Western nations. In addition, construction practices that would be considered marginal in Western facilities show up in Soviet nuclear power and waste management operations. The issues involved with radioactive waste management and environmental restoration are being investigated at several large Soviet institutes; however, there is little apparent interdisciplinary integration between them, or interaction with the USSR Academy of Sciences. It is expected that a consensus on technical solutions will be achieved, but it may be slow in coming, especially for final disposal of high-level radioactive wastes and environmental restoration of contaminated areas. Meanwhile, many treatment, solidification, and disposal options for radioactive waste management are being investigated by the Soviets.

  19. Radioactive waste management in the USSR: A review of unclassified sources

    SciTech Connect (OSTI)

    Bradley, D.J.

    1991-03-01T23:59:59.000Z

    The Soviet Union does not currently have an overall radioactive waste management program or national laws that define objectives, procedures, and standards, although such a law is being developed, according to the Soviets. Occupational health and safety does not appear to receive major attention as it does in Western nations. In addition, construction practices that would be considered marginal in Western facilities show up in Soviet nuclear power and waste management operations. The issues involved with radioactive waste management and environmental restoration are being investigated at several large Soviet institutes; however, there is little apparent interdisciplinary integration between them, or interaction with the USSR Academy of Sciences. It is expected that a consensus on technical solutions will be achieved, but it may be slow in coming, especially for final disposal of high-level radioactive wastes and environmental restoration of contaminated areas. Meanwhile, many treatment, solidification, and disposal options for radioactive waste management are being investigated by the Soviets.

  20. UNITED STATES DEPARTMENT OF ENERGY OFFICE OF ENVIRONMENTAL MANAGEMENT WASTE PROCESSING ANNUAL TECHNOLOGY DEVELOPMENT REPORT 2008

    SciTech Connect (OSTI)

    Bush, S.

    2009-11-05T23:59:59.000Z

    The Office of Waste Processing identifies and reduces engineering and technical risks and uncertainties of the waste processing programs and projects of the Department of Energy's Environmental Management (EM) mission through the timely development of solutions to technical issues. The risks, and actions taken to mitigate those risks, are determined through technology readiness assessments, program reviews, technology information exchanges, external technical reviews, technical assistance, and targeted technology development and deployment. The Office of Waste Processing works with other DOE Headquarters offices and project and field organizations to proactively evaluate technical needs, identify multi-site solutions, and improve the technology and engineering associated with project and contract management. Participants in this program are empowered with the authority, resources, and training to implement their defined priorities, roles, and responsibilities. The Office of Waste Processing Multi-Year Program Plan (MYPP) supports the goals and objectives of the U.S. Department of Energy (DOE) - Office of Environmental Management Engineering and Technology Roadmap by providing direction for technology enhancement, development, and demonstration that will lead to a reduction of technical risks and uncertainties in EM waste processing activities. The MYPP summarizes the program areas and the scope of activities within each program area proposed for the next five years to improve safety and reduce costs and environmental impacts associated with waste processing; authorized budget levels will impact how much of the scope of activities can be executed, on a year-to-year basis. Waste Processing Program activities within the Roadmap and the MYPP are described in these seven program areas: (1) Improved Waste Storage Technology; (2) Reliable and Efficient Waste Retrieval Technologies; (3) Enhanced Tank Closure Processes; (4) Next-Generation Pretreatment Solutions; (5) Enhanced Stabilization Technologies; (6) Spent Nuclear Fuel; and (7) Challenging Materials. This report provides updates on 35 technology development tasks conducted during calendar year 2008 in the Roadmap and MYPP program areas.

  1. Microbial stabilization and mass reduction of wastes containing radionuclides and toxic metals

    DOE Patents [OSTI]

    Francis, A.J.; Dodge, C.J.; Gillow, J.B.

    1991-09-10T23:59:59.000Z

    A process is provided to treat wastes containing radionuclides and toxic metals with Clostridium sp. BFGl to release a large fraction of the waste solids into solution and convert the radionuclides and toxic metals to a more concentrated and stable form with concurrent volume and mass reduction. The radionuclides and toxic metals being in a more stable form are available for recovery, recycling and disposal. 18 figures.

  2. Electromagnetic mixed waste processing system for asbestos decontamination

    SciTech Connect (OSTI)

    Kasevich, R.S.; Vaux, W. [KAI Technologies, Inc., Portsmouth, NH (United States); Ulerich, N. [Westinghouse Electric Corp., Pittsburgh, PA (United States). Science and Technology Center; Nocito, T. [Ohio DSI Corporation, New York (New York)

    1996-12-31T23:59:59.000Z

    The overall objective of this three-phase program is to develop an integrated process for treating asbestos-containing material that is contaminated with radioactive and hazardous constituents. The integrated process will attempt to minimize processing and disposal costs. The objectives of Phase 1 were to establish the technical feasibility of asbestos decomposition, inorganic radionuclide nd heavy metal removal, and organic volatilization. Phase 1 resulted in the successful bench-scale demonstration of the elements required to develop a mixed waste treatment process for asbestos-containing material (ACM) contaminated with radioactive metals, heavy metals, and organics. Using the Phase 1 data, a conceptual process was developed. The Phase 2 program, currently in progress, is developing an integrated system design for ACM waste processing. The Phase 3 program will target demonstration of the mixed waste processing system at a DOE facility. The electromagnetic mixed waste processing system employs patented technologies to convert DOE asbestos to a non-hazardous, radionuclide-free, stable waste. The dry, contaminated asbestos is initially heated with radiofrequency energy to remove organic volatiles. Second,the radionuclides are removed by solvent extraction coupled with ion exchange solution treatment. Third, the ABCOV method converts the asbestos to an amorphous silica suspension at low temperature (100{degrees}C). Finally the amorphous silica is solidified for disposal.

  3. Valorization of winery waste vs. the costs of not recycling

    SciTech Connect (OSTI)

    Devesa-Rey, R., E-mail: rosa.devesa.rey@uvigo.es [Dpt. Ingenieria Quimica, E.T.S. Ingenieros Industriales, Campus As Lagoas, Marcosende, Universidad de Vigo (Spain); Vecino, X.; Varela-Alende, J.L. [Dpt. Ingenieria Quimica, E.T.S. Ingenieros Industriales, Campus As Lagoas, Marcosende, Universidad de Vigo (Spain); Barral, M.T. [Dpt. Edafologia y Quimica Agricola, Facultad de Farmacia, Campus Sur, Universidad de Santiago de Compostela (Spain); Cruz, J.M.; Moldes, A.B. [Dpt. Ingenieria Quimica, E.T.S. Ingenieros Industriales, Campus As Lagoas, Marcosende, Universidad de Vigo (Spain)

    2011-11-15T23:59:59.000Z

    Graphical abstract: Highlights: > Lactic acid, biosurfactants, xylitol or ethanol may be obtained from wine residues. > By-products valorization turns wine wastes into products with industrial applications. > The costs of waste disposal enhances the search of economically viable solutions for valorizing residues. - Abstract: Wine production generates huge amounts of waste. Before the 1990s, the most economical option for waste removal was the payment of a disposal fee usually being of around 3000 Euros. However, in recent years the disposal fee and fines for unauthorized discharges have increased considerably, often reaching 30,000-40,000 Euros, and a prison sentence is sometimes also imposed. Some environmental friendly technologies have been proposed for the valorization of winery waste products. Fermentation of grape marc, trimming vine shoot or vinification lees has been reported to produce lactic acid, biosurfactants, xylitol, ethanol and other compounds. Furthermore, grape marc and seeds are rich in phenolic compounds, which have antioxidants properties, and vinasse contains tartaric acid that can be extracted and commercialized. Companies must therefore invest in new technologies to decrease the impact of agro-industrial residues on the environment and to establish new processes that will provide additional sources of income.

  4. An overview of in situ waste treatment technologies

    SciTech Connect (OSTI)

    Walker, S.; Hyde, R.A.; Piper, R.B.; Roy, M.W.

    1992-08-01T23:59:59.000Z

    In situ technologies are becoming an attractive remedial alternative for eliminating environmental problems. In situ treatments typically reduce risks and costs associated with retrieving, packaging, and storing or disposing-waste and are generally preferred over ex situ treatments. Each in situ technology has specific applications, and, in order to provide the most economical and practical solution to a waste problem, these applications must be understood. This paper presents an overview of thirty different in situ remedial technologies for buried wastes or contaminated soil areas. The objective of this paper is to familiarize those involved in waste remediation activities with available and emerging in situ technologies so that they may consider these options in the remediation of hazardous and/or radioactive waste sites. Several types of in situ technologies are discussed, including biological treatments, containment technologies, physical/chemical treatments, solidification/stabilization technologies, and thermal treatments. Each category of in situ technology is briefly examined in this paper. Specific treatments belonging to these categories are also reviewed. Much of the information on in situ treatment technologies in this paper was obtained directly from vendors and universities and this information has not been verified.

  5. An overview of in situ waste treatment technologies

    SciTech Connect (OSTI)

    Walker, S.; Hyde, R.A.; Piper, R.B.; Roy, M.W.

    1992-01-01T23:59:59.000Z

    In situ technologies are becoming an attractive remedial alternative for eliminating environmental problems. In situ treatments typically reduce risks and costs associated with retrieving, packaging, and storing or disposing-waste and are generally preferred over ex situ treatments. Each in situ technology has specific applications, and, in order to provide the most economical and practical solution to a waste problem, these applications must be understood. This paper presents an overview of thirty different in situ remedial technologies for buried wastes or contaminated soil areas. The objective of this paper is to familiarize those involved in waste remediation activities with available and emerging in situ technologies so that they may consider these options in the remediation of hazardous and/or radioactive waste sites. Several types of in situ technologies are discussed, including biological treatments, containment technologies, physical/chemical treatments, solidification/stabilization technologies, and thermal treatments. Each category of in situ technology is briefly examined in this paper. Specific treatments belonging to these categories are also reviewed. Much of the information on in situ treatment technologies in this paper was obtained directly from vendors and universities and this information has not been verified.

  6. Expert System for Building TRU Waste Payloads - 13554

    SciTech Connect (OSTI)

    Bruemmer, Heather; Slater, Bryant [Information Systems Laboratories, 2235 East 25th Street, Suite 100, Idaho Falls, ID 83404 (United States)] [Information Systems Laboratories, 2235 East 25th Street, Suite 100, Idaho Falls, ID 83404 (United States)

    2013-07-01T23:59:59.000Z

    The process for grouping TRU waste drums into payloads for shipment to the Waste Isolation Pilot Plant (WIPP) for disposal is a very complex process. Transportation and regulatory requirements must be met, along with striving for the goals of shipment efficiency: maximize the number of waste drums in a shipment and minimize the use of empty drums which take up precious underground storage space. The restrictions on payloads range from weight restrictions, to limitations on flammable gas in the headspace, to minimum TRU alpha activity concentration requirements. The Overpack and Payload Assistant Tool (OPAT) has been developed as a mixed-initiative intelligent system within the WIPP Waste Data System (WDS) to guide the construction of multiple acceptable payloads. OPAT saves the user time while at the same time maximizes the efficiency of shipments for the given drum population. The tool provides the user with the flexibility to tune critical factors that guide OPAT's operation based on real-time feedback concerning the results of the execution. This feedback complements the user's external knowledge of the drum population (such as location of drums, known challenges, internal shipment goals). This work demonstrates how software can be utilized to complement the unique domain knowledge of the users. The mixed-initiative approach combines the insight and intuition of the human expert with the proficiency of automated computational algorithms. The result is the ability to thoroughly and efficiently explore the search space of possible solutions and derive the best waste management decision. (authors)

  7. Production of degradable polymers from food-waste streams

    SciTech Connect (OSTI)

    Tsai, S.P.: Coleman, R.D.; Bonsignore, P.V.; Moon, S.H.

    1992-07-01T23:59:59.000Z

    In the United States, billions of pounds of cheese whey permeate and approximately 10 billion pounds of potatoes processed each year are typically discarded or sold as cattle feed at $3{endash}6/ton; moreover, the transportation required for these means of disposal can be expensive. As a potential solution to this economic and environmental problem, Argonne National Laboratory is developing technology that: Biologically converts existing food-processing waste streams into lactic acid and uses lactic acid for making environmentally safe, degradable polylactic acid (PLA) and modified PLA plastics and coatings. An Argonne process for biologically converting high-carbohydrate food waste will not only help to solve a waste problem for the food industry, but will also save energy and be economically attractive. Although the initial substrate for Argonne`s process development is potato by-product, the process can be adapted to convert other food wastes, as well as corn starch, to lactic acid. Proprietary technology for biologically converting greater than 90% of the starch in potato wastes to glucose has been developed. Glucose and other products of starch hydrolysis are subsequently fermented by bacteria that produce lactic acid. The lactic acid is recovered, concentrated, and further purified to a polymer-grade product.

  8. Production of degradable polymers from food-waste streams

    SciTech Connect (OSTI)

    Tsai, S.P.: Coleman, R.D.; Bonsignore, P.V.; Moon, S.H.

    1992-01-01T23:59:59.000Z

    In the United States, billions of pounds of cheese whey permeate and approximately 10 billion pounds of potatoes processed each year are typically discarded or sold as cattle feed at $3{endash}6/ton; moreover, the transportation required for these means of disposal can be expensive. As a potential solution to this economic and environmental problem, Argonne National Laboratory is developing technology that: Biologically converts existing food-processing waste streams into lactic acid and uses lactic acid for making environmentally safe, degradable polylactic acid (PLA) and modified PLA plastics and coatings. An Argonne process for biologically converting high-carbohydrate food waste will not only help to solve a waste problem for the food industry, but will also save energy and be economically attractive. Although the initial substrate for Argonne's process development is potato by-product, the process can be adapted to convert other food wastes, as well as corn starch, to lactic acid. Proprietary technology for biologically converting greater than 90% of the starch in potato wastes to glucose has been developed. Glucose and other products of starch hydrolysis are subsequently fermented by bacteria that produce lactic acid. The lactic acid is recovered, concentrated, and further purified to a polymer-grade product.

  9. Direction of CRT waste glass processing: Electronics recycling industry communication

    SciTech Connect (OSTI)

    Mueller, Julia R., E-mail: mueller.143@osu.edu [Ohio State University, William G. Lowrie Department of Chemical and Biomolecular Engineering, OH (United States) and University of Queensland, School of Chemical Engineering (Australia) and Ohio State University, Materials Science and Engineering, OH (United States); Boehm, Michael W. [University of Queensland, School of Chemical Engineering (Australia); Drummond, Charles [Ohio State University, Materials Science and Engineering, OH (United States)

    2012-08-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Given a large flow rate of CRT glass {approx}10% of the panel glass stream will be leaded. Black-Right-Pointing-Pointer The supply of CRT waste glass exceeded demand in 2009. Black-Right-Pointing-Pointer Recyclers should use UV-light to detect lead oxide during the separation process. Black-Right-Pointing-Pointer Recycling market analysis techniques and results are given for CRT glass. Black-Right-Pointing-Pointer Academic initiatives and the necessary expansion of novel product markets are discussed. - Abstract: Cathode Ray Tube, CRT, waste glass recycling has plagued glass manufacturers, electronics recyclers and electronics waste policy makers for decades because the total supply of waste glass exceeds demand, and the formulations of CRT glass are ill suited for most reuse options. The solutions are to separate the undesirable components (e.g. lead oxide) in the waste and create demand for new products. Achieving this is no simple feat, however, as there are many obstacles: limited knowledge of waste glass composition; limited automation in the recycling process; transportation of recycled material; and a weak and underdeveloped market. Thus one of the main goals of this paper is to advise electronic glass recyclers on how to best manage a diverse supply of glass waste and successfully market to end users. Further, this paper offers future directions for academic and industry research. To develop the recommendations offered here, a combination of approaches were used: (1) a thorough study of historic trends in CRT glass chemistry; (2) bulk glass collection and analysis of cullet from a large-scale glass recycler; (3) conversations with industry members and a review of potential applications; and (4) evaluation of the economic viability of specific uses for recycled CRT glass. If academia and industry can solve these problems (for example by creating a database of composition organized by manufacturer and glass source) then the reuse of CRT glass can be increased.

  10. HEAT TRANSFER ANALYSIS FOR NUCLEAR WASTE SOLIDIFICATION CONTAINER

    SciTech Connect (OSTI)

    Lee, S.

    2009-06-01T23:59:59.000Z

    The Nuclear Nonproliferation Programs Design Authority is in the design stage of the Waste Solidification Building (WSB) for the treatment and solidification of the radioactive liquid waste streams generated by the Pit Disassembly and Conversion Facility (PDCF) and Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). The waste streams will be mixed with a cementitious dry mix in a 55-gallon waste container. Savannah River National Laboratory (SRNL) has been performing the testing and evaluations to support technical decisions for the WSB. Engineering Modeling & Simulation Group was requested to evaluate the thermal performance of the 55-gallon drum containing hydration heat source associated with the current baseline cement waste form. A transient axi-symmetric heat transfer model for the drum partially filled with waste form cement has been developed and heat transfer calculations performed for the baseline design configurations. For this case, 65 percent of the drum volume was assumed to be filled with the waste form, which has transient hydration heat source, as one of the baseline conditions. A series of modeling calculations has been performed using a computational heat transfer approach. The baseline modeling results show that the time to reach the maximum temperature of the 65 percent filled drum is about 32 hours when a 43 C initial cement temperature is assumed to be cooled by natural convection with 27 C external air. In addition, the results computed by the present model were compared with analytical solutions. The modeling results will be benchmarked against the prototypic test results. The verified model will be used for the evaluation of the thermal performance for the WSB drum. Detailed results and the cases considered in the calculations will be discussed here.

  11. The role of intergenerational influence in waste education programmes: The THAW project

    SciTech Connect (OSTI)

    Maddox, P.; Doran, C. [Waste Watch, 56-64 Leonard Street, London EC2A 4LT (United Kingdom); Williams, I.D., E-mail: idw@soton.ac.uk [School of Civil Engineering and the Environment, University of Southampton, Highfield, University Rd., Southampton SO17 1BJ (United Kingdom); Kus, M. [School of Civil Engineering and the Environment, University of Southampton, Highfield, University Rd., Southampton SO17 1BJ (United Kingdom)

    2011-12-15T23:59:59.000Z

    Highlights: > Children can be effective advocates in changing their parents' lifestyles. > We investigated the role of intergenerational influence in waste education programmes. > Waste Watch's Take Home Action on Waste project worked with 6705 children in 39 schools. > The results showed increased participation in recycling and declines in residual waste. > The study shows that recycling behaviour is positively impacted by intergenerational influence. - Abstract: Whilst the education of young people is often seen as a part of the solution to current environmental problems seeking urgent attention, it is often forgotten that their parents and other household members can also be educated/influenced via home-based educational activities. This paper explores the theory of intergenerational influence in relation to school based waste education. Waste Watch, a UK-based environmental charity ((www.wastewatch.org.uk)), has pioneered a model that uses practical activities and whole school involvement to promote school based action on waste. This methodology has been adopted nationally. This paper outlines and evaluates how effective school based waste education is in promoting action at a household level. The paper outlines Waste Watch's 'Taking Home Action on Waste (THAW)' project carried out for two and half years in Rotherham, a town in South Yorkshire, England. The project worked with 6705 primary age children in 39 schools (44% of primary schools in the project area) to enable them to take the 'reduce, reuse and recycle message' home to their families and to engage these (i.e. families) in sustainable waste management practices. As well as substantial increases in students' knowledge and understanding of waste reduction, measurement of the impact of the project in areas around 12 carefully chosen sample schools showed evidence of increased participation in recycling and recycling tonnages as well as declining levels of residual waste. Following delivery of the project in these areas, an average increase of 8.6% was recorded in recycling set out rates which led to a 4.3% increase in paper recycling tonnages and an 8.7% increase in tonnages of cans, glass and textiles collected for recycling. Correspondingly, there was a 4.5% fall in tonnages of residual waste. Waste Watch's THAW project was the first serious attempt to measure the intergenerational influence of an education programme on behaviour at home (i.e. other than schools' own waste). It clearly shows that household recycling behaviour can be positively impacted by intergenerational influence via a practical school-based waste education model. However, although the model could potentially have a big impact if rolled out nationally, it will require seed funding and the long-term durability of the model has not yet been fully quantified.

  12. One System Integrated Project Team: Retrieval and Delivery of Hanford Tank Wastes for Vitrification in the Waste Treatment Plant - 13234

    SciTech Connect (OSTI)

    Harp, Benton J. [U.S. Department of Energy, Office of River Protection, Post Office Box 550, Richland, Washington 99352 (United States)] [U.S. Department of Energy, Office of River Protection, Post Office Box 550, Richland, Washington 99352 (United States); Kacich, Richard M. [Bechtel National, Inc., 2435 Stevens Center Place, Richland, Washington 99354 (United States)] [Bechtel National, Inc., 2435 Stevens Center Place, Richland, Washington 99354 (United States); Skwarek, Raymond J. [Washington River Protection Solutions LLC, Post Office Box 850, Richland, Washington 99352 (United States)] [Washington River Protection Solutions LLC, Post Office Box 850, Richland, Washington 99352 (United States)

    2013-07-01T23:59:59.000Z

    The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety-conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enable the earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the tank wastes and for building and operating the WTP. The tank wastes are the result of Hanford's nearly fifty (50) years of plutonium production. In the intervening years, waste characteristics have been increasingly better understood. However, waste characteristics that are uncertain and will remain as such represent a significant technical challenge in terms of retrieval, transport, and treatment, as well as for design and construction of WTP. What also is clear is that the longer the waste remains in the tanks, the greater the risk to the environment and the people of the Pacific Northwest. The goal of both projects - tank operations and waste treatment - is to diminish the risks posed by the waste in the tanks at the earliest possible date. About two hundred (200) WTP and TOC employees comprise the IPT. Individual work groups within One System include Technical, Project Integration and Controls, Front-End Design and Project Definition, Commissioning, Nuclear Safety and Engineering Systems Integration, and Environmental Safety and Health and Quality Assurance (ESH and QA). Additional functions and team members will be added as the WTP approaches the operational phase. The team has undertaken several initiatives since its formation to collaborate on issues: (1) alternate scenarios for delivery of wastes from the tank farms to WTP; (2) improvements in managing Interface Control Documents; (3) coordination on various technical issues, including the Defense Nuclear Facilities Nuclear Safety Board's Recommendation 2010-2; (4) deployment of the SmartPlant{sup R} Foundation-Configuration Management System; and (5) preparation of the joint contract deliverable of the Operational Readiness Support Plan. (authors)

  13. One System Integrated Project Team: Retrieval And Delivery Of The Hanford Tank Wastes For Vitrification In The Waste Treatment Plant

    SciTech Connect (OSTI)

    Harp, Benton J. [Department of Energy, Office of River Protection, Richland, Washington (United States); Kacich, Richard M. [Bechtel National, Inc., Richland, WA (United States); Skwarek, Raymond J. [Washington River Protection Solutions LLC, Richland, WA (United States)

    2012-12-20T23:59:59.000Z

    The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enable the earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the tank wastes and for building and operating the WTP. The tank wastes are the result of Hanford's nearly fifty (50) years of plutonium production. In the intervening years, waste characteristics have been increasingly better understood. However, waste characteristics that are uncertain and will remain as such represent a significant technical challenge in terms of retrieval, transport, and treatment, as well as for design and construction ofWTP. What also is clear is that the longer the waste remains in the tanks, the greater the risk to the environment and the people of the Pacific Northwest. The goal of both projects - tank operations and waste treatment - is to diminish the risks posed by the waste in the tanks at the earliest possible date. About two hundred (200) WTP and TOC employees comprise the IPT. Individual work groups within One System include Technical, Project Integration & Controls, Front-End Design & Project Definition, Commissioning, Nuclear Safety & Engineering Systems Integration, and Environmental Safety and Health and Quality Assurance (ESH&QA). Additional functions and team members will be added as the WTP approaches the operational phase. The team has undertaken several initiatives since its formation to collaborate on issues: (1) alternate scenarios for delivery of wastes from the tank farms to WTP; (2) improvements in managing Interface Control Documents; (3) coordination on various technical issues, including the Defense Nuclear Facilities Nuclear Safety Board's Recommendation 2010-2; (4) deployment of the SmartPlant? Foundation-configuration Management System; and (5) preparation of the joint contract deliverable of the Operational Readiness Support Plan.

  14. Columbia University Hazardous Waste Room Inspection Report

    E-Print Network [OSTI]

    Jia, Songtao

    Storage Area Hazardous Waste Room Inspection Report Location: Bldg. Room: Date: Inspected ByColumbia University Hazardous Waste Room Inspection Report Flammable Storage Area Lack Pack always closed while holding hazardous wastes? Comment: 12. Are containers labeled? Date

  15. Biotechnology for environmental control and waste treatment

    SciTech Connect (OSTI)

    Donaldson, T.L.; Harris, M.T.; Lee, D.D.; Walker, J.F.; Strandberg, G.W.

    1985-01-01T23:59:59.000Z

    A slide show is reproduced here to review the technology of anaerobic digestion as a process for cleaning waste waters from municipal and industry wastes. Radioactive wastes are addressed also. (PSB)

  16. Hazardous Waste Management Standards and Regulations (Kansas)

    Broader source: Energy.gov [DOE]

    This act states the standards and regulations for the management of hazardous waste. No person shall construct, modify or operate a hazardous waste facility or otherwise dispose of hazardous waste...

  17. Hazardous Waste Facility Siting Program (Maryland)

    Broader source: Energy.gov [DOE]

    The Hazardous Waste Facilities Siting Board is responsible for overseeing the siting of hazardous waste facilities in Maryland, and will treat hazardous waste facilities separately from low-level...

  18. Eugene Solid Waste Management Market Analysis

    E-Print Network [OSTI]

    Oregon, University of

    Eugene Solid Waste Management Market Analysis Prepared By: Mitchell Johnson Alex Sonnichsen #12;Eugene Solid Waste Management Market Analysis May 2012 Page 1 Summary This study examines the economic impact of the solid waste management system

  19. Printed on recycled paper. 2013 Cornell Waste

    E-Print Network [OSTI]

    Chen, Tsuhan

    management by focusing University resources and capabilities on this pressing economic, environmental of waste generation and composition, waste reduction, risk management, environmental equity and publicPrinted on recycled paper. 2013 Cornell Waste Management Institute CWMI is a program

  20. THE HANFORD WASTE FEED DELIVERY OPERATIONS RESEARCH MODEL

    SciTech Connect (OSTI)

    BERRY J; GALLAHER BN

    2011-01-13T23:59:59.000Z

    Washington River Protection Solutions (WRPS), the Hanford tank farm contractor, is tasked with the long term planning of the cleanup mission. Cleanup plans do not explicitly reflect the mission effects associated with tank farm operating equipment failures. EnergySolutions, a subcontractor to WRPS has developed, in conjunction with WRPS tank farms staff, an Operations Research (OR) model to assess and identify areas to improve the performance of the Waste Feed Delivery Systems. This paper provides an example of how OR modeling can be used to help identify and mitigate operational risks at the Hanford tank farms.

  1. INSTALLATION OF BUBBLERS IN THE SAVANNAH RIVER SITED DEFENSE WASTE PROCESSING FACILITY MELTER

    SciTech Connect (OSTI)

    Smith, M.; Iverson, D.

    2010-12-08T23:59:59.000Z

    Savannah River Remediation (SRR) LLC assumed the liquid waste contract at the Savannah River Site (SRS) in the summer of 2009. The main contractual agreement was to close 22 High Level Waste (HLW) tanks in eight years. To achieve this aggressive commitment, faster waste processing throughout the SRS liquid waste facilities will be required. Part of the approach to achieve faster waste processing is to increase the canister production rate of the Defense Waste Processing Facility (DWPF) from approximately 200 canisters filled with radioactive waste glass per year to 400 canisters per year. To reach this rate for melter throughput, four bubblers were installed in the DWPF Melter in the late summer of 2010. This effort required collaboration between SRR, SRR critical subcontractor EnergySolutions, and Savannah River Nuclear Solutions, including the Savannah River National Laboratory (SRNL). The tasks included design and fabrication of the bubblers and related equipment, testing of the bubblers for various technical issues, the actual installation of the bubblers and related equipment, and the initial successful operation of the bubblers in the DWPF Melter.

  2. Lead iron phosphate glass as a containment medium for disposal of high-level nuclear waste

    DOE Patents [OSTI]

    Boatner, Lynn A. (Oak Ridge, TN); Sales, Brian C. (Oak Ridge, TN)

    1989-01-01T23:59:59.000Z

    Lead-iron phosphate glasses containing a high level of Fe.sub.2 O.sub.3 for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90.degree. C., with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10.sup.2 to 10.sup.3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe.sub.2 O.sub.3 in forming the lead-iron phosphate glass is critical. Lead-iron phosphate nuclear waste glass can be prepared at temperatures as low as 800.degree. C., since they exhibit very low melt viscosities in the 800.degree. to 1050.degree. C. temperature range. These waste-loaded glasses do not readily devitrify at temperatures as high as 550.degree. C. and are not adversely affected by large doses of gamma radiation in H.sub.2 O at 135.degree. C. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear wasteforms.

  3. Going Extreme For Small Solutions To Big Environmental Challenges

    SciTech Connect (OSTI)

    Bagwell, Christopher E.

    2011-03-31T23:59:59.000Z

    This chapter is devoted to the scale, scope, and specific issues confronting the cleanup and long-term disposal of the U.S. nuclear legacy generated during WWII and the Cold War Era. The research reported is aimed at complex microbiological interactions with legacy waste materials generated by past nuclear production activities in the United States. The intended purpose of this research is to identify cost effective solutions to the specific problems (stability) and environmental challenges (fate, transport, exposure) in managing and detoxifying persistent contaminant species. Specifically addressed are high level waste microbiology and bacteria inhabiting plutonium laden soils in the unsaturated subsurface.

  4. Coolside waste management research

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    Objective was to produce sufficient information on physical and chemical nature of Coolside waste (Coolside No.1, 3 at Edgewater power plant) to design and construct stable, environmentally safe landfills. Progress during this period was centered on analytical method development, elemental and mineralogical analysis of samples, and field facilities preparation to receive lysimeter fill. Sample preparation techniques for thick target PIXE/PIGE were investigated; good agreement between measured and actual values for standard fly ash were obtained for all elements except Fe, Ba, K (PIXE).

  5. Hanford Dangerous Waste Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal848 UnlimitedIntegrated DisposalWaste Treatment and

  6. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulenceUtilizeRural PublicRates >-Plans andWaste Isolation

  7. The Integrated Waste Tracking System - A Flexible Waste Management Tool

    SciTech Connect (OSTI)

    Anderson, Robert Stephen

    2001-02-01T23:59:59.000Z

    The US Department of Energy (DOE) Idaho National Engineering and Environmental Laboratory (INEEL) has fully embraced a flexible, computer-based tool to help increase waste management efficiency and integrate multiple operational functions from waste generation through waste disposition while reducing cost. The Integrated Waste Tracking System (IWTS)provides comprehensive information management for containerized waste during generation,storage, treatment, transport, and disposal. The IWTS provides all information necessary for facilities to properly manage and demonstrate regulatory compliance. As a platformindependent, client-server and Web-based inventory and compliance system, the IWTS has proven to be a successful tracking, characterization, compliance, and reporting tool that meets the needs of both operations and management while providing a high level of management flexibility.

  8. Solid Waste Management Act (West Virginia)

    Broader source: Energy.gov [DOE]

    In addition to establishing a comprehensive program of controlling all phases of solid waste management and assigning responsibilities for solid waste management to the Secretary of Department of...

  9. Independent Oversight Review, Waste Treatment and Immobilization...

    Energy Savers [EERE]

    Waste Treatment and Immobilization Plant Project - October 2010 October 2010 Review of Nuclear Safety Culture at the Hanford Site Waste Treatment and Immobilization Plant...

  10. Waste Characterization, Reduction, and Repackaging Facility ...

    Office of Environmental Management (EM)

    Operations, EP-WCRR-WO-DOP-0233 Waste Characterization, Reduction, and Repackaging Facility (WCRRF) Waste Characterization Glovebox Operations, EP-WCRR-WO-DOP-0233 The documents...

  11. Independent Oversight Assessment, Salt Waste Processing Facility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Salt Waste Processing Facility Project - January 2013 January 2013 Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project The U.S. Department...

  12. Enforcement Letter, Westinghouse Waste Isolation Division - October...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Westinghouse Waste Isolation Division related to Quality Assurance and Occupational Radiation Protection Noncompliances at the Waste Isolation Pilot Plant On October 3, 2000,...

  13. Waste Package Materials Performance Peer Review | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Waste Package Materials Performance Peer Review Waste Package Materials Performance Peer Review A consensus peer review of the current technical basis and the planned experimental...

  14. Independent Oversight Activity Report, Hanford Waste Treatment...

    Office of Environmental Management (EM)

    Observation of the Waste Treatment and Immobilization Plant Low Activity Waste Facility Heating, Ventilation, and Air Conditioning Systems Hazards Analysis Activities...

  15. Sandia National Laboratories: radiation waste cleanup

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    waste cleanup ECIS and UOP (a Honewell Company): CSTs Clean Radioactive Waste in Fukushima and Worldwide On February 14, 2013, in Energy, Materials Science, Nuclear Energy,...

  16. Integrated Solid Waste Management Act (Nebraska)

    Broader source: Energy.gov [DOE]

    This act affirms the state's support for alternative waste management practices, including waste reduction and resource recovery. Each county and municipality is required to file an integrated...

  17. DC Hazardous Waste Management (District of Columbia)

    Broader source: Energy.gov [DOE]

    This regulation regulates the generation, storage, transportation, treatment, and disposal of hazardous waste, and wherever feasible, reduces or eliminates waste at the source. It is the policy of...

  18. Enterprise Assessments Operational Awareness Record, Waste Treatment...

    Broader source: Energy.gov (indexed) [DOE]

    system (LMH), the melter equipment support handling system (LSH), the radioactive solid waste handling system (RWH), and the radioactive liquid waste disposal system (RLD)....

  19. Chapter 47 Solid Waste Facilities (Kentucky)

    Broader source: Energy.gov [DOE]

    This chapter establishes the permitting standards for solid waste sites or facilities, the standards applicable to all solid waste sites or facilities, and the standards for certification of...

  20. Development of Thermoelectric Technology for Automotive Waste...

    Energy Savers [EERE]

    Development of Thermoelectric Technology for Automotive Waste Heat Recovery Development of Thermoelectric Technology for Automotive Waste Heat Recovery Presentation from the U.S....

  1. Vehicle Fuel Economy Improvement through Thermoelectric Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Economy Improvement through Thermoelectric Waste Heat Recovery Vehicle Fuel Economy Improvement through Thermoelectric Waste Heat Recovery 2005 Diesel Engine Emissions...

  2. Thermoelectric Generator Development for Automotive Waste Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Automotive Waste Heat Recovery Thermoelectric Generator Development for Automotive Waste Heat Recovery Presentation given at the 16th Directions in Engine-Efficiency and...

  3. 1993 Solid Waste Reference Forecast Summary

    SciTech Connect (OSTI)

    Valero, O.J.; Blackburn, C.L. [Westinghouse Hanford Co., Richland, WA (United States); Kaae, P.S.; Armacost, L.L.; Garrett, S.M.K. [Pacific Northwest Lab., Richland, WA (United States)

    1993-08-01T23:59:59.000Z

    This report, which updates WHC-EP-0567, 1992 Solid Waste Reference Forecast Summary, (WHC 1992) forecasts the volumes of solid wastes to be generated or received at the US Department of Energy Hanford Site during the 30-year period from FY 1993 through FY 2022. The data used in this document were collected from Westinghouse Hanford Company forecasts as well as from surveys of waste generators at other US Department of Energy sites who are now shipping or plan to ship solid wastes to the Hanford Site for disposal. These wastes include low-level and low-level mixed waste, transuranic and transuranic mixed waste, and nonradioactive hazardous waste.

  4. Solid Waste Management Policy and Programs (Minnesota)

    Broader source: Energy.gov [DOE]

    These statutes encourage the State and local governments to develop waste management strategies to achieve the maximum possible reduction in waste generation, eliminate or reduce adverse...

  5. Independent Oversight Assessment, Waste Treatment and Immobilization...

    Office of Environmental Management (EM)

    Waste Treatment and Immobilization Plant - January 2012 Independent Oversight Assessment, Waste Treatment and Immobilization Plant - January 2012 January 2012 Assessment of the...

  6. Municipal Solid Waste Resources and Technologies

    Broader source: Energy.gov [DOE]

    This page provides a brief overview of municipal solid waste energy resources and technologies supplemented by specific information to apply waste to energy within the Federal sector.

  7. Waste Management Programmatic Environmental Impact Statement...

    Office of Environmental Management (EM)

    Waste Management Programmatic Environmental Impact Statement (WM PEIS) Reports and Records of Decision Waste Management Programmatic Environmental Impact Statement (WM PEIS)...

  8. Advanced Membrane Systems: Recovering Wasteful and Hazardous...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Membrane Systems: Recovering Wasteful and Hazardous Fuel Vapors at the Gasoline Tank Advanced Membrane Systems: Recovering Wasteful and Hazardous Fuel Vapors at the...

  9. Missouri Hazardous Waste Management Law (Missouri)

    Broader source: Energy.gov [DOE]

    The Hazardous Waste Program, administered by the Hazardous Waste Management Commission in the Department of Natural Resources, regulates the processing, transportation, and disposal of hazardous...

  10. Acceptable Knowledge Summary Report for Waste Stream: SR-T001-221F-HET/Drums

    SciTech Connect (OSTI)

    Lunsford, G.F.

    1999-08-23T23:59:59.000Z

    Since beginning operations in 1954, the Department of Energy's Savannah River Site FB-Line conducted atomic energy defense activities consistent with the listing in Section 10101(3) of the Nuclear Waste Policy Act of 1982. The facility mission was to process and convert dilute plutonium solution into highly purified weapons grade plutonium metal. As a result of various activities conducted in support of the mission (e.g., operation, maintenance, repair, clean up, and facility modifications), the facility generated transuranic waste. This document, along with referenced supporting documents, provides a defensible and auditable record of acceptable knowledge for one of the waste streams from the FB-Line. The waste was packaged in 55-gallon drums, then shipped to the transuranic waste storage facility in ''E'' area of the Savannah River Site. This acceptable knowledge report includes information relating to the facility's history, configuration,equipment, process operations, and waste management practices.

  11. Waste incineration and the community -

    E-Print Network [OSTI]

    Columbia University

    , metals, plastics, paper and hazardous materials from the organic portion of household waste, together the volumes collected have often exceeded the recycling capacity. Composting the organic portion has also beenWaste incineration and the community - The Amsterdam experience The successful community relations

  12. THE ECONOMIST The waste industry

    E-Print Network [OSTI]

    of ten feet. Humanity has always produced waste in vast quantities; but more people, more consumption as with toxic chemicals, governments need to persuade people that they should be responsible for the muck into electricity or fuel or fertiliser. Environmentalists dream of a world in which almost nothing is wasted. #12

  13. Generating Steam by Waste Incineration

    E-Print Network [OSTI]

    Williams, D. R.; Darrow, L. A.

    1981-01-01T23:59:59.000Z

    Combustible waste is a significant source of steam at the new John Deere Tractor Works assembly plant in Waterloo, Iowa. The incinerators, each rated to consume two tons of solid waste per hour, are expected to provide up to 100 percent of the full...

  14. Reporting Fraud, Waste, and Abuse

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-12-15T23:59:59.000Z

    To notify all Department of Energy (DOE) employees, including National Nuclear Security Administration (NNSA) employees, of their duty to report allegations of fraud, waste, and abuse to the appropriate authorities, including the DOE Office of Inspector General (OIG). Cancels: DOE N 221.12, Reporting Fraud, Waste, and Abuse, dated 10-19-06

  15. Waste Management Coordinating Lead Authors

    E-Print Network [OSTI]

    Columbia University

    -to-energy ..............................................601 10.4.4 Biological treatment including composting, anaerobic digestion, and MBT (Mechanical Biological Treatment) ........................................601 10.4.5 Waste reduction, re-use and recycling ..............602 10.4.6 Wastewater and sludge treatment.....................602 10.4.7 Waste

  16. Does Dual Ownership of Waste Imply a Regional Disposal Approach?

    SciTech Connect (OSTI)

    Mele, I. [ARAO - Agency for Radwaste Management, Parmova 53, Si-1000 Ljubljana (Slovenia)

    2006-07-01T23:59:59.000Z

    The construction of the Nuclear Power Plant Krsko, being located in Slovenia near the Slovenian-Croatian border, was a joint investment by Slovenia and Croatia, two republics of the former Yugoslavia. The plant was completed in 1981 and the commercial operation started early in 1983. The obligations and rights of both investors during the construction and operation were specified in two bilateral contracts signed in 1974 and 1982. These contracts were fairly detailed on construction, operation and exploitation of the nuclear power plant (NPP), but they said very little about future nuclear liabilities. The electricity production was equally shared between the two countries and both parties participated in management of the NPP. In 1991, after Slovenia and Croatia became two independent countries, the agreement on the ownership and exploitation of the NPP Krsko was re-negotiated and a new contract signed in 2003. By the new contract the decommissioning and the disposal of spent fuel (SF) as well as low and intermediate level waste (LILW) is the responsibility of both parties, and the financial resources for covering these liabilities should be equally provided. Regardless of shared ownership of waste, the agreement opts for a single disposal solution for LILW as well as for SF, but the details are left open. More clear elaboration of these responsibilities is given in the programme of the decommissioning and disposal of radioactive waste from the NPP which was jointly prepared by the Slovenian and Croatian waste management organisations in 2004. The programme is clearly opting for only one repository for LILW and one repository for spent fuel, which can be located either in Slovenia or Croatia. Irrespective of the country where such a repository will be sited, dual ownership of waste opens up another dimension of such a solution: will such a repository be regarded as a national facility or as a regional or multinational facility? Both options-national and regional/multinational- may have a strong influence on future agreements on waste disposal, but so far these aspects have not been addressed either in Slovenia or Croatia. The paper brings reflections and discussion on these aspects of waste management in Slovenia and reveals the current situation of the waste disposal project in the country. (authors)

  17. Characterization of geothermal solid wastes

    SciTech Connect (OSTI)

    Morris, W.F.; Stephens, F.B.

    1981-07-01T23:59:59.000Z

    The compositions of 5 major types of geothermal wastes have been determined, and samples have been subjected to EPA recommended extraction tests to determine if they contain toxic metals that would classify the wastes as hazardous. Of the samples tested, the extracts of geothermal brines clearly contain levels of As, Ba and Pb exceeding the maximum allowed concentrations that characterize wastes as toxic. Only one other waste type, geothermal scale, exhibited EP toxicity. Pb was found in the extract of geothermal scale at a level of 7 mg/l, only 2 mg/l over the maximum limit. All of the other types of geothermal waste samples showed levels of toxic metals in the extracts well below the regulated limits.

  18. Radioactive waste material melter apparatus

    DOE Patents [OSTI]

    Newman, Darrell F. (Richland, WA); Ross, Wayne A. (Richland, WA)

    1990-01-01T23:59:59.000Z

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another.

  19. Radioactive waste material melter apparatus

    DOE Patents [OSTI]

    Newman, D.F.; Ross, W.A.

    1990-04-24T23:59:59.000Z

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another. 8 figs.

  20. Method of recycling hazardous waste

    SciTech Connect (OSTI)

    NONE

    1999-11-11T23:59:59.000Z

    The production of primary metal from ores has long been a necessary, but environmentally devastating process. Over the past 20 years, in an effort to lessen environmental impacts, the metal processing industry has developed methods for recovering metal values from certain hazardous wastes. However, these processes leave residual molten slag that requires disposal in hazardous waste landfills. A new process recovers valuable metals, metal alloys, and metal oxides from hazardous wastes, such as electric arc furnace (EAF) dust from steel mills, mill scale, spent aluminum pot liners, and wastewater treatment sludge from electroplating. At the same time, the process does not create residual waste for disposal. This new method uses all wastes from metal production processes. These hazardous materials are converted to three valuable products - mineral wool, zinc oxide, and high-grade iron.

  1. UK report on waste management

    SciTech Connect (OSTI)

    Ferguson, J. [London Waste Regulation Authority (United Kingdom)

    1995-09-01T23:59:59.000Z

    Arising jointly from the National and European Union requirements for more intensive attention to be paid to the environment, the United Kingdom (UK) has taken many strides forward in protecting the environment from pollution and preventing harm to human health arising from the handling, transport and disposal of wastes. Major adjustments are taking place in Europe following the opening up of the Eastern European countries. The consequences of the illegal movement of wastes and its mistreatment and disposal are now recognised within the European Union. The UK as a member State is well aware of the consequences which arise from the lack of proper waste management. This paper discusses waste management and legislation pertaining to waste management in the United Kingdom.

  2. Corrosion Control Measures For Liquid Radioactive Waste Storage Tanks At The Savannah River Site

    SciTech Connect (OSTI)

    Wiersma, B. J.; Subramanian, K. H.

    2012-11-27T23:59:59.000Z

    The Savannah River Site has stored radioactive wastes in large, underground, carbon steel tanks for approximately 60 years. An assessment of potential degradation mechanisms determined that the tanks may be vulnerable to nitrate- induced pitting corrosion and stress corrosion cracking. Controls on the solution chemistry and temperature of the wastes are in place to mitigate these mechanisms. These controls are based upon a series of experiments performed using simulated solutions on materials used for construction of the tanks. The technical bases and evolution of these controls is presented in this paper.

  3. Proceedings of the symposium on Scientific Basis for Nuclear Waste Management XXX

    SciTech Connect (OSTI)

    Dunn, Darrell [ed. Southwest Research Inst., San Antonio, Texas (United States); Poinssot, Christophe [ed. CEA-Saclay, 91191 Gif-sur-Yvette cedex (France); Begg, Bruce [ed. Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    2007-07-01T23:59:59.000Z

    Management of nuclear waste remains an important international topic that includes reprocessing of commercial nuclear fuel, waste-form design and development, storage and disposal packaging, the process of repository site selection, system design, and performance assessment. Requirements to manage and dispose of materials from the production of nuclear weapons, and the renewed interest in nuclear power, in particular through the Generation IV Forum and the Advanced Fuel Cycle Initiative, can be expected to increase the need for scientific advances in waste management. A broad range of scientific and engineering disciplines is necessary to provide safe and effective solutions and address complex issues. This volume offers an interdisciplinary perspective on materials-related issues associated with nuclear waste management programs. Invited and contributed papers cover a wide range of topics including studies on: spent fuel; performance assessment and models; waste forms for low- and intermediate-level waste; ceramic and glass waste forms for plutonium and high-level waste; radionuclides; containers and engineered barriers; disposal environments and site characteristics; and partitioning and transmutation.

  4. Informal electronic waste recycling: A sector review with special focus on China

    SciTech Connect (OSTI)

    Chi Xinwen, E-mail: x.chi@pgrad.unimelb.edu.au [Department of Resource Management and Geography, Melbourne School of Land and Environment, University of Melbourne, 221 Bouverie Street, Carlton, VIC 3010 (Australia); Streicher-Porte, Martin [Empa, Swiss Federal Laboratories for Materials Testing and Research, Technology and Society Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen (Switzerland); Wang, Mark Y.L. [Department of Resource Management and Geography, Melbourne School of Land and Environment, University of Melbourne, 221 Bouverie Street, Carlton, VIC 3010 (Australia); Reuter, Markus A. [Outotec Pty Ltd., Melbourne, 12 Kitchen Road, Dandenong, VIC 3175 (Australia)

    2011-04-15T23:59:59.000Z

    Informal recycling is a new and expanding low cost recycling practice in managing Waste Electrical and Electronic Equipment (WEEE or e-waste). It occurs in many developing countries, including China, where current gaps in environmental management, high demand for second-hand electronic appliances and the norm of selling e-waste to individual collectors encourage the growth of a strong informal recycling sector. This paper gathers information on informal e-waste management, takes a look at its particular manifestations in China and identifies some of the main difficulties of the current Chinese approach. Informal e-waste recycling is not only associated with serious environmental and health impacts, but also the supply deficiency of formal recyclers and the safety problems of remanufactured electronic products. Experiences already show that simply prohibiting or competing with the informal collectors and informal recyclers is not an effective solution. New formal e-waste recycling systems should take existing informal sectors into account, and more policies need to be made to improve recycling rates, working conditions and the efficiency of involved informal players. A key issue for China's e-waste management is how to set up incentives for informal recyclers so as to reduce improper recycling activities and to divert more e-waste flow into the formal recycling sector.

  5. Research of documents pertaining to waste migration from leaking single-shell tanks

    SciTech Connect (OSTI)

    Consort, S.D. [ICF Kaiser Hanford Co., Richland, WA (United States)

    1994-09-30T23:59:59.000Z

    This report contains the results from an investigation of the literature concerning single-shell tank (SST) leaks on the Hanford Site. The purpose of the investigation is to determine if available data confirm or refute the assertion that leaked waste from the SSTs has reached ground water. There are 67 leaking single-shell tanks (SSTs) on the Hanford Site. Although the maximum volume of leaked waste is approximately 4,013,000 L (1,060,000 gal), it is not the only waste in the ground beneath the 200 Area. Before 1966, supernatant solution was intentionally discharged from the cascading SSTs to the ground. Other leaks from piping and surface spills contributed to the waste in the ground. The maximum estimated volume of unintentionally leaked waste from the tanks is less than 1% of the intentionally released liquid waste that was sent to the cribs and trenches from the SSTs. The volume does not include the liquid waste sent intentionally from other facilities directly to the cribs, trenches, and injection wells. The components and concentrations of the intentionally released waste were in compliance with applicable standards at the time of release.

  6. Chemistry of application of calcination/dissolution to the Hanford tank waste inventory

    SciTech Connect (OSTI)

    Delegard, C.H.; Elcan, T.D.; Hey, B.E.

    1994-05-01T23:59:59.000Z

    Approximately 330,000 metric tons of sodium-rich radioactive waste originating from separation of plutonium from irradiated uranium fuel are stored in underground tanks at the Hanford Site in Washington State. Fractionation of the waste into low-level waste (LLW) and high-level waste (HLW) streams is envisioned via partial water dissolution and limited radionuclide extraction operations. Under optimum conditions, LLW would contain most of the chemical bulk while HLW would contain virtually all of the transuranic and fission product activity. Calcination at around 850 C, followed by water dissolution, has been proposed as an alternative initial treatment of Hanford Site waste to improve waste dissolution and the envisioned LLW/HLW split. Results of literature and laboratory studies are reported on the application of calcination/dissolution (C/D) to the fractionation of the Hanford Site tank waste inventory. Both simulated and genuine Hanford Site waste materials were used in the lab tests. To evaluation confirmed that C/D processing reduced the amount of several components from the waste. The C/D dissolutions of aluminum and chromium allow redistribution of these waste components from the HLW to the LLW fraction. Comparisons of simple water-washing with C/D processing of genuine Hanford Site waste are also reported based on material (radionuclide and chemical) distributions to solution and solid residue phases. The lab results show that C/D processing yielded superior dissolution of aluminum and chromium sludges compared to simple water dissolution. 57 refs., 26 figs., 18 tabs.

  7. NEXT GENERATION MELTER(S) FOR VITRIFICATION OF HANFORD WASTE STATUS AND DIRECTION

    SciTech Connect (OSTI)

    RAMSEY WG; GRAY MF; CALMUS RB; EDGE JA; GARRETT BG

    2011-01-13T23:59:59.000Z

    Vitrification technology has been selected to treat high-level waste (HLW) at the Hanford Site, the West Valley Demonstration Project and the Savannah River Site (SRS), and low activity waste (LAW) at Hanford. In addition, it may potentially be applied to other defense waste streams such as sodium bearing tank waste or calcine. Joule-heated melters (already in service at SRS) will initially be used at the Hanford Site's Waste Treatment and Immobilization Plant (WTP) to vitrify tank waste fractions. The glass waste content and melt/production rates at WTP are limited by the current melter technology. Significant reductions in glass volumes and mission life are only possible with advancements in melter technology coupled with new glass formulations. The Next Generation Melter (NGM) program has been established by the U.S. Department of Energy's (DOE's), Environmental Management Office of Waste Processing (EM-31) to develop melters with greater production capacity (absolute glass throughput rate) and the ability to process melts with higher waste fractions. Advanced systems based on Joule-Heated Ceramic Melter (JHCM) and Cold Crucible Induction Melter (CCIM) technologies will be evaluated for HLW and LAW processing. Washington River Protection Solutions (WRPS), DOE's tank waste contractor, is developing and evaluating these systems in cooperation with EM-31, national and university laboratories, and corporate partners. A primary NGM program goal is to develop the systems (and associated flowsheets) to Technology Readiness Level 6 by 2016. Design and testing are being performed to optimize waste glass process envelopes with melter and balance of plant requirements. A structured decision analysis program will be utilized to assess the performance of the competing melter technologies. Criteria selected for the decision analysis program will include physical process operations, melter performance, system compatibility and other parameters.

  8. Process waste assessment for solid low-level radioactive waste and solid TRU waste

    SciTech Connect (OSTI)

    Haney, L. [Westinghouse Savannah River Co., Aiken, SC (United States); Gamble, G.S. [Law Environmental, Inc., Kennesaw, GA (United States)

    1994-04-01T23:59:59.000Z

    Process Waste Assessments (PWAs) are a necessary and important part of a comprehensive waste management plan. PWAs are required by Federal RCRA regulations, certain state regulations and Department of Energy Orders. This paper describes the assessment process and provides examples used by Law Environmental, Inc., in performing numerous PWAs at the Savannah River Site in Aiken, SC.

  9. Tank waste remediation system dangerous waste training plan

    SciTech Connect (OSTI)

    POHTO, R.E.

    1999-05-13T23:59:59.000Z

    This document outlines the dangerous waste training program developed and implemented for all Treatment, Storage, and Disposal (TSD) Units operated by Lockheed Martin Hanford Corporation (LMHC) Tank Waste Remediation System (TWRS) in the Hanford 200 East, 200 West and 600 Areas and the <90 Day Accumulation Area at 209E. Operating TSD Units operated by TWRS are: the Double-Shell Tank (DST) System (including 204-AR Waste Transfer Building), the 600 Area Purgewater Storage and the Effluent Treatment Facility. TSD Units undergoing closure are: the Single-Shell Tank (SST) System, 207-A South Retention Basin, and the 216-B-63 Trench.

  10. HAZARDOUS WASTE SATELLITE ACCUMULATION AREA REQUIREMENTS 1. Mark all waste containers conspicuously with the words "Hazardous Waste."

    E-Print Network [OSTI]

    Slatton, Clint

    HAZARDOUS WASTE SATELLITE ACCUMULATION AREA REQUIREMENTS 1. Mark all waste containers conspicuously. Decontaminate 5. Dispose of cleanup debris as Hazardous Waste Chemical Spill ­ major 1. Evacuate area, isolate with the words "Hazardous Waste." 2. Label all containers accurately, indicating the constituents and approximate

  11. Waste Isolation Pilot Plant Annual Site Enviromental Report for 2008

    SciTech Connect (OSTI)

    Washington Regulatory and Enviromnetal Services

    2009-09-21T23:59:59.000Z

    The purpose of the Waste Isolation Pilot Plant Annual Site Environmental Report for 2008 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1A, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to characterize site environmental management performance; summarize environmental occurrences and responses reported during the calendar year; confirm compliance with environmental standards and requirements; highlight significant facility programs and efforts; and describe how compliance and environmental improvement is accomplished through the WIPP Environmental Management System (EMS). The DOE Carlsbad Field Office (CBFO) and the management and operating contractor (MOC), Washington TRU Solutions LLC (WTS), maintain and preserve the environmental resources at the Waste Isolation Pilot Plant (WIPP). DOE Order 231.1A; DOE Order 450.1A, Environmental Protection Program; and DOE Order 5400.5, Radiation Protection of the Public and the Environment, require that the affected environment at and near DOE facilities be monitored to ensure the safety and health of the public and workers, and preservation of the environment. This report was prepared in accordance with DOE Order 231.1A, which requires that DOE facilities submit an ASER to the DOE Headquarters Chief Health, Safety, and Security Officer. The WIPP Hazardous Waste Facility Permit (HWFP) Number NM4890139088-TSDF (treatment, storage, and disposal facility) further requires that the ASER be provided to the New Mexico Environment Department (NMED). The WIPP mission is to safely dispose of transuranic (TRU) radioactive waste generated by the production of nuclear weapons and other activities related to the national defense of the United States. In 2008, 5,265 cubic meters (m3) of TRU waste were disposed of at the WIPP facility, including 5,216 m3 of contact-handled (CH) TRU waste and 49 m3 of remote-handled (RH) TRU waste. From the first receipt of waste in March 1999 through the end of 2008, 57,873 m3 of TRU waste had been disposed of at the WIPP facility.

  12. LLNL Waste Minimization Program Plan

    SciTech Connect (OSTI)

    Not Available

    1990-02-14T23:59:59.000Z

    This document is the February 14, 1990 version of the LLNL Waste Minimization Program Plan (WMPP). The Waste Minimization Policy field has undergone continuous changes since its formal inception in the 1984 HSWA legislation. The first LLNL WMPP, Revision A, is dated March 1985. A series of informal revision were made on approximately a semi-annual basis. This Revision 2 is the third formal issuance of the WMPP document. EPA has issued a proposed new policy statement on source reduction and recycling. This policy reflects a preventative strategy to reduce or eliminate the generation of environmentally-harmful pollutants which may be released to the air, land surface, water, or ground water. In accordance with this new policy new guidance to hazardous waste generators on the elements of a Waste Minimization Program was issued. In response to these policies, DOE has revised and issued implementation guidance for DOE Order 5400.1, Waste Minimization Plan and Waste Reduction reporting of DOE Hazardous, Radioactive, and Radioactive Mixed Wastes, final draft January 1990. This WMPP is formatted to meet the current DOE guidance outlines. The current WMPP will be revised to reflect all of these proposed changes when guidelines are established. Updates, changes and revisions to the overall LLNL WMPP will be made as appropriate to reflect ever-changing regulatory requirements. 3 figs., 4 tabs.

  13. Waste tire recycling by pyrolysis

    SciTech Connect (OSTI)

    Not Available

    1992-10-01T23:59:59.000Z

    This project examines the City of New Orleans' waste tire problem. Louisiana State law, as of January 1, 1991, prohibits the knowing disposal of whole waste tires in landfills. Presently, the numerous waste tire stockpiles in New Orleans range in size from tens to hundreds of tires. New Orleans' waste tire problem will continue to increase until legal disposal facilities are made accessible and a waste tire tracking and regulatory system with enforcement provisions is in place. Tires purchased outside of the city of New Orleans may be discarded within the city's limits; therefore, as a practical matter this study analyzes the impact stemming from the entire New Orleans metropolitan area. Pyrolysis mass recovery (PMR), a tire reclamation process which produces gas, oil, carbon black and steel, is the primary focus of this report. The technical, legal and environmental aspects of various alternative technologies are examined. The feasibility of locating a hypothetical PMR operation within the city of New Orleans is analyzed based on the current economic, regulatory, and environmental climate in Louisiana. A thorough analysis of active, abandoned, and proposed Pyrolysis operations (both national and international) was conducted as part of this project. Siting a PMR plant in New Orleans at the present time is technically feasible and could solve the city's waste tire problem. Pending state legislation could improve the city's ability to guarantee a long term supply of waste tires to any large scale tire reclamation or recycling operation, but the local market for PMR end products is undefined.

  14. Tank Waste Disposal Program redefinition

    SciTech Connect (OSTI)

    Grygiel, M.L.; Augustine, C.A.; Cahill, M.A.; Garfield, J.S.; Johnson, M.E.; Kupfer, M.J.; Meyer, G.A.; Roecker, J.H. [Westinghouse Hanford Co., Richland, WA (United States); Holton, L.K.; Hunter, V.L.; Triplett, M.B. [Pacific Northwest Lab., Richland, WA (United States)

    1991-10-01T23:59:59.000Z

    The record of decision (ROD) (DOE 1988) on the Final Environmental Impact Statement, Hanford Defense High-Level, Transuranic and Tank Wastes, Hanford Site, Richland Washington identifies the method for disposal of double-shell tank waste and cesium and strontium capsules at the Hanford Site. The ROD also identifies the need for additional evaluations before a final decision is made on the disposal of single-shell tank waste. This document presents the results of systematic evaluation of the present technical circumstances, alternatives, and regulatory requirements in light of the values of the leaders and constitutents of the program. It recommends a three-phased approach for disposing of tank wastes. This approach allows mature technologies to be applied to the treatment of well-understood waste forms in the near term, while providing time for the development and deployment of successively more advanced pretreatment technologies. The advanced technologies will accelerate disposal by reducing the volume of waste to be vitrified. This document also recommends integration of the double-and single-shell tank waste disposal programs, provides a target schedule for implementation of the selected approach, and describes the essential elements of a program to be baselined in 1992.

  15. Shipment and Disposal of Solidified Organic Waste (Waste Type IV) to the Waste Isolation Pilot Plant (WIPP)

    SciTech Connect (OSTI)

    D'Amico, E. L [Washington TRU Solutions (United States); Edmiston, D. R. [John Hart and Associates (United States); O'Leary, G. A. [CH2M-WG Idaho, LLC (United States); Rivera, M. A. [Aspen Resources Ltd., Inc. (United States); Steward, D. M. [Boulder Research Enterprises, LLC (United States)

    2006-07-01T23:59:59.000Z

    In April of 2005, the last shipment of transuranic (TRU) waste from the Rocky Flats Environmental Technology Site to the WIPP was completed. With the completion of this shipment, all transuranic waste generated and stored at Rocky Flats was successfully removed from the site and shipped to and disposed of at the WIPP. Some of the last waste to be shipped and disposed of at the WIPP was waste consisting of solidified organic liquids that is identified as Waste Type IV in the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC) document. Waste Type IV waste typically has a composition, and associated characteristics, that make it significantly more difficult to ship and dispose of than other Waste Types, especially with respect to gas generation. This paper provides an overview of the experience gained at Rocky Flats for management, transportation and disposal of Type IV waste at WIPP, particularly with respect to gas generation testing. (authors)

  16. Cesium and Strontium Specific Exchangers for Nuclear Waste Effluent Remediation

    SciTech Connect (OSTI)

    A. Clearfield; A. I. Bortun; L. A. Bortun; E. A. Bhlume; P. Sylvester; G. M. Graziano

    2000-09-01T23:59:59.000Z

    During the past 50 years, nuclear defense activities have produced large quantities of nuclear waste that now require safe and permanent disposal. The general procedure to be implemented involves the removal of cesium and strontium from the waste solutions for disposal in permanently vitrified media. This requires highly selective sorbents or ion exchangers. Further, at the high radiation doses present in the solution, organic exchangers or sequestrants are likely to decompose over time. Inorganic ion exchangers are resistant to radiation damage and can exhibit remarkably high selectivities. We have synthesized three families of tunnel-type ion exchangers. The crystal structures of these compounds as well as their protonated phases, coupled with ion exchange titrations, were determined and this information was used to develop an understanding of their ion exchange behavior. The ion exchange selectivities of these phases could be regulated by isomorphous replacement of the framework metals by larger or smaller radius metals. In the realm of layered compounds, we prepared alumina, silica, and zirconia pillared clays and sodium micas. The pillared clays yielded very high Kd values for Cs+ and were very effective in removing Cs+ from groundwaters. The sodium micas also had a high affinity for Cs+ but an even greater attraction for S42+. They also possess the property of trapping these ions permanently as the layers slowly decrease their interlayer distance as loading occurs. Sodium nonatitanate exhibited extremely high Kd values for Sr2+ in alkaline tank wastes and should be considered for removal of Sr2+ in such cases. For tank wastes containing complexing agents, we have found that adding Ca2+ to the solution releases the complexed Sr2+ which may then be removed with the CST exchanger.

  17. Solid waste bin detection and classification using Dynamic Time Warping and MLP classifier

    SciTech Connect (OSTI)

    Islam, Md. Shafiqul, E-mail: shafique@eng.ukm.my [Dept. of Electrical, Electronic and Systems Engineering, Universiti Kebangsaan Malaysia, Bangi 43600, Selangore (Malaysia); Hannan, M.A., E-mail: hannan@eng.ukm.my [Dept. of Electrical, Electronic and Systems Engineering, Universiti Kebangsaan Malaysia, Bangi 43600, Selangore (Malaysia); Basri, Hassan [Dept. of Civil and Structural Engineering, Universiti Kebangsaan Malaysia, Bangi 43600, Selangore (Malaysia); Hussain, Aini; Arebey, Maher [Dept. of Electrical, Electronic and Systems Engineering, Universiti Kebangsaan Malaysia, Bangi 43600, Selangore (Malaysia)

    2014-02-15T23:59:59.000Z

    Highlights: • Solid waste bin level detection using Dynamic Time Warping (DTW). • Gabor wavelet filter is used to extract the solid waste image features. • Multi-Layer Perceptron classifier network is used for bin image classification. • The classification performance evaluated by ROC curve analysis. - Abstract: The increasing requirement for Solid Waste Management (SWM) has become a significant challenge for municipal authorities. A number of integrated systems and methods have introduced to overcome this challenge. Many researchers have aimed to develop an ideal SWM system, including approaches involving software-based routing, Geographic Information Systems (GIS), Radio-frequency Identification (RFID), or sensor intelligent bins. Image processing solutions for the Solid Waste (SW) collection have also been developed; however, during capturing the bin image, it is challenging to position the camera for getting a bin area centralized image. As yet, there is no ideal system which can correctly estimate the amount of SW. This paper briefly discusses an efficient image processing solution to overcome these problems. Dynamic Time Warping (DTW) was used for detecting and cropping the bin area and Gabor wavelet (GW) was introduced for feature extraction of the waste bin image. Image features were used to train the classifier. A Multi-Layer Perceptron (MLP) classifier was used to classify the waste bin level and estimate the amount of waste inside the bin. The area under the Receiver Operating Characteristic (ROC) curves was used to statistically evaluate classifier performance. The results of this developed system are comparable to previous image processing based system. The system demonstration using DTW with GW for feature extraction and an MLP classifier led to promising results with respect to the accuracy of waste level estimation (98.50%). The application can be used to optimize the routing of waste collection based on the estimated bin level.

  18. Waste drum refurbishment

    SciTech Connect (OSTI)

    Whitmill, L.J.

    1996-10-18T23:59:59.000Z

    Low-carbon steel, radioactive waste containers (55-gallon drums) are experiencing degradation due to moisture and temperature fluctuations. With thousands of these containers currently in use; drum refurbishment becomes a significant issue for the taxpayer and stockholders. This drum refurbishment is a non-intrusive, portable process costing between 1/2 and 1/25 the cost of repackaging, depending on the severity of degradation. At the INEL alone, there are an estimated 9,000 drums earmarked for repackaging. Refurbishing drums rather than repackaging can save up to $45,000,000 at the INEL. Based on current but ever changing WIPP Waste Acceptance Criteria (WAC), this drum refurbishment process will restore drums to a WIPP acceptable condition plus; drums with up to 40% thinning o the wall can be refurbished to meet performance test requirements for DOT 7A Type A packaging. A refurbished drum provides a tough, corrosion resistant, waterproof container with longer storage life and an additional containment barrier. Drums are coated with a high-pressure spray copolymer material approximately .045 inches thick. Increase in internal drum temperature can be held to less than 15 F. Application can be performed hands-on or the equipment is readily adaptable and controllable for remote operations. The material dries to touch in seconds, is fully cured in 48 hours and has a service temperature of {minus}60 to 500 F. Drums can be coated with little or no surface preparation. This research was performed on drums however research results indicate the coating is very versatile and compatible with most any material and geometry. It could be used to provide abrasion resistance, corrosion protection and waterproofing to almost anything.

  19. DuraLith Alkali-Aluminosilicate Geopolymer Waste Form Testing for Hanford Secondary Waste

    SciTech Connect (OSTI)

    Gong, W. L.; Lutz, Werner; Pegg, Ian L.

    2011-07-21T23:59:59.000Z

    The primary objective of the work reported here was to develop additional information regarding the DuraLith alkali aluminosilicate geopolymer as a waste form for liquid secondary waste to support selection of a final waste form for the Hanford Tank Waste Treatment and Immobilization Plant secondary liquid wastes to be disposed in the Integrated Disposal Facility on the Hanford Site. Testing focused on optimizing waste loading, improving waste form performance, and evaluating the robustness of the waste form with respect to waste variability.

  20. Using Department of Energy (DOE) Order 435.1 To Find a Cost Effective Waste Management Option. - 12241

    SciTech Connect (OSTI)

    LaBarge, Matt [Waste Control Specialists LLC, Dallas, Texas (United States); Frost, Matt [Alliant Corporation, Knoxville, Tennessee (United States)

    2012-07-01T23:59:59.000Z

    The Depleted Uranium Hexafluoride Project in Portsmouth Ohio was faced with an interesting dilemma. During hot functional testing in August 2010, an upset condition caused gaseous depleted uranium hexafluoride (UF{sub 6}) to come in contact with the hydrofluoric acid (HF) vapor stream. Although the resulting uranium contamination found in the condensed aqueous hydrofluoric acid was very low, it exceeded the Department of Energy (DOE) authorized release limit. After evaluating several commercial options for treatment and disposal using the guidelines found in DOE Order 435.1, Waste Control Specialists LLC was selected for the treatment of the waste, with EnergySolutions' Clive facility selected for disposal of the treated residues. The waste was safely transported from Piketon, Ohio to Andrews, Texas, where it was treated to meet the land Disposal Restrictions (LDR), and was disposed in EnergySolutions operational mixed waste cell. The entire effort was interesting for several reasons. The waste was generated during the last year of the first Depleted Uranium Hexafluoride contractor. The waste became additional scope for the new contractor, adding time delays and introducing new personnel into the project. The effort was also unique because it demonstrated the process mandated by DOE Order 435.1 to evaluate all options, including commercial options, could reveal solutions to waste management problems that are currently available and more cost effective, but not well know within the DOE complex. (authors)

  1. Solution deposition assembly

    DOE Patents [OSTI]

    Roussillon, Yann; Scholz, Jeremy H; Shelton, Addison; Green, Geoff T; Utthachoo, Piyaphant

    2014-01-21T23:59:59.000Z

    Methods and devices are provided for improved deposition systems. In one embodiment of the present invention, a deposition system is provided for use with a solution and a substrate. The system comprises of a solution deposition apparatus; at least one heating chamber, at least one assembly for holding a solution over the substrate; and a substrate curling apparatus for curling at least one edge of the substrate to define a zone capable of containing a volume of the solution over the substrate. In another embodiment of the present invention, a deposition system for use with a substrate, the system comprising a solution deposition apparatus; at heating chamber; and at least assembly for holding solution over the substrate to allow for a depth of at least about 0.5 microns to 10 mm.

  2. Bubblers Speed Nuclear Waste Processing at SRS

    SciTech Connect (OSTI)

    None

    2010-11-14T23:59:59.000Z

    At the Department of Energy's Savannah River Site, American Recovery and Reinvestment Act funding has supported installation of bubbler technology and related enhancements in the Defense Waste Processing Facility (DWPF). The improvements will accelerate the processing of radioactive waste into a safe, stable form for storage and permit expedited closure of underground waste tanks holding 37 million gallons of liquid nuclear waste.

  3. Canister arrangement for storing radioactive waste

    DOE Patents [OSTI]

    Lorenzo, Donald K. (Knoxville, TN); Van Cleve, Jr., John E. (Kingston, TN)

    1982-01-01T23:59:59.000Z

    The subject invention relates to a canister arrangement for jointly storing high level radioactive chemical waste and metallic waste resulting from the reprocessing of nuclear reactor fuel elements. A cylindrical steel canister is provided with an elongated centrally disposed billet of the metallic waste and the chemical waste in vitreous form is disposed in the annulus surrounding the billet.

  4. Canister arrangement for storing radioactive waste

    DOE Patents [OSTI]

    Lorenzo, D.K.; Van Cleve, J.E. Jr.

    1980-04-23T23:59:59.000Z

    The subject invention relates to a canister arrangement for jointly storing high level radioactive chemical waste and metallic waste resulting from the reprocessing of nuclear reactor fuel elements. A cylindrical steel canister is provided with an elongated centrally disposed billet of the metallic waste and the chemical waste in vitreous form is disposed in the annulus surrounding the billet.

  5. Waste Toolkit A-Z Plastic Grundon

    E-Print Network [OSTI]

    Melham, Tom

    Waste Toolkit A-Z Plastic ­ Grundon Also see `Swap Shop' and `Office Recycling ­ Grundon' in the Waste Toolkit A-Z How can I recycle plastic? There are lots of different types of plastic. Typically, waste contractors can only recycle PETE plastic and HDPE plastic. The University's preferred waste

  6. What is Hazardous Hazardous waste is

    E-Print Network [OSTI]

    de Lijser, Peter

    What is Hazardous Waste? Hazardous waste is any product charac- terized or labeled as toxic may be harmful to human health and/ or the environment. Hazardous Waste Disposal EH&S x7233 E.calrecycle.ca.gov www.earth911.com Campus Hazardous Waste Roundup Roundups conducted the last week of: January April

  7. Bubblers Speed Nuclear Waste Processing at SRS

    ScienceCinema (OSTI)

    None

    2014-08-06T23:59:59.000Z

    At the Department of Energy's Savannah River Site, American Recovery and Reinvestment Act funding has supported installation of bubbler technology and related enhancements in the Defense Waste Processing Facility (DWPF). The improvements will accelerate the processing of radioactive waste into a safe, stable form for storage and permit expedited closure of underground waste tanks holding 37 million gallons of liquid nuclear waste.

  8. Waste disposal options report. Volume 1

    SciTech Connect (OSTI)

    Russell, N.E.; McDonald, T.G.; Banaee, J.; Barnes, C.M.; Fish, L.W.; Losinski, S.J.; Peterson, H.K.; Sterbentz, J.W.; Wenzel, D.R.

    1998-02-01T23:59:59.000Z

    This report summarizes the potential options for the processing and disposal of mixed waste generated by reprocessing spent nuclear fuel at the Idaho Chemical Processing Plant. It compares the proposed waste-immobilization processes, quantifies and characterizes the resulting waste forms, identifies potential disposal sites and their primary acceptance criteria, and addresses disposal issues for hazardous waste.

  9. Waste Management World November/December 2005

    E-Print Network [OSTI]

    Columbia University

    of wastes at waste-to-energy plants each year, generating an amount of energy that can supply electricity, 2005 Where is waste-to-energy, and where is it going? A WTE plant in Mallorca, Spain. European plants used in Europe ­ approximately 50% of the 243 million tonnes of municipal solid waste (MSW) generated

  10. CRAD, Hazardous Waste Management- December 4, 2007

    Broader source: Energy.gov [DOE]

    Hazardous Waste Management Implementation Inspection Criteria, Approach, and Lines of Inquiry (HSS CRAD 64-30)

  11. Municipal Solid Waste in The United States

    E-Print Network [OSTI]

    Barlaz, Morton A.

    2011 Facts and Figures Municipal Solid Waste in The United States #12;United States Environmental Protection Agency Office of Solid Waste (5306P) EPA530-R-13-001 May 2013 www.epa.gov #12;MUNICIPAL SOLID WASTE IN THE UNITED STATES: 2011 FACTS AND FIGURES Table of Contents Chapter Page MUNICIPAL SOLID WASTE

  12. AUSTRIA SHOWCASE WASTE-to-ENERGY

    E-Print Network [OSTI]

    &P #12;7 Waste Prevention: The Danube begins here ... © EbS, Austria #12;8 Treatment of Municipal Solid1 AUSTRIA SHOWCASE WASTE-to-ENERGY in AUSTRIA AECC Aberdeen Exhibition & Conference Center (M.I.T.) #12;2 Table of Content · Development of waste management in Austria · Status-Quo of waste

  13. http://wmr.sagepub.com/ Waste Management &

    E-Print Network [OSTI]

    : International Solid Waste Association can be found at:Waste Management & ResearchAdditional serviceshttp://wmr.sagepub.com/ Research Waste Management & http://wmr.sagepub.com/content/13/4/363 The online version of this article can be found at: DOI: 10.1177/0734242X9501300407 1995 13: 363Waste Manag

  14. ISWA Study Tour WASTE-TO-ENERGY

    E-Print Network [OSTI]

    .30 pm ­ 2.00 pm Development of Municipal Solid Waste Management and Treatment Facilities in Vienna, Treatment, and Intermediate Storage - without any disposal of untreated wastes exceeding 5 % TOC and public acceptance of hazardous waste treatment and waste incineration plants (typical "lulu" projects

  15. Industrial waste reduction: The process problem

    SciTech Connect (OSTI)

    Valentino, F.W.; Walmet, G.E.

    1986-09-01T23:59:59.000Z

    Industrial waste problems, especially those involving hazardous waste, seem to be pervasive. The national media report newly discovered waste problems and sites with alarming regularity. Examples that immediately come to mind are Love Canal, New York; Times Beach, Missouri; and Seveso, Italy. Public perceptions of the industrial waste problem, reflecting the media's focus, appear to be that: large corporations are solely responsible for creating waste dumps, and the only role of government is to prevent illegal dumping and to regulate, fine, and require corporations to rectify the problem; all efforts should be directed toward preventing illegal dumping and treatment of the existing waste dumps; all industrial wastes can be classified as hazardous in nature. This general impression is both inaccurate and incomplete. All industrial waste is not hazardous (although most of it is not benign). All waste producers are not large corporations: nearly all industries produce some wastes. And, while existing waste sites must be effectively treated, additional efforts are needed at other points in the industrial waste cycle. Most people would agree both that waste dumping must be carefully regulated because of its negative impacts on the environment and that the less waste the better, even with carefully regulated disposal. Since nearly all industry now produces some waste and no one expects industry to shut down to resolve the waste problem, other strategies need to be available to deal with the problem at the front end. This paper discusses alternative strategies.

  16. Waste Disposal Site and Radioactive Waste Management (Iowa)

    Broader source: Energy.gov [DOE]

    This section describes the considerations of the Commission in determining whether to approve the establishment and operation of a disposal site for nuclear waste. If a permit is issued, the...

  17. Waste Examination Assay Facility operations: TRU waste certification

    SciTech Connect (OSTI)

    Schultz, F.J.; Caylor, B.A.; Coffey, D.E.; Phoenix, L.B.

    1987-01-01T23:59:59.000Z

    The ORNL Waste Examination Assay Facility (WEAF) was established to nondestructively assay (NDA) transuranic (TRU) waste generated at Oak Ridge National Laboratory (ORNL). The present facility charter encompasses the NDA and nondestructive examination (NDE) of both TRU and low-level wastes (LLW). Presently, equipment includes a Neutron Assay System (NAS), a Segmented Gamma Scanner (SGS), a drum-sized Real-Time Radiography (RTR) system, and a Neutron Slab Detector (NSD). The first three instruments are computer interfaced. Approximately 2300 TRU waste drums have been assayed with the NAS and the SGS. Another 3000 TRU and LLW drums have been examined with the RTR unit. Computer data bases have been developed to collate the large amount of data generated during the assays and examinations. 6 refs., 1 tab.

  18. Waste management facilities cost information for hazardous waste. Revision 1

    SciTech Connect (OSTI)

    Shropshire, D.; Sherick, M.; Biagi, C.

    1995-06-01T23:59:59.000Z

    This report contains preconceptual designs and planning level life-cycle cost estimates for managing hazardous waste. The report`s information on treatment, storage, and disposal modules can be integrated to develop total life-cycle costs for various waste management options. A procedure to guide the US Department of Energy and its contractor personnel in the use of cost estimation data is also summarized in this report.

  19. Consolidation process for producing ceramic waste forms

    DOE Patents [OSTI]

    Hash, Harry C. (Joliet, IL); Hash, Mark C. (Shorewood, IL)

    2000-01-01T23:59:59.000Z

    A process for the consolidation and containment of solid or semisolid hazardous waste, which process comprises closing an end of a circular hollow cylinder, filling the cylinder with the hazardous waste, and then cold working the cylinder to reduce its diameter while simultaneously compacting the waste. The open end of the cylinder can be sealed prior to or after the cold working process. The preferred method of cold working is to draw the sealed cylinder containing the hazardous waste through a plurality of dies to simultaneously reduce the diameter of the tube while compacting the waste. This process provides a quick continuous process for consolidating hazardous waste, including radioactive waste.

  20. NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA

    SciTech Connect (OSTI)

    U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION, NEVADA SITE OFFICE

    2005-07-01T23:59:59.000Z

    This document establishes the U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive and mixed waste for disposal. Mixed waste generated within the State of Nevada by NNSA/NSO activities is accepted for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Site for storage or disposal.