Powered by Deep Web Technologies
Note: This page contains sample records for the topic "waste sites atsdr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Hazardous Waste Disposal Sites (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

These sections contain information on fees and monitoring relevant to operators of hazardous waste disposal sites.

2

Chernobyl’s waste site  

SciTech Connect

An analysis of the prospects for using the Chernobyl exclusion zone for development of a spent fuel store, waste disposal site and other nuclear facilities.

Schmieman, Eric A.; Paskevych, Sergiy; Sizov, Andrey; Batiy, Valeriy

2007-02-15T23:59:59.000Z

3

Hanford Site Solid Waste Acceptance Program - Hanford Site  

NLE Websites -- All DOE Office Websites (Extended Search)

About Us > Hanford Site Wide Programs > Hanford Site Solid Waste Acceptance Program About Us Hanford Overview and History Hanford Cleanup Hanford Site Wide Programs Hanford Site...

4

ATSDR Review of Gagetown Herbicide Spray Programs Canadian Forces Base  

E-Print Network (OSTI)

(CFB Gagetown). Senator Collins asked ATSDR to assess whether the concentrations and quantity of 2,3,7,8-tetrachlorodibenzo -p- dioxin and other herbicides used at CFB Gagetown could lead to health problems among those who of contaminants at CFB Gagetown could be considered a past public health hazard, according to Environmental

5

Hanford Site Transuranic (TRU) Waste Certification Plan  

SciTech Connect

The Hanford Site Transuranic Waste Certification Plan establishes the programmatic framework and criteria within which the Hanford Site ensures that contract-handled TRU wastes can be certified as compliant with the WIPP WAC and TRUPACT-II SARP.

GREAGER, T.M.

1999-09-09T23:59:59.000Z

6

Hanford Site Transuranic (TRU) Waste Certification Plan  

SciTech Connect

The Hanford Site Transuranic Waste Certification Plan establishes the programmatic framework and criteria with in which the Hanford Site ensures that contract-handled TRU wastes can be certified as compliant with the WIPP WAC and TRUPACT-II SARP.

GREAGER, T.M.

1999-12-14T23:59:59.000Z

7

Hanford Site annual dangerous waste report: Volume 2, Generator dangerous waste report, radioactive mixed waste  

SciTech Connect

This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, waste designation, weight, and waste designation.

NONE

1994-12-31T23:59:59.000Z

8

Savannah River Site Waste Disposition Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Terrel J. Spears Terrel J. Spears Assistant Manager Waste Disposition Project DOE Savannah River Operations Office Savannah River Site Savannah River Site Waste Disposition Project Waste Disposition Project 2 Waste Disposition Project - Mission Radioactive Liquid Waste - Tank Waste Stabilization and Disposition - Disposition 36 million gallons of radioactive liquid waste - Close 49 underground storage tanks in which the waste now resides 3 36.7 Million 33.7 Mgal (92%) 3.0 Mgal (8%) Saltcake Sludge Salt Supernate Volume Curies 397 Million Curies (MCi) 212 MCi (54%) 185 MCi (46%) Gallons (Mgal) 36.5 Million 33.5 Mgal (92%) 3.0 Mgal (8%) Liquid Waste Background Liquid Waste Background * 2 tanks closed * 49 tanks remaining to close - aging, carbon steel - 27 compliant, 22 non-compliant - 12 have known leak sites

9

Nuclear Waste: Public Perception and Siting Policy  

Science Journals Connector (OSTI)

The siting of radioactive wastes poses a significant planning challenge to many countries. The public is generally extremely apprehensive about radioactive waste, and this has led to substantial delays in siti...

Joop Van Der Pligt

1989-01-01T23:59:59.000Z

10

Savannah River Site Achieves Waste Transfer First  

Energy.gov (U.S. Department of Energy (DOE))

AIKEN, S.C. – The EM program and its liquid waste contractor at the Savannah River Site (SRS) made history recently by safely transferring radioactive liquid waste from F Tank Farm to H Tank Farm using a central control room.

11

Nevada National Security Site Waste Acceptance Criteria  

SciTech Connect

This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept low-level radioactive waste and mixed low-level waste for disposal. The NNSSWAC includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NNSS Area 3 and Area 5 Radioactive Waste Management Complex for disposal. The NNSA/NSO and support contractors are available to assist you in understanding or interpreting this document. For assistance, please call the NNSA/NSO Waste Management Project at (702) 295-7063 or fax to (702) 295-1153.

NSTec Environmental Management

2011-01-01T23:59:59.000Z

12

Hanford Site Solid Waste Acceptance Criteria  

SciTech Connect

This manual defines the Hanford Site radioactive, hazardous, and sanitary solid waste acceptance criteria. Criteria in the manual represent a guide for meeting state and federal regulations; DOE Orders; Hanford Site requirements; and other rules, regulations, guidelines, and standards as they apply to acceptance of radioactive and hazardous solid waste at the Hanford Site. It is not the intent of this manual to be all inclusive of the regulations; rather, it is intended that the manual provide the waste generator with only the requirements that waste must meet in order to be accepted at Hanford Site TSD facilities.

Not Available

1993-11-17T23:59:59.000Z

13

Hanford site transuranic waste certification plan  

SciTech Connect

As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of U.S. Department of Energy (DOE) Order 5820.2A, ''Radioactive Waste Management, and the Waste Acceptance Criteria for the Waste Isolation Pilot Plant' (DOE 1996d) (WIPP WAC). The WIPP WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WIPP WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their management of TRU waste and TRU waste shipments before transferring waste to WIPP. The Hanford Site must also ensure that its TRU waste destined for disposal at WIPP meets requirements for transport in the Transuranic Package Transporter41 (TRUPACT-11). The U.S. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-I1 requirements in the ''Safety Analysis Report for the TRUPACT-II Shipping Package'' (NRC 1997) (TRUPACT-I1 SARP).

GREAGER, T.M.

1999-05-12T23:59:59.000Z

14

EPA/CDC/ATSDR Community Environmental Health Collaboration The Environmental Protection Agency (EPA), Centers for  

E-Print Network (OSTI)

. Cherokee Nation, Oklahoma: EPA and CDC/ATSDR are collaborating with the Cherokee Nation, which is made up of 14 counties in northeast Oklahoma. The Cherokee Nation and CDC/ATSDR work in collaboration with the Cherokee Nation Clinics and Indian Health Service Hospitals to provide screening and early detection

15

Vitrification technology for Hanford Site tank waste  

SciTech Connect

The US Department of Energy`s (DOE) Hanford Site has an inventory of 217,000 m{sup 3} of nuclear waste stored in 177 underground tanks. The DOE, the US Environmental Protection Agency, and the Washington State Department of Ecology have agreed that most of the Hanford Site tank waste will be immobilized by vitrification before final disposal. This will be accomplished by separating the tank waste into high- and low-level fractions. Capabilities for high-capacity vitrification are being assessed and developed for each waste fraction. This paper provides an overview of the program for selecting preferred high-level waste melter and feed processing technologies for use in Hanford Site tank waste processing.

Weber, E.T.; Calmus, R.B.; Wilson, C.N.

1995-04-01T23:59:59.000Z

16

Nevada National Security Site Waste Acceptance Criteria  

SciTech Connect

This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO), Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept DOE non-radioactive classified waste, DOE non-radioactive hazardous classified waste, DOE low-level radioactive waste (LLW), DOE mixed low-level waste (MLLW), and U.S. Department of Defense (DOD) classified waste for permanent disposal. Classified waste is the only waste accepted for disposal that may be non-radioactive and will be required to meet the waste acceptance criteria for radioactive waste as specified in this document. The NNSA/NSO and support contractors are available to assist you in understanding or interpreting this document. For assistance, please call the NNSA/NSO Waste Management Project (WMP) at (702) 295-7063, and your call will be directed to the appropriate contact.

NSTec Environmental Management

2012-02-28T23:59:59.000Z

17

Massachusetts Hazardous Waste Facility Siting Act (Massachusetts) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Massachusetts Hazardous Waste Facility Siting Act (Massachusetts) Massachusetts Hazardous Waste Facility Siting Act (Massachusetts) Massachusetts Hazardous Waste Facility Siting Act (Massachusetts) < Back Eligibility Commercial Fed. Government Fuel Distributor Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Tribal Government Utility Program Info State Massachusetts Program Type Siting and Permitting Provider Department of Environmental Protection This Act establishes the means by which developers of proposed hazardous waste facilities will work with the community in which they wish to construct a facility. When the intent to construct, maintain, and/or operate a hazardous waste facility in a city or town is demonstrated, a local assessment committee will be established by that community. The

18

Hanford Site solid waste acceptance criteria  

SciTech Connect

Order 5820.2A requires that each treatment, storage, and/or disposal facility (referred to in this document as TSD unit) that manages low-level or transuranic waste (including mixed waste and TSCA PCB waste) maintain waste acceptance criteria. These criteria must address the various requirements to operate the TSD unit in compliance with applicable safety and environmental requirements. This document sets forth the baseline criteria for acceptance of radioactive waste at TSD units operated by WMH. The criteria for each TSD unit have been established to ensure that waste accepted can be managed in a manner that is within the operating requirements of the unit, including environmental regulations, DOE Orders, permits, technical safety requirements, waste analysis plans, performance assessments, and other applicable requirements. Acceptance criteria apply to the following TSD units: the Low-Level Burial Grounds (LLBG) including both the nonregulated portions of the LLBG and trenches 31 and 34 of the 218-W-5 Burial Ground for mixed waste disposal; Central Waste Complex (CWC); Waste Receiving and Processing Facility (WRAP); and T Plant Complex. Waste from all generators, both from the Hanford Site and from offsite facilities, must comply with these criteria. Exceptions can be granted as provided in Section 1.6. Specific waste streams could have additional requirements based on the 1901 identified TSD pathway. These requirements are communicated in the Waste Specification Records (WSRds). The Hanford Site manages nonradioactive waste through direct shipments to offsite contractors. The waste acceptance requirements of the offsite TSD facility must be met for these nonradioactive wastes. This document does not address the acceptance requirements of these offsite facilities.

Ellefson, M.D.

1998-07-01T23:59:59.000Z

19

Waste Disposal Site and Radioactive Waste Management (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

This section describes the considerations of the Commission in determining whether to approve the establishment and operation of a disposal site for nuclear waste. If a permit is issued, the...

20

Site Visit Report, Hanford Waste Encapsulation Storage Facility...  

Energy Savers (EERE)

Site Visit Report, Hanford Waste Encapsulation Storage Facility - January 2011 Site Visit Report, Hanford Waste Encapsulation Storage Facility - January 2011 January 2011 Hanford...

Note: This page contains sample records for the topic "waste sites atsdr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Enterprise Assessments Review, Hanford Site Waste Treatment and...  

Office of Environmental Management (EM)

Enterprise Assessments Review, Hanford Site Waste Treatment and Immobilization Plant - September 2014 Enterprise Assessments Review, Hanford Site Waste Treatment and Immobilization...

22

Independent Oversight Review, Hanford Site Waste Treatment and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hanford Site Waste Treatment and Immobilization Plant - June 2014 Independent Oversight Review, Hanford Site Waste Treatment and Immobilization Plant - June 2014 June 2014 Review...

23

Portsmouth Site Delivers First Radioactive Waste Shipment to...  

Office of Environmental Management (EM)

Portsmouth Site Delivers First Radioactive Waste Shipment to Disposal Facility in Texas Portsmouth Site Delivers First Radioactive Waste Shipment to Disposal Facility in Texas...

24

Court blocks testing of nuclear waste site  

Science Journals Connector (OSTI)

Court blocks testing of nuclear waste site ... WIPP was authorized by Congress in 1979 to provide an R&D facility to demonstrate safe handling, transport, and disposal of "mixed" transuranic wastes (contaminated with radioactive plutonium-239 and hazardous chemicals), which are now stored temporarily at DOE nuclear-weapons-making facilities. ...

RICHARD SELTZER

1992-02-10T23:59:59.000Z

25

US nuclear waste site "unsuitable"  

Science Journals Connector (OSTI)

... about the suitability of Yucca Mountain as the site for the nation's first highlevel nuclear ...

Mary Manning

1988-01-28T23:59:59.000Z

26

Hanford site transuranic waste sampling plan  

SciTech Connect

This sampling plan (SP) describes the selection of containers for sampling of homogeneous solids and soil/gravel and for visual examination of transuranic and mixed transuranic (collectively referred to as TRU) waste generated at the U.S. Department of Energy (DOE) Hanford Site. The activities described in this SP will be conducted under the Hanford Site TRU Waste Certification Program. This SP is designed to meet the requirements of the Transuranic Waste Characterization Quality Assurance Program Plan (CAO-94-1010) (DOE 1996a) (QAPP), site-specific implementation of which is described in the Hanford Site Transuranic Waste Characterization Program Quality Assurance Project Plan (HNF-2599) (Hanford 1998b) (QAPP). The QAPP defines the quality assurance (QA) requirements and protocols for TRU waste characterization activities at the Hanford Site. In addition, the QAPP identifies responsible organizations, describes required program activities, outlines sampling and analysis strategies, and identifies procedures for characterization activities. The QAPP identifies specific requirements for TRU waste sampling plans. Table 1-1 presents these requirements and indicates sections in this SP where these requirements are addressed.

GREAGER, T.M.

1999-05-13T23:59:59.000Z

27

Savannah River Site's Liquid Waste Operations Adds Multi-Functional...  

Office of Environmental Management (EM)

now been filled. The SDUs play an essential role in the closure of the 45 liquid waste tanks on the site. About 90 percent of the waste in these tanks is salt waste that must be...

28

Ventilation System to Improve Savannah River Site's Liquid Waste Operations  

Energy.gov (U.S. Department of Energy (DOE))

AIKEN, S.C. – The EM program and its liquid waste contractor at the Savannah River Site are improving salt waste disposition work and preparing for eventual operations of the Salt Waste Processing Facility (SWPF) currently being constructed.

29

Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan  

SciTech Connect

The Transuranic Waste Characterization Quality Assurance Program Plan required each US Department of Energy (DOE) site that characterizes transuranic waste to be sent the Waste Isolation Pilot Plan that addresses applicable requirements specified in the QAPP.

GREAGER, T.M.

1999-09-09T23:59:59.000Z

30

Physical sampling for site and waste characterization  

SciTech Connect

Physical sampling plays a basic role in site and waste characterization program effort. The term ``physical sampling`` used here means collecting tangible, physical samples of soil, water, air, waste streams, or other materials. The industry defines the term ``physical sampling`` broadly to include measurements of physical conditions such as temperature, wind conditions, and pH which are also often taken in a sample collection effort. Most environmental compliance actions are supported by the results of taking, recording, and analyzing physical samples and the measuring of physical conditions taken in association with sample collecting.

Bonnough, T.L.

1994-06-01T23:59:59.000Z

31

Quality Services: Solid Wastes, Part 361: Siting of Industrial Hazardous  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1: Siting of Industrial 1: Siting of Industrial Hazardous Waste Facilities (New York) Quality Services: Solid Wastes, Part 361: Siting of Industrial Hazardous Waste Facilities (New York) < Back Eligibility Commercial Fed. Government Industrial Investor-Owned Utility Local Government Municipal/Public Utility State/Provincial Govt Tribal Government Utility Program Info State New York Program Type Siting and Permitting Provider NY Department of Environmental Conservation These regulations describe the siting of new industrial hazardous waste facilities located wholly or partially within the State. Industrial hazardous waste facilities are defined as facilities used for the purpose of treating, storing, compacting, recycling, exchanging or disposing of industrial hazardous waste materials, including treatment, compacting,

32

Waste Toolkit A-Z Food waste (recycling on-site)  

E-Print Network (OSTI)

Waste Toolkit A-Z Food waste (recycling on-site) How can I recycle food waste on-site? Recycling to be recycled. While this is better than sending waste to landfill, there is a more sustainable way to recycle and parks. See examples of Tidy Planet's customers recycling on-site: www.tidyplanet.co.uk/our-news Short

Melham, Tom

33

Mixed waste disposal facilities at the Savannah River Site  

SciTech Connect

The Savannah River Site (SRS) is a key installation of the US Department of Energy (DOE). The site is managed by DOE`s Savannah River Field Office and operated under contract by the Westinghouse Savannah River Company (WSRC). The Site`s waste management policies reflect a continuing commitment to the environment. Waste minimization, recycling, use of effective pre-disposal treatments, and repository monitoring are high priorities at the site. One primary objective is to safely treat and dispose of process wastes from operations at the site. To meet this objective, several new projects are currently being developed, including the M-Area Waste Disposal Project (Y-Area) which will treat and dispose of mixed liquid wastes, and the Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF), which will store, treat, and dispose of solid mixed and hazardous wastes. This document provides a description of this facility and its mission.

Wells, M.N.; Bailey, L.L.

1991-12-31T23:59:59.000Z

34

Innovative Technique Accelerates Waste Disposal at Idaho Site | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovative Technique Accelerates Waste Disposal at Idaho Site Innovative Technique Accelerates Waste Disposal at Idaho Site Innovative Technique Accelerates Waste Disposal at Idaho Site May 15, 2013 - 12:00pm Addthis A product drum of mixed low-level waste is lowered into a high-density polyethylene macro-pack. A product drum of mixed low-level waste is lowered into a high-density polyethylene macro-pack. Macro-packs from the Idaho site are shown here safely and compliantly disposed. Macro-packs from the Idaho site are shown here safely and compliantly disposed. A product drum of mixed low-level waste is lowered into a high-density polyethylene macro-pack. Macro-packs from the Idaho site are shown here safely and compliantly disposed. IDAHO FALLS, Idaho - An innovative treatment and disposal technique is enabling the Idaho site to accelerate shipments of legacy nuclear waste for

35

Innovative Technique Accelerates Waste Disposal at Idaho Site | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovative Technique Accelerates Waste Disposal at Idaho Site Innovative Technique Accelerates Waste Disposal at Idaho Site Innovative Technique Accelerates Waste Disposal at Idaho Site May 15, 2013 - 12:00pm Addthis A product drum of mixed low-level waste is lowered into a high-density polyethylene macro-pack. A product drum of mixed low-level waste is lowered into a high-density polyethylene macro-pack. Macro-packs from the Idaho site are shown here safely and compliantly disposed. Macro-packs from the Idaho site are shown here safely and compliantly disposed. A product drum of mixed low-level waste is lowered into a high-density polyethylene macro-pack. Macro-packs from the Idaho site are shown here safely and compliantly disposed. IDAHO FALLS, Idaho - An innovative treatment and disposal technique is enabling the Idaho site to accelerate shipments of legacy nuclear waste for

36

Mixed waste disposal facilities at the Savannah River Site  

SciTech Connect

The Savannah River Site (SRS) is a key installation of the US Department of Energy (DOE). The site is managed by DOE's Savannah River Field Office and operated under contract by the Westinghouse Savannah River Company (WSRC). The Site's waste management policies reflect a continuing commitment to the environment. Waste minimization, recycling, use of effective pre-disposal treatments, and repository monitoring are high priorities at the site. One primary objective is to safely treat and dispose of process wastes from operations at the site. To meet this objective, several new projects are currently being developed, including the M-Area Waste Disposal Project (Y-Area) which will treat and dispose of mixed liquid wastes, and the Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF), which will store, treat, and dispose of solid mixed and hazardous wastes. This document provides a description of this facility and its mission.

Wells, M.N.; Bailey, L.L.

1991-01-01T23:59:59.000Z

37

EIS-0217: Savannah River Site Waste Management | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

17: Savannah River Site Waste Management 17: Savannah River Site Waste Management EIS-0217: Savannah River Site Waste Management Summary This EIS evaluates the potential environmental impacts and costs of storing, treating, and/or disposing of liquid high-level radioactive, low-level radioactive, hazardous, mixed (radioactive and hazardous), and transuranic wastes at SRS. Public Comment Opportunities None available at this time. Documents Available for Download June 28, 2001 EIS-0217: Amended Record of Decision Savannah River Site Waste Management, Savannah River Operations Office, Aiken, South Carolina May 19, 1997 EIS-0217: Supplemental Record of Decision Savannah River Site Waste Management May 19, 1997 EIS-0217: Supplemental Record of Decision Savannah River Site Waste Management, Savannah River Operations Office,

38

Idaho Site Launches Startup of Waste Treatment Facility Following Federal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho Site Launches Startup of Waste Treatment Facility Following Idaho Site Launches Startup of Waste Treatment Facility Following Federal Inspection, DOE Milestone Idaho Site Launches Startup of Waste Treatment Facility Following Federal Inspection, DOE Milestone April 23, 2012 - 12:00pm Addthis A controlled, phased startup of the Integrated Waste Treatment Unit began today after the facility passed a federal inspection. A controlled, phased startup of the Integrated Waste Treatment Unit began today after the facility passed a federal inspection. A view of the interior of the Integrated Waste Treatment Unit. A view of the interior of the Integrated Waste Treatment Unit. A controlled, phased startup of the Integrated Waste Treatment Unit began today after the facility passed a federal inspection. A view of the interior of the Integrated Waste

39

Move to test nuclear waste site draws fire  

Science Journals Connector (OSTI)

Move to test nuclear waste site draws fire ... The Department of Energy has stirred up a storm of opposition by taking administrative action, bypassing Congress, that would enable it to start testing an underground nuclear waste repository in New Mexico. ...

RICHARD SELTZER

1991-10-14T23:59:59.000Z

40

Existing data on the 216-Z liquid waste sites  

SciTech Connect

During 36 years of operation at the Hanford Site, the ground has been used for disposal of liquid and solid transuranic and/or low-level wastes. Liquid waste was disposed in surface and subsurface cribs, trenches, French drains, reverse wells, ditches and ponds. Disposal structures associated with Z Plant received liquid waste from plutonium finishing and reclamation, waste treatment and laboratory operations. The nineteen 216-Z sites have received 83% of the plutonium discharged to 325 liquid waste facilities at the Hanford Site. The purpose of this document is to support the Hanford Defense Waste Environmental Impact Statement by drawing the existing data together for the 216-Z liquid waste disposal sites. This document provides an interim reference while a sitewide Waste Information Data System (WIDS) is developed and put on line. Eventually these and additional site data for all Hanford waste disposal sites will be available on WIDS. Compilation of existing data is the first step in evaluating the need and developing the technology for long-term management of these waste sites. The scope of this document is confined to data describing the status of the 216-Z waste sites as of December 31, 1979. Information and sketches are taken from existing documents and drawings.

Owens, K.W.

1981-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste sites atsdr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE April 1, 2010 - 12:00pm Addthis An operator uses robotic manipulators to process RH TRU. An operator uses robotic manipulators to process RH TRU. Idaho - The Waste Disposition Project Team at the Department of Energy's Idaho Site has continued to keep its commitment to remove remote handled (RH) transuranic (TRU) waste out of Idaho, protecting the Snake River Plain Aquifer and keeping the Office of Environmental Management's commitment to environmental clean up. In 2007, the first shipment of RH TRU waste left the gates of the Idaho Site, headed to the Waste Isolation Pilot Plant (WIPP) for disposal. In the three years since, devoted individuals on the CH2M-WG, Idaho's (CWI)

42

WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE April 1, 2010 - 12:00pm Addthis An operator uses robotic manipulators to process RH TRU. An operator uses robotic manipulators to process RH TRU. Idaho - The Waste Disposition Project Team at the Department of Energy's Idaho Site has continued to keep its commitment to remove remote handled (RH) transuranic (TRU) waste out of Idaho, protecting the Snake River Plain Aquifer and keeping the Office of Environmental Management's commitment to environmental clean up. In 2007, the first shipment of RH TRU waste left the gates of the Idaho Site, headed to the Waste Isolation Pilot Plant (WIPP) for disposal. In the three years since, devoted individuals on the CH2M-WG, Idaho's (CWI)

43

Hanford Site waste management and environmental restoration integration plan  

SciTech Connect

The Hanford Site Waste Management and Environmental Restoration Integration Plan'' describes major actions leading to waste disposal and site remediation. The primary purpose of this document is to provide a management tool for use by executives who need to quickly comprehend the waste management and environmental restoration programs. The Waste Management and Environmental Restoration Programs have been divided into missions. Waste Management consists of five missions: double-shell tank (DST) wastes; single-shell tank (SST) wastes (surveillance and interim storage, stabilization, and isolation); encapsulated cesium and strontium; solid wastes; and liquid effluents. Environmental Restoration consists of two missions: past practice units (PPU) (including characterization and assessment of SST wastes) and surplus facilities. For convenience, both aspects of SST wastes are discussed in one place. A general category of supporting activities is also included. 20 refs., 14 figs., 7 tabs.

Merrick, D.L.

1990-04-30T23:59:59.000Z

44

Hazardous Waste Facility Siting Program (Maryland) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facility Siting Program (Maryland) Facility Siting Program (Maryland) Hazardous Waste Facility Siting Program (Maryland) < Back Eligibility Commercial Construction Industrial Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Transportation Utility Program Info State Maryland Program Type Siting and Permitting Provider Maryland Department of the Environment The Hazardous Waste Facilities Siting Board is responsible for overseeing the siting of hazardous waste facilities in Maryland, and will treat hazardous waste facilities separately from low-level nuclear waste facilities. This legislation describes the factors considered by the Board in making siting decisions. The Board is authorized to enact rules and regulations pertaining to the siting of hazardous and low-level nuclear

45

Savannah River Site Achieves Transuranic Waste Disposition Goal in 2013 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Site Achieves Transuranic Waste Disposition Goal in Savannah River Site Achieves Transuranic Waste Disposition Goal in 2013 Savannah River Site Achieves Transuranic Waste Disposition Goal in 2013 December 24, 2013 - 12:00pm Addthis Workers gather behind a “Safety and Security begins with Me” banner at the Savannah River Site. Workers gather behind a "Safety and Security begins with Me" banner at the Savannah River Site. Workers sort through transuranic waste at the Savannah River Site. Workers sort through transuranic waste at the Savannah River Site. SRR employees Glenn Kelly and Fred Merriweather pour the final amount of grout into Tank 6. SRR employees Glenn Kelly and Fred Merriweather pour the final amount of grout into Tank 6. Workers gather behind a "Safety and Security begins with Me" banner at the Savannah River Site.

46

Waste site grouping for 200 Areas soil investigations  

SciTech Connect

The purpose of this document is to identify logical waste site groups for characterization based on criteria established in the 200 Areas Soil Remediation Strategy (DOE-RL 1996a). Specific objectives of the document include the following: finalize waste site groups based on the approach and preliminary groupings identified in the 200 Areas Soil Remediation Strategy; prioritize the waste site groups based on criteria developed in the 200 Areas Soil Remediation Strategy; select representative site(s) that best represents typical and worse-case conditions for each waste group; develop conceptual models for each waste group. This document will serve as a technical baseline for implementing the 200 Areas Soil Remediation Strategy. The intent of the document is to provide a framework, based on waste site groups, for organizing soil characterization efforts in the 200 Areas and to present initial conceptual models.

NONE

1997-01-01T23:59:59.000Z

47

Savannah River Site Marks Waste Processing Milestone with Melter's  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Site Marks Waste Processing Milestone with Savannah River Site Marks Waste Processing Milestone with Melter's 2,000th Waste Canister Savannah River Site Marks Waste Processing Milestone with Melter's 2,000th Waste Canister February 1, 2012 - 12:00pm Addthis A Savannah River Remediation employee uses a manipulator located inside a shielded enclosure at the Defense Waste Processing Facility, where a melter pours molten glass into a canister. A Savannah River Remediation employee uses a manipulator located inside a shielded enclosure at the Defense Waste Processing Facility, where a melter pours molten glass into a canister. AIKEN, S.C. - The second melter to operate in the 16-year history of the nation's largest radioactive waste glassification plant shows no signs of slowing after recently pouring its 2,000 canister of glass-formed hazardous

48

Transuranic Waste Processing Center Oak Ridge Site Specific...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transuranic Waste Processing Update Oak Ridge Site Specific Advisory Board May 14, 2014 Laura Wilkerson, Portfolio Federal Project Director Karen Deacon, Deputy Federal Project...

49

Journey to the Nevada Test Site Radioactive Waste Management Complex  

ScienceCinema (OSTI)

Journey to the Nevada Test Site Radioactive Waste Management Complex begins with a global to regional perspective regarding the location of low-level and mixed low-level waste disposal at the Nevada Test Site. For decades, the Nevada National Security Site (NNSS) has served as a vital disposal resource in the nation-wide cleanup of former nuclear research and testing facilities. State-of-the-art waste management sites at the NNSS offer a safe, permanent disposal option for U.S. Department of Energy/U.S. Department of Defense facilities generating cleanup-related radioactive waste.

None

2014-10-28T23:59:59.000Z

50

Waste immobilization demonstration program for the Hanford Site`s Mixed Waste Facility  

SciTech Connect

This paper presents an overview of the Waste Receiving and Processing facility, Module 2A> waste immobilization demonstration program, focusing on the cooperation between Hanford Site, commercial, and international participants. Important highlights of the development and demonstration activities is discussed from the standpoint of findings that have had significant from the standpoint of findings that have had significant impact on the evolution of the facility design. A brief description of the future direction of the program is presented, with emphasis on the key aspects of the technologies that call for further detailed investigation.

Burbank, D.A.; Weingardt, K.M.

1994-05-01T23:59:59.000Z

51

Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan  

SciTech Connect

The Quality Assurance Project Plan (QAPjP) has been prepared for waste characterization activities to be conducted by the Transuranic (TRU) Project at the Hanford Site to meet requirements set forth in the Waste Isolation Pilot Plan (WIPP) Hazardous Waste Facility Permit, 4890139088-TSDF, Attachment B, including Attachments B1 through B6 (WAP) (DOE, 1999a). The QAPjP describes the waste characterization requirements and includes test methods, details of planned waste sampling and analysis, and a description of the waste characterization and verification process. In addition, the QAPjP includes a description of the quality assurance/quality control (QA/QC) requirements for the waste characterization program. Before TRU waste is shipped to the WIPP site by the TRU Project, all applicable requirements of the QAPjP shall be implemented. Additional requirements necessary for transportation to waste disposal at WIPP can be found in the ''Quality Assurance Program Document'' (DOE 1999b) and HNF-2600, ''Hanford Site Transuranic Waste Certification Plan.'' TRU mixed waste contains both TRU radioactive and hazardous components, as defined in the WLPP-WAP. The waste is designated and separately packaged as either contact-handled (CH) or remote-handled (RH), based on the radiological dose rate at the surface of the waste container. RH TRU wastes are not currently shipped to the WIPP facility.

GREAGER, T.M.

2000-12-06T23:59:59.000Z

52

Burning Chemical Waste Disposal Site: Investigation, Assessment and Rehabilitation  

Science Journals Connector (OSTI)

A series of underground fires on a site previously used for disposal of chemical wastes from the nylon industry was causing a nuisance and restricting the commercial development of the site and adjacent areas....

D. L. Barry; J. M. Campbell; E. H. Jones

1990-01-01T23:59:59.000Z

53

Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan  

SciTech Connect

The Transuranic Waste Characterization Quality Assurance Program Plan required each U.S. Department of Energy (DOE) site that characterizes transuranic waste to be sent the Waste Isolation Pilot Plan that addresses applicable requirements specified in the quality assurance project plan (QAPP).

GREAGER, T.M.

1999-12-14T23:59:59.000Z

54

DOE Issues Salt Waste Determination for the Savannah River Site |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Issues Salt Waste Determination for the Savannah River Site Issues Salt Waste Determination for the Savannah River Site DOE Issues Salt Waste Determination for the Savannah River Site January 18, 2006 - 10:49am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today issued the waste determination for the treatment and stabilization of low activity salt-waste at the Savannah River Site allowing for significant reductions in environmental and health risks posed by the material. Stored in forty-nine underground tanks, approximately 36 million gallons of radioactive waste is left over from plutonium production during the Cold War. In addition, the department issued an amended Record of Decision and Implementation Plan to the Defense Nuclear Facilities Safety Board. "Today's announcement clears the way for the removal and treatment of this

55

Portsmouth Site Delivers First Radioactive Waste Shipment to Disposal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Portsmouth Site Delivers First Radioactive Waste Shipment to Portsmouth Site Delivers First Radioactive Waste Shipment to Disposal Facility in Texas Portsmouth Site Delivers First Radioactive Waste Shipment to Disposal Facility in Texas August 27, 2013 - 12:00pm Addthis Waste management and transportation personnel worked late to complete the first shipment to WCS. Through a contract with DOE, WCS will treat and accept potentially hazardous waste that has been at the Portsmouth site for decades. Pictured (from left) are Scott Fraser, Joe Hawes, Craig Herrmann, Jim Book, John Lee, John Perry, Josh Knipp, Melissa Dunsieth, Randy Barr, Rick Williams, Janet Harris, Maureen Fischels, Cecil McCoy, Trent Eckert, Anthony Howard and Chris Ashley. Waste management and transportation personnel worked late to complete the

56

Independent Oversight Review, Savannah River Site Salt Waste Processing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Site Salt Waste Savannah River Site Salt Waste Processing Facility - August 2013 Independent Oversight Review, Savannah River Site Salt Waste Processing Facility - August 2013 August 2013 Review of the Savannah River Site Salt Waste Processing Facility Safety Basis and Design Development. This report documents the results of an independent oversight review of the safety basis and design development for the Salt Waste Processing Facility (SWPF) at the U.S. Department of Energy (DOE) Savannah River Site. The review was performed February 12-14, 2013 by DOE's Office of Safety and Emergency Management Evaluations, which is within the DOE Office of Health, Safety and Security. The purpose of the review was to evaluate the safety basis, design, and the associated technical documents developed for

57

Independent Oversight Review, Savannah River Site Salt Waste Processing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Site Salt Waste Savannah River Site Salt Waste Processing Facility - August 2013 Independent Oversight Review, Savannah River Site Salt Waste Processing Facility - August 2013 August 2013 Review of the Savannah River Site Salt Waste Processing Facility Safety Basis and Design Development. This report documents the results of an independent oversight review of the safety basis and design development for the Salt Waste Processing Facility (SWPF) at the U.S. Department of Energy (DOE) Savannah River Site. The review was performed February 12-14, 2013 by DOE's Office of Safety and Emergency Management Evaluations, which is within the DOE Office of Health, Safety and Security. The purpose of the review was to evaluate the safety basis, design, and the associated technical documents developed for

58

Portsmouth Site Feeds Bacteria to Render Hazardous Groundwater Waste  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Portsmouth Site Feeds Bacteria to Render Hazardous Groundwater Portsmouth Site Feeds Bacteria to Render Hazardous Groundwater Waste Harmless Portsmouth Site Feeds Bacteria to Render Hazardous Groundwater Waste Harmless April 2, 2012 - 12:00pm Addthis Neil Smith puts a trained eye on the pressure and flow of a food-grade com¬pound being injected into an under¬ground plume of hazardous waste near the X-720 Maintenance Facility at the DOE Piketon Site. The sodium lactate compound promotes bacterial growth in the groundwater that turns hazardous waste into harmless end-products. Neil Smith puts a trained eye on the pressure and flow of a food-grade com¬pound being injected into an under¬ground plume of hazardous waste near the X-720 Maintenance Facility at the DOE Piketon Site. The sodium lactate compound promotes bacterial growth in the groundwater that turns

59

Waste Encapsulation and Storage Facility - Hanford Site  

NLE Websites -- All DOE Office Websites (Extended Search)

of heat were removed from the high level waste tanks at Hanford. Called cesium and strontium, these elements had to be taken out of single shell waste tanks to reduce the...

60

Idaho Site Launches Startup of Waste Treatment Facility Following Federal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Launches Startup of Waste Treatment Facility Following Launches Startup of Waste Treatment Facility Following Federal Inspection, DOE Milestone Idaho Site Launches Startup of Waste Treatment Facility Following Federal Inspection, DOE Milestone April 23, 2012 - 12:00pm Addthis A controlled, phased startup of the Integrated Waste Treatment Unit began today after the facility passed a federal inspection. A controlled, phased startup of the Integrated Waste Treatment Unit began today after the facility passed a federal inspection. A view of the interior of the Integrated Waste Treatment Unit. A view of the interior of the Integrated Waste Treatment Unit. A controlled, phased startup of the Integrated Waste Treatment Unit began today after the facility passed a federal inspection. A view of the interior of the Integrated Waste

Note: This page contains sample records for the topic "waste sites atsdr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Idaho Site Launches Corrective Actions Before Restarting Waste Treatment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Corrective Actions Before Restarting Waste Corrective Actions Before Restarting Waste Treatment Facility Idaho Site Launches Corrective Actions Before Restarting Waste Treatment Facility September 13, 2012 - 12:00pm Addthis Pictured here is the Integrated Waste Treatment Unit's off-gas filter following the June incident. Pictured here is the Integrated Waste Treatment Unit's off-gas filter following the June incident. A view of the process piping installations prior to startup of the Integrated Waste Treatment Unit. A view of the process piping installations prior to startup of the Integrated Waste Treatment Unit. Pictured here is the Integrated Waste Treatment Unit's off-gas filter following the June incident. A view of the process piping installations prior to startup of the Integrated Waste Treatment Unit.

62

Cleanup Verification Package for the 300 VTS Waste Site  

SciTech Connect

This cleanup verification package documents completion of remedial action for the 300 Area Vitrification Test Site, also known as the 300 VTS site. The site was used by Pacific Northwest National Laboratory as a field demonstration site for in situ vitrification of soils containing simulated waste.

S. W. Clark and T. H. Mitchell

2006-03-13T23:59:59.000Z

63

Remaining Sites Verification Package for the 100-D-2 Lead Sheeting Waste Site, Waste Site Reclassification Form 2007-030  

SciTech Connect

The 100-D-2 Lead Sheeting waste site was located approximately 50 m southwest of the 185-D Building and approximately 16 m north of the east/west oriented road. The site consisted of a lead sheet covering a concrete pad. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

L. M. Dittmer

2008-03-19T23:59:59.000Z

64

Benefits of On-Site Management of Environmental Restoration Wastes  

SciTech Connect

As Sandia National Laboratories/New Mexico (SNL/NM) began assessing options under which to conduct the remediation of environmental restoration sites, it became clear that the standard routes for permanent disposal of waste contaminated with hazardous materials would be difficult. Publicly, local citizens' groups resisted the idea of large volumes of hazardous waste being transported through their communities. Regulations for the off-site disposal are complicated due to the nature of the environmental restoration waste, which included elevated tritium levels. Waste generated from environmental restoration at SNL/NM included debris and soils contaminated with a variety of constituents. Operationally, disposal of environmental restoration waste was difficult because of the everchanging types of waste generated during site remediation. As an alternative to standard hazardous waste disposal, SNL/NM proposed and received regulatory approval to construct a Corrective Action Management Unit (CAMU). By containing the remediation wastes on-site, SNL/NM's Environmental Restoration (ER) Program managed to eliminate transportation concerns from the public, worked with regulatory agencies to develop a safe, permanent disposal, and modified the waste disposal procedures to accommodate operational changes. SNL/NM accomplished the task and saved approximately $200 million over the life of the CAMU project, as compared to off-site disposal options.

Irwin, Michael J. ,P.E.; Wood, Craig, R.E.M.; Kwiecinski, Daniel, P.E.; Alanis, Saul

2003-02-27T23:59:59.000Z

65

DOE Statement on Savannah River Site Vitrified Waste Concentrations |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statement on Savannah River Site Vitrified Waste Concentrations Statement on Savannah River Site Vitrified Waste Concentrations DOE Statement on Savannah River Site Vitrified Waste Concentrations April 30, 2010 - 12:30pm Addthis "The Office of Environmental Management has decided not to move forward at this time with its February decision to direct contractors to start planning for higher concentrations of plutonium in waste canisters at the Savannah River Site. While this may ultimately be a better way to manage and minimize the volume of waste, the Department wants to further review the issues involved before proceeding. No canisters have been filled at the higher concentration level." Addthis Related Articles Energy Secretary Chu Announces $6 Billion in Recovery Act Funding for Environmental Cleanup Department of Energy Projects Win 36 R&D 100 Awards for 2011

66

Independent Oversight Review, Hanford Site Waste Treatment and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment and Waste Treatment and Immobilization Plant, August 2013 Independent Oversight Review, Hanford Site Waste Treatment and Immobilization Plant, August 2013 August 2013 Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality The U.S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight) within the Office of Health, Safety and Security (HSS) conducted an independent review of selected aspects of construction quality at the Hanford Site Waste Treatment and Immobilization Plant (WTP). The review, which was performed June 10-14, 2013, was the latest in a series of ongoing quarterly assessments of construction quality performed by Independent Oversight at the WTP construction site. The scope of this quarterly assessment of construction quality review

67

An approach for sampling solid heterogeneous waste at the Hanford Site waste receiving and processing and solid waste projects  

SciTech Connect

This paper addresses the problem of obtaining meaningful data from samples of solid heterogeneous waste while maintaining sample rates as low as practical. The Waste Receiving and Processing Facility, Module 1, at the Hanford Site in south-central Washington State will process mostly heterogeneous solid wastes. The presence of hazardous materials is documented for some packages and unknown for others. Waste characterization is needed to segregate the waste, meet waste acceptance and shipping requirements, and meet facility permitting requirements. Sampling and analysis are expensive, and no amount of sampling will produce absolute certainty of waste contents. A sampling strategy is proposed that provides acceptable confidence with achievable sampling rates.

Sexton, R.A.

1993-03-01T23:59:59.000Z

68

Savannah River Site Marks Waste Processing Milestone with Melter's  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marks Waste Processing Milestone with Marks Waste Processing Milestone with Melter's 2,000th Waste Canister Savannah River Site Marks Waste Processing Milestone with Melter's 2,000th Waste Canister February 1, 2012 - 12:00pm Addthis A Savannah River Remediation employee uses a manipulator located inside a shielded enclosure at the Defense Waste Processing Facility, where a melter pours molten glass into a canister. A Savannah River Remediation employee uses a manipulator located inside a shielded enclosure at the Defense Waste Processing Facility, where a melter pours molten glass into a canister. AIKEN, S.C. - The second melter to operate in the 16-year history of the nation's largest radioactive waste glassification plant shows no signs of slowing after recently pouring its 2,000 canister of glass-formed hazardous

69

Hazardous Waste Facilities Siting (Connecticut) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facilities Siting (Connecticut) Facilities Siting (Connecticut) Hazardous Waste Facilities Siting (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Connecticut Program Type Siting and Permitting Provider Department of Energy and Environmental Protection These regulations describe the siting and permitting process for hazardous waste facilities and reference rules for construction, operation, closure,

70

Tank Waste Feed Delivery System Readiness at the Hanford Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Audit Report Audit Report Tank Waste Feed Delivery System Readiness at the Hanford Site OAS-L-12-09 August 2012 Department of Energy Washington, DC 20585 August 23, 2012 MEMORANDUM FOR THE MANAGER, OFFICE OF RIVER PROTECTION FROM: David Sedillo, Director Western Audits Division Office of Audits and Inspections Office of Inspector General SUBJECT: INFORMATION: Audit Report on "Tank Waste Feed Delivery System Readiness at the Hanford Site" BACKGROUND The Department of Energy's largest cleanup task involves the treatment, immobilization and disposal of 56 million gallons of hazardous and highly radioactive waste at the Hanford Site, located in Southeastern Washington State. As part of this effort, the Department is constructing

71

Savannah River Site Contractor Achieves Tank Waste Milestone | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Contractor Achieves Tank Waste Milestone Contractor Achieves Tank Waste Milestone Savannah River Site Contractor Achieves Tank Waste Milestone February 2, 2012 - 12:00pm Addthis Pictured here is a component of the Interim Salt Disposition Process — known as Modular Caustic Side Solvent Extraction Unit (MCU) — that helped Savannah River Remediation process more than 500,000 gallons of salt waste since October last year, a contract milestone. Pictured here is a component of the Interim Salt Disposition Process - known as Modular Caustic Side Solvent Extraction Unit (MCU) - that helped Savannah River Remediation process more than 500,000 gallons of salt waste since October last year, a contract milestone. AIKEN, S.C. - The Savannah River Site's liquid waste contractor recently achieved a contract milestone by processing 500,000 gallons of

72

Portsmouth Site Delivers First Radioactive Waste Shipment to Disposal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delivers First Radioactive Waste Shipment to Delivers First Radioactive Waste Shipment to Disposal Facility in Texas Portsmouth Site Delivers First Radioactive Waste Shipment to Disposal Facility in Texas August 27, 2013 - 12:00pm Addthis Waste management and transportation personnel worked late to complete the first shipment to WCS. Through a contract with DOE, WCS will treat and accept potentially hazardous waste that has been at the Portsmouth site for decades. Pictured (from left) are Scott Fraser, Joe Hawes, Craig Herrmann, Jim Book, John Lee, John Perry, Josh Knipp, Melissa Dunsieth, Randy Barr, Rick Williams, Janet Harris, Maureen Fischels, Cecil McCoy, Trent Eckert, Anthony Howard and Chris Ashley. Waste management and transportation personnel worked late to complete the first shipment to WCS. Through a contract with DOE, WCS will treat and

73

Characteristics of transuranic waste at Department of Energy sites  

SciTech Connect

This document reports data and information on TRU waste from all DOE generating and storage sites. The geographical location of the sites is shown graphically. There are four major sections in this document. The first three cover the TRU waste groups known as Newly Generated, Stored, and Buried Wastes. Subsections are included under Newly Generated and Stored on contact-handled and remote-handled waste. These classifications of waste are defined, and the current or expected totals of each are given. Figure 1.3 shows the total amount of Buried and Stored TRU waste. Preparation of this document began in 1981, and most of the data are as of December 31, 1980. In a few cases data were reported to December 31, 1981, and these have been noted. The projections in the Newly Generated section were made, for the most part, at the end of 1981.

Jensen, R.T.; Wilkinson, F.J. III

1983-05-01T23:59:59.000Z

74

Waste Management Magazine Highlights Nevada National Security Site |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Management Magazine Highlights Nevada National Security Site Management Magazine Highlights Nevada National Security Site Waste Management Magazine Highlights Nevada National Security Site March 28, 2013 - 12:00pm Addthis A worker at NNSS handles large, high-powered batteries called radioisotope thermoelectric generators (RTGs), which are discussed in the recent article on the NNSS in RadWaste Solutions magazine. Like most low-level waste, RTGs disposed of at the NNSS were handled without any special equipment or clothing because of the relatively low dose rate levels. A worker at NNSS handles large, high-powered batteries called radioisotope thermoelectric generators (RTGs), which are discussed in the recent article on the NNSS in RadWaste Solutions magazine. Like most low-level waste, RTGs disposed of at the NNSS were handled without any special equipment or

75

Review of Nuclear Safety Culture at the Hanford Site Waste Treatment...  

Energy Savers (EERE)

Review of Nuclear Safety Culture at the Hanford Site Waste Treatment and Immobilization Plant Project, October 2010 Review of Nuclear Safety Culture at the Hanford Site Waste...

76

Macroencapsulated and elemental lead mixed waste sites report  

SciTech Connect

The purpose of this study was to compile a list of the Macroencapsulated (MACRO) and Elemental Lead (EL) Mixed Wastes sites that will be treated and require disposal at the Nevada Test Site within the next five to ten years. The five sites selected were: Hanford Site, Richland, Washington; Idaho National Engineering Laboratory (INEL), Idaho Falls, Idaho; Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee; Rocky Flats Environmental Technology (RF), Golden, Colorado; and Savannah River (SRS), Charleston, South Carolina. A summary of total lead mixed waste forms at the five selected DOE sites is described in Table E-1. This table provides a summary of total waste and grand total of the current inventory and five-year projected generation of lead mixed waste for each site. This report provides conclusions and recommendations for further investigations. The major conclusions are: (1) the quantity of lead mixed current inventory waste is 500.1 m{sup 3} located at the INEL, and (2) the five sites contain several other waste types contaminated with mercury, organics, heavy metal solids, and mixed sludges.

Kalia, A.; Jacobson, R.

1996-09-01T23:59:59.000Z

77

Independent Oversight Activity Report, Savannah River Site Waste  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Site Waste Savannah River Site Waste Solidification Building Independent Oversight Activity Report, Savannah River Site Waste Solidification Building May 2013 Savannah River Site Waste Solidification Building Corrective Actions from the January 2013 Report on Construction Quality of Mechanical Systems Installation and Fire Protection Design [HIAR SRS-2013-5-07] Activity Description/Purpose: Review the corrective actions being implemented by the construction contractor to address Findings 1-4, 6, and 9 from a construction quality review performed by the Office of Health, Safety and Security (HSS) (Reference 1). Meet with the SRS WSB project staff and Savannah River Nuclear Solutions (SRNS) engineers to discuss the proposed corrective actions discussed in Reference 2, and clarify additional reviews to be performed by

78

Independent Oversight Activity Report, Savannah River Site Waste  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independent Oversight Activity Report, Savannah River Site Waste Independent Oversight Activity Report, Savannah River Site Waste Solidification Building Independent Oversight Activity Report, Savannah River Site Waste Solidification Building May 2013 Savannah River Site Waste Solidification Building Corrective Actions from the January 2013 Report on Construction Quality of Mechanical Systems Installation and Fire Protection Design [HIAR SRS-2013-5-07] Activity Description/Purpose: Review the corrective actions being implemented by the construction contractor to address Findings 1-4, 6, and 9 from a construction quality review performed by the Office of Health, Safety and Security (HSS) (Reference 1). Meet with the SRS WSB project staff and Savannah River Nuclear Solutions (SRNS) engineers to discuss the proposed corrective actions

79

Office of Enterprise Assessments Review of the Hanford Site Waste...  

Energy Savers (EERE)

of liquid or semi-solid radioactive and chemical waste stored in 177 underground tanks at the Hanford Site. ORP serves as DOE line management for two functions: the Tank...

80

EA-0915: Waste Tank Safety Program Hanford Site, Richland, Washington  

Energy.gov (U.S. Department of Energy (DOE))

This EA evaluates the environmental impacts of the proposal to resolve waste tank safety issues at the Hanford Site near the City of Richland, Washington, and to reduce the risks associated with...

Note: This page contains sample records for the topic "waste sites atsdr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Independent Oversight Review of the Hanford Site Waste Treatment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of liquid or semi-solid radioactive and chemical waste stored in 177 underground tanks at the Hanford Site. ORP serves as DOE line management for two functions: the Tank...

82

Independent Oversight Activity Report, Savannah River Site Waste Solidification Building  

Energy.gov (U.S. Department of Energy (DOE))

Savannah River Site Waste Solidification Building Corrective Actions from the January 2013 Report on Construction Quality of Mechanical Systems Installation and Fire Protection Design [HIAR SRS-2013-5-07

83

Disposal of Hanford Site Tank Wastes  

Science Journals Connector (OSTI)

Between 1943 and 1986, 149 single-shell tanks (SSTs) and 28 double-shell tanks (DSTs) were built and used to store radioactive wastes generated during reprocessing of irradiated uranium metal fuel elements at ...

M. J. Kupfer

1994-01-01T23:59:59.000Z

84

LANL completes excavation of 1940s waste disposal site  

NLE Websites -- All DOE Office Websites (Extended Search)

LANL completes excavation LANL completes excavation LANL completes excavation of 1940s waste disposal site The excavation removed about 43,000 cubic yards of contaminated debris and soil from the six-acre site. September 22, 2011 Workers sample contents of LANL's Material Disposal Area B (MDA-B) before excavation Workers sample contents of LANL's Material Disposal Area B (MDA-B) before excavation. Contact Colleen Curran Communicatons Office (505) 664-0344 Email LOS ALAMOS, New Mexico, September 22, 2011-Los Alamos National Laboratory has completed excavation of its oldest waste disposal site, Material Disposal Area B (MDA-B). The excavation removed about 43,000 cubic yards of contaminated debris and soil from the six-acre site. MDA-B was used from 1944-48 as a waste disposal site for Manhattan Project and Cold War-era research and

85

A perspective of hazardous waste and mixed waste treatment technology at the Savannah River Site  

SciTech Connect

Treatment technologies for the preparation and treatment of heavy metal mixed wastes, contaminated soils, and mixed mercury wastes are being considered at the Savannah River Site (SRS), a DOE nuclear material processing facility operated by Westinghouse Savannah River Company (WSRC). The proposed treatment technologies to be included at the Hazardous Waste/Mixed Waste Treatment Building at SRS are based on the regulatory requirements, projected waste volumes, existing technology, cost effectiveness, and project schedule. Waste sorting and size reduction are the initial step in the treatment process. After sorting/size reduction the wastes would go to the next applicable treatment module. For solid heavy metal mixed wastes the proposed treatment is macroencapsulation using a thermoplastic polymer. This process reduces the leachability of hazardous constituents from the waste and allows easy verification of the coating integrity. Stabilization and solidification in a cement matrix will treat a wide variety of wastes (i.e. soils, decontamination water). Some pretreatments may be required (i.e. Ph adjustment) before stabilization. Other pretreatments such as soil washing can reduce the amount of waste to be stabilized. Radioactive contaminated mercury waste at the SRS comes in numerous forms (i.e. process equipment, soils, and lab waste) with the required treatment of high mercury wastes being roasting/retorting and recovery. Any unrecyclable radioactive contaminated elemental mercury would be amalgamated, utilizing a batch system, before disposal.

England, J.L.; Venkatesh, S.; Bailey, L.L.; Langton, C.A.; Hay, M.S.; Stevens, C.B.; Carroll, S.J.

1991-01-01T23:59:59.000Z

86

A perspective of hazardous waste and mixed waste treatment technology at the Savannah River Site  

SciTech Connect

Treatment technologies for the preparation and treatment of heavy metal mixed wastes, contaminated soils, and mixed mercury wastes are being considered at the Savannah River Site (SRS), a DOE nuclear material processing facility operated by Westinghouse Savannah River Company (WSRC). The proposed treatment technologies to be included at the Hazardous Waste/Mixed Waste Treatment Building at SRS are based on the regulatory requirements, projected waste volumes, existing technology, cost effectiveness, and project schedule. Waste sorting and size reduction are the initial step in the treatment process. After sorting/size reduction the wastes would go to the next applicable treatment module. For solid heavy metal mixed wastes the proposed treatment is macroencapsulation using a thermoplastic polymer. This process reduces the leachability of hazardous constituents from the waste and allows easy verification of the coating integrity. Stabilization and solidification in a cement matrix will treat a wide variety of wastes (i.e. soils, decontamination water). Some pretreatments may be required (i.e. Ph adjustment) before stabilization. Other pretreatments such as soil washing can reduce the amount of waste to be stabilized. Radioactive contaminated mercury waste at the SRS comes in numerous forms (i.e. process equipment, soils, and lab waste) with the required treatment of high mercury wastes being roasting/retorting and recovery. Any unrecyclable radioactive contaminated elemental mercury would be amalgamated, utilizing a batch system, before disposal.

England, J.L.; Venkatesh, S.; Bailey, L.L.; Langton, C.A.; Hay, M.S.; Stevens, C.B.; Carroll, S.J.

1991-12-31T23:59:59.000Z

87

Identification of potential transuranic waste tanks at the Hanford Site  

SciTech Connect

The purpose of this document is to identify potential transuranic (TRU) material among the Hanford Site tank wastes for possible disposal at the Waste Isolation Pilot Plant (WIPP) as an alternative to disposal in the high-level waste (HLW) repository. Identification of such material is the initial task in a trade study suggested in WHC-EP-0786, Tank Waste Remediation System Decisions and Risk Assessment (Johnson 1994). The scope of this document is limited to the identification of those tanks that might be segregated from the HLW for disposal as TRU, and the bases for that selection. It is assumed that the tank waste will be washed to remove soluble inert material for disposal as low-level waste (LLW), and the washed residual solids will be vitrified for disposal. The actual recommendation of a disposal strategy for these materials will require a detailed cost/benefit analysis and is beyond the scope of this document.

Colburn, R.P.

1995-05-05T23:59:59.000Z

88

IDAHO SITE TO PROVIDE WASTE TREATMENT FOR OTHER DOE SITES  

NLE Websites -- All DOE Office Websites (Extended Search)

be sent to INL for treatment and characterization: the Argonne National Laboratory; Bettis Atomic Power Laboratory; General Electric Vallecitos Nuclear Center; the Hanford Site;...

89

Remaining Sites Verification Package for the 120-F-1 Glass Dump Waste Site, Waste Site Reclassification Form 2008-028  

SciTech Connect

The 120-F-1 waste site consisted of two dumping areas located 660 m southeast of the 105-F Reactor containing laboratory equipment and bottles, demolition debris, light bulbs and tubes, small batteries, small drums, and pesticide contaminated soil. It is probable that 108-F was the source of the debris but the material may have come from other locations within the 100-F Area. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

J. M. Capron

2008-06-27T23:59:59.000Z

90

Independent Oversight Review, Savannah River Site Salt Waste Processing Facility- August 2013  

Energy.gov (U.S. Department of Energy (DOE))

Review of the Savannah River Site Salt Waste Processing Facility Safety Basis and Design Development.

91

Independent Oversight Review, Savannah River Site Salt Waste Processing Facility- April 2014  

Energy.gov (U.S. Department of Energy (DOE))

Review of the Savannah River Site Salt Waste Processing Facility Construction Quality and Fire Protection Systems

92

Savannah River Site Celebrates Historic Closure of Radioactive Waste Tanks:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Site Celebrates Historic Closure of Radioactive Savannah River Site Celebrates Historic Closure of Radioactive Waste Tanks: Senior DOE Officials and South Carolina Congressional Leadership Gather to Commemorate Historic Cleanup Milestone Savannah River Site Celebrates Historic Closure of Radioactive Waste Tanks: Senior DOE Officials and South Carolina Congressional Leadership Gather to Commemorate Historic Cleanup Milestone October 1, 2012 - 12:00pm Addthis U.S. Energy Under Secretary for Nuclear Security Thomas D'Agostino, left, South Carolina Department of Health and Environmental Control Director Catherine Templeton and U.S. Sen. Lindsey Graham (R-SC) unveil a marker to commemorate the closing of waste tanks at the Savannah River Site in South Carolina. U.S. Energy Under Secretary for Nuclear Security Thomas D'Agostino, left,

93

Savannah River Site Celebrates Historic Closure of Radioactive Waste Tanks:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Site Celebrates Historic Closure of Radioactive Savannah River Site Celebrates Historic Closure of Radioactive Waste Tanks: Senior DOE Officials and South Carolina Congressional Leadership Gather to Commemorate Historic Cleanup Milestone Savannah River Site Celebrates Historic Closure of Radioactive Waste Tanks: Senior DOE Officials and South Carolina Congressional Leadership Gather to Commemorate Historic Cleanup Milestone October 1, 2012 - 12:00pm Addthis U.S. Energy Under Secretary for Nuclear Security Thomas D'Agostino, left, South Carolina Department of Health and Environmental Control Director Catherine Templeton and U.S. Sen. Lindsey Graham (R-SC) unveil a marker to commemorate the closing of waste tanks at the Savannah River Site in South Carolina. U.S. Energy Under Secretary for Nuclear Security Thomas D'Agostino, left,

94

Microbial effects on radioactive wastes at SLB sites  

SciTech Connect

The objectives of this study are to determine the significance of microbial degradation of organic wastes on radionuclide migration on shallow land burial for humid and arid sites, establish which mechanisms predominate and ascertain the conditions under which these mechanisms operate. Factors contolling gaseous eminations from low-level radioactive waste disposal sites are assessed. Importance of gaseous fluxes of methane, carbon dioxide and possibly hydrogen from the site stems from the inclusion of tritium and/or /sup 14/C into the elemental composition of these compounds. In that the primary source of these gases is the biodegradation of organic components of the waste materials, primary emphasis of the study involved on examination of the biochemical pathways producing methane, carbon dioxide and hydrogen, and the environmental parameters controlling the activity of the microbial community involved. Although the methane and carbon dioxide production rate indicates the degradation rate of the organic substances in the waste, it does not predict the methane evolution rate from the trench site. Methane fluxes from the soil surface are equivalent to the net synthesis minus the quantity oxidized by the microbial community as the gas passes through the soil profile. Gas studies were performed at three commercial low-level radioactive waste disposal sites (West Valley, New York; Beatty, Nevada; Maxey Flats, Kentucky) during the period 1976 to 1978. The results of these studies are presented. 3 tables.

Colombo, P.

1982-01-01T23:59:59.000Z

95

On-site vs off-site management of environmental restoration waste: A cost effectiveness analysis  

SciTech Connect

The Sandia National Laboratories Environmental Restoration Project is expected to generate relatively large volumes of hazardous waste as a result of cleanup operations. These volumes will exceed the Laboratories existing waste management capacity. This paper presents four options for managing remediation wastes, including three alternatives for on-site waste management utilizing a corrective action management unit (CAMU). Costs are estimated for each of the four options based on current volumetric estimates of hazardous waste. Cost equations are derived for each of the options with the variables being waste volumes, the major unknowns in the analysis. These equations provide a means to update cost estimates as volume estimates change. This approach may be helpful to others facing similar waste management decisions.

Morse, M.A. [Terradigm, Inc., Albuquerque, NM (United States); Aamodt, P.L. [Los Alamos National Lab., NM (United States); Cox, W.B. [Sandia National Labs., Albuquerque, NM (United States)

1996-02-01T23:59:59.000Z

96

Remaining Sites Verification Package for the 128-B-3 Burn Pit Site, Waste Site Reclassification Form 2006-058  

SciTech Connect

The 128-B-3 waste site is a former burn and disposal site for the 100-B/C Area, located adjacent to the Columbia River. The 128-B-3 waste site has been remediated to meet the remedial action objectives specified in the Remaining Sites ROD. The results of verification sampling demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results of sampling at upland areas of the site also showed that residual contaminant concentrations are protective of groundwater and the Columbia River.

L. M. Dittmer

2006-11-17T23:59:59.000Z

97

Hanford site waste minimization and pollution prevention awareness program  

SciTech Connect

This plan documents the requirements of the Hanford Site Waste Minimization/Pollution Prevention (WMin/P2) Program. The plan specifies requirements for Hanford contractors to prevent pollution from entering the environment, to conserve resources and energy, and to reduce the quantity and toxicity of hazardous, radioactive, mixed, and sanitary waste generated at Hanford. The Pollution Prevention Awareness Program required by DOE 5400.1 (DOE 1988A) is included in the Hanford WMin/P2 Program.

Kirkendall, J.R.

1996-09-23T23:59:59.000Z

98

Characterization of radionuclude behavior in low-level waste sites  

SciTech Connect

Our laboratory is investigating the subsurface migration of radionuclides in groundwater at the Maxey Flats, Kentucky, shallow land-burial site and at a low-level aqueous waste disposal facility. At Maxey Flats, radionuclide and tracer data indicate groundwater communication between a waste trench and an adjacent experimental study area. Areal distributions of radionuclides in surface soil confirm that contamination at Maxey Flats has been largely contained on site. Of the radionuclides detected in the surface soil, only /sup 3/H and /sup 60/Co concentrations appear to be derived from waste. Plutonium exists in the anoxic subsurface waters at Maxey Flats as a reduced, anionic complex; some of the plutonium appears to be complexed with EDTA, whereas organic acids seem to be associated with /sup 137/Cs and /sup 90/Sr. At the aqueous waste disposal site, /sup 3/H and mainly anionic species of certain radionuclides, including /sup 60/Co, /sup 106/Ru, /sup 99/Tc, /sup 131/I, and traces of /sup 238/ /sup 239/ /sup 240/Pu, appear to migrate from a trench through soil adjacent to the trench. Radionuclides in the particulate and cationic forms appear to be efficiently retained by the soil. In general, observations indicate that the physicochemical form of the radionuclides mediates their subsurface migration in groundwater at both waste disposal sites.

Toste, A.P.; Kirby, L.J.; Robertson, D.E.; Abel, K.H.; Perkins, R.W.

1982-10-01T23:59:59.000Z

99

Characterization of radionuclide behavior in low level waste sites  

SciTech Connect

This laboratory is investigating the subsurface migration of radionuclides in groundwater at the Maxey Flats, Kentucky, shallow land burial site and at a low-level aqueous waste disposal facility. At Maxey Flats, radionuclide and tracer data indicate groundwater communication between a waste trench and an adjacent experimental study area. Areal distributions of radionuclides in surface soil confirm that contamination at Maxey Flats has been largely contained on site. Of the radionuclides detected in the surface soil, only /sup 3/H and /sup 60/Co concentrations appear to be derived from waste. Plutonium exists in the anoxic subsurface waters at Maxey Flats as a reduced, anionic complex; some of the plutonium appears to be complexed with EDTA, whereas organic acids seem to be associated with /sup 137/Cs and /sup 90/Sr. At the aqueous waste disposal site, /sup 3/H and mainly anionic species of certain radionuclides, including /sup 60/Co, /sup 106/Ru, /sup 99/Tc, /sup 131/I, and TRACES OF /sup 238/Pu, /sup 239/Pu and /sup 240/Pu appear to migrate from a trench through soil adjacent to the trench. Radionuclides in the particulate and cationic forms appear to be efficiently retained by the soil. In general, observations indicate that the physicochemical form of the radionuclides mediates their subsurface migration in groundwater at both waste disposal sites.

Toste, A.P.; Abel, K.H.; Kirby, L.J.; Perkins, R.W.; Robertson, D.E.

1983-02-01T23:59:59.000Z

100

Closure Report for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada  

SciTech Connect

Corrective Action Unit (CAU) 139 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Waste Disposal Sites' and consists of the following seven Corrective Action Sites (CASs), located in Areas 3, 4, 6, and 9 of the Nevada Test Site: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Closure activities were conducted from December 2008 to April 2009 according to the FFACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 139 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. Closure activities are summarized. CAU 139, 'Waste Disposal Sites,' consists of seven CASs in Areas 3, 4, 6, and 9 of the NTS. The closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 139 as documented in this CR: (1) At CAS 03-35-01, Burn Pit, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (2) At CAS 04-08-02, Waste Disposal Site, an administrative UR was implemented. No postings or post-closure monitoring are required. (3) At CAS 04-99-01, Contaminated Surface Debris, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (4) At CAS 06-19-02, Waste Disposal Site/Burn Pit, no work was performed. (5) At CAS 06-19-03, Waste Disposal Trenches, a native soil cover was installed, and a UR was implemented. (6) At CAS 09-23-01, Area 9 Gravel Gertie, a UR was implemented. (7) At CAS 09-34-01, Underground Detection Station, no work was performed.

NSTec Environmental Restoration

2009-07-31T23:59:59.000Z

Note: This page contains sample records for the topic "waste sites atsdr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Interim reclamation report: Basalt Waste Isolation Project exploration shaft site  

SciTech Connect

In 1968, a program was started to assess the feasibility of storing Hanford Site defense waste in deep caverns constructed in basalt. This program was expanded in 1976 to include investigations of the Hanford Site as a potential location for a mined commercial nuclear waste repository. Extensive studies of the geotechnical aspects of the site were undertaken, including preparations for drilling a large diameter Exploratory Shaft. This report describes the development of the reclamation program for the Exploratory Shaft Facility, its implementation, and preliminary estimates of its success. The goal of the reclamation program is to return sites disturbed by the repository program as nearly as practicable to their original conditions using native plant species. 43 refs., 19 figs., 9 tabs.

Brandt, C.A.; Rickard, W.H. Jr.; Hefty, M.G.

1990-02-01T23:59:59.000Z

102

Method of draining water through a solid waste site without leaching  

DOE Patents (OSTI)

The present invention is a method of preventing water from leaching solid waste sites by preventing atmospheric precipitation from contacting waste as the water flows through a solid waste site. The method comprises placing at least one drain hole through the solid waste site. The drain hole is seated to prevent waste material from entering the drain hole, and the solid waste site cover material is layered and graded to direct water to flow toward the drain hole and to soil beneath the waste site.

Treat, R.L.; Gee, G.W.; Whyatt, G.A.

1993-02-02T23:59:59.000Z

103

Closure Plan for the Area 5 Radioactive Waste Management Site at the Nevada Test Site  

SciTech Connect

The Area 5 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the preliminary closure plan for the Area 5 RWMS at the NTS that was presented in the Integrated Closure and Monitoring Plan (DOE, 2005a). The major updates to the plan include a new closure schedule, updated closure inventory, updated site and facility characterization data, the Title II engineering cover design, and the closure process for the 92-Acre Area of the RWMS. The format and content of this site-specific plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). This interim closure plan meets closure and post-closure monitoring requirements of the order DOE O 435.1, manual DOE M 435.1-1, Title 40 Code of Federal Regulations (CFR) Part 191, 40 CFR 265, Nevada Administrative Code (NAC) 444.743, and Resource Conservation and Recovery Act (RCRA) requirements as incorporated into NAC 444.8632. The Area 5 RWMS accepts primarily packaged low-level waste (LLW), low-level mixed waste (LLMW), and asbestiform low-level waste (ALLW) for disposal in excavated disposal cells.

NSTec Environmental Management

2008-09-01T23:59:59.000Z

104

The Savannah River Site's liquid radioactive waste operations involves the man  

NLE Websites -- All DOE Office Websites (Extended Search)

Site's liquid radioactive waste operations involves the management of space in the Site's Site's liquid radioactive waste operations involves the management of space in the Site's 49 underground waste tanks, including the removal of waste materials. Once water is removed from the waste tanks, two materials remain: salt and sludge waste. Removing salt waste, which fills approximately 90 percent of the tank space in the SRS tank farms, is a major step toward closing the Site's waste tanks that currently contain approximately 38 million gallons of waste. Due to the limited amount of tank space available in new-style tanks, some salt waste must be dispositioned in the interim to ensure sufficient tank space for continued sludge washing and to support the initial start-up and salt processing operations at the Salt Waste Processing Facility (SWPF).

105

Haiti: Feasibility of Waste-to-Energy Options at the Trutier Waste Site  

SciTech Connect

This report provides further analysis of the feasibility of a waste-to-energy (WTE) facility in the area near Port-au-Prince, Haiti. NREL's previous analysis and reports identified anaerobic digestion (AD) as the optimal WTE technology at the facility. Building on the prior analyses, this report evaluates the conceptual financial and technical viability of implementing a combined waste management and electrical power production strategy by constructing a WTE facility at the existing Trutier waste site north of Port-au-Prince.

Conrad, M. D.; Hunsberger, R.; Ness, J. E.; Harris, T.; Raibley, T.; Ursillo, P.

2014-08-01T23:59:59.000Z

106

Site specific plan. [Environmental Restoration and Waste Management, Savannah River Site  

SciTech Connect

The Environmental Restoration and Waste Management Five-Year Plan (FYP) covers the period for FY 1989 through FY 1995. The plan establishes a Department of Energy -- Headquarters (DOE-HQ) agenda for cleanup and compliance against which overall progress can be measured. The FYP covers three areas: Corrective Activities, Environmental Restoration, and Waste Management Operations. Corrective Activities are those activities necessary to bring active or standby facilities into compliance with local, state, and federal environmental regulations. Environmental restoration activities include the assessment and cleanup of surplus facilities and inactive waste sites. Waste management operations includes the treatment, storage, and disposal of wastes which are generated as a result of ongoing operations. This Site Specific Plan (SSP) has been prepared by the Savannah River Site (SRS) in order to show how environmental restoration and waste management activities that were identified during the preparation of the FYP will be implemented, tracked, and reported. The SSP describes DOE Savannah River (DOE-SR) and operating contractor, Westinghouse Savannah River Company (WSRC), organizations that are responsible, for undertaking the activities identified in this plan. The SSP has been prepared in accordance with guidance received from DOE-HQ. DOE-SR is accountable to DOE-HQ for the implementation of this plan. 8 refs., 46 figs., 23 tabs.

Hutchison, J.; Jernigan, G.

1989-12-01T23:59:59.000Z

107

Siting America's geologic repository for high-level Nuclear Waste: Implications for environmental Policy  

Science Journals Connector (OSTI)

Siting a geologic repository for isolating highlevel nuclear waste up to 10,000 years is ... before attempted in the United States. The Nuclear Waste Policy Act of 1982 exempted repository siting from ... require...

John Lemons; Charles Malone

108

Waste Isolation Pilot Plant 2003 Site Environmental Report  

NLE Websites -- All DOE Office Websites (Extended Search)

submitted as required to: submitted as required to: Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831 Prices available from (615) 576-8401 Additional information about this document may be obtained by calling (800) 336-9477. Copies may be obtained by contacting the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161 Processing and final preparation of this report was performed by the Waste Isolation Pilot Plant Management and Operating Contractor for the U.S. Department of Energy under Contract No. DE-AC04-01AL66444. Waste Isolation Pilot Plant 2003 Site Environmental Report DOE/WIPP 04-2225 i EXECUTIVE SUMMARY The mission of Waste Isolation Pilot Plant (WIPP) is to safely and permanently dispose

109

Nevada Test Site waste acceptance criteria [Revision 1  

SciTech Connect

Revision one updates the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive and mixed waste for disposal; and transuranic and transuranic mixed waste for interim storage at the NTS. Review each section of this document. This document is not intended to include all of the requirements; rather, it is meant as a guide toward meeting the regulations. All references in this document should be observed to avoid omission of requirements on which acceptance or rejection of waste will be based. The Department of Energy/Nevada Operations Office (DOE/NV) and support contractors are available to assist you in understanding or interpreting this document.

None

1997-08-01T23:59:59.000Z

110

Waste inventory and preliminary source term model for the Greater Confinement Disposal site at the Nevada Test Site  

SciTech Connect

Currently, there are several Greater Confinement Disposal (GCD) boreholes at the Radioactive Waste Management Site (RWMS) for the Nevada Test Site. These are intermediate-depth boreholes used for the disposal of special case wastes, that is, radioactive waste within the Department of Energy complex that do not meet the criteria established for disposal of high-level waste, transuranic waste, or low-level waste. A performance assessment is needed to evaluate the safety of the GCD site, and to examine the feasibility of the GCD disposal concept as a disposal solution for special case wastes in general. This report documents the effort in defining all the waste inventory presently disposed of at the GCD site, and the inventory and release model to be used in a performance assessment for compliance with the Environmental Protection Agency`s 40 CFR 191.

Chu, M.S.Y.; Bernard, E.A.

1991-12-01T23:59:59.000Z

111

Closure Report for Corrective Action Unit 523: Housekeeping Waste, Nevada Test Site, Nevada  

SciTech Connect

This closure report documents the closure activities conducted for Corrective Action Unit 523: Housekeeping Waste, Nevada Test Site, Nevada.

U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Bechtel Nevada

2003-11-01T23:59:59.000Z

112

Cesium removal from Savannah River Site radioactive waste using crystalline silicotitanate (IONSIV(R) IE-911)  

SciTech Connect

This study measured the ability of crystalline silicotitanate to remove cesium from Savannah River Site radioactive waste.

Walker, D.D.

1999-12-15T23:59:59.000Z

113

Waste Isolation Pilot Plant Annual Site Enviromental Report for 2008  

SciTech Connect

The purpose of the Waste Isolation Pilot Plant Annual Site Environmental Report for 2008 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1A, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to characterize site environmental management performance; summarize environmental occurrences and responses reported during the calendar year; confirm compliance with environmental standards and requirements; highlight significant facility programs and efforts; and describe how compliance and environmental improvement is accomplished through the WIPP Environmental Management System (EMS). The DOE Carlsbad Field Office (CBFO) and the management and operating contractor (MOC), Washington TRU Solutions LLC (WTS), maintain and preserve the environmental resources at the Waste Isolation Pilot Plant (WIPP). DOE Order 231.1A; DOE Order 450.1A, Environmental Protection Program; and DOE Order 5400.5, Radiation Protection of the Public and the Environment, require that the affected environment at and near DOE facilities be monitored to ensure the safety and health of the public and workers, and preservation of the environment. This report was prepared in accordance with DOE Order 231.1A, which requires that DOE facilities submit an ASER to the DOE Headquarters Chief Health, Safety, and Security Officer. The WIPP Hazardous Waste Facility Permit (HWFP) Number NM4890139088-TSDF (treatment, storage, and disposal facility) further requires that the ASER be provided to the New Mexico Environment Department (NMED). The WIPP mission is to safely dispose of transuranic (TRU) radioactive waste generated by the production of nuclear weapons and other activities related to the national defense of the United States. In 2008, 5,265 cubic meters (m3) of TRU waste were disposed of at the WIPP facility, including 5,216 m3 of contact-handled (CH) TRU waste and 49 m3 of remote-handled (RH) TRU waste. From the first receipt of waste in March 1999 through the end of 2008, 57,873 m3 of TRU waste had been disposed of at the WIPP facility.

Washington Regulatory and Enviromnetal Services

2009-09-21T23:59:59.000Z

114

Waste Isolation Pilot Plant 1999 Site Environmental Report  

SciTech Connect

The U.S. Department of Energy?s (DOE)Carlsbad Area Office and the Westinghouse Waste Isolation Division (WID) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environmental, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 1999 Site Environmental Report summarizes environmental data from calendar year 1999 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH- 0173T), and the Waste Isolation Pilot Plant Environmental Protection Implementation Plan (DOE/WIPP 96-2199). The above orders and guidance documents require that DOE facilities submit an Annual Site Environmental Report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health. The purpose of this report is to provide a comprehensive description of operational environmental monitoring activities, to provide an abstract of environmental activities conducted to characterize site environmental management performance to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit at WIPP during calendar year 1999. WIPP received its first shipment of waste on March 26, 1999. In 1999, no evidence was found of any adverse effects from WIPP on the surrounding environment. Radionuclide concentrations in the environment surrounding WIPP were not statistically higher in 1999 than in 1998.

Roy B. Evans, Ph.D.; Randall C. Morris, Ph.D.; Timothy D. Reynolds, Ph.D.; Ronald W. Warren; Westinghouse Waste Isolation Division

2000-09-30T23:59:59.000Z

115

USED NUCLEAR MATERIALS AT SAVANNAH RIVER SITE: ASSET OR WASTE?  

SciTech Connect

The nuclear industry, both in the commercial and the government sectors, has generated large quantities of material that span the spectrum of usefulness, from highly valuable (“assets”) to worthless (“wastes”). In many cases, the decision parameters are clear. Transuranic waste and high level waste, for example, have no value, and is either in a final disposition path today, or – in the case of high level waste – awaiting a policy decision about final disposition. Other materials, though discardable, have intrinsic scientific or market value that may be hidden by the complexity, hazard, or cost of recovery. An informed decision process should acknowledge the asset value, or lack of value, of the complete inventory of materials, and the structure necessary to implement the range of possible options. It is important that informed decisions are made about the asset value for the variety of nuclear materials available. For example, there is a significant quantity of spent fuel available for recycle (an estimated $4 billion value in the Savannah River Site’s (SRS) L area alone); in fact, SRS has already blended down more than 300 metric tons of uranium for commercial reactor use. Over 34 metric tons of surplus plutonium is also on a path to be used as commercial fuel. There are other radiological materials that are routinely handled at the site in large quantities that should be viewed as strategically important and / or commercially viable. In some cases, these materials are irreplaceable domestically, and failure to consider their recovery could jeopardize our technological leadership or national defense. The inventories of nuclear materials at SRS that have been characterized as “waste” include isotopes of plutonium, uranium, americium, and helium. Although planning has been performed to establish the technical and regulatory bases for their discard and disposal, recovery of these materials is both economically attractive and in the national interest.

Magoulas, V.

2013-06-03T23:59:59.000Z

116

Pyramiding tumuli waste disposal site and method of construction thereof  

DOE Patents (OSTI)

An improved waste disposal site for the above-ground disposal of low-level nuclear waste as disclosed herein. The disposal site is formed from at least three individual waste-containing tumuli, wherein each tumuli includes a central raised portion bordered by a sloping side portion. Two of the tumuli are constructed at ground level with adjoining side portions, and a third above-ground tumulus is constructed over the mutually adjoining side portions of the ground-level tumuli. Both the floor and the roof of each tumulus includes a layer of water-shedding material such as compacted clay, and the clay layer in the roofs of the two ground-level tumuli form the compacted clay layer of the floor of the third above-ground tumulus. Each tumulus further includes a shield wall, preferably formed from a solid array of low-level handleable nuclear wate packages. The provision of such a shield wall protects workers from potentially harmful radiation when higher-level, non-handleable packages of nuclear waste are stacked in the center of the tumulus.

Golden, Martin P. (Hamburg, NY)

1989-01-01T23:59:59.000Z

117

Waste Isolation Pilot Plant CY 2000 Site Environmental Report  

SciTech Connect

The U.S. Department of Energy's (DOE) Carlsbad Field Office and Westinghouse TRU Solutions, LLC (WTS) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environmental, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2000 Site Environmental Report summarizes environmental data from calendar year (CY) 2000 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH-0173T), and the Waste Isolation Pilot Plant Environmental Protect ion Implementation Plan (DOE/WIPP 96-2199). The above orders and guidance documents require that DOE facilities submit an Annual Site Environmental Report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health. The purpose of this report is to provide a comprehensive description of operational environmental monitoring activities, to provide an abstract of environmental activities conducted to characterize site environmental management performance to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit at WIPP during CY 2000. The format of this report follows guidance offered in a June 1, 2001 memo from DOE's Office of Policy and Guidance with the subject ''Guidance for the preparation of Department of Energy (DOE) Annual Site Environmental Reports (ASERs) for Calendar Year 2000.'' WIPP received its first shipment of waste on March 26, 1999. In 2000, no evidence was found of any adverse effects from WIPP on the surrounding environment.

Westinghouse TRU Solutions, LLC; Environmental Science and Research Foundation, Inc.

2001-12-31T23:59:59.000Z

118

Waste Isolation Pilot Plant Annual Site Environmental Report for 2012  

SciTech Connect

The purpose of the Waste Isolation Pilot Plant (WIPP) Annual Site Environmental Report for 2012 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1B, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to: Characterize site environmental management performance; Summarize environmental occurrences and responses reported during the calendar year; Confirm compliance with environmental standards and requirements; Highlight significant environmental accomplishments, including progress toward the DOE Environmental Sustainability Goals made through implementation of the WIPP Environmental Management System (EMS).

None

2013-09-01T23:59:59.000Z

119

Nevada Test Site 2000 Annual Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site  

SciTech Connect

This report is a compilation of the calendar year 2000 groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). Contamination indicator data are presented in control chart and tabular form with investigation levels (IL) indicated. Gross water chemistry data are presented in graphical and tabular form. Other information in the report includes, the Cumulative Chronology for Area 5 RWMS Groundwater Monitoring Program, a brief description of the site hydrogeology, and the groundwater sampling procedure.

Y. E.Townsend

2001-02-01T23:59:59.000Z

120

Corrective Action Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada  

SciTech Connect

Corrective Action Unit (CAU) 139, Waste Disposal Sites, is listed in the Federal Facility Agreement and Consent Order (FFACO) of 1996 (FFACO, 1996). CAU 139 consists of seven Corrective Action Sites (CASs) located in Areas 3, 4, 6, and 9 of the Nevada Test Site (NTS), which is located approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1). CAU 139 consists of the following CASs: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Details of the site history and site characterization results for CAU 139 are provided in the approved Corrective Action Investigation Plan (CAIP) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2006) and in the approved Corrective Action Decision Document (CADD) (NNSA/NSO, 2007). The purpose of this Corrective Action Plan (CAP) is to present the detailed scope of work required to implement the recommended corrective actions as specified in Section 4.0 of the approved CADD (NNSA/NSO, 2007). The approved closure activities for CAU 139 include removal of soil and debris contaminated with plutonium (Pu)-239, excavation of geophysical anomalies, removal of surface debris, construction of an engineered soil cover, and implementation of use restrictions (URs). Table 1 presents a summary of CAS-specific closure activities and contaminants of concern (COCs). Specific details of the corrective actions to be performed at each CAS are presented in Section 2.0 of this report.

NSTec Environmental Restoration

2007-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste sites atsdr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Savannah River Site’s Liquid Waste Operations Adds Multi-Functional Laboratory  

Energy.gov (U.S. Department of Energy (DOE))

AIKEN, S.C. – A new multi-functional laboratory supporting high-level waste processing at the Savannah River Site (SRS) gives workers a new and improved place to provide back-up laboratory support and more space for chemical storage.

122

Waste Isolation Pilot Plant 2001 Site Environmental Report  

SciTech Connect

The United States (U.S.) Department of Energy's (DOE) Carlsbad Field Office (CBFO) and Westinghouse TRU Solutions LLC (WTS) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environmental, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2001 Site Environmental Report summarizes environmental data from calendar year (CY) 2001 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH- 0173T), and the Waste Isolation Pilot Plant Environmental Protection Implementation Plan (DOE/WIPP 96-2199). The above Orders and guidance documents require that DOE facilities submit an annual site environmental report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health; and the New Mexico Environment Department (NMED). The purpose of this report is to provide a comprehensive description of operational environmental monitoring activities, to provide an abstract of environmental activities conducted to characterize site environmental management performance to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit at WIPP during CY 2001. WIPP received its first shipment of waste on March 26, 1999. In 2001, no evidence was found of any adverse effects from WIPP on the surrounding environment.

Westinghouse TRU Solutions, Inc.

2002-09-20T23:59:59.000Z

123

2003 Data Report: Groundwater Monitoring Program, Area 5 Radioactive Waste Management Site, Nevada Test Site  

SciTech Connect

This report is a compilation of the calendar year 2003 groundwater sampling results from the Area 5 Radioactive Waste Management Site, Nevada Test Site. Wells Ue5PW-1, Ue5PW-2, and Ue5PW-3 were sampled semi-annually for the required analytes: pH, specific conductance, total organic carbon (TOC), total organic halides (TOX), tritium, and major cations/anions. Results from all samples collected in 2003 were within established criteria. These data indicate that there has been no measurable impact to the uppermost aquifer from the Resource Conservation and Recovery Act (RCRA) regulated unit within the Area 5 Radioactive Waste Management Site and confirm that any previous detections of TOC and TOX were false positives. Contamination indicator data are presented in control chart and tabular form with investigation levels indicated. Gross water chemistry data are presented in graphical and tabular form. There were no major changes noted in the monitored groundwater elevations. There continues to be an extremely small gradient to the northeast with an average flow velocity of less than one foot per year. Other information in the report includes a Cumulative Chronology for the Area 5 Radioactive Waste Management Site Groundwater Monitoring Program, a brief description of the site hydrogeology, and the current groundwater sampling procedure.

Bechtel Nevada

2004-02-01T23:59:59.000Z

124

Idaho Site Taps Old World Process to Treat Nuclear Waste | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho Site Taps Old World Process to Treat Nuclear Waste Idaho Site Taps Old World Process to Treat Nuclear Waste Idaho Site Taps Old World Process to Treat Nuclear Waste September 9, 2013 - 12:00pm Addthis The Idaho site's sodium distillation system. The Idaho site's sodium distillation system. The top of a sodium distillation vessel, where waste enters the system. The top of a sodium distillation vessel, where waste enters the system. The Idaho site's sodium distillation system. The top of a sodium distillation vessel, where waste enters the system. IDAHO FALLS, Idaho - The EM program at the Idaho site is using an age-old process to treat transuranic (TRU) waste left over from nuclear reactor experiments. Developed in the first century and perfected by moonshiners in the 19th century, distillation will be used at the Idaho Nuclear Technology and

125

Disposal Activities and the Unique Waste Streams at the Nevada National Security Site (NNSS)  

SciTech Connect

This slide show documents waste disposal at the Nevada National Security Site. Topics covered include: radionuclide requirements for waste disposal; approved performance assessment (PA) for depleted uranium disposal; requirements; program approval; the Waste Acceptance Review Panel (WARP); description of the Radioactive Waste Acceptance Program (RWAP); facility evaluation; recent program accomplishments, nuclear facility safety changes; higher-activity waste stream disposal; and, large volume bulk waste streams.

Arnold, P.

2012-10-31T23:59:59.000Z

126

Updated Site Response Analyses for the Waste Treatment Plant, DOE Hanford, Site, Washington.  

SciTech Connect

This document describes the calculations performed to develop updated relative amplification functions for the Waste Treatment and Immobilization Plant (WTP) facility at the DOE Hanford Site, Washington State. The original 2,000-year return period design spectra for the WTP were based on the results of a probabilistic seismic hazard analysis (PSHA) performed for the DOE Hanford Site by Geomatrix (1996). Geomatrix (1996) performed the PSHA using empirical soil-site ground motion models based primarily on recordings from California. As part of that study, site response analyses were performed to evaluate ground motions at the Hanford sites and California deep soil sites. As described in Appendix A of Geomatrix (1996), characteristic site profiles and dynamic soil properties representative of conditions at various Hanford sites and California deep soil strong motion recording stations were defined. Relative site responses of the Hanford profiles and California profiles were then compared. Based on the results of those site response analyses, it was concluded that ground motions at the Hanford sites underlain by deep soil deposits are similar in character to those on California deep soil sites and it was judged appropriate to use empirical deep soil site attenuation relationships based primarily on California ground motion data to develop design spectra for the Hanford sites. In a subsequent analysis, Geomatrix (2003) updated the site response analyses of Geomatrix (1996, Appendix A) to incorporate randomization of the California and Hanford profiles. The results of that analysis also led to the conclusion that the response of the Hanford profiles was similar to the response of deep soil sites in California.

Youngs, Robert R.

2007-06-29T23:59:59.000Z

127

2005 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site  

SciTech Connect

This report is a compilation of the calendar year 2005 groundwater sampling results from the Area 5 Radioactive Waste Management Site. In additon to providing groundwater monitoring results, this report also includes information regarding site hydrogeology, well construction, sample collection, and meteorological data measured at the Area 5 Radioactive Waste Management Site at the Nevada Test Site, Ny County, Nevada.

Bechtel Nevada

2006-02-01T23:59:59.000Z

128

Distinguishing Between Site Waste, Natural, and Other Sources of Contamination at Uranium and Thorium Contaminated Sites - 12274  

SciTech Connect

Uranium and thorium processing and milling sites generate wastes (source, byproduct, or technically enhanced naturally occurring material), that contain contaminants that are similar to naturally occurring radioactive material deposits and other industry wastes. This can lead to mis-identification of other materials as Site wastes. A review of methods used by the US Army Corps of Engineers and the Environmental Protection Agency to distinguish Site wastes from potential other sources, enhanced materials, and natural deposits, at three different thorium mills was conducted. Real case examples demonstrate the importance of understanding the methods of distinguishing wastes. Distinguishing between Site wastes and enhanced Background material can be facilitated by establishing and applying a formal process. Significant project cost avoidance may be realized by distinguishing Site wastes from enhanced NORM. Collection of information on other potential sources of radioactive material and physical information related to the potential for other radioactive material sources should be gathered and reported in the Historical Site Assessment. At a minimum, locations of other such information should be recorded. Site decision makers should approach each Site area with the expectation that non site related radioactive material may be present and have a process in place to distinguish from Site and non Site related materials. (authors)

Hays, David C. [United States Army Corps of Engineers, Kansas City, Missouri, 64106 (United States)

2012-07-01T23:59:59.000Z

129

Waste Isolation Pilot Plant 2002 Site Environmental Report  

NLE Websites -- All DOE Office Websites (Extended Search)

reproduced directly from the best possible copy. It is reproduced directly from the best possible copy. It is available to DOE and DOE contractors from the following address: Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831 Prices available from (615) 576-8401 Available to the public from the National Technical Information Services United States Department of Commerce 5285 Port Royal Road Springfield, Virginia 22161 Processing and final preparation of this report was performed by the Waste Isolation Pilot Plant Management and Operating Contractor for the U.S. Department of Energy under Contract No. DE-AC04-01AL66444. Waste Isolation Pilot Plant 2002 Site Environmental Report DOE/WIPP 03-2225 iii ACKNOWLEDGMENTS We appreciate the reviews by Harold Johnson and Dr. E. B. Nuckols of the United

130

Waste to Energy Power Production at DOE and DOD Sites  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste to Energy Power Production Waste to Energy Power Production at DOE and DOD Sites January 13, 2011 Overview - Federal Agency Innovations DOE: S avannah River S ite * Biomass Heat and Power US AF: Hill Air Force Base * Landfill Gas to Energy Generation Ameresco independent DOES avannah River S ite DOES avannah River S ite (DOE-S R) * Georgia / S outh Carolina border * 300+ sq miles extending into 3 counties * Began operations in 1950s Challenges faced by DOE-S R * Aging Infrastructure Ameresco independent * Coal and fuel oil power plants * Increased / new clean air requirements * New energy efficiency / sustainability requirements Business Case Analysis S ite need for both steam and power Repair, renovate, or replace Mandates and desire for renewable energy solution Appropriated funds not available

131

Automated Monitoring System for Waste Disposal Sites and Groundwater  

SciTech Connect

A proposal submitted to the U.S. Department of Energy (DOE), Office of Science and Technology, Accelerated Site Technology Deployment (ASTD) program to deploy an automated monitoring system for waste disposal sites and groundwater, herein referred to as the ''Automated Monitoring System,'' was funded in fiscal year (FY) 2002. This two-year project included three parts: (1) deployment of cellular telephone modems on existing dataloggers, (2) development of a data management system, and (3) development of Internet accessibility. The proposed concept was initially (in FY 2002) to deploy cellular telephone modems on existing dataloggers and partially develop the data management system at the Nevada Test Site (NTS). This initial effort included both Bechtel Nevada (BN) and the Desert Research Institute (DRI). The following year (FY 2003), cellular modems were to be similarly deployed at Sandia National Laboratories (SNL) and Los Alamos National Laboratory (LANL), and the early data management system developed at the NTS was to be brought to those locations for site-specific development and use. Also in FY 2003, additional site-specific development of the complete system was to be conducted at the NTS. To complete the project, certain data, depending on site-specific conditions or restrictions involving distribution of data, were to made available through the Internet via the DRI/Western Region Climate Center (WRCC) WEABASE platform. If the complete project had been implemented, the system schematic would have looked like the figure on the following page.

S. E. Rawlinson

2003-03-01T23:59:59.000Z

132

Multi-discipline Waste Acceptance Process at the Nevada National Security Site - 13573  

SciTech Connect

The Nevada National Security Site low-level radioactive waste disposal facility acceptance process requires multiple disciplines to ensure the protection of workers, the public, and the environment. These disciplines, which include waste acceptance, nuclear criticality, safety, permitting, operations, and performance assessment, combine into the overall waste acceptance process to assess low-level radioactive waste streams for disposal at the Area 5 Radioactive Waste Management Site. Four waste streams recently highlighted the integration of these disciplines: the Oak Ridge Radioisotope Thermoelectric Generators and Consolidated Edison Uranium Solidification Project material, West Valley Melter, and classified waste. (authors)

Carilli, Jhon T. [US Department Of Energy, Nevada Site Office, P. O. Box 98518, Las Vegas, Nevada 89193-8518 (United States)] [US Department Of Energy, Nevada Site Office, P. O. Box 98518, Las Vegas, Nevada 89193-8518 (United States); Krenzien, Susan K. [Navarro-Intera, LLC, P. O. Box 98952, Las Vegas, Nevada 89193-8952 (United States)] [Navarro-Intera, LLC, P. O. Box 98952, Las Vegas, Nevada 89193-8952 (United States)

2013-07-01T23:59:59.000Z

133

Recovery Act Workers Remediate and Restore Former Waste Sites, Help Reduce  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Remediate and Restore Former Waste Sites, Help Remediate and Restore Former Waste Sites, Help Reduce Cold War Footprint Recovery Act Workers Remediate and Restore Former Waste Sites, Help Reduce Cold War Footprint The Hanford Site is looking greener these days after American Recovery and Reinvestment Act workers revegetated 166 acres across 12 waste sites, planting over 1,100 pounds of seeds and about 280,000 pounds of mulch. The largest of the sites, known as the BC Control Area, is an approximately 13-square-mile area associated with a waste disposal system used during Hanford operations. Recovery Act Workers Remediate and Restore Former Waste Sites, Help Reduce Cold War Footprint More Documents & Publications 2011 ARRA Newsletters Workers at Hanford Site Achieve Recovery Act Legacy Cleanup Goals Ahead of

134

EA-1061: The Off-site Volume Reduction of Low-level Radioactive Waste From  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1: The Off-site Volume Reduction of Low-level Radioactive 1: The Off-site Volume Reduction of Low-level Radioactive Waste From the Savannah River Site, Aiken, South Carolina EA-1061: The Off-site Volume Reduction of Low-level Radioactive Waste From the Savannah River Site, Aiken, South Carolina SUMMARY This EA evaluates the environmental impacts of the proposal for off-site volume reduction of low-level radioactive wastes generated at the U.S. Department of Energy's Savannah River Site located near Aiken, South Carolina. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD July 28, 1995 EA-1061: Finding of No Significant Impact The Off-site Volume Reduction of Low-level Radioactive Waste From the Savannah River Site July 28, 1995 EA-1061: Final Environmental Assessment The Off-site Volume Reduction of Low-level Radioactive Waste From the

135

Waste Isolation Pilot Plant Site Environmental Report Calendar Year 2002  

SciTech Connect

The United States (U.S.) Department of Energy (DOE) Carlsbad Field Office (CBFO) and Washington TRU Solutions LLC (WTS) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environment, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2002 Site Environmental Report summarizes environmental data from calendar year 2002 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, and Guidance for the Preparation of DOE Annual Site Environmental Reports (ASERs) for Calendar Year 2002 (DOE Memorandum EH-41: Natoli:6-1336, April 4, 2003). These Orders and the guidance document require that DOE facilities submit an annual site environmental report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health; and the New Mexico Environment Department (NMED).

Washington Regulatory and Environmental Services

2003-09-17T23:59:59.000Z

136

Final Reclamation Report: Basalt Waste Isolation Project exploratory shaft site  

SciTech Connect

The restoration of areas disturbed by activities of the Basalt Waste Isolation Project (BWIP) constitutes a unique operation at the US Department of Energy's (DOE) Hanford Site, both from the standpoint of restoration objectives and the time frame for accomplishing these objectives. The BWIP reclamation program comprises three separate projects: borehole reclamation, Near Surface Test Facility (NSTF) reclamation, and Exploratory Shaft Facility (ESF) reclamation. The main focus of this report is on determining the success of the revegetation effort 1 year after work was completed. This report also provides a brief overview of the ESF reclamation program. 21 refs., 7 figs., 14 tabs.

Brandt, C.A.; Rickard, W.H. Jr.

1990-06-01T23:59:59.000Z

137

RECOVERY ACT LEADS TO CLEANUP OF TRANSURANIC WASTE SITES | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RECOVERY ACT LEADS TO CLEANUP OF TRANSURANIC WASTE SITES RECOVERY ACT LEADS TO CLEANUP OF TRANSURANIC WASTE SITES RECOVERY ACT LEADS TO CLEANUP OF TRANSURANIC WASTE SITES October 1, 2010 - 12:00pm Addthis RECOVERY ACT LEADS TO CLEANUP OF TRANSURANIC WASTE SITES Carlsbad, NM - The recent completion of transuranic (TRU) waste cleanup at Vallecitos Nuclear Center (VNC) and Lawrence Livermore National Laboratory (LLNL) Site 300 in California brings the total number of sites cleared of TRU waste to 17. "Recovery Act funding has made this possible," Carlsbad Field Office (CBFO) Recovery Act Federal Project Director Casey Gadbury said of the VNC and LLNL cleanups funded with about $1.6 million in Recovery Act funds. "The cleanup of these and other small-quantity sites has been and will be accelerated because of the available Recovery Act funds."

138

RECOVERY ACT LEADS TO CLEANUP OF TRANSURANIC WASTE SITES | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RECOVERY ACT LEADS TO CLEANUP OF TRANSURANIC WASTE SITES RECOVERY ACT LEADS TO CLEANUP OF TRANSURANIC WASTE SITES RECOVERY ACT LEADS TO CLEANUP OF TRANSURANIC WASTE SITES October 1, 2010 - 12:00pm Addthis RECOVERY ACT LEADS TO CLEANUP OF TRANSURANIC WASTE SITES Carlsbad, NM - The recent completion of transuranic (TRU) waste cleanup at Vallecitos Nuclear Center (VNC) and Lawrence Livermore National Laboratory (LLNL) Site 300 in California brings the total number of sites cleared of TRU waste to 17. "Recovery Act funding has made this possible," Carlsbad Field Office (CBFO) Recovery Act Federal Project Director Casey Gadbury said of the VNC and LLNL cleanups funded with about $1.6 million in Recovery Act funds. "The cleanup of these and other small-quantity sites has been and will be accelerated because of the available Recovery Act funds."

139

Myth of nuclear explosions at waste disposal sites  

SciTech Connect

Approximately 25 years ago, an event is said to have occurred in the plains immediately west of the southern Ural mountains of the Soviet Union that is being disputed to this very day. One person says it was an explosion of nuclear wastes buried in a waste disposal site; other people say it was an above-ground test of an atomic weapon; still others suspect that an alleged contaminated area (of unknown size or even existence) is the result of a series of careless procedures. Since the event, a number of articles about the disposal-site explosion hypothesis written by a Soviet exile living in the United Kingdom have been published. Although the Soviet scientist's training and background are in the biological sciences and his knowledge of nuclear physics or chemistry is limited, people who oppose the use of nuclear energy seem to want to believe what he says without question. The work of this Soviet biologist has received wide exposure both in the United Kingdom and the United States. This report presents arguments against the disposal-site explosion hypothesis. Included are discussions of the amounts of plutonium that would be in a disposal site, the amounts of plutonium that would be needed to reach criticality in a soil-water-plutonium mixture, and experiments and theoretical calculations on the behavior of such mixtures. Our quantitative analyses show that the postulated nuclear explosion is so improbable that it is essentially impossible and can be found only in the never-never land of an active imagination. 24 references, 14 figures, 5 tables.

Stratton, W.R.

1983-10-01T23:59:59.000Z

140

Remaining Sites Verification Package for the 100-B-23, 100-B/C Area Surface Debris, Waste Site, Waste Site Reclassification Form 2008-027  

SciTech Connect

The 100-B-23, 100-B/C Surface Debris, waste consisted of multiple locations of surface debris and chemical stains that were identified during an Orphan Site Evaluation of the 100-B/C Area. Evaluation of the collected information for the surface debris features yielded four generic waste groupings: asbestos-containing material, lead debris, oil and oil filters, and treated wood. Focused verification sampling was performed concurrently with remediation. Site remediation was accomplished by selective removal of the suspect hazardous items and potentially impacted soils. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

J. M. Capron

2008-06-16T23:59:59.000Z

Note: This page contains sample records for the topic "waste sites atsdr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Salt Waste Disposal at the Savannah River Site | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Salt Waste Disposal at the Savannah River Site Salt Waste Disposal at the Savannah River Site Salt Waste Disposal at the Savannah River Site Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 authorizes the Secretary of Energy, in consultation with the Nuclear Regulatory Commission, to reclassify certain waste from reprocessing spent nuclear fuel from high-level waste to low-level waste if it meets the criteria set forth in Section 3116. Currently, DOE SRS has prepared one final (salt waste) and is working on two additional waste determinations: F Tank Farm and H Tank Farm. The Salt Waste Determination has been finalized and the Secretary of Energy issued that determination on January 17, 2006. In 2007, it was decided that due to a new Saltstone disposal vault design,

142

EA-1106: Explosive Waste Treatment Facility at Site 300, Lawrence Livermore  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

106: Explosive Waste Treatment Facility at Site 300, Lawrence 106: Explosive Waste Treatment Facility at Site 300, Lawrence Livermore National Laboratory, San Joaquin County, California EA-1106: Explosive Waste Treatment Facility at Site 300, Lawrence Livermore National Laboratory, San Joaquin County, California SUMMARY This EA evaluates the environmental impacts of the proposal to build, permit, and operate the Explosive Waste Treatment Facility to treat explosive waste at the U.S. Department of Energy's Lawrence Livermore National Laboratory Experimental Test Site, Site 300. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD April 16, 1996 EA-1106: Finding of No Significant Impact Explosive Waste Treatment Facility at Site 300, Lawrence Livermore National Laboratory April 16, 1996

143

Project plans for transuranic waste at small quantity sites in the Department of Energy comples-10522  

SciTech Connect

Los Alamos National Laboratory, Carlsbad Office (LANL-CO), has been tasked to write Project Plans for all of the Small Quantity Sites (SQS) with defense related Transuranic (TRU) waste in the Department of Energy (DOE) complex. Transuranic Work-Off Plans were precursors to the Project Plans. LANL-CO prepared a Work-Off Plan for each small quantity site. The Work-Off Plan that identified issues, drivers, schedules, and inventory. Eight sites have been chosen to deinventory their legacy TRU waste; Bettis Atomic Power Laboratory, General Electric-Vallecitos Nuclear Center, Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory-Area 300, Nevada Test Site, Nuclear Radiation Development, Sandia National Laboratory, and the Separations Process Research Unit. Each plan was written for contact and/or remote handled waste if present at the site. These project plans will assist the small quantity sites to ship legacy TRU waste offsite and de-inventory the site of legacy TRU waste. The DOE is working very diligently to reduce the nuclear foot print in the United States. Each of the eight SQSs will be de-inventoried of legacy TRU waste during a campaign that ends September 2011. The small quantity sites have a fraction of the waste that large quantity sites possess. During this campaign, the small quantity sites will package all of the legacy TRU waste and ship to Idaho or directly to the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. The sites will then be removed from the Transuranic Waste Inventory if they are de-inventoried of all waste. Each Project Plan includes the respective site inventory report, schedules, resources, drivers and any issues. These project plans have been written by the difficult waste team and will be approved by each site. Team members have been assigned to each site to write site specific project plans. Once the project plans have been written, the difficult team members will visit the sites to ensure nothing has been overlooked and to verify the inventory. After each site has approved their project plan, the site will begin writing procedures and packaging/repackaging their waste. In some cases the sites have already begun the process. The waste will be shipped after all of the waste has been characterized and approved.

Mctaggart, Jerri Lynne [Los Alamos National Laboratory; Lott, Sheila [Los Alamos National Laboratory; Gadbury, Casey [DOE

2009-01-01T23:59:59.000Z

144

Savannah River Site 2012 Outlook: Transuranic Waste Program Set to Safely  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site 2012 Outlook: Transuranic Waste Program Set to Site 2012 Outlook: Transuranic Waste Program Set to Safely Reach Milestone Savannah River Site 2012 Outlook: Transuranic Waste Program Set to Safely Reach Milestone January 1, 2012 - 12:00pm Addthis By May, Savannah River Nuclear Solutions expects to be shipping transuranic waste to the Waste Isolation Pilot Plant almost continuously, using six TRUPACT-III shipping containers like the one shown here. By May, Savannah River Nuclear Solutions expects to be shipping transuranic waste to the Waste Isolation Pilot Plant almost continuously, using six TRUPACT-III shipping containers like the one shown here. Workers relocate a pipe overpack container used to transport small amounts of excess plutonium oxide destined for long-term storage at the Waste Isolation Pilot Plant in Carlsbad, New Mexico.

145

Building of multilevel stakeholder consensus in radioactive waste repository siting  

SciTech Connect

This report considers the problem of multilevel consensus building for siting and construction of shared multinational/regional repositories for radioactive waste (RW) deep disposal. In the siting of a multinational repository there appears an essential innovative component of stakeholder consensus building, namely: to reach consent - political, social, economic, ecological - among international partners, in addition to solving the whole set of intra-national consensus building items. An entire partnering country is considered as a higher-level stakeholder - the national stakeholder, represented by the national government, being faced to simultaneous seeking an upward (international) and a downward (intra-national) consensus in a psychologically stressed environment, possibly being characterized by diverse political, economic and social interests. The following theses as a possible interdisciplinary approach towards building of shared understanding and stakeholder consensus on the international scale of RW disposal are forwarded and developed: a) building of international stakeholder consensus would be promoted by activating and diversifying on the international scale multilateral interactions between intra- and international stakeholders, including web-based networks of the RW disposal site investigations and decision-making, as well as networks for international cooperation among government authorities in nuclear safety, b) gradual progress in intergovernmental consensus and reaching multilateral agreements on shared deep repositories will be the result of democratic dialogue, via observing the whole set of various interests and common resolving of emerged controversies by using advanced synergetic approaches of conflict resolution, c) cross-cultural thinking and world perception, mental flexibility, creativity and knowledge are considered as basic prerogatives for gaining a higher level of mutual understanding and consensus for seeking further consensus, for advancing the preparedness to act together, and ultimately - for achieving desired shared goals. It is proposed that self-organized social learning will make it possible to promote adequate perception of risk and prevent, by diminishing uncertainties and unknown factors, social amplification of an imagined risk, as well as to increase the trust level and facilitate more adequate equity perception. The proposed approach to the multilevel stakeholder consensus building on international scale is extrapolated to the present-day activities of siting of such near-surface RW disposal facilities which supposedly could have non-negligible trans-boundary impact. A multilevel stakeholder interaction process is considered for the case of resolving of emerged problems in site selection for the planned near-surface RW repository in vicinity of the Lithuanian-Latvian border foreseen for disposal of short lived low- and intermediate level waste arising from the decommissioning of the Ignalina Nuclear Power Plant. (authors)

Dreimanis, A. [Radiation Safety Centre, Riga LV (Latvia)

2007-07-01T23:59:59.000Z

146

Savannah River Site Achieves Transuranic Waste Disposition Goal...  

Office of Environmental Management (EM)

liquid waste contractor, Savannah River Remediation (SRR): Closed two more underground tanks containing radioactive waste, helping reduce a significant environmental risk to South...

147

Independent Oversight Review, Savannah River Site Salt Waste...  

Energy Savers (EERE)

Waste Treatment and Immobilization Plant - May 2013 Voluntary Protection Program Onsite Review, Salt Waste Processing Facility Construction Project - February 2013 CRAD,...

148

Sorting and Characterizing Oversized Boxes of Transuranic Waste at the Nevada Test Site  

ScienceCinema (OSTI)

Characterization activities conducted inside the Visual Examination and Repackaging Building at the Area 5 Radioactive Waste Management Complex on the Nevada Test Site.

None

2014-10-28T23:59:59.000Z

149

Voluntary Protection Program Onsite Review, Waste Treatment Plant Hanford Site- June 2010  

Energy.gov (U.S. Department of Energy (DOE))

Evaluation to determine whether the Waste Treatment Plant Hanford Site is continuing to perform at a level deserving DOE-VPP Star recognition.

150

Voluntary Protection Program Onsite Review, Bechtel National Inc., Waste Treatment Plant Construction Site – November 2013  

Energy.gov (U.S. Department of Energy (DOE))

Evaluation to determine whether Bechtel National Inc., Waste Treatment Plant Construction Site is performing at a level deserving DOE-VPP Star recognition.

151

E-Print Network 3.0 - aqueous waste sites Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Center Collection: Energy Storage, Conversion and Utilization 43 Leaching of Dioxins from Municipal Waste Combustor Residues Summary: -disposal site in the U.S. accepting...

152

Voluntary Protection Program Onsite, Liquid Waste Contract Savannah River Site- February 2011  

Energy.gov (U.S. Department of Energy (DOE))

Evaluation to determine whether the Liquid Waste Contract Savannah River Site is continuing to perform at a level deserving DOE-VPP Star recognition.

153

The Nevada Test Site Legacy TRU Waste - The WIPP Central Characterization Project  

SciTech Connect

This paper discusses the Central Characterization Project (CCP) designed by the Waste Isolation Pilot Plant (WIPP) to aid sites, especially those sites with small quantities of transuranic (TRU) waste streams, in disposing of legacy waste at their facility. Because of the high cost of contracting vendors with the characterization capabilities necessary to meet the WIPP Waste Acceptance Criteria, utilizing the CCP is meant to simplify the process for small quantity sites. The paper will describe the process of mobilization of the vendors through CCP, the current production milestones that have been met, and the on-site lessons learned.

Norton, J. F.; Lahoud, R. G.; Foster, B. D.; VanMeighem, J.

2003-02-25T23:59:59.000Z

154

Operational Strategies for Low-Level Radioactive Waste Disposal Site in Egypt - 13513  

SciTech Connect

The ultimate aims of treatment and conditioning is to prepare waste for disposal by ensuring that the waste will meet the waste acceptance criteria of a disposal facility. Hence the purpose of low-level waste disposal is to isolate the waste from both people and the environment. The radioactive particles in low-level waste emit the same types of radiation that everyone receives from nature. Most low-level waste fades away to natural background levels of radioactivity in months or years. Virtually all of it diminishes to natural levels in less than 300 years. In Egypt, The Hot Laboratories and Waste Management Center has been established since 1983, as a waste management facility for LLW and ILW and the disposal site licensed for preoperational in 2005. The site accepts the low level waste generated on site and off site and unwanted radioactive sealed sources with half-life less than 30 years for disposal and all types of sources for interim storage prior to the final disposal. Operational requirements at the low-level (LLRW) disposal site are listed in the National Center for Nuclear Safety and Radiation Control NCNSRC guidelines. Additional procedures are listed in the Low-Level Radioactive Waste Disposal Facility Standards Manual. The following describes the current operations at the LLRW disposal site. (authors)

Mohamed, Yasser T. [Hot Laboratories and Waste Management Center, Atomic Energy Authority, 3 Ahmed El-Zomor St., El-Zohour District, Naser City, 11787, Cairo (Egypt)] [Hot Laboratories and Waste Management Center, Atomic Energy Authority, 3 Ahmed El-Zomor St., El-Zohour District, Naser City, 11787, Cairo (Egypt)

2013-07-01T23:59:59.000Z

155

Savannah River Site mixed waste Proposed Site Treatment Plan (PSTP). Volumes 1 and 2 and reference document: Revision 2  

SciTech Connect

The DOE is required by the Resource Conservation and Recovery Act to prepare site treatment plans describing the development of treatment capacities and technologies for treating mixed waste. This proposed plan contains Savannah River Site`s preferred options and schedules for constructing new facilities, and otherwise obtaining treatment for mixed wastes. The proposed plan consists of 2 volumes. Volume 1, Compliance Plan, identifies the capacity to be developed and the schedules as required. Volume 2, Background, provides a detailed discussion of the preferred options with technical basis, plus a description of the specific waste streams. Chapters are: Introduction; Methodology; Mixed low level waste streams; Mixed transuranic waste; High level waste; Future generation of mixed waste streams; Storage; Process for evaluation of disposal issues in support of the site treatment plans discussions; Treatment facilities and treatment technologies; Offsite waste streams for which SRS treatment is the Preferred Option (Naval reactor wastes); Summary information; and Acronyms and glossary. This revision does not contain the complete revised report, but only those pages that have been revised.

Helmich, E.; Noller, D.K.; Wierzbicki, K.S.; Bailey, L.L.

1995-07-13T23:59:59.000Z

156

EIS-0303: Savannah River Site High-Level Waste Tank Closure | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

03: Savannah River Site High-Level Waste Tank Closure 03: Savannah River Site High-Level Waste Tank Closure EIS-0303: Savannah River Site High-Level Waste Tank Closure SUMMARY This EIS evaluates alternatives for closing 49 high-level radioactive waste tanks and associated equipment such as evaporator systems, transfer pipelines, diversion boxes, and pump pits. DOE selected the preferred alternative identified in the Final EIS, Stabilize Tanks-Fill with Grout, to guide development and implementation of closure of the high-level waste tanks and associated equipment at the Savannah River Site. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD March 5, 2012 EIS-0303: Supplement Analysis Savannah River Site High-Level Waste Tank Closure, SC July 8, 2011 EIS-0303: Notice of Intent to Prepare an Environmental Impact Statement

157

Summary - Savannah River Site Tank 48H Waste Treatment Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

S S Wet Air Savan contain liquid w contain potent to the option tank w Bed S condu be pur The as Techn Techn as liste * W o o The Ele Site: S roject: S P Report Date: J ited States Savanna Why DOE r Oxidation Proc nnah River Tan ning approxima waste. The wa ns tetraphenylb tially flammable tank head spa s have been id waste: Wet Air O team Reformin cted to aid in d rsued for treatin What th ssessment team ology Element ology Readine ed below: Wet Air Oxidatio Reactor sys Offgas Trea To view the full T http://www.em.doe. objective of a Tech ements (CTEs), usin Savannah Rive SRS Tank 48H Project July 2007 Departmen ah River E-EM Did This cess k 48H is a 1.3 ately 250, 000 aste is a salt so borate (TPB), w e concentration ce. Two poten dentified for this Oxidation (WAO ng (FBSR). Th deciding which ng the Tank 48

158

Applying Lean Concepts to Waste Site Closure - 13137  

SciTech Connect

Washington Closure Hanford (WCH) was selected by the U.S. Department of Energy, Richland Operations Office to manage the River Corridor Closure Project, a 10-year contract in which WCH will clean up 220 mi{sup 2} of contaminated land at the Hanford Site in Richland, Washington. In the summer of 2011, with Tri-Party (DOE-RL, Environmental Protection Agency and Washington State Department of Ecology) Agreement Milestones due at the end of the calendar year, standard work practices were challenged in regards to closure documentation development. The Lean process, a concept that maximizes customer value while minimizing waste, was introduced to WCH's Sample Design and Cleanup Verification organization with the intention of eliminating waste and maximizing efficiencies. The outcome of implementing Lean processes and concepts was impressive. It was determined that the number of non-value added steps far outnumbered the value added steps. Internal processing time, document size, and review times were all reduced significantly; relationships with the customer and the regulators were also improved; and collaborative working relationships with the Tri Parties have been strengthened by working together on Lean initiatives. (authors)

Proctor, M.L. [Washington Closure Hanford, 2620 Fermi, Richland, Washington 99354 (United States)] [Washington Closure Hanford, 2620 Fermi, Richland, Washington 99354 (United States)

2013-07-01T23:59:59.000Z

159

Remaining Sites Verification Package for the 128-F-2, 100-F Burning Pit Waste Site, Waste Site Reclassification Form 2008-031  

SciTech Connect

The 128-F-2 waste site consisted of multiple burn and debris filled pits located directly east of the 107-F Retention Basin and approximately 30.5 m east of the northeast corner of the 100-F Area perimeter road that runs along the riverbank. The burn pits were used for incinerating nonradioactive, combustible materials from 1945 to 1965. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The current site conditions achieve the remedial action objectives and the corresponding remedial action goals established in the Remaining Sites ROD. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

J. M. Capron

2008-12-01T23:59:59.000Z

160

Use of DOE site selection criteria for screening low-level waste disposal sites on the Oak Ridge Reservation  

SciTech Connect

The proposed Department of Energy (DOE) site selection criteria were applied to the Oak Ridge Reservation, and the application was evaluated to determine the criteria's usefulness in the selection of a low-level waste disposal site. The application of the criteria required the development of a methodology to provide a framework for evaluation. The methodology is composed of site screening and site characterization stages. The site screening stage relies on reconnaissance data to identify a preferred site capable of satisfying the site selection criteria. The site characterization stage relies on a detailed site investigation to determine site acceptability. The site selection criteria were applied to the DOE Oak Ridge Reservation through the site screening stage. Results of this application were similar to those of a previous siting study on the Oak Ridge Reservation. The DOE site selection criteria when coupled with the methodology that was developed were easily applied and would be adaptable to any region of interest.

Lee, D.W.; Ketelle, R.H.; Stinton, L.H.

1983-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste sites atsdr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 2  

SciTech Connect

The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site; to describe the conceptual designs for the repository and the waste package and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. Chapter 3 summarizes present knowledge of the regional and site hydrologic systems. The purpose of the information presented is to (1) describe the hydrology based on available literature and preliminary site-exploration activities that have been or are being performed and (2) provide information to be used to develop the hydrologic aspects of the planned site characterization program. Chapter 4 contains geochemical information about the Yucca Mountain site. The chapter references plan for continued collection of geochemical data as a part of the site characterization program. Chapter 4 describes and evaluates data on the existing climate and site meterology, and outlines the suggested procedures to be used in developing and validating methods to predict future climatic variation. 534 refs., 100 figs., 72 tabs.

NONE

1988-01-01T23:59:59.000Z

162

Low-Level Waste Overview of the Nevada Test Site Waste Disposal Operations  

SciTech Connect

This paper provides an overview and the impacts of new policies, processes, and opportunities at the Nevada Test Site (NTS). Operational changes have been implemented, such as larger trench sizes and more efficient soil management as have administrative processes to address U.S. Department of Energy and U.S. Code of Federal Regulation analyses. Some adverse conditions have prompted changes in transportation and mixed low-level waste polices, and a new funding mechanism was developed. This year has seen many changes to the NTS disposal family. (authors)

Carilli, J.T.; Skougard, M.G. [U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Las Vegas, NV (United States); Krenzien, S.K. [Navarro Research and Engineering, Inc., Las Vegas, NV (United States); Wrapp, J.K.; Ramirez, C.; Yucel, V.; Shott, G.J.; Gordon, S.J.; Enockson, K.C.; Desotell, L.T. [National Security Technologies, LLC, Las Vegas, Nevada (United States)

2008-07-01T23:59:59.000Z

163

EIS-0063: Waste Management Operations, Double-Shell Tanks for Defense High Level Radioactive Waste Storage, Hanford Site, Richland, Washington  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy developed this statement to evaluate the existing tank design and consider additional specific design and safety feature alternatives for the thirteen tanks being constructed for storage of defense high-level radioactive liquid waste at the Hanford Site in Richland, Washington. This statement supplements ERDA-1538, "Final Environmental Statement on Waste Management Operation."

164

EA-1097: Solid waste Disposal- Nevada Test Site, Nye County, Nevada  

Energy.gov (U.S. Department of Energy (DOE))

This EA evaluates the environmental impacts of the proposal to continue the on-site disposal of solid waste at the Area 9 and Area 23 landfills at the U.S. Department of Energy Nevada Test Site...

165

Investigations to site a radioactive waste repository in Cumbria: Evidence against proceeding to MRWS Stage 4  

E-Print Network (OSTI)

Investigations to site a radioactive waste repository in Cumbria: Evidence against proceeding to MRWS Stage 4 Radioactive waste repository in Cumbria: Evidence against proceeding to MRWS Stage 4 s the UK radioactive waste legacy comprises difficult material which is complex, of mixed origin

166

DOE/WIPP-10-2225 Waste Isolation Pilot Plant Annual Site Environmental  

NLE Websites -- All DOE Office Websites (Extended Search)

WIPP-10-2225 WIPP-10-2225 Waste Isolation Pilot Plant Annual Site Environmental Report for 2009 Errata U.S. Department of Energy September 2010 2 Waste Isolation Pilot Plant Annual Site Environmental Report for 2009 DOE/WIPP-10-2225 3 2009 Annual Site Environmental Report To our readers: This Waste Isolation Pilot Plant (WIPP) Annual Site Environmental Report for 2009 presents summary environmental data to (1) characterize site environmental management performance, (2) summarize environmental occurrences and responses reported during the calendar year, (3) confirm compliance with environmental standards and requirements, and (4) highlight the WIPP Environmental Management System (EMS), significant environmental programs, and accomplishments including progress toward the

167

Technical basis for classification of low-activity waste fraction from Hanford site tanks  

SciTech Connect

The overall objective of this report is to provide a technical basis to support a U.S. Nuclear Regulatory Commission determination to classify the low-activity waste from the Hanford Site single-shell and double-shell tanks as `incidental` wastes after removal of additional radionuclides and immobilization.The proposed processing method, in addition to the previous radionuclide removal efforts, will remove the largest practical amount of total site radioactivity, attributable to high-level waste, for disposal is a deep geologic repository. The remainder of the waste would be considered `incidental` waste and could be disposed onsite.

Petersen, C.A.

1996-09-20T23:59:59.000Z

168

Remaining Sites Verification Package for the 100-B-1 Surface Chemical and Solid Waste Dumping Area, Waste Site Reclassification Form 2006-003  

SciTech Connect

The 100-B-1 waste site was a dumping site that was divided into two areas. One area was used as a laydown area for construction materials, and the other area was used as a chemical dumping area. The 100-B-1 Surface Chemical and Solid Waste Dumping Area site meets the remedial action objectives specified in the Remaining Sites ROD. The results demonstrate that residual contaminant concentrations support future unrestricted land uses that can be represented by a rural-residential scenario. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

R. A. Carlson

2006-04-24T23:59:59.000Z

169

Technical summary of groundwater quality protection program at the Savannah River Site, 1952--1986. Volume 1, Site geohydrology and waste sites  

SciTech Connect

This report provides information regarding the status of and groundwater quality at the waste sites at the Department of Energy`s (DOE) Savannah River Site (SRS). Specific information provided for each waste site at SRS includes its location, size, inventory (when known), and history. Many waste sites at SRS are considered to be of little environmental concern because they contain nontoxic or inert material such as construction rubble and debris. Other waste sites, however, either are known to have had an effect on groundwater quality or are suspected of having the potential to affect groundwater. Monitoring wells have been installed at most of these sites; monitoring wells are scheduled for installation at the remaining sites. Results of the groundwater analyses from these monitoring wells, presented in the appendices, are used in the report to help identify potential contaminants of concern, if any, at each waste site. The list of actions proposed for each waste site in Christensen and Gordon`s 1983 report are summarized, and an update is provided for each site. Planned actions for the future are also outlined.

Heffner, J.D. [ed.] [Exploration Resources, Inc., Athens, GA (United States)

1991-11-01T23:59:59.000Z

170

Results of Soil Vapor Extraction of a Chlorinated Solvent Dnapl Waste Site at the Rocky Flats Superfund Site  

Science Journals Connector (OSTI)

A full scale Soil Vapor Extraction (SVE) system was evaluated for remediation of subsurface contamination of the chlorinated Dense Non-Aqueous Phase Liquids (DNAPL) at a waste site at the Rocky Flats Environmenta...

S. Grace; E. Dille

1995-01-01T23:59:59.000Z

171

Idaho Site Completes Cleanup with Help from Workers who Shipped Waste  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site Completes Cleanup with Help from Workers who Shipped Site Completes Cleanup with Help from Workers who Shipped Waste Decades Ago Idaho Site Completes Cleanup with Help from Workers who Shipped Waste Decades Ago From the 1950s until the 1980s, workers at the former Rocky Flats Plant near Denver, Colo., sent hundreds of thousands of barrels and boxes of radioactive and hazardous waste to the Idaho National Laboratory (INL) for disposal both above and below ground. Now, some of those who sent the Cold War weapons waste to Idaho are helping identify the waste in pits dug up for the first time in more than 40 years. Idaho Site Completes Cleanup with Help from Workers who Shipped Waste Decades Ago More Documents & Publications Sound Project Management, Safe and Efficient Work Lead to Savings for More Recovery Act Cleanup

172

Idaho Site Completes Cleanup with Help from Workers who Shipped Waste  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site Completes Cleanup with Help from Workers who Shipped Site Completes Cleanup with Help from Workers who Shipped Waste Decades Ago Idaho Site Completes Cleanup with Help from Workers who Shipped Waste Decades Ago From the 1950s until the 1980s, workers at the former Rocky Flats Plant near Denver, Colo., sent hundreds of thousands of barrels and boxes of radioactive and hazardous waste to the Idaho National Laboratory (INL) for disposal both above and below ground. Now, some of those who sent the Cold War weapons waste to Idaho are helping identify the waste in pits dug up for the first time in more than 40 years. Idaho Site Completes Cleanup with Help from Workers who Shipped Waste Decades Ago More Documents & Publications Sound Project Management, Safe and Efficient Work Lead to Savings for More Recovery Act Cleanup

173

Overview of Nevada Test Site Radioactive and Mixed Waste Disposal Operations  

SciTech Connect

The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office Environmental Management Program is responsible for carrying out the disposal of on-site and off-site generated low-level radioactive waste (LLW) and low-level radioactive mixed waste (MW) at the Nevada Test Site (NTS). Core elements of this mission are ensuring safe and cost-effective disposal while protecting workers, the public, and the environment. This paper focuses on the impacts of new policies, processes, and opportunities at the NTS related to LLW and MW. Covered topics include: the first year of direct funding for NTS waste disposal operations; zero tolerance policy for non-compliant packages; the suspension of mixed waste disposal; waste acceptance changes; DOE Consolidated Audit Program (DOECAP) auditing; the 92-Acre Area closure plan; new eligibility requirements for generators; and operational successes with unusual waste streams.

J.T. Carilli; S.K. Krenzien; R.G. Geisinger; S.J. Gordon; B. Quinn

2009-03-01T23:59:59.000Z

174

Savannah River Site Interim Waste Management Program Plan FY 1991--1992  

SciTech Connect

The primary purpose of the Waste Management Program Plan is to provide an annual report of how Waste Management's operations are conducted, what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year. In addition, this document projects activities for several years beyond the coming fiscal year in order to adequately plan for safe handling, storage, and disposal of radioactive wastes generated at the Savannah River Site and for developing technology for improved management of wastes. In this document, work descriptions and milestone schedules are current as of December 1991.

Chavis, D.M.

1992-05-01T23:59:59.000Z

175

Savannah River Site Interim Waste Management Program Plan FY 1991--1992  

SciTech Connect

The primary purpose of the Waste Management Program Plan is to provide an annual report of how Waste Management`s operations are conducted, what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year. In addition, this document projects activities for several years beyond the coming fiscal year in order to adequately plan for safe handling, storage, and disposal of radioactive wastes generated at the Savannah River Site and for developing technology for improved management of wastes. In this document, work descriptions and milestone schedules are current as of December 1991.

Chavis, D.M.

1992-05-01T23:59:59.000Z

176

Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality, August 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

Hanford Site Waste Treatment and Hanford Site Waste Treatment and Immobilization Plant Construction Quality May 2011 August 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy i Table of Contents 1.0 Purpose ................................................................................................................................................. 1 2.0 Background .......................................................................................................................................... 1 3.0 Scope .................................................................................................................................................... 1

177

Review of the Hanford Site Waste Treatment and Immobilization Plant Project Construction Quality, November 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Site Waste Treatment and Hanford Site Waste Treatment and Immobilization Plant Project Construction Quality May 2011 November 2011 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose ................................................................................................................................................. 1 2.0 Background .......................................................................................................................................... 1 3.0 Scope .................................................................................................................................................... 1

178

Review of the Hanford Site Waste Treatment and Immobilization Plant Project Construction Quality, November 2011  

NLE Websites -- All DOE Office Websites (Extended Search)

Hanford Site Waste Treatment and Hanford Site Waste Treatment and Immobilization Plant Project Construction Quality May 2011 November 2011 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose ................................................................................................................................................. 1 2.0 Background .......................................................................................................................................... 1 3.0 Scope .................................................................................................................................................... 1

179

Process Description for the Retrieval of Earth Covered Transuranic (TRU) Waste Containers at the Hanford Site  

SciTech Connect

This document describes process and operational options for retrieval of the contact-handled suspect transuranic waste drums currently stored below grade in earth-covered trenches at the Hanford Site. Retrieval processes and options discussed include excavation, container retrieval, venting, non-destructive assay, criticality avoidance, incidental waste handling, site preparation, equipment, and shipping.

DEROSA, D.C.

2000-01-13T23:59:59.000Z

180

EM Completes Salt Waste Disposal Units $8 Million under Budget at Savannah River Site  

Energy.gov (U.S. Department of Energy (DOE))

AIKEN, S.C. – The EM program at Savannah River Site (SRS) has built two more low-level salt waste disposal units ahead of schedule and under budget. This work is essential to the mission of cleaning and closing the site's underground waste tanks.

Note: This page contains sample records for the topic "waste sites atsdr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Remaining Sites Verification Package for the 128-F-3 PNL Burn Pit, Waste Site Reclassification Form 2006-042  

SciTech Connect

The 128-F-3 waste site is a former burn pit associated with the 100-F Area experimental animal farm. The site was overlain by coal ash associated with the 126-F-1 waste site and could not be located during confirmatory site evaluation. Therefore, a housekeeping action was performed to remove the coal ash potentially obscuring residual burn pit features. The results of verification sampling demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also showed that residual contaminant concentrations are protective of groundwater and the Columbia River.

L. M. Dittmer

2006-10-20T23:59:59.000Z

182

Integrated Closure and Monitoring Plan for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site  

SciTech Connect

This document is an integrated plan for closing and monitoring two low-level radioactive waste disposal sites at the Nevada Test Site.

Bechtel Nevada

2005-06-01T23:59:59.000Z

183

Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 1  

SciTech Connect

The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in acordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and eveloping a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing prinicples, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed. 880 refs., 130 figs., 25 tabs.

NONE

1988-01-01T23:59:59.000Z

184

Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 4  

SciTech Connect

The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended and approved by the President for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site; to describe the conceptual designs for the repository and the waste package; and to present the plans for obtaining the geologic information necessary to demonstate the suitability of the site for a repository, to desin the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next; it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed.

NONE

1988-01-01T23:59:59.000Z

185

Siting of low-level radioactive waste disposal facilities in Texas  

E-Print Network (OSTI)

in the proper geologic environment. The object of disposal is to prevent exposure of the public to radioactive waste in potentially harmful concentrations. The most likely route for buried wastes to reach the public is through the ground- water system... disposal site for low- level radioactive waste is predictability, A disposal site should "be capable of being characterized, modeled, analyzed and monitored" ISiefken, et al. , 1982). Simplicity and homogeneity with respect to hydrogeologic conditions...

Isenhower, Daniel Bruce

2012-06-07T23:59:59.000Z

186

Immediate Deployment of Waste Energy Recovery Technologies at Multi Sites  

SciTech Connect

Verso Paper Corp. implemented a portfolio of 13 commercially available proven industrial technologies each exceeding 30% minimum threshold efficiency and at least 25% efficiency increase. These sub-projects are a direct result of a grant received from the Department of Energy (DOE) through its FOA 0000044 (Deployment of Combined Heat and Power (CHP) Systems, District Energy Systems, Waste Energy Recovery Systems, and Efficient Industrial Equipment), which was funded by the American Recovery Act. These were installed at 3 sites in 2 states and are helping to reduce Verso costs, making the facilities more competitive. This created approximately 100 construction jobs (FTE's) and reduced impacted Verso facilities' expense budgets. These sub-projects were deployed at Verso paper mills located in Jay, Maine, Bucksport, Maine, and Sartell, Minnesota. The paper mills are the economic engines of the rural communities in which these mills are located. Reinvestment in waste energy recovery capital improvements is providing a stimulus to help maintain domestic jobs and to competitively position the US pulp and paper industry with rising energy costs. Energy efficiency improvements are also providing a positive environmental impact by reducing greenhouse gas emissions, the quantity of wastewater treated and discharged, and fossil fuel demand. As a result of these projects, when fully operating, Verso realized a total of approximately 1.5 TBtu/Year reduction in overall energy consumption, which is 119% of the project objectives. Note that three paper machines have since been permanently curtailed. However even with these shutdowns, the company still met its energy objectives. Note also that the Sartell mill's paper machine is down due to a recent fire which damaged the mill's electrical infrastructure (the company has not decided on the mill's future).

Dennis Castonguay

2012-06-29T23:59:59.000Z

187

Cleanup of 77 Waste Sites Meets Two TPA Milestones: 1.2 million tons of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cleanup of 77 Waste Sites Meets Two TPA Milestones: 1.2 million Cleanup of 77 Waste Sites Meets Two TPA Milestones: 1.2 million tons of soil and debris disposed of from D, H Reactor Areas Cleanup of 77 Waste Sites Meets Two TPA Milestones: 1.2 million tons of soil and debris disposed of from D, H Reactor Areas January 11, 2012 - 12:00pm Addthis Media Contacts Cameron Hardy, DOE (509) 376-5365, Cameron.Hardy@rl.doe.gov Dieter Bohrmann, Ecology (509) 372-7954, Dieter.Bohrmann@ecy.wa.gov Emerald Laija, EPA (509) 376-4919, Laija.Emerald@epamail.epa.gov RICHLAND, WASH. - Department of Energy (DOE) contractor, Washington Closure Hanford, recently cleaned up 77 waste sites at Hanford to meet two Tri-Party Agreement (TPA) milestones before the end of 2011. The waste sites were located in the D and H Reactor Areas at Hanford along

188

EA-1189: Non-thermal Treatment of Hanford Site Low-level Mixed Waste,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9: Non-thermal Treatment of Hanford Site Low-level Mixed 9: Non-thermal Treatment of Hanford Site Low-level Mixed Waste, Richland, Washington EA-1189: Non-thermal Treatment of Hanford Site Low-level Mixed Waste, Richland, Washington SUMMARY This EA evaluates the environmental impacts for the proposal to demonstrate the feasibility of commercial treatment of contact-handled low-level mixed waste to meet existing Federal and State regulatory standards for eventual land disposal at the U.S. Department of Energy Richland Operations Office. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD September 29, 1998 EA-1189: Finding of No Significant Impact Non-thermal Treatment of Hanford Site Low-level Mixed Waste September 29, 1998 EA-1189: Final Environmental Assessment Non-thermal Treatment of Hanford Site Low-level Mixed Waste

189

CPSC, EPA, CDC/ATSDR, HUD PRESS STATEMENT ON DRYWALL AIR SAMPLING The U.S. Consumer Product Safety Commission (CPSC), the U.S. Environmental Protection  

E-Print Network (OSTI)

, EPA, CDC/ATSDR, HUD PRESS STATEMENT ON DRYWALL AIR SAMPLING The U.S. Consumer Product Safety odors into the air and whether identified substances found in the air pose a safety or health hazard, in support of CPSC, EPA has performed limited air sampling and monitoring in six homes in Florida

190

DOE/WIPP-11-2225 Waste Isolation Pilot Plant Annual Site Environmental  

NLE Websites -- All DOE Office Websites (Extended Search)

11-2225 11-2225 Waste Isolation Pilot Plant Annual Site Environmental Report for 2010 U.S. Department of Energy September 2011 Waste Isolation Pilot Plant Annual Site Environmental Report for 2010 DOE/WIPP-11-2225 2 This page intentionally left blank Waste Isolation Pilot Plant Annual Site Environmental Report for 2010 DOE/WIPP-11-2225 3 2010 Annual Site Environmental Report To our readers: This Waste Isolation Pilot Plant (WIPP) Annual Site Environmental Report for 2010 presents summary environmental data to (1) characterize site environmental management performance, (2) summarize environmental occurrences and responses reported during the calendar year, (3) confirm compliance with environmental standards and requirements, and (4) highlight the WIPP Environmental

191

Final Environmental Assessment for Waste Disposition Activities at the Paducah Site Paducah, Kentucky  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0-347(doc)/093002 0-347(doc)/093002 1 FINDING OF NO SIGNIFICANT IMPACT WASTE DISPOSITION ACTIVITIES AT THE PADUCAH SITE PADUCAH, KENTUCKY AGENCY: U.S. DEPARTMENT OF ENERGY ACTION: FINDING OF NO SIGNIFICANT IMPACT SUMMARY: The U.S. Department of Energy (DOE) has completed an environmental assessment (DOE/EA-1339), which is incorporated herein by reference, for proposed disposition of polychlorinated biphenyl (PCB) wastes, low-level radioactive waste (LLW), mixed low- level radioactive waste (MLLW), and transuranic (TRU) waste from the Paducah Gaseous Diffusion Plant Site (Paducah Site) in Paducah, Kentucky. All of the wastes would be transported for disposal at various locations in the United States. Based on the results of the impact analysis reported in the EA, DOE has determined that the proposed action is

192

Technology needs for remediation: Hanford and other DOE sites. Buried Waste Integrated Demonstration Program  

SciTech Connect

Technologies are being developed under the Buried Waste Integrated Demonstration (BWID) program to facilitate remediation of the US Department of Energy`s (DOE) buried and stored low-level radioactive, transuranic (TRU), and mixed radioactive and hazardous buried wastes. The BWID program is being coordinated by the Idaho National Engineering Laboratory (INEL) in southeastern Idaho, a DOE site that has large volumes of buried radioactive wastes. The program is currently focusing its efforts on the problems at INEL`s Subsurface Disposal Area (SDA) of the Radioactive Waste Management Complex (RWMC). As specific technologies are successfully demonstrated, they will be available for transfer to applications at other DOE buried waste sites. The purpose of this study is to present buried waste technology needs that have been identified for DOE sites other than INEL.

Stapp, D.C.

1993-01-01T23:59:59.000Z

193

Environmental Assessment Addendum Disposition of Additional Waste at the Paducah Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9-A 9-A Environmental Assessment Addendum Disposition of Additional Waste at the Paducah Site December 2003 U. S. Department of Energy Oak Ridge Operations Oak Ridge, Tennessee DOE/EA-1339-A Disposition of Additional Waste at the Paducah Site Environmental Assessment Addendum December 2003 U. S. Department of Energy Oak Ridge Operations U.S. Department of Energy Paducah Site DOE/EA-1339A Table of Contents Table of Contents............................................................................................................................ v Acronyms.......................................................................................................................................

194

Implementation of Waste Minimization at a complex R&D site  

SciTech Connect

Under the 1994 Waste Minimization/Pollution Prevention Crosscut Plan, the Department of Energy (DOE) has set a goal of 50% reduction in waste at its facilities by the end of 1999. Each DOE site is required to set site-specific goals to reduce generation of all types of waste including hazardous, radioactive, and mixed. To meet these goals, Argonne National Laboratory (ANL), Argonne, IL, has developed and implemented a comprehensive Pollution Prevention/Waste Minimization (PP/WMin) Program. The facilities and activities at the site vary from research into basic sciences and research into nuclear fuel cycle to high energy physics and decontamination and decommissioning projects. As a multidisciplinary R&D facility and a multiactivity site, ANL generates waste streams that are varied, in physical form as well as in chemical constituents. This in turn presents a significant challenge to put a cohesive site-wide PP/WMin Program into action. In this paper, we will describe ANL`s key activities and waste streams, the regulatory drivers for waste minimization, and the DOE goals in this area, and we will discuss ANL`s strategy for waste minimization and it`s implementation across the site.

Lang, R.E. [USDOE Chicago Operations Office, Argonne, IL (United States); Thuot, J.R.; Devgun, J.S. [Argonne National Lab., IL (United States)

1995-03-01T23:59:59.000Z

195

Overview of Fiscal Year 2002 Research and Development for Savannah River Site's Salt Waste Processing Facility  

SciTech Connect

The Department of Energy's (DOE) Savannah River Site (SRS) high-level waste program is responsible for storage, treatment, and immobilization of high-level waste for disposal. The Salt Processing Program (SPP) is the salt (soluble) waste treatment portion of the SRS high-level waste effort. The overall SPP encompasses the selection, design, construction and operation of treatment technologies to prepare the salt waste feed material for the site's grout facility (Saltstone) and vitrification facility (Defense Waste Processing Facility). Major constituents that must be removed from the salt waste and sent as feed to Defense Waste Processing Facility include actinides, strontium, cesium, and entrained sludge. In fiscal year 2002 (FY02), research and development (R&D) on the actinide and strontium removal and Caustic-Side Solvent Extraction (CSSX) processes transitioned from technology development for baseline process selection to providing input for conceptual design of the Salt Waste Processing Facility. The SPP R&D focused on advancing the technical maturity, risk reduction, engineering development, and design support for DOE's engineering, procurement, and construction (EPC) contractors for the Salt Waste Processing Facility. Thus, R&D in FY02 addressed the areas of actual waste performance, process chemistry, engineering tests of equipment, and chemical and physical properties relevant to safety. All of the testing, studies, and reports were summarized and provided to the DOE to support the Salt Waste Processing Facility, which began conceptual design in September 2002.

H. D. Harmon, R. Leugemors, PNNL; S. Fink, M. Thompson, D. Walker, WSRC; P. Suggs, W. D. Clark, Jr

2003-02-26T23:59:59.000Z

196

Summary - Salt Waste Processing Facility Design at the Savannah River Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Salt Waste Processing Facility Salt Waste Processing Facility ETR Report Date: November 2006 ETR-4 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Salt Waste Processing Facility Design at the Savannah River Site (SRS) Why DOE-EM Did This Review The Salt Waste Processing Facility (SWPF) is intended to remove and concentrate the radioactive strontium (Sr), actinides, and cesium (Cs) from the bulk salt waste solutions in the SRS high-level waste tanks. The sludge and strip effluent from the SWPF that contain concentrated Sr, actinide, and Cs wastes will be sent to the SRS Defense Waste Processing Facility (DWPF), where they will be vitrified. The decontaminated salt solution (DSS) that is left after removal of the highly

197

Review of Nuclear Safety Culture at the Hanford Site Waste Treatment and Immobilization Plant Project, October 2010  

Energy.gov (U.S. Department of Energy (DOE))

Review of Nuclear Safety Culture at the Hanford Site Waste Treatment and Immobilization Plant Project, October 2010

198

Low-level radioactive waste management: transitioning to off-site disposal at Los Alamos National Laboratory  

SciTech Connect

Facing the closure of nearly all on-site management and disposal capability for low-level radioactive waste (LLW), Los Alamos National Laboratory (LANL) is making ready to ship the majority of LLW off-site. In order to ship off-site, waste must meet the Treatment, Storage, and Disposal Facility's (TSDF) Waste Acceptance Criteria (WAC). In preparation, LANL's waste management organization must ensure LANL waste generators characterize and package waste compliantly and waste characterization documentation is complete and accurate. Key challenges that must be addressed to successfully make the shift to off-site disposal of LLW include improving the detail, accuracy, and quality of process knowledge (PK) and acceptable knowledge (AK) documentation, training waste generators and waste management staff on the higher standard of data quality and expectations, improved WAC compliance for off-site facilities, and enhanced quality assurance throughout the process. Certification of LANL generators will allow direct off-site shipping of LLW from their facilities.

Dorries, Alison M [Los Alamos National Laboratory

2010-11-09T23:59:59.000Z

199

DOE Issues Salt Waste Determination for the Savannah River Site...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

environmental and health risks posed by the material. Stored in forty-nine underground tanks, approximately 36 million gallons of radioactive waste is left over from plutonium...

200

Independent Oversight Review of the Hanford Site Waste Treatment...  

Office of Environmental Management (EM)

Oversight's November 2013 review included observation of a pneumatic pressure test, structural steel bolting in the High-Level Waste Facility (HLW), and review of the...

Note: This page contains sample records for the topic "waste sites atsdr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Recovery Act Workers Remediate and Restore Former Waste Sites, Help Reduce Cold War Footprint  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery Act Workers Recovery Act Workers Remediate and Restore Former Waste Sites, Help Reduce Cold War Footprint RICHLAND, Wash. - The Hanford Site is looking greener these days after American Recovery and Reinvestment Act workers revegetated 166 acres across 12 waste sites, planting over 1,100 pounds of seeds and about 280,000 pounds of mulch. The largest of the sites, known as the BC Control Area, is an approximately 13-square-mile area associated with a waste disposal system used during Hanford operations. Recovery Act workers remediated and reseeded a densely contaminated 140- acre portion of that area after disposing of more than 370,000 tons of contaminated soil. Recovery Act workers employed by DOE contractor CH2M HILL Plateau Remediation Company have remediated 61 waste sites,

202

Mobile loading transuranic waste at small quantity sites in the Department of Energy complex-10523  

SciTech Connect

Los Alamos National Laboratory, Carlsbad Office (LANL-CO), operates mobile loading operations for all of the large and small quantity transuranic (TRU) waste sites in the Department of Energy (DOE) complex. The mobile loading team performs loading and unloading evolutions for both contact handled (CH) and remote handled (RH) waste. For small quantity sites, many of which have yet to remove their TRU waste, the mobile loading team will load shipments that will ship to Idaho National Laboratory, a centralization site, or ship directly to the Waste Isolation Pilot Plant (WIPP). For example, Argonne National Laboratory and General Electric Vallecitos Nuclear Center have certified programs for RH waste so they will ship their RH waste directly to WIPP. Many of the other sites will ship their waste to Idaho for characterization and certification. The Mobile Loading Units (MLU) contain all of the necessary equipment needed to load CH and RH waste into the appropriate shipping vessels. Sites are required to provide additional equipment, such as cranes, fork trucks, and office space. The sites are also required to provide personnel to assist in the shipping operations. Each site requires a site visit from the mobile loading team to ensure that all of the necessary site equipment, site requirements and space for shipping can be provided. The mobile loading team works diligently with site representatives to ensure that all safety and regulatory requirements are met. Once the waste is ready and shipping needs are met, the mobile loading team can be scheduled to ship the waste. The CH MLU is designed to support TRUPACT-II and HalfPACT loading activities wherever needed within the DOE complex. The team that performs the mobile loading operation has obtained national certification under DOE for TRUPACT-II and HalfPACT loading and shipment certification. The RH MLU is designed to support removable lid canister (RLC) and RH-72B cask loading activities wherever needed within the DOE complex. The team that performs the mobile loading operation has obtained national certification under DOE for RLC and RH-72B Cask loading and shipment certification. To date, the mobile loading team has successfully made 2,131 CH and RH TRU waste shipments. The mobile loading team continues to provide each site with safe and compliant loading ofTRU waste.

Carter, Mitch [Los Alamos National Laboratory; Howard, Bryan [Los Alamos National Laboratory; Weyerman, Wade [Los Alamos National Laboratory; Mctaggart, Jerri [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

203

Waste Isolation Pilot Plant 2003 Site Environmental Report  

SciTech Connect

The purpose of this report is to provide information needed by the DOE to assess WIPP's environmental performance and to convey that performance to stakeholders and members of the public. This report has been prepared in accordance with DOE Order 231.1A and DOE guidance. This report documents WIPP's environmental monitoring programs and their results for 2003. The WIPP Project is authorized by the DOE National Security and Military Applications of Nuclear Energy Authorization Act of 1980 (Pub. L. 96-164). After more than 20 years of scientific study and public input, WIPP received its first shipment of waste on March 26, 1999. Located in southeastern New Mexico, WIPP is the nation's first underground repository permitted to safely and permanently dispose of TRU radioactive and mixed waste (as defined in the WIPP LWA) generated through the research and production of nuclear weapons and other activities related to the national defense of the United States. TRU waste is defined in the WIPP LWA as radioactive waste containing more than 100 nanocuries (3,700 becquerels [Bq]) of alpha-emitting transuranic isotopes per gram of waste, with half-lives greater than 20 years. Exceptions are noted as high-level waste, waste that has been determined not to require the degree of isolation required by the disposal regulations, and waste the U.S. Nuclear Regulatory Commission (NRC) has approved for disposal. Most TRU waste is contaminated industrial trash, such as rags and old tools, and sludges from solidified liquids; glass; metal; and other materials from dismantled buildings. A TRU waste is eligible for disposal at WIPP if it has been generated in whole or in partby one or more of the activities listed in the Nuclear Waste Policy Act of 1982 (42 United States Code [U.S.C.] §10101, et seq.), including naval reactors development, weapons activities, verification and control technology, defense nuclear materials production, defense nuclear waste and materials by-products management, defense nuclear materials security and safeguards and security investigations, and defense research and development. The waste must also meet the WIPP Waste Acceptance Criteria. When TRU waste arrives at WIPP, it is transported into the Waste Handling Building. The waste containers are removed from the shipping containers, placed on the waste hoist, and lowered to the repository level of 655 m (2,150 ft; approximately 0.5 mi) below the surface. Next, the containers of waste are removed from the hoist and placed in excavated storage rooms in the Salado Formation, a thick sequence of evaporite beds deposited approximately 250 million years ago (Figure 1.1). After each panel has been filled with waste, specially designed closures are emplaced. When all of WIPP's panels have been filled, at the conclusion of WIPP operations, seals will be placed in the shafts. Salt under pressure is relatively plastic, and mine openings will be allowed to creep closed for final disposal, encapsulating and isolating the waste.

Washington Regulatory and Environmental Services

2005-09-03T23:59:59.000Z

204

Microbial activity of trench leachates from shallow-land, low-level radioactive waste disposal sites.  

Science Journals Connector (OSTI)

...samples collected from disposal sites at Maxey Flats, Ky., and West...trenches at the disposal sites of Maxey Flats, Ky., West Valley...trench water at the Maxey Flats low-level radioactive waste disposal site, p. 747-761...

A J Francis; S Dobbs; B J Nine

1980-07-01T23:59:59.000Z

205

Idaho Site Completes Cleanup with Help from Workers who Shipped Waste Decades Ago  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 6, 2011 October 6, 2011 Idaho Site Completes Cleanup with Help from Workers who Shipped Waste Decades Ago IDAHO FALLS, Idaho - From the 1950s until the 1980s, workers at the former Rocky Flats Plant near Denver, Colo., sent hundreds of thousands of barrels and boxes of radioactive and hazardous waste to the Idaho National Laboratory (INL) for disposal both above and below ground. Now, some of those who sent the Cold War weapons waste to Idaho are helping identify the waste in pits dug up for the first time in more than 40 years. Pit 9 is the most recently completed buried waste exhumation project at INL's Radioactive Waste Management Complex. About $12 million in savings from the Idaho site's American Recovery and Reinvestment Act cleanup contributed to the project, which was

206

Nevada National Security Site 2012 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site  

SciTech Connect

This report is a compilation of the groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). The data have been collected since 1993 and include calendar year 2012 results. During 2012, groundwater samples were collected and static water levels were measured at the three pilot wells surrounding the Area 5 RWMS. Groundwater samples were collected at UE5PW-1, UE5PW-2, and UE5PW-3 on March 21, August 7, August 21, and September 11, 2012, and static water levels were measured at each of the three pilot wells on March 19, June 6, August 2, and October 15, 2012. Groundwater samples were analyzed for the following indicators of contamination: pH, specific conductance, total organic carbon, total organic halides, and tritium. Indicators of general water chemistry (cations and anions) were also measured. Final results from samples collected in 2012 were within the limits established by agreement with the Nevada Division of Environmental Protection for each analyte. These data indicate that there has been no measurable impact to the uppermost aquifer from the Area 5 RWMS. There were no significant changes in measured groundwater parameters compared to previous years. The report contains an updated cumulative chronology for the Area 5 RWMS Groundwater Monitoring Program and a brief description of the site hydrogeology.

NSTec Environmental Management

2013-02-11T23:59:59.000Z

207

Nevada Test Site 2009 Data Report: Groundwater Monitoring Program, Area 5 Radioactive Waste Management Site  

SciTech Connect

This report is a compilation of the groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). The data have been collected since 1993 and include calendar year 2009 results. During 2009, groundwater at each of the three pilot wells was sampled on March 10, 2009, and August 18, 2009, and water levels at each of the three pilot wells were measured on February 17, May 6, August 17, and November 10, 2009. Groundwater samples were analyzed for the following indicators of contamination: pH, specific conductance, total organic carbon, total organic halides, and tritium. Indicators of general water chemistry (cations and anions) were also measured. Results from all samples collected in 2009 were within the limits established by agreement with the Nevada Division of Environmental Protection for each analyte. These data indicate that there has been no measurable impact to the uppermost aquifer from the Area 5 RWMS. There were no significant changes in measured groundwater parameters compared to previous years. The report contains an updated cumulative chronology for the Area 5 RWMS Groundwater Monitoring Program and a brief description of the site hydrogeology.

NSTec Environmental Management

2010-01-19T23:59:59.000Z

208

Nevada Test Site 2002 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site  

SciTech Connect

This report is a compilation of the calendar year 2002 groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). Wells Ue5PW-1, Ue5PW-2, and Ue5PW-3 were sampled semiannually for the required analytes: pH, specific conductance, major cations/anions, metals, tritium, total organic carbon (TOC), and total organic halogen (TOX). Results from all samples collected in 2002 were within established criteria. These data indicate that there has been no measurable impact to the uppermost aquifer from the Resource Conservation and Recovery Act(RCRA) regulated unit within the RWMS-5 and confirm that the detections of TOC and TOX in 2000 were false positives. Contamination indicator data are presented in control chart and tabular form with investigation levels (ILs) indicated. Gross water chemistry data are presented in graphical and tabular form. There were no major changes noted in the monitored groundwater elevation. There continues to be an extremely small gradient to the northeast with an average flow velocity of less than one foot per year. Other information in the report includes, the Cumulative Chronology for Area 5 RWMS Groundwater Monitoring Program, a brief description of the site hydrogeology, and the groundwater sampling procedure.

Y. E. Townsend

2003-02-01T23:59:59.000Z

209

Nevada Test Site 2001 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site  

SciTech Connect

This report is a compilation of the calendar year 2001 groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). Contamination indicator data are presented in control chart and tabular form with investigation levels (ILs) indicated. Gross water chemistry data are presented in graphical and tabular form. Other information in the report includes, the Cumulative Chronology for Area 5 RWMS Groundwater Monitoring Program, a brief description of the site hydrogeology, and the groundwater sampling procedure. Wells Ue5PW-1, Ue5PW-2, and Ue5PW-3 were sampled semiannually for the required analytes: pH, specific conductance, major cations/anions, metals, tritium, total organic carbon (TOC), and total organic halogen (TOX). Due to detections of TOC and TOX in some samples collected in 2000, a plan, as approved by the Nevada Division of Environmental Protection (NDEP), was executed to collect an increased number and type of samples in 2001. Results from all samples collected in 2001 were below ILs. These data indicate that there has been no measurable impact to the uppermost aquifer from the Resource Conservation and Recovery Act (RCRA) regulated unit within the Area 5 RWMS and confirm that the detections of TOC and TOX in 2000 were false positives. There were no major changes noted in the monitored groundwater elevation. There continues to be an extremely small gradient to the northeast with an average flow velocity of less than one foot per year.

Y. E. Townsend

2002-02-01T23:59:59.000Z

210

Composite Analysis for the Area 5 Radioactive Waste Management Site at the Nevada Test Site, Nye County, Nevada  

SciTech Connect

This report summarizes the results of a Composite Analysis (CA) for the Area 5 Radioactive Waste Management Site (RWMS). The Area 5 RWMS is a US Department of Energy (DOE)-operated low-level radioactive waste (LLW) management site located in northern Frenchman Flat on the Nevada Test Site (NTS). The Area 5 RWMS has disposed of low-level radioactive waste in shallow unlined pits and trenches since 1960. Transuranic waste (TRU) and high-specific activity waste was disposed in Greater Confinement Disposal (GCD) boreholes from 1983 to 1989. The purpose of this CA is to determine if continuing operation of the Area 5 RWMS poses an acceptable or unacceptable risk to the public considering the total waste inventory and all other interacting sources of radioactive material in the vicinity. Continuing operation of the Area 5 RWMS will be considered acceptable if the total effective dose equivalent (TEDE) is less than 100 mrem in a year. If the TEDE exceeds 30 mrem in a year, a cost-benefit options analysis must be performed to determine if cost-effective management options exist to reduce the dose further. If the TEDE is found to be less than 30 mrem in a year, an analysis may be performed if warranted to determine if doses are as low as reasonably achievable (ALARA).

V. Yucel

2001-09-01T23:59:59.000Z

211

Criticality Safety Evaluation of Hanford Site High Level Waste Storage Tanks  

SciTech Connect

This criticality safety evaluation covers operations for waste in underground storage tanks at the high-level waste tank farms on the Hanford site. This evaluation provides the bases for criticality safety limits and controls to govern receipt, transfer, and long-term storage of tank waste. Justification is provided that a nuclear criticality accident cannot occur for tank farms operations, based on current fissile material and operating conditions.

ROGERS, C.A.

2000-02-17T23:59:59.000Z

212

Non-Thermal Treatment of Hanford Site Low-Level Mixed Waste  

SciTech Connect

DOE proposes to transport contact-handled LLMW from the Hanford Site to the Allied Technology Group (ATG) Mixed Waste Facility (MWF) in Richland, Washington, for non-thermal treatment and to return the treated waste to the Hanford Site for eventual land disposal. Over a 3-year period the waste would be staged to the ATG MWF, and treated waste would be returned to the Hanford Site. The ATG MWF would be located on an 18 hectare (ha) (45 acre [at]) ATG Site adjacent to ATG's licensed low-level waste processing facility at 2025 Battelle Boulevard. The ATG MWF is located approximately 0.8 kilometers (km) (0.5 miles [mi]) south of Horn Rapids Road and 1.6 km (1 mi) west of Stevens Drive. The property is located within the Horn Rapids triangle in northern Richland (Figure 2.1). The ATG MWF is to be located on the existing ATG Site, near the DOE Hanford Site, in an industrial area in the City of Richland. The effects of siting, construction, and overall operation of the MWF have been evaluated in a separate State Environmental Policy Act (SEPA) EIS (City of Richland 1998). The proposed action includes transporting the LLMW from the Hanford Site to the ATG Facility, non-thermal treatment of the LLMW at the ATG MWF, and transporting the waste from ATG back to the Hanford Site. Impacts fi-om waste treatment operations would be bounded by the ATG SEPA EIS, which included an evaluation of the impacts associated with operating the non-thermal portion of the MWF at maximum design capacity (8,500 metric tons per year) (City of Richland 1998). Up to 50 employees would be required for non-thermal treatment portion of the MWF. This includes 40 employees that would perform waste treatment operations and 10 support staff. Similar numbers were projected for the thermal treatment portion of the MWF (City of Richland 1998).

NONE

1998-09-01T23:59:59.000Z

213

EA-1707: Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste Landfill, Hanford Site, Richland, Washington  

Energy.gov (U.S. Department of Energy (DOE))

This EA evaluates the potential environmental impacts of closing the Nonradioactive Dangerous Waste Landfill and the Solid Waste Landfill. The Washington State Department of Ecology is a cooperating agency in preparing this EA.

214

Siting study for a consolidated waste capability at Los Alamos National Laboratory  

SciTech Connect

Decision analysis was used to rank alternative sites for a new Consolidated Waste Capability (CWC) to replace current hazardous solid waste operations (hazardous/chemical, mixed lowlevel, transuranic, and low-level waste) at Los Alamos National Laboratory's TA-54 Area G. An original list of 21 site alternatives was pre-screened to ten sites that were assessed using the analytical hierarchy process with five top-level criteria and fifteen sub-criteria. Three passes of the analysis were required to assess different site scenarios: 1) a fully consolidated CWC with both transfer/storage and LL W disposal in one location (45 acre minimum), 2) CWC transfer/storage only (12 acre minimum), and 3) LLW disposal only (33 acre minimum). The top site choice for all three options is TA-63/52/46; the second choice is TA-18/36. TA-54 East, Zone 4 also deserves consideration as a LLW disposal site.

Booth, Steven Richard [Los Alamos National Laboratory

2011-01-26T23:59:59.000Z

215

Lessons learned -- a comparison of the proposed on-site waste management facilities at the various Department of Energy sites  

SciTech Connect

The Department of Energy Sites (DOE) are faced with the challenge of managing several categories of waste generated from past or future cleanup activities, such as 11(e)2 byproduct material, low-level radioactive (LL), low-level radioactive mixed (LLM), transuranic (TRU), high level radioactive (HL), and hazardous waste (HW). DOE must ensure safe and efficient management of these wastes while complying with all applicable federal and state laws. Proposed waste management strategies for the EM-40 Environmental Restoration (ER) program at these sites indicate that on-site disposal is becoming a viable option. For purposes of this paper, on-site disposal cells managed by the EM-40 program at Hanford, Weldon Spring, Fernald Environmental Management Project (FEMP) and Rocky Flats were compared. Programmatic aspects and design features were evaluated to determine what comparisons can be made, and to identify benefits lessons learned that may be applicable to other sites. Based on comparative analysis, it can be concluded that the DOE EM-40 disposal cells are very unique. Stakeholders played a major role in the decision to locate the various DOE on-site disposal facilities. The disposal cells will be used to manage 11(e)2 by-product materials, LL, LLM, and/or HLW. The analysis further suggests that the design criteria are comparable. Lessons learned relative to the public involvement activities at Weldon Spring, and the design approach at Hanford should be considered when planning future on-site disposal facilities at DOE sites. Further, a detailed analysis of progress made at Hanford should be evaluated for application at sites such as Rocky Flats that are currently planning on-site disposal facilities.

Ciocco, J. [Dept. of Energy, Germantown, MD (United States); Singh, D. [Booz Allen and Hamilton, Germantown, MD (United States); Survochak, S. [DOE RFETS, Golden, CO (United States); Elo, M. [Burns and Roe, Germantown, MD (United States)

1996-12-31T23:59:59.000Z

216

US Environmental Protection Agency Radiation Protection Programs for Waste Management and Site Cleanup  

SciTech Connect

This paper provides an overview of the regulatory authorities of the Environmental Protection Agency's (EPA's) Office of Radiation and Indoor Air (ORIA) as they pertain to radioactive waste management and disposal, and cleanup of radioactively contaminated sites. It also describes several ORIA initiatives and examples of two of EPA's radioactive waste standards. (authors)

Clark, R.L. [Office of Radiation and Indoor Air (6608J), U.S. Environmental Protection Agency, Washington, D.C (United States)

2008-07-01T23:59:59.000Z

217

Nevada National Security Site 2010 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites  

SciTech Connect

Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada National Security Site (NNSS). These data are associated with radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota. This report summarizes the 2010 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports (National Security Technologies, LLC, 2010a; 2010b; 2011). Direct radiation monitoring data indicate exposure levels at the RWMSs are within the range of background levels measured at the NNSS. Air monitoring data at the Area 3 and Area 5 RWMSs indicate that tritium concentrations are slightly above background levels. All gamma spectroscopy results for air particulates collected at the Area 3 and Area 5 RWMS were below the minimum detectable concentrations, and concentrations of americium and plutonium are only slightly above detection limits. The measured levels of radionuclides in air particulates and moisture are below derived concentration guides for these radionuclides. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by facility operations. The 246.9 millimeters (mm) (9.72 inches [in.]) of precipitation at the Area 3 RWMS during 2010 is 56 percent above the average of 158.7 mm (6.25 in.), and the 190.4 mm (7.50 in.) of precipitation at the Area 5 RWMS during 2010 is 50 percent above the average of 126.7 mm (4.99 in.). Soil-gas tritium monitoring at borehole GCD-05 continues to show slow subsurface migration consistent with previous results. Water balance measurements indicate that evapotranspiration from the vegetated weighing lysimeter dries the soil and prevents downward percolation of precipitation more effectively than evaporation from the bare-soil weighing lysimeter. Data from the automated vadose zone monitoring system for the operational waste pit covers show that moisture from precipitation did not percolate below 90 centimeters (cm) (3 feet [ft]) before being removed by evaporation. Moisture from precipitation did not percolate below 61 cm (2 ft) in the vegetated final mono-layer cover on the U-3ax/bl disposal unit at the Area 3 RWMS before being removed by evapotranspiration. During 2010, there was no drainage through 2.4 meters (8 ft) of soil from the Area 3 drainage lysimeters that received only natural precipitation. Water drained from both the bare-soil drainage lysimeter and the invader species drainage lysimeter that received 3 times natural precipitation. All 2010 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing within expectations of the model and parameter assumptions for the facility PAs.

NSTec Environmental Management

2011-06-01T23:59:59.000Z

218

EA-1292: On-site Treatment of Low Level Mixed Waste, Golden, Colorado  

Energy.gov (U.S. Department of Energy (DOE))

This EA evaluates the environmental impacts for the proposal to evaluate the proposed treatment of low level mixed waste at the U.S. Department of Energy's Rocky Flats Environmental Technology Site.

219

Annual Report - FY 2001, Radioactive Waste Shipments To and From the Nevada Test Site, February 2002  

SciTech Connect

In February 1997, the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office (NNSA/NV) issued the Mitigation Action Plan which addressed potential impacts described in the ''Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada'' (DOE/EIS 0243). NNSA/NV committed to several actions, including the preparation of an annual report, which summarizes waste shipments to and from the Nevada Test Site (NTS) Radioactive Waste Management Sites (RWMSs) at Area 3 and Area 5. This document satisfies requirements with regard to low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) transported to or from the NTS during fiscal year (FY 2001).

U.S. Department of Energy, National Nuclear Security Administration, Nevada Operations Office

2002-02-01T23:59:59.000Z

220

Progress Continues Toward Closure of Two Underground Waste Tanks at Savannah River Site  

Energy.gov (U.S. Department of Energy (DOE))

AIKEN, S.C. – The EM program at the Savannah River Site (SRS) is filling two radioactive liquid waste tanks with a cement-like grout in an effort to operationally close them this fall.

Note: This page contains sample records for the topic "waste sites atsdr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Savannah River Site Basis for Section 3116 Determination for Salt Waste Disposal  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Energy (DOE) published in the Federal Register (January 24, 2006), a Notice of Availability of Section 3116 Determination for Salt Waste Disposal at the Savannah River Site.

222

Notice of Availability of Section 3116 Determination for Salt Waste Disposal at the Savannah River Site  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Energy (DOE) announces the availability of a section 3116 determination for the disposal of separated, solidified, low-activity salt waste at the Savannah River Site (SRS) near...

223

Waste to Energy Power Production at DOE and DOD Sites | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

at DOE and DOD Sites Presentation by Joe Price, Ameresco, DOE-DOD Waste to Energy using Fuel Cells Workshop held Jan. 13, 2011 wasteprice.pdf More Documents & Publications...

224

Hanford Site waste minimization and pollution prevention awareness program plan. Revision 1  

SciTech Connect

The Hanford Site WMin/P2 program is an organized, comprehensive, and continual effort to systematically reduce the quantity and toxicity of hazardous, radioactive, mixed, and sanitary wastes; conserve resources; and prevent or minimize pollutant releases to all environmental media from all Site activities. The Hanford Site WMin/P2 program plan reflects national and DOE waste minimization and pollution prevention goals and policies, and represents an ongoing effort to make WMin/P2 part of the Site operating philosophy. In accordance with these policies, a hierarchical approach to environmental management has been adopted and is applied to all types of polluting and waste generating activities. Pollution prevention and waste minimization through source reduction are first priority in the Hanford WMin/P2 program, followed by environmentally safe recycling. Treatment to reduce the quantity, toxicity, and/or mobility will be considered only when prevention or recycling are not possible or practical. Environmentally safe disposal is the last option.

Not Available

1994-05-01T23:59:59.000Z

225

DISSOLUTION & RESUSPENSION OF STORED RADIOACTIVE WASTE & ON SITE TRANSPORT & HANDLING FOR CONDITIONING FOR WASTE RETRIEVAL  

SciTech Connect

The four primary functions in a waste retrieval system are as follows: accessing all of the waste within the tank configuration; mobilizing all of the waste, which can have varying physical properties; removing the bulk and residual mobilized waste; and transferring the waste to storage or processing equipment. Selection of retrieval and transfer systems must include all of these functions. Limitations on any one of these areas affect the whole process. This section categorizes according to function many available retrieval and transfer processes, with positive attributes and limitations. Additional information on these systems is referenced in the annexes.

GIBBONS, P.W.

2001-08-13T23:59:59.000Z

226

Overview of Low-Level Waste Disposal Operations at the Nevada Test Site  

SciTech Connect

The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Environmental Management Program is charged with the responsibility to carry out the disposal of on-site and off-site generated low-level radioactive waste at the Nevada Test Site. Core elements of this mission are ensuring that disposal take place in a manner that is safe and cost-effective while protecting workers, the public, and the environment. This paper focuses on giving an overview of the Nevada Test Site facilities regarding currant design of disposal. In addition, technical attributes of the facilities established through the site characterization process will be further described. An update on current waste disposal volumes and capabilities will also be provided. This discussion leads to anticipated volume projections and disposal site requirements as the Nevada Test Site disposal operations look towards the future.

DOE /Navarro

2007-02-01T23:59:59.000Z

227

Nevada National Security Site 2011 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site  

SciTech Connect

This report is a compilation of the groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). The data have been collected since 1993 and include calendar year 2011 results. During 2011, groundwater samples were collected and static water levels were measured at the three pilot wells surrounding the Area 5 RWMS. Samples were collected at UE5PW-1 on March 8, August 2, August 24, and October 19, 2011; at UE5PW-2 on March 8, August 2, August 23, and October 19, 2011; and at UE5PW-3 on March 8, August 2, August 23, and October 19, 2011. Static water levels were measured at each of the three pilot wells on March 1, June 7, August 1, and October 17, 2011. Groundwater samples were analyzed for the following indicators of contamination: pH, specific conductance, total organic carbon, total organic halides, and tritium. Indicators of general water chemistry (cations and anions) were also measured. Initial total organic carbon and total organic halides results for samples collected in August 2011 were above previous measurements and, in some cases, above the established investigation limits. However, after field sample pumps and tubing were disinfected with Clorox solution, the results returned to normal levels. Final results from samples collected in 2011 were within the limits established by agreement with the Nevada Division of Environmental Protection for each analyte. These data indicate that there has been no measurable impact to the uppermost aquifer from the Area 5 RWMS. There were no significant changes in measured groundwater parameters compared to previous years. The report contains an updated cumulative chronology for the Area 5 RWMS Groundwater Monitoring Program and a brief description of the site hydrogeology.

NSTec Environmental Management

2012-02-27T23:59:59.000Z

228

Waste Management at the Nevada Test Site Fiscal Year 2001 Current Status  

SciTech Connect

The performance objectives of the U. S. Department of Energy's National Nuclear Security Administration Nevada Operations Office (NNSA/NV) Low-level Radioactive Waste (LLW) disposal facilities located at the Nevada Test Site transcend those of any other radioactive waste disposal site in the United States. Situated at the southern end of the Great Basin, 244 meters (800 feet) above the water table, the Area 5 Radioactive Waste Management Site (RWMS) has utilized a combination of engineered shallow land disposal cells and deep augured shafts to dispose a variety of waste streams. These include high volume low-activity waste, classified radioactive material, and high-specific-activity special case waste. Fifteen miles north of Area 5 is the Area 3 RWMS. Here bulk LLW disposal takes place in subsidence craters formed from underground testing of nuclear weapons. Earliest records indicate that documented LLW disposal activities have occurred at the Area 5 and Area 3 RWMSs since 1961 and 1 968, respectively. However, these activities have only been managed under a formal program since 1978. This paper describes the technical attributes of the facilities, present and future capacities and capabilities, and provides a description of the process from waste approval to final disposition. The paper also summarizes the current status of the waste disposal operations.

B. D. Becker; W. A. Clayton; B. M. Crowe

2002-05-01T23:59:59.000Z

229

Third Buried Waste Retrieval Project under way at DOE Idaho Site  

NLE Websites -- All DOE Office Websites (Extended Search)

Third Buried Waste Retrieval Project under way at DOE Idaho Site Third Buried Waste Retrieval Project under way at DOE Idaho Site The Idaho Cleanup Project has recently begun removing Cold War weapons waste from a third retrieval area at the Department of Energy�s Radioactive Waste Management Complex (RWMC) in eastern Idaho. Inside Project III enclosure An inside view of the Accelerated Retrieval Project III enclosure Click on image for larger picture The Accelerated Retrieval Project-III (ARP-III) began retrieving targeted waste consisting of plutonium-contaminated filters, graphite molds, solidified radioactively and organically contaminated sludges and oxidized uranium material on December 10, 2008. These materials originated at the Rocky Flats Plant near Denver, Colorado, during nuclear weapons production activities in the 1960s and were packaged in drums and sent to Idaho for

230

Waste Management at the Nevada Test Site Year 2002: Current Status  

SciTech Connect

The performance attributes of the U. S. Department of Energy's National Nuclear Security Administration Nevada Site Office Low-level Radioactive Waste (LLW) disposal facilities located at the Nevada Test Site transcend those of any other LLW disposal site in the United States. Situated at the southern end of the Great Basin, 244 meters (800 feet) above the water table, the Area 5 Radioactive Waste Management Site (RWMS) has utilized a combination of engineered shallow land disposal cells and deep augured shafts to dispose a variety of waste streams. These include high volume low-activity waste, classified material, and high-specific activity special case waste. Fifteen miles north of Area 5 is the Area 3 RWMS. Here bulk LLW disposal takes place in subsidence craters formed from underground testing of nuclear weapons. Earliest records indicate that documented LLW disposal activities have occurred at the Area 5 and Area 3 RWMSs since 1961 and 1968, respectively. However, these activities have only been managed under a formal program since 1978. This paper describes the technical attributes of the facilities, present and future capacities and capabilities, and provides a description of the process from waste approval to final disposition. The paper also summarizes the current status of the waste disposal operations.

Becker, Bruce, D.; Gertz, Carl, P.; Clayton, Wendy, A.; Carilli, Jhon, T.; Crowe, Bruce M.

2003-02-24T23:59:59.000Z

231

A COMPARISON OF HANFORD AND SAVANNAH RIVER SITE HIGH-LEVEL WASTES  

SciTech Connect

This study is a simple comparison of high-level waste from plutonium production stored in tanks at the Hanford and Savannah River sites. Savannah River principally used the PUREX process for plutonium separation. Hanford used the PUREX, Bismuth Phosphate, and REDOX processes, and reprocessed many wastes for recovery of uranium and fission products. Thus, Hanford has 55 distinct waste types, only 17 of which could be at Savannah River. While Hanford and Savannah River wastes both have high concentrations of sodium nitrate, caustic, iron, and aluminum, Hanford wastes have higher concentrations of several key constituents. The factors by which average concentrations are higher in Hanford salt waste than in Savannah River waste are 67 for {sup 241}Am, 4 for aluminum, 18 for chromium, 10 for fluoride, 8 for phosphate, 6 for potassium, and 2 for sulfate. The factors by which average concentrations are higher in Hanford sludges than in Savannah River sludges are 3 for chromium, 19 for fluoride, 67 for phosphate, and 6 for zirconium. Waste composition differences must be considered before a waste processing method is selected: A method may be applicable to one site but not to the other.

HILL RC PHILIP; REYNOLDS JG; RUTLAND PL

2011-02-23T23:59:59.000Z

232

Savannah River Site - Salt Waste Processing Facility Independent Technical Review  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SALT WASTE PROCESSING FACILITY SALT WASTE PROCESSING FACILITY INDEPENDENT TECHNICAL REVIEW November 22, 2006 Conducted by: Harry Harmon, Team Lead Civil/Structural Sub Team Facility Safety Sub Team Engineering Sub Team Peter Lowry, Lead James Langsted, Lead George Krauter, Lead Robert Kennedy Chuck Negin Art Etchells Les Youd Jerry Evatt Oliver Block Loring Wyllie Richard Stark Tim Adams Tom Anderson Todd LaPointe Stephen Gosselin Carl Costantino Norman Moreau Patrick Corcoran John Christian Ken Cooper Kari McDaniel _____________________________ Harry D. Harmon ITR Team Leader SPD-SWPF-217 SPD-SWPF-217: Salt Waste Processing Facility Independent Technical Review 11/22/2006 ACKNOWLEDGEMENT The ITR Team wishes to thank Shari Clifford of Pacific Northwest National Laboratory for

233

Savannah River Site (SRS) high level waste (HLW) structural integrity program  

SciTech Connect

The Savannah River Site has fifty-one underground tanks for radioactive waste storage and processing with doubly-contained piping systems for waste transfer. The SRS High Level Waste structural Integrity Program provides a process for evaluation and documenting material aging issues for structures, systems and components (SSC) in these facilities to maintain their confinement function. SRS has been monitoring waste, waste storage tanks, testing transfer lines and controlling waste chemistry for many years. A successful structural integrity (SI) program requires the following: detailed understanding of applicable degradation mechanisms; controlled chemistries and additions, as necessary; regular chemistry sampling and monitoring; structural capacity considerations; and a combination of on-line and periodic inspection and testing programs to provide early detection of generic degradation and verify effectiveness of the management of degradation under aging conditions identified by the SI Program. The application of these elements in the HLW SI Program achieves confinement in the facilities throughout desired service life.

Marra, J.E.; Abodishish, H.A.; Barnes, D.M.; Sindelar, R.L.; Flanders, H.E.; Houston, T.W.; Wiersma, B.J.; McNatt, F.G. Sr.; Cowfer, C.D. [Westinghouse Savannah River Co., Aiken, SC (United States)

1995-12-01T23:59:59.000Z

234

METHODOLOGY AND CALCULATIONS FOR THE ASSIGNMENT OF WASTE GROUPS FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE  

SciTech Connect

This document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 7 is the annual update of the calculations of the flammable gas Waste Groups for DSTs and SSTs. The Hanford Site contains 177 large underground radioactive waste storage tanks (28 double-shell tanks and 149 single-shell tanks). These tanks are categorized into one of three waste groups (A, B, and C) based on their waste and tank characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement gas release event. Assignments of waste groups to the 177 double-shell tanks and single-shell tanks, as reported in this document, are based on a Monte Carlo analysis of three criteria. The first criterion is the headspace flammable gas concentration following release of retained gas. This criterion determines whether the tank contains sufficient retained gas such that the well-mixed headspace flammable gas concentration would reach 100% of the lower flammability limit if the entire tank's retained gas were released. If the volume of retained gas is not sufficient to reach 100% of the lower flammability limit, then flammable conditions cannot be reached and the tank is classified as a waste group C tank independent of the method the gas is released. The second criterion is the energy ratio and considers whether there is sufficient supernatant on top of the saturated solids such that gas-bearing solids have the potential energy required to break up the material and release gas. Tanks that are not waste group C tanks and that have an energy ratio < 3.0 do not have sufficient potential energy to break up material and release gas and are assigned to waste group B. These tanks are considered to represent a potential induced flammable gas release hazard, but no spontaneous buoyant displacement flammable gas release hazard. Tanks that are not waste group C tanks and have an energy ratio {ge} 3.0, but that pass the third criterion (buoyancy ratio < 1.0, see below) are also assigned to waste group B. Even though the designation as a waste group B (or A) tank identifies the potential for an induced flammable gas release hazard, the hazard only exists for specific operations that can release the retained gas in the tank at a rate and quantity that results in reaching 100% of the lower flammability limit in the tank headspace. The identification and evaluation of tank farm operations that could cause an induced flammable gas release hazard in a waste group B (or A) tank are included in other documents. The third criterion is the buoyancy ratio. This criterion addresses tanks that are not waste group C double-shell tanks and have an energy ratio {ge} 3.0. For these double-shell tanks, the buoyancy ratio considers whether the saturated solids can retain sufficient gas to exceed neutral buoyancy relative to the supernatant layer and therefore have buoyant displacement gas release events. If the buoyancy ratio is {ge} 1.0, that double-shell tank is assigned to waste group A. These tanks are considered to have a potential spontaneous buoyant displacement flammable gas release hazard in addition to a potential induced flammable gas release hazard.

FOWLER KD

2007-12-27T23:59:59.000Z

235

METHODOLOGY AND CALCULATIONS FOR THE ASSIGNMENT OF WASTE GROUPS FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE  

SciTech Connect

The Hanford Site contains 177 large underground radioactive waste storage tanks (28 double-shell tanks and 149 single-shell tanks). These tanks are categorized into one of three waste groups (A, B, and C) based on their waste and tank characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement gas release event. Assignments of waste groups to the 177 double-shell tanks and single-shell tanks, as reported in this document, are based on a Monte Carlo analysis of three criteria. The first criterion is the headspace flammable gas concentration following release of retained gas. This criterion determines whether the tank contains sufficient retained gas such that the well-mixed headspace flammable gas concentration would reach 100% of the lower flammability limit if the entire tank's retained gas were released. If the volume of retained gas is not sufficient to reach 100% of the lower flammability limit, then flammable conditions cannot be reached and the tank is classified as a waste group C tank independent of the method the gas is released. The second criterion is the energy ratio and considers whether there is sufficient supernatant on top of the saturated solids such that gas-bearing solids have the potential energy required to break up the material and release gas. Tanks that are not waste group C tanks and that have an energy ratio < 3.0 do not have sufficient potential energy to break up material and release gas and are assigned to waste group B. These tanks are considered to represent a potential induced flammable gas release hazard, but no spontaneous buoyant displacement flammable gas release hazard. Tanks that are not waste group C tanks and have an energy ratio {ge} 3.0, but that pass the third criterion (buoyancy ratio < 1.0, see below) are also assigned to waste group B. Even though the designation as a waste group B (or A) tank identifies the potential for an induced flammable gas release hazard, the hazard only exists for specific operations that can release the retained gas in the tank at a rate and quantity that results in reaching 100% of the lower flammability limit in the tank headspace. The identification and evaluation of tank farm operations that could cause an induced flammable gas release hazard in a waste group B (or A) tank are included in other documents. The third criterion is the buoyancy ratio. This criterion addresses tanks that are not waste group C double-shell tanks and have an energy ratio {ge} 3.0. For these double-shell tanks, the buoyancy ratio considers whether the saturated solids can retain sufficient gas to exceed neutral buoyancy relative to the supernatant layer and therefore have buoyant displacement gas release events. If the buoyancy ratio is {ge} 1.0, that double-shell tank is assigned to waste group A. These tanks are considered to have a potential spontaneous buoyant displacement flammable gas release hazard in addition to a potential induced flammable gas release hazard. This document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 8 is the annual update of the calculations of the flammable gas Waste Groups for DSTs and SSTs.

WEBER RA

2009-01-16T23:59:59.000Z

236

Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality, October 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site Site Waste Treatment and Immobilization Plant Construction Quality May 2011 October 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose................................................................................................................................................. 1 2.0 Background .......................................................................................................................................... 1 3.0 Scope.................................................................................................................................................... 1 4.0 Methodology ........................................................................................................................................

237

Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality, May 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Site Hanford Site Waste Treatment and Immobilization Plant Construction Quality May 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose................................................................................................................................................ 1 2.0 Scope................................................................................................................................................... 1 3.0 Background ......................................................................................................................................... 1 4.0 Methodology ....................................................................................................................................... 2

238

Solution Speciation of Plutonium and Americium at an Australian Legacy Radioactive Waste Disposal Site  

Science Journals Connector (OSTI)

During the 1960s, radioactive waste containing small amounts of plutonium (Pu) and americium (Am) was disposed in shallow trenches at the Little Forest Burial Ground (LFBG), located near the southern suburbs of Sydney, Australia. ... It should also be taken into account that, at some sites, such as the Maxey Flats disposal site,(19) codisposed organic contaminants have been implicated in actinide mobilization. ...

Atsushi Ikeda-Ohno; Jennifer J. Harrison; Sangeeth Thiruvoth; Kerry Wilsher; Henri K. Y. Wong; Mathew P. Johansen; T. David Waite; Timothy E. Payne

2014-08-15T23:59:59.000Z

239

Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality, October 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Site Waste Treatment and Immobilization Plant Construction Quality May 2011 October 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose................................................................................................................................................. 1 2.0 Background .......................................................................................................................................... 1 3.0 Scope.................................................................................................................................................... 1 4.0 Methodology ........................................................................................................................................

240

Review of the Hanford Site Waste Treatment and Immobilization Plant Project Construction Quality, March 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Site Hanford Site Waste Treatment and Immobilization Plant Project Construction Quality May 2011 March 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose ................................................................................................................................................. 1 2.0 Background .......................................................................................................................................... 1 3.0 Scope .................................................................................................................................................... 1

Note: This page contains sample records for the topic "waste sites atsdr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Geophysical Evidence through a CSAMT Survey of the Deep Geological Structure at a Potential Radioactive Waste Site at Beishan, Gansu, China  

Science Journals Connector (OSTI)

...Foundation for funding support (no...geophysical studies at Yucca Mountain, Nevada and vicinity...radioactive waste disposal site: Geophysics...waste (HLRW) disposal site in northwestern...models underground disposal waste disposal...

Zhiguo An; Qingyun Di; Changmin Fu; Cheng Xu; Bo Cheng

242

Proposed On-Site Waste Disposal Facility (OSWDF) at the Portsmouth Gaseous Diffusion Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OH OH EM Project: On-Site Disposal Facility ETR Report Date: February 2008 ETR-12 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Proposed On-Site Waste Disposal Facility (OSWDF) at the Portsmouth Gaseous Diffusion Plant Why DOE-EM Did This Review The On-Site Waste Disposal Facility (OSWDF) is proposed for long-term containment of contaminated materials from the planned Decontamination and Decommissioning (D&D) activities at the Portsmouth Gaseous Diffusion Plant. Acceptable performance of the proposed OSWDF will depend on interactions between engineered landfill features and operations methods that recognize the unique characteristics of the waste stream and site-

243

Environmental review and regulation for siting a nuclear waste repository at Yucca Mountain, Nevada  

Science Journals Connector (OSTI)

The U.S. Department of Energy (DOE) has proposed that the first geologic repository for high-level nuclear waste in the United States be sited at Yucca Mountain, Nevada. Repository sitting was exempted by the Nuclear Waste Policy Act from the requirements for an environmental impact statement under the National Environmental Policy Act (NEPA) and, additionally, the DOE was prohibited by law from acquiring new empirical information for environmental assessment. Thus, no systematic, interdisciplinary evaluation of impacts based on site-specific data will occur before the Yucca Mountain environment is irreparably altered by site characterization. Exemption of siting activities for the nation's first geologic repository for high-level nuclear wastes from NEPA review is further evidence of the eclipse of NEPA in decision making, a trend that may foretell how controversial, technologically complex projects will be carried out in the future.

Charles R. Malone

1989-01-01T23:59:59.000Z

244

Addendum to the Closure Report for Corrective Action Unit 547: Miscellaneous Contaminated Waste Sites, Nevada National Security Site, Nevada  

SciTech Connect

This addendum to the Closure Report for Corrective Action Unit 547: Miscellaneous Contaminated Waste Sites, Nevada National Security Site, Nevada, DOE/NV--1480, dated July 2012, documents repairs of erosion and construction of engineered erosion protection features at Corrective Action Site (CAS) 02-37-02 (MULLET) and CAS 09-99-06 (PLAYER). The final as-built drawings are included in Appendix A, and photographs of field work are included in Appendix B. Field work was completed on March 11, 2013.

none,

2013-07-31T23:59:59.000Z

245

Remaining Sites Verification Package for the 1607-F4 Sanitary Sewer System, Waste Site Reclassification Form 2004-131  

SciTech Connect

The 1607-F4 waste site is the former location of the sanitary sewer system that serviced the former 115-F Gas Recirculation Building. The system included a septic tank, drain field, and associated pipeline that were in use from 1944 to 1965. The 1607-F4 waste site received unknown amounts of sanitary sewage from the 115-F Gas Recirculation Building and may have potentially contained hazardous and radioactive contamination. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also showed that residual contaminant concentrations are protective of groundwater and the Columbia River.

L. M. Dittmer

2007-12-03T23:59:59.000Z

246

Special Analysis for the Disposal of the Neutron Products Incorporated Sealed Source Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada  

SciTech Connect

The purpose of this special analysis (SA) is to determine if the Neutron Products Incorporated (NPI) Sealed Sources waste stream (DRTK000000056, Revision 0) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS). The NPI Sealed Sources waste stream consists of 850 60Co sealed sources (Duratek [DRTK] 2013). The NPI Sealed Sources waste stream requires a special analysis (SA) because the waste stream 60Co activity concentration exceeds the Nevada National Security Site (NNSS) Waste Acceptance Criteria (WAC) Action Levels.

Shott, Gregory

2014-08-31T23:59:59.000Z

247

Risk assessment for the on-site transportation of radioactive wastes for the U.S. Department of Energy Waste Management Programmatic Environmental Impact Statement  

SciTech Connect

This report documents the risk assessment performed for the on-site transportation of radioactive wastes in the US Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). Risks for the routine shipment of wastes and the impacts from potential accidental releases are analyzed for operations at the Hanford Site (Hanford) near Richland, Washington. Like other large DOE sites, hanford conducts waste management operations for all wastes types; consequently, the impacts calculated for Hanford are expected to be greater than those for smaller sites. The risk assessment conducted for on-site transportation is intended to provide an estimate of the magnitude of the potential risk for comparison with off-site transportation risks assessed for the WM PEIS.

Biwer, B.M.; Monette, F.A.; Chen, S.Y. [Argonne National Lab., IL (United States). Environmental Assessment Div.

1996-12-01T23:59:59.000Z

248

Radioactive waste disposal sites. January 1984-August 1989 (Citations from Pollution Abstracts). Report for January 1984-August 1989  

SciTech Connect

This bibliography contains citations concerning disposal sites for radioactive waste materials. Studies on potential sites for nuclear waste disposal include environmental surveys, trace element migration studies, groundwater characterization, rock mechanics, public opinion, pilot studies, and economic considerations. Safety aspects and risks associated with radioactive waste disposal are also considered. Radioactive waste processing and containerization are referenced in related published bibliographies. (Contains 155 citations fully indexed and including a title list.)

Not Available

1990-01-01T23:59:59.000Z

249

A data base for low-level radioactive waste disposal sites  

SciTech Connect

A computerized database was developed to assist the US Environmental Protection Agency (EPA) in evaluating methods and data for characterizing health hazards associated with land and ocean disposal options for low-level radioactive wastes. The data cover 1984 to 1987. The types of sites considered include Nuclear Regulatory Commission (NRC) licensed commercial disposal sites, EPA National Priority List (NPL) sites, US Department of Energy (DOE) Formerly Utilized Sites Remedial Action Project (FUSRAP) and DOE Surplus Facilities Management Program (SFMP) sites, inactive US ocean disposal sites, and DOE/Department of Defense facilities. Sources of information include reports from EPA, the US Department of Energy (DOE) and the Nuclear Regulatory Commission (NRC), as well as direct communication with individuals associated with specific programs. The data include site descriptions, waste volumes and activity levels, and physical and radiological characterization of low-level wastes. Additional information on mixed waste, packaging forms, and disposal methods were compiled, but are not yet included in the database. 55 refs., 4 figs., 2 tabs.

Daum, M.L.; Moskowitz, P.D.

1989-07-01T23:59:59.000Z

250

Framework for DOE mixed low-level waste disposal: Site fact sheets  

SciTech Connect

The Department of Energy (DOE) is required to prepare and submit Site Treatment Plans (STPS) pursuant to the Federal Facility Compliance Act (FFCAct). Although the FFCAct does not require that disposal be addressed in the STPS, the DOE and the States recognize that treatment of mixed low-level waste will result in residues that will require disposal in either low-level waste or mixed low-level waste disposal facilities. As a result, the DOE is working with the States to define and develop a process for evaluating disposal-site suitability in concert with the FFCAct and development of the STPS. Forty-nine potential disposal sites were screened; preliminary screening criteria reduced the number of sites for consideration to twenty-six. The DOE then prepared fact sheets for the remaining sites. These fact sheets provided additional site-specific information for understanding the strengths and weaknesses of the twenty-six sites as potential disposal sites. The information also provided the basis for discussion among affected States and the DOE in recommending sites for more detailed evaluation.

Gruebel, M.M.; Waters, R.D.; Hospelhorn, M.B.; Chu, M.S.Y. [eds.

1994-11-01T23:59:59.000Z

251

EIS-0109: Long-Term Management of the Existing Radioactive Wastes and Residues at the Niagara Falls Storage Site  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy developed this statement to evaluate the environmental impacts of several alternatives for management and control of the radioactive wastes and residues at the Niagara Falls Storage Site, including a no action alternative, an alternative to manage wastes on-site, and two off-site management alternatives.

252

Geochemistry of trench leachates at low-level radioactive waste burial sites  

SciTech Connect

Trench leachates from the low-level radioactive waste burial sites at Maxey Flats, Kentucky and Barnwell, South Carolina were sampled and analyzed for dissolved inorganic, organic, and radionuclide constituents. Relative to local groundwaters, the trench leachates exhibit significant modifications in major ion and radionuclide compositions. The formation and composition of the leachates can be attributed to site-specific hydrological and geochemical factors. Leaching and microbial degradation of waste materials are considered to be the important geochemical processes controlling the leachate compositions. Elevated concentrations of Na, K, Ca, Mg, Cl, dissolved organic and inorganic carbon, and various anthropogenic radionuclides reflect leaching of waste materials. Anoxic conditions as characterized by depletion of dissolved oxygen and sulphate, and high contents of alkalinity and ammonia reflect microbial decomposition of organic waste materials. Because of relatively stagnant water accumulations, the extent of modification is much greater in the Maxey Flats leachates as compared with those from Barnwell. 8 references, 2 figures, 2 tables.

Dayal, R.; Pietrzak, R.F.; Clinton, J.

1984-01-01T23:59:59.000Z

253

Consultation draft: Site characterization plan overview, Deaf Smith County Site, Texas: Nuclear Waste Policy Act (Section 113)  

SciTech Connect

The Department of Energy (DOE) is preparing a site characterization plan for the candidate site in Deaf Smith County, Texas. The DOE has provided, for information and review, a consultation draft of the plan to the State of Texas and the US Nuclear Regulatory Commission. The site characterization plan is a lengthy document that describes in considerable detail the program that will be conducted to characterize the geologic, hydrologic, and other conditions relevant to the suitability of the site for a repository. The overview presented here consists of brief summaries of important topics covered in the consultation draft of the site characterization plan; it is not a substitute for the site characterization plan. The arrangement of the overview is similar to that of the plan itself, with brief descriptions of the repository system - the site, the repository, and the waste package - preceding the discussion of the characterization program to be carried out at the Deaf Smith County site. It is intended primarily for the management staff of organizations involved in the DOE's repository program or other persons who might wish to understand the general scope of the site-characterization program, the activities to be conducted, and the facilities to be constructed rather than the technical details of site characterization. 15 figs., 1 tab.

Not Available

1988-01-01T23:59:59.000Z

254

Overview of Hanford Site High-Level Waste Tank Gas and Vapor Dynamics  

SciTech Connect

Hanford Site processes associated with the chemical separation of plutonium from uranium and other fission products produced a variety of volatile, semivolatile, and nonvolatile organic and inorganic waste chemicals that were sent to high-level waste tanks. These chemicals have undergone and continue to undergo radiolytic and thermal reactions in the tanks to produce a wide variety of degradation reaction products. The origins of the organic wastes, the chemical reactions they undergo, and their reaction products have recently been examined by Stock (2004). Stock gives particular attention to explaining the presence of various types of volatile and semivolatile organic species identified in headspace air samples. This report complements the Stock report by examining the storage of volatile and semivolatile species in the waste, their transport through any overburden of waste to the tank headspaces, the physical phenomena affecting their concentrations in the headspaces, and their eventual release into the atmosphere above the tanks.

Huckaby, James L.; Mahoney, Lenna A.; Droppo, James G.; Meacham, Joseph E.

2004-08-31T23:59:59.000Z

255

Ground-water monitoring compliance plan for the Hanford Site Solid Waste Landfill  

SciTech Connect

Washington state regulations required that solid waste landfill facilities have ground-water monitoring programs in place by May 27, 1987. This document describes the well locations, installation, characterization studies and sampling and analysis plan to be followed in implementing the ground-water monitoring program at the Hanford Site Solid Waste Landfill (SWL). It is based on Washington Administrative Code WAC 173-304-490. 11 refs., 19 figs., 4 tabs.

Fruland, R.M.

1986-10-01T23:59:59.000Z

256

Evaluation of geologic materials to limit biological intrusion into low-level radioactive waste disposal sites  

SciTech Connect

This report describes the results of a three-year research program to evaluate the performance of selected soil and rock trench cap designs in limiting biological intrusion into simulated waste. The report is divided into three sections including a discussion of background material on biological interactions with waste site trench caps, a presentation of experimental data from field studies conducted at several scales, and a final section on the interpretation and limitations of the data including implications for the user.

Hakonson, T.E.

1986-02-01T23:59:59.000Z

257

Corrective Action Investigation Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada, Rev. No.: 0  

SciTech Connect

Corrective Action Unit (CAU) 139 is located in Areas 3, 4, 6, and 9 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 139 is comprised of the seven corrective action sites (CASs) listed below: (1) 03-35-01, Burn Pit; (2) 04-08-02, Waste Disposal Site; (3) 04-99-01, Contaminated Surface Debris; (4) 06-19-02, Waste Disposal Site/Burn Pit; (5) 06-19-03, Waste Disposal Trenches; (6) 09-23-01, Area 9 Gravel Gertie; and (7) 09-34-01, Underground Detection Station. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives with the exception of CASs 09-23-01 and 09-34-01. Regarding these two CASs, CAS 09-23-01 is a gravel gertie where a zero-yield test was conducted with all contamination confined to below ground within the area of the structure, and CAS 09-34-01 is an underground detection station where no contaminants are present. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for the other five CASs where information is insufficient. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 4, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 139.

Grant Evenson

2006-04-01T23:59:59.000Z

258

Remaining Sites Verification Package for the 1607-F1 Sanitary Sewer System (124-F-1) and the 100-F-26:8 (1607-F1) Sanitary Sewer Pipelines Waste Sites, Waste Site Reclassification Form 2005-004  

SciTech Connect

The 100-F-26:8 waste site consisted of the underground pipelines that conveyed sanitary waste water from the 1701-F Gatehouse, 1709-F Fire Station, and the 1720-F Administrative Office to the 1607-F1 septic tank. The site has been remediated and presently exists as an open excavation. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also showed that residual contaminant concentrations are protective of groundwater and the Columbia River.

L. M. Dittmer

2008-03-14T23:59:59.000Z

259

Hazard ranking system evaluation of CERCLA inactive waste sites at Hanford: Volume 2: Engineered-facility sites (HISS data base)  

SciTech Connect

The purpose of this report is to formally document the assessment activities at the US Department of Energy (DOE) Hanford Site. These activities were carried out pursuant to the DOE orders that address the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Program for the cleanup of inactive waste sites. The DOE orders incorporate the US Environmental Protection Agency methodology, which is based on the Superfund Amendments and Reauthorization Act of 1986. This methodology includes: PA/SI, remedial investigation/feasibility study, record of decision, design and implementation of remedial action, operation and monitoring, and verification monitoring. Volume 1 of this report discusses the CERCLA inactive waste-site evaluation process, assumptions, and results of the Hazard Ranking System methodology employed. Volume 2 presents the data on the individual CERCLA engineered-facility sites at Hanford, as contained in the Hanford Inactive Site Surveillance (HISS) Data Base. Volume 3 presents the data on the individual CERCLA unplanned-release sites at Hanford, as contained in the HISS Data Base. 13 refs.

Jette, S.J.; Lamar, D.A.; McLaughlin, T.J.; Sherwood, D.R.; Van Houten, N.C.; Stenner, R.D.; Cramer, K.H.; Higley, K.A.

1988-10-01T23:59:59.000Z

260

Example of a Risk-Based Disposal Approval: Solidification of Hanford Site Transuranic Waste  

SciTech Connect

The Hanford Site requested, and the U.S. Environmental Protection Agency (EPA) Region 10 approved, a Toxic Substances Control Act of 1976 (TSCA) risk-based disposal approval (RBDA) for solidifying approximately four cubic meters of waste from a specific area of one of the K East Basin: the North Loadout Pit (NLOP). The NLOP waste is a highly radioactive sludge that contained polychlorinated biphenyls (PCBs) regulated under TSCA. The prescribed disposal method for liquid PCB waste under TSCA regulations is either thermal treatment or decontamination. Due to the radioactive nature of the waste, however, neither thermal treatment nor decontamination was a viable option. As a result, the proposed treatment consisted of solidifying the material to comply with waste acceptance criteria at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico, or possibly the Environmental Restoration Disposal Facility at the Hanford Site, depending on the resulting transuranic (TRU) content of the stabilized waste. The RBDA evaluated environmental risks associated with potential airborne PCBs. In addition, the RBDA made use of waste management controls already in place at the treatment unit. The treatment unit, the T Plant Complex, is a Resource Conservation and Recovery Act of 1976 (RCRA)-permitted facility used for storing and treating radioactive waste. The EPA found that the proposed activities did not pose an unreasonable risk to human health or the environment. Treatment took place from October 26, 2005 to June 9, 2006, and 332 208-liter (55-gallon) containers of solidified waste were produced. All treated drums assayed to date are TRU and will be disposed at WIPP. (authors)

Barnes, B.M.; Hyatt, J.E.; Martin, P.W.; Prignano, A.L. [Fluor Hanford, Inc., Richland, WA (United States)

2008-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste sites atsdr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

EIS-0212: Safe Interim Storage of Hanford Tank Wastes, Hanford Site, Richland, WA  

Energy.gov (U.S. Department of Energy (DOE))

This environmental impact statement asseses Department of Energy and Washington State Department of Ecology maintanence of safe storage of high-level radioactive wastes currently stored in the older single-shell tanks, the Watchlist Tank 101-SY, and future waste volumes associated with tank farm and other Hanford facility operations, including a need to provide a modern safe, reliable, and regulatory-compliant replacement cross-site transfer capability. The purpose of this action is to prevent uncontrolled releases to the environment by maintaining safe storage of high-level tank wastes.

262

1993 report on Hanford Site land disposal restrictions for mixed wastes  

SciTech Connect

Since the early 1940s, the contractors at the Hanford Site have been involved in the production and purification of nuclear defense materials. These production activities have resulted in the generation of large quantities of liquid and solid radioactive mixed waste (RMW). This waste is subject to regulation under authority of both the Resource Conservation and Recovery Act of 1976{sup 2}(RCRA) and Atomic Energy Act{sup 3}. This report covers mixed waste only. Hazardous waste that is not contaminated with radionuclides is not addressed in this report. The Washington State Department of Ecology, US Environmental Protection Agency, and US Department of Energy have entered into an agreement, the Hanford Federal Facility Agreement and Consent Order{sup 1} (commonly referred to as the Tri-Party Agreement) to bring the Hanford Site operations into compliance with dangerous waste regulations. The Tri-Party Agreement required development of the original land disposal restrictions (LDR) plan and its annual updates to comply with LDR requirements for RMW. This report is the third update of the plan first issued in 1990. The Tri-Party Agreement requires, and the baseline plan and annual update reports provide, the information that follows: Waste characterization information; storage data; treatment information; waste reduction information; schedule; and progress.

Black, D.

1993-04-01T23:59:59.000Z

263

Office of River Protection Waste Treatment and Immobilizatin Project Construction Site, Nov. 16-18, 2010  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tour and Review of the Office of River Tour and Review of the Office of River Protection Waste Treatment and Immobilization Project Construction Site, November 16-18, 2010 The U.S. Department of Energy Office of Independent Oversight, within the Office of Health, Safety and Security (HSS), conducted an orientation visit on November 16-18, 2010, at the Office of River Protection Waste Treatment Immobilization Project (WTP) at the Department of Energy (DOE) Hanford Site. The purposes of the visit were to plan and coordinate future HSS oversight activities and to review corrective actions to the most recent HSS review at WTP. The WTP is an industrial complex for separating and vitrifying millions of gallons of radioactive and chemical waste stored at the Hanford site. The WTP complex consists of five major

264

Evaluation of System Level Modeling and Simulation Tools in Support of Savannah River Site Liquid Waste Process  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Site Liquid Waste Process Savannah River Site Liquid Waste Process June 2009 Monica C. Regalbuto Office of Waste Processing DOE/EM Kevin G. Brown Vanderbilt University and CRESP David W. DePaoli Oak Ridge National Laboratory Candido Pereira Argonne National Laboratory John R. Shultz Office of Waste Processing DOE/EM Sahid C. Smith Office of Waste Processing DOE/EM External Technical Review for Evaluation of System Level Modeling and Simulation Tools in Support of Savannah River Site Liquid Waste Process June 2009 ACKNOWLEDGEMENTS The Review Team thanks Ms. Sonitza Blanco, Team Lead Planning and Coordination Waste Disposition Project U.S. Department of Energy Savannah River Operations Office and Mr. Pete Hill, Liquid Waste Planning Manager for Washington Savannah River Company, for their

265

RCRA Assessment Plan for Single-Shell Tank Waste Management Area A-AX at the Hanford Site  

SciTech Connect

This document describes a groundwater assessment plan for the single-shell tank systems in Waste Management Area A-AX at the Hanford Site.

Narbutovskih, Susan M.; Chou, Charissa J.

2006-03-03T23:59:59.000Z

266

Capacitated location of collection sites in an urban waste management system  

SciTech Connect

Urban waste management is becoming an increasingly complex task, absorbing a huge amount of resources, and having a major environmental impact. The design of a waste management system consists in various activities, and one of these is related to the location of waste collection sites. In this paper, we propose an integer programming model that helps decision makers in choosing the sites where to locate the unsorted waste collection bins in a residential town, as well as the capacities of the bins to be located at each collection site. This model helps in assessing tactical decisions through constraints that force each collection area to be capacitated enough to fit the expected waste to be directed to that area, while taking into account Quality of Service constraints from the citizens' point of view. Moreover, we propose an effective constructive heuristic approach whose aim is to provide a good solution quality in an extremely reduced computational time. Computational results on data related to the city of Nardo, in the south of Italy, show that both exact and heuristic approaches provide consistently better solutions than that currently implemented, resulting in a lower number of activated collection sites, and a lower number of bins to be used.

Ghiani, Gianpaolo, E-mail: gianpaolo.ghiani@unisalento.it [Dipartimento di Ingegneria dell'Innovazione, Universita del Salento, via per Monteroni, 73100 Lecce (Italy); Itaca S.r.l., via P. Bucci 41C, 87036 Rende (Italy); Lagana, Demetrio, E-mail: dlagana@deis.unical.it [Dipartimento di Elettronica, Informatica e Sistemistica, Universita della Calabria, via P. Bucci 41C, 87036 Rende (Italy); Manni, Emanuele, E-mail: emanuele.manni@unisalento.it [Dipartimento di Ingegneria dell'Innovazione, Universita del Salento, via per Monteroni, 73100 Lecce (Italy); Itaca S.r.l., via P. Bucci 41C, 87036 Rende (Italy); Triki, Chefi, E-mail: chefi.triki@unisalento.it [Dipartimento di Matematica, Universita del Salento, via per Monteroni, 73100 Lecce (Italy); Department of Mechanical and Industrial Engineering, Sultan Qaboos University, Muscat (Oman)

2012-07-15T23:59:59.000Z

267

Engineering study of 50 miscellaneous inactive underground radioactive waste tanks located at the Hanford Site, Washington  

SciTech Connect

This engineering study addresses 50 inactive underground radioactive waste tanks. The tanks were formerly used for the following functions associated with plutonium and uranium separations and waste management activities in the 200 East and 200 West Areas of the Hanford Site: settling solids prior to disposal of supernatant in cribs and a reverse well; neutralizing acidic process wastes prior to crib disposal; receipt and processing of single-shell tank (SST) waste for uranium recovery operations; catch tanks to collect water that intruded into diversion boxes and transfer pipeline encasements and any leakage that occurred during waste transfer operations; and waste handling and process experimentation. Most of these tanks have not been in use for many years. Several projects have, been planned and implemented since the 1970`s and through 1985 to remove waste and interim isolate or interim stabilize many of the tanks. Some tanks have been filled with grout within the past several years. Responsibility for final closure and/or remediation of these tanks is currently assigned to several programs including Tank Waste Remediation Systems (TWRS), Environmental Restoration and Remedial Action (ERRA), and Decommissioning and Resource Conservation and Recovery Act (RCRA) Closure (D&RCP). Some are under facility landlord responsibility for maintenance and surveillance (i.e. Plutonium Uranium Extraction [PUREX]). However, most of the tanks are not currently included in any active monitoring or surveillance program.

Freeman-Pollard, J.R.

1994-03-02T23:59:59.000Z

268

Remaining Sites Verification Package for the 1607-F3 Sanitary Sewer System, Waste Site Reclassification Form 2006-047  

SciTech Connect

The 1607-F3 waste site is the former location of the sanitary sewer system that supported the 182-F Pump Station, the 183-F Water Treatment Plant, and the 151-F Substation. The sanitary sewer system included a septic tank, drain field, and associated pipeline, all in use between 1944 and 1965. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also showed that residual contaminant concentrations are protective of groundwater and the Columbia River.

L. M. Dittmer

2007-04-26T23:59:59.000Z

269

Remaining Sites Verification Package for the 1607-B1 Septic System, Waste Site Reclassification Form 2007-015  

SciTech Connect

The 1607-B1 Septic System includes a septic tank, drain field, and associated connecting pipelines and influent sanitary sewer lines. This septic system serviced the former 1701-B Badgehouse, 1720-B Patrol Building/Change Room, and the 1709-B Fire Headquarters. The 1607-B1 waste site received unknown amounts of nonhazardous, nonradioactive sanitary sewage from these facilities during its operational history from 1944 to approximately 1970. In accordance with this evaluation, the confirmatory sampling results support a reclassification of this site to No Action. The current site conditions achieve the remedial action objectives and the corresponding remedial action goals established in the Remaining Sites ROD. The results of confirmatory sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

L. M. Dittmer

2007-08-30T23:59:59.000Z

270

Remaining Sites Verification Package for the 100-F-31, 144-F Sanitary Sewer System, Waste Site Reclassification Form 2006-033  

SciTech Connect

The 100-F-31 waste site is a former septic system that supported the inhalation laboratories, also referred to as the 144-F Particle Exposure Laboratory (132-F-2 waste site), which housed animals exposed to particulate material. The 100-F-31 waste site has been remediated to achieve the remedial action objectives specified in the Remaining Sites ROD. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

L. M. Dittmer

2006-08-24T23:59:59.000Z

271

Waste to Energy Power Production at DOE and DOD Sites  

E-Print Network (OSTI)

Agency Innovations DOE: Savannah River Site · BiomassHeat and Power USAF: Hill Air Force Base · Landfill;Hill AFBRenewable Energy Initiatives Landfill Gasto Energy Electrical Generation (LFGTE) · First- LFGTE Air Force Base isadjacent to the DavisCounty Landfill Hi

272

Studies of transport of waste radionuclides, through soil at the Maxey Flats, Kentucky, waste-burial site  

SciTech Connect

Two areas at the waste-burial site are being used to study the interaction of soil with liquid waste - one near Trench 19S and the other between an experimental trench and Trench 27. Analyses of soil solutions near Trench 19S indicate that radionuclides have migrated from the waste-burial trench. The observed distribution of radionuclides in that area suggests that /sup 3/H, as tritiated water, has moved the greatest distance. Movement of /sup 137/Cs is essentially nonexistent. The migration of /sup 238/Pu and /sup 60/Co lies between those two extremes. The distance that /sup 3/H has moved, at an approximated depth of 4 m, is about 9 m. Additional porous cup samplers were installed at depths to 8 m to better evaluate the distribution of radionuclides near Trench 19S. Results from soil moisture measurements by R.K. Schulz of the University of California at Berkeley indicate a preferential movement of water into the waste trench through its cap. Our study of the /sup 3/H in surface soils outside the perimeter fence of the burial site suggests that contamination of the near-surface soil water occurs and could be from an airborne source, possible originating from the site evaporator. Another localized source could be associated with underflow from a burial trench that surfaces outside the perimeter fence. The /sup 3/H content in some soil solutions near an experimental trench suggest a preferential movement of water along an interface of an original soil profile and the overlying landfill. If such an interface were to intercept a burial trench and also outcrop off site, it could act as a preferential pathway for transport of radionuclides off site. The nonsorptive behavior of a small fraction of /sup 238/Pu in the Maxey Flats waste was interpreted as having been caused by an organic complex that is very slowly biodegradable. Organic constituents in the Maxey Flats soil, Tilsit Ap, may complex some of the /sup 238/Pu, making it mobile for some period of time.

Fowler, E.B.; Polzer, W.L.; Essington, E.H.

1983-01-01T23:59:59.000Z

273

Analysis of long-term impacts of TRU waste remaining at generator/storage sites for No Action Alternative 2  

SciTech Connect

This report is a supplement to the Waste Isolation Pilot Plant Disposal-Phase Final Supplemental Environmental Impact Statement (SEIS-II). Described herein are the underlying information, data, and assumptions used to estimate the long-term human-health impacts from exposure to radionuclides and hazardous chemicals in transuranic (TRU) waste remaining at major generator/storage sites after loss of institutional control under No Action Alternative 2. Under No Action Alternative 2, TRU wastes would not be emplaced at the Waste Isolation Pilot Plant (WIPP) but would remain at generator/storage sites in surface or near-surface storage. Waste generated at smaller sites would be consolidated at the major generator/storage sites. Current TRU waste management practices would continue, but newly generated waste would be treated to meet the WIPP waste acceptance criteria. For this alternative, institutional control was assumed to be lost 100 years after the end of the waste generation period, with exposure to radionuclides and hazardous chemicals in the TRU waste possible from direct intrusion and release to the surrounding environment. The potential human-health impacts from exposure to radionuclides and hazardous chemicals in TRU waste were analyzed for two different types of scenarios. Both analyses estimated site-specific, human-health impacts at seven major generator/storage sites: the Hanford Site (Hanford), Idaho National Engineering and Environmental Laboratory (INEEL), Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), Rocky Flats Environmental Technology Site (RFETS), and Savannah River Site (SRS). The analysis focused on these seven sites because 99 % of the estimated TRU waste volume and inventory would remain there under the assumptions of No Action Alternative 2.

Buck, J.W.; Bagaasen, L.M.; Bergeron, M.P.; Streile, G.P. [and others

1997-09-01T23:59:59.000Z

274

Los Alamos Lab Completes Excavation of Waste Disposal Site Used in the 1940s  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 29, 2011 September 29, 2011 LOS ALAMOS, N.M. - Los Alamos National Laboratory recently completed excava- tion of its oldest waste disposal site, Material Disposal Area B (MDA-B), thanks to American Recovery and Reinvestment Act funding. The excavation removed about 43,000 cubic yards of contaminated debris and soil from the six-acre site. MDA-B was used from 1944 to 1948 as a waste disposal site for Manhat- tan Project and Cold War-era research and production. "The completion of the excavation of MDA-B is a landmark for our Recov- ery Act projects and environmental cleanup efforts," said George Rael, assistant manager for Environmental Operations at the National Nuclear Security Administration's Los Alamos Site Office. Completion of the excavation ends EM

275

Public Preferences Related to Consent-Based Siting of Radioactive Waste  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Public Preferences Related to Consent-Based Siting of Radioactive Public Preferences Related to Consent-Based Siting of Radioactive Waste Management Facilities for Storage and Disposal Public Preferences Related to Consent-Based Siting of Radioactive Waste Management Facilities for Storage and Disposal This report provides findings from a set of social science studies undertaken by the Center for Risk and Crisis Management (CRCM) and Sandia National Laboratories (SNL), which focus on public attitudes and preferences concerning the siting of nuclear repositories and interim storage facilities. Overall these studies are intended to be responsive to the recommendation of the Blue Ribbon Commission on America's Nuclear Future (BRC) that US Department of Energy (DOE) learn as much as possible from prior experience. As stated by the BRC (BRC 2012: 118): "To ensure

276

Result Summary for the Area 5 Radioactive Waste Management Site Performance Assessment Model Version 4.113  

SciTech Connect

Preliminary results for Version 4.113 of the Nevada National Security Site Area 5 Radioactive Waste Management Site performance assessment model are summarized. Version 4.113 includes the Fiscal Year 2011 inventory estimate.

Shott, G. J.

2012-04-15T23:59:59.000Z

277

Restoration of areas disturbed by site studies for a mined commercial radioactive waste repository: The Basalt Waste Isolation Project (BWIP)  

SciTech Connect

The Basalt Waste Isolation Project (BWIP) was undertaken to environmentally characterize a portion of the US Department of Energy's Hanford Site in Washington State as a potential host for the nation's first mined commercial nuclear waste repository. Studies were terminated by Congress in 1987. Between 1976 and 1987, 72 areas located across the Hanford Site were disturbed by the BWIP. These areas include borehole pads, a large Exploratory Shaft Facility, and the Near Surface Test Facility. Most boreholes were cleared of vegetation, leveled, and stabilized with a thick layer of compacted pit-run gravel and sand. The Near Surface Test Facility consists of three mined adits, a rock-spoils bench, and numerous support facilities. Restoration began in 1988 with the objective of returning sites to pre-existing conditions using native species. The Hanford Site retains some of the last remnants of the shrub-steppe ecosystem in Washington. The primary constraints to restoring native vegetation at Hanford are low precipitation and the presence of cheatgrass, an extremely capable alien competitor. 5 figs.

Brandt, C.A.; Rickard, W.H. Jr.; Biehert, R.W.; Newell, R.L.; Page, T.L.

1989-01-01T23:59:59.000Z

278

Waste Isolation Pilot Plant (WIPP) site gravity survey and interpretation  

SciTech Connect

A portion of the WIPP site has been extensively surveyed with high-precision gravity. The main survey (in T22S, R31E) covered a rectangular area 2 by 4-1/3 mi encompassing all of WIPP site Zone II and part of the disturbed zone to the north of the site. Stations were at 293-ft intervals along 13 north-south lines 880 ft apart. The data are considered accurate to within a few hundredths of a milligal. Long-wavelength gravity anomalies correlate well with seismic time structures on horizons below the Castile Formation. Both the gravity anomalies and the seismic time structures are interpreted as resulting from related density and velocity variations within the Ochoan Series. Shorter wavelength negative gravity anomalies are interpreted as resulting from bulk density alteration in the vicinity of karst conduits. The WIPP gravity survey was unable to resolve low-amplitude, long-wavelength anomalies that should result from the geologic structures within the disturbed zone. It did indicate the degree and character of karst development within the surveyed area.

Barrows, L.J.; Fett, J.D.

1983-04-01T23:59:59.000Z

279

Regulatory Review of the Safety Case for Siting Licensing of Saligny Low and Intermediate Waste Repository  

SciTech Connect

The paper contains the regulatory review comments produced following submission of siting license application of Saligny repository. The regulatory review was conducted in order to verify the compliance with Romanian regulatory criteria and requirements. After assessment of completeness of safety case and availability of supporting documents the review the main technical areas started. The review process was focused on the site characteristics, waste characteristics, safety considerations as scenarios development, mathematical models, identification and treatment of uncertainties, availability of parameters. (authors)

Dogaru, D.M. [National Commission for Nuclear Activities Control, 5 Bucharest (Romania)

2008-07-01T23:59:59.000Z

280

Bibliography of reports by US Geological Survey personnel pertaining to underground nuclear testing and radioactive waste disposal at the Nevada Test Site, and radioactive waste disposal at the WIPP Site, New Mexico, January 1, 1979-December 31, 1979  

SciTech Connect

This bibliography presents reports released to the public between January 1, 1979, and December 31, 1979, by personnel of the US Geological Survey. Reports include information on underground nuclear testing and waste management projects at the NTS (Nevada Test Site) and radioactive waste projects at the WIPP (Waste Isolation Pilot Plant) site, New Mexico. Reports on Project Dribble, Tatum Dome, Mississippi, previously prepared as administrative reports and released to the public as 474-series reports during 1979 are also included in this bibliography.

Glanzman, V.M.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste sites atsdr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Settlement Agreement on TRU Mixed Waste Storage at Nevada Test Site Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Settlement Agreement for Transuranic (TRU) Mixed Settlement Agreement for Transuranic (TRU) Mixed Waste Storage Issues at the Nevada Test Site (NTS) State Nevada Agreement Type Settlement Agreement Legal Driver(s) RCRA Scope Summary Settle the Finding of Alleged Violation (FOAV) and Order of November 1, 1990, and the FOAV of June 24, 1991, related to the TRU waste storage pad at Area 5 of the NTS Parties DOE; Nevada Department of Environmental Protection Date 6/11/1992 SCOPE * Settle the Finding of Alleged Violation (FOAV) and Order of November 1, 1990, and the FOAV of June 24, 1991, related to the TRU waste storage pad at Area 5 of the NTS. ESTABLISHING MILESTONES * Within 90 days of the effective date of this Agreement, DOE will provide to NDEP documentation of why the current inventory of TRU mixed waste cannot be removed

282

Waste Isolation Pilot Plant Site Environmental Report for calendar year 1989  

SciTech Connect

This is the 1989 Site Environmental Report (SER) for the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. The WIPP is a government owned and contractor-operated facility. The WIPP project is operated by Westinghouse Electric Corporation for the US Department of Energy (DOE). The mission of the WIPP is to provide a research and development facility to demonstrate the safe disposal of transuranic (TRU) waste generated by the defense activities of the US Government. This report provides a comprehensive description of environmental activities at the WIPP during calendar year 1989. The WIPP facility will not receive waste until all concerns affecting opening the WIPP are addressed to the satisfaction of the Secretary of Energy. Therefore, this report describes the status of the preoperational activities of the Radiological Environmental Surveillance (RES) program, which are outlined in the Radiological Baseline Program for the Waste Isolation Pilot Plant (WTSD-TME-057). 72 refs., 13 figs., 20 tabs.

Not Available

1989-01-01T23:59:59.000Z

283

Environmental Assessment Addendum Disposition of Additional Waste at the Paducah Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FINDING OF NO SIGNIFICANT IMPACT FINDING OF NO SIGNIFICANT IMPACT WASTE DISPOSITION ACTIVITIES AT THE PADUCAH SITE PADUCAH, KENTUCKY AGENCY: U.S. DEPARTMENT OF ENERGY ACTION: FINDING OF NO SIGNIFICANT IMPACT SUMMARY: The U.S. Department of Energy (DOE) has completed an environmental assessment addendum (DOE/EA-1339-A), which is incorporated herein by reference, for proposed disposition of 17,600 m 3 of waste from the Paducah Site in Paducah, Kentucky. It is anticipated that most of the waste would be transported for disposal at various locations in the United States. Based on the results of the impact analysis reported in the EA, DOE has determined that the proposed action is not a major federal action that would significantly affect the quality of the human environment within the context of the

284

Geochemical studies of commercial low-level radioactive waste disposal sites  

SciTech Connect

The results of source term characterization studies for the commercially operated low-level waste (LLW) disposal sites located in the eastern United States are used to provide an understanding of the importance of hydrological and geochemical factors in controlling the mechanics of leachate formation, evolution of leachate compositions, microbial degradation of organic waste and development of anoxia in the trenches, and the nature and extent of leaching of waste materials. The varying degrees of the intensity of these processes, as determined by the different site characteristics, are clearly reflected in the contrasting leachate geochemistries of Maxey Flats and West Valley trenches, as compared to those of Barnwell and Sheffield trenches. These are important geochemical considerations which not only define LLW source terms but also shed light on the nature and extent of geochemical changes that are likely to occur along a redox gradient outside of the trench environment.

Dayal, R.; Pietrzak, R.F.; Clinton, J.H.

1986-06-01T23:59:59.000Z

285

INSTALLATION OF BUBBLERS IN THE SAVANNAH RIVER SITED DEFENSE WASTE PROCESSING FACILITY MELTER  

SciTech Connect

Savannah River Remediation (SRR) LLC assumed the liquid waste contract at the Savannah River Site (SRS) in the summer of 2009. The main contractual agreement was to close 22 High Level Waste (HLW) tanks in eight years. To achieve this aggressive commitment, faster waste processing throughout the SRS liquid waste facilities will be required. Part of the approach to achieve faster waste processing is to increase the canister production rate of the Defense Waste Processing Facility (DWPF) from approximately 200 canisters filled with radioactive waste glass per year to 400 canisters per year. To reach this rate for melter throughput, four bubblers were installed in the DWPF Melter in the late summer of 2010. This effort required collaboration between SRR, SRR critical subcontractor EnergySolutions, and Savannah River Nuclear Solutions, including the Savannah River National Laboratory (SRNL). The tasks included design and fabrication of the bubblers and related equipment, testing of the bubblers for various technical issues, the actual installation of the bubblers and related equipment, and the initial successful operation of the bubblers in the DWPF Melter.

Smith, M.; Iverson, D.

2010-12-08T23:59:59.000Z

286

Summary Of Cold Crucible Vitrification Tests Results With Savannah River Site High Level Waste Surrogates  

SciTech Connect

The cold crucible inductive melting (CCIM) technology successfully applied for vitrification of low- and intermediate-level waste (LILW) at SIA Radon, Russia, was tested to be implemented for vitrification of high-level waste (HLW) stored at Savannah River Site, USA. Mixtures of Sludge Batch 2 (SB2) and 4 (SB4) waste surrogates and borosilicate frits as slurries were vitrified in bench- (236 mm inner diameter) and full-scale (418 mm inner diameter) cold crucibles. Various process conditions were tested and major process variables were determined. Melts were poured into 10L canisters and cooled to room temperature in air or in heat-insulated boxes by a regime similar to Canister Centerline Cooling (CCC) used at DWPF. The products with waste loading from ~40 to ~65 wt.% were investigated in details. The products contained 40 to 55 wt.% waste oxides were predominantly amorphous; at higher waste loadings (WL) spinel structure phases and nepheline were present. Normalized release values for Li, B, Na, and Si determined by PCT procedure remain lower than those from EA glass at waste loadings of up to 60 wt.%.

Stefanovsky, Sergey; Marra, James; Lebedev, Vladimir

2014-01-13T23:59:59.000Z

287

1997 Hanford site report on land disposal restrictions for mixed waste  

SciTech Connect

The baseline land disposal restrictions (LDR) plan was prepared in 1990 in accordance with the Hanford Federal Facility Agreement and Consent Order (commonly referred to as the Tn-Party Agreement) Milestone M-26-00 (Ecology et al, 1989). The text of this milestone is below. ''LDR requirements include limitations on storage of specified hazardous wastes (including mixed wastes). In accordance with approved plans and schedules, the U.S. Department of Energy (DOE) shall develop and implement technologies necessary to achieve full compliance with LDR requirements for mixed wastes at the Hanford Site. LDR plans and schedules shall be developed with consideration of other action plan milestones and will not become effective until approved by the U.S. Environmental Protection Agency (EPA) (or Washington State Department of Ecology [Ecology]) upon authorization to administer LDRs pursuant to Section 3006 of the Resource Conservation and Recovery Act of 1976 (RCRA). Disposal of LDR wastes at any time is prohibited except in accordance with applicable LDR requirements for nonradioactive wastes at all times. The plan will include, but not be limited to, the following: Waste characterization plan; Storage report; Treatment report; Treatment plan; Waste minimization plan; A schedule depicting the events necessary to achieve full compliance with LDR requirements; and A process for establishing interim milestones.

Black, D.G.

1997-04-07T23:59:59.000Z

288

1995 Report on Hanford site land disposal restrictions for mixed waste  

SciTech Connect

This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order Milestone M-26-01E. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of land disposal restricted mixed waste at the Hanford Site. The U.S. Department of Energy, its predecessors, and contractors at the Hanford Site were involved in the production and purification of nuclear defense materials from the early 1940s to the late 1980s. These production activities have generated large quantities of liquid and solid radioactive mixed waste. This waste is subject to regulation under authority of both the Resource Conservation and Recovery Act of 1976 and Atomic Energy Act of 1954. This report covers mixed waste only. The Washington State Department of Ecology, U.S. Environmental Protection Agency, and U.S. Department of Energy have entered into an agreement, the Hanford Federal Facility Agreement and Consent Order (commonly referred to as the Tri-Party Agreement) to bring the Hanford Site operations into compliance with dangerous waste regulations. The Tri-Party Agreement required development of the original land disposal restrictions (LDRs) plan and its annual updates to comply with LDR requirements for radioactive mixed waste. This report is the fifth update of the plan first issued in 1990. Tri-Party Agreement negotiations completed in 1993 and approved in January 1994 changed and added many new milestones. Most of the changes were related to the Tank Waste Remediation System and these changes are incorporated into this report.

Black, D.G.

1995-04-01T23:59:59.000Z

289

1996 Hanford site report on land disposal restrictions for mixed waste  

SciTech Connect

This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order milestone M-26-OIF. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of land disposal-restricted mixed waste management at the Hanford Site.

Black, D.G.

1996-04-01T23:59:59.000Z

290

Hydraulic testing of Salado Formation evaporites at the Waste Isolation Pilot Plant site: Second interpretive report  

SciTech Connect

Pressure-pulse, constant-pressure flow, and pressure-buildup tests have been performed in bedded evaporites of the Salado Formation at the Waste Isolation Pilot Plant (WIPP) site to evaluate the hydraulic properties controlling brine flow through the Salado. Transmissivities have been interpreted from six sequences of tests conducted on five stratigraphic intervals within 15 m of the WIPP underground excavations.

Beauheim, R.L. [Sandia National Labs., Albuquerque, NM (United States); Roberts, R.M.; Dale, T.F.; Fort, M.D.; Stensrud, W.A. [INTERA, Inc., Austin, TX (United States)

1993-12-01T23:59:59.000Z

291

Source term characterization for the Maxey Flats low-level radioactive waste disposal site  

SciTech Connect

The results of source term characterization studies for the Maxey Flats low-level radioactive waste disposal site show that because of the long residence time of water accumulations in the trenches, prolonged leaching and microbial degradation of waste materials occur continuously, leading to leachate formation. As a result of such interactions for extended time periods, the resultant trench leachates exhibit significant modifications in terms of inorganic, organic, and radionuclide constituents and acquire geochemical properties that are unique, compared to ambient groundwater. The leachates generally exhibit varying degrees of anoxia characterized by negative redox potentials, low dissolved oxygen and sulfate concentrations, high alkalinity, and high ammonia concentrations. The enrichments, to varying degrees, of inorganic, organic, and radionuclide constituents associated with fuel cycle and non-fuel cycle low-level wastes reflect the nature of the leaching process itself and of the waste materials. Elevated concentrations of Na/sup +/, K/sup +/, Fe/sub TOTAL/, Mn/sub TOTAL/, Cl/sup -/, dissolved organic and inorganic carbon, and several organic compounds as well as radionuclides, such as /sup 3/H, /sup 241/Am, /sup 60/Co, /sup 134/Cs, /sup 137/Cs, /sup 90/Sr, /sup 238/Pu, and /sup 239//sup,/sup 240/Pu are a consequence of waste leaching. Some of the waste-derived organic compounds present in the trenches, such as chelating agents and several carboxylic acids, are strong complexing agents and have the potential to form stable radionuclide complexes and thus enhance nuclide mobility. The consequences of past disposal practices as reflected in the problems associated with the burial of unsegregated, poorly packaged, and unstabilized wastes at the Maxey Flats disposal site indicate the significance of waste segregation, improved stabilization, and proper packaging.

Dayal, R.; Pietrzak, R.F.; Clinton, J.H.

1986-02-01T23:59:59.000Z

292

DEVELOPMENT QUALIFICATION AND DISPOSAL OF AN ALTERNATIVE IMMOBILIZED LOW-ACTIVITY WASTE FORM AT THE HANFORD SITE  

SciTech Connect

Demonstrating that a waste form produced by a given immobilization process is chemically and physically durable as well as compliant with disposal facility acceptance criteria is critical to the success of a waste treatment program, and must be pursued in conjunction with the maturation of the waste processing technology. Testing of waste forms produced using differing scales of processing units and classes of feeds (simulants versus actual waste) is the crux of the waste form qualification process. Testing is typically focused on leachability of constituents of concern (COCs), as well as chemical and physical durability of the waste form. A principal challenge regarding testing immobilized low-activity waste (ILAW) forms is the absence of a standard test suite or set of mandatory parameters against which waste forms may be tested, compared, and qualified for acceptance in existing and proposed nuclear waste disposal sites at Hanford and across the Department of Energy (DOE) complex. A coherent and widely applicable compliance strategy to support characterization and disposal of new waste forms is essential to enhance and accelerate the remediation of DOE tank waste. This paper provides a background summary of important entities, regulations, and considerations for nuclear waste form qualification and disposal. Against this backdrop, this paper describes a strategy for meeting and demonstrating compliance with disposal requirements emphasizing the River Protection Project (RPP) Integrated Disposal Facility (IDF) at the Hanford Site and the fluidized bed steam reforming (FBSR) mineralized low-activity waste (LAW) product stream.

SAMS TL; EDGE JA; SWANBERG DJ; ROBBINS RA

2011-01-13T23:59:59.000Z

293

Review of the Savannah River Site, Salt Waste Processing Facility, Construction Quality of Piping and Pipe Supports, September 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

Savannah River Site, Salt Waste Processing Savannah River Site, Salt Waste Processing Facility, Construction Quality of Piping & Pipe Supports September 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose................................................................................................................................................. 1 2.0 Scope.................................................................................................................................................... 1 3.0 Background .......................................................................................................................................... 1

294

Review of the Savannah River Site, Salt Waste Processing Facility, Construction Quality of Piping and Pipe Supports, September 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Site, Salt Waste Processing Savannah River Site, Salt Waste Processing Facility, Construction Quality of Piping & Pipe Supports September 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose................................................................................................................................................. 1 2.0 Scope.................................................................................................................................................... 1 3.0 Background .......................................................................................................................................... 1

295

Transportation risk assessment of radioactive wastes generated by the N-Reactor stabilization program at the Hanford Site, Washington  

SciTech Connect

The potential radiological and nonradiological risks associated with specific radioactive waste shipping campaigns at the Hanford Site are estimated. The shipping campaigns analyzed are associated with the transportation of wastes from the N-Reactor site at the 200-W Area, both within the Hanford Reservation, for disposal. The analysis is based on waste that would be generated from the N-Reactor stabilization program.

Wheeler, T.

1994-12-01T23:59:59.000Z

296

Hanford Site Hazardous waste determination report for transuranic debris waste streams NPFPDL1A, NPFPDL1B, NPFPDL1C and NPFPDL1D  

SciTech Connect

This Hazardous Waste Determination Report is intended to satisfy the terms of a Memorandum of Agreement (Agreement signed on June 16, 1999) between the U.S. Department of Energy and the New Mexico Environment Department. The Agreement pertains to the exchange of information before a final decision is made on the Waste Isolation Pilot Plant application for a permit under the ''New Mexico Hazardous Waste Act''. The Agreement will terminate upon the effective date of a final ''New Mexico Hazardous Waste Act'' permit for the Waste Isolation Pilot Plant. In keeping with the principles and terms of the Agreement, this report describes the waste stream data and information compilation process, and the physical and chemical analyses that the U.S. Department of Energy has performed on selected containers of transuranic debris waste to confirm that the waste is nonhazardous (non-mixed). This also summarizes the testing and analytical results that support the conclusion that the selected transuranic debris waste is not hazardous and thus, not subject to regulation under the ''Resource Conservation and Recovery Act'' or the ''New Mexico Hazardous Waste Act''. This report will be submitted to the New Mexico Environment Department no later than 45 days before the first shipment of waste from the Hanford Site to the Waste Isolation Pilot Plant, unless the parties mutually agree in writing to a shorter time. The 52 containers of transuranic debris waste addressed in this report were generated, packaged, and placed into storage between 1995 and 1997. Based on reviews of administrative documents, operating procedures, waste records, generator certifications, and personnel interviews, this transuranic debris waste was determined to be nonhazardous. This determination is supported by the data derived from nondestructive examination, confirmatory visual examination, and the results of container headspace gas sampling and analysis. Therefore, it is concluded that this transuranic debris waste, which consists of 52 containers from waste streams NPFPDLIA, NPFPDLIB, NPFPDLIC, and NPFPDLID, is not hazardous waste, and no hazardous waste numbers specified in Title 40 Code of Federal Regulations, Part 261, have been assigned. Accordingly, the 52 containers of transuranic debris waste addressed in this report meet the requirements for transuranic waste as defined by the Department of Energy Waste Acceptance Criteria for the Waste Isolation Pilot Plant. The 52 containers are acceptable for disposal at the Waste Isolation Pilot Plant as nonhazardous transuranic waste.

WINTERHALDER, J.A.

1999-09-29T23:59:59.000Z

297

The Changing Adventures of Mixed Low-Level Waste Disposal at the Nevada Test Site  

SciTech Connect

After a 15-year hiatus, the United States Department of Energy (DOE) National Nuclear Security Administration Nevada Site Office (NNSA/NSO) began accepting DOE off-site generated mixed low-level radioactive waste (MLLW) for disposal at the Nevada Test Site (NTS) in December 2005. This action was predicated on the acceptance by the Nevada Division of Environmental Protection (NDEP) of a waste analysis plan (WAP). The NNSA/NSO agreed to limit mixed waste disposal to 20,000 cubic meters (approximately 706,000 cubic feet) and close the facility by December 2010 or sooner, if the volume limit is reached. The WAP and implementing procedures were developed based on Hanford’s system of verification to the extent possible so the two regional disposal sites could have similar processes. Since the NNSA/NSO does not have a breaching facility to allow the opening of boxes at the site, verification of the waste occurs by visual inspection at the generator/treatment facility or by Real-Time-Radiography (RTR) at the NTS. This system allows the NTS to effectively, efficiently, and compliantly accept MLLW for disposal. The WAP, NTS Waste Acceptance Criteria, and procedures have been revised based on learning experiences. These changes include: RTR expectations; visual inspection techniques; tamper-indicating device selection; void space requirements; and chemical screening concerns. The NNSA/NSO, NDEP, and the generators have been working together throughout the debugging of the verification processes. Additionally, the NNSA/NSO will continue to refine the MLLW acceptance processes and strive for continual improvement of the program.

DOE /Navarro/NSTec

2007-02-01T23:59:59.000Z

298

RADIATION PROTECTION, RADIOACTIVE WASTE MANAGEMENT AND SITE MONITORING AT THE NUCLEAR SCIENTIFIC EXPERIMENTAL AND EDUCATIONAL CENTRE IRT-SOFIA AT INRNE-BAS  

Science Journals Connector (OSTI)

......related to radioactive waste treatments and interim...site to the temporary storage of radioactive waste operated by SE . Removal...The comprehensive long-term monitoring of the IRT...protection and radioactive waste management in the design......

Al. Mladenov; D. Stankov; Tz. Nonova; K. Krezhov

2014-07-01T23:59:59.000Z

299

Comanagement of coal combustion by-products and low-volume wastes: A midwestern site  

SciTech Connect

This report presents results from a field evaluation of the environmental effects of co-management of high-volume coal combustion residues with low-volume non-combustion wastes at a utility power plant. At the C-site, located in the midwestern United States, fly ash and bottom ash from the combustion of bituminous Indiana coal are co-managed with non-combustion wastes including pyrite rejects from coal cleaning, demineralizer regenerant, runoff water from the plant grounds, and boiler cleaning wastes. These wastes are disposed of in an unlined ash pond on site. The pond discharges primarily to the surrounding shallow groundwater with a limited surface discharge to a nearby river. Hydrological monitoring took place over a nine-month period in 1989 and 1990. Groundwater and soil samples were collected on three occasions during this time. Samples were analyzed to determine the groundwater chemistry, and soil and waste chemistry and geochemistry. Downgradient wells showed an increased concentration of several ash-derived species including boron, calcium, fluoride, potassium, sodium, strontium, and sulfate. The median sulfate concentration in downgradient wells was 350 mg/L, which exceeds the secondary drinking water limit. Statistical comparison of the composition of background groundwater with water from wells downgradient of the ash ponds was limited by a single set of background water samples. Soils beneath the pond appear to have limited attenuative capacity for ash-derived trace metals, and groundwater velocities are high; however, trace metal concentrations in downgradient wells are similar to background levels. No impact uniquely attributable to the co-management of low-volume wastes was detectable at this site.

Holcombe, L.J.; Thompson, C.M.; Weinberg, A. (Radian Corp., Austin, TX (United States)); Erickson, J.R. (GeoTrans, Inc., Sterling, VA (United States)); Fruchter, J.S. (Battelle Pacific Northwest Lab., Richland, WA (United States))

1992-08-01T23:59:59.000Z

300

Site characterization plan: Conceptual design report: Volume 6, Drawing portfolio: Nevada Nuclear Waste Storage Investigations Project  

SciTech Connect

This document presents a description of a prospective geologic repository for high-level radioactive waste to support the development of the Site Characterization Plan for the Yucca Mountain site. The site for the prospective repository is located at Yucca Mountain in southwestern Nevada, and the waste emplacement area will be constructed in the underlying volcanic tuffs. The target horizon for waste emplacement is a sloping bed of densely welded tuff more than 650 ft below the surface and typically more than 600 ft above the water table. The conceptual design described in this report is unique among repository designs in that it uses ramps in addition to shafts to gain access to the underground facility, the emplacement horizon is located above the water table, and it is possible that 300- to 400-ft-long horizontal waste emplacement boreholes will be used. This report summarizes the design bases, design and performance criteria, and the design analyses performed. The current status of meeting the preclosure performance objectives for licensing and of resolving the repository design and preclosure issues is presented. The repository design presented in this report will be expanded and refined during the advanced conceptual design, the license application design, and the final procurement and construction design phases. Volume 6 contains drawings. 114 figs.

MacDougall, H.R.; Scully, L.W.; Tillerson, J.R. (comps.)

1987-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste sites atsdr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Savannah River Site offsite hazardous waste shipment data validation report. Revision 1  

SciTech Connect

The objective of this data validation is to verify that waste shipments reported in response to the US Department of Energy Headquarters data request are properly categorized according to DOE-HQ definitions. This report documents all findings and actions resulting from the independent review of the Savannah River Site data submittal, and provides a summary of the SRS data submittal and data validation strategy. The overall hazardous waste management and offsite release process from 1987--1991 is documented, along with an identification and description of the hazardous waste generation facilities. SRS did not ship any hazardous waste offsite before 1987. Sampling and analysis and surface surveying procedures and techniques used in determining offsite releasability of the shipments are also described in this report. SRS reported 150 manifested waste shipments from 1984 to 1991 that included 4,755 drums or lab packs and 13 tankers. Of these waste items, this report categorizes 4,251 as clean (including 12 tankers), 326 as likely clean, 138 as likely radioactive, and 55 as radioactive (including one tanker). Although outside the original scope of this report, 14 manifests from 1992 and 1993 are included, covering 393 drums or lab packs and seven tankers. From the 1992--1993 shipments, 58 drums or lab packs are categorized as radioactive and 16 drums are categorized as likely radioactive. The remainder are categorized as clean.

Casey, C.; Kudera, D.E.; Page, L.A.; Rohe, M.J.

1995-05-01T23:59:59.000Z

302

Glass optimization for vitrification of Hanford Site low-level tank waste  

SciTech Connect

The radioactive defense wastes stored in 177 underground single-shell tanks (SST) and double-shell tanks (DST) at the Hanford Site will be separated into low-level and high-level fractions. One technology activity underway at PNNL is the development of glass formulations for the immobilization of the low-level tank wastes. A glass formulation strategy has been developed that describes development approaches to optimize glass compositions prior to the projected LLW vitrification facility start-up in 2005. Implementation of this strategy requires testing of glass formulations spanning a number of waste loadings, compositions, and additives over the range of expected waste compositions. The resulting glasses will then be characterized and compared to processing and performance specifications yet to be developed. This report documents the glass formulation work conducted at PNL in fiscal years 1994 and 1995 including glass formulation optimization, minor component impacts evaluation, Phase 1 and Phase 2 melter vendor glass development, liquidus temperature and crystallization kinetics determination. This report also summarizes relevant work at PNNL on high-iron glasses for Hanford tank wastes conducted through the Mixed Waste Integrated Program and work at Savannah River Technology Center to optimize glass formulations using a Plackett-Burnam experimental design.

Feng, X.; Hrma, P.R.; Westsik, J.H. Jr. [and others

1996-03-01T23:59:59.000Z

303

Status report on resolution of Waste Tank Safety Issues at the Hanford Site. Revision 1  

SciTech Connect

The purpose of this report is to provide and update the status of activities supporting the resolution of waste tank safety issues and system deficiencies at the Hanford Site. This report provides: (1) background information on safety issues and system deficiencies; (2) a description of the Tank Waste Remediation System and the process for managing safety issues and system deficiencies; (3) changes in safety issue description, prioritization, and schedules; and (4) a summary of the status, plans, order of magnitude, cost, and schedule for resolving safety issues and system deficiencies.

Dukelow, G.T.; Hanson, G.A. [Los Alamos Technical Associates, Inc., Kennewick, WA (United States)

1995-05-01T23:59:59.000Z

304

Application of Molecular Techniques To Elucidate the Influence of Cellulosic Waste on the Bacterial Community Structure at a Simulated Low-Level-Radioactive-Waste Site  

Science Journals Connector (OSTI)

...environment to test the implementation of innovative waste characterization and retrieval...at these LLW sites and better design remediation processes that may be needed at these...Office of Science, Environmental Remediation Science Program (ERSP), contract...

Erin K. Field; Seth D'Imperio; Amber R. Miller; Michael R. VanEngelen; Robin Gerlach; Brady D. Lee; William A. Apel; Brent M. Peyton

2010-03-19T23:59:59.000Z

305

External Technical Review for Evaluation of System Level Modeling and Simulation Tools in Support of Hanford Site Liquid Waste Process  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Site Liquid Waste Process Hanford Site Liquid Waste Process September 2009 Monica C. Regalbuto Office of Waste Processing DOE/EM Kevin G. Brown Vanderbilt University and CRESP David W. DePaoli Oak Ridge National Laboratory Candido Pereira Argonne National Laboratory John R. Shultz Office of Waste Processing DOE/EM External Technical Review for Evaluation of System Level Modeling and Simulation Tools in Support of Hanford Site Liquid Waste Process September 2009 Acknowledgements The Review Team thanks Mr. Glyn Trenchard, Team Lead for Planning and Coordination Waste Disposition Project, U.S. Department of Energy--Office of River Protection, Mr. Paul Rutland, RPP System Planning Manager for Washington River Protection Solutions, and Mr. Ernie Lee,

306

Review of the Hanford Site Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity, December 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Hanford Site the Hanford Site Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity December 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose ................................................................................................................................................. 1 2.0 Background.......................................................................................................................................... 1 3.0 Scope and Methodology... ................................................................................................................... 1

307

Review of the Hanford Site Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity, December 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

the Hanford Site the Hanford Site Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity December 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose ................................................................................................................................................. 1 2.0 Background.......................................................................................................................................... 1 3.0 Scope and Methodology... ................................................................................................................... 1

308

The siting dilemma: Low-level radioactive waste disposal in the United States  

SciTech Connect

The 1980 Low-Level Radioactive Waste Policy Act ushered in a new era in low-level waste disposal; one with vastly increased state responsibilities. By a 1985 amendment, states were given until January 1993 to fulfill their mandate. In this dissertation, their progress is reviewed. The focus then turns to one particularly intractable problem: that of finding technically and socially acceptable sites for new disposal facilities. Many lament the difficulty of siting facilities that are intended to benefit the public at large but are often locally unwanted. Many label local opposition as purely self-interested; as simply a function of the NIMBY (Not In My Backyard) syndrome. Here, it is argued that epithets such as NIMBY are unhelpful. Instead, to lay the groundwork for widely acceptable solutions to siting conflicts, deeper understanding is needed of differing values on issues concerning authority, trust, risk, and justice. This dissertation provides a theoretical and practical analysis of those issues as they pertain to siting low-level waste disposal facilities and, by extension, other locally unwanted facilities.

English, M.R.

1991-01-01T23:59:59.000Z

309

Radionuclide characterization, migration, and monitoring at a commercial low-level waste disposal site  

SciTech Connect

A commercial low-level radioactive waste disposal facility is being studied to characterize the physicochemical forms of the radionuclides and their behavior during migration in ground waters. Environmental monitoring studies are also in progress to identify and assess migration pathways of the radionuclides. At the Maxey Flats, Kentucky low-level waste burial site, mobile species of various radionuclides have migrated short distances on-site (meters to tens of meters) from the trenches. Plutonium is migrating as a soluble anionic complex in the Pu(III) and Pu(IV) oxidation states. Empirical evidence suggests that EDTA contained in the trench water has formed strong organic complexes with plutonium and /sup 60/Co, thereby increasing their mobility. Mobile forms of /sup 90/Sr and /sup 137/Cs are associated with a variety of polar organic species, e.g. carboxylic acids. Environmental monitoring studies at the Maxey Flats site are assessing surface contamination and biological monitoring techniques which can be used for long-term surveillance. Deciduous forests growing near the Maxey Flats site offer the potential to detect the migration of radionuclides, particularly tritium, occurring by subterranean flow from the waste trenches of the flow is within the rooting depth of the trees.

Kirby, L.J.; Toste, A.P.; Rickard, W.H.

1983-05-01T23:59:59.000Z

310

Engineering evaluation of alternatives for the disposition of Niagara Falls Storage Site, its residues and wastes  

SciTech Connect

The final disposition scenarios selected by DOE for assessment in this document are consistent with those stated in the Notice of Intent to prepare an Environmental Impact Statement (EIS) for the Niagara Falls Storage Site (NFSS) (DOE, 1983d) and the modifications to the alternatives resulting from the public scoping process. The scenarios are: take no action beyond interim remedial measures other than maintenance and surveillance of the NFSS; retain and manage the NFSS as a long-term waste management facility for the wastes and residues on the site; decontaminate, certify, and release the NFSS for other use, with long-term management of the wastes and residues at other DOE sites; and partially decontaminate the NFSS by removal and transport off site of only the more radioactive residues, and upgrade containment of the remaining wastes and residues on site. The objective of this document is to present to DOE the conceptual engineering, occupational radiation exposure, construction schedule, maintenance and surveillance requirements, and cost information relevant to design and implementation of each of the four scenarios. The specific alternatives within each scenario used as the basis for discussion in this document were evaluated on the bases of engineering considerations, technical feasibility, and regulatory requirements. Selected alternatives determined to be acceptable for each of the four final disposition scenarios for the NFSS were approved by DOE to be assessed and costed in this document. These alternatives are also the subject of the EIS for the NFSS currently being prepared by Argonne National Laboratory (ANL). 40 figures, 38 tables.

Not Available

1984-01-01T23:59:59.000Z

311

Remaining Sites Verification Package for the 126-F-2, 183-F Clearwells, Waste Site Reclassification Form 2006-017  

SciTech Connect

The 126-F-2 site is the clearwell facility formerly used as part of the reactor cooling water treatment at the 183-F facility. During demolition operations in the 1970s, potentially contaminated debris was disposed in the eastern clearwell structure. The site has been remediated by removing all debris in the clearwell structure to the Environmental Restoration Disposal Facility. The results of radiological surveys and visual inspection of the remediated clearwell structure show neither residual contamination nor the potential for contaminant migration beyond the clearwell boundaries. The results of verification sampling at the remediation waste staging area demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also showed that residual contaminant concentrations are protective of groundwater and the Columbia River.

R. A. Carlson

2006-05-04T23:59:59.000Z

312

Adequacy of a Small Quantity Site RH-TRU Waste Program in Meeting Proposed WIPP Characterization Objectives  

SciTech Connect

The first remote-handled transuranic (RH-TRU) waste is expected to be permanently disposed of at the Waste Isolation Pilot Plant (WIPP) during Fiscal Year (FY) 2003. The first RH-TRU waste shipments are scheduled from the Battelle Columbus Laboratories (BCL) to WIPP in order to facilitate compliance with BCL Decommissioning Project (BCLDP) milestones. Milestones requiring RH-TRU waste containerization and removal from the site by 2004 in order to meet a 2006 site closure goal, established by Congress in the Defense Facilities Closure Projects account, necessitated the establishment and implementation of a site-specific program to direct the packaging of BCLDP RH-TRU waste prior to the finalization of WIPP RH-TRU waste characterization requirements. The program was designed to collect waste data, including audio and videotape records of waste packaging, such that upon completion of waste packaging, comprehensive data records exist from which compliance with final WIPP RH-TRU waste characterization requirements can be demonstrated. With the BCLDP data records generated to date and the development by the U.S. Department of Energy (DOE)-Carlsbad Field Office (CBFO) of preliminary documents proposing the WIPP RH-TRU waste characterization program, it is possible to evaluate the adequacy of the BCLDP program with respect to meeting proposed characterization objectives. The BCLDP characterization program uses primarily acceptable knowledge (AK) and visual examination (VE) during waste packaging to characterize RH-TRU waste. These methods are used to estimate physical waste parameters, including weight percentages of metals, cellulosics, plastics, and rubber in the waste, and to determine the absence of prohibited items, including free liquids. AK combined with computer modeling is used to estimate radiological waste parameters, including total activity on a waste container basis, for the majority of BCLDP RH-TRU waste. AK combined with direct analysis is used to characterize radiological parameters for the small populations of the RH-TRU waste generated by the BCLDP. All characterization based on AK is verified. Per its design for comprehensive waste data collection, the BCLDP characterization program using AK and waste packaging procedures, including VE during packaging, meets the proposed WIPP RH-TRU waste characterization objectives. The conservative program design implemented generates certification data that will be adequate to meet any additional program requirements that may be imposed by the CBFO.

Biedscheid, J.; Stahl, S.; Devarakonda, M.; Peters, K.; Eide, J.

2002-02-26T23:59:59.000Z

313

Addendum 1 Composite Analysis for the Area 5 Radioactive Waste Management Site at the Nevada Test Site, Nye County, Nevada  

SciTech Connect

A disposal authorization statement (DAS) was issued by the U.S. Department of Energy/Headquarters (DOE/HQ) on December 5, 2000, authorizing the DOE's National Nuclear Security Administration Nevada Operations Office to continue the operation of the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site for the disposal of low-level waste and mixed low-level waste. Prior to the issuance of the DAS, the Low-Level Waste Disposal Facility Federal Review Group (LFRG) had conducted reviews of the performance assessment (PA) and the composite analysis (CA) for the Area 5 RWMS, in accordance with the requirements of the DOE Radioactive Waste Management Order DOE O 435.1. A brief history of the reviews is as follows. (The reviews were conducted by independent review teams chartered by the LFRG; the review findings and recommendations were issued in review team reports to the LFRG.) The LFRG accepted the initial PA, with conditions, on August 30, 1996. Revision 2.1 to the PA was issued in January 1998, implementing the conditions of acceptance of the 1996 PA. The LFRG reviewed Revision 2.1 as part of the Area 5 RWMS CA review during 2000, and found it acceptable. The CA and the Supplemental Information provided in response to issues identified during the initial review of the CA were accepted by the LFRG. The Supplemental Information (including the responses to four key issues) is included in the Review Team Report to the LFRG, which recommends that it be incorporated into the CA and issued to all known holders of the CA. The Area 5 RWMS DAS requires that the Supplemental Information generated during the DOE/HQ review of the CA be incorporated into the CA within one year of the date of issuance of the DAS. This report, the first addendum to the Area 5 CA, is prepared to fulfill that requirement. The Supplemental Information includes the following: Issues Identified in the Review Team Report; Crosswalk Presentation; and Maintaining Doses As Low As Reasonably Achievable. A summary of this information is included in this report, with the complete text presented in the appendices.

Vefa Yucel

2001-11-01T23:59:59.000Z

314

Remaining Sites Verification Package for 100-F-38 Stained Soil Site, Waste Site Reclassification Form 2004-093  

SciTech Connect

The 100-F-38 Stained Soil site was an area of yellow stained soil that was discoverd while excavating a trench for the placement of electrical conduit. The 100-F-38 Stained Soil site meets the remedial action objectives specified in the Remaining Sites ROD. The results of verification sampling show demonstrate that residual contaminant concentrations support future unrestricted land uses that can be represented by a rural-residential scenario. The results also show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils and the contaminant concentrations remaining in the soil are protective of groundwater and the Columbia River.

R. A. Carlson

2006-03-13T23:59:59.000Z

315

Geochemical information for sites contaminated with low-level radioactive wastes: II. St. Louis Airport Storage Site  

SciTech Connect

The St. Louis Airport Storage Site (SLASS) became radioactively contaminated as a result of wastes that were being stored from operations to recover uranium from pitchblende ores in the 1940s and 1950s. The US Department of Energy is considering various remedial action options for the SLASS under the Formerly Utilized Site Remedial Action Program (FUSRAP). This report describes the results of geochemical investigations, carried out to support the FUSRAP activities and to aid in quantifying various remedial action options. Soil and groundwater samples from the site were characterized, and sorption ratios for uranium and radium and apparent concentration limit values for uranium were measured in soil/groundwater systems by batch contact methodology. The uranium and radium concentrations in soil samples were significantly above background near the old contaminated surface horizon (now at the 0.3/sup -/ to 0.9/sup -/m depth); the maximum values were 1566 ..mu..g/g and 101 pCi/g, respectively. Below about the 6/sup -/m depth, the concentrations appeared to be typical of those naturally present in soils of this area (3.8 +- 1.2 ..mu..g/g and 3.1 +- 0.6 pCi/g). Uranium sorption ratios showed stratigraphic trends but were generally moderate to high (100 to 1000 L/kg). The sorption isotherm suggested an apparent uranium concentration limit of about 200 mg/L. This relatively high solubility can probably be correlated with the carbonate content of the soil/groundwater systems. The lower sorption ratio values obtained from the sorption isotherm may have resulted from changes in the experimental procedure or the groundwater used. The SLASS appears to exhibit generally favorable behavior for the retardation of uranium solubilized from waste in the site. Parametric tests were conducted to estimate the sensitivity of uranium sorption and solubility to the pH and carbonate content of the system.

Seeley, F.G.; Kelmers, A.D.

1985-01-01T23:59:59.000Z

316

Environmental assessment for the construction, operation, and decommissioning of the Waste Segregation Facility at the Savannah River Site  

SciTech Connect

This Environmental Assessment (EA) has been prepared by the Department of Energy (DOE) to assess the potential environmental impacts associated with the construction, operation and decontamination and decommissioning (D&D) of the Waste Segregation Facility (WSF) for the sorting, shredding, and compaction of low-level radioactive waste (LLW) at the Savannah River Site (SRS) located near Aiken, South Carolina. The LLW to be processed consists of two waste streams: legacy waste which is currently stored in E-Area Vaults of SRS and new waste generated from continuing operations. The proposed action is to construct, operate, and D&D a facility to process low-activity job-control and equipment waste for volume reduction. The LLW would be processed to make more efficient use of low-level waste disposal capacity (E-Area Vaults) or to meet the waste acceptance criteria for treatment at the Consolidated Incineration Facility (CIF) at SRS.

NONE

1998-01-01T23:59:59.000Z

317

Radioactive Waste Management and Environmental Contamination Issues at the Chernobyl Site  

SciTech Connect

The destruction of the Unit 4 reactor at the Chernobyl Nuclear Power Plant resulted in the generation of radioactive contamination and radioactive waste at the site and in the surrounding area (referred to as the Exclusion Zone). In the course of remediation activities, large volumes of radioactive waste were generated and placed in temporary near surface waste-storage and disposal facilities. Trench and landfill type facilities were created from 1986 to 1987 in the Chernobyl Exclusion Zone at distances 0.5 to 15 km from the NPP site. This large number of facilities was established without proper design documentation, engineered barriers, or hydrogeological investigations and they do not meet contemporary waste-safety requirements. Immediately following the accident, a Shelter was constructed over the destroyed reactor; in addition to uncertainties in stability at the time of its construction, structural elements of the Shelter have degraded as a result of corrosion. The main potential hazard of the Shelter is a possible collapse of its top structures and release of radioactive dust into the environment. A New Safe Confinement (NSC) with a 100-years service life is planned to be built as a cover over the existing Shelter as a longer-term solution. The construction of the NSC will enable the dismantlement of the current Shelter, removal of highly radioactive, fuel-containing materials from Unit 4, and eventual decommissioning of the damaged reactor. More radioactive waste will be generated during NSC construction, possible Shelter dismantling, removal of fuel containing materials, and decommissioning of Unit 4. The future development of the Exclusion Zone depends on the future strategy for converting Unit 4 into an ecologically safe system, i.e., the development of the NSC, the dismantlement of the current Shelter, removal of fuel containing material, and eventual decommissioning of the accident site. To date, a broadly accepted strategy for radioactive waste management at the reactor site and in the Exclusion Zone, and especially for high-level and long-lived waste, has not been developed.

Napier, Bruce A.; Schmieman, Eric A.; Voitsekhovitch, Oleg V.

2007-11-01T23:59:59.000Z

318

REMOVAL OF CESIUM FROM SAVANNAH RIVER SITE WASTE WITH SPHERICAL RESORCINOL FORMALDEHYDE ION EXCHANGE RESIN EXPERIMENTAL TESTS  

SciTech Connect

A principal goal at the Savannah River Site (SRS) is to safely dispose of the large volume of liquid nuclear waste held in many storage tanks. In-tank ion exchange (IX) columns are being considered for cesium removal. The spherical form of resorcinol formaldehyde ion exchange resin (sRF) is being evaluated for decontamination of dissolved saltcake waste at SRS, which is generally lower in potassium and organic components than Hanford waste. The sRF performance with SRS waste was evaluated in two phases: resin batch contacts and IX column testing with both simulated and actual dissolved salt waste. The tests, equipment, and results are discussed.

Duignan, M.; Nash, C.

2010-03-31T23:59:59.000Z

319

Alternatives for management of wastes generated by the formerly utilized sites remedial action program and supplement  

SciTech Connect

Alternatives for disposal or stabilization of the wastes generated by the US Department of Energy's Formerly Utilized Sites Remedial Action Program (FUSRAP) are identified and compared, with emphasis on the long-term aspects. These wastes consist of soil material and rubble containing trace amounts of radionuclides. A detailed pathway analysis for the dose to the maximally exposed individual is carried out using an adaptation of the natural analogue method. Comparisons of the different alternatives, based on the results of the pathway analysis and qualitative cost considerations, indicate that, if the hazard is such that the wastes must be removed and disposed of rather than stabilized in place, disposal by immediate dispersal is preferable to containment, and containment followed by slow planned dispersal is preferable to containment without dispersal. The Supplement presents refinements of work that was reported at the 1982 International Decommissioning Symposium. The new material consists of revisions of the estimates of the predicted potential dose to the maximally exposed individual and a more detailed comparative assessment of the radiological impacts of alternatives for management of wastes generated by the US Department of Energy's Formerly Utilized Sites Remedial Action Program (FUSRAP).

Gilbert, T.L.; Peterson, J.M.; Vocke, R.W.; Alexander, J.K.

1983-03-01T23:59:59.000Z

320

Review of Safety Basis Development for the Savannah River Site Salt Waste Processing Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of5 of5 U.S. Department of Energy Subject: Review of Safety Basis Development for the Savannah River Site Salt Waste Processing Facility - Inspection Criteria, Approach, and Line:~ HS: Rev: Eff. Date: HSS CRAD 45-57 0 January 31,2013 Office of Safety and Emergency Management Evaluations Acting Direc or, Office of Sifety and Emergency Management Evaluations Date: January 31, 2013 Criteria Review and Approach Document LL.v. ~·M Criteria Lead:ife\riew of Safety Basis Development for the Savannah River Site Salt Waste Processing Facility Page 1 of 5 Date: January 31, 2013 1.0 PURPOSE Within the Office of Health, Safety and Security (HSS), the Office of Enforcement and Oversight, Office of Safety and Emergency Management Evaluations (HS-45) mission is to assess the effectiveness of the

Note: This page contains sample records for the topic "waste sites atsdr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Final Environmental Impact Statement for the Tank Waste Remediation System, Hanford Site, Richland, Washington  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for the Tank Waste Remediation System, Hanford Site, Richland, Washington for the Tank Waste Remediation System, Hanford Site, Richland, Washington file:///I|/Data%20Migration%20Task/EIS-0189-FEIS-Summary-1996.HTM[6/27/2011 11:21:59 AM] The National Environmental Policy Act (NEPA) requires Federal agencies to analyze the potential environmental impacts of their proposed actions to assist them in making informed decisions. A similar Washington State law, the State Environmental Policy Act (SEPA), requires State agencies, including the Washington State Department of Ecology (Ecology), to analyze environmental impacts before making decisions that could impact the environment. A major emphasis of both laws is to promote public awareness of these actions and provide opportunities for public involvement. Because NEPA and SEPA requirements are similar, the U.S. Department of Energy (DOE) and Ecology

322

Critical Protection Item classification for a waste processing facility at Savannah River Site  

SciTech Connect

This paper describes the methodology for Critical Protection Item (CPI) classification and its application to the Structures, Systems and Components (SSC) of a waste processing facility at the Savannah River Site (SRS). The WSRC methodology for CPI classification includes the evaluation of the radiological and non-radiological consequences resulting from postulated accidents at the waste processing facility and comparison of these consequences with allowable limits. The types of accidents considered include explosions and fire in the facility and postulated accidents due to natural phenomena, including earthquakes, tornadoes, and high velocity straight winds. The radiological analysis results indicate that CPIs are not required at the waste processing facility to mitigate the consequences of radiological release. The non-radiological analysis, however, shows that the Waste Storage Tank (WST) and the dike spill containment structures around the formic acid tanks in the cold chemical feed area and waste treatment area of the facility should be identified as CPIs. Accident mitigation options are provided and discussed.

Ades, M.J. [Westinghouse Savannah River Co., Aiken, SC (United States); Garrett, R.J. [ABB Government Services, Aiken, SC (United States)

1993-10-01T23:59:59.000Z

323

1994 Report on Hanford Site land disposal restrictions for mixed waste  

SciTech Connect

The baseline land disposal restrictions (LDR) plan was prepared in 1990 in accordance with the Hanford Federal Facility Agreement and Consent Order (commonly referred to as the Tri-Party Agreement) Milestone M-26-00 (Ecology et al. 1992). The text of this milestone is below. LDR requirements include limitations on storage of specified hazardous wastes (including mixed wastes). In accordance with approved plans and schedules, the US Department of Energy (DOE) shall develop and implement technologies necessary to achieve full compliance with LDR requirements for mixed wastes at the Hanford Site. LDR plans and schedules shall be developed with consideration at other action plan milestones and will not become effective until approved by the US Environmental Protection Agency (EPA) (or Washington State Department of Ecology [Ecology]) upon authorization to administer LDRs pursuant to Section 3006 of the Resource Conservation and Recovery Act of 1976 (RCRA). Disposal of LDR wastes at any time is prohibited except in accordance with applicable LDR requirements for nonradioactive wastes at all times. The plan will include, but not be limited to, the following: waste characterization plan; storage report; treatment report; treatment plan; waste minimization plan; a schedule depicting the events necessary to achieve full compliance with LDR requirements; a process for establishing interim milestones. The original plan was published in October 1990. This is the fourth of a series of annual updates required by Tri-Party Agreement Milestone M-26-01. A Tri-Party Agreement change request approved in March 1992 changed the annual due date from October to April and consolidated this report with a similar one prepared under Milestone M-25-00. The reporting period for this report is from April 1, 1993, to March 31, 1994.

Black, D.G.

1994-04-01T23:59:59.000Z

324

Very long term communication intelligence: The case of markers for nuclear waste sites  

Science Journals Connector (OSTI)

Warning markers for long-term nuclear waste storage sites are required to prevent inadvertent human intrusion in the distant future. Two interdisciplinary teams have addressed the issues of physical durability and cognitive intelligibility of such markers for a U.S. government site in New Mexico. Preliminary design criteria have determined which materials are best suited to constitute markers of different sizes and shapes. A variety of linguistic, symbolic, and pictographic approaches to content have been suggested. Additional study and testing of both materials and messages is required. International standardization of marker strategies is extremely desirable.

Jon Lomberg; Stephen C. Hora

1997-01-01T23:59:59.000Z

325

Hillslope erosion at the Maxey Flats radioactive waste disposal site, northeastern Kentucky. Water Resources Investigation  

SciTech Connect

Maxey Flats, a disposal site for low-level radioactive waste, is on a plateau that rises 300 to 400 feet above the surrounding valleys in northeastern Kentucky. Hillslope gradients average 30 to 40 percent on three sides of the plateau. The shortest distance from a hillslope to a burial trench is 140 feet on the west side of the site. The report presents the results of a 2-year study of slope erosion processes at the Maxey Flats disposal site, and comments on the long-term integrity of the burial trenches with respect to slope retreat. Thus, the report is of much broader scope in terms of earth-surface processes than the period of data collection would suggest. As such, the discussion and emphasis is placed on infrequent, large-magnitude events that are known to occur over the time scale of interest but have not been specifically documented at the site.

Carey, W.P.; Lyverse, M.A.; Hupp, C.R.

1990-01-01T23:59:59.000Z

326

Assessment of microbial processes on gas production at radioactive low-level waste disposal sites  

SciTech Connect

Factors controlling gaseous emanations from low level radioactive waste disposal sites are assessed. Importance of gaseous fluxes of methane, carbon dioxide, and possible hydrogen from the site, stems from the inclusion of tritium and/or carbon-14 into the elemental composition of these compounds. In that the primary source of these gases is the biodegradation of organic components of the waste material, primary emphasis of the study involved an examination of the biochemical pathways producing methane, carbon dioxide, and hydrogen, and the environmental parameters controlling the activity of the microbial community involved. Initial examination of the data indicates that the ecosystem is anaerobic. As the result of the complexity of the pathway leading to methane production, factors such as substrate availability, which limit the initial reaction in the sequence, greatly affect the overall rate of methane evolution. Biochemical transformations of methane, hydrogen and carbon dioxide as they pass through the soil profile above the trench are discussed. Results of gas studies performed at three commercial low level radioactive waste disposal sites are reviewed. Methods used to obtain trench and soil gas samples are discussed. Estimates of rates of gas production and amounts released into the atmosphere (by the GASFLOW model) are evaluated. Tritium and carbon-14 gaseous compounds have been measured in these studies; tritiated methane is the major radionuclide species in all disposal trenches studied. The concentration of methane in a typical trench increases with the age of the trench, whereas the concentration of carbon dioxide is similar in all trenches.

Weiss, A.J.; Tate, R.L. III; Colombo, P.

1982-05-01T23:59:59.000Z

327

Savannah River Site Waste Isolation Pilot Plant Disposal Program - Acceptable Knowledge Summary Report for Waste Stream: SR-T001-221-HET  

SciTech Connect

This document, along with referenced supporting documents provides a defensible and auditable record of acceptable knowledge for one of the waste streams from the FB-Line. This heterogeneous debris transuranic waste stream was generated after January 25, 1990 and before March 20, 1997. The waste was packaged in 55-gallon drums, then shipped to the transuranic waste storage facility in ''E'' area of the Savannah River Site. This acceptable knowledge report includes information relating to the facility's history, configuration, equipment, process operations and waste management practices. Information contained in this report was obtained from numerous sources including: facility safety basis documentation, historical document archives, generator and storage facility waste records and documents, and interviews with cognizant personnel.

Lunsford, G.F.

2001-01-24T23:59:59.000Z

328

Application to ship nonmixed transuranic waste to the Nevada Test Site for interim storage. Waste Cerification Program  

SciTech Connect

This report documents various regulations on radioactive waste processing and discusses how the Waste Isolation Pilot Plant will comply with and meet these requirements. Specific procedures are discussed concerning transuranic, metal scrap, salt block, solid, and glove box wastes.

Not Available

1993-12-01T23:59:59.000Z

329

Deployment of Performance Management Methodology as part of Liquid Waste Program at Savannah River Site - 12178  

SciTech Connect

In 2009, Savannah River Remediation LLC (SRR) assumed the management lead of the Liquid Waste (LW) Program at the Savannah River Site (SRS). The four SRR partners and AREVA, as an integrated subcontractor are performing the ongoing effort to safely and reliably: - Close High Level Waste (HLW) storage tanks; - Maximize waste throughput at the Defense Waste Processing Facility (DWPF); - Process salt waste into stable final waste form; - Manage the HLW liquid waste material stored at SRS. As part of these initiatives, SRR and AREVA deployed a performance management methodology based on Overall Equipment Effectiveness (OEE) at the DWPF in order to support the required production increase. This project took advantage of lessons learned by AREVA through the deployment of Total Productive Maintenance and Visual Management methodologies at the La Hague reprocessing facility in France. The project also took advantage of measurement data collected from different steps of the DWPF process by the SRR team (Melter Engineering, Chemical Process Engineering, Laboratory Operations, Plant Operations). Today the SRR team has a standard method for measuring processing time throughout the facility, a reliable source of objective data for use in decision-making at all levels, and a better balance between engineering department goals and operational goals. Preliminary results show that the deployment of this performance management methodology to the LW program at SRS has already significantly contributed to the DWPF throughput increases and is being deployed in the Saltstone facility. As part of the liquid waste program on Savannah River Site, SRR committed to enhance production throughput of DWPF. Beyond technical modifications implemented at different location of the facility, SRR deployed performance management methodology based on OEE metrics. The implementation benefited from the experience gained by AREVA in its own facilities in France. OEE proved to be a valuable tool in order to support the enhancement program in DWPF by providing unified metrics to measure plant performances, identify bottleneck location, and rank the most time consuming causes from objective data shared between the different groups belonging to the organization. Beyond OEE, the Visual Management tool adapted from the one used at La Hague were also provided in order to further enhance communication within the operating teams. As a result of all the initiatives implemented on DWPF, achieved production has been increased to record rates from FY10 to FY11. It is expected that thanks to the performance management tools now available within DWPF, these results will be sustained and even improved in the future to meet system plan targets. (authors)

Prod'homme, A.; Drouvot, O.; Gregory, J. [AREVA, Paris (France); Barnes, B.; Hodges, B.; Hart, M. [SRR, Aiken, SC (United States)

2012-07-01T23:59:59.000Z

330

Corrective Action Investigation Plan for Corrective Action Unit 190: Contaminated Waste Sites Nevada Test Site, Nevada, Rev. No.: 0  

SciTech Connect

Corrective Action Unit (CAU) 190 is located in Areas 11 and 14 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 190 is comprised of the four Corrective Action Sites (CASs) listed below: (1) 11-02-01, Underground Centrifuge; (2) 11-02-02, Drain Lines and Outfall; (3) 11-59-01, Tweezer Facility Septic System; and (4) 14-23-01, LTU-6 Test Area. These sites are being investigated because existing information is insufficient on the nature and extent of potential contamination to evaluate and recommend corrective action alternatives. Additional information will be obtained before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS by conducting a corrective action investigation (CAI). The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on August 24, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture, and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 190. The scope of the CAU 190 CAI includes the following activities: (1) Move surface debris and/or materials, as needed, to facilitate sampling; (2) Conduct radiological and geophysical surveys; (3) Perform field screening; (4) Collect and submit environmental samples for laboratory analysis to determine whether contaminants of concern (COCs) are present; (5) If COCs are present, collect additional step-out samples to define the lateral and vertical extent of the contamination; (6) Collect samples of source material, if present, to determine the potential for a release; (7) Collect samples of investigation-derived waste, as needed, for waste management and minimization purposes; and (8) Collect quality control samples. This Corrective Action Investigation Document (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) agreed to by the State of Nevada, U.S. Department of Energy, and U.S. Department of Defense. Under the FFACO, this CAIP will be submitted to the Nevada Division of Environmental Protection for approval. Field work will be conducted following approval.

Wickline, Alfred

2006-12-01T23:59:59.000Z

331

1995 state-by-state assessment of low-level radioactive wastes received at commercial disposal sites  

SciTech Connect

Each year the National Low-Level Waste Management Program publishes a state-by-state assessment report. This report provides both national and state-specific disposal data on low-level radioactive waste commercially disposed in US. Data in this report are categorized according to disposal site, generator category, waste class, volumes, and radionuclide activity. Included are tables showing the distribution of waste by state for 1995 and a comparison of waste volumes and radioactivity by state for 1991 through 1995; also included is a list of all commercial nuclear power reactors in US as of Dec. 31, 1994. This report distinguishes low-level radioactive waste shipped directly for disposal by generators and waste handled by an intermediary.

Fuchs, R.L.

1996-09-01T23:59:59.000Z

332

EIS-0113: Disposal of Hanford Defense High-Level, Transuranic and Tank Waste, Hanford Site, Richland, Washington  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy developed this EIS to examine the potential environmental impacts of final disposal options for legacy and future radioactive defense wastes stored at the Hanford Site.

333

Remaining Sites Verification Package for 132-H-1, 116-H Reactor Stack Burial Site, Waste Site Reclassification Form 2006-053  

SciTech Connect

The 132-H-1 waste site includes the 116-H exhaust stack burial trench and the buried stack foundation (which contains an embedded vertical 15-cm (6-in) condensate drain line). The 116-H reactor exhaust stack and foundation were decommissioned and demolished using explosives in 1983, with the rubble buried in situ beneath clean fill at least 1 m (3.3 ft) thick. Residual concentrations support future land uses that can be represented by a rural-residential scenario and pose no threat to groundwater or the Columbia River based on RESRAD modeling.

L. M. Dittmer

2007-06-26T23:59:59.000Z

334

Inadvertent Intruder Analysis For The Portsmouth On-Site Waste Disposal Facility (OSWDF)  

SciTech Connect

The inadvertent intruder analysis considers the radiological impacts to hypothetical persons who are assumed to inadvertently intrude on the Portsmouth OSWDF site after institutional control ceases 100 years after site closure. For the purposes of this analysis, we assume that the waste disposal in the OSWDF occurs at time zero, the site is under institutional control for the next 100 years, and inadvertent intrusion can occur over the following 1,000 year time period. Disposal of low-level radioactive waste in the OSWDF must meet a requirement to assess impacts on such individuals, and demonstrate that the effective dose equivalent to an intruder would not likely exceed 100 mrem per year for scenarios involving continuous exposure (i.e. chronic) or 500 mrem for scenarios involving a single acute exposure. The focus in development of exposure scenarios for inadvertent intruders was on selecting reasonable events that may occur, giving consideration to regional customs and construction practices. An important assumption in all scenarios is that an intruder has no prior knowledge of the existence of a waste disposal facility at the site. Results of the analysis show that a hypothetical inadvertent intruder at the OSWDF who, in the worst case scenario, resides on the site and consumes vegetables from a garden established on the site using contaminated soil (chronic agriculture scenario) would receive a maximum chronic dose of approximately 7.0 mrem/yr during the 1000 year period of assessment. This dose falls well below the DOE chronic dose limit of 100 mrem/yr. Results of the analysis also showed that a hypothetical inadvertent intruder at the OSWDF who, in the worst case scenario, excavates a basement in the soil that reaches the waste (acute basement construction scenario) would receive a maximum acute dose of approximately 0.25 mrem/yr during the 1000 year period of assessment. This dose falls well below the DOE acute dose limit of 500 mrem/yr. Disposal inventory constraints based on the intruder analysis are well above conservative estimates of the OSWDF inventory and, based on intruder disposal limits; about 7% of the disposal capacity is reached with the estimated OSWDF inventory.

Smith, Frank G.; Phifer, Mark A.

2014-01-22T23:59:59.000Z

335

Interim site characterization report and ground-water monitoring program for the Hanford site solid waste landfill  

SciTech Connect

Federal and state regulations governing the operation of landfills require utilization of ground-water monitoring systems to determine whether or not landfill operations impact ground water at the point of compliance (ground water beneath the perimeter of the facility). A detection-level ground-water monitoring system was designed, installed, and initiated at the Hanford Site Solid Waste Landfill (SWL). Chlorinated hydrocarbons were detected at the beginning of the ground-water monitoring program and continue to be detected more than 1 year later. The most probable source of the chlorinated hydrocarbons is washwater discharged to the SWL between 1985 and 1987. This is an interim report and includes data from the characterization work that was performed during well installation in 1987, such as field observations, sediment studies, and geophysical logging results, and data from analyses of ground-water samples collected in 1987 and 1988, such as field parameter measurements and chemical analyses. 38 refs., 27 figs., 8 tabs.

Fruland, R.M.; Hagan, R.A.; Cline, C.S.; Bates, D.J.; Evans, J.C.; Aaberg, R.L.

1989-07-01T23:59:59.000Z

336

Annual site environmental monitoring report for the Waste Isolation Pilot Plant, Calendar year 1985  

SciTech Connect

This is the first Annual Site Environmental Monitoring Report for the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. The WIPP project is operated by the US Department of Energy (DOE) for the purpose of providing a research and development facility to demonstrate the safe disposal of radioactive wastes generated by the defense activities of the U.S. Government. The report provides a comprehensive description of environmental activities at WIPP during Calendar Year 1985, including: a description of the WIPP project and its mission; a description of the local environment, including demographics; a summary of environmental program information, including an update on the status of environmental permits and compliance activities; a presentation of the findings of the Radiological Baseline Program (RBP), which is a program to characterize radionuclide activities in the environment around the WIPP site; and a summary of findings of the Ecological Monitoring Program (EMP), which examines non-radiological impacts of WIPP construction on the surrounding ecosystem. The WIPP facility is under construction, and will not receive radioactive wastes before October 1988. Therefore, this report describes the status of preoperational (as opposed to operational) environmental activities. 29 refs., 17 figs., 22 tabs.

Reith, C.; Prince, K.; Fischer, T.; Rodriguez, A.; Uhland, D.; Winstanley, D.

1986-04-01T23:59:59.000Z

337

Special Analysis for the Disposal of the Idaho National Laboratory Unirradiated Light Water Breeder Reactor Rods and Pellets Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada  

SciTech Connect

The purpose of this special analysis (SA) is to determine if the Idaho National Laboratory (INL) Unirradiated Light Water Breeder Reactor (LWBR) Rods and Pellets waste stream (INEL103597TR2, Revision 2) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS). The INL Unirradiated LWBR Rods and Pellets waste stream consists of 24 containers with unirradiated fabricated rods and pellets composed of uranium oxide (UO2) and thorium oxide (ThO2) fuel in zirconium cladding. The INL Unirradiated LWBR Rods and Pellets waste stream requires an SA because the 229Th, 230Th, 232U, 233U, and 234U activity concentrations exceed the Nevada National Security Site (NNSS) Waste Acceptance Criteria (WAC) Action Levels.

Shott, Gregory [NSTec

2014-08-31T23:59:59.000Z

338

Waste Isolation Pilot Plant site environmental report for calendar year 1990  

SciTech Connect

The US Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) Operational Environmental Monitoring Plan (OEMP) monitors a comprehensive set of parameters in order to detect any potential environmental impacts and establish baselines for future quantitative environmental impact evaluations. Surface water and groundwater, soil, and biotics are measured for background radiation. Nonradiological environmental monitoring activities include meteorological, air quality, soil properties, and the status of the local biological community. Ecological studies focus on the immediate area surrounding the site with emphasis on the salt storage pile, whereas baseline radiological surveillance covers a broader geographic area including nearby ranches, villages, and cities. Since the WIPP is still in a preoperational state, no waste has been received; therefore, certain elements required by Order DOE 5400.1 are not presented in this report. 15 figs. 19 tabs.

Not Available

1990-01-01T23:59:59.000Z

339

US Department of Energy interim mixed waste inventory report: Waste streams, treatment capacities and technologies: Volume 4, Site specific---Ohio through South Carolina  

SciTech Connect

The Department of Energy (DOE) has prepared this report to provide an inventory of its mixed wastes and treatment capacities and technologies in response to Section 105(a) of the Federal Facility Compliance Act (FFCAct) of 1992 (Pub. L. No. 102-386). As required by the FFCAct-1992, this report provides site-specific information on DOE`s mixed waste streams and a general review of available and planned treatment facilities for mixed wastes at the following five Ohio facilities: Battelle Columbus Laboratories; Fernald Environmental Management Project; Mound Plant; Portsmouth Gaseous Diffusion Plant; and RMI, Titanium Company.

Not Available

1993-04-01T23:59:59.000Z

340

Geologic and hydrologic investigations of a potential nuclear waste disposal site at Yucca Mountain, southern Nevada  

SciTech Connect

Yucca Mountain in southern Nye County, Nevada, has been selected by the United States Department of Energy as one of three potential sites for the nation`s first high-level nuclear waste repository. Its deep water table, closed-basin ground-water flow, potentially favorable host rock, and sparse population have made the Yucca Mountain area a viable candidate during the search for a nuclear waste disposal site. Yucca Mountain, however, lies within the southern Great Basin, a region of known contemporary tectonism and young volcanic activity, and the characterization of tectonism and volcanism remains as a fundamental problem for the Yucca Mountain site. The United States Geological Survey has been conducting extensive studies to evaluate the geologic setting of Yucca Mountain, as well as the timing and rates of tectonic and volcanic activity in the region. A workshop was convened by the Geologic Survey in Denver, Colorado, on August 19, 20, and 21, 1985, to review the scientific progress and direction of these studies. Considerable debate resulted. This collection of papers represents the results of some of the studies presented at the workshop, but by no means covers all of the scientific results and viewpoints presented. Rather, the volume is meant to serve as a progress report on some of the studies within the Geological Survey`s continuing research program toward characterizing the tectonic framework of Yucca Mountain. Individual papers were processed separately for the data base.

Carr, M.D.; Yount, J.C. (eds.)

1988-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "waste sites atsdr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Degradation of transuranic waste drums in underground storage at the Hanford Site  

SciTech Connect

In situ inspections were performed on tarp-covered 55-gallon drums of transuranic (TRU) waste stored underground at the Hanford Site. These inspections were part of a task to characterize TRU drums for extent of corrosion degradation and uncertainty in TRU designation (inaccuracy in earlier assay determinations may have led to drums that actually were low-level waste to be termed TRU), and to attempt to correlate accuracy of existing records with actual drum contents. Two separate storage trench sites were investigated; a total of 90 drums were inspected with ultrasonic techniques and 104 additional drums were visually inspected. A high-humidity environment in the underground storage trenches had been reported in earlier investigations and was expected to result in substantial corrosion degradation. However, corrosion was much less than expected. Only a small percentage of drums had significant corrosion (with one breach) and the maximum rate was estimated at 0.051 mm/yr (2 mils/yr). The corrosion time of underground exposure was 14 to 15 years. These inspection results should be applicable to other similar environments (this applicability should be restricted to arid climates such as the Hanford Site) where drums are stored underground but shielded from direct soil contact by a tarp or other means. Soil contact would lead to more rapid corrosion.

Duncan, D.R.

1996-05-07T23:59:59.000Z

342

NRC Monitoring of Salt Waste Disposal at the Savannah River Site - 13147  

SciTech Connect

As part of monitoring required under Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA), the NRC staff reviewed an updated DOE performance assessment (PA) for salt waste disposal at the Saltstone Disposal Facility (SDF). The NRC staff concluded that it has reasonable assurance that waste disposal at the SDF meets the 10 CFR 61 performance objectives for protection of individuals against intrusion (chap.61.42), protection of individuals during operations (chap.61.43), and site stability (chap.61.44). However, based on its evaluation of DOE's results and independent sensitivity analyses conducted with DOE's models, the NRC staff concluded that it did not have reasonable assurance that DOE's disposal activities at the SDF meet the performance objective for protection of the general population from releases of radioactivity (chap.61.41) evaluated at a dose limit of 0.25 mSv/yr (25 mrem/yr) total effective dose equivalent (TEDE). NRC staff also concluded that the potential dose to a member of the public is expected to be limited (i.e., is expected to be similar to or less than the public dose limit in chap.20.1301 of 1 mSv/yr [100 mrem/yr] TEDE) and is expected to occur many years after site closure. The NRC staff used risk insights gained from review of the SDF PA, its experience monitoring DOE disposal actions at the SDF over the last 5 years, as well as independent analysis and modeling to identify factors that are important to assessing whether DOE's disposal actions meet the performance objectives. Many of these factors are similar to factors identified in the NRC staff's 2005 review of salt waste disposal at the SDF. Key areas of interest continue to be waste form and disposal unit degradation, the effectiveness of infiltration and erosion controls, and estimation of the radiological inventory. Based on these factors, NRC is revising its plan for monitoring salt waste disposal at the SDF in coordination with South Carolina Department of Health and Environmental Control (SCDHEC). DOE has completed or begun additional work related to salt waste disposal to address these factors. NRC staff continues to evaluate information related to the performance of the SDF and has been working with DOE and SCDHEC to resolve NRC staff's technical concerns. (authors)

Pinkston, Karen E.; Ridge, A. Christianne; Alexander, George W.; Barr, Cynthia S.; Devaser, Nishka J.; Felsher, Harry D. [U.S. Nuclear Regulatory Commission (United States)] [U.S. Nuclear Regulatory Commission (United States)

2013-07-01T23:59:59.000Z

343

Radioactive waste isolation in salt: Peer review of the Office of Nuclear Waste Isolation's draft report on an issues hierarchy and data needs for site characterization  

SciTech Connect

At the request of the Salt Repository Project (SRPO), Argonne National Laboratory conducted an independent peer review of a report by the Battelle Office of Nuclear Waste Isolation entitled ''Salt Repository Project Issues Hierarchy and Data Needs for Site Characterization (Draft).'' This report provided a logical structure for evaluating the outstanding questions (issues) related to selection and licensing of a site as a high-level waste repository. It also provided a first estimate of the information and data necessary to answer or resolve those questions. As such, this report is the first step in developing a strategy for site characterization. Microfiche copies of ''Draft Issues Hierarchy, Resolution Strategy, and Information Needs for Site Characterization and Environmental/Socioeconomic Evaluation - July, 1986'' and ''Issues Hierarchy and Data Needs for Site Characterization - February, 1985'' are included in the back pocket of this report.

Harrison, W.; Fenster, D.F.; Ditmars, J.D.; Paddock, R.A.; Rote, D.M.; Hambley, D.F.; Seitz, M.G.; Hull, A.B.

1986-12-01T23:59:59.000Z

344

2010 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond  

SciTech Connect

This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from May 1, 2010 through October 31, 2010. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of special compliance conditions • Discussion of the facility’s environmental impacts During the 2010 partial reporting year, an estimated 3.646 million gallons of wastewater were discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 13 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the Ground Water Quality Rule Primary and Secondary Constituent Standards.

David B. Frederick

2011-02-01T23:59:59.000Z

345

Closure Report for Corrective Action Unit 562: Waste Systems, Nevada National Security Site, Nevada  

SciTech Connect

This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 562, Waste Systems, and provides documentation supporting the completed corrective actions and confirmation that closure objectives for CAU 562 were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 as amended). CAU 562 consists of the following 13 Corrective Action Sites (CASs), located in Areas 2, 23, and 25 of the Nevada National Security Site: · CAS 02-26-11, Lead Shot · CAS 02-44-02, Paint Spills and French Drain · CAS 02-59-01, Septic System · CAS 02-60-01, Concrete Drain · CAS 02-60-02, French Drain · CAS 02-60-03, Steam Cleaning Drain · CAS 02-60-04, French Drain · CAS 02-60-05, French Drain · CAS 02-60-06, French Drain · CAS 02-60-07, French Drain · CAS 23-60-01, Mud Trap Drain and Outfall · CAS 23-99-06, Grease Trap · CAS 25-60-04, Building 3123 Outfalls Closure activities began in October 2011 and were completed in April 2012. Activities were conducted according to the Corrective Action Plan for CAU 562 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2011). The corrective actions included No Further Action and Clean Closure. Closure activities generated sanitary waste and hazardous waste. Some wastes exceeded land disposal limits and required offsite treatment prior to disposal. Other wastes met land disposal restrictions and were disposed in appropriate onsite or offsite landfills. NNSA/NSO requests the following: · A Notice of Completion from the Nevada Division of Environmental Protection to NNSA/NSO for closure of CAU 562 · The transfer of CAU 562 from Appendix III to Appendix IV, Closed Corrective Action Units, of the FFACO

NSTec Environmental Restoration

2012-08-15T23:59:59.000Z

346

Hydrogeologic investigation of the Maxey Flats radioactive waste burial site, Fleming County, Kentucky  

SciTech Connect

Part of a hilltop named Maxey Flats was used as a commercial radioactive waste burial site from 1963 to 1977. The hill is about 9 miles from the city of Morehead. The climate of the area is humid, with normal annual precipitation 44.30 in. for the period 1941 through 1970. Most of the 47 burial trenches on the site are completed in weathered shale. They are covered with clay and crushed shale, but water infiltrates the covers and accumulates in the waste. The contaminated trench water is later removed and evaporated. Assuming water in trenches would not overflow onto the ground surface, flow through fractured rocks would be the principal means of contaminated-water transport if trench water were to move from the burial site. The bases of most trenches consist of a 1.5-ft-thick sandstone bed, at a depth of about 25 ft below ground level. Radionuclides have moved laterally through fractures in the bed as much as 270 feet from the nearest burial trench. Rocks underlying the burial site are of Mississippian, Devonian, and Silurian age, about 80% of which are shale. The bedrock has poor water-transmitting capability, and virtually all flow is through fractures. The spacing between most fractures is several feet, although it ranges from a few inches to more than 100 ft. Most fractures terminate, or are offset, at bedding planes. The ground-water system is therefore very nonuniform, and more permeable in the horizontal direction. At least eight hydrologic units underlie the burial site.

Zehner, H.H.

1983-01-01T23:59:59.000Z

347

Geochemical investigations at Maxey Flats radioactive waste disposal site. [Shallow land burial  

SciTech Connect

As part of the NRC efforts to develop a data base on source term characteristics for low level wastes, Brookhaven National Laboratory (BNL) has produced and analyzed a large amount of data on trench leachate chemistry at existing shallow land burial sites. In this report, we present the results of our investigations at the Maxey Flats, Kentucky disposal site. In particular, data on trench leachate chemistry are reviewed and discussed in terms of mechanisms and processes controlling the composition of trench solutes. Particular emphasis is placed on identifying both intra- and extra-trench factors and processes contributing to source term characteristics, modifications, and uncertainties. BNL research on the Maxey Flats disposal site has provided important information not only on the source term characteristics and the factors contributing to uncertainties in the source term but also some generic insights into such geochemical processes and controls as the mechanics of leachate formation, microbial degradation and development of anoxia, organic complexation and radionuclide mobility, redox inversion and modification of the source term, solubility constraints on solute chemistry, mineral authigenesis, corrosion products and radionuclide scavenging, and the role of organic complexants in geochemical partitioning of radionuclides. A knowledge of such processes and controls affecting the geochemical cycling of radionuclides as well as an understanding of the important factors that contribute to variability and uncertainties in the source term is essential for evaluating the performance of waste package and the site, making valid predictions of release for dose calculations, and for planning site performance monitoring as well as remedial actions. 43 references, 47 figures, 30 tables.

Dayal, R.; Pietrzak, R.F.; Clinton, J.

1984-09-01T23:59:59.000Z

348

Hanford ARRA Photogallery - Hanford Site  

NLE Websites -- All DOE Office Websites (Extended Search)

waste site Waste Site Sampling Waste Site Sampling 100 K Pipeline 100 K Pipeline Multi-Incremental Sampling Project Multi-Incremental Sampling Project 100 K Waste Sites 100 K Waste...

349

Savannah River Site, Liquid Waste Program, Savannah River Remediation American Recovery and Reinvestment Act Benefits and Lessons Learned - 12559  

SciTech Connect

Utilizing funding provided by the American Recovery and Reinvestment Act (ARRA), the Liquid Waste Program at Savannah River site successfully executed forty-one design, procurement, construction, and operating activities in the period from September 2009 through December 2011. Project Management of the program included noteworthy practices involving safety, integrated project teams, communication, and cost, schedule and risk management. Significant upgrades to plant capacity, progress toward waste tank closure and procurement of needed infrastructure were accomplished. Over 1.5 million hours were worked without a single lost work day case. Lessons Learned were continually identified and applied to enhance the program. Investment of Recovery Act monies into the Liquid Waste Program has ensured continued success in the disposition of radioactive wastes and the closure of high level waste tanks at SRS. The funding of a portion of the Liquid Waste Program at SRS by ARRA was a major success. Significant upgrades to plant capacity, progress toward waste tank closure and procurement of needed infrastructure was accomplished. Integrated Project Teams ensured quality products and services were provided to the Operations customers. Over 1.5 million hours were worked without a single lost work day case. Lessons Learned were continually reviewed and reapplied to enhance the program. Investment of Recovery Act monies into the Liquid Waste Program has ensured continued success in the disposition of radioactive wastes and the closure of high level waste tanks at SRS. (authors)

Schmitz, Mark A.; Crouse, Thomas N. [Savannah River Remediation, Aiken, South Carolina 29808 (United States)

2012-07-01T23:59:59.000Z

350

2008 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site  

SciTech Connect

This report is a compilation of the groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS) including calendar year 2008 results. Each of the three Pilot Wells was sampled on March 11, 2008, and September 10, 2008. These wells were sampled for the following indicators of contamination: pH, specific conductance, total organic carbon, total organic halides, and tritium. Indicators of general water chemistry (cations and anions) were also monitored. Results from all samples collected in 2008 were within the limits established by agreement with the Nevada Division of Environmental Protection for each analyte. These data indicate that there has been no measurable impact to the uppermost aquifer from the Area 5 RWMS. There were no significant changes in measured groundwater parameters compared to previous years. Other information in the report includes an updated Cumulative Chronology for the Area 5 RWMS Groundwater Monitoring Program and a brief description of the site hydrogeology.

NSTec Environmental Management

2009-01-13T23:59:59.000Z

351

2006 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site  

SciTech Connect

This report is a compilation of the groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS) for calendar year 2006. Pilot wells UE5PW-1, UE5PW-2, and UE5PW-3 were sampled in April and October 2006 for the following indicators of contamination: pH, specific conductance, total organic carbon, total organic halides, and tritium. Indicators of general water chemistry (cations and anions) were also monitored. Results from all samples collected in 2006 were within the limits established by agreement with the Nevada Division of Environmental Protection for each analyte. These data indicate that there has been no measurable impact to the uppermost aquifer from the Area 5 RWMS. There were no significant changes in measured groundwater parameters compared to previous years. Other information in the report includes an updated Cumulative Chronology for the Area 5 RWMS Groundwater Monitoring Program and a brief description of the site hydrogeology.

David B. Hudson

2007-02-01T23:59:59.000Z

352

Environmental monitoring report for commercial low-level radioactive waste disposal sites (1960`s through 1990`s)  

SciTech Connect

During the time period covered in this report (1960`s through early 1990`s), six commercial low-level radioactive waste (LLRW) disposal facilities have been operated in the US. This report provides environmental monitoring data collected at each site. The report summarizes: (1) each site`s general design, (2) each site`s inventory, (3) the environmental monitoring program for each site and the data obtained as the program has evolved, and (4) what the program has indicated about releases to off-site areas, if any, including a statement of the actual health and safety significance of any release. A summary with conclusions is provided at the end of each site`s chapter. The six commercial LLRW disposal sites discussed are located near: Sheffield, Illinois; Maxey Flats, Kentucky; Beatty, Nevada; West Valley, New York; Barnwell, South Carolina; Richland, Washington.

NONE

1996-11-01T23:59:59.000Z

353

CERTIFICATION DOCKET FOR THE F0RhqE.R SITE OF THE RADIOACTIVE LIQUID WASTE TREATMENT PLANT (TA-45)  

Office of Legacy Management (LM)

CERTIFICATION DOCKET CERTIFICATION DOCKET FOR THE F0RhqE.R SITE OF THE RADIOACTIVE LIQUID WASTE TREATMENT PLANT (TA-45) AND THE EFFLUENT RECEIVING AREAS OF ACID, PUEBLO, AND LOS ALAMOS CANYOM, LOS ALAMOS, NEW MEXICO DEPARTMENT OF ENERGY Office of Nuclear Energy Office of Terminal Waste Disposal and Remedial Action Division of Remedial Action Projects -. CONTENTS A Page - Introduction to the Certification Docket for the Former Site of the Radioactive Liquid Waste Treatment Plant (TA-45) and the Effluent Receiving Areas of Acid, Pueblo, and Los Alamos Canyons, Los Alamos, New Mexico Description of the Formeriy Utilized Sites Program at the Former Site of the T.4-45 Treatment Plant and Acid, Pueblo, and Los Alamos Canyons Purpose Property Identification Docket Contents

354

Targeted Health Assessment for Wastes Contained at the Niagara Falls Storage Site to Guide Planning for Remedial Action Alternatives - 13428  

SciTech Connect

The U.S. Army Corps of Engineers (USACE) is evaluating potential remedial alternatives at the 191-acre Niagara Falls Storage Site (NFSS) in Lewiston, New York, under the Formerly Utilized Sites Remedial Action Program (FUSRAP). The Manhattan Engineer District (MED) and Atomic Energy Commission (AEC) brought radioactive wastes to the site during the 1940's and 1950's, and the U.S. Department of Energy (US DOE) consolidated these wastes into a 10-acre interim waste containment structure (IWCS) in the southwest portion of the site during the 1980's. The USACE is evaluating remedial alternatives for radioactive waste contained within the IWCS at the NFSS under the Feasibility Study phase of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) process. A preliminary evaluation of the IWCS has been conducted to assess potential airborne releases associated with uncovered wastes, particularly during waste excavation, as well as direct exposures to uncovered wastes. Key technical issues for this assessment include: (1) limitations in waste characterization data; (2) representative receptors and exposure routes; (3) estimates of contaminant emissions at an early stage of the evaluation process; (4) consideration of candidate meteorological data and air dispersion modeling approaches; and (5) estimates of health effects from potential exposures to both radionuclides and chemicals that account for recent updates of exposure and toxicity factors. Results of this preliminary health risk assessment indicate if the wastes were uncovered and someone stayed at the IWCS for a number of days to weeks, substantial doses and serious health effects could be incurred. Current controls prevent such exposures, and the controls that would be applied to protect onsite workers during remedial action at the IWCS would also effectively protect the public nearby. This evaluation provides framing context for the upcoming development and detailed evaluation of remedial alternatives for the IWCS. (authors)

Busse, John; Keil, Karen; Staten, Jane; Miller, Neil; Barker, Michelle [U.S. Army Corps of Engineers, Buffalo District, 1776 Niagara Street, Buffalo, NY (United States)] [U.S. Army Corps of Engineers, Buffalo District, 1776 Niagara Street, Buffalo, NY (United States); MacDonell, Margaret; Peterson, John; Chang, Young-Soo; Durham, Lisa [Argonne National Laboratory, Environmental Science Division, 9700 S. Cass Ave., Argonne, IL 60439 (United States)] [Argonne National Laboratory, Environmental Science Division, 9700 S. Cass Ave., Argonne, IL 60439 (United States)

2013-07-01T23:59:59.000Z

355

Design report for the interim waste containment facility at the Niagara Falls Storage Site. [Surplus Facilities Management Program  

SciTech Connect

Low-level radioactive residues from pitchblende processing and thorium- and radium-contaminated sand, soil, and building rubble are presently stored at the Niagara Falls Storage Site (NFSS) in Lewiston, New York. These residues and wastes derive from past NFSS operations and from similar operations at other sites in the United States conducted during the 1940s by the Manhattan Engineer District (MED) and subsequently by the Atomic Energy Commission (AEC). The US Department of Energy (DOE), successor to MED/AEC, is conducting remedial action at the NFSS under two programs: on-site work under the Surplus Facilities Managemnt Program and off-site cleanup of vicinity properties under the Formerly Utilized Sites Remedial Action Program. On-site remedial action consists of consolidating the residues and wastes within a designated waste containment area and constructing a waste containment facility to prevent contaminant migration. The service life of the system is 25 to 50 years. Near-term remedial action construction activities will not jeopardize or preclude implementation of any other remedial action alternative at a later date. Should DOE decide to extend the service life of the system, the waste containment area would be upgraded to provide a minimum service life of 200 years. This report describes the design for the containment system. Pertinent information on site geology and hydrology and on regional seismicity and meteorology is also provided. Engineering calculations and validated computer modeling studies based on site-specific and conservative parameters confirm the adequacy of the design for its intended purposes of waste containment and environmental protection.

Not Available

1986-05-01T23:59:59.000Z

356

Ecological Assessment of Hazardous Waste Sites: A Field and Laboratory Reference  

NLE Websites -- All DOE Office Websites (Extended Search)

Ecological Assessment of Ecological Assessment of Hazardous Waste Sites: A Field and Laboratory Reference U.S. Environmental Protection Agency Environmental Research Laboratory 200 S. W. 35th Street Corvallis, OR 97333 ECOLOGICAL ASSESSMENTS OF HAZARDOUS WASTE SITES: A FIELD AND LABORATORY REFERENCE DOCUMENT Edited By William Warren-Hicks l Benjamin R. Parkhurst 2 Samuel S. Baker, Jr. 1 1 Kilkelly Environmental Associates Highway 70 West - The Water Garden Raleigh, NC 27622 2 Western Aquatics, Inc. P.O. BOX 546 203 Grand Avenue Laramie, WY 82070 DISCLAIMER T h e i n f o r m a t i o n i n t h i s d o c u m e n t h a s b e e n f u n d e d b y t h e U n i t e d S t a t e s Environmental Protection Agent h by Contract Number 68-03-3439 to Kilkelly Environmenta] Associates, Raleig , NC 27622. It has been subject to the Agency's peer and administrative review, and it has been approved for publication as an EPA

357

Cost estimate of high-level radioactive waste containers for the Yucca Mountain Site Characterization Project  

SciTech Connect

This report summarizes the bottoms-up cost estimates for fabrication of high-level radioactive waste disposal containers based on the Site Characterization Plan Conceptual Design (SCP-CD). These estimates were acquired by Babcock and Wilcox (B&S) under sub-contract to Lawrence Livermore National Laboratory (LLNL) for the Yucca Mountain Site Characterization Project (YMP). The estimates were obtained for two leading container candidate materials (Alloy 825 and CDA 715), and from other three vendors who were selected from a list of twenty solicited. Three types of container designs were analyzed that represent containers for spent fuel, and for vitrified high-level waste (HLW). The container internal structures were assumed to be AISI-304 stainless steel in all cases, with an annual production rate of 750 containers. Subjective techniques were used for estimating QA/QC costs based on vendor experience and the specifications derived for the LLNL-YMP Quality Assurance program. In addition, an independent QA/QC analysis is reported which was prepared by Kasier Engineering. Based on the cost estimates developed, LLNL recommends that values of $825K and $62K be used for the 1991 TSLCC for the spent fuel and HLW containers, respectively. These numbers represent the most conservative among the three vendors, and are for the high-nickel anstenitic steel (Alloy 825). 6 refs., 7 figs.

Russell, E.W.; Clarke, W. [Lawrence Livermore National Lab., CA (United States)] [Lawrence Livermore National Lab., CA (United States); Domian, H.A. [Babcock and Wilcox Co., Lynchburg, VA (United States)] [Babcock and Wilcox Co., Lynchburg, VA (United States); Madson, A.A. [Kaiser Engineers California Corp., Oakland, CA (United States)] [Kaiser Engineers California Corp., Oakland, CA (United States)

1991-08-01T23:59:59.000Z

358

A Brief Review of Filtration Studies for Waste Treatment at the Hanford Site  

SciTech Connect

This document completes the requirements of Milestone 1-2, PNNL Draft Literature Review, discussed in the scope of work outlined in the EM-31 Support Project task plan WP-2.3.6-2010-1. The focus of task WP 2.3.6 is to improve the U.S. Department of Energy’s (DOE’s) understanding of filtration operations for high-level waste (HLW) to enhance filtration and cleaning efficiencies, thereby increasing process throughput and reducing the sodium demand (through acid neutralization). Developing the processes for fulfilling the cleaning/backpulsing requirements will result in more efficient operations for both the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and the Savannah River Site (SRS), thereby increasing throughput by limiting cleaning cycles. The purpose of this document is to summarize Pacific Northwest National Laboratory’s (PNNL’s) literature review of historical filtration testing at the laboratory and of testing found in peer-reviewed journals. Eventually, the contents of this document will be merged with a literature review by SRS to produce a summary report for DOE of the results of previous filtration testing at the laboratories and the types of testing that still need to be completed to address the questions about improved filtration performance at WTP and SRS. To this end, this report presents 1) a review of the current state of crossflow filtration knowledge available in the peer-reviewed literature, 2) a detailed review of PNNL-related filtration studies specific to the Hanford site, and 3) an overview of current waste filtration models developed by PNNL and suggested avenues for future model development.

Daniel, Richard C.; Schonewill, Philip P.; Shimskey, Rick W.; Peterson, Reid A.

2010-12-01T23:59:59.000Z

359

Remaining Sites Verification Package for the 1607-B2 Septic System and 100-B-14:2 Sanitary Sewer System, Waste Site Reclassification Form 2006-055  

SciTech Connect

The 1607-B2 waste site is a former septic system associated with various 100-B facilities, including the 105-B, 108-B, 115-B/C, and 185/190-B buildings. The site was evaluated based on confirmatory results for feeder lines within the 100-B-14:2 subsite and determined to require remediation. The 1607-B2 waste site has been remediated to achieve the remedial action objectives specified in the Remaining Sites ROD. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

L. M. Dittmer

2007-03-21T23:59:59.000Z

360

Remaining Sites Verification Package for the 100-B-20, 1716-B Maintenance Garage Underground Tank, Waste Site Reclassification Form 2006-019  

SciTech Connect

The 100-B-20 waste site, located in the 100-BC-1 Operable Unit of the Hanford Site, consisted of an underground oil tank that once serviced the 1716-B Maintenance Garage. The selected action for the 100-B-20 waste site involved removal of the oil tanks and their contents and demonstrating through confirmatory sampling that all cleanup goals have been met. In accordance with this evaluation, a reclassification status of interim closed out has been determined. The results demonstrate that the site will support future unrestricted land uses that can be represented by a rural-residential scenario. These results also show that residual concentrations support unrestricted future use of shallow zone soil and that contaminant levels remaining in the soil are protective of groundwater and the Columbia River.

L. M. Dittmer

2006-09-27T23:59:59.000Z

Note: This page contains sample records for the topic "waste sites atsdr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Performance Assessment Program for the Savannah River Site Liquid Waste Facilities - 13610  

SciTech Connect

The Liquid Waste facilities at the U.S. Department of Energy's (DOE) Savannah River Site (SRS) are operated by Liquid Waste Operations contractor Savannah River Remediation LLC (SRR). A separate Performance Assessment (PA) is prepared to support disposal operations at the Saltstone Disposal Facility and closure evaluations for the two liquid waste tank farm facilities at SRS, F-Tank Farm and H-Tank Farm. A PA provides the technical basis and results to be used in subsequent documents to demonstrate compliance with the pertinent requirements identified in operations and closure regulatory guidance. The Saltstone Disposal Facility is subject to a State of South Carolina industrial solid waste landfill permit and the tank farms are subject to a state industrial waste water permit. The three Liquid Waste facilities are also subject to a Federal Facility Agreement approved by the State, DOE and the Environmental Protection Agency (EPA). Due to the regulatory structure, a PA is a key technical document reviewed by the DOE, the State of South Carolina and the EPA. As the waste material disposed of in the Saltstone Disposal Facility and the residual material in the closed tank farms is also subject to reclassification prior to closure via a waste determination pursuant to Section 3116 of the Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005, the U.S. Nuclear Regulatory Commission (NRC) is also a reviewing agency for the PAs. Pursuant to the Act, the NRC also has a continuing role to monitor disposal actions to assess compliance with stated performance objectives. The Liquid Waste PA program at SRS represents a continual process over the life of the disposal and closure operations. When the need for a PA or PA revision is identified, the first step is to develop a conceptual model to best represent the facility conditions. The conceptual model will include physical dimensions of the closed system, both the engineered and natural system, and modeling input parameters associated with the modeled features, both initial values (at the time of facility closure) and degradation rates/values. During the development of the PA, evaluations are conducted to reflect not only the results associated with the best available information at the time but also to evaluate potential uncertainties and sensitivities associated with the modeled system. While the PA will reflect the modeled system results from the best available information, it will also identify areas for future work to reduce overall PA uncertainties moving forward. DOE requires a PA Maintenance Program such that work continues to reduce model uncertainties, thus bolstering confidence in PA results that support regulatory decisions. This maintenance work may include new Research and Development activities or modeling as informed by previous PA results and other new information that becomes available. As new information becomes available, it is evaluated against previous PAs and appropriate actions are taken to ensure continued confidence in the regulatory decisions. Therefore, the PA program is a continual process that is not just the development of a PA but seeks to incorporate new information to reduce overall model uncertainty and provide continuing confidence in regulatory decisions. (author)

Rosenberger, Kent H. [Savannah River Remediation LLC, Building 705-1C, Aiken, SC 29808 (United States)] [Savannah River Remediation LLC, Building 705-1C, Aiken, SC 29808 (United States)

2013-07-01T23:59:59.000Z

362

REMOVING SLUDGE HEELS FROM SAVANNAH RIVER SITE WASTE TANKS BY OXALIC ACID DISSOLUTION  

SciTech Connect

The Savannah River Site (SRS) will remove sludge as part of waste tank closure operations. Typically the bulk sludge is removed by mixing it with supernate to produce a slurry, and transporting the slurry to a downstream tank for processing. Experience shows that a residual heel may remain in the tank that cannot be removed by this conventional technique. In the past, SRS used oxalic acid solutions to disperse or dissolve the sludge heel to complete the waste removal. To better understand the actual conditions of oxalic acid cleaning of waste from carbon steel tanks, the authors developed and conducted an experimental program to determine its effectiveness in dissolving sludge, the hydrogen generation rate, the generation rate of other gases, the carbon steel corrosion rate, the impact of mixing on chemical cleaning, the impact of temperature, and the types of precipitates formed during the neutralization process. The test samples included actual SRS sludge and simulated SRS sludge. The authors performed the simulated waste tests at 25, 50, and 75 C by adding 8 wt % oxalic acid to the sludge over seven days. They conducted the actual waste tests at 50 and 75 C by adding 8 wt % oxalic acid to the sludge as a single batch. Following the testing, SRS conducted chemical cleaning with oxalic acid in two waste tanks. In Tank 5F, the oxalic acid (8 wt %) addition occurred over seven days, followed by inhibited water to ensure the tank contained enough liquid to operate the mixer pumps. The tank temperature during oxalic acid addition and dissolution was approximately 45 C. The authors analyzed samples from the chemical cleaning process and compared it with test data. The conclusions from the work are: (1) Oxalic acid addition proved effective in dissolving sludge heels in the simulant demonstration, the actual waste demonstration, and in SRS Tank 5F. (2) The oxalic acid dissolved {approx} 100% of the uranium, {approx} 100% of the iron, and {approx} 40% of the manganese during a single contact in the simulant demonstration. (The iron dissolution may be high due to corrosion of carbon steel coupons.) (3) The oxalic acid dissolved {approx} 80% of the uranium, {approx} 70% of the iron, {approx} 50% of the manganese, and {approx} 90% of the aluminum in the actual waste demonstration for a single contact. (4) The oxalic acid dissolved {approx} 100% of the uranium, {approx} 15% of the iron, {approx} 40% of the manganese, and {approx} 80% of the aluminum in Tank 5F during the first contact cycle. Except for the iron, these results agree well with the demonstrations. The data suggest that a much larger fraction of the iron in the sludge dissolved, but it re-precipitated with the oxalate added to Tank 5F. (5) The demonstrations produced large volumes (i.e., 2-14 gallons of gas/gallon of oxalic acid) of gas (primarily carbon dioxide) by the reaction of oxalic acid with sludge and carbon steel. (6) The reaction of oxalic acid with carbon steel produced hydrogen in the simulant and actual waste demonstrations. The volume produced varied from 0.00002-0.00100 ft{sup 3} hydrogen/ft{sup 2} carbon steel. The hydrogen production proved higher in unmixed tanks than in mixed tanks.

Poirier, M; David Herman, D; Fernando Fondeur, F; John Pareizs, J; Michael Hay, M; Bruce Wiersma, B; Kim Crapse, K; Thomas Peters, T; Samuel Fink, S; Donald Thaxton, D

2009-03-01T23:59:59.000Z

363

Sectored Clean-up Work Plan for Housekeeping Category Waste Sites  

SciTech Connect

The Sectored Clean-up Work Plan (SCWP) replaces the Housekeeping Category Corrective Action Unit Work Plan and provides a strategy to be used for conducting housekeeping activities using a sectored clean-up approach. This work plan provides a process by which one or more existing housekeeping category Corrective Action Sites (CASS) from the Federal Facility Agreement and Consent Order and/or non-FFACO designated waste site(s) are grouped into a sector for simultaneous remediation and cleanup. This increases effectiveness and efficiencies in labor, materials, equipment, cost, and time. This plan is an effort by the U.S. Department of Energy to expedite work in a more organized and efficient approach. The objectives of this plan are to: Group housekeeping FFACO CASS and non-FFACO housekeeping sites into sectors and remediate during the same field visit; Provide consistent documentation on FFACO CAS and non-FFACO clean-up activities; Perform similar activities under one approved document; Remediate areas inside the Deactivation and Decommissioning facilities and compounds in a campaign-style remediation; and Increase efficiencies and cost-effectiveness, accelerate cleanups, reduce mobilization, demobilization, and remediation costs.

S. J. Nacht

2000-02-01T23:59:59.000Z

364

2010 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond  

SciTech Connect

This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond from November 1, 2009 through October 31, 2010. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of compliance activities • Discussion of the facility’s environmental impacts During the 2010 permit year, approximately 164 million gallons of wastewater were discharged to the Cold Waste Pond. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters were below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.

mike lewis

2011-02-01T23:59:59.000Z

365

2013 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond  

SciTech Connect

This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond from November 1, 2012–October 31, 2013. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of compliance activities • Noncompliance issues • Discussion of the facility’s environmental impacts. During the 2013 permit year, approximately 238 million gallons of wastewater was discharged to the Cold Waste Pond. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters are below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.

Mike Lewis

2014-02-01T23:59:59.000Z

366

Special Analysis of the Area 3 Radioactive Waste Management Site at the Nevada National Security Site, Nye County, Nevada  

SciTech Connect

This report describes the methods and results of a special analysis (SA) of the Area 3 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). The purpose of the SA is to determine if the approved performance assessment (PA) and composite analysis (CA) (Shott et al., 2001) remain valid. The Area 3 RWMS PA and CA were prepared as a single document and received conditional approval on October 6, 1999. A conditional Disposal Authorization Statement (DAS) for the Area 3 RWMS was issued on October 20, 1999. Since preparation of the approved PA and CA, new information and additional environmental monitoring data have been used to update the PA and CA. At the same time, continual advancements in computer processors and software have allowed improvement to the PA and CA models. Annual reviews of the PA and CA required by U.S. Department of Energy (DOE) Order DOE O 435.1 have documented multiple changes occurring since preparation of the PA and CA. Potentially important changes include: Development of a new and improved baseline PA and CA model implemented in the probabilistic GoldSim simulation platform. A significant increase in the waste inventory disposed at the site. Revision and updating of model parameters based on additional years of site monitoring data and new research and development results. Although changes have occurred, many important PA/CA issues remain unchanged, including the site conceptual model, important features, events, and processes, and the points of compliance. The SA is performed to document the current status of the PA/CA model and to quantitatively assess the impact of cumulative changes on the PA and CA results. The results of the SA are used to assess the validity of the approved PA/CA and make a determination if revision of the PA or CA is necessary. The SA was performed using the Area 3 RWMS, version 2.102, GoldSim model, the current baseline PA/CA model. Comparison of the maximum SA results with the PA performance objectives indicates that there continues to be a reasonable expectation of compliance. The resident exposure scenario was evaluated for compliance with the air pathway and all-pathways annual total effective dose (TED) performance objectives. The maximum mean air pathway TED, 7E-6 millisievert (mSv) at 1,000 years (y) has decreased relative to the approved PA and is significantly less than the 0.1 mSv limit. The maximum mean all-pathways annual TED, 7E-5 mSv at 1,000 y has increased but remains a small fraction of the 0.25 mSv limit. The SA maximum mean radon-222 (222Rn) flux density, 0.03 becquerel per square meter per second (Bq m-2 s-1), has increased relative to the PA results but is significantly less than the 0.74 Bq m-2 s-1 limit. The SA results continue to support a conclusion that the disposed waste inventory is protective of intruders and groundwater resources. The maximum mean intruder TED, 0.01 mSv for an acute construction scenario at the U-3ah/at disposal unit, was less than the 5 mSv performance measure. Site monitoring data and research results continue to support a conclusion that a groundwater pathway will not exist within the 1,000 y compliance period. Projected releases to the environment are a small fraction of the performance objectives. Cost-effective options for reducing releases further are unlikely to exist. Therefore, releases from the Area 3 RWMS are judged to be as low as reasonably achievable. Comparison of the maximum CA result with the 0.3 mSv CA dose constraint indicates that no action is required to reduce the dose from the Area 3 RWMS and all interacting sources of residual radioactive contamination. The SA maximum mean CA annual TED, 0.02 mSv at 1,000 y, has increased from the approved CA result but remains less than 10% of the dose constraint. The CA TED continues to be due predominantly to inhalation of plutonium-239 resuspended from soils contaminated by nuclear weapons tests conducted near the Area 3 RWMS. The SA results estimated with the Area 3 RWMS version 2.102 model indicate that changes to the PA and CA do not

National Security Technologies, LLC, Environmental Management

2012-09-30T23:59:59.000Z

367

Waste reduction assistance program (WRAP) on-site audit report: Secondary seafood processor  

SciTech Connect

The waste audit report presents the findings of a study at a fish processing plant in Alaska. Process descriptions, waste generation, waste management practices, and waste reduction alternatives are discussed. Recommendations for waste reduction include implementing a heat recovery system, using alternative packaging, and mechanizing processes. Appendices include state regulations and information on the Alaska Science and Technology Foundation.

Not Available

1989-07-28T23:59:59.000Z

368

Environmental Management Waste Management Facility (EMWMF) Site-Specific Health and Safety Plan, Oak Ridge, Tennessee  

SciTech Connect

The Bechtel Jacobs Company LLC (BJC) policy is to provide a safe and healthy workplace for all employees and subcontractors. The implementation of this policy requires that operations of the Environmental Management Waste Management Facility (EMWMF), located one-half mile west of the U.S. Department of Energy (DOE) Y-12 National Security Complex, be guided by an overall plan and consistent proactive approach to environment, safety and health (ES&H) issues. The BJC governing document for worker safety and health, BJC/OR-1745, 'Worker Safety and Health Program', describes the key elements of the BJC Safety and Industrial Hygiene (IH) programs, which includes the requirement for development and implementation of a site-specific Health and Safety Plan (HASP) where required by regulation (refer also to BJC-EH-1012, 'Development and Approval of Safety and Health Plans'). BJC/OR-1745, 'Worker Safety and Health Program', implements the requirements for worker protection contained in Title 10 Code of Federal Regulations (CFR) Part 851. The EMWMF site-specific HASP requirements identifies safe operating procedures, work controls, personal protective equipment, roles and responsibilities, potential site hazards and control measures, site access requirements, frequency and types of monitoring, site work areas, decontamination procedures, and outlines emergency response actions. This HASP will be available on site for use by all workers, management and supervisors, oversight personnel and visitors. All EMWMF assigned personnel will be briefed on the contents of this HASP and will be required to follow the procedures and protocols as specified. The policies and procedures referenced in this HASP apply to all EMWMF operations activities. In addition the HASP establishes ES&H criteria for the day-to-day activities to prevent or minimize any adverse effect on the environment and personnel safety and health and to meet standards that define acceptable waste management practices. The HASP is written to make use of past experience and best management practices to eliminate or minimize hazards to workers or the environment from events such as fires, falls, mechanical hazards, or any unplanned release to the environment.

Flynn, N.C. Bechtel Jacobs

2008-04-21T23:59:59.000Z

369

Corrective Action Investigation Plan for Corrective Action Unit 545: Dumps, Waste Disposal Sites, and Buried Radioactive Materials Nevada Test Site, Nevada, Revision 0  

SciTech Connect

Corrective Action Unit 545, Dumps, Waste Disposal Sites, and Buried Radioactive Materials, consists of seven inactive sites located in the Yucca Flat area and one inactive site in the Pahute Mesa area. The eight CAU 545 sites consist of craters used for mud disposal, surface or buried waste disposed within craters or potential crater areas, and sites where surface or buried waste was disposed. The CAU 545 sites were used to support nuclear testing conducted in the Yucca Flat area during the 1950s through the early 1990s, and in Area 20 in the mid-1970s. This Corrective Action Investigation Plan has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. Under the Federal Facility Agreement and Consent Order, this Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection for approval. Fieldwork will be conducted following approval.

Alfred Wickline

2007-06-01T23:59:59.000Z

370

HANFORD SITE RIVER PROTECTION PROJECT (RPP) TRANSURANIC (TRU) TANK WASTE IDENTIFICATION & PLANNING FOR REVRIEVAL TREATMENT & EVENTUAL DISPOSAL AT WIPP  

SciTech Connect

The CH2M HILL Manford Group, Inc. (CHG) conducts business to achieve the goals of the Office of River Protection (ORP) at Hanford. As an employee owned company, CHG employees have a strong motivation to develop innovative solutions to enhance project and company performance while ensuring protection of human health and the environment. CHG is responsible to manage and perform work required to safely store, enhance readiness for waste feed delivery, and prepare for treated waste receipts for the approximately 53 million gallons of legacy mixed radioactive waste currently at the Hanford Site tank farms. Safety and environmental awareness is integrated into all activities and work is accomplished in a manner that achieves high levels of quality while protecting the environment and the safety and health of workers and the public. This paper focuses on the innovative strategy to identify, retrieve, treat, and dispose of Hanford Transuranic (TRU) tank waste at the Waste Isolation Pilot Plant (WIPP).

KRISTOFZSKI, J.G.; TEDESCHI, R.; JOHNSON, M.E.; JENNINGS, M

2006-01-18T23:59:59.000Z

371

Optimization of the Area 5 Radioactive Waste Management Site Closure Cover  

SciTech Connect

The U.S. Department of Energy Manual DOE M 435.1-1, “Radioactive Waste Management Manual,” requires that performance assessments demonstrate that releases of radionuclides to the environment are as low as reasonably achievable (ALARA). Quantitative cost benefit analysis of radiation protection options is one component of the ALARA process. This report summarizes a quantitative cost benefit analysis of closure cover thickness for the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada Test Site. The optimum cover thickness that maintains doses ALARA is shown to be the thickness with the minimum total closure cost. Total closure cost is the sum of cover construction cost and the health detriment cost. Cover construction cost is estimated based on detailed cost estimates for closure of the 92-acre Low-Level Waste Management Unit (LLWMU). The health detriment cost is calculated as the product of collective dose and a constant monetary value of health detriment in units of dollars per unit collective dose. Collective dose is the sum of all individual doses in an exposed population and has units of person-sievert (Sv). Five discrete cover thickness options ranging from 2.5 to 4.5 meters (m) (8.2 to 15 feet [ft]) are evaluated. The optimization was subject to the constraints that (1) options must meet all applicable regulatory requirements and that (2) individual doses be a small fraction of background radiation dose. Total closure cost is found to be a monotonically increasing function of cover thickness for the 92-ac LLWMU, the Northern Expansion Area, and the entire Area 5 RWMS. The cover construction cost is orders of magnitude greater than the health detriment cost. Two-thousand Latin hypercube sampling realizations of the relationship between total closure cost and cover thickness are generated. In every realization, the optimum cover thickness is 2.5 m (8.2 ft) for the 92-ac Low-Level Waste Management Unit, the Northern Expansion Area, and the entire Area 5 RWMS. The conclusions of the optimization are found to be insensitive to all input parameters, the monetary value of the health detriment over a range of values from $200,000 to $15,000,000 per person-Sv, and the period of integration of collective dose. A 2.5 m (8.2 ft) closure cover at the Area 5 RWMS can meet all applicable regulatory requirements and maintain radionuclide releases ALARA.

Shott, Greg; Yucel, Vefa

2009-04-01T23:59:59.000Z

372

Remaining Sites Verification Package for the 600-111, P-11 Critical Mass Laboratory Crib, and UPR-600-16, Fire and Contamination Spread Waste Sites, Waste Site Reclassification Form 2004-065  

SciTech Connect

The 600-111, P-11 Critical Mass Laboratory Crib waste site, also referred to as the P-11 Facility, included the 120 Experimental Building, the 123 Control Building, and the P-11 Crib. The facility was constructed in 1949 and was used as a laboratory for plutonium criticality studies. In accordance with this evaluation, the confirmatory and verification sampling results support a reclassification of this site to Interim Closed Out. The results of confirmatory and verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

J. M. Capron

2008-10-28T23:59:59.000Z

373

Savannah River Site- Salt Waste Processing Facility: Briefing on the Salt Waste Processing Facility Independent Technical Review  

Energy.gov (U.S. Department of Energy (DOE))

This is a presentation outlining the Salt Waste Processing Facility process, major risks, approach for conducting reviews, discussion of the findings, and conclusions.

374

Effect of soil erosion on the long-term stability of FUSRAP near-surface waste-burial sites  

SciTech Connect

Decontamination of FUSRAP sites could result in the generation of large volumes (in excess of 400,000 m/sup 3/) of low-activity radioactive wastes (primarily contaminated soil and building materials) requiring subsequent disposal. It is likely that near-surface burial will be seriously considered as an option for disposal of these materials. A number of factors - including soil erosion - could adversely affect the long-term stability of a near-surface waste-burial site. The majority of FUSRAP sites are located in the humid eastern United States, where the principal cause of erosion is the action of water. This report examines the effect of soil erosion by water on burial-site stability based on analysis of four hypothetical near-surface burial sites. The Universal Soil Loss Equation was employed to estimate average annual soil loss from burial sites and the 1000-year effects of soil loss on the soil barrier (burial trench cap) placed over low-activity wastes. Results suggest that the land use of the burial site and the slope gradient of the burial trench cap significantly affect the rate of soil erosion. The development of measures limiting the potential land use of a burial site (e.g., mixing large rocks into the burial trench cap) may be required to preserve the integrity of a burial trench for long periods of time.

Knight, M.J.

1983-04-01T23:59:59.000Z

375

Recommendation by the Secretary of Energy Regarding the Suitability of the Yucca Mountain Site for a Repository Under the Nuclear Waste Policy Act of 1982  

Energy.gov (U.S. Department of Energy (DOE))

Recommendation by the Secretary of Energy Regarding the Suitability of the Yucca Mountain Site for a Repository Under the Nuclear Waste Policy Act of 1982

376

Waste Isolation Pilot Plant site environmental report, for calendar year 1995  

SciTech Connect

The U.S. Department of Energy (DOE) Order 5400.1 General Environmental Protection Program, requires DOE facilities, that conduct environmental protection programs, to annually prepare a Site Environmental Report (SER). The purpose of the SER is to provide an abstract of environmental assessments conducted in order to characterize site environmental management performance, to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit. The content of this SER is not restricted to a synopsis of the required data, in addition, information pertaining to new and continued monitoring and compliance activities during the 1995 calendar year are also included. Data contained in this report are derived from those monitoring programs directed by the Waste Isolation Pilot Plant (WIPP) Environmental Monitoring Plan (EMP). The EMP provides inclusive guidelines implemented to detect potential impacts to the environment and to establish baseline measurements for future environmental evaluations. Surface water, groundwater. air, soil, and biotic matrices are monitored for an array of radiological and nonradiological factors. The baseline radiological surveillance program encompasses a broader geographic area that includes nearby ranches, villages, and cities. Most elements of nonradiological assessments are conducted within the geographic vicinity of the WIPP site.

NONE

1996-09-01T23:59:59.000Z

377

Chemical species of migrating radionuclides at a shallow land low-level radioactive-waste burial site  

SciTech Connect

A research program at the Maxey Flats, Kentucky (U.S.A.) waste disposal site has been undertaken to define the chemical species contributing to the migration or retention of radionuclides contained in waste buried at that site. An experimental trench and inert atmosphere sampling wells were installed to sample water for determination of the chemical species of migrating radionuclides. The organic ligands are studied by gas chromatography, steric exclusion chromatography and mass spectrometry; and the data correlated with specific radionuclide counting data to determine precise chemical species. Preliminary data are reported in the text.

Kirby, L.J.; Toste, A.P.; Wilkerson, C.L.

1981-01-01T23:59:59.000Z

378

Remaining Sites Verification Package for the 126-B-3, 184-B Coal Pit Dumping Area, Waste Site Reclassification Form 2005-028  

SciTech Connect

The 126-B-3 waste site is the former coal storage pit for the 184-B Powerhouse. During demolition operations in the 1970s, the site was used for disposal of demolition debris from 100-B/C Area facilities. The site has been remediated by removing debris and contaminated soils. The results of verification sampling demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also showed that residual contaminant concentrations are protective of groundwater and the Columbia River.

L. M. Dittmer

2006-08-07T23:59:59.000Z

379

Remaining Sites Verification Package for the 100-F-33, 146-F Aquatic Biology Fish Ponds, Waste Site Reclassification Form 2006-021  

SciTech Connect

The 100-F-33, 146-F Aquatice Biology Fish Ponds waste site was an area with six small rectangular ponds and one large circular pond used to conduct tests on fish using various mixtures of river and reactor effluent water. The current site conditions achieve the remedial action objectives specified in the Remaining Sites ROD. The results of verification and applicable confirmatory sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

L. M. Dittmer

2006-08-25T23:59:59.000Z

380

Environmental Assessment and Finding of No Significant Impact: On-Site Treatment of Low Level Mixed Waste  

SciTech Connect

The Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-1292) to evaluate the proposed treatment of low level mixed waste (LLMW) at the Rocky Flats Environmental Technology Site (Site). The purpose of the action is to treat LLMW in order to meet the Land Disposal Restrictions specified by the Resource Conservation and Recovery Act and the waste acceptance criteria of the planned disposal site(s). Approximately 17,000 cubic meters (m{sup 3}) of LLMW are currently stored at the Site. Another 65,000 m{sup 3}of LLMW are likely to be generated by Site closure activities (a total of 82,000 m{sup 3} of LLMW). About 35,000 m{sup 3} can be directly disposed of off-site without treatment, and most of the remaining 47,000 m{sup 3} of LLMW can be treated at off-site treatment, storage, and disposal facilities. However, some LLMW will require treatment on-site, either because it does not meet shipping requirements or because off-site treatment is not available for these particular types of LLMW. Currently, this LLMW is stored at the Site pending the development and implementation of effective treatment processes. The Site needs to treat this LLMW on-site prior to shipment to off-site disposal facilities, in order to meet the DOE long-term objective of clean up and closure of the Site. All on-site treatment of LLMW would comply with applicable Federal and State laws designed to protect public health and safety and to enhance protection of the environment. The EA describes and analyzes the environmental effects of the proposed action (using ten mobile treatment processes to treat waste on-site), and the alternatives of treating waste onsite (using two fixed treatment processes), and of taking no action. The EA was the subject of a public comment period from February 3 to 24, 1999. No written or other comments regarding the EA were received.

N /A

1999-03-22T23:59:59.000Z

Note: This page contains sample records for the topic "waste sites atsdr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Remaining Sites Verification Package for the 600-111, P-11 Critical Mass Laboratory Crib, and UPR-600-16, Fire and Contamination Spread Waste Sites, Waste Site Reclassification Form 2008-045  

SciTech Connect

The UPR-600-16, Fire and Contamination Spread waste site is an unplanned release that occurred on December 4, 1951, when plutonium contamination was spread by a fire that ignited inside the 120 Experimental Building. The 120 Experimental Building was a laboratory building that was constructed in 1949 and used for plutonium criticality studies as part of the P-11 Project. In November 1951, a criticality occurred in the 120 Experimental Building that resulted in extensive plutonium contamination inside the building. The confirmatory evaluation supports a reclassification of this site to Interim Closed Out. The current site conditions achieve the remedial action objectives and the corresponding remedial action goals established in the Remaining Sites ROD. The results of the extensive radiological survey of the surface soil and the confirmatory and verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

J. M. Capron

2008-10-28T23:59:59.000Z

382

Remaining Sites Verification Package for the 100-F-26:13, 108-F Drain Pipelines, Waste Site Reclassification Form 2005-011  

SciTech Connect

The 100-F-26:13 waste site is the network of process sewer pipelines that received effluent from the 108-F Biological Laboratory and discharged it to the 188-F Ash Disposal Area (126-F-1 waste site). The pipelines included one 0.15-m (6-in.)-, two 0.2-m (8-in.)-, and one 0.31-m (12-in.)-diameter vitrified clay pipe segments encased in concrete. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also showed that residual contaminant concentrations are protective of groundwater and the Columbia River.

L. M. Dittmer

2008-03-03T23:59:59.000Z

383

Waste Isolation Pilot Plant annual site environmental report for calendar year 1992  

SciTech Connect

The US Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) Operational Environmental Monitoring Plan (OEMP) defined a comprehensive set of parameters which are monitored to detect potential environmental impacts and establish baselines for future environmental evaluations. Surface water and groundwater, air, soil, and biotics are monitored for radioactivity levels. Nonradiological environmental monitoring activities include air, water quality, soil properties, meteorological measurements and determination of the status of the local biological community. Ecological studies focus on the immediate area surrounding the WIPP site with emphasis on the salt storage pile. The baseline radiological surveillance covers a broader geographic area including nearby ranches, villages, and cities. Since the WIPP is still in its preoperational phase (i.e., no waste has been received) certain operational requirements of DOE Orders 5400.1, 5400.5, and the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH-0173T) are not relevant. Therefore, this report does not discuss items such as radionuclide emissions and effluents and subsequent doses to the public.

Not Available

1993-12-31T23:59:59.000Z

384

Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Import Statement, Richland, Washington  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

COVER SHEET 1 COVER SHEET 1 U.S. Department of Energy, Richland Operations Office 2 3 TITLE: 4 Revised Draft Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact 5 Statement, Richland, Benton County, Washington (DOE/EIS-0286D2) 6 7 CONTACT: 8 For further information on this document, write or call: Mr. Michael S. Collins HSW EIS Document Manager Richland Operations Office U.S. Department of Energy, A6-38 P.O. Box 550 Richland, Washington 99352-0550 Telephone: (800) 426-4914 Fax: (509) 372-1926 Email: hsweis@rl.gov For further information on the Department's National Environmental Policy Act process, contact: Ms. Carol M. Borgstrom, Director Office of NEPA Policy and Compliance, EH-42 U.S. Department of Energy 1000 Independence Avenue, S.W.

385

Final Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement Richland, Washington  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

COVER SHEET COVER SHEET U.S. Department of Energy, Richland Operations Office TITLE: Final Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement, Richland, Benton County, Washington (DOE/EIS-0286F) CONTACT: For further information on this document, write or call: Mr. Michael S. Collins HSW EIS Document Manager Richland Operations Office U.S. Department of Energy, A6-38 P.O. Box 550 Richland, Washington 99352-0550 Telephone: (509) 376-6536 Fax: (509) 372-1926 Email: hsweis@rl.gov For further information on the Department's National Environmental Policy Act (NEPA) process, contact: Ms. Carol M. Borgstrom, Director Office of NEPA Policy and Compliance, EH-42 U.S. Department of Energy 1000 Independence Avenue, S.W.

386

Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona Using Hyperspectral Remote Sensing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Remote Sens. 2012, 4, 327-353; doi:10.3390/rs4020327 Remote Sens. 2012, 4, 327-353; doi:10.3390/rs4020327 Remote Sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing Article Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona Using Hyperspectral Remote Sensing Jungho Im 1, *, John R. Jensen 2 , Ryan R. Jensen 3 , John Gladden 4 , Jody Waugh 5 and Mike Serrato 4 1 Department of Environmental Resources Engineering, College of Environmental Science and Forestry, State University of New York, Syracuse, NY 13210, USA 2 Department of Geography, University of South Carolina, Columbia, SC 29208, USA; E-Mail: johnj@mailbox.sc.edu 3 Department of Geography, Brigham Young University, Provo, UT 84605, USA; E-Mail: ryan.jensen@byu.edu 4 Savannah River National Laboratory, Department of Energy, Aiken, SC 29808, USA;

387

Revised Draft Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Import Statement, Richland, Washington - Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Link to Main Report Link to Main Report RESPONSIBLE AGENCY: COVER SHEET 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 U.S. Department of Energy, Richland Operations Office TITLE: Revised Draft Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement, Richland, Benton County, Washington (DOE/EIS-0286D2) CONTACT: For further information on this document, write or call: Mr. Michael S. Collins HSW EIS Document Manager Richland Operations Office U.S. Department of Energy, A6-38 P.O. Box 550 Richland, Washington 99352-0550 Telephone: (800) 426-4914 Fax: (509) 372-1926 Email: hsweis@rl.gov For further information on the Department's National Environmental Policy Act process,

388

Multiattribute utility analysis as a framework for public participation siting a hazardous waste facility  

SciTech Connect

How can the public play a role in decisions involving complicated scientific arguments? This paper describes a public participation exercise in which stakeholders used multiattribute utility analysis to select a site for a hazardous waste facility. Key to success was the ability to separate and address the two types of judgements inherent in environmental decisions: technical judgements on the likely consequences of alternative choices and value judgements on the importance or seriousness of those consequences. This enabled technical specialists to communicate the essential technical considerations and allowed stakeholders to establish the value judgements for the decision. Although rarely used in public participation, the multiattribute utility approach appears to provide a useful framework for the collaborative resolution of many complex environmental decision problems.

Merkhofer, M.W. [Applied Decision Analysis, Inc., Menlo Park, CA (United States); Conway, R. [Sandia National Labs., Albuquerque, NM (United States); Anderson, R.G. [Los Alamos National Lab., NM (United States)

1996-05-01T23:59:59.000Z

389

MEASUREMENT AND PREDICTION OF RADIOLYTIC HYDROGEN PRODUCTION IN DEFENSE WASTE PROCESSING SLURRIES AT SAVANNAH RIVER SITE  

SciTech Connect

This paper presents results of measurements and predictions of radiolytic hydrogen production rates from two actual process slurries in the Defense Waste Processing Facility (DWPF) at Savannah River Site (SRS). Hydrogen is a flammable gas and its production in nuclear facilities can be a safety hazard if not mitigated. Measurements were made in the Shielded Cells of Savannah River National Laboratory (SRNL) using a sample of Sludge Batch 3 (SB3) currently being processed by the DWPF. Predictions were made using published values for rates of radiolytic reactions producing H{sub 2} in aqueous solutions and the measured radionuclide and chemical compositions of the two slurries. The agreement between measured and predicted results for nine experiments ranged from complete agreement to 24% difference. This agreement indicates that if the composition of the slurry being processed is known, the rate of radiolytic hydrogen production can be reasonably estimated.

Bibler, N; John Pareizs, J; Terri Fellinger, T; Cj Bannochie, C

2007-01-10T23:59:59.000Z

390

Remaining Sites Verification Package for the 116-F-16, PNL Outfall and the 100-F-43, PNL Outfall Spillway, Waste Site Reclassification Form 2006-046  

SciTech Connect

The 100-F-43 waste site is the portion of the former discharge spillway for the PNL Outfall formerly existing above the ordinary high water mark of the Columbia River. The spillway consisted of a concrete flume used to discharge waste effluents from the 100-F Experimental Animal Farm. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

L. M. Dittmer

2006-09-14T23:59:59.000Z

391

Savannah River Site Salt Waste Processing Facility Technology Readiness Assessment Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Salt Waste Processing Facility Salt Waste Processing Facility Technology Readiness Assessment Report Kurt D. Gerdes Harry D. Harmon Herbert G. Sutter Major C. Thompson John R. Shultz Sahid C. Smith July 13, 2009 Prepared by the U.S. Department of Energy Washington, D.C. SRS Salt Waste Processing Facility Technology Readiness Assessment July 13, 2009 ii This page intentionally left blank SRS Salt Waste Processing Facility Technology Readiness Assessment July 13, 2009 iii SRS Salt Waste Processing Facility Technology Readiness Assessment July 13, 2009 iii Signatures SRS Salt Waste Processing Facility Technology Readiness Assessment July 13, 2009 iv This page intentionally left blank SRS Salt Waste Processing Facility

392

ADVANTAGES AND DISADVANTAGES TO OPERATING AN ON-SITE LABORATORY AT THE SANDIA NATIONAL LABORATORIES CHEMICAL WASTE LANDFILL  

SciTech Connect

During the excavation of the Sandia National Laboratories, New Mexico (SNL/NM) Chemical Waste Landfill (CWL), operations were realized by the presence of URS' (formerly known as United Research Services) On-site Mobile Laboratory (OSML) and the close proximity of the SNL/NM Environmental Restoration Chemical Laboratory (ERCL). The laboratory was located adjacent to the landfill in order to provide soil characterization, health and safety support, and waste management data. Although the cost of maintaining and operating an analytical laboratory can be higher than off-site analysis, there are many benefits to providing on site analytical services. This paper describes the synergies between the laboratory, as well as the advantages and disadvantages to having a laboratory on-site during the excavation of SNL/NM CWL.

Young, S.G.; Creech, M.N.

2003-02-27T23:59:59.000Z

393

Type B Accident Investigation Board Report of the Savannah River Site Hand Injury at the Salt Waste Processing Facility on October 6, 2009  

Energy.gov (U.S. Department of Energy (DOE))

This report documents the results of the Type B Accident Investigation Board (Board) investigation of the October 6, 2009, hand injury at the Department of Energy (DOE) Savannah River Site (SRS) Salt Waste Processing Facility construction site.

394

Crystallization In High Level Waste (HLW) Glass Melters: Operational Experience From The Savannah River Site  

SciTech Connect

processing strategy for the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The basis of this alternative approach is an empirical model predicting the crystal accumulation in the WTP glass discharge riser and melter bottom as a function of glass composition, time, and temperature. When coupled with an associated operating limit (e.g., the maximum tolerable thickness of an accumulated layer of crystals), this model could then be integrated into the process control algorithms to formulate crystal tolerant high level waste (HLW) glasses targeting higher waste loadings while still meeting process related limits and melter lifetime expectancies. This report provides a review of the scaled melter testing that was completed in support of the Defense Waste Processing Facility (DWPF) melter. Testing with scaled melters provided the data to define the DWPF operating limits to avoid bulk (volume) crystallization in the un-agitated DWPF melter and provided the data to distinguish between spinels generated by K-3 refractory corrosion versus spinels that precipitated from the HLW glass melt pool. This report includes a review of the crystallization observed with the scaled melters and the full scale DWPF melters (DWPF Melter 1 and DWPF Melter 2). Examples of actual DWPF melter attainment with Melter 2 are given. The intent is to provide an overview of lessons learned, including some example data, that can be used to advance the development and implementation of an empirical model and operating limit for crystal accumulation for WTP. Operation of the first and second (current) DWPF melters has demonstrated that the strategy of using a liquidus temperature predictive model combined with a 100 °C offset from the normal melter operating temperature of 1150 °C (i.e., the predicted liquidus temperature (TL) of the glass must be 1050 °C or less) has been successful in preventing any detrimental accumulation of spinel in the DWPF melt pool, and spinel has not been observed in any of the pour stream glass samples. Spinel was observed at the bottom of DWPF Melter 1 as a result of K-3 refractory corrosion. Issues have occurred with accumulation of spinel in the pour spout during periods of operation at higher waste loadings. Given that both DWPF melters were or have been in operation for greater than 8 years, the service life of the melters has far exceeded design expectations. It is possible that the DWPF liquidus temperature approach is conservative, in that it may be possible to successfully operate the melter with a small degree of allowable crystallization in the glass. This could be a viable approach to increasing waste loading in the glass assuming that the crystals are suspended in the melt and swept out through the riser and pour spout. Additional study is needed, and development work for WTP might be leveraged to support a different operating limit for the DWPF. Several recommendations are made regarding considerations that need to be included as part of the WTP crystal tolerant strategy based on the DWPF development work and operational data reviewed here. These include: Identify and consider the impacts of potential heat sinks in the WTP melter and glass pouring system; Consider the contributions of refractory corrosion products, which may serve to nucleate additional crystals leading to further accumulation; Consider volatilization of components from the melt (e.g., boron, alkali, halides, etc.) and determine their impacts on glass crystallization behavior; Evaluate the impacts of glass REDuction/OXidation (REDOX) conditions and the distribution of temperature within the WTP melt pool and melter pour chamber on crystal accumulation rate; Consider the impact of precipitated crystals on glass viscosity; Consider the impact of an accumulated crystalline layer on thermal convection currents and bubbler effectiveness within the melt pool; Evaluate the impact of spinel accumulation on Joule heating of the WTP melt pool; and Include noble metals in glass melt experiments because of their potential to act as nucleation site

Fox, K. M.

2014-02-27T23:59:59.000Z

395

HIGH LEVEL WASTE MECHANCIAL SLUDGE REMOVAL AT THE SAVANNAH RIVER SITE F TANK FARM CLOSURE PROJECT  

SciTech Connect

The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal (MSR) using the Waste on Wheels (WOW) system for the first time within one of its storage tanks. The WOW system is designed to be relatively mobile with the ability for many components to be redeployed to multiple waste tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. In addition, the project is currently preparing another waste tank for MSR utilizing lessons learned from this previous operational activity. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2,840 cubic meters (750,000 gallons) each. The construction of these tanks was completed in 1953, and they were placed into waste storage service in 1959. The tank's primary shell is 23 meters (75 feet) in diameter, and 7.5 meters (24.5 feet) in height. Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. Both Tank 5 and Tank 6 received and stored F-PUREX waste during their operating service time before sludge removal was performed. DOE intends to remove from service and operationally close (fill with grout) Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. Mechanical Sludge Removal, the first step in the tank closure process, will be followed by chemical cleaning. After obtaining regulatory approval, the tanks will be isolated and filled with grout for long-term stabilization. Mechanical Sludge Removal operations within Tank 6 removed approximately 75% of the original 95,000 liters (25,000 gallons). This sludge material was transferred in batches to an interim storage tank to prepare for vitrification. This operation consisted of eleven (11) Submersible Mixer Pump(s) mixing campaigns and multiple intraarea transfers utilizing STPs from July 2006 to August 2007. This operation and successful removal of sludge material meets requirement of approximately 19,000 to 28,000 liters (5,000 to 7,500 gallons) remaining prior to the Chemical Cleaning process. Removal of the last 35% of sludge was exponentially more difficult, as less and less sludge was available to mobilize and the lighter sludge particles were likely removed during the early mixing campaigns. The removal of the 72,000 liters (19,000 gallons) of sludge was challenging due to a number factors. One primary factor was the complex internal cooling coil array within Tank 6 that obstructed mixer discharge jets and impacted the Effective Cleaning Radius (ECR) of the Submersible Mixer Pumps. Minimal access locations into the tank through tank openings (risers) presented a challenge because the available options for equipment locations were very limited. Mechanical Sludge Removal activities using SMPs caused the sludge to migrate to areas of the tank that were outside of the SMP ECR. Various SMP operational strategies were used to address the challenge of moving sludge from remote areas of the tank to the transfer pump. This paper describes in detail the Mechanical Sludge Removal activities and mitigative solutions to cooling coil obstructions and other challenges. The performance of the WOW system and SMP operational strategies were evaluated and the resulting lessons learned are described for application to future Mechanical Sludge Removal operations.

Jolly, R; Bruce Martin, B

2008-01-15T23:59:59.000Z

396

Review of the Savannah River Site Salt Waste Processing Facility Safety Basis and Design Development, August 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Site Savannah River Site Salt Waste Processing Facility Safety Basis and Design Development May 2011 August 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose.................................................................................................................................................... 1 2.0 Background ............................................................................................................................................. 1 3.0 Scope and Methodology ......................................................................................................................... 2 4.0 Results .................................................................................................................................................... 3

397

2006 Annual Summary Report for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site, Nye County, Nevada  

SciTech Connect

The Maintenance Plan for the Performance Assessments and Composite Analyses for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site (National Security Technologies, LLC, 2006) requires an annual review to assess the adequacy of the performance assessments (PAs) and composite analyses (CAs) for each of the facilities, with the results submitted as an annual summary report to the U.S. Department of Energy (DOE) Headquarters. The Disposal Authorization Statements for the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) also require that such reviews be made and that secondary or minor unresolved issues be tracked and addressed as part of the maintenance plan (DOE, 2000; 2002). The DOE, National Nuclear Security Administration Nevada Site Office performed annual reviews in fiscal year (FY) 2006 by evaluating operational factors and research results that impact the continuing validity of the PAs and CAs results. This annual summary report presents data and conclusions from the FY 2006 review, and determines the adequacy of the PAs and CAs. Operational factors, such as the waste form and containers, facility design, waste receipts, and closure plans, as well as monitoring results and research and development (R&D) activities, were reviewed in FY 2006 for determination of the adequacy of the PAs. Likewise, the environmental restoration activities at the Nevada Test Site relevant to the sources of residual radioactive material that are considered in the CAs, the land-use planning, and the results of the environmental monitoring and R&D activities were reviewed for determination of the adequacy of the CAs.

Gregory J, Shott, Vefa Yucel

2007-03-01T23:59:59.000Z

398

2004 Annual Summary Report for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site, Nye County, Nevada  

SciTech Connect

The Maintenance Plan for the Performance Assessments and Composite Analyses for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site (Bechtel Nevada, 2000) requires an annual review to assess the adequacy of the performance assessments (PAs) and composite analyses (CAs) for each of the facilities, and reports the results in an annual summary report to the U.S. Department of Energy Headquarters. The Disposal Authorization Statements for the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) also require that such reviews be made and that secondary or minor unresolved issues be tracked and addressed as part of the maintenance plan (U.S. Department of Energy [DOE]). The U.S. Department of Energy National Nuclear Security Administration Nevada Site Office performed annual reviews in fiscal year (FY) 2004 by evaluating operational factors and research results that impact the continuing validity of the PA and CA results. This annual summary report presents data and conclusions from the FY 2004 review, and determines the adequacy of the PAs and CAs. Operational factors, such as the waste form and containers, facility design, waste receipts, closure plans, as well as monitoring results and research and development (R&D) activities were reviewed in FY 2004 for the determination of the adequacy of the PAs. Likewise, the environmental restoration activities at the Nevada Test Site relevant to the sources of residual radioactive material that are considered in the CAs, the land-use planning, and the results of the environmental monitoring and R&D activities were reviewed for the determination of the adequacy of the CAs.

Vefa Yucel

2005-01-01T23:59:59.000Z

399

Characterization of solids in residual wastes from single-shell tanks at the Hanford site, Washington, USA.  

SciTech Connect

Solid phase physical and chemical characterization methods have been used in an ongoing study of residual wastes from several single-shell underground waste tanks at the U.S. Department of Energy's Hanford Site in southeastern Washington State. Because these wastes are highly-radioactive dispersible powders and are chemically-complex assemblages of crystalline and amorphous solids that contain contaminants as discrete phases and/or co-precipitated within oxide phases, their detailed characterization offers an extraordinary technical challenge. X-ray diffraction (XRD) and scanning electron microscopy/energy dispersive x-ray spectroscopy (SEM/EDS) are the two principal methods used, along with a limited series of analyses by synchrotron-based methods, to characterize solid phases and their contaminant associations in these wastes.

Krupka, K. M.; Cantrell, K. J.; Todd Schaef, H.; Arey, B. W.; Heald, S. M.; Deutsch, W. J.; Lindberg, M. J. (X-Ray Science Division); ( PSC-USR); (PNNL)

2010-03-01T23:59:59.000Z

400

Unsaturated zone characterization of the Area 5 Radioactive Waste Management Site  

SciTech Connect

Six undisturbed soil samples of near-surface sediments were collected from the Nevada Test Site (NTS) Radioactive Waste Management Site (RWMS) for physical and hydrologic characterization in the laboratory. Of these samples, three were obtained from the wall of Pit No. 3 and three from the floor. Physical properties measured on all samples were dry bulk density ({rho}{sub b}) and solid particle density ({rho}{sub s}). Average dry bulk densities for the wall and floor samples were 1.47 g/cm{sup 3} and 1.45 g/cm{sup 3}, while solid particle densities were 2.34 g/cc and 2.53 g/cc, respectively. Based on these values, the average porosity for the wall samples was computed to be 0.372 and for the floor samples, 0.427. Moisture content-pressure head relations for each sample were determined using the pressure plate method. The moisture characteristic curves generated from these data have shapes similar to those of a silty sand, with volumetric moisture contents of less than 7% at 33.4 bars. Unsaturated hydraulic conductivity was estimated using the computer model of van Genuchten (1978), which is based on the theoretical developments of Mualem (1976). Results indicate that at near-surface in situ moisture contents, the unsaturated hydraulic conductivity for both wall and floor samples is less than 10{sup {minus}8} cm/sec. 15 refs., 12 figs., 4 tabs.

Daffern, D.D.; Ebeling, L.L.; Cox, W.B.

1990-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste sites atsdr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Site characterization plan for groundwater in Waste Area Grouping 1 at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect

The Waste Area Grouping (WAG) 1 Groundwater Operable Unit (OU) at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, is undergoing a site characterization to identify environmental contamination that may be present. This document, Site Characterization Report for Groundwater in Waste Area Grouping I at Oak Ridge National Laboratory, Oak Ridge, Tennessee, identifies areas of concern with respect to WAG 1 groundwater and presents the rationale, justification, and objectives for conducting this continuing site characterization. This report summarizes the operations that have taken place at each of the areas of concern in WAG 1, summarizes previous characterization studies that have been performed, presents interpretations of previously collected data and information, identifies contaminants of concern, and presents an action plan for further site investigations and early actions that will lead to identification of contaminant sources, their major groundwater pathways, and reduced off-site migration of contaminated groundwater to surface water. Site characterization Activities performed to date at WAG I have indicated that groundwater contamination, principally radiological contamination, is widespread. An extensive network of underground pipelines and utilities have contributed to the dispersal of contaminants to an unknown extent. The general absence of radiological contamination in surface water at the perimeter of WAG 1 is attributed to the presence of pipelines and underground waste storage tank sumps and dry wells distributed throughout WAG 1 which remove more than about 40 million gal of contaminated groundwater per year.

Lee, R.R.; Curtis, A.H.; Houlberg, L.M.; Purucker, S.T.; Singer, M.L.; Tardiff, M.F.; Wolf, D.A.

1994-07-01T23:59:59.000Z

402

Composite analysis for low-level waste disposal in the 200 area plateau of the Hanford Site  

SciTech Connect

This report presents the first iteration of the Composite Analysis for Low-Level Waste Disposal in the 200 Area Plateau of the Hanford Site (Composite Analysis) prepared in response to the U.S. Department of Energy Implementation Plan for the Defense Nuclear Facility Safety Board Recommendation 94-2. The Composite Analysis is a companion document to published analyses of four active or planned low-level waste disposal actions: the solid waste burial grounds in the 200 West Area, the solid waste burial grounds in the 200 East Area, the Environmental Restoration Disposal Facility, and the disposal facilities for immobilized low-activity waste. A single Composite Analysis was prepared for the Hanford Site considering only sources on the 200 Area Plateau. The performance objectives prescribed in U.S. Department of Energy guidance for the Composite Analysis were 100 mrem in a year and examination of a lower dose (30 mrem in a year) to ensure the {open_quotes}as low as reasonably achievable{close_quotes} concept is followed. The 100 mrem in a year limit was the maximum allowable all-pathways dose for 1000 years following Hanford Site closure, which is assumed to occur in 2050. These performance objectives apply to an accessible environment defined as the area between a buffer zone surrounding an exclusive waste management area on the 200 Area Plateau, and the Columbia River. Estimating doses to hypothetical future members of the public for the Composite Analysis was a multistep process involving the estimation or simulation of inventories; waste release to the environment; migration through the vadose zone, groundwater, and atmospheric pathways; and exposure and dose. Doses were estimated for scenarios based on agriculture, residential, industrial, and recreational land use. The radionuclides included in the vadose zone and groundwater pathway analyses of future releases were carbon-14, chlorine-36, selenium-79, technetium-99, iodine-129, and uranium isotopes.

Kincaid, C.T.; Bergeron, M.P.; Cole, C.R. [and others

1998-03-01T23:59:59.000Z

403

Savannah River Site sample and analysis plan for Clemson Technical Center waste  

SciTech Connect

The purpose of this sampling and analysis plan is to determine the chemical, physical and radiological properties of the SRS radioactive Polychlorinated Biphenyl (PCB) liquid waste stream, to verify that it conforms to Waste Acceptance Criteria of the Department of Energy (DOE) East Tennessee Technology Park (ETTP) Toxic Substance Control Act (TSCA) Incineration Facility. Waste being sent to the ETTP TSCA Incinerator for treatment must be sufficiently characterized to ensure that the waste stream meets the waste acceptance criteria to ensure proper handling, classification, and processing of incoming waste to meet the Waste Storage and Treatment Facility`s Operating Permits. This sampling and analysis plan is limited to WSRC container(s) of homogeneous or multiphasic radioactive PCB contaminated liquids generated in association with a treatability study at Clemson Technical Center (CTC) and currently stored at the WSRC Solid Waste Division Mixed Waste Storage Facility (MWSF).

Hagstrom, T.

1998-04-01T23:59:59.000Z

404

Recent ORNL experience in site performance prediction: the Gas Centrifuge Enrichment Plant and the Oak Ridge Central Waste Disposal Facility  

SciTech Connect

The suitability of the Portsmouth Gas Centrifuge Enrichment Plant Landfill and the Oak Ridge, Tennessee, Central Waste Disposal Facility for disposal of low-level radioactive waste was evaluated using pathways analyses. For these evaluations, a conservative approach was selected; that is, conservatism was built into the analyses when assumptions concerning future events had to be made or when uncertainties concerning site or waste characteristics existed. Data from comprehensive laboratory and field investigations were used in developing the conceptual and numerical models that served as the basis for the numerical simulations of the long-term transport of contamination to man. However, the analyses relied on conservative scenarios to describe the generation and migration of contamination and the potential human exposure to the waste. Maximum potential doses to man were calculated and compared to the appropriate standards. Even under this conservative framework, the sites were found to provide adequate buffer to persons outside the DOE reservations and conclusions concerning site capacity and site acceptability were drawn. Our experience through these studies has shown that in reaching conclusions in such studies, some consideration must be given to the uncertainties and conservatisms involved in the analyses. Analytical methods to quantitatively assess the probability of future events to occur and to quantitatively determine the sensitivity of the results to data uncertainty may prove useful in relaxing some of the conservatism built into the analyses. The applicability of such methods to pathways analyses is briefly discussed.

Pin, F.G.

1985-01-01T23:59:59.000Z

405

Demonstration of an on-site PAFC cogeneration system with waste heat utilization by a new gas absorption chiller  

SciTech Connect

Analysis and cost reduction of fuel cells is being promoted to achieve commercial on-site phosphoric acid fuel cells (on-site FC). However, for such cells to be effectively utilized, a cogeneration system designed to use the heat generated must be developed at low cost. Room heating and hot-water supply are the most simple and efficient uses of the waste heat of fuel cells. However, due to the short room-heating period of about 4 months in most areas in Japan, the sites having demand for waste heat of fuel cells throughout the year will be limited to hotels and hospitals Tokyo Gas has therefore been developing an on-site FC and the technology to utilize tile waste heat of fuel cells for room cooling by means of an absorption refrigerator. The paper describes the results of fuel cell cogeneration tests conducted on a double effect gas absorption chiller heater with auxiliary waste heat recovery (WGAR) that Tokyo Gas developed in its Energy Technology Research Laboratory.

Urata, Tatsuo [Tokyo Gas Company, LTD, Tokyo (Japan)

1996-12-31T23:59:59.000Z

406

Remaining Sites Verification Package for the 1607-F1 Sanitary Sewer System (124-F-1) and the 100-F-26:8 (1607-F1) Sanitary Sewer Pipelines Waste Sites, Waste Site Reclassification Form 2004-130  

SciTech Connect

The 1607-F1 Sanitary Sewer System (124-F-1), consisted of a septic tank, drain field, and associated pipelines that received sanitary waste water from the 1701-F Gatehouse, 1709-F Fire Station, and the 1720-F Administrative Office via the 100-F-26:8 pipelines. The septic tank required remedial action based on confirmatory sampling. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

L. M. Dittmer

2008-03-14T23:59:59.000Z

407

Waste reduction assistance program (WRAP) on-site consultation audit report: Seafood processing plant  

SciTech Connect

The waste audit study was conducted at a seafood processing plant in Alaska. The report discusses process descriptions, waste types and quantities, current waste and materials management practices, and waste reduction alternatives. The company's current practices include use of fish waste, burning of used oil and solvents, and water conservation. Additional opportunities include microfiltration of solvents and oils, recycling of used batteries, inventory control and formation of a waste reduction team. Appendices include a summary of state regulations, a fact sheet on used oil, and a list of vendors and services.

Not Available

1989-07-29T23:59:59.000Z

408

Hanford ARRA Photogallery - Hanford Site  

NLE Websites -- All DOE Office Websites (Extended Search)

remediation Waste Site Sampling Waste Site Sampling 100 K Pipeline 100 K Pipeline F Area Walk Down F Area Walk Down 100 K Waste Sites 100 K Waste Sites BC Control Area Remediation...

409

Integrated Closure and Monitoring Plan for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site  

SciTech Connect

Bechtel Nevada (BN) manages two low-level Radioactive Waste Management Sites (RWMSs) (one site is in Area 3 and the other is in Area 5) at the Nevada Test Site (NTS) for the U.S. Department of Energy's (DOE's) National Nuclear Security Administration Nevada Operations Office (NNSA/NV). The current DOE Order governing management of radioactive waste is 435.1. Associated with DOE Order 435.1 is a Manual (DOE M 435.1-1) and Guidance (DOE G 435.1-1). The Manual and Guidance specify that preliminary closure and monitoring plans for a low-level waste (LLW) management facility be developed and initially submitted with the Performance Assessment (PA) and Composite Analysis (CA) for that facility. The Manual and Guidance, and the Disposal Authorization Statement (DAS) issued for the Area 3 RWMS further specify that the preliminary closure and monitoring plans be updated within one year following issuance of a DAS. This Integrated Closure and Monitoring Plan (ICMP) fulfills both requirements. Additional updates will be conducted every third year hereafter. This document is an integrated plan for closing and monitoring both RWMSs, and is based on guidance issued in 1999 by the DOE for developing closure plans. The plan does not follow the format suggested by the DOE guidance in order to better accommodate differences between the two RWMSs, especially in terms of operations and site characteristics. The modification reduces redundancy and provides a smoother progression of the discussion. The closure and monitoring plans were integrated because much of the information that would be included in individual plans is the same, and integration provides efficient presentation and program management. The ICMP identifies the regulatory requirements, describes the disposal sites and the physical environment where they are located, and defines the approach and schedule for both closing and monitoring the sites.

S. E. Rawlinson

2001-09-01T23:59:59.000Z

410

Remaining Sites Verification Package for the 116-F-8, 1904-F Outfall Structure and the 100-F-42, 1904-F Spillway, Waste Site Reclassification Form 2006-038  

SciTech Connect

The 116-F-8 waste site is the former 1904-F Outfall Structure used to discharge reactor cooling water effluent fro mthe 107-F Retention Basin to the Columbia River. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

L. M. Dittmer

2006-09-25T23:59:59.000Z

411

SAVANNAH RIVER SITE INCIPIENT SLUDGE MIXING IN RADIOACTIVE LIQUID WASTE STORAGE TANKS DURING SALT SOLUTION BLENDING  

SciTech Connect

This paper is the second in a series of four publications to document ongoing pilot scale testing and computational fluid dynamics (CFD) modeling of mixing processes in 85 foot diameter, 1.3 million gallon, radioactive liquid waste, storage tanks at Savannah River Site (SRS). Homogeneous blending of salt solutions is required in waste tanks. Settled solids (i.e., sludge) are required to remain undisturbed on the bottom of waste tanks during blending. Suspension of sludge during blending may potentially release radiolytically generated hydrogen trapped in the sludge, which is a safety concern. The first paper (Leishear, et. al. [1]) presented pilot scale blending experiments of miscible fluids to provide initial design requirements for a full scale blending pump. Scaling techniques for an 8 foot diameter pilot scale tank were also justified in that work. This second paper describes the overall reasons to perform tests, and documents pilot scale experiments performed to investigate disturbance of sludge, using non-radioactive sludge simulants. A third paper will document pilot scale CFD modeling for comparison to experimental pilot scale test results for both blending tests and sludge disturbance tests. That paper will also describe full scale CFD results. The final paper will document additional blending test results for stratified layers in salt solutions, scale up techniques, final full scale pump design recommendations, and operational recommendations. Specifically, this paper documents a series of pilot scale tests, where sludge simulant disturbance due to a blending pump or transfer pump are investigated. A principle design requirement for a blending pump is UoD, where Uo is the pump discharge nozzle velocity, and D is the nozzle diameter. Pilot scale test results showed that sludge was undisturbed below UoD = 0.47 ft{sup 2}/s, and that below UoD = 0.58 ft{sup 2}/s minimal sludge disturbance was observed. If sludge is minimally disturbed, hydrogen will not be released. Installation requirements were also determined for a transfer pump which will remove tank contents, and which is also required to not disturb sludge. Testing techniques and test results for both types of pumps are presented.

Leishear, R.; Poirier, M.; Lee, S.; Steeper, T.; Fowley, M.; Parkinson, K.

2011-01-12T23:59:59.000Z

412

Polybrominated diphenyl ethers in combusted residues and soils from an open burning site of electronic wastes  

Science Journals Connector (OSTI)

Polybrominated diphenyl ethers (PBDEs) are ubiquitous environmental contaminants due to their extensive use. Combusted residue from electronic waste (e-waste) combustion is one of the contamination sources ... tr...

Qian Luo; Ming Hong Wong; Zijian Wang; Zongwei Cai

2013-08-01T23:59:59.000Z

413

Remaining Sites Verification Package for the 100-F-46, 119-F Stack Sampling French Drain, Waste Site Reclassification Form 2008-021  

SciTech Connect

The 100-F-46 french drain consisted of a 1.5 to 3 m long, vertically buried, gravel-filled pipe that was approximately 1 m in diameter. Also included in this waste site was a 5 cm cast-iron pipeline that drained condensate from the 119-F Stack Sampling Building into the 100-F-46 french drain. In accordance with this evaluation, the confirmatory sampling results support a reclassification of this site to No Action. The current site conditions achieve the remedial action objectives and the corresponding remedial action goals established in the Remaining Sites ROD. The results of confirmatory sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

J. M. Capron

2008-08-08T23:59:59.000Z

414

Microsoft Word - FINAL 7-12-10 Site Visit Report - LANL Radioactive Liquid Waste Facility FCA.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site Visit Report Facility Centered Assessment of the Los Alamos National Laboratory Radioactive Liquid Waste Treatment Facility - June 2010 This site visit report documents the results of the Office of Health, Safety and Security's (HSS) review of the Facility Centered Assessment (FCA) of the Los Alamos National Laboratory (LANL) Radioactive Liquid Waste Treatment Facility (RLW). This review, conducted June 9-25, 2010, was sponsored by the U.S. Department of Energy (DOE) Los Alamos Site Office (LASO) and LANL, and conducted jointly by HSS, LASO, and LANL staff. The Office of Environment, Safety and Health Evaluations was the overall lead organization for evaluation of the FCA process with the participation of the LASO Facility Representative assigned to RLW.

415

2011 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste Pond  

SciTech Connect

This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste Pond from November 1, 2010 through October 31, 2011. The report contains the following information: Facility and system description Permit required effluent monitoring data and loading rates Groundwater monitoring data Status of compliance activities Noncompliance and other issues Discussion of the facility's environmental impacts During the 2011 permit year, approximately 166 million gallons of wastewater were discharged to the Cold Waste Pond. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters were below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.

Mike Lewis

2012-02-01T23:59:59.000Z

416

Organic geochemical studies at a commercial shallow-land disposal site of low-level nuclear waste  

SciTech Connect

The subsurface migration of radionuclides has been studied at a commercial, shallow-land burial site of low-level nuclear waste at Maxey Flats, Kentucky. A variety of radionuclides including /sup 3/H, /sup 238/ /sup 239/ /sup 240/Pu, /sup 60/Co, /sup 137/Cs and /sup 90/Sr have migrated short distances on-site (meters to tens of meters). A number of the mobile radionuclides, notably plutonium and /sup 60/Co, appear to exist as anionic species with organic properties. As a result, we have studied the organic geochemistry of radioactive leachates pumped from a number of waste burial trenches throughout the site. The major aim of the organic research is to elucidate the role of organic compounds in mediating the subsurface migration of the mobile radionuclides in groundwater. A survey study of the hydrophilic and hydrophobic organic content of the waste leachates has revealed that organic compounds are readily leached from the buried waste. Organic chelating agents like EDTA, HEDTA and ED3A are the major hydrophilic organic compounds in the leachates, their concentrations ranging from 78 ppB to 19,511 ppB. A number of carboxylic acids are also present in the leachates, ranging from 675 ppB to 8757 ppB, collectively. A variety of hydrophobic organic compounds including barbiturates and other aromatic compounds, presumably waste-derived, are also present in the leachates, generally at lower ppB concentrations. A detailed chemical speciation study, aimed at determining whether any of the organic compounds identified in the survey study are associated with the mobile radionuclides, was undertaken using leachate from one of the waste trenches. It is clear that EDTA is chelated to plutonium and /sup 60/Co in the leachate, potentially mobilizing these radionuclides. Other radionuclides, /sup 137/Cs and /sup 90/Sr, may be associated with polar organic compounds such as carboxylic acids. 14 references, 2 figures, 2 tables.

Toste, A.P.; Kirby, L.J.; Pahl, T.R.

1984-01-01T23:59:59.000Z