Sample records for waste sites atsdr

  1. Hazardous Waste Disposal Sites (Iowa)

    Broader source: Energy.gov [DOE]

    These sections contain information on fees and monitoring relevant to operators of hazardous waste disposal sites.

  2. Hazardous waste sites and housing appreciation rates

    E-Print Network [OSTI]

    McCluskey, Jill; Rausser, Gordon C.

    2000-01-01T23:59:59.000Z

    WORKING PAPER NO. 906 HAZARDOUS WASTE SITES AND HOUSINGEconomics January 2000 Hazardous Waste Sites and Housingand RF. Anderson, Hazardous waste sites: the credibility

  3. Health physics and public health activities at hazardous wastes sites

    SciTech Connect (OSTI)

    Charp, P.A. [Agency for Toxic Substances and Disease Registry, Atlanta, GA (United States)

    1995-12-31T23:59:59.000Z

    The Agency for Toxic Substances and Disease Registry (ATSDR) has worked with the U.S. Environmental Protection Agency (EPA) at several sites contaminated with radioactive materials. The Navajo Brown Vandever (B-V) uranium mine site near Bluewater, New Mexico, and the Austin Avenue Radiation Site (AAR) in Lansdowne, Pennsylvania were the subject of ATSDR health advisories. The sites were contamined with uranium or uranium byproducts but the identification of potential health effects and actions taken to prevent or reduce exposures were approached from different perspectives. At B-V contaminants included uranium and mine tailings, radium, and radon. Contaminants at the site and physical hazards were removed. At AAR, radium and radon were located in residential settings. Residents who might have had annual exposures greater than accepted standards or recommendations were relocated and contaminated building demolished.

  4. Hazardous Waste Facilities Siting (Connecticut)

    Broader source: Energy.gov [DOE]

    These regulations describe the siting and permitting process for hazardous waste facilities and reference rules for construction, operation, closure, and post-closure of these facilities.

  5. Hanford Site Secondary Waste Roadmap

    SciTech Connect (OSTI)

    Westsik, Joseph H.

    2009-01-29T23:59:59.000Z

    Summary The U.S. Department of Energy (DOE) is making plans to dispose of 54 million gallons of radioactive tank wastes at the Hanford Site near Richland, Washington. The high-level wastes and low-activity wastes will be vitrified and placed in permanent disposal sites. Processing of the tank wastes will generate secondary wastes, including routine solid wastes and liquid process effluents, and these need to be processed and disposed of also. The Department of Energy Office of Waste Processing sponsored a meeting to develop a roadmap to outline the steps necessary to design the secondary waste forms. Representatives from DOE, the U.S. Environmental Protection Agency, the Washington State Department of Ecology, the Oregon Department of Energy, Nuclear Regulatory Commission, technical experts from the DOE national laboratories, academia, and private consultants convened in Richland, Washington, during the week of July 21-23, 2008, to participate in a workshop to identify the risks and uncertainties associated with the treatment and disposal of the secondary wastes and to develop a roadmap for addressing those risks and uncertainties. This report describes the results of the roadmap meeting in Richland. Processing of the tank wastes will generate secondary wastes, including routine solid wastes and liquid process effluents. The secondary waste roadmap workshop focused on the waste streams that contained the largest fractions of the 129I and 99Tc that the Integrated Disposal Facility risk assessment analyses were showing to have the largest contribution to the estimated IDF disposal impacts to groundwater. Thus, the roadmapping effort was to focus on the scrubber/off-gas treatment liquids with 99Tc to be sent to the Effluent Treatment Facility for treatment and solidification and the silver mordenite and carbon beds with the captured 129I to be packaged and sent to the IDF. At the highest level, the secondary waste roadmap includes elements addressing regulatory and performance requirements, waste composition, preliminary waste form screening, waste form development, process design and support, and validation. The regulatory and performance requirements activity will provide the secondary waste-form performance requirements. The waste-composition activity will provide workable ranges of secondary waste compositions and formulations for simulants and surrogates. Preliminary waste form screening will identify candidate waste forms for immobilizing the secondary wastes. The waste form development activity will mature the waste forms, leading to a selected waste form(s) with a defensible understanding of the long-term release rate and input into the critical decision process for a secondary waste treatment process/facility. The process and design support activity will provide a reliable process flowsheet and input to support a robust facility design. The validation effort will confirm that the selected waste form meets regulatory requirements. The final outcome of the implementation of the secondary waste roadmap is the compliant, effective, timely, and cost-effective disposal of the secondary wastes. The work necessary to address the programmatic, regulatory, and technical risks and uncertainties identified through the Secondary Waste Roadmap Workshop are assembled into several program needs elements. Programmatic/Regulatory needs include: • Select and deploy Hanford tank waste supplemental treatment technology • Provide treatment capability for secondary waste streams from tank waste treatment • Develop consensus on secondary waste form acceptance. Technology needs include: • Define secondary waste composition ranges and uncertainties • Identify and develop waste forms for secondary waste immobilization and disposal • Develop test methods to characterize secondary waste form performance. Details for each of these program elements are provided.

  6. Hazardous Waste Facility Siting Program (Maryland)

    Broader source: Energy.gov [DOE]

    The Hazardous Waste Facilities Siting Board is responsible for overseeing the siting of hazardous waste facilities in Maryland, and will treat hazardous waste facilities separately from low-level...

  7. Hanford Site annual dangerous waste report: Volume 1, Part 1, Generator dangerous waste report, dangerous waste

    SciTech Connect (OSTI)

    NONE

    1994-12-31T23:59:59.000Z

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation.

  8. NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA

    SciTech Connect (OSTI)

    U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION, NEVADA SITE OFFICE

    2005-07-01T23:59:59.000Z

    This document establishes the U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive and mixed waste for disposal. Mixed waste generated within the State of Nevada by NNSA/NSO activities is accepted for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Site for storage or disposal.

  9. Nevada Test Site Waste Acceptance Criteria

    SciTech Connect (OSTI)

    U.S. Department of Energy, Nevada Operations Office, Waste Acceptance Criteria

    1999-05-01T23:59:59.000Z

    This document provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive and mixed waste for disposal; and transuranic and transuranic mixed waste for interim storage at the Nevada Test Site.

  10. Hanford Site Transuranic (TRU) Waste Certification Plan

    SciTech Connect (OSTI)

    GREAGER, T.M.

    1999-09-09T23:59:59.000Z

    The Hanford Site Transuranic Waste Certification Plan establishes the programmatic framework and criteria within which the Hanford Site ensures that contract-handled TRU wastes can be certified as compliant with the WIPP WAC and TRUPACT-II SARP.

  11. Hanford Site Transuranic (TRU) Waste Certification Plan

    SciTech Connect (OSTI)

    GREAGER, T.M.

    1999-12-14T23:59:59.000Z

    The Hanford Site Transuranic Waste Certification Plan establishes the programmatic framework and criteria with in which the Hanford Site ensures that contract-handled TRU wastes can be certified as compliant with the WIPP WAC and TRUPACT-II SARP.

  12. Hanford Site annual dangerous waste report: Volume 4, Waste Management Facility report, Radioactive mixed waste

    SciTech Connect (OSTI)

    NONE

    1994-12-31T23:59:59.000Z

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation and amount of waste.

  13. Hanford Site annual dangerous waste report: Volume 2, Generator dangerous waste report, radioactive mixed waste

    SciTech Connect (OSTI)

    NONE

    1994-12-31T23:59:59.000Z

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, waste designation, weight, and waste designation.

  14. Nevada Test Site Waste Acceptance Criteria (NTSWAC)

    SciTech Connect (OSTI)

    NNSA /NSO Waste Management Project

    2008-06-01T23:59:59.000Z

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive (LLW) and LLW Mixed Waste (MW) for disposal.

  15. Nevada Test Site Waste Acceptance Criteria

    SciTech Connect (OSTI)

    U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2005-10-01T23:59:59.000Z

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive (LLW) and mixed waste (MW) for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex (RWMC) for storage or disposal.

  16. Hazardous waste operational plan for site 300

    SciTech Connect (OSTI)

    Roberts, R.S.

    1982-02-12T23:59:59.000Z

    This plan outlines the procedures and operations used at LLNL's Site 300 for the management of the hazardous waste generated. This waste consists primarily of depleted uranium (a by-product of U-235 enrichment), beryllium, small quantities of analytical chemicals, industrial type waste such as solvents, cleaning acids, photographic chemicals, etc., and explosives. This plan details the operations generating this waste, the proper handling of this material and the procedures used to treat or dispose of the hazardous waste. A considerable amount of information found in this plan was extracted from the Site 300 Safety and Operational Manual written by Site 300 Facility personnel and the Hazards Control Department.

  17. Hanford Site Transuranic (TRU) Waste Certification Plan

    SciTech Connect (OSTI)

    GREAGER, T.M.

    2000-12-01T23:59:59.000Z

    As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of US. Department of Energy (DOE) 0 435.1, ''Radioactive Waste Management,'' and the Contact-Handled (CH) Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WIPP-WAC). WIPP-WAC requirements are derived from the WIPP Technical Safety Requirements, WIPP Safety Analysis Report, TRUPACT-II SARP, WIPP Land Withdrawal Act, WIPP Hazardous Waste Facility Permit, and Title 40 Code of Federal Regulations (CFR) 191/194 Compliance Certification Decision. The WIPP-WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WPP-WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their program for managing TRU waste and TRU waste shipments before transferring waste to WIPP. Waste characterization activities provide much of the data upon which certification decisions are based. Waste characterization requirements for TRU waste and TRU mixed waste that contains constituents regulated under the Resource Conservation and Recovery Act (RCRA) are established in the WIPP Hazardous Waste Facility Permit Waste Analysis Plan (WAP). The Hanford Site Quality Assurance Project Plan (QAPjP) (HNF-2599) implements the applicable requirements in the WAP and includes the qualitative and quantitative criteria for making hazardous waste determinations. The Hanford Site must also ensure that its TRU waste destined for disposal at WPP meets requirements for transport in the Transuranic Package Transporter-11 (TRUPACT-11). The US. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-11 requirements in the Safety Analysis Report for the TRUPACT-II Shipping Package (TRUPACT-11 SARP). In addition, a TRU waste is eligible for disposal at WIPP only if it has been generated in whole or in part by one or more of the activities listed in Section 10101(3) of the Nuclear Waste Policy Act. DOE sites must determine that each waste stream to be disposed of at WIPP is ''defense'' TRU waste. (See also the definition of ''defense'' TRU waste.). Only CH TRU wastes meeting the requirements of the QAPjP, WIPP-WAP, WPP-WAC, and other requirements documents described above will be accepted for transportation and disposal at WIPP.

  18. Hanford Site Transuranic (TRU) Waste Certification Plan

    SciTech Connect (OSTI)

    GREAGER, T.M.

    2000-12-06T23:59:59.000Z

    As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of US. Department of Energy (DOE) 0 435.1, ''Radioactive Waste Management,'' and the Contact-Handled (CH) Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WIPP-WAC). WIPP-WAC requirements are derived from the WIPP Technical Safety Requirements, WIPP Safety Analysis Report, TRUPACT-II SARP, WIPP Land Withdrawal Act, WIPP Hazardous Waste Facility Permit, and Title 40 Code of Federal Regulations (CFR) 191/194 Compliance Certification Decision. The WIPP-WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WPP-WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their program for managing TRU waste and TRU waste shipments before transferring waste to WIPP. Waste characterization activities provide much of the data upon which certification decisions are based. Waste characterization requirements for TRU waste and TRU mixed waste that contains constituents regulated under the Resource Conservation and Recovery Act (RCRA) are established in the WIPP Hazardous Waste Facility Permit Waste Analysis Plan (WAP). The Hanford Site Quality Assurance Project Plan (QAPjP) (HNF-2599) implements the applicable requirements in the WAP and includes the qualitative and quantitative criteria for making hazardous waste determinations. The Hanford Site must also ensure that its TRU waste destined for disposal at WPP meets requirements for transport in the Transuranic Package Transporter-11 (TRUPACT-11). The US. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-11 requirements in the Safety Analysis Report for the TRUPACT-II Shipping Package (TRUPACT-11 SARP). In addition, a TRU waste is eligible for disposal at WIPP only if it has been generated in whole or in part by one or more of the activities listed in Section 10101(3) of the Nuclear Waste Policy Act. DOE sites must determine that each waste stream to be disposed of at WIPP is ''defense'' TRU waste. (See also the definition of ''defense'' TRU waste.). Only CH TRU wastes meeting the requirements of the QAPjP, WIPP-WAP, WPP-WAC, and other requirements documents described above will be accepted for transportation and disposal at WIPP.

  19. Hanford Site Solid Waste Acceptance Criteria

    SciTech Connect (OSTI)

    Not Available

    1993-11-17T23:59:59.000Z

    This manual defines the Hanford Site radioactive, hazardous, and sanitary solid waste acceptance criteria. Criteria in the manual represent a guide for meeting state and federal regulations; DOE Orders; Hanford Site requirements; and other rules, regulations, guidelines, and standards as they apply to acceptance of radioactive and hazardous solid waste at the Hanford Site. It is not the intent of this manual to be all inclusive of the regulations; rather, it is intended that the manual provide the waste generator with only the requirements that waste must meet in order to be accepted at Hanford Site TSD facilities.

  20. Nevada National Security Site Waste Acceptance Criteria

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2010-09-03T23:59:59.000Z

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept low-level radioactive waste and mixed low-level waste for disposal. The NNSSWAC includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NNSS Area 3 and Area 5 Radioactive Waste Management Complex for disposal. The NNSA/NSO and support contractors are available to assist you in understanding or interpreting this document. For assistance, please call the NNSA/NSO Waste Management Project at (702) 295-7063 or fax to (702) 295-1153.

  1. Nevada National Security Site Waste Acceptance Criteria

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2011-01-01T23:59:59.000Z

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept low-level radioactive waste and mixed low-level waste for disposal. The NNSSWAC includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NNSS Area 3 and Area 5 Radioactive Waste Management Complex for disposal. The NNSA/NSO and support contractors are available to assist you in understanding or interpreting this document. For assistance, please call the NNSA/NSO Waste Management Project at (702) 295-7063 or fax to (702) 295-1153.

  2. Hanford site transuranic waste certification plan

    SciTech Connect (OSTI)

    GREAGER, T.M.

    1999-05-12T23:59:59.000Z

    As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of U.S. Department of Energy (DOE) Order 5820.2A, ''Radioactive Waste Management, and the Waste Acceptance Criteria for the Waste Isolation Pilot Plant' (DOE 1996d) (WIPP WAC). The WIPP WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WIPP WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their management of TRU waste and TRU waste shipments before transferring waste to WIPP. The Hanford Site must also ensure that its TRU waste destined for disposal at WIPP meets requirements for transport in the Transuranic Package Transporter41 (TRUPACT-11). The U.S. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-I1 requirements in the ''Safety Analysis Report for the TRUPACT-II Shipping Package'' (NRC 1997) (TRUPACT-I1 SARP).

  3. Waste reduction at the Savannah River Site

    SciTech Connect (OSTI)

    Stevens, W.E.; Lee, R.A.; Reynolds, R.W.

    1990-12-31T23:59:59.000Z

    The Savannah River Site (SRS) is a key installation for the production and research of nuclear materials for national defense and peace time applications and has been operating a full nuclear fuel cycle since the early 1950s. Wastes generated include high level radioactive, transuranic, low level radioactive, hazardous, mixed, sanitary, and aqueous wastes. Much progress has been made during the last several years to reduce these wastes including management systems, characterization, and technology programs. The reduction of wastes generated and the proper handling of the wastes have always been a part of the Site`s operation. This paper summarizes the current status and future plans with respect to waste reduction to waste reduction and reviews some specific examples of successful activities.

  4. Waste reduction at the Savannah River Site

    SciTech Connect (OSTI)

    Stevens, W.E.; Lee, R.A.; Reynolds, R.W.

    1990-01-01T23:59:59.000Z

    The Savannah River Site (SRS) is a key installation for the production and research of nuclear materials for national defense and peace time applications and has been operating a full nuclear fuel cycle since the early 1950s. Wastes generated include high level radioactive, transuranic, low level radioactive, hazardous, mixed, sanitary, and aqueous wastes. Much progress has been made during the last several years to reduce these wastes including management systems, characterization, and technology programs. The reduction of wastes generated and the proper handling of the wastes have always been a part of the Site's operation. This paper summarizes the current status and future plans with respect to waste reduction to waste reduction and reviews some specific examples of successful activities.

  5. Nevada National Security Site Waste Acceptance Criteria

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2012-02-28T23:59:59.000Z

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO), Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept DOE non-radioactive classified waste, DOE non-radioactive hazardous classified waste, DOE low-level radioactive waste (LLW), DOE mixed low-level waste (MLLW), and U.S. Department of Defense (DOD) classified waste for permanent disposal. Classified waste is the only waste accepted for disposal that may be non-radioactive and will be required to meet the waste acceptance criteria for radioactive waste as specified in this document. The NNSA/NSO and support contractors are available to assist you in understanding or interpreting this document. For assistance, please call the NNSA/NSO Waste Management Project (WMP) at (702) 295-7063, and your call will be directed to the appropriate contact.

  6. Waste Disposal Site and Radioactive Waste Management (Iowa)

    Broader source: Energy.gov [DOE]

    This section describes the considerations of the Commission in determining whether to approve the establishment and operation of a disposal site for nuclear waste. If a permit is issued, the...

  7. Ventilation System to Improve Savannah River Site's Liquid Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ventilation System to Improve Savannah River Site's Liquid Waste Operations Ventilation System to Improve Savannah River Site's Liquid Waste Operations August 28, 2014 - 12:00pm...

  8. Site Visit Report, Hanford Waste Encapsulation Storage Facility...

    Energy Savers [EERE]

    Site Visit Report, Hanford Waste Encapsulation Storage Facility - January 2011 Site Visit Report, Hanford Waste Encapsulation Storage Facility - January 2011 January 2011 Hanford...

  9. Savannah River Site's Liquid Waste Operations Adds Multi-Functional...

    Office of Environmental Management (EM)

    Savannah River Site's Liquid Waste Operations Adds Multi-Functional Laboratory Savannah River Site's Liquid Waste Operations Adds Multi-Functional Laboratory January 28, 2015 -...

  10. Recovery Act Workers Remediate and Restore Former Waste Sites...

    Office of Environmental Management (EM)

    Recovery Act Workers Remediate and Restore Former Waste Sites, Help Reduce Cold War Footprint Recovery Act Workers Remediate and Restore Former Waste Sites, Help Reduce Cold War...

  11. Portsmouth Site Delivers First Radioactive Waste Shipment to...

    Office of Environmental Management (EM)

    Portsmouth Site Delivers First Radioactive Waste Shipment to Disposal Facility in Texas Portsmouth Site Delivers First Radioactive Waste Shipment to Disposal Facility in Texas...

  12. Nevada National Security Site Waste Acceptance Criteria

    SciTech Connect (OSTI)

    none,

    2013-06-01T23:59:59.000Z

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO), Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept the following: ? DOE hazardous and non-hazardous non-radioactive classified waste ? DOE low-level radioactive waste (LLW) ? DOE mixed low-level waste (MLLW) ? U.S. Department of Defense (DOD) classified waste The LLW and MLLW listed above may also be classified waste. Classified waste is the only waste accepted for disposal that may be non-radioactive and shall be required to meet the waste acceptance criteria for radioactive waste as specified in this document. Classified waste may be sent to the NNSS as classified matter. Section 3.1.18 provides the requirements that must be met for permanent burial of classified matter. The NNSA/NFO and support contractors are available to assist the generator in understanding or interpreting this document. For assistance, please call the NNSA/NFO Environmental Management Operations (EMO) at (702) 295-7063, and the call will be directed to the appropriate contact.

  13. Nevada Test Site Waste Acceptance Criteria, December 2000

    SciTech Connect (OSTI)

    NONE

    2000-12-01T23:59:59.000Z

    This document establishes the US Department of Energy, Nevada Operations Office waste acceptance criteria. The waste acceptance criteria provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive waste and mixed waste for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Sites for storage or disposal.

  14. Waste Toolkit A-Z Food waste (recycling on-site)

    E-Print Network [OSTI]

    Melham, Tom

    into compost in 14 days, when mixed with wood chippings (from your grounds/gardens). The waste is heated usingWaste Toolkit A-Z Food waste (recycling on-site) How can I recycle food waste on-site? Recycling food waste on-site is a new concept as the University typically has its waste collected and taken away

  15. Disposal of Hanford site tank wastes

    SciTech Connect (OSTI)

    Kupfer, M.J.

    1993-09-01T23:59:59.000Z

    Between 1943 and 1986, 149 single-shell tanks (SSTs) and 28 double-shell tanks (DSTs) were built and used to store radioactive wastes generated during reprocessing of irradiated uranium metal fuel elements at the U.S. Department of Energy (DOE) Hanford Site in Southeastern Washington state. The 149 SSTs, located in 12 separate areas (tank farms) in the 200 East and 200 West areas, currently contain about 1.4 {times} 10{sup 5} m{sup 3} of solid and liquid wastes. Wastes in the SSTs contain about 5.7 {times} 10{sup 18} Bq (170 MCi) of various radionuclides including {sup 90}Sr, {sup 99}Tc, {sup 137}Cs, and transuranium (TRU) elements. The 28 DSTs also located in the 200 East and West areas contain about 9 {times} 10{sup 4} m{sup 3} of liquid (mainly) and solid wastes; approximately 4 {times} 10{sup 18}Bq (90 MCi) of radionuclides are stored in the DSTs. Important characteristics and features of the various types of SST and DST wastes are described in this paper. However, the principal focus of this paper is on the evolving strategy for final disposal of both the SST and DST wastes. Also provided is a chronology which lists key events and dates in the development of strategies for disposal of Hanford Site tank wastes. One of these strategies involves pretreatment of retrieved tank wastes to separate them into a small volume of high-level radioactive waste requiring, after vitrification, disposal in a deep geologic repository and a large volume of low-level radioactive waste which can be safely disposed of in near-surface facilities at the Hanford Site. The last section of this paper lists and describes some of the pretreatment procedures and processes being considered for removal of important radionuclides from retrieved tank wastes.

  16. Hanford Site annual dangerous waste report. Volume 1, Part 2, Generator dangerous waste report dangerous waste: Calendar Year 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-31T23:59:59.000Z

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, weight, waste description, and waste designation.

  17. Hanford Site annual dangerous waste report. Volume 1, Part 1, Generator dangerous waste report dangerous waste: Calendar Year 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-31T23:59:59.000Z

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, weight, waste description, and waste designation.

  18. Hanford Site Waste Management Units Report

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    This Hanford Site Waste Management Units Report (HSWMUR) was originated to provide information responsive to Section 3004(u) of the Hazardous and Solid Waste Amendments (HSWA) of the 1984 United States Code (USC). The report provides a comprehensive inventory of all types of waste management units at the Hanford Site and consists of waste disposal units, including (1) Resource Conservation and Recovery Act of 1976 (RCRA) disposal units, (2) Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) disposal units, (3) unplanned releases, (4) inactive contaminated structure, (5) RCRA treatment and storage units, and (6) other storage areas. Because of the comprehensive nature of this report, the listing of sites is more extensive than required by Section 3004(u) of HSWA. In support of the Hanford RCRA permit, a field was added to designate whether the waste management unit is a solid waste management unit (SWMU). As SWMUs are identified, they will added to the Hanford Waste Information Data System (WIDS), which is the database supporting this report, and added to the report at its next annual update. A quality review of the WIDS was conducted this past year. The review included checking all data against their reference and making appropriate changes, updating the data elements using the most recent references, marking duplicate units for deletion, and addition additional information. 6 refs.

  19. Hanford Site Waste Management Units Report

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    This Hanford Site Waste Management Units Report (HSWMUR) was originated to provide information responsive to Section 3004(u) of the Hazardous and Solid Waste Amendments (HSWA) of the 1984 United States Code (USC). The report provides a comprehensive inventory of all types of waste management units at the Hanford Site and consists of waste disposal units, including (1) Resource Conservation and Recovery Act of 1976 (RCRA) disposal units, (2) Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) disposal units, (3) unplanned releases, (4) inactive contaminated structures, (5) RCRA treatment and storage units, and (6) other storage areas. Because of the comprehensive nature of this report, the listing of sites is more extensive than required by Section 3004(u) of HSWA. In support of the Hanford RCRA permit, a field was added to designate whether the waste management unit is a solid waste management unit (SWMU). As SWMUs are identified, they will added to the Hanford Waste Information Data System (WIDS), which is the database supporting this report, and added to the report at its next annual update. A quality review of the WIDS was conducted this past year. The review included checking all data against their reference and making appropriate changes, updating the data elements using the most recent references, marking duplicate units for deletion, and adding additional information. 6 refs.

  20. Portsmouth Proposed Plan for the Site-wide Waste Disposition...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Proposed Plan for the Site-wide Waste Disposition Evaluation Project DOE has evaluated alternatives for managing waste that would be created by decomtamination and...

  1. Waste Shipment Approval - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulenceUtilizeRural PublicRatesAbout Us > Hanford Site Wide

  2. Waste Specification Records - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulenceUtilizeRural PublicRatesAbout Us > Hanford Site

  3. Quality Services: Solid Wastes, Part 361: Siting of Industrial Hazardous Waste Facilities (New York)

    Broader source: Energy.gov [DOE]

    These regulations describe the siting of new industrial hazardous waste facilities located wholly or partially within the State. Industrial hazardous waste facilities are defined as facilities used...

  4. Recovery Act Workers Remediate and Restore Former Waste Sites...

    Office of Environmental Management (EM)

    Recovery Act Workers Remediate and Restore Former Waste Sites, Help Reduce Cold War Footprint RICHLAND, Wash. - The Hanford Site is looking greener these days after American...

  5. Nevada test site waste acceptance criteria

    SciTech Connect (OSTI)

    NONE

    1996-09-01T23:59:59.000Z

    This document provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive and mixed waste for disposal; and transuranic and transuranic mixed waste for interim storage at the NTS. Review each section of this document. This document is not intended to include all of the requirements; rather, it is meant as a guide toward meeting the regulations. All references in this document should be observed to avoid omission of requirements on which acceptance or rejection of waste will be based. The Department of Energy/Nevada Operations Office (DOE/NV) and support contractors are available to assist you in understanding or interpreting this document.

  6. Public health assessment for V and M/Albaladejo Norte Ward (a/k/a V and M/Albaladejo Farms site), Vega Baja, Vega Baja County, Puerto Rico, Region 2: CERCLIS Number PRD987366101. Final report

    SciTech Connect (OSTI)

    NONE

    1998-12-30T23:59:59.000Z

    The Agency for Toxic Substances and Disease Registry (ATSDR) published a Site Review and Update for the V and M/Albaladejo Farms site on May 7, 1997. The site includes the V and M property and the Albaladejo farm. Total acreage is unknown. Several small plots within the site were formerly used for dumping plastic-coated electrical cables, electrical equipment, car batteries, and transformers. To total quantity of waste brought onto the site and the date when activities began are not known. Some wastes were burned, presumably to recover copper, aluminum, and lead. ATSDR prepared public health consultations in 1995 that concluded that site soils posed a potential health concern and concurred with EPA`s proposed cleanup levels. EPA also will investigate groundwater quality to determine whether remedial activities are needed to protect the aquifer that supplies off-site public wells that serve large numbers of residents in Vega Baja. ATSDR concluded that the site poses no apparent public health hazard. The proposed soil removal and proposed groundwater investigation and any required followup groundwater remediation should minimize the potential for future exposures and adverse human health effects.

  7. Hanford Site Tank Waste Remediation System. Waste management 1993 symposium papers and viewgraphs

    SciTech Connect (OSTI)

    Not Available

    1993-05-01T23:59:59.000Z

    The US Department of Energy`s (DOE) Hanford Site in southeastern Washington State has the most diverse and largest amount of highly radioactive waste of any site in the US. High-level radioactive waste has been stored in large underground tanks since 1944. A Tank Waste Remediation System Program has been established within the DOE to safely manage and immobilize these wastes in anticipation of permanent disposal in a geologic repository. The Hanford Site Tank Waste Remediation System Waste Management 1993 Symposium Papers and Viewgraphs covered the following topics: Hanford Site Tank Waste Remediation System Overview; Tank Waste Retrieval Issues and Options for their Resolution; Tank Waste Pretreatment - Issues, Alternatives and Strategies for Resolution; Low-Level Waste Disposal - Grout Issue and Alternative Waste Form Technology; A Strategy for Resolving High-Priority Hanford Site Radioactive Waste Storage Tank Safety Issues; Tank Waste Chemistry - A New Understanding of Waste Aging; Recent Results from Characterization of Ferrocyanide Wastes at the Hanford Site; Resolving the Safety Issue for Radioactive Waste Tanks with High Organic Content; Technology to Support Hanford Site Tank Waste Remediation System Objectives.

  8. Specialized Disposal Sites for Different Reprocessing Plant Wastes

    SciTech Connect (OSTI)

    Forsberg, Charles W. [Nuclear Science and Technology Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN, 37831 (United States); Driscoll, Michael J. [Department of Nuclear Science and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139 (United States)

    2007-07-01T23:59:59.000Z

    Once-through fuel cycles have one waste form: spent nuclear fuel (SNF). In contrast, the reprocessed SNF yields multiple wastes with different chemical, physical, and radionuclide characteristics. The different characteristics of each waste imply that there are potential cost and performance benefits to developing different disposal sites that match the disposal requirements of different waste. Disposal sites as defined herein may be located in different geologies or in a single repository containing multiple sections, each with different characteristics. The paper describes disposal options for specific wastes and the potential for a waste management system that better couples various reprocessing plant wastes with disposal facilities. (authors)

  9. Pre-1970 transuranic solid waste at the Hanford Site

    SciTech Connect (OSTI)

    Greenhalgh, W.O.

    1995-05-23T23:59:59.000Z

    The document is based on a search of pre-1970 Hanford Solid Waste Records. The available data indicates seven out of thirty-one solid waste burial sites used for pre-1970 waste appear to be Transuranic (TRU). A burial site defined to be TRU contains >100 nCi/gm Transuranic nuclides.

  10. Hanford Site Solid Waste Acceptance Program - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbet When yourecovery WasteSiteProgram About Us

  11. Sensor system for buried waste containment sites

    DOE Patents [OSTI]

    Smith, Ann Marie (Pocatello, ID); Gardner, Bradley M. (Idaho Falls, ID); Kostelnik, Kevin M. (Idaho Falls, ID); Partin, Judy K. (Idaho Falls, ID); Lancaster, Gregory D. (Idaho Falls, ID); Pfeifer, May Catherine (Idaho Falls, ID)

    2000-01-01T23:59:59.000Z

    A sensor system is disclosed for a buried waste containment site having a bottom wall barrier and/or sidewall barriers, for containing hazardous waste. The sensor system includes one or more sensor devices disposed in one or more of the barriers for detecting a physical parameter either of the barrier itself or of the physical condition of the surrounding soils and buried waste, and for producing a signal representing the physical parameter detected. Also included is a signal processor for receiving signals produced by the sensor device and for developing information identifying the physical parameter detected, either for sounding an alarm, displaying a graphic representation of a physical parameter detected on a viewing screen and/or a hard copy printout. The sensor devices may be deployed in or adjacent the barriers at the same time the barriers are deployed and may be adapted to detect strain or cracking in the barriers, leakage of radiation through the barriers, the presence and leaking through the barriers of volatile organic compounds, or similar physical conditions.

  12. NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA, JUNE 2006

    SciTech Connect (OSTI)

    U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION NEVADA SITE OFFICE

    2006-06-01T23:59:59.000Z

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive (LLW) and mixed waste (MW) for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex (RWMC) for storage or disposal.

  13. Waste site grouping for 200 Areas soil investigations

    SciTech Connect (OSTI)

    NONE

    1997-01-01T23:59:59.000Z

    The purpose of this document is to identify logical waste site groups for characterization based on criteria established in the 200 Areas Soil Remediation Strategy (DOE-RL 1996a). Specific objectives of the document include the following: finalize waste site groups based on the approach and preliminary groupings identified in the 200 Areas Soil Remediation Strategy; prioritize the waste site groups based on criteria developed in the 200 Areas Soil Remediation Strategy; select representative site(s) that best represents typical and worse-case conditions for each waste group; develop conceptual models for each waste group. This document will serve as a technical baseline for implementing the 200 Areas Soil Remediation Strategy. The intent of the document is to provide a framework, based on waste site groups, for organizing soil characterization efforts in the 200 Areas and to present initial conceptual models.

  14. Independent Oversight Review, Hanford Site Waste Treatment and...

    Office of Environmental Management (EM)

    2014 June 2014 Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality This report documents the results of an independent oversight review of...

  15. Enterprise Assessments Review, Hanford Site Waste Treatment and...

    Office of Environmental Management (EM)

    September 2014 Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality The U.S. Department of Energy independent Office of Enterprise Assessments...

  16. Journey to the Nevada Test Site Radioactive Waste Management Complex

    ScienceCinema (OSTI)

    None

    2014-10-28T23:59:59.000Z

    Journey to the Nevada Test Site Radioactive Waste Management Complex begins with a global to regional perspective regarding the location of low-level and mixed low-level waste disposal at the Nevada Test Site. For decades, the Nevada National Security Site (NNSS) has served as a vital disposal resource in the nation-wide cleanup of former nuclear research and testing facilities. State-of-the-art waste management sites at the NNSS offer a safe, permanent disposal option for U.S. Department of Energy/U.S. Department of Defense facilities generating cleanup-related radioactive waste.

  17. Independent Oversight Review, Savannah River Site Salt Waste...

    Broader source: Energy.gov (indexed) [DOE]

    August 2013 Review of the Savannah River Site Salt Waste Processing Facility Safety Basis and Design Development. This report documents the results of an independent oversight...

  18. Hanford Site Solid (Radioactive and Hazardous) Waste Program...

    Office of Environmental Management (EM)

    Office 2 3 TITLE: 4 Revised Draft Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact 5 Statement, Richland, Benton County, Washington (DOE...

  19. Transuranic Waste Processing Center Oak Ridge Site Specific...

    Office of Environmental Management (EM)

    Transuranic Waste Processing Update Oak Ridge Site Specific Advisory Board May 14, 2014 Laura Wilkerson, Portfolio Federal Project Director Karen Deacon, Deputy Federal Project...

  20. Independent Oversight Review, Hanford Site Waste Treatment and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    August 2013 Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality The U.S. Department of Energy (DOE) Office of Enforcement and Oversight...

  1. Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan

    SciTech Connect (OSTI)

    GREAGER, T.M.

    2000-12-06T23:59:59.000Z

    The Quality Assurance Project Plan (QAPjP) has been prepared for waste characterization activities to be conducted by the Transuranic (TRU) Project at the Hanford Site to meet requirements set forth in the Waste Isolation Pilot Plan (WIPP) Hazardous Waste Facility Permit, 4890139088-TSDF, Attachment B, including Attachments B1 through B6 (WAP) (DOE, 1999a). The QAPjP describes the waste characterization requirements and includes test methods, details of planned waste sampling and analysis, and a description of the waste characterization and verification process. In addition, the QAPjP includes a description of the quality assurance/quality control (QA/QC) requirements for the waste characterization program. Before TRU waste is shipped to the WIPP site by the TRU Project, all applicable requirements of the QAPjP shall be implemented. Additional requirements necessary for transportation to waste disposal at WIPP can be found in the ''Quality Assurance Program Document'' (DOE 1999b) and HNF-2600, ''Hanford Site Transuranic Waste Certification Plan.'' TRU mixed waste contains both TRU radioactive and hazardous components, as defined in the WLPP-WAP. The waste is designated and separately packaged as either contact-handled (CH) or remote-handled (RH), based on the radiological dose rate at the surface of the waste container. RH TRU wastes are not currently shipped to the WIPP facility.

  2. Site-Specific Seismic Site Response Model for the Waste Treatment Plant, Hanford, Washington

    SciTech Connect (OSTI)

    Rohay, Alan C.; Reidel, Steve P.

    2005-02-24T23:59:59.000Z

    This interim report documents the collection of site-specific geologic and geophysical data characterizing the Waste Treatment Plant site and the modeling of the site-specific structure response to earthquake ground motions.

  3. Savannah River Site`s Site Specific Plan. Environmental restoration and waste management, fiscal year 1992

    SciTech Connect (OSTI)

    Not Available

    1991-08-01T23:59:59.000Z

    This Site Specific Plan (SSP) has been prepared by the Savannah River Site (SRS) in order to show the Environmental Restoration and Waste Management activities that were identified during the preparation of the Department of Energy-Headquarters (DOE-HQ) Environmental Restoration and Waste Management Five-Year Plan (FYP) for FY 1992--1996. The SSP has been prepared in accordance with guidance received from DOE-HQ. DOE-SR is accountable to DOE-HQ for the implementation of this plan. The purpose of the SSP is to develop a baseline for policy, budget, and schedules for the DOE Environmental Restoration and Waste Management activities. The plan explains accomplishments since the Fiscal Year (FY) 1990 plan, demonstrates how present and future activities are prioritized, identifies currently funded activities and activities that are planned to be funded in the upcoming fiscal year, and describes future activities that SRS is considering.

  4. Hazardous waste shipment data collection from DOE sites

    SciTech Connect (OSTI)

    Page, L.A.; Kirkpatrick, T.D. (Idaho National Engineering Lab., Idaho Falls, ID (United States)); Stevens, L. (USDOE, Washington, DC (United States))

    1992-01-01T23:59:59.000Z

    Past practices at the US Department of Energy (DOE) sites for offsite release of hazardous waste are being reviewed to determine if radioactively contaminated hazardous wastes were released to commercial treatment, storage, and disposal facilities. Records indicating the presence of radioactivity in waste shipped to and treated at a commercial incineration facility led to a ban on offsite hazardous waste shipments and investigation of past practices for offsite release of hazardous waste from the DOE sites. A House of Representatives Interior and Insular Affairs Committee oversight hearing on potentially contaminated waste shipments to commercial facilities concluded that the main issue was the lack of a uniform national standard to govern disposal of mixed waste.

  5. Hazardous waste shipment data collection from DOE sites

    SciTech Connect (OSTI)

    Page, L.A.; Kirkpatrick, T.D. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Stevens, L. [USDOE, Washington, DC (United States)

    1992-12-31T23:59:59.000Z

    Past practices at the US Department of Energy (DOE) sites for offsite release of hazardous waste are being reviewed to determine if radioactively contaminated hazardous wastes were released to commercial treatment, storage, and disposal facilities. Records indicating the presence of radioactivity in waste shipped to and treated at a commercial incineration facility led to a ban on offsite hazardous waste shipments and investigation of past practices for offsite release of hazardous waste from the DOE sites. A House of Representatives Interior and Insular Affairs Committee oversight hearing on potentially contaminated waste shipments to commercial facilities concluded that the main issue was the lack of a uniform national standard to govern disposal of mixed waste.

  6. Benefits of On-Site Management of Environmental Restoration Wastes

    SciTech Connect (OSTI)

    Irwin, Michael J. ,P.E.; Wood, Craig, R.E.M.; Kwiecinski, Daniel, P.E.; Alanis, Saul

    2003-02-27T23:59:59.000Z

    As Sandia National Laboratories/New Mexico (SNL/NM) began assessing options under which to conduct the remediation of environmental restoration sites, it became clear that the standard routes for permanent disposal of waste contaminated with hazardous materials would be difficult. Publicly, local citizens' groups resisted the idea of large volumes of hazardous waste being transported through their communities. Regulations for the off-site disposal are complicated due to the nature of the environmental restoration waste, which included elevated tritium levels. Waste generated from environmental restoration at SNL/NM included debris and soils contaminated with a variety of constituents. Operationally, disposal of environmental restoration waste was difficult because of the everchanging types of waste generated during site remediation. As an alternative to standard hazardous waste disposal, SNL/NM proposed and received regulatory approval to construct a Corrective Action Management Unit (CAMU). By containing the remediation wastes on-site, SNL/NM's Environmental Restoration (ER) Program managed to eliminate transportation concerns from the public, worked with regulatory agencies to develop a safe, permanent disposal, and modified the waste disposal procedures to accommodate operational changes. SNL/NM accomplished the task and saved approximately $200 million over the life of the CAMU project, as compared to off-site disposal options.

  7. Waste certification review program at the Savannah River Site

    SciTech Connect (OSTI)

    Faulk, G.W.; Kinney, J.C. [Westinghouse Savannah River Co., Aiken, SC (United States); Knapp, D.C. [Bechtel Savannah River Inc., Aiken, SC (United States); Burdette, T.E. [Science Applications International Corp., Oak Ridge, TN (United States)

    1996-02-01T23:59:59.000Z

    After approving the waste certification programs for 45 generators of low-level radioactive and mixed waste, Westinghouse Savannah River Company (WSRC) moved forward to implement a performance-based approach for assuring that approved waste generators maintain their waste certification programs. WSRC implemented the Waste Certification Review Program, which is comprised of two sitewide programs, waste generator self-assessments and Facility Evaluation Board reviews, integrated with the WSRC Solid Waste Management Department Waste Verification Program Evaluations. The waste generator self-assessments ensure compliance with waste certification requirements, and Facility Evaluation Board reviews provide independent oversight of generators` waste certification programs. Waste verification evaluations by the TSD facilities serve as the foundation of the program by confirming that waste contents and generator performance continue to meet waste acceptance criteria (WSRC 1994) prior to shipment to treatment, storage, and disposal facilities. Construction of the Savannah River Site (SRS) was started by the US Government in 1950. The site covers approximately 300 square miles located along the Savannah River near Aiken, South Carolina. It is operated by the US Department of Energy (DOE). Operations are conducted by managing and operating contractors, including the Westinghouse Savannah River Company (WSRC). Historically, the primary purpose of the SRS was to produce special nuclear materials, primarily plutonium and tritium. In general, low-level radioactive and mixed waste is generated through activities in operations. Presently, 47 SRS facilities generate low-level radioactive and mixed waste. The policies, guidelines, and requirements for managing these wastes are determined by DOE and are reflected in DOE Order 5820.2A (US DOE 1988).

  8. Hanford Site waste treatment/storage/disposal integration

    SciTech Connect (OSTI)

    MCDONALD, K.M.

    1999-02-24T23:59:59.000Z

    In 1998 Waste Management Federal Services of Hanford, Inc. began the integration of all low-level waste, mixed waste, and TRU waste-generating activities across the Hanford site. With seven contractors, dozens of generating units, and hundreds of waste streams, integration was necessary to provide acute waste forecasting and planning for future treatment activities. This integration effort provides disposition maps that account for waste from generation, through processing, treatment and final waste disposal. The integration effort covers generating facilities from the present through the life-cycle, including transition and deactivation. The effort is patterned after the very successful DOE Complex EM Integration effort. Although still in the preliminary stages, the comprehensive onsite integration effort has already reaped benefits. These include identifying significant waste streams that had not been forecast, identifying opportunities for consolidating activities and services to accelerate schedule or save money; and identifying waste streams which currently have no path forward in the planning baseline. Consolidation/integration of planned activities may also provide opportunities for pollution prevention and/or avoidance of secondary waste generation. A workshop was held to review the waste disposition maps, and to identify opportunities with potential cost or schedule savings. Another workshop may be held to follow up on some of the long-term integration opportunities. A change to the Hanford waste forecast data call would help to align the Solid Waste Forecast with the new disposition maps.

  9. Review of Nuclear Safety Culture at the Hanford Site Waste Treatment...

    Office of Environmental Management (EM)

    Review of Nuclear Safety Culture at the Hanford Site Waste Treatment and Immobilization Plant Project, October 2010 Review of Nuclear Safety Culture at the Hanford Site Waste...

  10. Idaho Site Launches Corrective Actions Before Restarting Waste Treatment Facility

    Broader source: Energy.gov [DOE]

    IDAHO FALLS, Idaho – The Idaho site and its cleanup contractor have launched a series of corrective actions they will complete before safely resuming startup operations at the Integrated Waste Treatment Unit (IWTU) following an incident in June that caused the new waste treatment facility to shut down.

  11. Independent Oversight Review, Savannah River Site Salt Waste...

    Office of Environmental Management (EM)

    2014 April 2014 Review of the Savannah River Site Salt Waste Processing Facility Construction Quality and Fire Protection Systems The U.S. Department of Energy (DOE) Office of...

  12. EA-0915: Waste Tank Safety Program Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to resolve waste tank safety issues at the Hanford Site near the City of Richland, Washington, and to reduce the risks associated with...

  13. Hanford Site Waste Management Area C Performance Assessment ...

    Office of Environmental Management (EM)

    Exchange December 11-12, 2014 To view all the P&RA CoP 2014 Technical Exchange Meeting videos click here. Video Presentation - Part 1 Video Presentation - Part 2 Hanford Site Waste...

  14. Massachusetts Hazardous Waste Facility Siting Act (Massachusetts)

    Broader source: Energy.gov [DOE]

    This Act establishes the means by which developers of proposed hazardous waste facilities will work with the community in which they wish to construct a facility. When the intent to construct,...

  15. Remaining Sites Verification Package for the 600-233 Waste Site, Vertical Pipe Near 100-B Electrical Laydown Area, Waste Site Reclassification Form 2005-041

    SciTech Connect (OSTI)

    R. A. Carlson

    2005-12-08T23:59:59.000Z

    The 600-233 waste site consisted of three small-diameter pipelines within the 600-232 waste site, including previously unknown diesel fuel supply lines discovered during site remediation. The 600-233 waste site has been remediated to achieve the remedial action objectives specified in the Remaining Sites ROD. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  16. Identification of potential transuranic waste tanks at the Hanford Site

    SciTech Connect (OSTI)

    Colburn, R.P.

    1995-05-05T23:59:59.000Z

    The purpose of this document is to identify potential transuranic (TRU) material among the Hanford Site tank wastes for possible disposal at the Waste Isolation Pilot Plant (WIPP) as an alternative to disposal in the high-level waste (HLW) repository. Identification of such material is the initial task in a trade study suggested in WHC-EP-0786, Tank Waste Remediation System Decisions and Risk Assessment (Johnson 1994). The scope of this document is limited to the identification of those tanks that might be segregated from the HLW for disposal as TRU, and the bases for that selection. It is assumed that the tank waste will be washed to remove soluble inert material for disposal as low-level waste (LLW), and the washed residual solids will be vitrified for disposal. The actual recommendation of a disposal strategy for these materials will require a detailed cost/benefit analysis and is beyond the scope of this document.

  17. Hanford site waste minimization and pollution prevention awareness program

    SciTech Connect (OSTI)

    Kirkendall, J.R.

    1996-09-23T23:59:59.000Z

    This plan documents the requirements of the Hanford Site Waste Minimization/Pollution Prevention (WMin/P2) Program. The plan specifies requirements for Hanford contractors to prevent pollution from entering the environment, to conserve resources and energy, and to reduce the quantity and toxicity of hazardous, radioactive, mixed, and sanitary waste generated at Hanford. The Pollution Prevention Awareness Program required by DOE 5400.1 (DOE 1988A) is included in the Hanford WMin/P2 Program.

  18. Savannah River Site Waste Removal Program - Past, Present and Future

    SciTech Connect (OSTI)

    Saldivar, E.

    2002-02-25T23:59:59.000Z

    The Savannah River Site has fifty-one high level waste tanks in various phases of operation and closure. These tanks were originally constructed to receive, store, and treat the high level waste (HLW) created in support of the missions assigned by the Department of Energy (DOE). The Federal Facilities Agreement (FFA) requires the high level waste to be removed from the tanks and stabilized into a final waste form. Additionally, closure of the tanks following waste removal must be completed. The SRS HLW System Plan identifies the interfaces of safe storage, waste removal, and stabilization of the high level waste and the schedule for the closure of each tank. HLW results from the dissolution of irradiated fuel components. Desired nuclear materials are recovered and the byproducts are neutralized with NaOH and sent to the High Level Waste Tank Farms at the SRS. The HLW process waste clarifies in the tanks as the sludge settles, resulting in a layer of dense sludge with salt supernate settling above the sludge. Salt supernate is concentrated via evaporation into saltcake and NaOH liquor. This paper discusses the history of SRS waste removal systems, recent waste removal experiences, and the challenges facing future removal operations to enhance efficiency and cost effectiveness. Specifically, topics will include the evolution and efficiency of systems used in the 1960's which required large volumes of water to current systems of large centrifugal slurry pumps, with significant supporting infrastructure and safety measures. Interactions of this equipment with the waste tank farm operations requirements will also be discussed. The cost and time improvements associated with these present-day systems is a primary focus for the HLW Program.

  19. A Short History of Waste Management at the Hanford Site

    SciTech Connect (OSTI)

    Gephart, Roy E.

    2010-03-31T23:59:59.000Z

    "The world’s first full-scale nuclear reactors and chemical reprocessing plants built at the Hanford Site in the desert of eastern Washington State produced two-thirds of the plutonium generated in the United States for nuclear weapons. Operating these facilities also created large volumes of radioactive and chemical waste, some of which was released into the environment exposing people who lived downwind and downstream. Hanford now contains the largest accumulation of nuclear waste in the Western Hemisphere. Hanford’s last reactor shut down in 1987 followed by closure of the last reprocessing plant in 1990. Today, Hanford’s only mission is cleanup. Most onsite radioactive waste and nuclear material lingers inside underground tanks or storage facilities. About half of the chemical waste remains in tanks while the rest persists in the soil, groundwater, and burial grounds. Six million dollars each day, or nearly two billion dollars each year, are spent on waste management and cleanup activities. There is significant uncertainty in how long cleanup will take, how much it will cost, and what risks will remain for future generations. This paper summarizes portions of the waste management history of the Hanford Site published in the book “Hanford: A Conversation about Nuclear Waste and Cleanup.”(1) "

  20. Closure Report for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2009-07-31T23:59:59.000Z

    Corrective Action Unit (CAU) 139 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Waste Disposal Sites' and consists of the following seven Corrective Action Sites (CASs), located in Areas 3, 4, 6, and 9 of the Nevada Test Site: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Closure activities were conducted from December 2008 to April 2009 according to the FFACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 139 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. Closure activities are summarized. CAU 139, 'Waste Disposal Sites,' consists of seven CASs in Areas 3, 4, 6, and 9 of the NTS. The closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 139 as documented in this CR: (1) At CAS 03-35-01, Burn Pit, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (2) At CAS 04-08-02, Waste Disposal Site, an administrative UR was implemented. No postings or post-closure monitoring are required. (3) At CAS 04-99-01, Contaminated Surface Debris, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (4) At CAS 06-19-02, Waste Disposal Site/Burn Pit, no work was performed. (5) At CAS 06-19-03, Waste Disposal Trenches, a native soil cover was installed, and a UR was implemented. (6) At CAS 09-23-01, Area 9 Gravel Gertie, a UR was implemented. (7) At CAS 09-34-01, Underground Detection Station, no work was performed.

  1. Method of draining water through a solid waste site without leaching

    DOE Patents [OSTI]

    Treat, R.L.; Gee, G.W.; Whyatt, G.A.

    1993-02-02T23:59:59.000Z

    The present invention is a method of preventing water from leaching solid waste sites by preventing atmospheric precipitation from contacting waste as the water flows through a solid waste site. The method comprises placing at least one drain hole through the solid waste site. The drain hole is seated to prevent waste material from entering the drain hole, and the solid waste site cover material is layered and graded to direct water to flow toward the drain hole and to soil beneath the waste site.

  2. Method of draining water through a solid waste site without leaching

    DOE Patents [OSTI]

    Treat, Russell L. (Richland, WA); Gee, Glendon W. (Richland, WA); Whyatt, Greg A. (Richland, WA)

    1993-01-01T23:59:59.000Z

    The present invention is a method of preventing water from leaching solid waste sites by preventing atmospheric precipitation from contacting waste as the water flows through a solid waste site. The method comprises placing at least one drain hole through the solid waste site. The drain hole is seated to prevent waste material from entering the drain hole, and the solid waste site cover material is layered and graded to direct water to flow toward the drain hole and to soil beneath the waste site.

  3. Navy aquatic hazardous waste sites: the problem and possible solutions. Final report

    SciTech Connect (OSTI)

    Johnston, R.K.; Wild, W.J.; Richter, K.E.; Lapota, D.; Stang, P.M.

    1989-08-01T23:59:59.000Z

    Data on 367 hazardous waste disposal sites at 58 Navy Marine Corps activities, located in the coastal zone, were reviewed to characterize the contaminants, disposal methods, and potentially impacted environments present at navy aquatic hazardous waste sites. This report identifies Navy aquatic hazardous waste site problems, assesses technology requirements, and describes remedial pilot projects being initiated at impacted aquatic sites.

  4. Remaining Sites Verification Package for the 128-B-2, 100-B Burn Pit #2 Waste Site, Waste Site Reclassification Form 2005-038

    SciTech Connect (OSTI)

    R. A. Carlson

    2005-12-21T23:59:59.000Z

    The 128-B-2 waste site was a burn pit historically used for the disposal of combustible and noncombustible wastes, including paint and solvents, office waste, concrete debris, and metallic debris. This site has been remediated by removing approximately 5,627 bank cubic meters of debris, ash, and contaminated soil to the Environmental Restoration Disposal Facility. The results of verification sampling demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also showed that residual contaminant concentrations are protective of groundwater and the Columbia River.

  5. Closure Plan for the Area 5 Radioactive Waste Management Site at the Nevada Test Site

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2008-09-01T23:59:59.000Z

    The Area 5 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the preliminary closure plan for the Area 5 RWMS at the NTS that was presented in the Integrated Closure and Monitoring Plan (DOE, 2005a). The major updates to the plan include a new closure schedule, updated closure inventory, updated site and facility characterization data, the Title II engineering cover design, and the closure process for the 92-Acre Area of the RWMS. The format and content of this site-specific plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). This interim closure plan meets closure and post-closure monitoring requirements of the order DOE O 435.1, manual DOE M 435.1-1, Title 40 Code of Federal Regulations (CFR) Part 191, 40 CFR 265, Nevada Administrative Code (NAC) 444.743, and Resource Conservation and Recovery Act (RCRA) requirements as incorporated into NAC 444.8632. The Area 5 RWMS accepts primarily packaged low-level waste (LLW), low-level mixed waste (LLMW), and asbestiform low-level waste (ALLW) for disposal in excavated disposal cells.

  6. Conversion of transuranic waste to low level waste by decontamination: a site specific update

    SciTech Connect (OSTI)

    Allen, R.P.; Hazelton, R.F.

    1985-09-01T23:59:59.000Z

    As a followup to an FY-1984 cost/benefit study, a program was conducted in FY-1985 to transfer to the relevant DOE sites the information and technology for the direct conversion of transuranic (TRU) waste to low-level waste (LLW) by decontamination. As part of this work, the economic evaluation of the various TRUW volume reduction and conversion options was updated and expanded to include site-specific factors. The results show, for the assumptions used, that size reduction, size reduction followed by decontamination, or in situ decontamination are cost effective compared with the no-processing option. The technology transfer activities included site presentations and discussions with operations and waste management personnel to identify application opportunities and site-specific considerations and constraints that could affect the implementation of TRU waste conversion principles. These discussions disclosed definite potential for the beneficial application of these principles at most of the sites, but also confirmed the existence of site-specific factors ranging from space limitations to LLW disposal restrictions that could preclude particular applications or diminish expected benefits. 8 refs., 2 figs., 4 tabs.

  7. Haiti: Feasibility of Waste-to-Energy Options at the Trutier Waste Site

    SciTech Connect (OSTI)

    Conrad, M. D.; Hunsberger, R.; Ness, J. E.; Harris, T.; Raibley, T.; Ursillo, P.

    2014-08-01T23:59:59.000Z

    This report provides further analysis of the feasibility of a waste-to-energy (WTE) facility in the area near Port-au-Prince, Haiti. NREL's previous analysis and reports identified anaerobic digestion (AD) as the optimal WTE technology at the facility. Building on the prior analyses, this report evaluates the conceptual financial and technical viability of implementing a combined waste management and electrical power production strategy by constructing a WTE facility at the existing Trutier waste site north of Port-au-Prince.

  8. Transuranic (TRU) Waste Repackaging at the Nevada Test Site

    SciTech Connect (OSTI)

    E.F. Di Sanza; G. Pyles; J. Ciucci; P. Arnold

    2009-03-01T23:59:59.000Z

    This paper describes the activities required to modify a facility and the process of characterizing, repackaging, and preparing for shipment the Nevada Test Site’s (NTS) legacy transuranic (TRU) waste in 58 oversize boxes (OSB). The waste, generated at other U.S. Department of Energy (DOE) sites and shipped to the NTS between 1974 and 1990, requires size-reduction for off-site shipment and disposal. The waste processing approach was tailored to reduce the volume of TRU waste by employing decontamination and non-destructive assay. As a result, the low-level waste (LLW) generated by this process was packaged, with minimal size reduction, in large sea-land containers for disposal at the NTS Area 5 Radioactive Waste Management Complex (RWMC). The remaining TRU waste was repackaged and sent to the Idaho National Laboratory Consolidation Site for additional characterization in preparation for disposal at the Waste Isolation Pilot Plant (WIPP), near Carlsbad, New Mexico. The DOE National Nuclear Security Administration Nevada Site Office and the NTS Management and Operating (M&O) contractor, NSTec, successfully partnered to modify and upgrade an existing facility, the Visual Examination and Repackaging Building (VERB). The VERB modifications, including a new ventilation system and modified containment structure, required an approved Preliminary Documented Safety Analysis prior to project procurement and construction. Upgrade of the VERB from a radiological facility to a Hazard Category 3 Nuclear Facility required new rigor in the design and construction areas and was executed on an aggressive schedule. The facility Documented Safety Analysis required that OSBs be vented prior to introduction into the VERB. Box venting was safely completed after developing and implementing two types of custom venting systems for the heavy gauge box construction. A remotely operated punching process was used on boxes with wall thickness of up to 3.05 mm (0.120 in) to insert aluminum bronze filters and sample ports to prevent sparking during penetration. A remotely operated cold-drilling process with self-drilling, self-tapping titanium coated spark-resistant filters was used for boxes with wall thickness of up to 6.35 mm (0.25 in). The box headspace was sampled for the presence of flammable gases. To further accelerate the project schedule, an innovative treatment process was used. Several of the OSBs were re-assayed and determined to be mixed low-level waste (MLLW) which allowed treatment, followed by disposal in the Mixed Waste Disposal Unit at the NTS Area 5 Radioactive Waste Management Complex (RWMC). The MLLW boxes were certified using real-time radiography and overpacked into custom-built polyethylene-lined macroencapsulation containers. The polyethylene-lined lid was welded to the poly-lined box using automatically controlled resistance heating through embedded wiring in the lid. The work was performed under the existing Documented Safety Analysis since plastic welding is accomplished at low temperature and does not introduce the risks of other macroencapsulation processes, such as welding stainless steel containers. The macroencapsulation process for MLLW not only accelerated the schedule by reducing the number of boxes requiring size reduction, but it also resulted in significantly improved safety with as low as reasonable achievable levels of exposure to workers plus reduced cost by eliminating the need to perform repackaging in the VERB.

  9. Combustion and fuel loading characteristics of Hanford Site transuranic solid waste

    SciTech Connect (OSTI)

    Greenhalgh, W.O.; Olson, W.W.

    1995-06-01T23:59:59.000Z

    The Hanford Site has been used for the storage of solid waste including transuranic and low-level mixed wastes. The storage and handling of solid waste presents some fire safety questions because most of the solid waste contains combustible components. This report addresses the composition, average fuel loading, and some general observations about performance of steel-drummed solid waste in fire situations.

  10. Cesium removal from Savannah River Site radioactive waste using crystalline silicotitanate (IONSIV(R) IE-911)

    SciTech Connect (OSTI)

    Walker, D.D.

    1999-12-15T23:59:59.000Z

    This study measured the ability of crystalline silicotitanate to remove cesium from Savannah River Site radioactive waste.

  11. SRS: Site ranking system for hazardous chemical and radioactive waste

    SciTech Connect (OSTI)

    Rechard, R.P.; Chu, M.S.Y.; Brown, S.L.

    1988-05-01T23:59:59.000Z

    This report describes the rationale and presents instructions for a site ranking system (SRS). SRS ranks hazardous chemical and radioactive waste sites by scoring important and readily available factors that influence risk to human health. Using SRS, sites can be ranked for purposes of detailed site investigations. SRS evaluates the relative risk as a combination of potentially exposed population, chemical toxicity, and potential exposure of release from a waste site; hence, SRS uses the same concepts found in a detailed assessment of health risk. Basing SRS on the concepts of risk assessment tends to reduce the distortion of results found in other ranking schemes. More importantly, a clear logic helps ensure the successful application of the ranking procedure and increases its versatility when modifications are necessary for unique situations. Although one can rank sites using a detailed risk assessment, it is potentially costly because of data and resources required. SRS is an efficient approach to provide an order-of-magnitude ranking, requiring only readily available data (often only descriptive) and hand calculations. Worksheets are included to make the system easier to understand and use. 88 refs., 19 figs., 58 tabs.

  12. Nevada National Security Site 2013 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    SciTech Connect (OSTI)

    Hudson, David B

    2014-02-13T23:59:59.000Z

    This report is a compilation of the groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site, Nye County, Nevada. Groundwater samples from the aquifer immediately below the Area 5 RWMS have been collected and analyzed and static water levels have been measured in this aquifer since 1993. This report updates these data to include the 2013 results. Beginning with this report, analysis results for leachate collected from the mixed-waste cell at the Area 5 RWMS (Cell 18) are also included.

  13. Nevada Test Site waste acceptance criteria [Revision 1

    SciTech Connect (OSTI)

    None

    1997-08-01T23:59:59.000Z

    Revision one updates the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive and mixed waste for disposal; and transuranic and transuranic mixed waste for interim storage at the NTS. Review each section of this document. This document is not intended to include all of the requirements; rather, it is meant as a guide toward meeting the regulations. All references in this document should be observed to avoid omission of requirements on which acceptance or rejection of waste will be based. The Department of Energy/Nevada Operations Office (DOE/NV) and support contractors are available to assist you in understanding or interpreting this document.

  14. USED NUCLEAR MATERIALS AT SAVANNAH RIVER SITE: ASSET OR WASTE?

    SciTech Connect (OSTI)

    Magoulas, V.

    2013-06-03T23:59:59.000Z

    The nuclear industry, both in the commercial and the government sectors, has generated large quantities of material that span the spectrum of usefulness, from highly valuable (“assets”) to worthless (“wastes”). In many cases, the decision parameters are clear. Transuranic waste and high level waste, for example, have no value, and is either in a final disposition path today, or – in the case of high level waste – awaiting a policy decision about final disposition. Other materials, though discardable, have intrinsic scientific or market value that may be hidden by the complexity, hazard, or cost of recovery. An informed decision process should acknowledge the asset value, or lack of value, of the complete inventory of materials, and the structure necessary to implement the range of possible options. It is important that informed decisions are made about the asset value for the variety of nuclear materials available. For example, there is a significant quantity of spent fuel available for recycle (an estimated $4 billion value in the Savannah River Site’s (SRS) L area alone); in fact, SRS has already blended down more than 300 metric tons of uranium for commercial reactor use. Over 34 metric tons of surplus plutonium is also on a path to be used as commercial fuel. There are other radiological materials that are routinely handled at the site in large quantities that should be viewed as strategically important and / or commercially viable. In some cases, these materials are irreplaceable domestically, and failure to consider their recovery could jeopardize our technological leadership or national defense. The inventories of nuclear materials at SRS that have been characterized as “waste” include isotopes of plutonium, uranium, americium, and helium. Although planning has been performed to establish the technical and regulatory bases for their discard and disposal, recovery of these materials is both economically attractive and in the national interest.

  15. Waste Isolation Pilot Plant Annual Site Enviromental Report for 2008

    SciTech Connect (OSTI)

    Washington Regulatory and Enviromnetal Services

    2009-09-21T23:59:59.000Z

    The purpose of the Waste Isolation Pilot Plant Annual Site Environmental Report for 2008 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1A, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to characterize site environmental management performance; summarize environmental occurrences and responses reported during the calendar year; confirm compliance with environmental standards and requirements; highlight significant facility programs and efforts; and describe how compliance and environmental improvement is accomplished through the WIPP Environmental Management System (EMS). The DOE Carlsbad Field Office (CBFO) and the management and operating contractor (MOC), Washington TRU Solutions LLC (WTS), maintain and preserve the environmental resources at the Waste Isolation Pilot Plant (WIPP). DOE Order 231.1A; DOE Order 450.1A, Environmental Protection Program; and DOE Order 5400.5, Radiation Protection of the Public and the Environment, require that the affected environment at and near DOE facilities be monitored to ensure the safety and health of the public and workers, and preservation of the environment. This report was prepared in accordance with DOE Order 231.1A, which requires that DOE facilities submit an ASER to the DOE Headquarters Chief Health, Safety, and Security Officer. The WIPP Hazardous Waste Facility Permit (HWFP) Number NM4890139088-TSDF (treatment, storage, and disposal facility) further requires that the ASER be provided to the New Mexico Environment Department (NMED). The WIPP mission is to safely dispose of transuranic (TRU) radioactive waste generated by the production of nuclear weapons and other activities related to the national defense of the United States. In 2008, 5,265 cubic meters (m3) of TRU waste were disposed of at the WIPP facility, including 5,216 m3 of contact-handled (CH) TRU waste and 49 m3 of remote-handled (RH) TRU waste. From the first receipt of waste in March 1999 through the end of 2008, 57,873 m3 of TRU waste had been disposed of at the WIPP facility.

  16. Pyramiding tumuli waste disposal site and method of construction thereof

    DOE Patents [OSTI]

    Golden, Martin P. (Hamburg, NY)

    1989-01-01T23:59:59.000Z

    An improved waste disposal site for the above-ground disposal of low-level nuclear waste as disclosed herein. The disposal site is formed from at least three individual waste-containing tumuli, wherein each tumuli includes a central raised portion bordered by a sloping side portion. Two of the tumuli are constructed at ground level with adjoining side portions, and a third above-ground tumulus is constructed over the mutually adjoining side portions of the ground-level tumuli. Both the floor and the roof of each tumulus includes a layer of water-shedding material such as compacted clay, and the clay layer in the roofs of the two ground-level tumuli form the compacted clay layer of the floor of the third above-ground tumulus. Each tumulus further includes a shield wall, preferably formed from a solid array of low-level handleable nuclear wate packages. The provision of such a shield wall protects workers from potentially harmful radiation when higher-level, non-handleable packages of nuclear waste are stacked in the center of the tumulus.

  17. Nevada Test Site Waste Acceptance Criteria (NTSWAC), Rev. 7-01

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2009-05-01T23:59:59.000Z

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive waste and mixed low-level waste for disposal. The NTSWAC includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex for disposal.

  18. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada Test Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    SciTech Connect (OSTI)

    NSTec Environmental Programs

    2010-09-14T23:59:59.000Z

    The NTS solid waste disposal sites must be permitted by the state of Nevada Solid Waste Management Authority (SWMA). The SWMA for the NTS is the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). The U.S. Department of Energy's National Nuclear Security Administration Nevada Site Office (NNSA/NSO) as land manager (owner), and National Security Technologies (NSTec), as operator, will store, collect, process, and dispose all solid waste by means that do not create a health hazard, a public nuisance, or cause impairment of the environment. NTS disposal sites will not be included in the Nye County Solid Waste Management Plan. The NTS is located approximately 105 kilometers (km) (65 miles [mi]) northwest of Las Vegas, Nevada (Figure 1). The U.S. Department of Energy (DOE) is the federal lands management authority for the NTS, and NSTec is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS has signs posted along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The Area 5 RWMS is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NTS (Figure 2), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. A Notice of Intent to operate the disposal site as a Class III site was submitted to the state of Nevada on January 28, 1994, and was acknowledged as being received in a letter to the NNSA/NSO on August 30, 1994. Interim approval to operate a Class III SWDS for regulated asbestiform low-level waste (ALLW) was authorized on August 12, 1996 (in letter from Paul Liebendorfer to Runore Wycoff), with operations to be conducted in accordance with the ''Management Plan for the Disposal of Low-Level Waste with Regulated Asbestos Waste.'' A requirement of the authorization was that on or before October 9, 1999, a permit was required to be issued. Because of NDEP and NNSA/NSO review cycles, the final permit was issued on April 5, 2000, for the operation of the Area 5 Low-Level Waste Disposal Site, utilizing Pit 7 (P07) as the designated disposal cell. The original permit applied only to Pit 7, with a total design capacity of 5,831 cubic yards (yd{sup 3}) (157,437 cubic feet [ft{sup 3}]). NNSA/NSO is expanding the SWDS to include the adjacent Upper Cell of Pit 6 (P06), with an additional capacity of 28,037 yd{sup 3} (756,999 ft{sup 3}) (Figure 3). The proposed total capacity of ALLW in Pit 7 and P06 will be approximately 33,870 yd{sup 3} (0.9 million ft{sup 3}). The site will be used for the disposal of regulated ALLW, small quantities of low-level radioactive hydrocarbon-burdened (LLHB) media and debris, LLW, LLW that contains PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, and small quantities of LLHB demolition and construction waste (hereafter called permissible waste). Waste containing free liquids, or waste that is regulated as hazardous waste under the Resource Conservation and Recovery Act (RCRA) or state-of-generation hazardous waste regulations, will not be accepted for disposal at the site. The only waste regulated under the Toxic Substances Control Act (TSCA) that will be accepted at the disposal site is regulated asbestos-containing materials (RACM). The term asbestiform is used throughout this document to describe this waste. Other TSCA waste (i.e., polychlorinated biphenyls [PCBs]) will not be accepted for disposal at the SWDS. The disposal site will be used as a depository of permissible waste generated both on site and off site. All generators designated by NNSA/NSO will be eligible to dispose regulated ALLW at the Asbestiform Low-Level Waste Disposal Site in accordance with the U.S. Department of Energy, Nevada Operations Office (DOE/NV) 325

  19. Health and Safety Procedures Manual for hazardous waste sites

    SciTech Connect (OSTI)

    Thate, J.E.

    1992-09-01T23:59:59.000Z

    The Oak Ridge National Laboratory Chemical Assessments Team (ORNL/CAT) has developed this Health and Safety Procedures Manual for the guidance, instruction, and protection of ORNL/CAT personnel expected to be involved in hazardous waste site assessments and remedial actions. This manual addresses general and site-specific concerns for protecting personnel, the general public, and the environment from any possible hazardous exposures. The components of this manual include: medical surveillance, guidance for determination and monitoring of hazards, personnel and training requirements, protective clothing and equipment requirements, procedures for controlling work functions, procedures for handling emergency response situations, decontamination procedures for personnel and equipment, associated legal requirements, and safe drilling practices.

  20. Waste Isolation Pilot Plant Annual Site Environmental Report for 2012

    SciTech Connect (OSTI)

    None

    2013-09-01T23:59:59.000Z

    The purpose of the Waste Isolation Pilot Plant (WIPP) Annual Site Environmental Report for 2012 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1B, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to: Characterize site environmental management performance; Summarize environmental occurrences and responses reported during the calendar year; Confirm compliance with environmental standards and requirements; Highlight significant environmental accomplishments, including progress toward the DOE Environmental Sustainability Goals made through implementation of the WIPP Environmental Management System (EMS).

  1. BIOGEOCHEMICAL GRADIENTS AS A FRAMEWORK FOR UNDERSTANDING WASTE SITE EVOLUTION

    SciTech Connect (OSTI)

    Denham, M; Karen Vangelas, K

    2008-10-17T23:59:59.000Z

    The migration of biogeochemical gradients is a useful framework for understanding the evolution of biogeochemical conditions in groundwater at waste sites contaminated with metals and radionuclides. This understanding is critical to selecting sustainable remedies and evaluating sites for monitored natural attenuation, because most attenuation mechanisms are sensitive to geochemical conditions such as pH and redox potential. Knowledge of how gradients in these parameters evolve provides insights into the behavior of contaminants with time and guides characterization, remedy selection, and monitoring efforts. An example is a seepage basin site at the Savannah River Site in South Carolina where low-level acidic waste has seeped into groundwater. The remediation of this site relies, in part, on restoring the natural pH of the aquifer by injecting alkaline solutions. The remediation will continue until the pH up-flow of the treatment zone increases to an acceptable value. The time required to achieve this objective depends on the time it takes the trailing pH gradient, the gradient separating the plume from influxing natural groundwater, to reach the treatment zone. Predictions of this length of time will strongly influence long-term remedial decisions.

  2. Nevada Test Site 2000 Annual Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    SciTech Connect (OSTI)

    Y. E.Townsend

    2001-02-01T23:59:59.000Z

    This report is a compilation of the calendar year 2000 groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). Contamination indicator data are presented in control chart and tabular form with investigation levels (IL) indicated. Gross water chemistry data are presented in graphical and tabular form. Other information in the report includes, the Cumulative Chronology for Area 5 RWMS Groundwater Monitoring Program, a brief description of the site hydrogeology, and the groundwater sampling procedure.

  3. Corrective Action Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2007-07-01T23:59:59.000Z

    Corrective Action Unit (CAU) 139, Waste Disposal Sites, is listed in the Federal Facility Agreement and Consent Order (FFACO) of 1996 (FFACO, 1996). CAU 139 consists of seven Corrective Action Sites (CASs) located in Areas 3, 4, 6, and 9 of the Nevada Test Site (NTS), which is located approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1). CAU 139 consists of the following CASs: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Details of the site history and site characterization results for CAU 139 are provided in the approved Corrective Action Investigation Plan (CAIP) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2006) and in the approved Corrective Action Decision Document (CADD) (NNSA/NSO, 2007). The purpose of this Corrective Action Plan (CAP) is to present the detailed scope of work required to implement the recommended corrective actions as specified in Section 4.0 of the approved CADD (NNSA/NSO, 2007). The approved closure activities for CAU 139 include removal of soil and debris contaminated with plutonium (Pu)-239, excavation of geophysical anomalies, removal of surface debris, construction of an engineered soil cover, and implementation of use restrictions (URs). Table 1 presents a summary of CAS-specific closure activities and contaminants of concern (COCs). Specific details of the corrective actions to be performed at each CAS are presented in Section 2.0 of this report.

  4. Development, Review, and Publication of the Hanford Site Solid Waste Program Environmental Impact Statement

    SciTech Connect (OSTI)

    Gajewski, Stephen W.; Johnson, Wayne L.; Payson, David R.; Rhoads, Kathleen; Sanders, George H.

    2004-02-01T23:59:59.000Z

    The Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement (HSW EIS) provides environmental and technical information concerning U.S. Department of Energy (DOE) proposed waste management practices at the Hanford Site. The HSW EIS covers four primary aspects of waste management at Hanford – waste treatment, storage, transportation, and disposal. It also addresses four kinds of solid radioactive waste – low-level waste (LLW), mixed (radioactive and chemically hazardous) low-level waste (MLLW), transuranic (TRU) waste (including mixed TRUW), and immobilized low-activity waste (ILAW) from treatment of Hanford’s tanks waste. The HSW EIS is intended to help DOE determine what specific Hanford Site facilities will continue to be used, will be modified, or need to be constructed to treat, store, and dispose of these wastes.

  5. Waste Isolation Pilot Plant 2001 Site Environmental Report

    SciTech Connect (OSTI)

    Westinghouse TRU Solutions, Inc.

    2002-09-20T23:59:59.000Z

    The United States (U.S.) Department of Energy's (DOE) Carlsbad Field Office (CBFO) and Westinghouse TRU Solutions LLC (WTS) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environmental, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2001 Site Environmental Report summarizes environmental data from calendar year (CY) 2001 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH- 0173T), and the Waste Isolation Pilot Plant Environmental Protection Implementation Plan (DOE/WIPP 96-2199). The above Orders and guidance documents require that DOE facilities submit an annual site environmental report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health; and the New Mexico Environment Department (NMED). The purpose of this report is to provide a comprehensive description of operational environmental monitoring activities, to provide an abstract of environmental activities conducted to characterize site environmental management performance to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit at WIPP during CY 2001. WIPP received its first shipment of waste on March 26, 1999. In 2001, no evidence was found of any adverse effects from WIPP on the surrounding environment.

  6. Disposal Activities and the Unique Waste Streams at the Nevada National Security Site (NNSS)

    SciTech Connect (OSTI)

    Arnold, P.

    2012-10-31T23:59:59.000Z

    This slide show documents waste disposal at the Nevada National Security Site. Topics covered include: radionuclide requirements for waste disposal; approved performance assessment (PA) for depleted uranium disposal; requirements; program approval; the Waste Acceptance Review Panel (WARP); description of the Radioactive Waste Acceptance Program (RWAP); facility evaluation; recent program accomplishments, nuclear facility safety changes; higher-activity waste stream disposal; and, large volume bulk waste streams.

  7. 2005 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    SciTech Connect (OSTI)

    Bechtel Nevada

    2006-02-01T23:59:59.000Z

    This report is a compilation of the calendar year 2005 groundwater sampling results from the Area 5 Radioactive Waste Management Site. In additon to providing groundwater monitoring results, this report also includes information regarding site hydrogeology, well construction, sample collection, and meteorological data measured at the Area 5 Radioactive Waste Management Site at the Nevada Test Site, Ny County, Nevada.

  8. Corrective Action Investigation Plan for Corrective Action Unit 137: Waste Disposal Sites, Nevada Test Site, Nevada, Rev. No.:0

    SciTech Connect (OSTI)

    Wickline, Alfred

    2005-12-01T23:59:59.000Z

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 137: Waste Disposal Sites. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 137 contains sites that are located in Areas 1, 3, 7, 9, and 12 of the Nevada Test Site (NTS), which is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 137 is comprised of the eight corrective action sites (CASs) shown on Figure 1-1 and listed below: (1) CAS 01-08-01, Waste Disposal Site; (2) CAS 03-23-01, Waste Disposal Site; (3) CAS 03-23-07, Radioactive Waste Disposal Site; (4) CAS 03-99-15, Waste Disposal Site; (5) CAS 07-23-02, Radioactive Waste Disposal Site; (6) CAS 09-23-07, Radioactive Waste Disposal Site; (7) CAS 12-08-01, Waste Disposal Site; and (8) CAS 12-23-07, Waste Disposal Site. The Corrective Action Investigation (CAI) will include field inspections, radiological surveys, geophysical surveys, sampling of environmental media, analysis of samples, and assessment of investigation results, where appropriate. Data will be obtained to support corrective action alternative evaluations and waste management decisions. The CASs in CAU 137 are being investigated because hazardous and/or radioactive constituents may be present in concentrations that could potentially pose a threat to human health and the environment. Existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives for the CASs. Additional information will be generated by conducting a CAI before evaluating and selecting corrective action alternatives.

  9. Distinguishing Between Site Waste, Natural, and Other Sources of Contamination at Uranium and Thorium Contaminated Sites - 12274

    SciTech Connect (OSTI)

    Hays, David C. [United States Army Corps of Engineers, Kansas City, Missouri, 64106 (United States)

    2012-07-01T23:59:59.000Z

    Uranium and thorium processing and milling sites generate wastes (source, byproduct, or technically enhanced naturally occurring material), that contain contaminants that are similar to naturally occurring radioactive material deposits and other industry wastes. This can lead to mis-identification of other materials as Site wastes. A review of methods used by the US Army Corps of Engineers and the Environmental Protection Agency to distinguish Site wastes from potential other sources, enhanced materials, and natural deposits, at three different thorium mills was conducted. Real case examples demonstrate the importance of understanding the methods of distinguishing wastes. Distinguishing between Site wastes and enhanced Background material can be facilitated by establishing and applying a formal process. Significant project cost avoidance may be realized by distinguishing Site wastes from enhanced NORM. Collection of information on other potential sources of radioactive material and physical information related to the potential for other radioactive material sources should be gathered and reported in the Historical Site Assessment. At a minimum, locations of other such information should be recorded. Site decision makers should approach each Site area with the expectation that non site related radioactive material may be present and have a process in place to distinguish from Site and non Site related materials. (authors)

  10. Updated Site Response Analyses for the Waste Treatment Plant, DOE Hanford, Site, Washington.

    SciTech Connect (OSTI)

    Youngs, Robert R.

    2007-06-29T23:59:59.000Z

    This document describes the calculations performed to develop updated relative amplification functions for the Waste Treatment and Immobilization Plant (WTP) facility at the DOE Hanford Site, Washington State. The original 2,000-year return period design spectra for the WTP were based on the results of a probabilistic seismic hazard analysis (PSHA) performed for the DOE Hanford Site by Geomatrix (1996). Geomatrix (1996) performed the PSHA using empirical soil-site ground motion models based primarily on recordings from California. As part of that study, site response analyses were performed to evaluate ground motions at the Hanford sites and California deep soil sites. As described in Appendix A of Geomatrix (1996), characteristic site profiles and dynamic soil properties representative of conditions at various Hanford sites and California deep soil strong motion recording stations were defined. Relative site responses of the Hanford profiles and California profiles were then compared. Based on the results of those site response analyses, it was concluded that ground motions at the Hanford sites underlain by deep soil deposits are similar in character to those on California deep soil sites and it was judged appropriate to use empirical deep soil site attenuation relationships based primarily on California ground motion data to develop design spectra for the Hanford sites. In a subsequent analysis, Geomatrix (2003) updated the site response analyses of Geomatrix (1996, Appendix A) to incorporate randomization of the California and Hanford profiles. The results of that analysis also led to the conclusion that the response of the Hanford profiles was similar to the response of deep soil sites in California.

  11. Nevada Test Site 2007 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2008-01-01T23:59:59.000Z

    This report is a compilation of the groundwater sampling results from three monitoring wells located near the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS), Nye County, Nevada, for calendar year 2007. The NTS is an approximately 3,561 square kilometer (1,375 square mile) restricted-access federal installation located approximately 105 kilometers (65 miles) northwest of Las Vegas, Nevada (Figure 1). Pilot wells UE5PW-1, UE5PW-2, and UE5PW-3 are used to monitor the groundwater at the Area 5 RWMS (Figure 2). In addition to groundwater monitoring results, this report includes information regarding site hydrogeology, well construction, sample collection, and meteorological data measured at the Area 5 RWMS. The disposal of low-level radioactive waste and mixed low-level radioactive waste at the Area 5 RWMS is regulated by U.S. Department of Energy (DOE) Order 435.1, 'Radioactive Waste Management'. The disposal of mixed low-level radioactive waste is also regulated by the state of Nevada under the Resource Conservation and Recovery Act (RCRA) regulation Title 40 Code of Federal Regulations (CFR) Part 265, 'Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities' (CFR, 1999). The format of this report was requested by the Nevada Division of Environmental Protection (NDEP) in a letter dated August 12, 1997. The appearance and arrangement of this document have been modified slightly since that date to provide additional information and to facilitate the readability of the document. The objective of this report is to satisfy any Area 5 RWMS reporting agreements between DOE and NDEP.

  12. Multi-discipline Waste Acceptance Process at the Nevada National Security Site - 13573

    SciTech Connect (OSTI)

    Carilli, Jhon T. [US Department Of Energy, Nevada Site Office, P. O. Box 98518, Las Vegas, Nevada 89193-8518 (United States)] [US Department Of Energy, Nevada Site Office, P. O. Box 98518, Las Vegas, Nevada 89193-8518 (United States); Krenzien, Susan K. [Navarro-Intera, LLC, P. O. Box 98952, Las Vegas, Nevada 89193-8952 (United States)] [Navarro-Intera, LLC, P. O. Box 98952, Las Vegas, Nevada 89193-8952 (United States)

    2013-07-01T23:59:59.000Z

    The Nevada National Security Site low-level radioactive waste disposal facility acceptance process requires multiple disciplines to ensure the protection of workers, the public, and the environment. These disciplines, which include waste acceptance, nuclear criticality, safety, permitting, operations, and performance assessment, combine into the overall waste acceptance process to assess low-level radioactive waste streams for disposal at the Area 5 Radioactive Waste Management Site. Four waste streams recently highlighted the integration of these disciplines: the Oak Ridge Radioisotope Thermoelectric Generators and Consolidated Edison Uranium Solidification Project material, West Valley Melter, and classified waste. (authors)

  13. Hanford site solid waste management environmental impact statement technical information document [SEC 1 THRU 4

    SciTech Connect (OSTI)

    FRITZ, L.L.

    2003-04-01T23:59:59.000Z

    This Technical Information Document (TID) provides engineering data to support DOE/EIS-0286, ''Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement,'' including assumptions and waste volumes calculation data.

  14. Sensor System Fo4r Buried Waste Containment Sites

    DOE Patents [OSTI]

    Smith, Ann Marie (Pocatello, ID); Gardner, Bradley M. (Idaho Falls, ID); Kostelnik, Kevin M. (Idaho Falls, ID); Partin, Judy K. (Idaho Falls, ID); Lancaster, Gregory D. (Idaho Falls, ID); Pfeifer, Mary Catherine (San Antonio, NM)

    2005-09-27T23:59:59.000Z

    A sensor system for a buried waste containment site having a bottom wall barrier and/or sidewall barriers, for containing hazardous waste. The sensor system includes one or more sensor devices disposed in one or more of the barriers for detecting a physical parameter either of the barrier itself or of the physical condition of the surrounding soils and buried waste, and for producing a signal representing the physical parameter detected. Also included is a signal processor for receiving signals produced by the sensor device and for developing information identifying the physical parameter detected, either for sounding an alarm, displaying a graphic representation of a physical parameter detected on a viewing screen and/or a hard copy printout. The sensor devices may be deployed in or adjacent the barriers at the same time the barriers are deployed and may be adapted to detect strain or cracking in the barriers, leakage of radiation through the barriers, the presence and leaking through the barriers of volatile organic compounds, or similar physical conditions.

  15. Remaining Sites Verification Package for the 100-B-23, 100-B/C Area Surface Debris, Waste Site, Waste Site Reclassification Form 2008-027

    SciTech Connect (OSTI)

    J. M. Capron

    2008-06-16T23:59:59.000Z

    The 100-B-23, 100-B/C Surface Debris, waste consisted of multiple locations of surface debris and chemical stains that were identified during an Orphan Site Evaluation of the 100-B/C Area. Evaluation of the collected information for the surface debris features yielded four generic waste groupings: asbestos-containing material, lead debris, oil and oil filters, and treated wood. Focused verification sampling was performed concurrently with remediation. Site remediation was accomplished by selective removal of the suspect hazardous items and potentially impacted soils. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  16. Waste Isolation Pilot Plant Annual Site Environmental Report for 2010

    SciTech Connect (OSTI)

    None

    2011-09-01T23:59:59.000Z

    The purpose of the Waste Isolation Pilot Plant (WIPP) Annual Site Environmental Report for 2010 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1A, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to: (1) Characterize site environmental management performance. (2) Summarize environmental occurrences and responses reported during the calendar year. (3) Confirm compliance with environmental standards and requirements. (4) Highlight significant environmental accomplishments, including progress toward the DOE Environmental Sustainability Goals made through implementation of the WIPP Environmental Management System (EMS). The DOE Carlsbad Field Office (CBFO) and the management and operating contractor (MOC), Washington TRU Solutions LLC (WTS), maintain and preserve the environmental resources at the WIPP. DOE Order 231.1A; DOE Order 450.1A, Environmental Protection Program; and DOE Order 5400.5, Radiation Protection of the Public and the Environment, require that the affected environment at and near DOE facilities be monitored to ensure the safety and health of the public and workers, and preservation of the environment. This report was prepared in accordance with DOE Order 231.1A, which requires that DOE facilities submit an ASER to the DOE Headquarters Chief Health, Safety, and Security Officer. The WIPP Hazardous Waste Facility Permit Number NM4890139088-TSDF (Permit) further requires that the ASER be provided to the New Mexico Environment Department (NMED).

  17. Closure End States for Facilities, Waste Sites, and Subsurface Contamination

    SciTech Connect (OSTI)

    Gerdes, Kurt D.; Chamberlain, Grover S.; Wellman, Dawn M.; Deeb, Rula A.; Hawley, Elizabeth L.; Whitehurst, Latrincy; Marble, Justin

    2012-11-21T23:59:59.000Z

    The United States (U.S.) Department of Energy (DOE) manages the largest groundwater and soil cleanup effort in the world. DOE’s Office of Environmental Management (EM) has made significant progress in its restoration efforts at sites such as Fernald and Rocky Flats. However, remaining sites, such as Savannah River Site, Oak Ridge Site, Hanford Site, Los Alamos, Paducah Gaseous Diffusion Plant, Portsmouth Gaseous Diffusion Plant, and West Valley Demonstration Project possess the most complex challenges ever encountered by the technical community and represent a challenge that will face DOE for the next decade. Closure of the remaining 18 sites in the DOE EM Program requires remediation of 75 million cubic yards of contaminated soil and 1.7 trillion gallons of contaminated groundwater, deactivation & decommissioning (D&D) of over 3000 contaminated facilities and thousands of miles of contaminated piping, removal and disposition of millions of cubic yards of legacy materials, treatment of millions of gallons of high level tank waste and disposition of hundreds of contaminated tanks. The financial obligation required to remediate this volume of contaminated environment is estimated to cost more than 7% of the to-go life-cycle cost. Critical in meeting this goal within the current life-cycle cost projections is defining technically achievable end states that formally acknowledge that remedial goals will not be achieved for a long time and that residual contamination will be managed in the interim in ways that are protective of human health and environment. Formally acknowledging the long timeframe needed for remediation can be a basis for establishing common expectations for remedy performance, thereby minimizing the risk of re-evaluating the selected remedy at a later time. Once the expectations for long-term management are in place, remedial efforts can be directed towards near-term objectives (e.g., reducing the risk of exposure to residual contamination) instead of focusing on long-term cleanup requirements. An acknowledgement of the long timeframe for complete restoration and the need for long-term management can also help a site transition from the process of pilot testing different remedial strategies to selecting a final remedy and establishing a long-term management and monitoring approach. This approach has led to cost savings and the more efficient use of resources across the Department of Defense complex and at numerous industrial sites across the U.S. Defensible end states provide numerous benefits for the DOE environmental remediation programs including cost-effective, sustainable long-term monitoring strategies, remediation and site transition decision support, and long-term management of closure sites.

  18. Sorting and Characterizing Oversized Boxes of Transuranic Waste at the Nevada Test Site

    ScienceCinema (OSTI)

    None

    2014-10-28T23:59:59.000Z

    Characterization activities conducted inside the Visual Examination and Repackaging Building at the Area 5 Radioactive Waste Management Complex on the Nevada Test Site.

  19. The Nevada Test Site Legacy TRU Waste - The WIPP Central Characterization Project

    SciTech Connect (OSTI)

    Norton, J. F.; Lahoud, R. G.; Foster, B. D.; VanMeighem, J.

    2003-02-25T23:59:59.000Z

    This paper discusses the Central Characterization Project (CCP) designed by the Waste Isolation Pilot Plant (WIPP) to aid sites, especially those sites with small quantities of transuranic (TRU) waste streams, in disposing of legacy waste at their facility. Because of the high cost of contracting vendors with the characterization capabilities necessary to meet the WIPP Waste Acceptance Criteria, utilizing the CCP is meant to simplify the process for small quantity sites. The paper will describe the process of mobilization of the vendors through CCP, the current production milestones that have been met, and the on-site lessons learned.

  20. Voluntary Protection Program Onsite Review, Bechtel National Inc., Waste Treatment Plant Construction Site – November 2013

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether Bechtel National Inc., Waste Treatment Plant Construction Site is performing at a level deserving DOE-VPP Star recognition.

  1. Voluntary Protection Program Onsite, Liquid Waste Contract Savannah River Site- February 2011

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether the Liquid Waste Contract Savannah River Site is continuing to perform at a level deserving DOE-VPP Star recognition.

  2. Voluntary Protection Program Onsite Review, Waste Treatment Plant Hanford Site- June 2010

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether the Waste Treatment Plant Hanford Site is continuing to perform at a level deserving DOE-VPP Star recognition.

  3. Application for Permit to Operate a Class II Solid Waste Disposal Site at the Nevada Test Site - U10c Disposal Site

    SciTech Connect (OSTI)

    NSTec Environmental Programs

    2010-03-31T23:59:59.000Z

    The Nevada Test Site (NTS) is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is the federal lands management authority for the NTS and National Security Technologies LLC (NSTec) is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The site will be used for the disposal of refuse, rubbish, garbage, sewage sludge, pathological waste, Asbestos-Containing Material (ACM), industrial solid waste, hydrocarbon-burdened soil, hydrocarbon-burdened demolition and construction waste, and other inert waste (hereafter called permissible waste). Waste containing free liquids or regulated under Subtitle C of the Resource Conservation and Recovery Act (RCRA) will not be accepted for disposal at the site. Waste regulated under the Toxic Substance Control Act (TSCA), excluding Polychlorinated Biphenyl [PCB], Bulk Product Waste (see Section 6.2.5) and ACM (see Section 6.2.2.2) will not be accepted for disposal at the site. The disposal site will be used as the sole depository of permissible waste which is: (1) Generated by entities covered under the U.S. Environmental Protection Agency (EPA) Hazardous Waste Generator Identification Number for the NTS; (2) Generated at sites identified in the Federal Facilities Agreement and Consent Order (FFACO); (3) Sensitive records and media, including documents, vugraphs, computer disks, typewriter ribbons, magnetic tapes, etc., generated by NNSA/NSO or its contractors; (4) ACM generated by NNSA/NSO or its contractors according to Section 6.2.2.2, as necessary; (5) Hydrocarbon-burdened soil and solid waste from areas covered under the EPA Hazardous Waste Generator Identification Number for the NTS; (6) Other waste on a case-by-case concurrence by NDEP/BFF. The generator of permissible waste is responsible for preparing documentation related to waste acceptance criteria, waste characterization, and load verification. Waste and Water (WW) personnel are responsible for operating the disposal site and reviewing documentation to determine if the waste is acceptable.

  4. Operational Strategies for Low-Level Radioactive Waste Disposal Site in Egypt - 13513

    SciTech Connect (OSTI)

    Mohamed, Yasser T. [Hot Laboratories and Waste Management Center, Atomic Energy Authority, 3 Ahmed El-Zomor St., El-Zohour District, Naser City, 11787, Cairo (Egypt)] [Hot Laboratories and Waste Management Center, Atomic Energy Authority, 3 Ahmed El-Zomor St., El-Zohour District, Naser City, 11787, Cairo (Egypt)

    2013-07-01T23:59:59.000Z

    The ultimate aims of treatment and conditioning is to prepare waste for disposal by ensuring that the waste will meet the waste acceptance criteria of a disposal facility. Hence the purpose of low-level waste disposal is to isolate the waste from both people and the environment. The radioactive particles in low-level waste emit the same types of radiation that everyone receives from nature. Most low-level waste fades away to natural background levels of radioactivity in months or years. Virtually all of it diminishes to natural levels in less than 300 years. In Egypt, The Hot Laboratories and Waste Management Center has been established since 1983, as a waste management facility for LLW and ILW and the disposal site licensed for preoperational in 2005. The site accepts the low level waste generated on site and off site and unwanted radioactive sealed sources with half-life less than 30 years for disposal and all types of sources for interim storage prior to the final disposal. Operational requirements at the low-level (LLRW) disposal site are listed in the National Center for Nuclear Safety and Radiation Control NCNSRC guidelines. Additional procedures are listed in the Low-Level Radioactive Waste Disposal Facility Standards Manual. The following describes the current operations at the LLRW disposal site. (authors)

  5. Building of multilevel stakeholder consensus in radioactive waste repository siting

    SciTech Connect (OSTI)

    Dreimanis, A. [Radiation Safety Centre, Riga LV (Latvia)

    2007-07-01T23:59:59.000Z

    This report considers the problem of multilevel consensus building for siting and construction of shared multinational/regional repositories for radioactive waste (RW) deep disposal. In the siting of a multinational repository there appears an essential innovative component of stakeholder consensus building, namely: to reach consent - political, social, economic, ecological - among international partners, in addition to solving the whole set of intra-national consensus building items. An entire partnering country is considered as a higher-level stakeholder - the national stakeholder, represented by the national government, being faced to simultaneous seeking an upward (international) and a downward (intra-national) consensus in a psychologically stressed environment, possibly being characterized by diverse political, economic and social interests. The following theses as a possible interdisciplinary approach towards building of shared understanding and stakeholder consensus on the international scale of RW disposal are forwarded and developed: a) building of international stakeholder consensus would be promoted by activating and diversifying on the international scale multilateral interactions between intra- and international stakeholders, including web-based networks of the RW disposal site investigations and decision-making, as well as networks for international cooperation among government authorities in nuclear safety, b) gradual progress in intergovernmental consensus and reaching multilateral agreements on shared deep repositories will be the result of democratic dialogue, via observing the whole set of various interests and common resolving of emerged controversies by using advanced synergetic approaches of conflict resolution, c) cross-cultural thinking and world perception, mental flexibility, creativity and knowledge are considered as basic prerogatives for gaining a higher level of mutual understanding and consensus for seeking further consensus, for advancing the preparedness to act together, and ultimately - for achieving desired shared goals. It is proposed that self-organized social learning will make it possible to promote adequate perception of risk and prevent, by diminishing uncertainties and unknown factors, social amplification of an imagined risk, as well as to increase the trust level and facilitate more adequate equity perception. The proposed approach to the multilevel stakeholder consensus building on international scale is extrapolated to the present-day activities of siting of such near-surface RW disposal facilities which supposedly could have non-negligible trans-boundary impact. A multilevel stakeholder interaction process is considered for the case of resolving of emerged problems in site selection for the planned near-surface RW repository in vicinity of the Lithuanian-Latvian border foreseen for disposal of short lived low- and intermediate level waste arising from the decommissioning of the Ignalina Nuclear Power Plant. (authors)

  6. Nevada Test 1999 Waste Management Monitoring Report, Area 3 and Area 5 radioactive waste management sites

    SciTech Connect (OSTI)

    Yvonne Townsend

    2000-05-01T23:59:59.000Z

    Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS). These monitoring data include radiation exposure, air, groundwater, meteorology, vadose zone, and biota data. Although some of these media (radiation exposure, air, and groundwater) are reported in detail in other Bechtel Nevada reports (Annual Site Environmental Report [ASER], the National Emissions Standard for Hazardous Air Pollutants [NESHAP] report, and the Annual Groundwater Monitoring Report), they are also summarized in this report to provide an overall evaluation of RWMS performance and environmental compliance. Direct radiation monitoring data indicate that exposure at and around the RWMSs is not above background levels. Air monitoring data indicate that tritium concentrations are slightly above background levels, whereas radon concentrations are not above background levels. Groundwater monitoring data indicate that the groundwater in the alluvial aquifer beneath the Area 5 RWMS has not been affected by the facility. Meteorology data indicate that 1999 was a dry year: rainfall totaled 3.9 inches at the Area 3 RWMS (61 percent of average) and 3.8 inches at the Area 5 RWMS (75 percent of average). Vadose zone monitoring data indicate that 1999 rainfall infiltrated less than one foot before being returned to the atmosphere by evaporation. Soil-gas tritium data indicate very slow migration, and tritium concentrations in biota were insignificant. All 1999 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing as expected at isolating buried waste.

  7. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 2

    SciTech Connect (OSTI)

    NONE

    1988-01-01T23:59:59.000Z

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site; to describe the conceptual designs for the repository and the waste package and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. Chapter 3 summarizes present knowledge of the regional and site hydrologic systems. The purpose of the information presented is to (1) describe the hydrology based on available literature and preliminary site-exploration activities that have been or are being performed and (2) provide information to be used to develop the hydrologic aspects of the planned site characterization program. Chapter 4 contains geochemical information about the Yucca Mountain site. The chapter references plan for continued collection of geochemical data as a part of the site characterization program. Chapter 4 describes and evaluates data on the existing climate and site meterology, and outlines the suggested procedures to be used in developing and validating methods to predict future climatic variation. 534 refs., 100 figs., 72 tabs.

  8. Applying Lean Concepts to Waste Site Closure - 13137

    SciTech Connect (OSTI)

    Proctor, M.L. [Washington Closure Hanford, 2620 Fermi, Richland, Washington 99354 (United States)] [Washington Closure Hanford, 2620 Fermi, Richland, Washington 99354 (United States)

    2013-07-01T23:59:59.000Z

    Washington Closure Hanford (WCH) was selected by the U.S. Department of Energy, Richland Operations Office to manage the River Corridor Closure Project, a 10-year contract in which WCH will clean up 220 mi{sup 2} of contaminated land at the Hanford Site in Richland, Washington. In the summer of 2011, with Tri-Party (DOE-RL, Environmental Protection Agency and Washington State Department of Ecology) Agreement Milestones due at the end of the calendar year, standard work practices were challenged in regards to closure documentation development. The Lean process, a concept that maximizes customer value while minimizing waste, was introduced to WCH's Sample Design and Cleanup Verification organization with the intention of eliminating waste and maximizing efficiencies. The outcome of implementing Lean processes and concepts was impressive. It was determined that the number of non-value added steps far outnumbered the value added steps. Internal processing time, document size, and review times were all reduced significantly; relationships with the customer and the regulators were also improved; and collaborative working relationships with the Tri Parties have been strengthened by working together on Lean initiatives. (authors)

  9. EA-1097: Solid waste Disposal- Nevada Test Site, Nye County, Nevada

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to continue the on-site disposal of solid waste at the Area 9 and Area 23 landfills at the U.S. Department of Energy Nevada Test Site...

  10. EIS-0063: Waste Management Operations, Double-Shell Tanks for Defense High Level Radioactive Waste Storage, Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this statement to evaluate the existing tank design and consider additional specific design and safety feature alternatives for the thirteen tanks being constructed for storage of defense high-level radioactive liquid waste at the Hanford Site in Richland, Washington. This statement supplements ERDA-1538, "Final Environmental Statement on Waste Management Operation."

  11. Identifying suitable "piercement" salt domes for nuclear waste storage sites

    SciTech Connect (OSTI)

    Kehle, R.

    1980-08-01T23:59:59.000Z

    Piercement salt domes of the northern interior salt basins of the Gulf of Mexico are being considered as permanent storage sites for both nuclear and chemically toxic wastes. The suitable domes are stable and inactive, having reached their final evolutionary configuration at least 30 million years ago. They are buried to depths far below the level to which erosion will penetrate during the prescribed storage period and are not subject to possible future reactivation. The salt cores of these domes are themselves impermeable, permitting neither the entry nor exit of ground water or other unwanted materials. In part, a stable dome may be recognized by its present geometric configuration, but conclusive proof depends on establishing its evolutionary state. The evolutionary state of a dome is obtained by reconstructing the growth history of the dome as revealed by the configuration of sedimentary strata in a large area (commonly 3,000 square miles or more) surrounding the dome. A high quality, multifold CDP reflection seismic profile across a candidate dome will provide much of the necessary information when integrated with available subsurface control. Additional seismic profiles may be required to confirm an apparent configuration of the surrounding strata and an interpreted evolutionary history. High frequency seismic data collected in the near vicinity of a dome are also needed as a supplement to the CDP data to permit accurate depiction of the configuration of shallow strata. Such data must be tied to shallow drill hole control to confirm the geologic age at which dome growth ceased. If it is determined that a dome reached a terminal configuration many millions of years ago, such a dome is incapable of reactivation and thus constitutes a stable storage site for nuclear wastes.

  12. Flood Assessment at the Area 5 Radioactive Waste Management Site and the Proposed Hazardous Waste Storage Unit, DOE/Nevada Test Site, Nye County, Nevada

    SciTech Connect (OSTI)

    Schmeltzer, J. S., Millier, J. J., Gustafson, D. L.

    1993-01-01T23:59:59.000Z

    A flood assessment at the Radioactive Waste Management Site (RWMS) and the proposed Hazardous Waste Storage Unit (HWSU) in Area 5 of the Nevada Test Site (NTS) was performed to determine the 100-year flood hazard at these facilities. The study was conducted to determine whether the RWMS and HWSU are located within a 100-year flood hazard as defined by the Federal Emergency Management Agency, and to provide discharges for the design of flood protection.

  13. Technical basis for classification of low-activity waste fraction from Hanford site tanks

    SciTech Connect (OSTI)

    Petersen, C.A.

    1996-09-20T23:59:59.000Z

    The overall objective of this report is to provide a technical basis to support a U.S. Nuclear Regulatory Commission determination to classify the low-activity waste from the Hanford Site single-shell and double-shell tanks as `incidental` wastes after removal of additional radionuclides and immobilization.The proposed processing method, in addition to the previous radionuclide removal efforts, will remove the largest practical amount of total site radioactivity, attributable to high-level waste, for disposal is a deep geologic repository. The remainder of the waste would be considered `incidental` waste and could be disposed onsite.

  14. Audit Report on "Waste Processing and Recovery Act Acceleration Efforts for Contact-Handled Transuranic Waste at the Hanford Site"

    SciTech Connect (OSTI)

    None

    2010-05-01T23:59:59.000Z

    The Department of Energy's Office of Environmental Management's (EM), Richland Operations Office (Richland), is responsible for disposing of the Hanford Site's (Hanford) transuranic (TRU) waste, including nearly 12,000 cubic meters of radioactive contact-handled TRU wastes. Prior to disposing of this waste at the Department's Waste Isolation Pilot Plant (WIPP), Richland must certify that it meets WIPP's waste acceptance criteria. To be certified, the waste must be characterized, screened for prohibited items, treated (if necessary) and placed into a satisfactory disposal container. In a February 2008 amendment to an existing Record of Decision (Decision), the Department announced its plan to ship up to 8,764 cubic meters of contact-handled TRU waste from Hanford and other waste generator sites to the Advanced Mixed Waste Treatment Project (AMWTP) at Idaho's National Laboratory (INL) for processing and certification prior to disposal at WIPP. The Department decided to maximize the use of the AMWTP's automated waste processing capabilities to compact and, thereby, reduce the volume of contact-handled TRU waste. Compaction reduces the number of shipments and permits WIPP to more efficiently use its limited TRU waste disposal capacity. The Decision noted that the use of AMWTP would avoid the time and expense of establishing a processing capability at other sites. In May 2009, EM allocated $229 million of American Recovery and Reinvestment Act of 2009 (Recovery Act) funds to support Hanford's Solid Waste Program, including Hanford's contact-handled TRU waste. Besides providing jobs, these funds were intended to accelerate cleanup in the short term. We initiated this audit to determine whether the Department was effectively using Recovery Act funds to accelerate processing of Hanford's contact-handled TRU waste. Relying on the availability of Recovery Act funds, the Department changed course and approved an alternative plan that could increase costs by about $25 million by processing Hanford TRU-waste on-site rather than at AMWTP. Further, under the newly adopted alternative approach, the Department would fail to achieve the previously anticipated reductions in volume associated with the use of existing AMWTP waste compaction capabilities.

  15. Technical summary of groundwater quality protection program at the Savannah River Site, 1952--1986. Volume 1, Site geohydrology and waste sites

    SciTech Connect (OSTI)

    Heffner, J.D. [ed.] [Exploration Resources, Inc., Athens, GA (United States)

    1991-11-01T23:59:59.000Z

    This report provides information regarding the status of and groundwater quality at the waste sites at the Department of Energy`s (DOE) Savannah River Site (SRS). Specific information provided for each waste site at SRS includes its location, size, inventory (when known), and history. Many waste sites at SRS are considered to be of little environmental concern because they contain nontoxic or inert material such as construction rubble and debris. Other waste sites, however, either are known to have had an effect on groundwater quality or are suspected of having the potential to affect groundwater. Monitoring wells have been installed at most of these sites; monitoring wells are scheduled for installation at the remaining sites. Results of the groundwater analyses from these monitoring wells, presented in the appendices, are used in the report to help identify potential contaminants of concern, if any, at each waste site. The list of actions proposed for each waste site in Christensen and Gordon`s 1983 report are summarized, and an update is provided for each site. Planned actions for the future are also outlined.

  16. 1994 Annual report on waste generation and waste minimization progress as required by DOE Order 5400.1, Hanford Site

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    Many Waste Minimization/Pollution Prevention successes at the Hanford Site occur every day without formal recognition. A few of the successful projects are: T-Plant helps facilities reuse equipment by offering decontamination services for items such as gas cylinders, trucks, and railcars, thus saving disposal and equipment replacement costs. Custodial Services reviewed its use of 168 hazardous cleaning products, and, through a variety of measures, replaced them with 38 safer substitutes, one for each task. Scrap steel contaminated with low level radioactivity from the interim stabilization of 107-K and 107-C was decontaminated and sold to a vendor for recycling. Site-wide programs include the following: the Pollution Prevention Opportunity Assessment (P2OA) program at the Hanford site was launched during 1994, including a training class, a guidance document, technical assistance, and goals; control over hazardous materials purchased was achieved by reviewing all purchase requisitions of a chemical nature; the Office Supply Reuse Program was established to redeploy unused or unwanted office supply items. In 1994, pollution prevention activities reduced approximately 274,000 kilograms of hazardous waste, 2,100 cubic meters of radioactive and mixed waste, 14,500,000 kilograms of sanitary waste, and 215,000 cubic meters off liquid waste and waste water. Pollution Prevention activities also saved almost $4.2 million in disposal, product, and labor costs. Overall waste generation increased in 1994 due to increased work and activity typical for a site with an environmental restoration mission. However, without any Waste Minimization/Pollution Prevention activities, solid radioactive waste generation at Hanford would have been 25% higher, solid hazardous waste generation would have been 30% higher, and solid sanitary waste generation would have been 60% higher.

  17. Determination of total cyanide in Hanford Site high-level wastes

    SciTech Connect (OSTI)

    Winters, W.I. [Westinghouse Hanford Co., Richland, WA (United States); Pool, K.H. [Pacific Northwest Lab., Richland, WA (United States)

    1994-05-01T23:59:59.000Z

    Nickel ferrocyanide compounds (Na{sub 2-x}Cs{sub x}NiFe (CN){sub 6}) were produced in a scavenging process to remove {sup 137}Cs from Hanford Site single-shell tank waste supernates. Methods for determining total cyanide in Hanford Site high-level wastes are needed for the evaluation of potential exothermic reactions between cyanide and oxidizers such as nitrate and for safe storage, processing, and management of the wastes in compliance with regulatory requirements. Hanford Site laboratory experience in determining cyanide in high-level wastes is summarized. Modifications were made to standard cyanide methods to permit improved handling of high-level waste samples and to eliminate interferences found in Hanford Site waste matrices. Interferences and associated procedure modifications caused by high nitrates/nitrite concentrations, insoluble nickel ferrocyanides, and organic complexants are described.

  18. Overview of Nevada Test Site Radioactive and Mixed Waste Disposal Operations

    SciTech Connect (OSTI)

    J.T. Carilli; S.K. Krenzien; R.G. Geisinger; S.J. Gordon; B. Quinn

    2009-03-01T23:59:59.000Z

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office Environmental Management Program is responsible for carrying out the disposal of on-site and off-site generated low-level radioactive waste (LLW) and low-level radioactive mixed waste (MW) at the Nevada Test Site (NTS). Core elements of this mission are ensuring safe and cost-effective disposal while protecting workers, the public, and the environment. This paper focuses on the impacts of new policies, processes, and opportunities at the NTS related to LLW and MW. Covered topics include: the first year of direct funding for NTS waste disposal operations; zero tolerance policy for non-compliant packages; the suspension of mixed waste disposal; waste acceptance changes; DOE Consolidated Audit Program (DOECAP) auditing; the 92-Acre Area closure plan; new eligibility requirements for generators; and operational successes with unusual waste streams.

  19. Integrated Closure and Monitoring Plan for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site

    SciTech Connect (OSTI)

    Bechtel Nevada

    2005-06-01T23:59:59.000Z

    This document is an integrated plan for closing and monitoring two low-level radioactive waste disposal sites at the Nevada Test Site.

  20. Process Description for the Retrieval of Earth Covered Transuranic (TRU) Waste Containers at the Hanford Site

    SciTech Connect (OSTI)

    DEROSA, D.C.

    2000-01-13T23:59:59.000Z

    This document describes process and operational options for retrieval of the contact-handled suspect transuranic waste drums currently stored below grade in earth-covered trenches at the Hanford Site. Retrieval processes and options discussed include excavation, container retrieval, venting, non-destructive assay, criticality avoidance, incidental waste handling, site preparation, equipment, and shipping.

  1. EM Completes Salt Waste Disposal Units $8 Million under Budget at Savannah River Site

    Broader source: Energy.gov [DOE]

    AIKEN, S.C. – The EM program at Savannah River Site (SRS) has built two more low-level salt waste disposal units ahead of schedule and under budget. This work is essential to the mission of cleaning and closing the site's underground waste tanks.

  2. Savannah River Site Interim Waste Management Program Plan FY 1991--1992

    SciTech Connect (OSTI)

    Chavis, D.M.

    1992-05-01T23:59:59.000Z

    The primary purpose of the Waste Management Program Plan is to provide an annual report of how Waste Management's operations are conducted, what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year. In addition, this document projects activities for several years beyond the coming fiscal year in order to adequately plan for safe handling, storage, and disposal of radioactive wastes generated at the Savannah River Site and for developing technology for improved management of wastes. In this document, work descriptions and milestone schedules are current as of December 1991.

  3. Savannah River Site Interim Waste Management Program Plan FY 1991--1992

    SciTech Connect (OSTI)

    Chavis, D.M.

    1992-05-01T23:59:59.000Z

    The primary purpose of the Waste Management Program Plan is to provide an annual report of how Waste Management`s operations are conducted, what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year. In addition, this document projects activities for several years beyond the coming fiscal year in order to adequately plan for safe handling, storage, and disposal of radioactive wastes generated at the Savannah River Site and for developing technology for improved management of wastes. In this document, work descriptions and milestone schedules are current as of December 1991.

  4. Hanford Site River Protection Project High-Level Waste Safe Storage and Retrieval

    SciTech Connect (OSTI)

    Aromi, E. S.; Raymond, R. E.; Allen, D. I.; Payne, M. A.; DeFigh-Price, C.; Kristofzski, J. G.; Wiegman, S. A.

    2002-02-25T23:59:59.000Z

    This paper provides an update from last year and describes project successes and issues associated with the management and work required to safely store, enhance readiness for waste feed delivery, and prepare for treated waste receipts for the approximately 53 million gallons of mixed and high-level waste currently in aging tanks at the Hanford Site. The Hanford Site is a 560 square-mile area in southeastern Washington State near Richland, Washington.

  5. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 7

    SciTech Connect (OSTI)

    NONE

    1988-01-01T23:59:59.000Z

    The Yucca Mountain site in Neavada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended and approved for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package;and to present the plans for obtaining hte geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare and environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed.

  6. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 4

    SciTech Connect (OSTI)

    NONE

    1988-01-01T23:59:59.000Z

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended and approved by the President for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site; to describe the conceptual designs for the repository and the waste package; and to present the plans for obtaining the geologic information necessary to demonstate the suitability of the site for a repository, to desin the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next; it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed.

  7. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act

    SciTech Connect (OSTI)

    NONE

    1988-01-01T23:59:59.000Z

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended by the Secretary of Energy and approved by the President for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared by the US Department of Energy (DOE) in accordance with the requirements of the Nulcear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package;and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of the site characterization plan are oulined, and compliance with applicable regulations is discussed.

  8. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 1

    SciTech Connect (OSTI)

    NONE

    1988-01-01T23:59:59.000Z

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in acordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and eveloping a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing prinicples, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed. 880 refs., 130 figs., 25 tabs.

  9. Hanford Site annual dangerous waste report, calendar year 1995

    SciTech Connect (OSTI)

    NONE

    1995-12-31T23:59:59.000Z

    This report is a compilation of data on the disposition of hazardous wastes generated on the Hanford Reservation. This information is on EPA requirement every two years. Wastes include: tank simulant waste; alkaline batteries; lead-based paints; organic solvents; light bulbs containing lead and/or mercury; monitoring well drilling wastes; soils contaminated with trace metals, halogenated organics, or other pollutants; Ni-Cd batteries; pesticides; waste oils and greases; wastes from the cleanup of fuel/gasoline spills; filters; metals; and other.

  10. CHARACTERIZATION OF DEFENSE NUCLEAR WASTE USING HAZARDOUS WASTE GUIDANCE. APPLICATIONS TO HANFORD SITE ACCELERATED HIGH-LEVEL WASTE TREATMENT AND DISPOSAL MISSION0

    SciTech Connect (OSTI)

    Hamel, William; Huffman, Lori; Lerchen, Megan; Wiemers, Karyn

    2003-02-27T23:59:59.000Z

    Federal hazardous waste regulations were developed for management of industrial waste. These same regulations are also applicable for much of the nation's defense nuclear wastes. At the U.S. Department of Energy's (DOE) Hanford Site in southeast Washington State, one of the nation's largest inventories of nuclear waste remains in storage in large underground tanks. The waste's regulatory designation and its composition and form constrain acceptable treatment and disposal options. Obtaining detailed knowledge of the tank waste composition presents a significant portion of the many challenges in meeting the regulatory-driven treatment and disposal requirements for this waste. Key in applying the hazardous waste regulations to defense nuclear wastes is defining the appropriate and achievable quality for waste feed characterization data and the supporting evidence demonstrating that applicable requirements have been met at the time of disposal. Application of a performance-based approach to demonstrating achievable quality standards will be discussed in the context of the accelerated high-level waste treatment and disposal mission at the Hanford Site.

  11. Immediate Deployment of Waste Energy Recovery Technologies at Multi Sites

    SciTech Connect (OSTI)

    Dennis Castonguay

    2012-06-29T23:59:59.000Z

    Verso Paper Corp. implemented a portfolio of 13 commercially available proven industrial technologies each exceeding 30% minimum threshold efficiency and at least 25% efficiency increase. These sub-projects are a direct result of a grant received from the Department of Energy (DOE) through its FOA 0000044 (Deployment of Combined Heat and Power (CHP) Systems, District Energy Systems, Waste Energy Recovery Systems, and Efficient Industrial Equipment), which was funded by the American Recovery Act. These were installed at 3 sites in 2 states and are helping to reduce Verso costs, making the facilities more competitive. This created approximately 100 construction jobs (FTE's) and reduced impacted Verso facilities' expense budgets. These sub-projects were deployed at Verso paper mills located in Jay, Maine, Bucksport, Maine, and Sartell, Minnesota. The paper mills are the economic engines of the rural communities in which these mills are located. Reinvestment in waste energy recovery capital improvements is providing a stimulus to help maintain domestic jobs and to competitively position the US pulp and paper industry with rising energy costs. Energy efficiency improvements are also providing a positive environmental impact by reducing greenhouse gas emissions, the quantity of wastewater treated and discharged, and fossil fuel demand. As a result of these projects, when fully operating, Verso realized a total of approximately 1.5 TBtu/Year reduction in overall energy consumption, which is 119% of the project objectives. Note that three paper machines have since been permanently curtailed. However even with these shutdowns, the company still met its energy objectives. Note also that the Sartell mill's paper machine is down due to a recent fire which damaged the mill's electrical infrastructure (the company has not decided on the mill's future).

  12. 2002 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    SciTech Connect (OSTI)

    Y. E. Townsend

    2003-06-01T23:59:59.000Z

    Environmental, subsidence, and meteorological monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS)(refer to Figure 1). These monitoring data include radiation exposure, air, groundwater,meteorology, vadose zone, subsidence, and biota data. Although some of these media (radiation exposure, air, and groundwater) are reported in detail in other Bechtel Nevada (BN) reports (Annual Site Environmental Report [ASER], the National Emissions Standard for Hazardous Air Pollutants [NESHAP] report, and the Annual Groundwater Monitoring Report), they are also summarized in this report to provide an overall evaluation of RWMS performance and environmental compliance. Direct radiation monitoring data indicate that exposure at and around the RWMSs is not above background levels. Air monitoring data indicate that tritium concentrations are slightly above background levels. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS has not been affected by the facility. Meteorological data indicate that 2002 was a dry year: rainfall totaled 26 mm (1.0 in) at the Area 3 RWMS and 38 mm (1.5 in) at the Area 5 RWMS. Vadose zone monitoring data indicate that 2002 rainfall infiltrated less than 30 cm (1 ft) before being returned to the atmosphere by evaporation. Soil-gas tritium monitoring data indicate slow subsurface migration, and tritium concentrations in biota were lower than in previous years. Special investigations conducted in 2002 included: a comparison between waste cover water contents measured by neutron probe and coring; and a comparison of four methods for measuring radon concentrations in air. All 2002 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing within expectations of the model and parameter assumptions for the facility Performance Assessments (PAs).

  13. Closure Plan for the Area 3 Radioactive Waste Management Site at the Nevada Test Site

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2007-09-01T23:59:59.000Z

    The Area 3 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec) for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the interim closure plan for the Area 3 RWMS, which was presented in the Integrated Closure and Monitoring Plan (ICMP) (DOE, 2005). The format and content of this plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). The major updates to the plan include a new closure date, updated closure inventory, the new institutional control policy, and the Title II engineering cover design. The plan identifies the assumptions and regulatory requirements, describes the disposal sites and the physical environment in which they are located, presents the design of the closure cover, and defines the approach and schedule for both closing and monitoring the site. The Area 3 RWMS accepts low-level waste (LLW) from across the DOE Complex in compliance with the NTS Waste Acceptance Criteria (NNSA/NSO, 2006). The Area 3 RWMS accepts both packaged and unpackaged unclassified bulk LLW for disposal in subsidence craters that resulted from deep underground tests of nuclear devices in the early 1960s. The Area 3 RWMS covers 48 hectares (119 acres) and comprises seven subsidence craters--U-3ax, U-3bl, U-3ah, U-3at, U-3bh, U-3az, and U-3bg. The area between craters U-3ax and U-3bl was excavated to form one large disposal unit (U-3ax/bl); the area between craters U-3ah and U-3at was also excavated to form another large disposal unit (U-3ah/at). Waste unit U-3ax/bl is closed; waste units U-3ah/at and U-3bh are active; and the remaining craters, although currently undeveloped, are available for disposal of waste if required. This plan specifically addresses the closure of the U-3ah/at and the U-3bh LLW units. A final closure cover has been placed on unit U-3ax/bl (Corrective Action Unit 110) at the Area 3 RWMS. Monolayer-evapotranspirative closure cover designs for the U-3ah/at and U-3bh units are provided in this plan. The current-design closure cover thickness is 3 meters (10 feet). The final design cover will have an optimized cover thickness, which is expected to be less than 3 m (10 ft). Although waste operations at the Area 3 RWMS have ceased at the end of June 2006, disposal capacity is available for future disposals at the U-3ah/at and U-3bh units. The Area 3 RWMS is expected to start closure activities in fiscal year 2025, which include the development of final performance assessment and composite analysis documents, closure plan, closure cover design for construction, cover construction, and initiation of the post-closure care and monitoring activities. Current monitoring at the Area 3 RWMS includes monitoring the cover of the closed mixed waste unit U-3ax/bl as required by the Nevada Department of Environmental Protection, and others required under federal regulations and DOE orders. Monitoring data, collected via sensors and analysis of samples, are needed to evaluate radiation doses to the general public, for performance assessment maintenance, to demonstrate regulatory compliance, and to evaluate the actual performance of the RWMSs. Monitoring provides data to ensure the integrity and performance of waste disposal units. The monitoring program is designed to forewarn management and regulators of any failure and need for mitigating actions. The plan describes the program for monitoring direct radiation, air, vadose zone, biota, groundwater, meteorology, and subsidence. The requirements of post-closure cover maintenance and monitoring will be determined in the final closure plan.

  14. Framework for managing wastes from oil and gas exploration and production (E&P) sites.

    SciTech Connect (OSTI)

    Veil, J. A.; Puder, M. G.; Environmental Science Division

    2007-09-15T23:59:59.000Z

    Oil and gas companies operate in many countries around the world. Their exploration and production (E&P) operations generate many kinds of waste that must be carefully and appropriately managed. Some of these wastes are inherently part of the E&P process; examples are drilling wastes and produced water. Other wastes are generic industrial wastes that are not unique to E&P activities, such as painting wastes and scrap metal. Still other wastes are associated with the presence of workers at the site; these include trash, food waste, and laundry wash water. In some host countries, mature environmental regulatory programs are in place that provide for various waste management options on the basis of the characteristics of the wastes and the environmental settings of the sites. In other countries, the waste management requirements and authorized options are stringent, even though the infrastructure to meet the requirements may not be available yet. In some cases, regulations and/or waste management infrastructure do not exist at all. Companies operating in these countries can be confronted with limited and expensive waste management options.

  15. Technology needs for remediation: Hanford and other DOE sites. Buried Waste Integrated Demonstration Program

    SciTech Connect (OSTI)

    Stapp, D.C.

    1993-01-01T23:59:59.000Z

    Technologies are being developed under the Buried Waste Integrated Demonstration (BWID) program to facilitate remediation of the US Department of Energy`s (DOE) buried and stored low-level radioactive, transuranic (TRU), and mixed radioactive and hazardous buried wastes. The BWID program is being coordinated by the Idaho National Engineering Laboratory (INEL) in southeastern Idaho, a DOE site that has large volumes of buried radioactive wastes. The program is currently focusing its efforts on the problems at INEL`s Subsurface Disposal Area (SDA) of the Radioactive Waste Management Complex (RWMC). As specific technologies are successfully demonstrated, they will be available for transfer to applications at other DOE buried waste sites. The purpose of this study is to present buried waste technology needs that have been identified for DOE sites other than INEL.

  16. PLUTONIUM SOLUBILITY IN SIMULATED SAVANNAH RIVER SITE WASTE SOLUTIONS

    SciTech Connect (OSTI)

    Rudisill, T.; Hobbs, D.; Edwards, T.

    2010-09-27T23:59:59.000Z

    To address the accelerated disposition of the supernate and salt portions of Savannah River Site (SRS) high level waste (HLW), solubility experiments were performed to develop a predictive capability for plutonium (Pu) solubility. A statistically designed experiment was used to measure the solubility of Pu in simulated solutions with salt concentrations and temperatures which bounded those observed in SRS HLW solutions. Constituents of the simulated waste solutions included: hydroxide (OH{sup -}), aluminate (Al(OH){sub 4}{sup -}), sulfate (SO{sub 4}{sup 2-}), carbonate (CO{sub 3}{sup 2-}), nitrate (NO{sub 3}{sup -}), and nitrite (NO{sub 2}{sup -}) anions. Each anion was added to the waste solution in the sodium form. The solubilities were measured at 25 and 80 C. Five sets of samples were analyzed over a six month period and a partial sample set was analyzed after nominally fifteen months of equilibration. No discernable time dependence of the measured Pu concentrations was observed except for two salt solutions equilibrated at 80 C which contained OH{sup -} concentrations >5 mol/L. In these solutions, the Pu solubility increased with time. This observation was attributed to the air oxidation of a portion of the Pu from Pu(IV) to the more soluble Pu(V) or Pu(VI) valence states. A data driven approach was subsequently used to develop a modified response surface model for Pu solubility. Solubility data from this study and historical data from the literature were used to fit the model. The model predicted the Pu solubility of the solutions from this study within the 95% confidence interval for individual predictions and the analysis of variance indicated no statistically significant lack of fit. The Savannah River National Laboratory (SRNL) model was compared with predicted values from the Aqueous Electrolyte (AQ) model developed by OLI Systems, Inc. and a solubility prediction equation developed by Delegard and Gallagher for Hanford tank waste. The agreement between measured or values predicted by the SRNL model and values predicted by the OLI AG model was very poor. The much higher predicted concentrations by the OLI AQ model appears to be the result of the model predicting the predominate Pu oxidation state is Pu(V) which is reported as unstable below sodium hydroxide (NaOH) concentrations of 6 M. There was very good agreement between the predicted Pu concentrations using the SRNL model and the model developed by Delegard and Gallagher with the exception of solutions that had very high OH{sup -} (15 M) concentrations. The lower Pu solubilities in these solutions were attributed to the presence of NO{sub 3}{sup -} and NO{sub 2}{sup -} which limit the oxidation of Pu(IV) to Pu(V).

  17. Overview of Fiscal Year 2002 Research and Development for Savannah River Site's Salt Waste Processing Facility

    SciTech Connect (OSTI)

    H. D. Harmon, R. Leugemors, PNNL; S. Fink, M. Thompson, D. Walker, WSRC; P. Suggs, W. D. Clark, Jr

    2003-02-26T23:59:59.000Z

    The Department of Energy's (DOE) Savannah River Site (SRS) high-level waste program is responsible for storage, treatment, and immobilization of high-level waste for disposal. The Salt Processing Program (SPP) is the salt (soluble) waste treatment portion of the SRS high-level waste effort. The overall SPP encompasses the selection, design, construction and operation of treatment technologies to prepare the salt waste feed material for the site's grout facility (Saltstone) and vitrification facility (Defense Waste Processing Facility). Major constituents that must be removed from the salt waste and sent as feed to Defense Waste Processing Facility include actinides, strontium, cesium, and entrained sludge. In fiscal year 2002 (FY02), research and development (R&D) on the actinide and strontium removal and Caustic-Side Solvent Extraction (CSSX) processes transitioned from technology development for baseline process selection to providing input for conceptual design of the Salt Waste Processing Facility. The SPP R&D focused on advancing the technical maturity, risk reduction, engineering development, and design support for DOE's engineering, procurement, and construction (EPC) contractors for the Salt Waste Processing Facility. Thus, R&D in FY02 addressed the areas of actual waste performance, process chemistry, engineering tests of equipment, and chemical and physical properties relevant to safety. All of the testing, studies, and reports were summarized and provided to the DOE to support the Salt Waste Processing Facility, which began conceptual design in September 2002.

  18. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada National Security Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    SciTech Connect (OSTI)

    NSTec Environmental Programs

    2010-10-04T23:59:59.000Z

    The Nevada National Security Site (NNSS) is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. The U.S. Department of Energy National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is the federal lands management authority for the NNSS and National Security Technologies, LLC (NSTec) is the Management and Operations contractor. Access on and off the NNSS is tightly controlled, restricted, and guarded on a 24-hour basis. The NNSS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NNSS. The Area 5 Radioactive Waste Management Site (RWMS) is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NNSS (Figure 1), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. The site will be used for the disposal of regulated Asbestiform Low-Level Waste (ALLW), small quantities of low-level radioactive hydrocarbon-burdened (LLHB) media and debris, LLW, LLW that contains Polychlorinated Biphenyl (PCB) Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, and small quantities of LLHB demolition and construction waste (hereafter called permissible waste). Waste containing free liquids, or waste that is regulated as hazardous waste under the Resource Conservation and Recovery Act (RCRA) or state-of-generation hazardous waste regulations, will not be accepted for disposal at the site. Waste regulated under the Toxic Substances Control Act (TSCA) that will be accepted at the disposal site is regulated asbestos-containing materials (RACM) and PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water. The term asbestiform is used throughout this document to describe RACM. The disposal site will be used as a depository of permissible waste generated both on site and off site. All generators designated by NNSA/NSO will be eligible to dispose regulated ALLW at the Asbestiform Low-Level Waste Disposal Site in accordance with the DOE/NV-325, Nevada National Security Site Waste Acceptance Criteria (NNSSWAC, current revision). Approval will be given by NNSA/NSO to generators that have successfully demonstrated through process knowledge (PK) and/or sampling and analysis that the waste is low-level, contains asbestiform material, or contains PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, or small quantities of LLHB demolition and construction waste and does not contain prohibited waste materials. Each waste stream will be approved through the Radioactive Waste Acceptance Program (RWAP), which ensures that the waste meets acceptance requirements outlined in the NNSSWAC.

  19. Low-level radioactive waste management: transitioning to off-site disposal at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Dorries, Alison M [Los Alamos National Laboratory

    2010-11-09T23:59:59.000Z

    Facing the closure of nearly all on-site management and disposal capability for low-level radioactive waste (LLW), Los Alamos National Laboratory (LANL) is making ready to ship the majority of LLW off-site. In order to ship off-site, waste must meet the Treatment, Storage, and Disposal Facility's (TSDF) Waste Acceptance Criteria (WAC). In preparation, LANL's waste management organization must ensure LANL waste generators characterize and package waste compliantly and waste characterization documentation is complete and accurate. Key challenges that must be addressed to successfully make the shift to off-site disposal of LLW include improving the detail, accuracy, and quality of process knowledge (PK) and acceptable knowledge (AK) documentation, training waste generators and waste management staff on the higher standard of data quality and expectations, improved WAC compliance for off-site facilities, and enhanced quality assurance throughout the process. Certification of LANL generators will allow direct off-site shipping of LLW from their facilities.

  20. 1997 annual report on waste generation and waste minimization progress as required by DOE Order 5400.1, Hanford Site

    SciTech Connect (OSTI)

    Segall, P.

    1998-04-13T23:59:59.000Z

    Hanford`s missions are to safely clean up and manage the site`s legacy wastes, and to develop and deploy science and technology. Through these missions Hanford will contribute to economic diversification of the region. Hanford`s environmental management or cleanup mission is to protect the health and safety of the public, workers, and the environment; control hazardous materials; and utilize the assets (people, infra structure, site) for other missions. Hanford`s science and technology mission is to develop and deploy science and technology in the service of the nation including stewardship of the Hanford Site. Pollution Prevention is a key to the success of these missions by reducing the amount of waste to be managed and identifying/implementing cost effective waste reduction projects. Hanford`s original mission, the production of nuclear materials for the nation`s defense programs, lasted more than 40 years, and like most manufacturing operations, Hanford`s operations generated large quantities of waste and pollution. However, the by-products from Hanford operations pose unique problems like radiation hazards, vast volumes of contaminated water and soil, and many contaminated structures including reactors, chemical plants and evaporation ponds. The cleanup activity is an immense and challenging undertaking, which includes characterization and decommissioning of 149 single shell storage tanks, treating 28 double shell tanks, safely disposing of over 2,100 metric tons of spent nuclear fuel stored on site, removing numerous structures, and dealing with significant solid waste, ground water, and land restoration issues.

  1. Savannah River Site Waste Management Program Plan, FY 1993. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1993-06-01T23:59:59.000Z

    The primary purpose of the Waste Management Program Plan is to provide an annual report on facilities being used to manage wastes, forces acting to change current waste management (WM) systems, and how operations are conducted. This document also reports on plans for the coming fiscal year and projects activities for several years beyond the coming fiscal year to adequately plan for safe handling and disposal of radioactive wastes generated at the Savannah River Site (SRS) and for developing technology for improved management of wastes.

  2. Characterization Report for the 92-Acre Area of the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    Bechtel Nevada; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2006-06-01T23:59:59.000Z

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office manages two low-level Radioactive Waste Management Sites at the Nevada Test Site. The Area 5 RWMS uses engineered shallow-land burial cells to dispose of packaged waste. This report summarizes characterization and monitoring work pertinent to the 92-Acre Area in the southeast part of the Area 5 Radioactive Waste Management Sites. The decades of characterization and assessment work at the Area 5 RWMS indicate that the access controls, waste operation practices, site design, final cover design, site setting, and arid natural environment contribute to a containment system that meets regulatory requirements and performance objectives for the short- and long-term protection of the environment and public. The available characterization and Performance Assessment information is adequate to support design of the final cover and development of closure plans. No further characterization is warranted to demonstrate regulatory compliance. U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office is proceeding with the development of closure plans for the six closure units of the 92-Acre Area.

  3. Siting of low-level radioactive waste disposal facilities in Texas

    E-Print Network [OSTI]

    Isenhower, Daniel Bruce

    1982-01-01T23:59:59.000Z

    University property was evaluated for suitability for disposal of low-level radioactive waste. This site was evaluated to demonstrate, briefly, the site characterization process and to determine the ability of the statewide study to accurately predict... these boreholes. Literature review was an additional method employed to characterize the site. The results of this site characterization reveal that a more extensive investigation would be necessary to completely evaluate the site and that the state- wide...

  4. Conceptual Design Report: Nevada Test Site Mixed Waste Disposal Facility Project

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2009-01-31T23:59:59.000Z

    Environmental cleanup of contaminated nuclear weapons manufacturing and test sites generates radioactive waste that must be disposed. Site cleanup activities throughout the U.S. Department of Energy (DOE) complex are projected to continue through 2050. Some of this waste is mixed waste (MW), containing both hazardous and radioactive components. In addition, there is a need for MW disposal from other mission activities. The Waste Management Programmatic Environmental Impact Statement Record of Decision designates the Nevada Test Site (NTS) as a regional MW disposal site. The NTS has a facility that is permitted to dispose of onsite- and offsite-generated MW until November 30, 2010. There is not a DOE waste management facility that is currently permitted to dispose of offsite-generated MW after 2010, jeopardizing the DOE environmental cleanup mission and other MW-generating mission-related activities. A mission needs document (CD-0) has been prepared for a newly permitted MW disposal facility at the NTS that would provide the needed capability to support DOE's environmental cleanup mission and other MW-generating mission-related activities. This report presents a conceptual engineering design for a MW facility that is fully compliant with Resource Conservation and Recovery Act (RCRA) and DOE O 435.1, 'Radioactive Waste Management'. The facility, which will be located within the Area 5 Radioactive Waste Management Site (RWMS) at the NTS, will provide an approximately 20,000-cubic yard waste disposal capacity. The facility will be licensed by the Nevada Division of Environmental Protection (NDEP).

  5. Nevada National Security Site 2013 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Site

    SciTech Connect (OSTI)

    Hudson, D. B.

    2014-08-19T23:59:59.000Z

    Environmental monitoring data are collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) within the Nevada National Security Site (NNSS). These data are associated with radiation exposure, air, groundwater, meteorology, and vadose zone. This report summarizes the 2013 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports (National Security Technologies, LLC, 2013; 2014a; 2014b). Direct radiation monitoring data indicate exposure levels at the RWMSs are within the range of background levels measured at the NNSS. Slightly elevated exposure levels outside the Area 3 RWMS are attributed to nearby historical aboveground nuclear weapons tests. Air monitoring data show tritium concentrations in water vapor and americium and plutonium concentrations in air particles are close to detection limits and background levels. The measured levels of radionuclides in air particulates and moisture are below Derived Concentration Standards for these radionuclides. Groundwater monitoring data indicate the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by RWMS operations. Results of groundwater analysis from wells around the Area 5 RWMS were all below established investigation levels. Leachate samples collected from the leachate collection system at the mixed low-level waste cell were below established contaminant regulatory limits. The 105.8 millimeters (mm) (4.17 inches [in.]) of precipitation at the Area 3 RWMS during 2013 is 30% below the average of 150.3 mm (5.92 in.), and the 117.5 mm (4.63 in.) of precipitation at the Area 5 RWMS during 2013 is 5% below the average of 123.6 mm (4.86 in.). Water balance measurements indicate that evapotranspiration from the vegetated weighing lysimeter dries the soil and prevents downward percolation of precipitation more effectively than evaporation from the bare-soil weighing lysimeter. Automated vadose zone monitoring on Area 5 and Area 3 RWMS cell covers show no evidence of precipitation percolating through the cover to the waste. Moisture from precipitation did not percolate below 60 centimeters (cm) (2 feet [ft]) in the vegetated final cover on the U-3ax/bl disposal unit at the Area 3 RWMS, and moisture from precipitation and irrigation did not percolate below 45 cm (1.5 ft) on the 92-Acre Area final cover. Irrigation was applied to this cover for seed germination and plant growth. During 2013, there was no drainage through 2.4 meters (8 ft) of soil from the Area 3 drainage lysimeters that received only natural precipitation. Twenty percent of the applied precipitation and irrigation drained from the bare-soil drainage lysimeter that received 3-times natural precipitation. All 2013 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing within expectations of the model and parameter assumptions for the facility PAs.

  6. Nevada National Security Site 2012 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Site

    SciTech Connect (OSTI)

    Hudson, David B.

    2013-09-10T23:59:59.000Z

    Environmental monitoring data are collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada National Security Site (NNSS). These data are associated with radiation exposure, air, groundwater, meteorology, and vadose zone. This report summarizes the 2012 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports (National Security Technologies, LLC, 2012; 2013a; 2013b). Direct radiation monitoring data indicate exposure levels at the RWMSs are within the range of background levels measured at the NNSS. Slightly elevated exposure levels outside the Area 3 RWMS are attributed to nearby historical aboveground nuclear weapons tests. Air monitoring data show tritium concentrations in water vapor and americium and plutonium concentrations in air particles are only slightly above detection limits and background levels. The measured levels of radionuclides in air particulates and moisture are below Derived Concentration Standards for these radionuclides. Groundwater monitoring data indicate the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by RWMS operations. Results of groundwater analysis from wells around the Area 5 RWMS were all below established investigation levels. Leachate samples collected from the leachate collection system at the mixed low-level waste cell were below established contaminant regulatory limits. The 133.9 millimeters (mm) (5.27 inches [in.]) of precipitation at the Area 3 RWMS during 2012 is 12% below the average of 153.0 mm (6.02 in.), and the 137.6 mm (5.42 in.) of precipitation at the Area 5 RWMS during 2012 is 11% below the average of 122.4 mm (4.82 in.). Water balance measurements indicate that evapotranspiration from the vegetated weighing lysimeter dries the soil and prevents downward percolation of precipitation more effectively than evaporation from the bare-soil weighing lysimeter. Automated vadose zone monitoring on Area 5 and Area 3 RWMS cell covers show no evidence of precipitation percolating through the cover to the waste. Moisture from precipitation did not percolate below 60 centimeters (cm) (2 feet [ft]) in the vegetated final cover on the U-3ax/bl disposal unit at the Area 3 RWMS, and moisture from precipitation and irrigation did not percolate below 45 cm (1.5 ft) on the 92-Acre Area final cover. Irrigation was applied to this cover for seed germination and plant growth. During 2012, there was no drainage through 2.4 meters (8 ft) of soil from the Area 3 drainage lysimeters that received only natural precipitation. Twenty percent of the applied precipitation and irrigation drained from the bare-soil drainage lysimeter that received 3 times natural precipitation. All 2012 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing within expectations of the model and parameter assumptions for the facility PAs.

  7. Revised Draft Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement, Richland, Washington

    SciTech Connect (OSTI)

    N /A

    2003-04-11T23:59:59.000Z

    This ''Revised Draft Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement'' (HSW EIS) covers three primary aspects of waste management at Hanford--waste treatment, storage, and disposal. It also addresses four kinds of solid waste--low-level waste (LLW), mixed (radioactive and chemically hazardous) low-level waste (MLLW), transuranic (TRU) waste, and immobilized low-activity waste (ILAW). It fundamentally asks the question: how should we manage the waste we have now and will have in the future? This EIS analyzes the impacts of the LLW, MLLW, TRU waste, and ILAW we currently have in storage, will generate, or expect to receive at Hanford. The HSW EIS is intended to help us determine what specific facilities we will continue to use, modify, or construct to treat, store, and dispose of these wastes (Figure S.1). Because radioactive and chemically hazardous waste management is a complex, technical, and difficult subject, we have made every effort to minimize the use of acronyms (making an exception for our four waste types listed above), use more commonly understood words, and provide the ''big picture'' in this summary. An acronym list, glossary of terms, and conversions for units of measure are provided in a readers guide in Volume 1 of this EIS.

  8. APPLICATION OF BOREHOLE GEOPHYSICS AT AN EXPERIMENTAL WASTE STORAGE SITE

    E-Print Network [OSTI]

    Nelson, P.H.

    2014-01-01T23:59:59.000Z

    letal Ore Deposits, 11 in Geophysics and Geochemistry in the11 Applications of Borehole Geophysics to Water-ResourcesAPPLICATION OF BOREHOLE GEOPHYSICS AT AN EXPERIMENTAL WASTE

  9. 2013 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    SciTech Connect (OSTI)

    Mike Lewis

    2014-02-01T23:59:59.000Z

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (WRU-I-0160-01, formerly LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2012 through October 31, 2013. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of special compliance conditions • Discussion of the facility’s environmental impacts During the 2013 reporting year, an estimated 9.64 million gallons of wastewater were discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 17 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the applicable Idaho Department of Environmental Quality’s groundwater quality standard levels.

  10. 2012 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    SciTech Connect (OSTI)

    Mike Lewis

    2013-02-01T23:59:59.000Z

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (WRU-I-0160-01, formerly LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2011 through October 31, 2012. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of special compliance conditions • Discussion of the facility’s environmental impacts During the 2012 reporting year, an estimated 11.84 million gallons of wastewater were discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 17 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the Ground Water Quality Rule Primary and Secondary Constituent Standards.

  11. Closure Strategy for a Waste Disposal Facility with Multiple Waste Types and Regulatory Drivers at the Nevada Test Site

    SciTech Connect (OSTI)

    L. Desotell; D. Wieland; V. Yucel; G. Shott; J. Wrapp

    2008-03-01T23:59:59.000Z

    The U.S. Department of Energy, National Security Administration Nevada Site Office (NNSA/NSO) is planning to close the 92-Acre Area of the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS), which is about 65 miles northwest of Las Vegas, Nevada. Closure planning for this facility must take into account the regulatory requirements for a diversity of waste streams, disposal and storage configurations, disposal history, and site conditions. This paper provides a brief background of the Area 5 RWMS, identifies key closure issues, and presents the closure strategy. Disposals have been made in 25 shallow excavated pits and trenches and 13 Greater Confinement Disposal (GCD) boreholes at the 92-Acre Area since 1961. The pits and trenches have been used to dispose unclassified low-level waste (LLW), low-level mixed waste (LLMW), and asbestiform waste, and to store classified low-level and low-level mixed materials. The GCD boreholes are intermediate-depth disposal units about 10 feet (ft) in diameter and 120 ft deep. Classified and unclassified high-specific activity LLW, transuranic (TRU), and mixed TRU are disposed in the GCD boreholes. TRU waste was also disposed inadvertently in trench T-04C. Except for three disposal units that are active, all pits and trenches are operationally covered with 8-ft thick alluvium. The 92-Acre Area also includes a Mixed Waste Disposal Unit (MWDU) operating under Resource Conservation and Recovery Act (RCRA) Interim Status, and an asbestiform waste unit operating under a state of Nevada Solid Waste Disposal Site Permit. A single final closure cover is envisioned over the 92-Acre Area. The cover is the evapotranspirative-type cover that has been successfully employed at the NTS. Closure, post-closure care, and monitoring must meet the requirements of the following regulations: U.S. Department of Energy Order 435.1, Title 40 Code of Federal Regulations (CFR) Part 191, Title 40 CFR Part 265, Nevada Administrative Code (NAC) 444.743, RCRA requirements as incorporated into NAC 444.8632, and the Federal Facility Agreement and Consent Order (FFACO). A grouping of waste disposal units according to waste type, location, and similarity in regulatory requirements identified six closure units: LLW Unit, Corrective Action Unit (CAU) 111 under FFACO, Asbestiform LLW Unit, Pit 3 MWDU, TRU GCD Borehole Unit, and TRU Trench Unit. The closure schedule of all units is tied to the closure schedule of the Pit 3 MWDU under RCRA.

  12. 1995 Annual report on waste generation and waste mainization progress as required by DOE order 5400.1, Hanford site

    SciTech Connect (OSTI)

    Betsch, M.D.

    1996-09-24T23:59:59.000Z

    While waste generation numbers are important, the true measure of success is waste minimized. Many Waste Minimization/Pollution Prevention (WMin/P2) successes at the Hanford Site occur every day without formal recognition as pollution prevention, as they have become part of a culture of best management practices. As an example, the success of the excess and reuse program, both informal and formal, documents the Wmin/P2 culture that exists in the pollution prevention representatives and employees at the facilities.

  13. Waste Isolation Pilot Plant 2005 Site Environmental Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services

    2006-10-13T23:59:59.000Z

    The purpose of this report is to provide information needed by the DOE to assess WIPP's environmental performance and to make WIPP environmental information available to stakeholders and members of the public. This report has been prepared in accordance with DOE Order 231.1A and DOE guidance. This report documents WIPP's environmental monitoring programs and their results for 2004. The WIPP Project is authorized by the DOE National Security and Military Applications of Nuclear Energy Authorization Act of 1980 (Pub. L. 96-164). After more than 20 years of scientific study and public input, WIPP received its first shipment of waste on March 26, 1999. Located in southeastern New Mexico, WIPP is the nation's first underground repository permitted to safely and permanently dispose of TRU radioactive and mixed waste (as defined in the WIPP LWA) generated through defense activities and programs. TRU waste is defined, in the WIPP LWA, as radioactive waste containing more than 100 nanocuries (3,700 becquerels [Bq]) of alpha-emitting TRU isotopes per gram of waste, with half-lives greater than 20 years except for high-level waste, waste that has been determined not to require the degree of isolation required by the disposal regulations, and waste the U.S. Nuclear Regulatory Commission (NRC) has approved for disposal. Most TRU waste is contaminated industrial trash, such as rags and old tools; sludges from solidified liquids; glass; metal; and other materials from dismantled buildings. TRU waste is eligible for disposal at WIPP if it has been generated in whole or in part by one or more of the activities listed in the Nuclear Waste Policy Act of 1982 (42 United States Code [U.S.C.] §10101, et seq.), including naval reactors development, weapons activities, verification and control technology, defense nuclear materials production, defense nuclear waste and materials by-products management,defense nuclear materials security and safeguards and security investigations, and defense research and development. The waste must also meet the WIPP Waste Acceptance Criteria. When TRU waste arrives at WIPP, it is transported into the Waste Handling Building. The waste containers are removed from the shipping containers, placed on the waste hoist, and lowered to the repository level of 655 m (2,150 ft; approximately 0.5 mi) below the surface. Next, the containers of waste are removed from the hoist and placed in excavated disposal rooms in the Salado Formation, a thick sequence of evaporite beds deposited approximately 250 million years ago (Figure 1.1). After each panel of seven rooms has been filled with waste, specially designed closures are emplaced. When all of WIPP's panels have been filled, at the conclusion of WIPP operations, seals will be placed in the shafts. One of the main attributes of salt, as a rock formation in which to isolate radioactive waste, is the ability of the salt to creep, that is, to deform continuously over time. Excavations into which the waste-filled drums are placed will close eventually, flowing around the drums and sealing them within the formation.

  14. Application for Permit to Operate a Class III Solid Waste Disposal Site at the Nevada Test Site - U10c Disposal Site

    SciTech Connect (OSTI)

    NSTec Environmental Programs

    2010-08-05T23:59:59.000Z

    The NTS is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. NNSA/NSO is the federal lands management authority for the NTS and NSTec is the Management & Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The U10C Disposal Site is located in the northwest corner of Area 9 at the NTS (Figure 1) and is located in a subsidence crater created by two underground nuclear events, one in October 1962 and another in April 1964. The disposal site opened in 1971 for the disposal of rubbish, refuse, pathological waste, asbestos-containing material, and industrial solid waste. A Notice of Intent form to operate the disposal site as a Class II site was submitted to the state of Nevada on January 26, 1994, and was acknowledged in a letter to the DOE on February 8, 1994. It operated as a state of Nevada Class II Solid Waste Disposal Site (SWDS) until it closed on October 5, 1995, for retrofit as a Class III SWDS. The retrofit consisted of the installation of a minimum four-foot compacted soil layer to segregate the different waste types and function as a liner to inhibit leachate and water flow into the lower waste zone. Five neutron monitoring tubes were installed in this layer to monitor possible leachate production and water activity. Upon acceptance of the installed barrier and approval of an Operating Plan by NDEP/BFF, the site reopened in January 1996 as a Class III SWDS for the disposal of industrial solid waste and other inert waste.

  15. Non-Thermal Treatment of Hanford Site Low-Level Mixed Waste

    SciTech Connect (OSTI)

    NONE

    1998-09-01T23:59:59.000Z

    DOE proposes to transport contact-handled LLMW from the Hanford Site to the Allied Technology Group (ATG) Mixed Waste Facility (MWF) in Richland, Washington, for non-thermal treatment and to return the treated waste to the Hanford Site for eventual land disposal. Over a 3-year period the waste would be staged to the ATG MWF, and treated waste would be returned to the Hanford Site. The ATG MWF would be located on an 18 hectare (ha) (45 acre [at]) ATG Site adjacent to ATG's licensed low-level waste processing facility at 2025 Battelle Boulevard. The ATG MWF is located approximately 0.8 kilometers (km) (0.5 miles [mi]) south of Horn Rapids Road and 1.6 km (1 mi) west of Stevens Drive. The property is located within the Horn Rapids triangle in northern Richland (Figure 2.1). The ATG MWF is to be located on the existing ATG Site, near the DOE Hanford Site, in an industrial area in the City of Richland. The effects of siting, construction, and overall operation of the MWF have been evaluated in a separate State Environmental Policy Act (SEPA) EIS (City of Richland 1998). The proposed action includes transporting the LLMW from the Hanford Site to the ATG Facility, non-thermal treatment of the LLMW at the ATG MWF, and transporting the waste from ATG back to the Hanford Site. Impacts fi-om waste treatment operations would be bounded by the ATG SEPA EIS, which included an evaluation of the impacts associated with operating the non-thermal portion of the MWF at maximum design capacity (8,500 metric tons per year) (City of Richland 1998). Up to 50 employees would be required for non-thermal treatment portion of the MWF. This includes 40 employees that would perform waste treatment operations and 10 support staff. Similar numbers were projected for the thermal treatment portion of the MWF (City of Richland 1998).

  16. Waste Isolation Pilot Plant 2003 Site Environmental Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services

    2005-09-03T23:59:59.000Z

    The purpose of this report is to provide information needed by the DOE to assess WIPP's environmental performance and to convey that performance to stakeholders and members of the public. This report has been prepared in accordance with DOE Order 231.1A and DOE guidance. This report documents WIPP's environmental monitoring programs and their results for 2003. The WIPP Project is authorized by the DOE National Security and Military Applications of Nuclear Energy Authorization Act of 1980 (Pub. L. 96-164). After more than 20 years of scientific study and public input, WIPP received its first shipment of waste on March 26, 1999. Located in southeastern New Mexico, WIPP is the nation's first underground repository permitted to safely and permanently dispose of TRU radioactive and mixed waste (as defined in the WIPP LWA) generated through the research and production of nuclear weapons and other activities related to the national defense of the United States. TRU waste is defined in the WIPP LWA as radioactive waste containing more than 100 nanocuries (3,700 becquerels [Bq]) of alpha-emitting transuranic isotopes per gram of waste, with half-lives greater than 20 years. Exceptions are noted as high-level waste, waste that has been determined not to require the degree of isolation required by the disposal regulations, and waste the U.S. Nuclear Regulatory Commission (NRC) has approved for disposal. Most TRU waste is contaminated industrial trash, such as rags and old tools, and sludges from solidified liquids; glass; metal; and other materials from dismantled buildings. A TRU waste is eligible for disposal at WIPP if it has been generated in whole or in partby one or more of the activities listed in the Nuclear Waste Policy Act of 1982 (42 United States Code [U.S.C.] §10101, et seq.), including naval reactors development, weapons activities, verification and control technology, defense nuclear materials production, defense nuclear waste and materials by-products management, defense nuclear materials security and safeguards and security investigations, and defense research and development. The waste must also meet the WIPP Waste Acceptance Criteria. When TRU waste arrives at WIPP, it is transported into the Waste Handling Building. The waste containers are removed from the shipping containers, placed on the waste hoist, and lowered to the repository level of 655 m (2,150 ft; approximately 0.5 mi) below the surface. Next, the containers of waste are removed from the hoist and placed in excavated storage rooms in the Salado Formation, a thick sequence of evaporite beds deposited approximately 250 million years ago (Figure 1.1). After each panel has been filled with waste, specially designed closures are emplaced. When all of WIPP's panels have been filled, at the conclusion of WIPP operations, seals will be placed in the shafts. Salt under pressure is relatively plastic, and mine openings will be allowed to creep closed for final disposal, encapsulating and isolating the waste.

  17. Closure Report for Corrective Action Unit 547: Miscellaneous Contaminated Waste Sites, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2012-07-17T23:59:59.000Z

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 547, Miscellaneous Contaminated Waste Sites, and provides documentation supporting the completed corrective actions and confirmation that closure objectives for CAU 547 were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 as amended). CAU 547 consists of the following three Corrective Action Sites (CASs), located in Areas 2, 3, and 9 of the Nevada National Security Site: (1) CAS 02-37-02, Gas Sampling Assembly; (2) CAS 03-99-19, Gas Sampling Assembly; AND (3) CAS 09-99-06, Gas Sampling Assembly Closure activities began in August 2011 and were completed in June 2012. Activities were conducted according to the Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) for CAU 547 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2011). The recommended corrective action for the three CASs in CAU 547 was closure in place with administrative controls. The following closure activities were performed: (1) Open holes were filled with concrete; (2) Steel casings were placed over vertical expansion joints and filled with cement; (3) Engineered soil covers were constructed over piping and exposed sections of the gas sampling system components; (4) Fencing, monuments, Jersey barriers, radiological postings, and use restriction (UR) warning signs were installed around the perimeters of the sites; (5) Housekeeping debris was picked up from around the sites and disposed; and (6) Radiological surveys were performed to confirm final radiological postings. UR documentation is included in Appendix D. The post-closure plan was presented in detail in the CADD/CAP for CAU 547 and is included as Appendix F of this report. The requirements are summarized in Section 5.2 of this report. The proposed post-closure requirements consist of visual inspections to determine the condition of postings and radiological surveys to verify contamination has not migrated. NNSA/NSO requests the following: (1) A Notice of Completion from the Nevada Division of Environmental Protection to NNSA/NSO for closure of CAU 547; and (2) The transfer of CAU 547 from Appendix III to Appendix IV, Closed Corrective Action Units, of the FFACO.

  18. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act

    SciTech Connect (OSTI)

    NONE

    1988-01-01T23:59:59.000Z

    Chapter six describes the basis for facility design, the completed facility conceptual design, the completed analytical work relating to the resolution of design issues, and future design-related work. The basis for design and the conceptual design information presented in this chapter meet the requirements of the Nuclear Waste Policy Act of 1982, for a conceptual repository design that takes into account site-specific requirements. This information is presented to permit a critical evaluation of planned site characterization activities. Chapter seven describes waste package components, emplacement environment, design, and status of research and development that support the Nevada Nuclear Waste Storage Investigation (NNWSI) Project. The site characterization plan (SCP) discussion of waste package components is contained entirely within this chapter. The discussion of emplacement environment in this chapter is limited to considerations of the environment that influence, or which may influence, if perturbed, the waste packages and their performance (particularly hydrogeology, geochemistry, and borehole stability). The basis for conceptual waste package design as well as a description of the design is included in this chapter. The complete design will be reported in the advanced conceptual design (ACD) report and is not duplicated in the SCP. 367 refs., 173 figs., 68 tabs.

  19. Composite Analysis for the Area 5 Radioactive Waste Management Site at the Nevada Test Site, Nye County, Nevada

    SciTech Connect (OSTI)

    V. Yucel

    2001-09-01T23:59:59.000Z

    This report summarizes the results of a Composite Analysis (CA) for the Area 5 Radioactive Waste Management Site (RWMS). The Area 5 RWMS is a US Department of Energy (DOE)-operated low-level radioactive waste (LLW) management site located in northern Frenchman Flat on the Nevada Test Site (NTS). The Area 5 RWMS has disposed of low-level radioactive waste in shallow unlined pits and trenches since 1960. Transuranic waste (TRU) and high-specific activity waste was disposed in Greater Confinement Disposal (GCD) boreholes from 1983 to 1989. The purpose of this CA is to determine if continuing operation of the Area 5 RWMS poses an acceptable or unacceptable risk to the public considering the total waste inventory and all other interacting sources of radioactive material in the vicinity. Continuing operation of the Area 5 RWMS will be considered acceptable if the total effective dose equivalent (TEDE) is less than 100 mrem in a year. If the TEDE exceeds 30 mrem in a year, a cost-benefit options analysis must be performed to determine if cost-effective management options exist to reduce the dose further. If the TEDE is found to be less than 30 mrem in a year, an analysis may be performed if warranted to determine if doses are as low as reasonably achievable (ALARA).

  20. Nevada National Security Site 2012 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2013-02-11T23:59:59.000Z

    This report is a compilation of the groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). The data have been collected since 1993 and include calendar year 2012 results. During 2012, groundwater samples were collected and static water levels were measured at the three pilot wells surrounding the Area 5 RWMS. Groundwater samples were collected at UE5PW-1, UE5PW-2, and UE5PW-3 on March 21, August 7, August 21, and September 11, 2012, and static water levels were measured at each of the three pilot wells on March 19, June 6, August 2, and October 15, 2012. Groundwater samples were analyzed for the following indicators of contamination: pH, specific conductance, total organic carbon, total organic halides, and tritium. Indicators of general water chemistry (cations and anions) were also measured. Final results from samples collected in 2012 were within the limits established by agreement with the Nevada Division of Environmental Protection for each analyte. These data indicate that there has been no measurable impact to the uppermost aquifer from the Area 5 RWMS. There were no significant changes in measured groundwater parameters compared to previous years. The report contains an updated cumulative chronology for the Area 5 RWMS Groundwater Monitoring Program and a brief description of the site hydrogeology.

  1. Nevada Test Site 2002 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    SciTech Connect (OSTI)

    Y. E. Townsend

    2003-02-01T23:59:59.000Z

    This report is a compilation of the calendar year 2002 groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). Wells Ue5PW-1, Ue5PW-2, and Ue5PW-3 were sampled semiannually for the required analytes: pH, specific conductance, major cations/anions, metals, tritium, total organic carbon (TOC), and total organic halogen (TOX). Results from all samples collected in 2002 were within established criteria. These data indicate that there has been no measurable impact to the uppermost aquifer from the Resource Conservation and Recovery Act(RCRA) regulated unit within the RWMS-5 and confirm that the detections of TOC and TOX in 2000 were false positives. Contamination indicator data are presented in control chart and tabular form with investigation levels (ILs) indicated. Gross water chemistry data are presented in graphical and tabular form. There were no major changes noted in the monitored groundwater elevation. There continues to be an extremely small gradient to the northeast with an average flow velocity of less than one foot per year. Other information in the report includes, the Cumulative Chronology for Area 5 RWMS Groundwater Monitoring Program, a brief description of the site hydrogeology, and the groundwater sampling procedure.

  2. Nevada Test Site 2001 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    SciTech Connect (OSTI)

    Y. E. Townsend

    2002-02-01T23:59:59.000Z

    This report is a compilation of the calendar year 2001 groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). Contamination indicator data are presented in control chart and tabular form with investigation levels (ILs) indicated. Gross water chemistry data are presented in graphical and tabular form. Other information in the report includes, the Cumulative Chronology for Area 5 RWMS Groundwater Monitoring Program, a brief description of the site hydrogeology, and the groundwater sampling procedure. Wells Ue5PW-1, Ue5PW-2, and Ue5PW-3 were sampled semiannually for the required analytes: pH, specific conductance, major cations/anions, metals, tritium, total organic carbon (TOC), and total organic halogen (TOX). Due to detections of TOC and TOX in some samples collected in 2000, a plan, as approved by the Nevada Division of Environmental Protection (NDEP), was executed to collect an increased number and type of samples in 2001. Results from all samples collected in 2001 were below ILs. These data indicate that there has been no measurable impact to the uppermost aquifer from the Resource Conservation and Recovery Act (RCRA) regulated unit within the Area 5 RWMS and confirm that the detections of TOC and TOX in 2000 were false positives. There were no major changes noted in the monitored groundwater elevation. There continues to be an extremely small gradient to the northeast with an average flow velocity of less than one foot per year.

  3. Nevada Test Site 2009 Data Report: Groundwater Monitoring Program, Area 5 Radioactive Waste Management Site

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2010-01-19T23:59:59.000Z

    This report is a compilation of the groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). The data have been collected since 1993 and include calendar year 2009 results. During 2009, groundwater at each of the three pilot wells was sampled on March 10, 2009, and August 18, 2009, and water levels at each of the three pilot wells were measured on February 17, May 6, August 17, and November 10, 2009. Groundwater samples were analyzed for the following indicators of contamination: pH, specific conductance, total organic carbon, total organic halides, and tritium. Indicators of general water chemistry (cations and anions) were also measured. Results from all samples collected in 2009 were within the limits established by agreement with the Nevada Division of Environmental Protection for each analyte. These data indicate that there has been no measurable impact to the uppermost aquifer from the Area 5 RWMS. There were no significant changes in measured groundwater parameters compared to previous years. The report contains an updated cumulative chronology for the Area 5 RWMS Groundwater Monitoring Program and a brief description of the site hydrogeology.

  4. EA-1292: On-site Treatment of Low Level Mixed Waste, Golden, Colorado

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to evaluate the proposed treatment of low level mixed waste at the U.S. Department of Energy's Rocky Flats Environmental Technology Site.

  5. Public Comment Period for Portsmouth Site D&D and Waste Disposition...

    Office of Environmental Management (EM)

    2014 8:00AM EST to March 11, 2015 5:00PM EDT Public Comment Period for the Process Buildings and Complex Facilities Decontamination and Decommissioning and Site-Wide Waste...

  6. EA-1146: Radioactive Waste Storage at Rocky Flats Environmental Technology Site, Golden, Colorado

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to convert buildings at the U.S. Department of Energy Rocky Flats Environmental Technology Site from their former uses to interim waste...

  7. Demonstration of Small Tank Tetraphenylborate Precipitation Process Using Savannah River Site High Level Waste

    SciTech Connect (OSTI)

    Peters, T.B.

    2001-09-10T23:59:59.000Z

    This report details the experimental effort to demonstrate the continuous precipitation of cesium from Savannah River Site High Level Waste using sodium tetraphenylborate. In addition, the experiments examined the removal of strontium and various actinides through addition of monosodium titanate.

  8. Lessons learned -- a comparison of the proposed on-site waste management facilities at the various Department of Energy sites

    SciTech Connect (OSTI)

    Ciocco, J. [Dept. of Energy, Germantown, MD (United States); Singh, D. [Booz Allen and Hamilton, Germantown, MD (United States); Survochak, S. [DOE RFETS, Golden, CO (United States); Elo, M. [Burns and Roe, Germantown, MD (United States)

    1996-12-31T23:59:59.000Z

    The Department of Energy Sites (DOE) are faced with the challenge of managing several categories of waste generated from past or future cleanup activities, such as 11(e)2 byproduct material, low-level radioactive (LL), low-level radioactive mixed (LLM), transuranic (TRU), high level radioactive (HL), and hazardous waste (HW). DOE must ensure safe and efficient management of these wastes while complying with all applicable federal and state laws. Proposed waste management strategies for the EM-40 Environmental Restoration (ER) program at these sites indicate that on-site disposal is becoming a viable option. For purposes of this paper, on-site disposal cells managed by the EM-40 program at Hanford, Weldon Spring, Fernald Environmental Management Project (FEMP) and Rocky Flats were compared. Programmatic aspects and design features were evaluated to determine what comparisons can be made, and to identify benefits lessons learned that may be applicable to other sites. Based on comparative analysis, it can be concluded that the DOE EM-40 disposal cells are very unique. Stakeholders played a major role in the decision to locate the various DOE on-site disposal facilities. The disposal cells will be used to manage 11(e)2 by-product materials, LL, LLM, and/or HLW. The analysis further suggests that the design criteria are comparable. Lessons learned relative to the public involvement activities at Weldon Spring, and the design approach at Hanford should be considered when planning future on-site disposal facilities at DOE sites. Further, a detailed analysis of progress made at Hanford should be evaluated for application at sites such as Rocky Flats that are currently planning on-site disposal facilities.

  9. EA-1707: Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste Landfill, Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the potential environmental impacts of closing the Nonradioactive Dangerous Waste Landfill and the Solid Waste Landfill. The Washington State Department of Ecology is a cooperating agency in preparing this EA.

  10. Geochemical information for sites contaminated with low-level radioactive wastes. III. Weldon Spring Storage Site

    SciTech Connect (OSTI)

    Seeley, F.G.; Kelmers, A.D.

    1985-02-01T23:59:59.000Z

    The Weldon Spring Storage Site (WSSS), which includes both the chemical site and the quarry, became radioactively contaminated as the result of wastes that were being stored from operations to recover uranium from pitchblende ores in the 1940s and 1950s. The US Department of Energy (DOE) is considering various remedial action options for the WSSS. This report describes the results of geochemical investigations carried out at Oak Ridge National Laboratory (ORNL) to support these activities and to help quantify various remedial action options. Soil and groundwater samples were characterized, and uranium and radium sorption ratios were measured in site soil/groundwater systems by batch contact methodology. Soil samples from various locations around the raffinate pits were found to contain major amounts of silica, along with illite as the primary clay constituent. Particle sizes of the five soil samples were variable (50% distribution point ranging from 12 to 81 ..mu..m); the surface areas varied from 13 to 62 m/sup 2//g. Elemental analysis of the samples showed them to be typical of sandy clay and silty clay soils. Groundwater samples included solution from Pit 3 and well water from Well D. Anion analyses showed significant concentrations of sulfate and nitrate (>350 and >7000 mg/L, respectively) in the solution from Pit 3. These anions were also present in the well water, but in lower concentrations. Uranium sorption ratios for four of the soil samples contacted with the solution from Pit 3 were moderate to high (approx. 300 to approx. 1000 mL/g). The fifth sample had a ratio of only 12 mL/g. Radium sorption ratios for the five samples were moderate to high (approx. 600 to approx. 1000 mL/g). These values indicate that soil at the WSSS may show favorable retardation of uranium and radium in the groundwater. 13 references, 13 figures, 10 tables.

  11. The dilemma of siting a high-level nuclear waste repository

    SciTech Connect (OSTI)

    Easterline, D.; Kunreuther, H.

    1995-12-31T23:59:59.000Z

    This books presents a siting process that the authors believe will prove successful within the adversarial world that characterizes most attempts to build waste-disposal facilities. They come to the following conclusions: a volunatary siting process stands the best chance of breaking the `not-in-my-backyard` problem; and without public acknowledgement that a facility is needed, any proposal to build a high-level nuclear waste storage facility will meet with opposition.

  12. Nevada National Security Site 2011 Waste Management Monitoring Report, Area 3 and Area 5 Radioactive Waste Management Site

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2012-07-31T23:59:59.000Z

    Environmental monitoring data are collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada National Security Site (NNSS). These data are associated with radiation exposure, air, groundwater, meteorology, and vadose zone. This report summarizes the 2011 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports. Direct radiation monitoring data indicate exposure levels at the RWMSs are within the range of background levels measured at the NNSS. Slightly elevated exposure levels outside the Area 3 RWMS are attributed to nearby historical aboveground nuclear weapons tests. Air monitoring data show tritium concentrations in water vapor and americium and plutonium concentrations in air particles are only slightly above detection limits and background levels. The measured levels of radionuclides in air particulates and moisture are below derived concentration guides for these radionuclides. During the last 2 weeks of March 2011, gamma spectroscopy results for air particles showed measurable activities of iodine-131 (131I), cesium-134 (134Cs), and cesium-137 (137Cs). These results are attributed to the release of fission products from the damaged Fukushima Daiichi power plant in Japan. The remaining gamma spectroscopy results for air particulates collected at the Area 3 and Area 5 RWMS were below minimum detectable concentrations. Groundwater monitoring data indicate the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by RWMS operations. Results of groundwater analysis from wells around the Area 5 RWMS were all below established investigation levels. The 86.3 millimeters (mm) (3.40 inches [in.]) of precipitation at the Area 3 RWMS during 2011 is 44% below the average of 154.1 mm (6.07 in.), and the 64.8 mm (2.55 in.) of precipitation at the Area 5 RWMS during 2011 is 47% below the average of 122.4 mm (4.82 in.). Water balance measurements indicate that evapotranspiration from the vegetated weighing lysimeter dries the soil and prevents downward percolation of precipitation more effectively than evaporation from the bare-soil weighing lysimeter. Automated vadose zone monitoring on Area 5 RWMS operational waste covers was not done during 2011 due to construction of the final evapotranspiration cover at these monitoring locations. Moisture from precipitation did not percolate below 122 centimeters (4 feet) in the vegetated final mono-layer cover on the U-3ax/bl disposal unit at the Area 3 RWMS before being removed by evapotranspiration. During 2011, there was no drainage through 2.4 meters (8 feet) of soil from the Area 3 drainage lysimeters that received only natural precipitation. Ten percent of the applied precipitation and irrigation drained from the bare-soil drainage lysimeter that received 3 times natural precipitation. All 2011 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing within expectations of the model and parameter assumptions for the facility PAs.

  13. Regulatory Framework for Salt Waste Disposal and Tank Closure at the Savannah River Site - 13663

    SciTech Connect (OSTI)

    Thomas, Steve; Dickert, Ginger [Savannah River Remediation LLC, Savannah River Site, Aiken, SC 29808 (United States)] [Savannah River Remediation LLC, Savannah River Site, Aiken, SC 29808 (United States)

    2013-07-01T23:59:59.000Z

    The end of the Cold War has left a legacy of approximately 37 million gallons of radioactive waste in the aging waste tanks at the Department of Energy's Savannah River Site (SRS). A robust program is in place to remove waste from these tanks, treat the waste to separate into a relatively small volume of high-level waste and a large volume of low-level waste, and to actively dispose of the low-level waste on-site and close the waste tanks and associated ancillary structures. To support performance-based, risk-informed decision making and to ensure compliance with all regulatory requirements, the U.S. Department of Energy (DOE) and its current and past contractors have worked closely with the South Carolina Department of Health and Environmental Control (SCDHEC), the U.S. Environmental Protection Agency (EPA) and the Nuclear Regulatory Commission (NRC) to develop and implement a framework for on-site low-level waste disposal and closure of the SRS waste tanks. The Atomic Energy Act of 1954, as amended, provides DOE the authority to manage defense-related radioactive waste. DOE Order 435.1 and its associated manual and guidance documents detail this radioactive waste management process. The DOE also has a requirement to consult with the NRC in determining that waste that formerly was classified as high-level waste can be safely managed as either low-level waste or transuranic waste. Once DOE makes a determination, NRC then has a responsibility to monitor DOE's actions in coordination with SCDHEC to ensure compliance with the Title 10 Code of Federal Regulations Part 61 (10CFR61), Subpart C performance objectives. The management of hazardous waste substances or components at SRS is regulated by SCDHEC and the EPA. The foundation for the interactions between DOE, SCDHEC and EPA is the SRS Federal Facility Agreement (FFA). Managing this array of requirements and successfully interacting with regulators, consultants and stakeholders is a challenging task but ensures thorough and thoughtful processes for disposing of the SRS low-level waste and the closure of the tank farm facilities. (authors)

  14. Closure Strategy for a Waste Disposal Facility with Multiple Waste Types and Regulatory Drivers at the Nevada Test Site

    SciTech Connect (OSTI)

    D. Wieland, V. Yucel, L. Desotell, G. Shott, J. Wrapp

    2008-04-01T23:59:59.000Z

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) plans to close the waste and classified material storage cells in the southeast quadrant of the Area 5 Radioactive Waste Management Site (RWMS), informally known as the '92-Acre Area', by 2011. The 25 shallow trenches and pits and the 13 Greater Confinement Disposal (GCD) borings contain various waste streams including low-level waste (LLW), low-level mixed waste (LLMW), transuranic (TRU), mixed transuranic (MTRU), and high specific activity LLW. The cells are managed under several regulatory and permit programs by the U.S. Department of Energy (DOE) and the Nevada Division of Environmental Protection (NDEP). Although the specific closure requirements for each cell vary, 37 closely spaced cells will be closed under a single integrated monolayer evapotranspirative (ET) final cover. One cell will be closed under a separate cover concurrently. The site setting and climate constrain transport pathways and are factors in the technical approach to closure and performance assessment. Successful implementation of the integrated closure plan requires excellent communication and coordination between NNSA/NSO and the regulators.

  15. A stochastic approach to risk assessment of hazardous waste sites

    E-Print Network [OSTI]

    Arangath, Vishwanathan Vasu

    1995-01-01T23:59:59.000Z

    action at the site ~ modify preliminary remediation goals ~ help support the selection of the "no-action" remedial alternative, where appropriate ~ document the magnitude of risk at a site, and the primary causes of that risk Baseline risk... of the general approach for risk assessment at sites on the National Priority List (4, 5) This method recommends remedial action at the site when the calculated individual lifetime cancer risk at the site is above 1 in 10, 000. This calculated risk is assumed...

  16. DISSOLUTION & RESUSPENSION OF STORED RADIOACTIVE WASTE & ON SITE TRANSPORT & HANDLING FOR CONDITIONING FOR WASTE RETRIEVAL

    SciTech Connect (OSTI)

    GIBBONS, P.W.

    2001-08-13T23:59:59.000Z

    The four primary functions in a waste retrieval system are as follows: accessing all of the waste within the tank configuration; mobilizing all of the waste, which can have varying physical properties; removing the bulk and residual mobilized waste; and transferring the waste to storage or processing equipment. Selection of retrieval and transfer systems must include all of these functions. Limitations on any one of these areas affect the whole process. This section categorizes according to function many available retrieval and transfer processes, with positive attributes and limitations. Additional information on these systems is referenced in the annexes.

  17. aqueous waste sites: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    waste rock, while the mill process generated a volume of approximately 2.3910 6 m 3 of tailings. Regardless the fact that some studies developed in this area exist, a well...

  18. Waste Management at the Nevada Test Site Fiscal Year 2001 Current Status

    SciTech Connect (OSTI)

    B. D. Becker; W. A. Clayton; B. M. Crowe

    2002-05-01T23:59:59.000Z

    The performance objectives of the U. S. Department of Energy's National Nuclear Security Administration Nevada Operations Office (NNSA/NV) Low-level Radioactive Waste (LLW) disposal facilities located at the Nevada Test Site transcend those of any other radioactive waste disposal site in the United States. Situated at the southern end of the Great Basin, 244 meters (800 feet) above the water table, the Area 5 Radioactive Waste Management Site (RWMS) has utilized a combination of engineered shallow land disposal cells and deep augured shafts to dispose a variety of waste streams. These include high volume low-activity waste, classified radioactive material, and high-specific-activity special case waste. Fifteen miles north of Area 5 is the Area 3 RWMS. Here bulk LLW disposal takes place in subsidence craters formed from underground testing of nuclear weapons. Earliest records indicate that documented LLW disposal activities have occurred at the Area 5 and Area 3 RWMSs since 1961 and 1 968, respectively. However, these activities have only been managed under a formal program since 1978. This paper describes the technical attributes of the facilities, present and future capacities and capabilities, and provides a description of the process from waste approval to final disposition. The paper also summarizes the current status of the waste disposal operations.

  19. Waste Management at the Nevada Test Site Year 2002: Current Status

    SciTech Connect (OSTI)

    Becker, Bruce, D.; Gertz, Carl, P.; Clayton, Wendy, A.; Carilli, Jhon, T.; Crowe, Bruce M.

    2003-02-24T23:59:59.000Z

    The performance attributes of the U. S. Department of Energy's National Nuclear Security Administration Nevada Site Office Low-level Radioactive Waste (LLW) disposal facilities located at the Nevada Test Site transcend those of any other LLW disposal site in the United States. Situated at the southern end of the Great Basin, 244 meters (800 feet) above the water table, the Area 5 Radioactive Waste Management Site (RWMS) has utilized a combination of engineered shallow land disposal cells and deep augured shafts to dispose a variety of waste streams. These include high volume low-activity waste, classified material, and high-specific activity special case waste. Fifteen miles north of Area 5 is the Area 3 RWMS. Here bulk LLW disposal takes place in subsidence craters formed from underground testing of nuclear weapons. Earliest records indicate that documented LLW disposal activities have occurred at the Area 5 and Area 3 RWMSs since 1961 and 1968, respectively. However, these activities have only been managed under a formal program since 1978. This paper describes the technical attributes of the facilities, present and future capacities and capabilities, and provides a description of the process from waste approval to final disposition. The paper also summarizes the current status of the waste disposal operations.

  20. A COMPARISON OF HANFORD AND SAVANNAH RIVER SITE HIGH-LEVEL WASTES

    SciTech Connect (OSTI)

    HILL RC PHILIP; REYNOLDS JG; RUTLAND PL

    2011-02-23T23:59:59.000Z

    This study is a simple comparison of high-level waste from plutonium production stored in tanks at the Hanford and Savannah River sites. Savannah River principally used the PUREX process for plutonium separation. Hanford used the PUREX, Bismuth Phosphate, and REDOX processes, and reprocessed many wastes for recovery of uranium and fission products. Thus, Hanford has 55 distinct waste types, only 17 of which could be at Savannah River. While Hanford and Savannah River wastes both have high concentrations of sodium nitrate, caustic, iron, and aluminum, Hanford wastes have higher concentrations of several key constituents. The factors by which average concentrations are higher in Hanford salt waste than in Savannah River waste are 67 for {sup 241}Am, 4 for aluminum, 18 for chromium, 10 for fluoride, 8 for phosphate, 6 for potassium, and 2 for sulfate. The factors by which average concentrations are higher in Hanford sludges than in Savannah River sludges are 3 for chromium, 19 for fluoride, 67 for phosphate, and 6 for zirconium. Waste composition differences must be considered before a waste processing method is selected: A method may be applicable to one site but not to the other.

  1. Nevada National Security Site 2011 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2012-02-27T23:59:59.000Z

    This report is a compilation of the groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). The data have been collected since 1993 and include calendar year 2011 results. During 2011, groundwater samples were collected and static water levels were measured at the three pilot wells surrounding the Area 5 RWMS. Samples were collected at UE5PW-1 on March 8, August 2, August 24, and October 19, 2011; at UE5PW-2 on March 8, August 2, August 23, and October 19, 2011; and at UE5PW-3 on March 8, August 2, August 23, and October 19, 2011. Static water levels were measured at each of the three pilot wells on March 1, June 7, August 1, and October 17, 2011. Groundwater samples were analyzed for the following indicators of contamination: pH, specific conductance, total organic carbon, total organic halides, and tritium. Indicators of general water chemistry (cations and anions) were also measured. Initial total organic carbon and total organic halides results for samples collected in August 2011 were above previous measurements and, in some cases, above the established investigation limits. However, after field sample pumps and tubing were disinfected with Clorox solution, the results returned to normal levels. Final results from samples collected in 2011 were within the limits established by agreement with the Nevada Division of Environmental Protection for each analyte. These data indicate that there has been no measurable impact to the uppermost aquifer from the Area 5 RWMS. There were no significant changes in measured groundwater parameters compared to previous years. The report contains an updated cumulative chronology for the Area 5 RWMS Groundwater Monitoring Program and a brief description of the site hydrogeology.

  2. Environmental Restoration and Waste Management Site-Specific Plan for Fiscal Year 1993

    SciTech Connect (OSTI)

    Not Available

    1993-03-01T23:59:59.000Z

    The Idaho National Engineering Laboratory (INEL) is a US Department of Energy (DOE) multiprogram laboratory whose primary mission has been to research nuclear technologies. Working with these technologies and conducting other types of research generates waste, including radioactive and/or hazardous wastes. While most of the waste treatment, storage, and disposal practices have been effective, some practices have led to the release of contaminants to the environment. As a result, DOE has developed (1) an Environmental Restoration (ER) Program to identify and, where necessary, cleanup releases from inactive waste sites and (2) a Waste Management (WM) Program to safely treat, store, and dispose of DOE wastes generated from current and future activities in an environmentally sound manner. This document describes the plans for FY 1993 for the INEL`s ER and WM programs as managed by DOE`s Idaho Field Office (DOE-ID).

  3. Performance Assessment Transport Modeling of Uranium at the Area 5 Radioactive Waste Management Site at the Nevada National Security Site

    SciTech Connect (OSTI)

    NSTec Radioactive Waste

    2010-10-12T23:59:59.000Z

    Following is a brief summary of the assumptions that are pertinent to the radioactive isotope transport in the GoldSim Performance Assessment model of the Area 5 Radioactive Waste Management Site, with special emphasis on the water-phase reactive transport of uranium, which includes depleted uranium products.

  4. Radionuclide contaminant analysis of rodents at a waste burial site, Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Biggs, J.R.; Bennett, K.D.; Fresquez, P.R. [Los Alamos National Lab., NM (United States). Environment, Safety, and Health Div.

    1996-12-31T23:59:59.000Z

    Small mammals were sampled at two waste burial sites (Sites 1 and 2) at Area G, TA-54, and a control site outside Area G (Site 3) to identify radionuclides that are present within surface and subsurface soils at waste burial sites, to compare the amount of radionuclide uptake by small mammals at waste burial sites to a control site, and to identify the primary mode of contamination to small mammals, either through surface contact or ingestion/inhalation. Three composite samples of at least five animals per sample were collected at each site. Pelts and carcasses of each animal were separated and analyzed independently. Samples were analyzed for americium ({sup 241}Am), strontium ({sup 90}Sr), plutonium ({sup 238}Pu and {sup 239}Pu), total uranium (U), and examined by gamma spectroscopy (including cesium [{sup 137}Cs]). Significantly higher (parametric t-test at p = 0.05) levels of total U, {sup 241}Am, {sup 238}Pu, and potassium ({sup 40}K) were detected in pelts as compared to the carcasses of small mammals at TA-54. Concentrations of other measured radionuclides in carcasses were nearly equal to or exceeded the mean concentrations in the pelts. The results show higher concentrations in pelts compared to carcasses which is similar to what has been found at waste burial/contaminated sites outside of Los Alamos National Laboratory. Site 1 had significantly higher (alpha = 0.05, P = 0.0095) total U concentrations in carcasses than Sites 2 and 3. Site 2 had significantly higher (alpha = 0.05, P = 0.0195) {sup 239}Pu concentrations in carcasses than either Site 1 or Site 3.

  5. METHODOLOGY AND CALCULATIONS FOR THE ASSIGNMENT OF WASTE GROUPS FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE

    SciTech Connect (OSTI)

    WEBER RA

    2009-01-16T23:59:59.000Z

    The Hanford Site contains 177 large underground radioactive waste storage tanks (28 double-shell tanks and 149 single-shell tanks). These tanks are categorized into one of three waste groups (A, B, and C) based on their waste and tank characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement gas release event. Assignments of waste groups to the 177 double-shell tanks and single-shell tanks, as reported in this document, are based on a Monte Carlo analysis of three criteria. The first criterion is the headspace flammable gas concentration following release of retained gas. This criterion determines whether the tank contains sufficient retained gas such that the well-mixed headspace flammable gas concentration would reach 100% of the lower flammability limit if the entire tank's retained gas were released. If the volume of retained gas is not sufficient to reach 100% of the lower flammability limit, then flammable conditions cannot be reached and the tank is classified as a waste group C tank independent of the method the gas is released. The second criterion is the energy ratio and considers whether there is sufficient supernatant on top of the saturated solids such that gas-bearing solids have the potential energy required to break up the material and release gas. Tanks that are not waste group C tanks and that have an energy ratio < 3.0 do not have sufficient potential energy to break up material and release gas and are assigned to waste group B. These tanks are considered to represent a potential induced flammable gas release hazard, but no spontaneous buoyant displacement flammable gas release hazard. Tanks that are not waste group C tanks and have an energy ratio {ge} 3.0, but that pass the third criterion (buoyancy ratio < 1.0, see below) are also assigned to waste group B. Even though the designation as a waste group B (or A) tank identifies the potential for an induced flammable gas release hazard, the hazard only exists for specific operations that can release the retained gas in the tank at a rate and quantity that results in reaching 100% of the lower flammability limit in the tank headspace. The identification and evaluation of tank farm operations that could cause an induced flammable gas release hazard in a waste group B (or A) tank are included in other documents. The third criterion is the buoyancy ratio. This criterion addresses tanks that are not waste group C double-shell tanks and have an energy ratio {ge} 3.0. For these double-shell tanks, the buoyancy ratio considers whether the saturated solids can retain sufficient gas to exceed neutral buoyancy relative to the supernatant layer and therefore have buoyant displacement gas release events. If the buoyancy ratio is {ge} 1.0, that double-shell tank is assigned to waste group A. These tanks are considered to have a potential spontaneous buoyant displacement flammable gas release hazard in addition to a potential induced flammable gas release hazard. This document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 8 is the annual update of the calculations of the flammable gas Waste Groups for DSTs and SSTs.

  6. METHODOLOGY AND CALCULATIONS FOR THE ASSIGNMENT OF WASTE GROUPS FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE

    SciTech Connect (OSTI)

    FOWLER KD

    2007-12-27T23:59:59.000Z

    This document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 7 is the annual update of the calculations of the flammable gas Waste Groups for DSTs and SSTs. The Hanford Site contains 177 large underground radioactive waste storage tanks (28 double-shell tanks and 149 single-shell tanks). These tanks are categorized into one of three waste groups (A, B, and C) based on their waste and tank characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement gas release event. Assignments of waste groups to the 177 double-shell tanks and single-shell tanks, as reported in this document, are based on a Monte Carlo analysis of three criteria. The first criterion is the headspace flammable gas concentration following release of retained gas. This criterion determines whether the tank contains sufficient retained gas such that the well-mixed headspace flammable gas concentration would reach 100% of the lower flammability limit if the entire tank's retained gas were released. If the volume of retained gas is not sufficient to reach 100% of the lower flammability limit, then flammable conditions cannot be reached and the tank is classified as a waste group C tank independent of the method the gas is released. The second criterion is the energy ratio and considers whether there is sufficient supernatant on top of the saturated solids such that gas-bearing solids have the potential energy required to break up the material and release gas. Tanks that are not waste group C tanks and that have an energy ratio < 3.0 do not have sufficient potential energy to break up material and release gas and are assigned to waste group B. These tanks are considered to represent a potential induced flammable gas release hazard, but no spontaneous buoyant displacement flammable gas release hazard. Tanks that are not waste group C tanks and have an energy ratio {ge} 3.0, but that pass the third criterion (buoyancy ratio < 1.0, see below) are also assigned to waste group B. Even though the designation as a waste group B (or A) tank identifies the potential for an induced flammable gas release hazard, the hazard only exists for specific operations that can release the retained gas in the tank at a rate and quantity that results in reaching 100% of the lower flammability limit in the tank headspace. The identification and evaluation of tank farm operations that could cause an induced flammable gas release hazard in a waste group B (or A) tank are included in other documents. The third criterion is the buoyancy ratio. This criterion addresses tanks that are not waste group C double-shell tanks and have an energy ratio {ge} 3.0. For these double-shell tanks, the buoyancy ratio considers whether the saturated solids can retain sufficient gas to exceed neutral buoyancy relative to the supernatant layer and therefore have buoyant displacement gas release events. If the buoyancy ratio is {ge} 1.0, that double-shell tank is assigned to waste group A. These tanks are considered to have a potential spontaneous buoyant displacement flammable gas release hazard in addition to a potential induced flammable gas release hazard.

  7. Characterization ReportOperational Closure Covers for the Area 5 Radioactive Waste Management Site at the Nevada Test Site

    SciTech Connect (OSTI)

    Bechtel Nevada Geotechnical Sciences

    2005-06-01T23:59:59.000Z

    Bechtel Nevada (BN) manages two low-level Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS) for the U.S. Department of Energy (DOE) National Nuclear Security Administration Nevada Site Office (NNSA/NSO). The Area 3 RWMS is located in south-central Yucca Flat and the Area 5 RWMS is located about 15 miles south, in north-central Frenchman Flat. Though located in two separate topographically closed basins, they are similar in climate and hydrogeologic setting. The Area 5 RWMS uses engineered shallow-land burial cells to dispose of packaged waste, while the Area 3 RWMS uses subsidence craters formed from underground testing of nuclear weapons for the disposal of packaged and unpackaged bulk waste. Over the next several decades, most waste disposal units at both the Area 3 and Area 5 RWMSs are anticipated to be closed. Closure of the Area 3 and Area 5 RWMSs will proceed through three phases: operational closure, final closure, and institutional control. Many waste disposal units at the Area 5RWMS are operationally closed and final closure has been placed on one unit at the Area 3 RWMS (U-3ax/bl). Because of the similarities between the two sites (e.g., type of wastes, environmental factors, operational closure cover designs, etc.), many characterization studies and data collected at the Area 3 RWMS are relevant and applicable to the Area 5 RWMS. For this reason, data and closure strategies from the Area 3 RWMS are referred to as applicable. This document is an interim Characterization Report – Operational Closure Covers, for the Area 5 RWMS. The report briefly describes the Area 5 RWMS and the physical environment where it is located, identifies the regulatory requirements, reviews the approach and schedule for closing, summarizes the monitoring programs, summarizes characterization studies and results, and then presents conclusions and recommendations.

  8. Impact of Construction Waste Disposal Charging Scheme on work practices at construction sites in Hong Kong

    SciTech Connect (OSTI)

    Yu, Ann T.W., E-mail: bsannyu@polyu.edu.hk [Department of Building and Real Estate, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Poon, C.S.; Wong, Agnes; Yip, Robin; Jaillon, Lara [Department of Civil and Structural Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong)

    2013-01-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer A significant reduction of construction waste was achieved at the first 3 years of CWDCS implementation. Black-Right-Pointing-Pointer However, the reduction cannot be sustained. Black-Right-Pointing-Pointer Implementation of the CWDCS has generated positive effects in waste reduction by all main trades. - Abstract: Waste management in the building industry in Hong Kong has become an important environmental issue. Particularly, an increasing amount of construction and demolition (C and D) waste is being disposed at landfill sites. In order to reduce waste generation and encourage reuse and recycling, the Hong Kong Government has implemented the Construction Waste Disposal Charging Scheme (CWDCS) to levy charges on C and D waste disposal to landfills. In order to provide information on the changes in reducing waste generation practice among construction participants in various work trades, a study was conducted after 3 years of implementation of the CWDCS via a structured questionnaire survey in the building industry in Hong Kong. The study result has revealed changes with work flows of the major trades as well as differentiating the levels of waste reduced. Three building projects in the public and private sectors were selected as case studies to demonstrate the changes in work flows and the reduction of waste achieved. The research findings reveal that a significant reduction of construction waste was achieved at the first 3 years (2006-2008) of CWDCS implementation. However, the reduction cannot be sustained. The major trades have been influenced to a certain extent by the implementation of the CWDCS. Slight improvement in waste management practices was observed, but reduction of construction waste in the wet-finishing and dry-finishing trades has undergone little improvement. Implementation of the CWDCS has not yet motivated subcontractors to change their methods of construction so as to reduce C and D waste.

  9. Special Analysis for the Disposal of the Neutron Products Incorporated Sealed Source Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    SciTech Connect (OSTI)

    Shott, Gregory

    2014-08-31T23:59:59.000Z

    The purpose of this special analysis (SA) is to determine if the Neutron Products Incorporated (NPI) Sealed Sources waste stream (DRTK000000056, Revision 0) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS). The NPI Sealed Sources waste stream consists of 850 60Co sealed sources (Duratek [DRTK] 2013). The NPI Sealed Sources waste stream requires a special analysis (SA) because the waste stream 60Co activity concentration exceeds the Nevada National Security Site (NNSS) Waste Acceptance Criteria (WAC) Action Levels.

  10. TECHNICAL ASSESSMENT OF FRACTIONAL CRYSTALLIZATION FOR TANK WASTE PRETREATMENT AT THE DOE HANFORD SITE

    SciTech Connect (OSTI)

    HAMILTON, D.W.

    2006-01-03T23:59:59.000Z

    Radioactive wastes from one hundred seventy-seven underground storage tanks in the 200 Area of the Department of Energy (DOE) Hanford Site in Washington State will be retrieved, treated and stored either on site or at an approved off-site repository. DOE is currently planning to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions, which would be treated and permanently disposed in separate facilities. A significant volume of the wastes in the Hanford tanks is currently classified as medium Curie waste, which will require separation and treatment at the Waste Treatment Plant (WTP). Because of the specific challenges associated with treating this waste stream, DOE EM-21 funded a project to investigate the feasibility of using fractional crystallization as a supplemental pretreatment technology. The two process requirements for fractional crystallization to be successfully applied to Hanford waste include: (1) evaporation of water from the aqueous solution to enrich the activity of soluble {sup 137}Cs, resulting in a higher activity stream to be sent to the WTP, and (2) separation of the crystalline salts that are enriched in sodium, carbonate, sulfate, and phosphate and sufficiently depleted in {sup 137}Cs, to produce a second stream to be sent to Bulk Vitrification. Phase I of this project has just been completed by COGEMA/Georgia Institute of Technology. The purpose of this report is to document an independent expert review of the Phase I results with recommendations for future testing. A team of experts with significant experience at both the Hanford and Savannah River Sites was convened to conduct the review at Richland, Washington the week of November 14, 2005.

  11. Decommissioning and Dismantling of Liquid Waste Storage and Liquid Waste Treatment Facility from Paldiski Nuclear Site, Estonia

    SciTech Connect (OSTI)

    Varvas, M. [AS ALARA, Leetse tee 21, Paldiski, 76806 (Estonia); Putnik, H. [Delegation of the European Commission to Russia, Kadashevskaja nab. 14/1 119017 Moscow (Russian Federation); Nirvin, B.; Pettersson, S. [SKB, Box 5864, Stockholm, SE-102 40 (Sweden); Johnsson, B. [Studsvik RadWaste, Nykoping, SE-611 82 (Sweden)

    2006-07-01T23:59:59.000Z

    The Paldiski Nuclear Facility in Estonia, with two nuclear reactors was owned by the Soviet Navy and was used for training the navy personnel to operate submarine nuclear reactors. After collapse of Soviet Union the Facility was shut down and handed over to the Estonian government in 1995. In co-operation with the Paldiski International Expert Reference Group (PIERG) decommission strategy was worked out and started to implement. Conditioning of solid and liquid operational waste and dismantling of contaminated installations and buildings were among the key issues of the Strategy. Most of the liquid waste volume, remained at the Facility, was processed in the frames of an Estonian-Finnish co-operation project using a mobile wastewater purification unit NURES (IVO International OY) and water was discharged prior to the site take-over. In 1999-2002 ca 120 m{sup 3} of semi-liquid tank sediments (a mixture of ion exchange resins, sand filters, evaporator and flocculation slurry), remained after treatment of liquid waste were solidified in steel containers and stored into interim storage. The project was carried out under the Swedish - Estonian co-operation program on radiation protection and nuclear safety. Contaminated installations in buildings, used for treatment and storage of liquid waste (Liquid Waste Treatment Facility and Liquid Waste Storage) were then dismantled and the buildings demolished in 2001-2004. (authors)

  12. Hanford site tank waste remediation system programmatic environmental review report

    SciTech Connect (OSTI)

    Haass, C.C.

    1998-09-03T23:59:59.000Z

    The US Department of Energy (DOE) committed in the Tank Waste Remediation System (TWRS) Environmental Impact Statement (EIS) Record of Decision (ROD) to perform future National Environmental Policy Act (NEPA) analysis at key points in the Program. Each review will address the potential impacts that new information may have on the environmental impacts presented in the TWRS EIS and support an assessment of whether DOE`s plans for remediating the tank waste are still pursuing the appropriate plan for remediation or whether adjustments to the program are needed. In response to this commitment, DOE prepared a Supplement Analysis (SA) to support the first of these reevaluations. Subsequent to the completion of the SA, the Phase IB negotiations process with private contractors resulted in several changes to the planned approach. These changes along with other new information regarding the TWRS Program have potential implications for Phase 1 and Phase 2 of tank waste retrieval and waste storage and/or disposal that may influence the environmental impacts of the Phased Implementation alternative. This report focuses on identifying those potential environmental impacts that may require NEPA analysis prior to authorization to begin facility construction and operations.

  13. A data base for low-level radioactive waste disposal sites

    SciTech Connect (OSTI)

    Daum, M.L.; Moskowitz, P.D.

    1989-07-01T23:59:59.000Z

    A computerized database was developed to assist the US Environmental Protection Agency (EPA) in evaluating methods and data for characterizing health hazards associated with land and ocean disposal options for low-level radioactive wastes. The data cover 1984 to 1987. The types of sites considered include Nuclear Regulatory Commission (NRC) licensed commercial disposal sites, EPA National Priority List (NPL) sites, US Department of Energy (DOE) Formerly Utilized Sites Remedial Action Project (FUSRAP) and DOE Surplus Facilities Management Program (SFMP) sites, inactive US ocean disposal sites, and DOE/Department of Defense facilities. Sources of information include reports from EPA, the US Department of Energy (DOE) and the Nuclear Regulatory Commission (NRC), as well as direct communication with individuals associated with specific programs. The data include site descriptions, waste volumes and activity levels, and physical and radiological characterization of low-level wastes. Additional information on mixed waste, packaging forms, and disposal methods were compiled, but are not yet included in the database. 55 refs., 4 figs., 2 tabs.

  14. EIS-0109: Long-Term Management of the Existing Radioactive Wastes and Residues at the Niagara Falls Storage Site

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this statement to evaluate the environmental impacts of several alternatives for management and control of the radioactive wastes and residues at the Niagara Falls Storage Site, including a no action alternative, an alternative to manage wastes on-site, and two off-site management alternatives.

  15. Special Analysis of Transuranic Waste in Trench T04C at the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nye County, Nevada, Revision 1

    SciTech Connect (OSTI)

    Greg Shott, Vefa Yucel, Lloyd Desotell

    2008-05-01T23:59:59.000Z

    This Special Analysis (SA) was prepared to assess the potential impact of inadvertent disposal of a limited quantity of transuranic (TRU) waste in classified Trench 4 (T04C) within the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS). The Area 5 RWMS is a low-level radioactive waste disposal site in northern Frenchman Flat on the Nevada Test Site (NTS). The Area 5 RWMS is regulated by the U.S. Department of Energy (DOE) under DOE Order 435.1 and DOE Manual (DOE M) 435.1-1. The primary objective of the SA is to evaluate if inadvertent disposal of limited quantities of TRU waste in a shallow land burial trench at the Area 5 RWMS is in compliance with the existing, approved Disposal Authorization Statement (DAS) issued under DOE M 435.1-1. In addition, supplemental analyses are performed to determine if there is reasonable assurance that the requirements of Title 40, Code of Federal Regulations (CFR), Part 191, Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level, and Transuranic Radioactive Wastes, can be met. The 40 CFR 191 analyses provide supplemental information regarding the risk to human health and the environment of leaving the TRU waste in T04C. In 1989, waste management personnel reviewing classified materials records discovered that classified materials buried in trench T04C at the Area 5 RWMS contained TRU waste. Subsequent investigations determined that a total of 102 55-gallon drums of TRU waste from Rocky Flats were buried in trench T04C in 1986. The disposal was inadvertent because unclassified records accompanying the shipment indicated that the waste was low-level. The exact location of the TRU waste in T04C was not recorded and is currently unknown. Under DOE M 435.1-1, Chapter IV, Section P.5, low-level waste disposal facilities must obtain a DAS. The DAS specifies conditions that must be met to operate within the radioactive waste management basis, consisting of a performance assessment (PA), composite analysis (CA), closure plan, monitoring plan, waste acceptance criteria, and a PA/CA maintenance plan. The DOE issued a DAS for the Area 5 RWMS in 2000. The Area 5 RWMS DAS was, in part, based on review of a CA as required under DOE M 435.1-1, Chapter IV, Section P.(3). A CA is a radiological assessment required for DOE waste disposed before 26 September 1988 and includes the radiological dose from all sources of radioactive material interacting with all radioactive waste disposed at the Area 5 RWMS. The approved Area 5 RWMS CA, which includes the inventory of TRU waste in T04C, indicates that the Area 5 RWMS waste inventory and all interacting sources of radioactive material can meet the 0.3 mSv dose constraint. The composite analysis maximum annual dose for a future resident at the Area 5 RWMS was estimated to be 0.01 mSv at 1,000 years. Therefore, the inadvertent disposal of TRU in T04C is protective of the public and the environment, and compliant with all the applicable requirements in DOE M 435.1-1 and the DAS. The U.S. Environmental Protection Agency promulgated 40 CFR 191 to establish standards for the planned disposal of spent nuclear fuel, high level, and transuranic wastes in geologic repositories. Although not required, the National Nuclear Security Administration Nevada Site Office requested a supplemental analysis to evaluate the likelihood that the inadvertent disposal of TRU waste in T04C meets the requirements of 40 CFR 191. The SA evaluates the likelihood of meeting the 40 CFR 191 containment requirements (CRs), assurance requirements, individual protection requirements (IPRs), and groundwater protection standards. The results of the SA indicate that there is a reasonable expectation of meeting all the requirements of 40 CFR 191. The conclusion of the SA is that the Area 5 RWMS with the TRU waste buried in T04C is in compliance with all requirements in DOE M 435.1-1 and the DAS. Compliance with the DAS is demonstrated by the results of the Area 5 RWMS CA. Supplemental analyses in the SA indicate there is a

  16. Framework for DOE mixed low-level waste disposal: Site fact sheets

    SciTech Connect (OSTI)

    Gruebel, M.M.; Waters, R.D.; Hospelhorn, M.B.; Chu, M.S.Y. [eds.

    1994-11-01T23:59:59.000Z

    The Department of Energy (DOE) is required to prepare and submit Site Treatment Plans (STPS) pursuant to the Federal Facility Compliance Act (FFCAct). Although the FFCAct does not require that disposal be addressed in the STPS, the DOE and the States recognize that treatment of mixed low-level waste will result in residues that will require disposal in either low-level waste or mixed low-level waste disposal facilities. As a result, the DOE is working with the States to define and develop a process for evaluating disposal-site suitability in concert with the FFCAct and development of the STPS. Forty-nine potential disposal sites were screened; preliminary screening criteria reduced the number of sites for consideration to twenty-six. The DOE then prepared fact sheets for the remaining sites. These fact sheets provided additional site-specific information for understanding the strengths and weaknesses of the twenty-six sites as potential disposal sites. The information also provided the basis for discussion among affected States and the DOE in recommending sites for more detailed evaluation.

  17. Site characterization report for the basalt waste isolation project. Volume II

    SciTech Connect (OSTI)

    None

    1982-11-01T23:59:59.000Z

    The reference location for a repository in basalt for the terminal storage of nuclear wastes on the Hanford Site and the candidate horizons within this reference repository location have been identified and the preliminary characterization work in support of the site screening process has been completed. Fifteen technical questions regarding the qualification of the site were identified to be addressed during the detailed site characterization phase of the US Department of Energy-National Waste Terminal Storage Program site selection process. Resolution of these questions will be provided in the final site characterization progress report, currently planned to be issued in 1987, and in the safety analysis report to be submitted with the License Application. The additional information needed to resolve these questions and the plans for obtaining the information have been identified. This Site Characterization Report documents the results of the site screening process, the preliminary site characterization data, the technical issues that need to be addressed, and the plans for resolving these issues. Volume 2 contains chapters 6 through 12: geochemistry; surface hydrology; climatology, meteorology, and air quality; environmental, land-use, and socioeconomic characteristics; repository design; waste package; and performance assessment.

  18. Measurement of Tc-99 in Savannah River Site High Activity Waste

    SciTech Connect (OSTI)

    DiPrete, D.P.

    2003-03-27T23:59:59.000Z

    Waste cleanup efforts currently underway at the Savannah River Site have created a need to characterize Tc-99 in the various high activity waste matrices currently in Site inventories. The traditional method our laboratory used for analyzing Tc-99 in higher activity matrices was a solvent-solvent extraction method using Aliquat-336 in xylene, which resulted in the problematic generation of mixed waste. In an effort to eliminate the generation of mixed wastes resulting from the Aliquat 336/xylene process, a variety of different separation methodologies have been studied. Eichrom TEVA solid phase extractions using column technology have been employed in a case by case basis over the last several years. More recently, applications using Eichrom TEVA extraction discs and 3M Empore Tc extraction discs have also been explored.

  19. Final Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement Richland, Washington

    SciTech Connect (OSTI)

    M.S. Collins C.M. Borgstrom

    2004-01-01T23:59:59.000Z

    The Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement (HSW EIS) provides environmental and technical information concerning U.S. Department of Energy (DOE) proposed waste management practices at the Hanford Site. The HSW EIS updates analyses of environmental consequences from previous documents and provides evaluations for activities that may be implemented consistent with the Waste Management Programmatic Environmental Impact Statement (WM PEIS) Records of Decision (RODs). Waste types considered in the HSW EIS include operational low-level radioactive waste (LLW), mixed low-level waste (MLLW), immobilized low-activity waste (ILAW), and transuranic (TRU) waste (including TRU mixed waste). MLLW contains chemically hazardous components in addition to radionuclides. Alternatives for management of these wastes at the Hanford Site, including the alternative of No Action, are analyzed in detail. The LLW, MLLW, and TRU waste alternatives are evaluated for a range of waste volumes, representing quantities of waste that could be managed at the Hanford Site. A single maximum forecast volume is evaluated for ILAW. The No Action Alternative considers continuation of ongoing waste management practices at the Hanford Site and ceasing some operations when the limits of existing capabilities are reached. The No Action Alternative provides for continued storage of some waste types. The other alternatives evaluate expanded waste management practices including treatment and disposal of most wastes. The potential environmental consequences of the alternatives are generally similar. The major differences occur with respect to the consequences of disposal versus continued storage and with respect to the range of waste volumes managed under the alternatives. DOE's preferred alternative is to dispose of LLW, MLLW, and ILAW in a single, modular, lined facility near PUREX on Hanford's Central Plateau; to treat MLLW using a combination of onsite and offsite facilities; and to certify TRU waste onsite using a combination of existing, upgraded, and mobile facilities. DOE issued the Notice of Intent to prepare the HSW EIS on October 27, 1997, and held public meetings during the scoping period that extended through January 30, 1998. In April 2002, DOE issued the initial draft of the EIS. During the public comment period that extended from May through August 2002, DOE received numerous comments from regulators, tribal nations, and other stakeholders. In March 2003, DOE issued a revised draft of the HSW EIS to address those comments, and to incorporate disposal of ILAW and other alternatives that had been under consideration since the first draft was published. Comments on the revised draft were received from April 11 through June 11, 2003. This final EIS responds to comments on the revised draft and includes updated analyses to incorporate information developed since the revised draft was published. DOE will publish the ROD(s) in the ''Federal Register'' no sooner than 30 days after publication of the Environmental Protection Agency's Notice of Availability of the final HSW EIS.

  20. Waste minimization plan construction and operation of the replacement cross-site transfer system, project W-058

    SciTech Connect (OSTI)

    Boucher, T.D.

    1996-04-01T23:59:59.000Z

    This report addresses the research and development of a waste minimization plan for the construction and operation of Project W-058, Replacement of the Cross-Site Transfer System, on the Hanford Site. The plan is based on Washington Administrative Code (WAC) 173-307, Plans. The waste minimization plan identifies areas where pollution prevention/waste minimization principles can be incorporated into the construction and operation of the cross-site transfer system.

  1. Overview of Hanford Site High-Level Waste Tank Gas and Vapor Dynamics

    SciTech Connect (OSTI)

    Huckaby, James L.; Mahoney, Lenna A.; Droppo, James G.; Meacham, Joseph E.

    2004-08-31T23:59:59.000Z

    Hanford Site processes associated with the chemical separation of plutonium from uranium and other fission products produced a variety of volatile, semivolatile, and nonvolatile organic and inorganic waste chemicals that were sent to high-level waste tanks. These chemicals have undergone and continue to undergo radiolytic and thermal reactions in the tanks to produce a wide variety of degradation reaction products. The origins of the organic wastes, the chemical reactions they undergo, and their reaction products have recently been examined by Stock (2004). Stock gives particular attention to explaining the presence of various types of volatile and semivolatile organic species identified in headspace air samples. This report complements the Stock report by examining the storage of volatile and semivolatile species in the waste, their transport through any overburden of waste to the tank headspaces, the physical phenomena affecting their concentrations in the headspaces, and their eventual release into the atmosphere above the tanks.

  2. Corrective Action Investigation Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada, Rev. No.: 0

    SciTech Connect (OSTI)

    Grant Evenson

    2006-04-01T23:59:59.000Z

    Corrective Action Unit (CAU) 139 is located in Areas 3, 4, 6, and 9 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 139 is comprised of the seven corrective action sites (CASs) listed below: (1) 03-35-01, Burn Pit; (2) 04-08-02, Waste Disposal Site; (3) 04-99-01, Contaminated Surface Debris; (4) 06-19-02, Waste Disposal Site/Burn Pit; (5) 06-19-03, Waste Disposal Trenches; (6) 09-23-01, Area 9 Gravel Gertie; and (7) 09-34-01, Underground Detection Station. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives with the exception of CASs 09-23-01 and 09-34-01. Regarding these two CASs, CAS 09-23-01 is a gravel gertie where a zero-yield test was conducted with all contamination confined to below ground within the area of the structure, and CAS 09-34-01 is an underground detection station where no contaminants are present. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for the other five CASs where information is insufficient. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 4, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 139.

  3. Immobilized low-activity waste site borehole 299-E17-21

    SciTech Connect (OSTI)

    Reidel, S.P.; Reynolds, K.D.; Horton, D.G.

    1998-08-01T23:59:59.000Z

    The Tank Waste Remediation System (TWRS) is the group at the Hanford Site responsible for the safe underground storage of liquid waste from previous Hanford Site operations, the storage and disposal of immobilized tank waste, and closure of underground tanks. The current plan is to dispose of immobilized low-activity tank waste (ILAW) in new facilities in the southcentral part of 200-East Area and in four existing vaults along the east side of 200-East Area. Boreholes 299-E17-21, B8501, and B8502 were drilled at the southwest corner of the ILAW site in support of the Performance Assessment activities for the disposal options. This report summarizes the initial geologic findings, field tests conducted on those boreholes, and ongoing studies. One deep (480 feet) borehole and two shallow (50 feet) boreholes were drilled at the southwest corner of the ILAW site. The primary factor dictating the location of the boreholes was their characterization function with respect to developing the geohydrologic model for the site and satisfying associated Data Quality Objectives. The deep borehole was drilled to characterize subsurface conditions beneath the ILAW site, and two shallow boreholes were drilled to support an ongoing environmental tracer study. The tracer study will supply information to the Performance Assessment. All the boreholes provide data on the vadose zone and saturated zone in a previously uncharacterized area.

  4. RCRA Assessment Plan for Single-Shell Tank Waste Management Area A-AX at the Hanford Site

    SciTech Connect (OSTI)

    Narbutovskih, Susan M.; Chou, Charissa J.

    2006-03-03T23:59:59.000Z

    This document describes a groundwater assessment plan for the single-shell tank systems in Waste Management Area A-AX at the Hanford Site.

  5. A little here, a little there, a fairly big problem everywhere: Small quantity site transuranic waste disposition alternatives

    SciTech Connect (OSTI)

    D. Luke; D. Parker; J. Moss; T. Monk (INEEL); L. Fritz (DOE-ID); B. Daugherty (SRS); K. Hladek (WM Federal Services Hanford); S. Kosiewicx (LANL)

    2000-02-27T23:59:59.000Z

    Small quantities of transuranic (TRU) waste represent a significant challenge to the waste disposition and facility closure plans of several sites in the Department of Energy (DOE) complex. This paper presents the results of a series of evaluations, using a systems engineering approach, to identify the preferred alternative for dispositioning TRU waste from small quantity sites (SQSs). The TRU waste disposition alternatives evaluation used semi-quantitative data provided by the SQSs, potential receiving sites, and the Waste Isolation Pilot Plant (WIPP) to select and recommend candidate sites for waste receipt, interim storage, processing, and preparation for final disposition of contact-handled (CH) and remote-handled (RH) TRU waste. The evaluations of only four of these SQSs resulted in potential savings to the taxpayer of $33 million to $81 million, depending on whether mobile systems could be used to characterize, package, and certify the waste or whether each site would be required to perform this work. Small quantity shipping sites included in the evaluation included the Battelle Columbus Laboratory (BCL), University of Missouri Research Reactor (MURR), Energy Technology Engineering Center (ETEC), and Mound Laboratory. Candidate receiving sites included the Idaho National Engineering and Environmental Laboratory (INEEL), the Savannah River Site (SRS), Los Alamos National Laboratory (LANL), Oak Ridge (OR), and Hanford. At least 14 additional DOE sites having TRU waste may be able to save significant money if cost savings are similar to the four evaluated thus far.

  6. A Little Here, A Little There, A Fairly Big Problem Everywhere: Small Quantity Site Transuranic Waste Disposition Alternatives

    SciTech Connect (OSTI)

    Luke, Dale Elden; Parker, Douglas Wayne; Moss, J.; Monk, Thomas Hugh; Fritz, Lori Lee; Daugherty, B.; Hladek, K.; Kosiewicx, S.

    2000-03-01T23:59:59.000Z

    Small quantities of transuranic (TRU) waste represent a significant challenge to the waste disposition and facility closure plans of several sites in the Department of Energy (DOE) complex. This paper presents the results of a series of evaluations, using a systems engineering approach, to identify the preferred alternative for dispositioning TRU waste from small quantity sites (SQSs). The TRU waste disposition alternatives evaluation used semi-quantitative data provided by the SQSs, potential receiving sites, and the Waste Isolation Pilot Plant (WIPP) to select and recommend candidate sites for waste receipt, interim storage, processing, and preparation for final disposition of contact-handled (CH) and remote-handled (RH) TRU waste. The evaluations of only four of these SQSs resulted in potential savings to the taxpayer of $33 million to $81 million, depending on whether mobile systems could be used to characterize, package, and certify the waste or whether each site would be required to perform this work. Small quantity shipping sites included in the evaluation included the Battelle Columbus Laboratory (BCL), University of Missouri Research Reactor (MURR), Energy Technology Engineering Center (ETEC), and Mound. Candidate receiving sites included the Idaho National Engineering and Environmental Laboratory (INEEL), the Savannah River Site (SRS), Los Alamos National Laboratory (LANL), Oak Ridge (OR), and Hanford. At least 14 additional DOE sites having TRU waste may be able to save significant money if cost savings are similar to the four evaluated thus far.

  7. EIS-0212: Safe Interim Storage of Hanford Tank Wastes, Hanford Site, Richland, WA

    Broader source: Energy.gov [DOE]

    This environmental impact statement asseses Department of Energy and Washington State Department of Ecology maintanence of safe storage of high-level radioactive wastes currently stored in the older single-shell tanks, the Watchlist Tank 101-SY, and future waste volumes associated with tank farm and other Hanford facility operations, including a need to provide a modern safe, reliable, and regulatory-compliant replacement cross-site transfer capability. The purpose of this action is to prevent uncontrolled releases to the environment by maintaining safe storage of high-level tank wastes.

  8. 1993 report on Hanford Site land disposal restrictions for mixed wastes

    SciTech Connect (OSTI)

    Black, D.

    1993-04-01T23:59:59.000Z

    Since the early 1940s, the contractors at the Hanford Site have been involved in the production and purification of nuclear defense materials. These production activities have resulted in the generation of large quantities of liquid and solid radioactive mixed waste (RMW). This waste is subject to regulation under authority of both the Resource Conservation and Recovery Act of 1976{sup 2}(RCRA) and Atomic Energy Act{sup 3}. This report covers mixed waste only. Hazardous waste that is not contaminated with radionuclides is not addressed in this report. The Washington State Department of Ecology, US Environmental Protection Agency, and US Department of Energy have entered into an agreement, the Hanford Federal Facility Agreement and Consent Order{sup 1} (commonly referred to as the Tri-Party Agreement) to bring the Hanford Site operations into compliance with dangerous waste regulations. The Tri-Party Agreement required development of the original land disposal restrictions (LDR) plan and its annual updates to comply with LDR requirements for RMW. This report is the third update of the plan first issued in 1990. The Tri-Party Agreement requires, and the baseline plan and annual update reports provide, the information that follows: Waste characterization information; storage data; treatment information; waste reduction information; schedule; and progress.

  9. Progress in resolving Hanford Site high-level waste tank safety issues

    SciTech Connect (OSTI)

    Babad, H.; Eberlein, S.J.; Johnson, G.D.; Meacham, J.E.; Osborne, J.W.; Payne, M.A.; Turner, D.A.

    1995-02-01T23:59:59.000Z

    Interim storage of alkaline, high-level radioactive waste, from two generations of spent fuel reprocessing and waste management activities, has resulted in the accumulation of 238 million liters of waste in Hanford Site single and double-shell tanks. Before the 1990`s, the stored waste was believed to be: (1) chemically unreactive under its existing storage conditions and plausible accident scenarios; and (2) chemically stable. This paradigm was proven incorrect when detailed evaluation of tank contents and behavior revealed a number of safety issues and that the waste was generating flammable and noxious gases. In 1990, the Waste Tank Safety Program was formed to focus on identifying safety issues and resolving the ferrocyanide, flammable gas, organic, high heat, noxious vapor, and criticality issues. The tanks of concern were placed on Watch Lists by safety issue. This paper summarizes recent progress toward resolving Hanford Site high-level radioactive waste tank safety issues, including modeling, and analyses, laboratory experiments, monitoring upgrades, mitigation equipment, and developing a strategy to screen tanks for safety issues.

  10. Comparative approaches to siting low-level radioactive waste disposal facilities

    SciTech Connect (OSTI)

    Newberry, W.F.

    1994-07-01T23:59:59.000Z

    This report describes activities in nine States to select site locations for new disposal facilities for low-level radioactive waste. These nine States have completed processes leading to identification of specific site locations for onsite investigations. For each State, the status, legal and regulatory framework, site criteria, and site selection process are described. In most cases, States and compact regions decided to assign responsibility for site selection to agencies of government and to use top-down mapping methods for site selection. The report discusses quantitative and qualitative techniques used in applying top-down screenings, various approaches for delineating units of land for comparison, issues involved in excluding land from further consideration, and different positions taken by the siting organizations in considering public acceptance, land use, and land availability as factors in site selection.

  11. Waste Isolation Pilot Plant 2002 Site Environmental Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulenceUtilizeRural PublicRates >-Plans andWaste

  12. Savannah River Site Achieves Transuranic Waste Disposition Goal in 2013 |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,Zaleski - Policy Advisor, Energy Department MostWasteDepartment of

  13. Savannah River Site Achieves Transuranic Waste Disposition Goal in 2013 |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125Energy ServicesReportingWaste Management » Tank

  14. Savannah River Site Celebrates Historic Closure of Radioactive Waste Tanks:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125Energy ServicesReportingWaste Management » TankSenior

  15. Savannah River Site - Salt Waste Processing Facility Independent Technical Review

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSARDevelopmentalEfficiency | Department ofEnergySaraKSALT WASTE

  16. Engineering study of 50 miscellaneous inactive underground radioactive waste tanks located at the Hanford Site, Washington

    SciTech Connect (OSTI)

    Freeman-Pollard, J.R.

    1994-03-02T23:59:59.000Z

    This engineering study addresses 50 inactive underground radioactive waste tanks. The tanks were formerly used for the following functions associated with plutonium and uranium separations and waste management activities in the 200 East and 200 West Areas of the Hanford Site: settling solids prior to disposal of supernatant in cribs and a reverse well; neutralizing acidic process wastes prior to crib disposal; receipt and processing of single-shell tank (SST) waste for uranium recovery operations; catch tanks to collect water that intruded into diversion boxes and transfer pipeline encasements and any leakage that occurred during waste transfer operations; and waste handling and process experimentation. Most of these tanks have not been in use for many years. Several projects have, been planned and implemented since the 1970`s and through 1985 to remove waste and interim isolate or interim stabilize many of the tanks. Some tanks have been filled with grout within the past several years. Responsibility for final closure and/or remediation of these tanks is currently assigned to several programs including Tank Waste Remediation Systems (TWRS), Environmental Restoration and Remedial Action (ERRA), and Decommissioning and Resource Conservation and Recovery Act (RCRA) Closure (D&RCP). Some are under facility landlord responsibility for maintenance and surveillance (i.e. Plutonium Uranium Extraction [PUREX]). However, most of the tanks are not currently included in any active monitoring or surveillance program.

  17. Remaining Sites Verification Package for the 1607-F3 Sanitary Sewer System, Waste Site Reclassification Form 2006-047

    SciTech Connect (OSTI)

    L. M. Dittmer

    2007-04-26T23:59:59.000Z

    The 1607-F3 waste site is the former location of the sanitary sewer system that supported the 182-F Pump Station, the 183-F Water Treatment Plant, and the 151-F Substation. The sanitary sewer system included a septic tank, drain field, and associated pipeline, all in use between 1944 and 1965. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also showed that residual contaminant concentrations are protective of groundwater and the Columbia River.

  18. Result Summary for the Area 5 Radioactive Waste Management Site Performance Assessment Model Version 4.113

    SciTech Connect (OSTI)

    Shott, G. J.

    2012-04-15T23:59:59.000Z

    Preliminary results for Version 4.113 of the Nevada National Security Site Area 5 Radioactive Waste Management Site performance assessment model are summarized. Version 4.113 includes the Fiscal Year 2011 inventory estimate.

  19. Protecting subcontractor personnel during hazardous waste site characterization

    SciTech Connect (OSTI)

    Lankford, B.R.

    1987-01-01T23:59:59.000Z

    This paper covers Industrial Hygiene involvement in the Site Characterization Program, focusing on the field oversight responsibilities. It discusses the different types and levels of protective equipment, gives an example of the type of situation that can arise from field characterization efforts, and gives a brief summary of health protection program elements. 3 figs., 3 tabs.

  20. Hanford Site River Protection Project (RPP) High Level Waste Storage

    SciTech Connect (OSTI)

    KRISTOFZSKI, J.G.

    2000-01-31T23:59:59.000Z

    The CH2M HILL Hanford Group (CHG) conducts business to achieve the goals of the U.S. Department of Energy's (DOE) Office of River Protection at the Hanford Site. The CHG is organized to manage and perform work to safely store, retrieve, etc.

  1. On-Site Decontamination System for Liquid Low Level Radioactive Waste - 13010

    SciTech Connect (OSTI)

    OSMANLIOGLU, Ahmet Erdal [Cekmece Nuclear Research and Training Center, Kucukcekmece Istanbul (Turkey)] [Cekmece Nuclear Research and Training Center, Kucukcekmece Istanbul (Turkey)

    2013-07-01T23:59:59.000Z

    This study is based on an evaluation of purification methods for liquid low-level radioactive waste (LLLW) by using natural zeolite. Generally the volume of liquid low-level waste is relatively large and the specific activity is rather low when compared to other radioactive waste types. In this study, a pilot scale column was used with natural zeolite as an ion exchanger media. Decontamination and minimization of LLLW especially at the generation site decrease operational cost in waste management operations. Portable pilot scale column was constructed for decontamination of LLW on site. Effect of temperature on the radionuclide adsorption of the zeolite was determined to optimize the waste solution temperature for the plant scale operations. In addition, effect of pH on the radionuclide uptake of the zeolite column was determined to optimize the waste solution pH for the plant scale operations. The advantages of this method used for the processing of LLLW are discussed in this paper. (authors)

  2. Restoration of areas disturbed by site studies for a mined commercial radioactive waste repository: The Basalt Waste Isolation Project (BWIP)

    SciTech Connect (OSTI)

    Brandt, C.A.; Rickard, W.H. Jr.; Biehert, R.W.; Newell, R.L.; Page, T.L.

    1989-01-01T23:59:59.000Z

    The Basalt Waste Isolation Project (BWIP) was undertaken to environmentally characterize a portion of the US Department of Energy's Hanford Site in Washington State as a potential host for the nation's first mined commercial nuclear waste repository. Studies were terminated by Congress in 1987. Between 1976 and 1987, 72 areas located across the Hanford Site were disturbed by the BWIP. These areas include borehole pads, a large Exploratory Shaft Facility, and the Near Surface Test Facility. Most boreholes were cleared of vegetation, leveled, and stabilized with a thick layer of compacted pit-run gravel and sand. The Near Surface Test Facility consists of three mined adits, a rock-spoils bench, and numerous support facilities. Restoration began in 1988 with the objective of returning sites to pre-existing conditions using native species. The Hanford Site retains some of the last remnants of the shrub-steppe ecosystem in Washington. The primary constraints to restoring native vegetation at Hanford are low precipitation and the presence of cheatgrass, an extremely capable alien competitor. 5 figs.

  3. Establishment of a facility for intrusive characterization of transuranic waste at the Nevada Test Site

    SciTech Connect (OSTI)

    Foster, B.D.; Musick, R.G.; Pedalino, J.P.; Cowley, J.L. [Bechtel Nevada Corp., Las Vegas, NV (United States); Karney, C.C. [Dept. of Energy, Las Vegas, NV (United States); Kremer, J.L.

    1998-01-01T23:59:59.000Z

    This paper describes design and construction, project management, and testing results associated with the Waste Examination Facility (WEF) recently constructed at the Nevada Test Site (NTS). The WEF and associated systems were designed, procured, and constructed on an extremely tight budget and within a fast track schedule. Part 1 of this paper focuses on design and construction activities, Part 2 discusses project management of WEF design and construction activities, and Part 3 describes the results of the transuranic (TRU) waste examination pilot project conducted at the WEF. In Part 1, the waste examination process is described within the context of Waste Isolation Pilot Plant (WIPP) characterization requirements. Design criteria are described from operational and radiological protection considerations. The WEF engineered systems are described. These systems include isolation barriers using a glove box and secondary containment structure, high efficiency particulate air (HEPA) filtration and ventilation systems, differential pressure monitoring systems, and fire protection systems. In Part 2, the project management techniques used for ensuring that stringent cost/schedule requirements were met are described. The critical attributes of these management systems are described with an emphasis on team work. In Part 3, the results of a pilot project directed at performing intrusive characterization (i.e., examination) of TRU waste at the WEF are described. Project activities included cold and hot operations. Cold operations included operator training, facility systems walk down, and operational procedures validation. Hot operations included working with plutonium contaminated TRU waste and consisted of waste container breaching, waste examination, waste segregation, data collection, and waste repackaging.

  4. ADVANCES IN SE-79 ANALYSES ON SAVANNAH RIVER SITE RADIOACTIVE WASTE MATRICES

    SciTech Connect (OSTI)

    Diprete, D; C Diprete, C; Ned Bibler, N; Cj Bannochie, C; Michael Hay, M

    2009-03-16T23:59:59.000Z

    Waste cleanup efforts underway at the United States Department of Energy's (DOE) Savannah River Site (SRS) in South Carolina, as well as other DOE nuclear sites, have created a need to characterize {sup 79}Se in radioactive waste inventories. Successful analysis of {sup 79}Se in high activity waste matrices is challenging for a variety of reasons. As a result of these unique challenges, the successful quantification of {sup 79}Se in the types of matrices present at SRS requires an extremely efficient and selective separation of {sup 79}Se from high levels of interfering radionuclides. A robust {sup 79}Se radiochemical separation method has been developed at the Savannah River National Laboratory (SRNL) which is routinely capable of successfully purifying {sup 79}Se from a wide range of interfering radioactive species. In addition to a dramatic improvements in the Kd, ease, and reproducibility of the analysis, the laboratory time has been reduced from several days to only 6 hours.

  5. Waste Isolation Pilot Plant Site Environmental Report for calendar year 1989

    SciTech Connect (OSTI)

    Not Available

    1989-01-01T23:59:59.000Z

    This is the 1989 Site Environmental Report (SER) for the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. The WIPP is a government owned and contractor-operated facility. The WIPP project is operated by Westinghouse Electric Corporation for the US Department of Energy (DOE). The mission of the WIPP is to provide a research and development facility to demonstrate the safe disposal of transuranic (TRU) waste generated by the defense activities of the US Government. This report provides a comprehensive description of environmental activities at the WIPP during calendar year 1989. The WIPP facility will not receive waste until all concerns affecting opening the WIPP are addressed to the satisfaction of the Secretary of Energy. Therefore, this report describes the status of the preoperational activities of the Radiological Environmental Surveillance (RES) program, which are outlined in the Radiological Baseline Program for the Waste Isolation Pilot Plant (WTSD-TME-057). 72 refs., 13 figs., 20 tabs.

  6. 1995 Report on Hanford site land disposal restrictions for mixed waste

    SciTech Connect (OSTI)

    Black, D.G.

    1995-04-01T23:59:59.000Z

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order Milestone M-26-01E. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of land disposal restricted mixed waste at the Hanford Site. The U.S. Department of Energy, its predecessors, and contractors at the Hanford Site were involved in the production and purification of nuclear defense materials from the early 1940s to the late 1980s. These production activities have generated large quantities of liquid and solid radioactive mixed waste. This waste is subject to regulation under authority of both the Resource Conservation and Recovery Act of 1976 and Atomic Energy Act of 1954. This report covers mixed waste only. The Washington State Department of Ecology, U.S. Environmental Protection Agency, and U.S. Department of Energy have entered into an agreement, the Hanford Federal Facility Agreement and Consent Order (commonly referred to as the Tri-Party Agreement) to bring the Hanford Site operations into compliance with dangerous waste regulations. The Tri-Party Agreement required development of the original land disposal restrictions (LDRs) plan and its annual updates to comply with LDR requirements for radioactive mixed waste. This report is the fifth update of the plan first issued in 1990. Tri-Party Agreement negotiations completed in 1993 and approved in January 1994 changed and added many new milestones. Most of the changes were related to the Tank Waste Remediation System and these changes are incorporated into this report.

  7. 1996 Hanford site report on land disposal restrictions for mixed waste

    SciTech Connect (OSTI)

    Black, D.G.

    1996-04-01T23:59:59.000Z

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order milestone M-26-OIF. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of land disposal-restricted mixed waste management at the Hanford Site.

  8. Hydraulic testing of Salado Formation evaporites at the Waste Isolation Pilot Plant site: Second interpretive report

    SciTech Connect (OSTI)

    Beauheim, R.L. [Sandia National Labs., Albuquerque, NM (United States); Roberts, R.M.; Dale, T.F.; Fort, M.D.; Stensrud, W.A. [INTERA, Inc., Austin, TX (United States)

    1993-12-01T23:59:59.000Z

    Pressure-pulse, constant-pressure flow, and pressure-buildup tests have been performed in bedded evaporites of the Salado Formation at the Waste Isolation Pilot Plant (WIPP) site to evaluate the hydraulic properties controlling brine flow through the Salado. Transmissivities have been interpreted from six sequences of tests conducted on five stratigraphic intervals within 15 m of the WIPP underground excavations.

  9. INSTALLATION OF BUBBLERS IN THE SAVANNAH RIVER SITED DEFENSE WASTE PROCESSING FACILITY MELTER

    SciTech Connect (OSTI)

    Smith, M.; Iverson, D.

    2010-12-08T23:59:59.000Z

    Savannah River Remediation (SRR) LLC assumed the liquid waste contract at the Savannah River Site (SRS) in the summer of 2009. The main contractual agreement was to close 22 High Level Waste (HLW) tanks in eight years. To achieve this aggressive commitment, faster waste processing throughout the SRS liquid waste facilities will be required. Part of the approach to achieve faster waste processing is to increase the canister production rate of the Defense Waste Processing Facility (DWPF) from approximately 200 canisters filled with radioactive waste glass per year to 400 canisters per year. To reach this rate for melter throughput, four bubblers were installed in the DWPF Melter in the late summer of 2010. This effort required collaboration between SRR, SRR critical subcontractor EnergySolutions, and Savannah River Nuclear Solutions, including the Savannah River National Laboratory (SRNL). The tasks included design and fabrication of the bubblers and related equipment, testing of the bubblers for various technical issues, the actual installation of the bubblers and related equipment, and the initial successful operation of the bubblers in the DWPF Melter.

  10. Summary Of Cold Crucible Vitrification Tests Results With Savannah River Site High Level Waste Surrogates

    SciTech Connect (OSTI)

    Stefanovsky, Sergey; Marra, James; Lebedev, Vladimir

    2014-01-13T23:59:59.000Z

    The cold crucible inductive melting (CCIM) technology successfully applied for vitrification of low- and intermediate-level waste (LILW) at SIA Radon, Russia, was tested to be implemented for vitrification of high-level waste (HLW) stored at Savannah River Site, USA. Mixtures of Sludge Batch 2 (SB2) and 4 (SB4) waste surrogates and borosilicate frits as slurries were vitrified in bench- (236 mm inner diameter) and full-scale (418 mm inner diameter) cold crucibles. Various process conditions were tested and major process variables were determined. Melts were poured into 10L canisters and cooled to room temperature in air or in heat-insulated boxes by a regime similar to Canister Centerline Cooling (CCC) used at DWPF. The products with waste loading from ~40 to ~65 wt.% were investigated in details. The products contained 40 to 55 wt.% waste oxides were predominantly amorphous; at higher waste loadings (WL) spinel structure phases and nepheline were present. Normalized release values for Li, B, Na, and Si determined by PCT procedure remain lower than those from EA glass at waste loadings of up to 60 wt.%.

  11. 1997 Hanford site report on land disposal restrictions for mixed waste

    SciTech Connect (OSTI)

    Black, D.G.

    1997-04-07T23:59:59.000Z

    The baseline land disposal restrictions (LDR) plan was prepared in 1990 in accordance with the Hanford Federal Facility Agreement and Consent Order (commonly referred to as the Tn-Party Agreement) Milestone M-26-00 (Ecology et al, 1989). The text of this milestone is below. ''LDR requirements include limitations on storage of specified hazardous wastes (including mixed wastes). In accordance with approved plans and schedules, the U.S. Department of Energy (DOE) shall develop and implement technologies necessary to achieve full compliance with LDR requirements for mixed wastes at the Hanford Site. LDR plans and schedules shall be developed with consideration of other action plan milestones and will not become effective until approved by the U.S. Environmental Protection Agency (EPA) (or Washington State Department of Ecology [Ecology]) upon authorization to administer LDRs pursuant to Section 3006 of the Resource Conservation and Recovery Act of 1976 (RCRA). Disposal of LDR wastes at any time is prohibited except in accordance with applicable LDR requirements for nonradioactive wastes at all times. The plan will include, but not be limited to, the following: Waste characterization plan; Storage report; Treatment report; Treatment plan; Waste minimization plan; A schedule depicting the events necessary to achieve full compliance with LDR requirements; and A process for establishing interim milestones.

  12. DEVELOPMENT QUALIFICATION AND DISPOSAL OF AN ALTERNATIVE IMMOBILIZED LOW-ACTIVITY WASTE FORM AT THE HANFORD SITE

    SciTech Connect (OSTI)

    SAMS TL; EDGE JA; SWANBERG DJ; ROBBINS RA

    2011-01-13T23:59:59.000Z

    Demonstrating that a waste form produced by a given immobilization process is chemically and physically durable as well as compliant with disposal facility acceptance criteria is critical to the success of a waste treatment program, and must be pursued in conjunction with the maturation of the waste processing technology. Testing of waste forms produced using differing scales of processing units and classes of feeds (simulants versus actual waste) is the crux of the waste form qualification process. Testing is typically focused on leachability of constituents of concern (COCs), as well as chemical and physical durability of the waste form. A principal challenge regarding testing immobilized low-activity waste (ILAW) forms is the absence of a standard test suite or set of mandatory parameters against which waste forms may be tested, compared, and qualified for acceptance in existing and proposed nuclear waste disposal sites at Hanford and across the Department of Energy (DOE) complex. A coherent and widely applicable compliance strategy to support characterization and disposal of new waste forms is essential to enhance and accelerate the remediation of DOE tank waste. This paper provides a background summary of important entities, regulations, and considerations for nuclear waste form qualification and disposal. Against this backdrop, this paper describes a strategy for meeting and demonstrating compliance with disposal requirements emphasizing the River Protection Project (RPP) Integrated Disposal Facility (IDF) at the Hanford Site and the fluidized bed steam reforming (FBSR) mineralized low-activity waste (LAW) product stream.

  13. Remote Handled TRU Waste Status and Activities and Challenges at the Hanford Site

    SciTech Connect (OSTI)

    MCKENNEY, D.E.

    2000-02-01T23:59:59.000Z

    A significant portion of the Department of Energy's forecast volume of remote-handled (RH) transuranic (TRU) waste will originate from the Hanford Site. The forecasted Hanford RH-TRU waste volume of over 2000 cubic meters may constitute over one-third of the forecast inventory of RH-TRU destined for disposal at the Waste Isolation Pilot Plant (WIPP). To date, the Hanford TRU waste program has focused on the retrieval, treatment and certification of the contact-handled transuranic (CH-TRU) wastes. This near-term focus on CH-TRU is consistent with the National TRU Program plans and capabilities. The first shipment of CH-TRU waste from Hanford to the WIPP is scheduled early in Calendar Year 2000. Shipments of RH-TRU from Hanford to the WIPP are scheduled to begin in Fiscal Year 2006 per the National TRU Waste Management Plan. This schedule has been incorporated into milestones within the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement). These Tri-Party milestones (designated the ''M-91'' series of milestones) relate to development of project management plans, completion of design efforts, construction and contracting schedules, and initiation of process operations. The milestone allows for modification of an existing facility, construction of a new facility, and/or commercial contracting to provide the capabilities for processing and certification of RH-TRU wastes for disposal at the WIPP. The development of a Project Management Plan (PMP) for TRU waste is the first significant step in the development of a program for disposal of Hanford's RH-TRU waste. This PMP will address the path forward for disposition of waste streams that cannot be prepared for disposal in the Hanford Waste Receiving and Processing facility (a contact-handled, small container facility) or other Site facilities. The PMP development effort has been initiated, and the PMP will be provided to the regulators for their approval by June 30, 2000. This plan will detail the path forward for the Hanford RH-TRU program.

  14. Annual Transportation Report for Radioactive Waste Shipments to and from the Nevada Test Site, Fiscal Year 2009

    SciTech Connect (OSTI)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2010-02-01T23:59:59.000Z

    In February 1997, the U.S. Department of Energy (DOE), Nevada Operations Office (now known as the Nevada Site Office) issued the Mitigation Action Plan which addressed potential impacts described in the “Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada” (DOE/EIS 0243). The DOE, Nevada Operations Office committed to several actions, including the preparation of an annual report, which summarizes waste shipments to and from the Nevada Test Site (NTS) Radioactive Waste Management Site (RWMS) at Area 5 and Area 3. Since 2006, the Area 3 RWMS has been in cold stand-by. This document satisfies requirements regarding low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) transported to and from the NTS during FY 2009. In addition, this document provides shipment, volume, and route information on transuranic (TRU) waste shipped from the NTS to the Idaho National Laboratory, near Idaho Falls, Idaho.

  15. Hanford Site Hazardous waste determination report for transuranic debris waste streams NPFPDL1A, NPFPDL1B, NPFPDL1C and NPFPDL1D

    SciTech Connect (OSTI)

    WINTERHALDER, J.A.

    1999-09-29T23:59:59.000Z

    This Hazardous Waste Determination Report is intended to satisfy the terms of a Memorandum of Agreement (Agreement signed on June 16, 1999) between the U.S. Department of Energy and the New Mexico Environment Department. The Agreement pertains to the exchange of information before a final decision is made on the Waste Isolation Pilot Plant application for a permit under the ''New Mexico Hazardous Waste Act''. The Agreement will terminate upon the effective date of a final ''New Mexico Hazardous Waste Act'' permit for the Waste Isolation Pilot Plant. In keeping with the principles and terms of the Agreement, this report describes the waste stream data and information compilation process, and the physical and chemical analyses that the U.S. Department of Energy has performed on selected containers of transuranic debris waste to confirm that the waste is nonhazardous (non-mixed). This also summarizes the testing and analytical results that support the conclusion that the selected transuranic debris waste is not hazardous and thus, not subject to regulation under the ''Resource Conservation and Recovery Act'' or the ''New Mexico Hazardous Waste Act''. This report will be submitted to the New Mexico Environment Department no later than 45 days before the first shipment of waste from the Hanford Site to the Waste Isolation Pilot Plant, unless the parties mutually agree in writing to a shorter time. The 52 containers of transuranic debris waste addressed in this report were generated, packaged, and placed into storage between 1995 and 1997. Based on reviews of administrative documents, operating procedures, waste records, generator certifications, and personnel interviews, this transuranic debris waste was determined to be nonhazardous. This determination is supported by the data derived from nondestructive examination, confirmatory visual examination, and the results of container headspace gas sampling and analysis. Therefore, it is concluded that this transuranic debris waste, which consists of 52 containers from waste streams NPFPDLIA, NPFPDLIB, NPFPDLIC, and NPFPDLID, is not hazardous waste, and no hazardous waste numbers specified in Title 40 Code of Federal Regulations, Part 261, have been assigned. Accordingly, the 52 containers of transuranic debris waste addressed in this report meet the requirements for transuranic waste as defined by the Department of Energy Waste Acceptance Criteria for the Waste Isolation Pilot Plant. The 52 containers are acceptable for disposal at the Waste Isolation Pilot Plant as nonhazardous transuranic waste.

  16. Site Programs & Cooperative Agreements: Waste Isolation Pilot Plant |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary of EnergyFocus GroupSherrellHanford Site Programs

  17. Performance evaluation of the technical capabilities of DOE sites for disposal of mixed low-level waste: Volume 3, Site evaluations

    SciTech Connect (OSTI)

    Waters, R.D.; Gruebel, M.M. [eds.] [eds.

    1996-03-01T23:59:59.000Z

    A team of analysts designed and conducted a performance evaluation to estimate the technical capabilities of fifteen Department of Energy sites for disposal of mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Volume 1 summarizes the process for selecting the fifteen sites, the methodology used in the evaluation, and the conclusions derived from the evaluation. Volume 2 provides details about the site-selection process, the performance-evaluation methodology, and the overall results of the analysis. Volume 3 contains detailed evaluations of the fifteen sites and discussion of the results for each site.

  18. Assessment of national systems for obtaining local acceptance of waste management siting and routing activities

    SciTech Connect (OSTI)

    Paige, H.W.; Lipman, D.S.; Owens, J.E.

    1980-07-01T23:59:59.000Z

    There is a rich mixture of formal and informal approaches being used in our sister nuclear democracies in their attempts to deal with the difficulties of obtaining local acceptance for siting of waste management facilities and activities. Some of these are meeting with a degree of success not yet achieved in the US. Although this survey documents and assesses many of these approaches, time did not permit addressing in any detail their relevance to common problems in the US. It would appear the US could benefit from a periodic review of the successes and failures of these efforts, including analysis of their applicability to the US system. Of those countries (Germany, Sweden, Switzerland, Japan, Belgium, and the US) who are working to a time table for the preparation of a high-level waste (HLW) repository, Germany is the only country to have gained local siting acceptance for theirs. With this (the most difficult of siting problems) behind them they appear to be in the best overall condition relative to waste management progress and plans. This has been achieved without a particularly favorable political structure, made up for by determination on the part of the political leadership. Of the remaining three countries studied (France, UK and Canada) France, with its AVM production facility, is clearly the world leader in the HLW immobilization aspect of waste management. France, Belgium and the UK appear to have the least favorable political structures and environments for arriving at waste management decisions. US, Switzerland and Canada appear to have the least favorable political structures and environments for arriving at waste management decisions.

  19. Closure Report for Corrective Action Unit 143: Area 25 Contaminated Waste Dumps, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    D. S. Tobiason

    2002-03-01T23:59:59.000Z

    This Closure Report (CR) has been prepared for the Area 25 Contaminated Waste Dumps (CWD), Corrective Action Unit (CAU) 143 in accordance with the Federal Facility Agreement and Consent Order [FFACO] (FFACO, 1996) and the Nevada Division of Environmental Protection (NDEP)-approved Corrective Action Plan (CAP) for CAU 143: Area 25, Contaminated Waste Dumps, Nevada Test Site, Nevada. CAU 143 consists of two Corrective Action Sites (CASs): 25-23-09 CWD No.1, and 25-23-03 CWD No.2. The Area 25 CWDs are historic disposal units within the Area 25 Reactor Maintenance, Assembly, and Disassembly (R-MAD), and Engine Maintenance, Assembly, and Disassembly (E-MAD) compounds located on the Nevada Test Site (NTS). The R-MAD and E-MAD facilities originally supported a portion of the Nuclear Rocket Development Station in Area 25 of the NTS. CWD No.1 CAS 25-23-09 received solid radioactive waste from the R-MAD Compound (East Trestle and West Trench Berms) and 25-23-03 CWD No.2 received solid radioactive waste from the E-MAD Compound (E-MAD Trench).

  20. Expected near-field thermal performance for nuclear waste repositories at potential salt sites: Technical report

    SciTech Connect (OSTI)

    McNulty, E.G.

    1987-08-01T23:59:59.000Z

    Thermal analyses were made for the environmental assessments of seven potential salt sites for a nuclear waste repository. These analyses predicted that potential repository sites in domal salts located in the Gulf Coast will experience higher temperature than those in bedded salts of Paradox and Palo Duro Basins, mainly because of higher ambient temperatures at depth. The TEMPV5 code, a semi-analytical heat transfer code for finite line sources, calculated temperatures for commercial high-level waste (CHLW) and spent fuel from pressurized-water reactors (SFPWR). Benchmarks with HEATING6, THAC-SIP-3D, STEALTH, and SPECTROM-41 showed that TEMPV5 agreed closely in the very near field around the waste package and approximately in the near-field and far-field regions of the repository. The analyses used site-specific thermal conductivities that were increased by 40% to compensate for reductions caused by testing technique, salt impurities, and other heterogeneities, and sampling disturbance. Analyses showed peak salt temperatures of 236/sup 0/C (CHLW) and 134/sup 0/C (SFPWR) for the bedded salt and 296/sup 0/C (CHLW) and 180/sup 0/C (SFPWR) for the domal salt. Analyses with uncorrected laboratory thermal conductivities would increase peak salt temperatures by about 120/sup 0/C for CHLW and about 60/sup 0/C for SFPWR. These temperature increases would increase the thermally induced flow of brine and accelerate corrosion of the waste package. 30 refs., 35 figs., 48 tabs.

  1. Final Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement Richland, Washington

    SciTech Connect (OSTI)

    N /A

    2004-02-13T23:59:59.000Z

    This Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement (HSW EIS) provides environmental and technical information concerning U.S. Department of Energy (DOE) ongoing and proposed waste management practices at the Hanford Site in Washington State. The HSW EIS updates some analyses of environmental consequences from previous documents and provides evaluations for activities that may be implemented consistent with the Waste Management Programmatic Environmental Impact Statement (WM PEIS; DOE 1997c) Records of Decision (RODs). The draft HSW EIS was initially issued in April 2002 for public comment (DOE 2002b). A revised draft HSW EIS was issued in March 2003 to address new waste management alternatives that had been proposed since the initial draft HSW EIS was prepared, and to address comments received during the public review period for the first draft (DOE 2003d). The revised draft HSW EIS also incorporated alternatives for disposal of immobilized low-activity waste (ILAW) from treatment of Hanford Site tank waste in the waste treatment plant (WTP) currently under construction, an activity that was not included in the first draft (68 FR 7110). This final HSW EIS describes the DOE preferred alternative, and in response to public comments received on the March 2003 revised draft, provides additional analyses for some environmental consequences associated with the preferred alternative, with other alternatives, and with cumulative impacts. Public comments on the revised draft HSW EIS are addressed in the comment response document (Volume III of this final EIS). This HSW EIS describes the environmental consequences of alternatives for constructing, modifying, and operating facilities to store, treat, and/or dispose of low-level (radioactive) waste (LLW), transuranic (TRU) waste, ILAW, and mixed low-level waste (MLLW) including WTP melters at Hanford. In addition, the potential long-term consequences of LLW, MLLW, and ILAW disposal on groundwater and surface water are evaluated for a 10,000-year period, although the DOE performance standards only require assessment for the first 1000 years after disposal (DOE 2001f). This document does not address non-radioactive waste that contains ''hazardous'' or ''dangerous'' waste, as defined under the Resource Conservation and Recovery Act (RCRA) of 1976 (42 USC 6901) and Washington State Dangerous Waste regulations (WAC 173-303). Following a previous National Environmental Policy Act (NEPA, 42 USC 4321) review (DOE 1997d), DOE decided to dispose of TRU waste in New Mexico at the Waste Isolation Pilot Plant (WIPP), a repository that meets the requirements of 40 CFR 191 (63 FR 3623). This HSW EIS has been prepared in accordance with NEPA, the DOE implementing procedures for NEPA 10 CFR 1021, and the Council on Environmental Quality (CEQ) Regulations for Implementing the Procedural Provisions of NEPA (40 CFR 1500-1508).

  2. Savannah River Site offsite hazardous waste shipment data validation report. Revision 1

    SciTech Connect (OSTI)

    Casey, C.; Kudera, D.E.; Page, L.A.; Rohe, M.J.

    1995-05-01T23:59:59.000Z

    The objective of this data validation is to verify that waste shipments reported in response to the US Department of Energy Headquarters data request are properly categorized according to DOE-HQ definitions. This report documents all findings and actions resulting from the independent review of the Savannah River Site data submittal, and provides a summary of the SRS data submittal and data validation strategy. The overall hazardous waste management and offsite release process from 1987--1991 is documented, along with an identification and description of the hazardous waste generation facilities. SRS did not ship any hazardous waste offsite before 1987. Sampling and analysis and surface surveying procedures and techniques used in determining offsite releasability of the shipments are also described in this report. SRS reported 150 manifested waste shipments from 1984 to 1991 that included 4,755 drums or lab packs and 13 tankers. Of these waste items, this report categorizes 4,251 as clean (including 12 tankers), 326 as likely clean, 138 as likely radioactive, and 55 as radioactive (including one tanker). Although outside the original scope of this report, 14 manifests from 1992 and 1993 are included, covering 393 drums or lab packs and seven tankers. From the 1992--1993 shipments, 58 drums or lab packs are categorized as radioactive and 16 drums are categorized as likely radioactive. The remainder are categorized as clean.

  3. Treatment of M-area mixed wastes at the Savannah River Site

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    The Department of Energy has prepared this environmental assessment, DOE/EA-0918, to assess the potential environmental impacts of the treatment of mixed wastes currently stored in the M-Area at the Savannah River Site, near Aiken, South Carolina. DOE is proposing to treat and stabilize approximately 700,000 gallons of mixed waste currently stored in the Interim Treatment/Storage Facility (IT/SF) and Mixed Waste Storage Shed (MWSS). This waste material is proposed to be stabilized using a vitrification process and temporarily stored until final disposal is available by the year 2005. This document has been prepared to assess the potential environmental impacts attributable to the treatment and stabilization of M-area mixed wastes, the closure of the interim storage area, and storage of the vitrified waste until disposal in onsite RCRA vaults. Based on the analyses in the environmental assessment, the Department of Energy has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement is not required, and the Department of Energy is issuing this finding of no significant impact.

  4. Environmental restoration and waste management Site-Specific Plan for the Oak Ridge Reservation. FY 1993

    SciTech Connect (OSTI)

    Not Available

    1993-01-15T23:59:59.000Z

    The United States Department of Energy (DOE) is committed to achieving and maintaining environmental regulatory compliance while responding to public concerns and emphasizing waste minimization. DOE publishes the Environmental Restoration and Waste Management Five-Year Plan (FYP) annually to document its progress towards these goals. The purpose of this Site-Specific Plan (SSP) is to describe the activities undertaken to implement the FYP goals at the DOE Oak Ridge Field Office (DOE/OR) installations and programs specifically for the Oak Ridge Reservation (ORR) and surrounding areas. This SSP addresses activities and goals to be accomplished during FY93 even through the FYP focuses on FY94.

  5. Corrosion Control Measures For Liquid Radioactive Waste Storage Tanks At The Savannah River Site

    SciTech Connect (OSTI)

    Wiersma, B. J.; Subramanian, K. H.

    2012-11-27T23:59:59.000Z

    The Savannah River Site has stored radioactive wastes in large, underground, carbon steel tanks for approximately 60 years. An assessment of potential degradation mechanisms determined that the tanks may be vulnerable to nitrate- induced pitting corrosion and stress corrosion cracking. Controls on the solution chemistry and temperature of the wastes are in place to mitigate these mechanisms. These controls are based upon a series of experiments performed using simulated solutions on materials used for construction of the tanks. The technical bases and evolution of these controls is presented in this paper.

  6. Status report on resolution of Waste Tank Safety Issues at the Hanford Site. Revision 1

    SciTech Connect (OSTI)

    Dukelow, G.T.; Hanson, G.A. [Los Alamos Technical Associates, Inc., Kennewick, WA (United States)

    1995-05-01T23:59:59.000Z

    The purpose of this report is to provide and update the status of activities supporting the resolution of waste tank safety issues and system deficiencies at the Hanford Site. This report provides: (1) background information on safety issues and system deficiencies; (2) a description of the Tank Waste Remediation System and the process for managing safety issues and system deficiencies; (3) changes in safety issue description, prioritization, and schedules; and (4) a summary of the status, plans, order of magnitude, cost, and schedule for resolving safety issues and system deficiencies.

  7. Environmental restoration and waste management site-specific plan for Richland Operations Office. [Contains glossary

    SciTech Connect (OSTI)

    Not Available

    1991-09-01T23:59:59.000Z

    This document was prepared to implement and support the US Department of Energy-Headquarters (DOE-HQ) national plan. The national plan, entitled Environmental Restoration and Waste Management Five-Year Plan (DOE 1990b) (hereinafter referred to as the DOE-HQ Five-Year Plan) is the cornerstone of the US Department of Energy's (DOE) long-term strategy in environmental restoration and waste management. The DOE-HQ Five-Year Plan addresses overall philosophy and environmental and waste-related activities under the responsibilities of the DOE Office of Environmental Restoration and Waste Management. The plan also reaffirms DOE-HQ goals to bring its nuclear sites into environmental compliance in cooperation with its regulators and the public, and to clean up and restore the environment by 2019 (the commitment for the Hanford Site is for one year sooner, or 2018). This document is part of the site-specific plan for the US Department of Energy-Richland Operations Office (DOE-RL). It is the first revision of the original plan, which was dated December 1989 (DOE-RL 1989a). This document is a companion document to the Overview of the Hanford Cleanup Five-Year Plan (DOE-RL 1989d) and The Hanford Site Environmental Restoration and Waste Management Five-Year Plan Activity Data Sheets (DOE-RL 1991). Although there are three documents that make up the complete DOE-RL plan, this detailed information volume was prepared so it could be used as a standalone document. 71 refs., 40 figs., 28 tabs.

  8. Technical Scope and Approach for the 2004 Composite Analysis of Low Level Waste Disposal at the Hanford Site

    SciTech Connect (OSTI)

    Kincaid, Charles T.; Bryce, Robert W.; Buck, John W.

    2004-07-09T23:59:59.000Z

    A composite analysis is required by U.S. Department of Energy (DOE) Manual 435.1-1 to ensure public safety through the management of active and planned low-level radioactive waste disposal facilities associated with the Hanford Site (DOE/HQ-Manual 435.1-1). A Composite Analysis is defined as ''a reasonably conservative assessment of the cumulative impact from active and planned low-level waste disposal facilities, and all other sources from radioactive contamination that could interact with the low-level waste disposal facility to affect the dose to future members of the public''. At the Hanford Site, a composite analysis is required for continued disposal authorization for the immobilized low-activity waste, tank waste vitrification plant melters, low level waste in the 200 East and 200 West Solid Waste Burial Grounds, and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) waste in the Environmental Restoration Disposal Facility. The 2004 Composite Analysis will be a site-wide analysis, considering final remedial actions for the Columbia River corridor and the Central Plateau at the Hanford Site. The river corridor includes waste sites and facilities in each of the 100 Areas as well as the 300, 400, and 600 Areas. The remedial actions for the river corridor are being conducted to meet residential land use standards with the vision of the river corridor being devoted to a combination of recreation and preservation. The ''Central Plateau'' describes the region associated with operations and waste sites of the 200 Areas. DOE is developing a strategy for closure of the Central Plateau area by 2035. At the time of closure, waste management activities will shrink to a Core Zone within the Central Plateau. The Core Zone will contain the majority of Hanford's permanently disposed waste

  9. The Performance of Underground Radioactive Waste Storage Tanks at the Savannah River Site: A 60-Year Historical Perspective

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wiersma, Bruce J.

    2014-03-01T23:59:59.000Z

    The Savannah River Site produced weapons-grade materials for nearly 35 years between 1953 and 1988. The legacy of this production is nearly 37 million gallons of radioactive waste. Since the 1950s, the liquid waste has been stored in large, underground carbon steel waste tanks. During the past 20 years, the site has begun to process the waste so that it may be stored in vitrified and grout forms, which are more suitable for long-term storage. Over the history of the site, some tanks have experienced leakage of the waste to the secondary containment. This article is a review of themore »instances of leakage and corrosion degradation that the tanks and associated equipment have experienced since the first tanks were built. Furthermore, the activities that the site has taken to mitigate the degradation and manage the service life of the tank for its anticipated lifetime are reviewed.« less

  10. Engineering evaluation of alternatives for the disposition of Niagara Falls Storage Site, its residues and wastes

    SciTech Connect (OSTI)

    Not Available

    1984-01-01T23:59:59.000Z

    The final disposition scenarios selected by DOE for assessment in this document are consistent with those stated in the Notice of Intent to prepare an Environmental Impact Statement (EIS) for the Niagara Falls Storage Site (NFSS) (DOE, 1983d) and the modifications to the alternatives resulting from the public scoping process. The scenarios are: take no action beyond interim remedial measures other than maintenance and surveillance of the NFSS; retain and manage the NFSS as a long-term waste management facility for the wastes and residues on the site; decontaminate, certify, and release the NFSS for other use, with long-term management of the wastes and residues at other DOE sites; and partially decontaminate the NFSS by removal and transport off site of only the more radioactive residues, and upgrade containment of the remaining wastes and residues on site. The objective of this document is to present to DOE the conceptual engineering, occupational radiation exposure, construction schedule, maintenance and surveillance requirements, and cost information relevant to design and implementation of each of the four scenarios. The specific alternatives within each scenario used as the basis for discussion in this document were evaluated on the bases of engineering considerations, technical feasibility, and regulatory requirements. Selected alternatives determined to be acceptable for each of the four final disposition scenarios for the NFSS were approved by DOE to be assessed and costed in this document. These alternatives are also the subject of the EIS for the NFSS currently being prepared by Argonne National Laboratory (ANL). 40 figures, 38 tables.

  11. Adequacy of a Small Quantity Site RH-TRU Waste Program in Meeting Proposed WIPP Characterization Objectives

    SciTech Connect (OSTI)

    Biedscheid, J.; Stahl, S.; Devarakonda, M.; Peters, K.; Eide, J.

    2002-02-26T23:59:59.000Z

    The first remote-handled transuranic (RH-TRU) waste is expected to be permanently disposed of at the Waste Isolation Pilot Plant (WIPP) during Fiscal Year (FY) 2003. The first RH-TRU waste shipments are scheduled from the Battelle Columbus Laboratories (BCL) to WIPP in order to facilitate compliance with BCL Decommissioning Project (BCLDP) milestones. Milestones requiring RH-TRU waste containerization and removal from the site by 2004 in order to meet a 2006 site closure goal, established by Congress in the Defense Facilities Closure Projects account, necessitated the establishment and implementation of a site-specific program to direct the packaging of BCLDP RH-TRU waste prior to the finalization of WIPP RH-TRU waste characterization requirements. The program was designed to collect waste data, including audio and videotape records of waste packaging, such that upon completion of waste packaging, comprehensive data records exist from which compliance with final WIPP RH-TRU waste characterization requirements can be demonstrated. With the BCLDP data records generated to date and the development by the U.S. Department of Energy (DOE)-Carlsbad Field Office (CBFO) of preliminary documents proposing the WIPP RH-TRU waste characterization program, it is possible to evaluate the adequacy of the BCLDP program with respect to meeting proposed characterization objectives. The BCLDP characterization program uses primarily acceptable knowledge (AK) and visual examination (VE) during waste packaging to characterize RH-TRU waste. These methods are used to estimate physical waste parameters, including weight percentages of metals, cellulosics, plastics, and rubber in the waste, and to determine the absence of prohibited items, including free liquids. AK combined with computer modeling is used to estimate radiological waste parameters, including total activity on a waste container basis, for the majority of BCLDP RH-TRU waste. AK combined with direct analysis is used to characterize radiological parameters for the small populations of the RH-TRU waste generated by the BCLDP. All characterization based on AK is verified. Per its design for comprehensive waste data collection, the BCLDP characterization program using AK and waste packaging procedures, including VE during packaging, meets the proposed WIPP RH-TRU waste characterization objectives. The conservative program design implemented generates certification data that will be adequate to meet any additional program requirements that may be imposed by the CBFO.

  12. STEAM REFORMING TECHNOLOGY DEMONSTRATION FOR THE DESTRUCTION OF ORGANICS ON ACTUAL DOE SAVANNAH RIVER SITE TANK 48H WASTE 9138

    SciTech Connect (OSTI)

    Burket, P

    2009-02-24T23:59:59.000Z

    This paper describes the design of the Bench-scale Steam Reformer (BSR); a processing unit for demonstrating steam reforming technology on actual radioactive waste [1]. It describes the operating conditions of the unit used for processing a sample of Savannah River Site (SRS) Tank 48H waste. Finally, it compares the results from processing the actual waste in the BSR to processing simulant waste in the BSR to processing simulant waste in a large pilot scale unit, the Fluidized Bed Steam Reformer (FBSR), operated at Hazen Research Inc. in Golden, CO. The purpose of this work was to prove that the actual waste reacted in the same manner as the simulant waste in order to validate the work performed in the pilot scale unit which could only use simulant waste.

  13. Site Selection and Geological Research Connected with High Level Waste Disposal Programme in the Czech Republic

    SciTech Connect (OSTI)

    Tomas, J.

    2003-02-25T23:59:59.000Z

    Attempts to solve the problem of high-level waste disposal including the spent fuel from nuclear power plants have been made in the Czech Republic for over the 10 years. Already in 1991 the Ministry of Environment entitled The Czech Geological Survey to deal with the siting of the locality for HLW disposal and the project No. 3308 ''The geological research of the safe disposal of high level waste'' had started. Within this project a sub-project ''A selection of perspective HLW disposal sites in the Bohemian Massif'' has been elaborated and 27 prospective areas were identified in the Czech Republic. This selection has been later narrowed to 8 areas which are recently studied in more detail. As a parallel research activity with siting a granitic body Melechov Massif in Central Moldanubian Pluton has been chosen as a test site and the 1st stage of research i.e. evaluation and study of its geological, hydrogeological, geophysical, tectonic and structural properties has been already completed. The Melechov Massif was selected as a test site after the recommendation of WATRP (Waste Management Assessment and Technical Review Programme) mission of IAEA (1993) because it represents an area analogous with the host geological environment for the future HLW and spent fuel disposal in the Czech Republic, i.e. variscan granitoids. It is necessary to say that this site would not be in a locality where the deep repository will be built, although it is a site suitable for oriented research for the sampling and collection of descriptive data using up to date and advanced scientific methods. The Czech Republic HLW and spent fuel disposal programme is now based on The Concept of Radioactive Waste and Spent Nuclear Fuel Management (''Concept'' hereinafter) which has been prepared in compliance with energy policy approved by Government Decree No. 50 of 12th January 2000 and approved by the Government in May 2002. Preparation of the Concept was required, amongst other reasons in connection with preparations for the Czech Republic's accession to the European Union and in connection with the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management adopted under the auspices of the International Atomic Energy Agency, which was signed by the Czech Republic in 1997. According to the approved Concept it is expected that a deep geological repository in the Czech Republic will be built in granitic rocks.

  14. Radioactive Waste Management and Environmental Contamination Issues at the Chernobyl Site

    SciTech Connect (OSTI)

    Napier, Bruce A.; Schmieman, Eric A.; Voitsekhovitch, Oleg V.

    2007-11-01T23:59:59.000Z

    The destruction of the Unit 4 reactor at the Chernobyl Nuclear Power Plant resulted in the generation of radioactive contamination and radioactive waste at the site and in the surrounding area (referred to as the Exclusion Zone). In the course of remediation activities, large volumes of radioactive waste were generated and placed in temporary near surface waste-storage and disposal facilities. Trench and landfill type facilities were created from 1986 to 1987 in the Chernobyl Exclusion Zone at distances 0.5 to 15 km from the NPP site. This large number of facilities was established without proper design documentation, engineered barriers, or hydrogeological investigations and they do not meet contemporary waste-safety requirements. Immediately following the accident, a Shelter was constructed over the destroyed reactor; in addition to uncertainties in stability at the time of its construction, structural elements of the Shelter have degraded as a result of corrosion. The main potential hazard of the Shelter is a possible collapse of its top structures and release of radioactive dust into the environment. A New Safe Confinement (NSC) with a 100-years service life is planned to be built as a cover over the existing Shelter as a longer-term solution. The construction of the NSC will enable the dismantlement of the current Shelter, removal of highly radioactive, fuel-containing materials from Unit 4, and eventual decommissioning of the damaged reactor. More radioactive waste will be generated during NSC construction, possible Shelter dismantling, removal of fuel containing materials, and decommissioning of Unit 4. The future development of the Exclusion Zone depends on the future strategy for converting Unit 4 into an ecologically safe system, i.e., the development of the NSC, the dismantlement of the current Shelter, removal of fuel containing material, and eventual decommissioning of the accident site. To date, a broadly accepted strategy for radioactive waste management at the reactor site and in the Exclusion Zone, and especially for high-level and long-lived waste, has not been developed.

  15. Geochemical information for sites contaminated with low-level radioactive wastes: II. St. Louis Airport Storage Site

    SciTech Connect (OSTI)

    Seeley, F.G.; Kelmers, A.D.

    1985-01-01T23:59:59.000Z

    The St. Louis Airport Storage Site (SLASS) became radioactively contaminated as a result of wastes that were being stored from operations to recover uranium from pitchblende ores in the 1940s and 1950s. The US Department of Energy is considering various remedial action options for the SLASS under the Formerly Utilized Site Remedial Action Program (FUSRAP). This report describes the results of geochemical investigations, carried out to support the FUSRAP activities and to aid in quantifying various remedial action options. Soil and groundwater samples from the site were characterized, and sorption ratios for uranium and radium and apparent concentration limit values for uranium were measured in soil/groundwater systems by batch contact methodology. The uranium and radium concentrations in soil samples were significantly above background near the old contaminated surface horizon (now at the 0.3/sup -/ to 0.9/sup -/m depth); the maximum values were 1566 ..mu..g/g and 101 pCi/g, respectively. Below about the 6/sup -/m depth, the concentrations appeared to be typical of those naturally present in soils of this area (3.8 +- 1.2 ..mu..g/g and 3.1 +- 0.6 pCi/g). Uranium sorption ratios showed stratigraphic trends but were generally moderate to high (100 to 1000 L/kg). The sorption isotherm suggested an apparent uranium concentration limit of about 200 mg/L. This relatively high solubility can probably be correlated with the carbonate content of the soil/groundwater systems. The lower sorption ratio values obtained from the sorption isotherm may have resulted from changes in the experimental procedure or the groundwater used. The SLASS appears to exhibit generally favorable behavior for the retardation of uranium solubilized from waste in the site. Parametric tests were conducted to estimate the sensitivity of uranium sorption and solubility to the pH and carbonate content of the system.

  16. The risk implications of approaches to setting soil remediation goals at hazardous waste contaminated sites

    SciTech Connect (OSTI)

    Labieniec, P.A.

    1994-08-01T23:59:59.000Z

    An integrated exposure and carcinogenic risk assessment model for organic contamination in soil, SoilRisk, was developed and used for evaluating the risk implications of both site-specific and uniform-concentration approaches to setting soil remediation goals at hazardous-waste-contaminated sites. SoilRisk was applied to evaluate the uncertainty in the risk estimate due to uncertainty in site conditions at a representative site. It was also used to evaluate the variability in risk across a region of sites that can occur due to differences in site characteristics that affect contaminant transport and fate when a uniform concentration approach is used. In evaluating regional variability, Ross County, Ohio and the State of Ohio were used as examples. All analyses performed considered four contaminants (benzene, trichloroethylene (TCE), chlordane, and benzo[a]pyrene (BAP)) and four exposure scenarios (commercial, recreational and on- and offsite residential). Regardless of whether uncertainty in risk at a single site or variability in risk across sites was evaluated, the exposure scenario specified and the properties of the target contaminant had more influence than variance in site parameters on the resulting variance and magnitude of the risk estimate. In general, variance in risk was found to be greater for the relatively less degradable and more mobile of the chemicals studied (TCE and chlordane) than for benzene which is highly degradable and BAP which is very immobile in the subsurface.

  17. Alternatives for management of wastes generated by the formerly utilized sites remedial action program and supplement

    SciTech Connect (OSTI)

    Gilbert, T.L.; Peterson, J.M.; Vocke, R.W.; Alexander, J.K.

    1983-03-01T23:59:59.000Z

    Alternatives for disposal or stabilization of the wastes generated by the US Department of Energy's Formerly Utilized Sites Remedial Action Program (FUSRAP) are identified and compared, with emphasis on the long-term aspects. These wastes consist of soil material and rubble containing trace amounts of radionuclides. A detailed pathway analysis for the dose to the maximally exposed individual is carried out using an adaptation of the natural analogue method. Comparisons of the different alternatives, based on the results of the pathway analysis and qualitative cost considerations, indicate that, if the hazard is such that the wastes must be removed and disposed of rather than stabilized in place, disposal by immediate dispersal is preferable to containment, and containment followed by slow planned dispersal is preferable to containment without dispersal. The Supplement presents refinements of work that was reported at the 1982 International Decommissioning Symposium. The new material consists of revisions of the estimates of the predicted potential dose to the maximally exposed individual and a more detailed comparative assessment of the radiological impacts of alternatives for management of wastes generated by the US Department of Energy's Formerly Utilized Sites Remedial Action Program (FUSRAP).

  18. 1994 Report on Hanford Site land disposal restrictions for mixed waste

    SciTech Connect (OSTI)

    Black, D.G.

    1994-04-01T23:59:59.000Z

    The baseline land disposal restrictions (LDR) plan was prepared in 1990 in accordance with the Hanford Federal Facility Agreement and Consent Order (commonly referred to as the Tri-Party Agreement) Milestone M-26-00 (Ecology et al. 1992). The text of this milestone is below. LDR requirements include limitations on storage of specified hazardous wastes (including mixed wastes). In accordance with approved plans and schedules, the US Department of Energy (DOE) shall develop and implement technologies necessary to achieve full compliance with LDR requirements for mixed wastes at the Hanford Site. LDR plans and schedules shall be developed with consideration at other action plan milestones and will not become effective until approved by the US Environmental Protection Agency (EPA) (or Washington State Department of Ecology [Ecology]) upon authorization to administer LDRs pursuant to Section 3006 of the Resource Conservation and Recovery Act of 1976 (RCRA). Disposal of LDR wastes at any time is prohibited except in accordance with applicable LDR requirements for nonradioactive wastes at all times. The plan will include, but not be limited to, the following: waste characterization plan; storage report; treatment report; treatment plan; waste minimization plan; a schedule depicting the events necessary to achieve full compliance with LDR requirements; a process for establishing interim milestones. The original plan was published in October 1990. This is the fourth of a series of annual updates required by Tri-Party Agreement Milestone M-26-01. A Tri-Party Agreement change request approved in March 1992 changed the annual due date from October to April and consolidated this report with a similar one prepared under Milestone M-25-00. The reporting period for this report is from April 1, 1993, to March 31, 1994.

  19. DEMONSTRATiON OF A SUBSURFACE CONTAINMENT SYSTEM FOR INSTALLATION AT DOE WASTE SITES

    SciTech Connect (OSTI)

    Thomas J. Crocker; Verna M. Carpenter

    2003-05-21T23:59:59.000Z

    Between 1952 and 1970, DOE buried mixed waste in pits and trenches that now have special cleanup needs. The disposal practices used decades ago left these landfills and other trenches, pits, and disposal sites filled with three million cubic meters of buried waste. This waste is becoming harmful to human safety and health. Today's cleanup and waste removal is time-consuming and expensive with some sites scheduled to complete cleanup by 2006 or later. An interim solution to the DOE buried waste problem is to encapsulate and hydraulically isolate the waste with a geomembrane barrier and monitor the performance of the barrier over its 50-yr lifetime. The installed containment barriers would isolate the buried waste and protect groundwater from pollutants until final remediations are completed. The DOE has awarded a contract to RAHCO International, Inc.; of Spokane, Washington; to design, develop, and test a novel subsurface barrier installation system, referred to as a Subsurface Containment System (SCS). The installed containment barrier consists of commercially available geomembrane materials that isolates the underground waste, similar to the way a swimming pools hold water, without disrupting hazardous material that was buried decades ago. The barrier protects soil and groundwater from contamination and effectively meets environmental cleanup standards while reducing risks, schedules, and costs. Constructing the subsurface containment barrier uses a combination of conventional and specialized equipment and a unique continuous construction process. This innovative equipment and construction method can construct a 1000-ft-long X 34-ft-wide X 30-ft-deep barrier at construction rates to 12 Wday (8 hr/day operation). Life cycle costs including RCRA cover and long-term monitoring range from approximately $380 to $590/cu yd of waste contained or $100 to $160/sq ft of placed barrier based upon the subsurface geology surrounding the waste. Project objectives for Phase I were to validate the SCS construction equipment and process, evaluate the system performance, validate the barrier constructability, and assess the barrier effectiveness. The objectives for Phase 11, which is a full-scale demonstration at a DOE site, are to perform an extensive characterization of the test site, to demonstrate the equipment and the installation process under site-specific performance and regulatory requirements, to validate the operational performance of the equipment, and to perform long-term verification of the barrier using monitoring wells. To date, significant progress has been made to establish the technical and economical feasibility of the SCS. This report describes the SCS conventional and specialized equipment, barrier materials, and construction process. It presents results of the specialized equipment Factory Test, the SCS Control Test and the SCS Advance Control Test at the RAHCO facility. Provided herein are the system performance capabilities and an estimated construction cost and schedule for a 1000-ft-long X 34-ft-wide X 29-ft-deep containment barrier at the DOE Oak Ridge Bear Creek Burial Grounds are also provided.

  20. Particle Size Distribution Data From Existing Boreholes at the Immobilized Low-Activity Waste Site

    SciTech Connect (OSTI)

    Valenta, Michelle M.; Martin, Maria B.; Moreno, Jorge R.; Ferri, Rosalie M.; Horton, Duane G.; Reidel, Stephen P.

    2000-09-25T23:59:59.000Z

    This report provides particle size distribution data for samples near the Immobilized Low-Activity Waste (ILAW) Site that were archived in the Hanford Geotechnical Sample Library. Seventy-nine sediment samples were analyzed from four boreholes. Samples were collected from every ten feet in the boreholes. Eightly percent of the samples were classified as slightly gravelly sand. Fifteen percent were classified as gravelly sand, gravelly silty sand, or sandy gravels. These data indicate that the particle size of the sediment is consistent across the ILAW site and is dominated by sand in the upper part of the Hanford formation with more gravel rich units in the lower part.

  1. Savannah River Site Waste Isolation Pilot Plant Disposal Program - Acceptable Knowledge Summary Report for Waste Stream: SR-T001-221-HET

    SciTech Connect (OSTI)

    Lunsford, G.F.

    2001-01-24T23:59:59.000Z

    This document, along with referenced supporting documents provides a defensible and auditable record of acceptable knowledge for one of the waste streams from the FB-Line. This heterogeneous debris transuranic waste stream was generated after January 25, 1990 and before March 20, 1997. The waste was packaged in 55-gallon drums, then shipped to the transuranic waste storage facility in ''E'' area of the Savannah River Site. This acceptable knowledge report includes information relating to the facility's history, configuration, equipment, process operations and waste management practices. Information contained in this report was obtained from numerous sources including: facility safety basis documentation, historical document archives, generator and storage facility waste records and documents, and interviews with cognizant personnel.

  2. Solidification Tests Conducted on Transuranic Mixed Oil Waste (TRUM) at the Rocky Flats Environmental Technology Site (RFETS)

    SciTech Connect (OSTI)

    Brunkow, W. G.; Campbell, D.; Geimer, R.; Gilbreath, C.; Rivera, M.

    2002-02-25T23:59:59.000Z

    Rocky Flats Environmental Technology Site (RFETS) near Golden, Colorado is the first major nuclear weapons site within the DOE complex that has been declared a full closure site. RFETS has been given the challenge of closing the site by 2006. Key to meeting this challenge is the removal of all waste from the site followed by site restoration. Crucial to meeting this challenge is Kaiser-Hill's (RFETS Operating Contractor) ability to dispose of significant quantities of ''orphan'' wastes. Orphan wastes are those with no current disposition for treatment or disposal. Once such waste stream, generically referred to as Transuranic oils, poses a significant threat to meeting the closure schedule. Historically, this waste stream, which consist of a variety of oil contaminated with a range of organic solvents were treated by simply mixing with Environstone. This treatment method rendered a solidified waste form, but unfortunately not a TRUPACT-II transportable waste. So for the last ten years, RFETS has been accumulating these TRU oils while searching for a non-controversial treatment option.

  3. Assessment of microbial processes on gas production at radioactive low-level waste disposal sites

    SciTech Connect (OSTI)

    Weiss, A.J.; Tate, R.L. III; Colombo, P.

    1982-05-01T23:59:59.000Z

    Factors controlling gaseous emanations from low level radioactive waste disposal sites are assessed. Importance of gaseous fluxes of methane, carbon dioxide, and possible hydrogen from the site, stems from the inclusion of tritium and/or carbon-14 into the elemental composition of these compounds. In that the primary source of these gases is the biodegradation of organic components of the waste material, primary emphasis of the study involved an examination of the biochemical pathways producing methane, carbon dioxide, and hydrogen, and the environmental parameters controlling the activity of the microbial community involved. Initial examination of the data indicates that the ecosystem is anaerobic. As the result of the complexity of the pathway leading to methane production, factors such as substrate availability, which limit the initial reaction in the sequence, greatly affect the overall rate of methane evolution. Biochemical transformations of methane, hydrogen and carbon dioxide as they pass through the soil profile above the trench are discussed. Results of gas studies performed at three commercial low level radioactive waste disposal sites are reviewed. Methods used to obtain trench and soil gas samples are discussed. Estimates of rates of gas production and amounts released into the atmosphere (by the GASFLOW model) are evaluated. Tritium and carbon-14 gaseous compounds have been measured in these studies; tritiated methane is the major radionuclide species in all disposal trenches studied. The concentration of methane in a typical trench increases with the age of the trench, whereas the concentration of carbon dioxide is similar in all trenches.

  4. Application to ship nonmixed transuranic waste to the Nevada Test Site for interim storage. Waste Cerification Program

    SciTech Connect (OSTI)

    Not Available

    1993-12-01T23:59:59.000Z

    This report documents various regulations on radioactive waste processing and discusses how the Waste Isolation Pilot Plant will comply with and meet these requirements. Specific procedures are discussed concerning transuranic, metal scrap, salt block, solid, and glove box wastes.

  5. ENVIRONMENTAL IMPACTS ASSOCIATED WITH STORAGE, TREATMENT, AND DISPOSAL OF SOLID RADIOACTIVE AND CHEMICALLY HAZARDOUS WASTE AT THE HANFORD SITE, RICHLAND, WASHINGTON

    SciTech Connect (OSTI)

    Johnson, Wayne L.; Nelson, Iral C.; Payson, David R.; Rhoads, Kathleen

    2004-03-01T23:59:59.000Z

    The Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement (HSW EIS) provides environmental and technical information concerning U.S. Department of Energy (DOE) proposed waste management practices for certain solid radioactive wastes at the Hanford Site through the year 2046. The HSW EIS covers four primary aspects of waste management at Hanford – storage, treatment, transportation, and disposal. It also addresses four types of solid waste – low-level waste, mixed low-level waste that contains both radioactive and chemically hazardous constituents, immobilized low-activity waste from processing Hanford tank waste, and transuranic waste. The HSW EIS was prepared to assist DOE in determining which specific Hanford Site facilities will continue to be used, will be modified, or need to be constructed, to safely treat, store, and dispose of these wastes.

  6. RCRA Part A Permit Application for Waste Management Activities at the Nevada Test Site, Part B Permit Application Hazardous Waste Storage Unit, Nevada Test Site, and Part B Permit Application - Explosives Ordnance Disposal Unit (EODU)

    SciTech Connect (OSTI)

    NSTec Environmental Programs

    2010-06-17T23:59:59.000Z

    The Area 5 Hazardous Waste Storage Unit (HWSU) was established to support testing, research, and remediation activities at the Nevada Test Site (NTS), a large-quantity generator of hazardous waste. The HWSU, located adjacent to the Area 5 Radioactive Waste Management Site (RWMS), is a prefabricated, rigid steel-framed, roofed shelter used to store hazardous nonradioactive waste generated on the NTS. No offsite generated wastes are managed at the HWSU. Waste managed at the HWSU includes the following categories: Flammables/Combustibles; Acid Corrosives; Alkali Corrosives; Oxidizers/Reactives; Toxics/Poisons; and Other Regulated Materials (ORMs). A list of the regulated waste codes accepted for storage at the HWSU is provided in Section B.2. Hazardous wastes stored at the HWSU are stored in U.S. Department of Transportation (DOT) compliant containers, compatible with the stored waste. Waste transfer (between containers) is not allowed at the HWSU and containers remain closed at all times. Containers are stored on secondary containment pallets and the unit is inspected monthly. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational Resource Conservation and Recovery Act (RCRA) units at the NTS and their respective regulatory status.

  7. State waste discharge permit application for the 200 Area Effluent Treatment Facility and the State-Approved Land Disposal Site

    SciTech Connect (OSTI)

    Not Available

    1993-08-01T23:59:59.000Z

    Application is being made for a permit pursuant to Chapter 173--216 of the Washington Administrative Code (WAC), to discharge treated waste water and cooling tower blowdown from the 200 Area Effluent Treatment Facility (ETF) to land at the State-Approved Land Disposal Site (SALDS). The ETF is located in the 200 East Area and the SALDS is located north of the 200 West Area. The ETF is an industrial waste water treatment plant that will initially receive waste water from the following two sources, both located in the 200 Area on the Hanford Site: (1) the Liquid Effluent Retention Facility (LERF) and (2) the 242-A Evaporator. The waste water discharged from these two facilities is process condensate (PC), a by-product of the concentration of waste from DSTs that is performed in the 242-A Evaporator. Because the ETF is designed as a flexible treatment system, other aqueous waste streams generated at the Hanford Site may be considered for treatment at the ETF. The origin of the waste currently contained in the DSTs is explained in Section 2.0. An overview of the concentration of these waste in the 242-A Evaporator is provided in Section 3.0. Section 4.0 describes the LERF, a storage facility for process condensate. Attachment A responds to Section B of the permit application and provides an overview of the processes that generated the wastes, storage of the wastes in double-shell tanks (DST), preliminary treatment in the 242-A Evaporator, and storage at the LERF. Attachment B addresses waste water treatment at the ETF (under construction) and the addition of cooling tower blowdown to the treated waste water prior to disposal at SALDS. Attachment C describes treated waste water disposal at the proposed SALDS.

  8. EIS-0113: Disposal of Hanford Defense High-Level, Transuranic and Tank Waste, Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this EIS to examine the potential environmental impacts of final disposal options for legacy and future radioactive defense wastes stored at the Hanford Site.

  9. Toxic waste sites may cause health problems for millions1 By Erin Wayman for www.sciencenews.org2

    E-Print Network [OSTI]

    South Bohemia, University of

    , identified the toxic waste sites, such as lead15 battery recycling centers and former tanneries. For each percent of the lost healthy years. The team estimates that22 the three countries could house an additional

  10. CHARACTERIZATION OF INDIVIDUAL CHEMICAL REACTIONS CONSUMING ACID DURING NUCLEAR WASTE PROCESSING AT THE SAVANNAH RIVER SITE - 136B

    SciTech Connect (OSTI)

    Koopman, D.; Pickenheim, B.; Lambert, D.; Newell, J.; Stone, M.

    2009-09-02T23:59:59.000Z

    Conversion of legacy radioactive high-level waste at the Savannah River Site into a stable glass waste form involves a chemical pretreatment process to prepare the waste for vitrification. Waste slurry is treated with nitric and formic acids to achieve certain goals. The total quantity of acid added to a batch of waste slurry is constrained by the catalytic activity of trace noble metal fission products in the waste that can convert formic acid into hydrogen gas at many hundreds of times the radiolytic hydrogen generation rate. A large block of experimental process simulations were performed to characterize the chemical reactions that consume acid prior to hydrogen generation. The analysis led to a new equation for predicting the quantity of acid required to process a given volume of waste slurry.

  11. EXPERIENCE FROM TWO SMALL QUANTITY RH-TRU WASTE SITES IN NAVIGATING THROUGH AN EVOLVING REGULATORY LANDSCAPE

    SciTech Connect (OSTI)

    Biedscheid, Jennifer; Devarakonda, Murthy; Eide, Jim; Kneff, Dennis

    2003-02-27T23:59:59.000Z

    Two small quantity transuranic (TRU) waste generator sites have gained considerable experience in navigating through a changing regulatory landscape in their efforts to remove the TRU waste from their sites and proceed with site remediation. The Battelle Columbus Laboratories Decommissioning Project (BCLDP) has the objectives of decontaminating nuclear research buildings and associated grounds and remediating to a level of residual contamination allowing future use without radiological restrictions. As directed by Congress, BCLDP must complete decontamination and decommissioning activities by the end of Fiscal Year (FY) 2006. This schedule requires the containerization of all TRU waste in 2002. BCLDP will generate a total of approximately 27 cubic meters (m3) of remote-handled (RH) TRU waste. Similarly, the Energy Technology Engineering Center (ETEC) is scheduled to close in 2006 pursuant to an agreement between the U.S. Department of Energy (DOE) and Boeing Canoga Park, the management and operating contractor for ETEC. ETEC had 11.0 m3 of RH-TRU and contact-handled (CH) TRU waste in storage, with the requirement to remove this waste in 2002 in order to meet their site closure schedule. The individual milestones for BCLDP and ETEC necessitated the establishment of site-specific programs to direct packaging and characterization of RH-TRU waste before the regulatory framework for the WIPP disposal of RH-TRU waste is finalized. The lack of large infrastructure for characterization activities, as well as the expedited schedules needed to meet regulatory milestones, provided both challenges and opportunities that are unique to small quantity sites. Both sites have developed unique programs for waste characterization based on the same premise, which directs comprehensive waste data collection efforts such that additional characterization will not be required following the finalization of the WIPP RH-TRU waste program requirements. This paper details the BCLDP program evolution in terms of strategy, innovative solutions to waste characterization, and development of alternative transportation options. Preliminary indications from various regulatory and oversight agencies and professional organizations are that the BCLDP RH-TRU waste characterization program is the ''model WIPP certification program'' and will satisfy anticipated regulatory expectations. This paper also summarizes how BCLDP lessons learned and their development of new resources were applied to the RH-TRU waste characterization and disposition program at ETEC.

  12. Corrective Action Investigation Plan for Corrective Action Unit 190: Contaminated Waste Sites Nevada Test Site, Nevada, Rev. No.: 0

    SciTech Connect (OSTI)

    Wickline, Alfred

    2006-12-01T23:59:59.000Z

    Corrective Action Unit (CAU) 190 is located in Areas 11 and 14 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 190 is comprised of the four Corrective Action Sites (CASs) listed below: (1) 11-02-01, Underground Centrifuge; (2) 11-02-02, Drain Lines and Outfall; (3) 11-59-01, Tweezer Facility Septic System; and (4) 14-23-01, LTU-6 Test Area. These sites are being investigated because existing information is insufficient on the nature and extent of potential contamination to evaluate and recommend corrective action alternatives. Additional information will be obtained before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS by conducting a corrective action investigation (CAI). The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on August 24, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture, and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 190. The scope of the CAU 190 CAI includes the following activities: (1) Move surface debris and/or materials, as needed, to facilitate sampling; (2) Conduct radiological and geophysical surveys; (3) Perform field screening; (4) Collect and submit environmental samples for laboratory analysis to determine whether contaminants of concern (COCs) are present; (5) If COCs are present, collect additional step-out samples to define the lateral and vertical extent of the contamination; (6) Collect samples of source material, if present, to determine the potential for a release; (7) Collect samples of investigation-derived waste, as needed, for waste management and minimization purposes; and (8) Collect quality control samples. This Corrective Action Investigation Document (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) agreed to by the State of Nevada, U.S. Department of Energy, and U.S. Department of Defense. Under the FFACO, this CAIP will be submitted to the Nevada Division of Environmental Protection for approval. Field work will be conducted following approval.

  13. Inadvertent Intruder Analysis For The Portsmouth On-Site Waste Disposal Facility (OSWDF)

    SciTech Connect (OSTI)

    Smith, Frank G.; Phifer, Mark A.

    2014-01-22T23:59:59.000Z

    The inadvertent intruder analysis considers the radiological impacts to hypothetical persons who are assumed to inadvertently intrude on the Portsmouth OSWDF site after institutional control ceases 100 years after site closure. For the purposes of this analysis, we assume that the waste disposal in the OSWDF occurs at time zero, the site is under institutional control for the next 100 years, and inadvertent intrusion can occur over the following 1,000 year time period. Disposal of low-level radioactive waste in the OSWDF must meet a requirement to assess impacts on such individuals, and demonstrate that the effective dose equivalent to an intruder would not likely exceed 100 mrem per year for scenarios involving continuous exposure (i.e. chronic) or 500 mrem for scenarios involving a single acute exposure. The focus in development of exposure scenarios for inadvertent intruders was on selecting reasonable events that may occur, giving consideration to regional customs and construction practices. An important assumption in all scenarios is that an intruder has no prior knowledge of the existence of a waste disposal facility at the site. Results of the analysis show that a hypothetical inadvertent intruder at the OSWDF who, in the worst case scenario, resides on the site and consumes vegetables from a garden established on the site using contaminated soil (chronic agriculture scenario) would receive a maximum chronic dose of approximately 7.0 mrem/yr during the 1000 year period of assessment. This dose falls well below the DOE chronic dose limit of 100 mrem/yr. Results of the analysis also showed that a hypothetical inadvertent intruder at the OSWDF who, in the worst case scenario, excavates a basement in the soil that reaches the waste (acute basement construction scenario) would receive a maximum acute dose of approximately 0.25 mrem/yr during the 1000 year period of assessment. This dose falls well below the DOE acute dose limit of 500 mrem/yr. Disposal inventory constraints based on the intruder analysis are well above conservative estimates of the OSWDF inventory and, based on intruder disposal limits; about 7% of the disposal capacity is reached with the estimated OSWDF inventory.

  14. Remaining Sites Verification Package for 132-H-1, 116-H Reactor Stack Burial Site, Waste Site Reclassification Form 2006-053

    SciTech Connect (OSTI)

    L. M. Dittmer

    2007-06-26T23:59:59.000Z

    The 132-H-1 waste site includes the 116-H exhaust stack burial trench and the buried stack foundation (which contains an embedded vertical 15-cm (6-in) condensate drain line). The 116-H reactor exhaust stack and foundation were decommissioned and demolished using explosives in 1983, with the rubble buried in situ beneath clean fill at least 1 m (3.3 ft) thick. Residual concentrations support future land uses that can be represented by a rural-residential scenario and pose no threat to groundwater or the Columbia River based on RESRAD modeling.

  15. Siting study for a consolidated waste capability at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Booth, Steven Richard [Los Alamos National Laboratory

    2010-11-05T23:59:59.000Z

    Decision analysis was used to rank alternative sites for a potential Consolidated Waste Capability (CWC) to replace current hazardous solid waste operations (hazardous/chemical, mixed low-level, transuranic, and low-level waste) at Los Alamos National Laboratory's Technical Area (TA)-54. An original list of 21 site alternatives was pre-screened to seven sites that were assessed using the analytical hierarchy process with five top-level criteria and fifteen sub-criteria. The top site choice is TA-63/52/46; the second choice is TA-18/36. The seven sites are as follows. TA-18/36 (62 acres) is located on Potrillo Drive that intersects Pajarito Road at the bottom of a steep grade. It has some blast zone issues on its southwest side and some important archeological sites on the southeast section. TA-60 (50 acres) is located at the end of Eniwetok Road off Diamond Drive, east of TA-3. Most of the site is within a fifty foot-deep ravine (that may have contamination in the drainage), with a small section on the mesa above. TA-63/52/46 (110 acres) lies to the north of Pajarito Road along Puye Road. It is centrally located in a brown field industrial area, with good access to generators on a controlled road. TA-46 (22 acres) is a narrow site on the south side of Pajarito Road across from TA-46 office buildings. TA-48 (14 acres) is also narrow, and is located on the north side of Pajarito Road near the west vehicle access portal (VAP). TA-51 (19 acres) is located on the south side of Pajarito Road at the top of the hill above TA-18 near the current entrance to the TA-54. TA-54 West (16 acres) is just north of the entrance to TA-54 at Pajarito Road and is close to Zone 4. Although it is near the San Ildefonso Pueblo property line, there may be adequate set-back for sight screening.

  16. Special Analysis for the Disposal of the Idaho National Laboratory Unirradiated Light Water Breeder Reactor Rods and Pellets Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    SciTech Connect (OSTI)

    Shott, Gregory [NSTec

    2014-08-31T23:59:59.000Z

    The purpose of this special analysis (SA) is to determine if the Idaho National Laboratory (INL) Unirradiated Light Water Breeder Reactor (LWBR) Rods and Pellets waste stream (INEL103597TR2, Revision 2) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS). The INL Unirradiated LWBR Rods and Pellets waste stream consists of 24 containers with unirradiated fabricated rods and pellets composed of uranium oxide (UO2) and thorium oxide (ThO2) fuel in zirconium cladding. The INL Unirradiated LWBR Rods and Pellets waste stream requires an SA because the 229Th, 230Th, 232U, 233U, and 234U activity concentrations exceed the Nevada National Security Site (NNSS) Waste Acceptance Criteria (WAC) Action Levels.

  17. The Assessment of Future Human Actions at Radioactive Waste Disposal Sites: An international perspective

    SciTech Connect (OSTI)

    Anderson, D.R. [Sandia National Labs., Albuquerque, NM (United States); Galson, D.A. [Galson Sciences Ltd., (United Kindgom); Patera, E.S. [Nuclear Energy Agency, 75 - Paris (France)

    1994-04-01T23:59:59.000Z

    For some deep geological disposal systems, the level of confinement provided by the natural and engineered barriers is considered to be so high that the greatest long-term risks associated with waste disposal may arise from the possibility of future human actions breaching the natural and/or engineered barrier systems. Following a Workshop in 1989, the OECD Nuclear Energy Agency established a Working Group on Assessment of Future Human Actions (FHA) a Radioactive Waste Disposal Sites. This Group met four times in the period 1991--1993, and has extensively reviewed approaches to and experience of incorporating the effects of FHA into long-term performance assessments (PAs). The Working Group`s report reviews the main issues concerning the treatment of FHA, presents a general framework for the quantitative, consideration of FHA in radioactive waste disposal programmes, and discusses means in reduce the risks associated with FHA. The Working Group concluded that FHA must be considered in PAs, although FHA where the actors were cognizant of the risks could be ignored. Credit can be taken for no more than several hundred years of active site control; additional efforts should therefore be taken to reduce the risks associated with FHA. International agreement on principles for the construction of FHA scenarios would build confidence, as would further discussion concerning regulatory policies for judging risks associated with FHA.

  18. Minimizing Characterization - Derived Waste at the Department of Energy Savannah River Site, Aiken, South Carolina

    SciTech Connect (OSTI)

    Van Pelt, R. S.; Amidon, M. B.; Reboul, S. H.

    2002-02-25T23:59:59.000Z

    Environmental restoration activities at the Department of Energy Savannah River Site (SRS) utilize innovative site characterization approaches and technologies that minimize waste generation. Characterization is typically conducted in phases, first by collecting large quantities of inexpensive data, followed by targeted minimally invasive drilling to collect depth-discrete soil/groundwater data, and concluded with the installation of permanent multi-level groundwater monitoring wells. Waste-reducing characterization methods utilize non-traditional drilling practices (sonic drilling), minimally intrusive (geoprobe, cone penetrometer) and non-intrusive (3-D seismic, ground penetration radar, aerial monitoring) investigative tools. Various types of sensor probes (moisture sensors, gamma spectroscopy, Raman spectroscopy, laser induced and X-ray fluorescence) and hydrophobic membranes (FLUTe) are used in conjunction with depth-discrete sampling techniques to obtain high-resolution 3-D plume profiles. Groundwater monitoring (short/long-term) approaches utilize multi-level sampling technologies (Strata-Sampler, Cone-Sipper, Solinst Waterloo, Westbay) and low-cost diffusion samplers for seepline/surface water sampling. Upon collection of soil and groundwater data, information is portrayed in a Geographic Information Systems (GIS) format for interpretation and planning purposes. At the SRS, the use of non-traditional drilling methods and minimally/non intrusive investigation approaches along with in-situ sampling methods has minimized waste generation and improved the effectiveness and efficiency of characterization activities.

  19. Chemistry of proposed calcination/dissolution processing of Hanford Site tank wastes

    SciTech Connect (OSTI)

    Delegard, C.H.

    1995-01-01T23:59:59.000Z

    Plans exist to separate radioactive waste stored in underground tanks at the US Department of Energy`s Hanford Site in south central Washington State into low-level and high-level fractions, and to immobilize the separate fractions in high-integrity vitrified forms for long-term disposal. Calcination with water dissolution has been proposed as a possible treatment for achieving low/high-level separation. Chemistry development activities conducted since 1992 with simulated and genuine tank waste show that calcination/dissolution destroys organic carbon and converts nitrate and nitrite to hydroxide and benign offgases. The process also dissolves significant quantities of bulk chemicals (aluminum, chromium, and phosphate), allowing their redistribution from the high-level to the low-level fraction. Present studies of the chemistry of calcination/dissolution processing of genuine wastes, conducted in the period October 1993 to September 1994, show the importance of sodium fluoride phosphate double salt in controlling phosphate dissolution. Peptization of waste solids is of concern if extensive washing occurs. Strongly oxidizing conditions imposed by calcination reactions were found to convert transition metals to soluble anions in the order chromate > manganate > > ferrate. In analogy with manganese behavior, plutonium dissolution, presumably by oxidation to more soluble anionic species, also occurs by calcination/dissolution. Methods to remove plutonium from the product low-level solution stream must be developed.

  20. VEGETATION COVER ANALYSIS OF HAZARDOUS WASTE SITES IN UTAH AND ARIZONA USING HYPERSPECTRAL REMOTE SENSING

    SciTech Connect (OSTI)

    Serrato, M.; Jungho, I.; Jensen, J.; Jensen, R.; Gladden, J.; Waugh, J.

    2012-01-17T23:59:59.000Z

    Remote sensing technology can provide a cost-effective tool for monitoring hazardous waste sites. This study investigated the usability of HyMap airborne hyperspectral remote sensing data (126 bands at 2.3 x 2.3 m spatial resolution) to characterize the vegetation at U.S. Department of Energy uranium processing sites near Monticello, Utah and Monument Valley, Arizona. Grass and shrub species were mixed on an engineered disposal cell cover at the Monticello site while shrub species were dominant in the phytoremediation plantings at the Monument Valley site. The specific objectives of this study were to: (1) estimate leaf-area-index (LAI) of the vegetation using three different methods (i.e., vegetation indices, red-edge positioning (REP), and machine learning regression trees), and (2) map the vegetation cover using machine learning decision trees based on either the scaled reflectance data or mixture tuned matched filtering (MTMF)-derived metrics and vegetation indices. Regression trees resulted in the best calibration performance of LAI estimation (R{sup 2} > 0.80). The use of REPs failed to accurately predict LAI (R{sup 2} < 0.2). The use of the MTMF-derived metrics (matched filter scores and infeasibility) and a range of vegetation indices in decision trees improved the vegetation mapping when compared to the decision tree classification using just the scaled reflectance. Results suggest that hyperspectral imagery are useful for characterizing biophysical characteristics (LAI) and vegetation cover on capped hazardous waste sites. However, it is believed that the vegetation mapping would benefit from the use of 1 higher spatial resolution hyperspectral data due to the small size of many of the vegetation patches (< 1m) found on the sites.

  1. Action plan for responses to abnormal conditions in Hanford Site radioactive waste tanks with high organic content. Revision 1

    SciTech Connect (OSTI)

    Fowler, K.D.

    1993-07-01T23:59:59.000Z

    This action plan describes the criteria and the organizational responsibilities required for ensuring that waste storage tanks with high organic contents are maintained in a safe condition at the Hanford Site. In addition, response actions are outlined for (1) prevention or mitigation of excessive temperatures; or (2) a material release from any waste tank with high organic content. Other response actions may be defined by Westinghouse Hanford Company Systems Engineering if a waste tank parameter goes out of specification. Trend analysis indicates the waste tank parameters have seasonal variations, but are otherwise stable.

  2. SOLUBILITY OF URANIUM AND PLUTONIUM IN ALKALINE SAVANNAH RIVER SITE HIGH LEVEL WASTE SOLUTIONS

    SciTech Connect (OSTI)

    King, W.; Hobbs, D.; Wilmarth, B.; Edwards, T.

    2010-03-10T23:59:59.000Z

    Five actual Savannah River Site tank waste samples and three chemically-modified samples were tested to determine solubility limits for uranium and plutonium over a one year time period. Observed final uranium concentrations ranged from 7 mg U/L to 4.5 g U/L. Final plutonium concentrations ranged from 4 {micro}g Pu/L to 12 mg Pu/L. Actinide carbonate complexation is believed to result in the dramatic solubility increases observed for one sample over long time periods. Clarkeite, NaUO{sub 2}(O)OH {center_dot} H{sub 2}O, was found to be the dominant uranium solid phase in equilibrium with the waste supernate in most cases.

  3. Waste Isolation Pilot Plant site environmental report for calendar year 1990

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    The US Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) Operational Environmental Monitoring Plan (OEMP) monitors a comprehensive set of parameters in order to detect any potential environmental impacts and establish baselines for future quantitative environmental impact evaluations. Surface water and groundwater, soil, and biotics are measured for background radiation. Nonradiological environmental monitoring activities include meteorological, air quality, soil properties, and the status of the local biological community. Ecological studies focus on the immediate area surrounding the site with emphasis on the salt storage pile, whereas baseline radiological surveillance covers a broader geographic area including nearby ranches, villages, and cities. Since the WIPP is still in a preoperational state, no waste has been received; therefore, certain elements required by Order DOE 5400.1 are not presented in this report. 15 figs. 19 tabs.

  4. Final Environmental Assessment and Finding of No Significant Impact: Waste Disposition Activities at the Paducah Site Paducah, Kentucky

    SciTech Connect (OSTI)

    N /A

    2002-11-05T23:59:59.000Z

    The U.S. Department of Energy (DOE) has completed an environmental assessment (DOE/EA-1339), which is incorporated herein by reference, for proposed disposition of polychlorinated biphenyl (PCB) wastes, low-level radioactive waste (LLW), mixed low-level radioactive waste (MLLW), and transuranic (TRU) waste from the Paducah Gaseous Diffusion Plant Site (Paducah Site) in Paducah, Kentucky. All of the wastes would be transported for disposal at various locations in the United States. Based on the results of the impact analysis reported in the EA, DOE has determined that the proposed action is not a major federal action that would significantly affect the quality of the human environment with in the context of the National Environmental Policy Act of 1969 (NEPA). Therefore, preparation of an environmental impact statement is not necessary, and DOE is issuing this Finding of No Significant Impact (FONSI).

  5. US Department of Energy interim mixed waste inventory report: Waste streams, treatment capacities and technologies: Volume 4, Site specific---Ohio through South Carolina

    SciTech Connect (OSTI)

    Not Available

    1993-04-01T23:59:59.000Z

    The Department of Energy (DOE) has prepared this report to provide an inventory of its mixed wastes and treatment capacities and technologies in response to Section 105(a) of the Federal Facility Compliance Act (FFCAct) of 1992 (Pub. L. No. 102-386). As required by the FFCAct-1992, this report provides site-specific information on DOE`s mixed waste streams and a general review of available and planned treatment facilities for mixed wastes at the following five Ohio facilities: Battelle Columbus Laboratories; Fernald Environmental Management Project; Mound Plant; Portsmouth Gaseous Diffusion Plant; and RMI, Titanium Company.

  6. 2010 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    SciTech Connect (OSTI)

    David B. Frederick

    2011-02-01T23:59:59.000Z

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from May 1, 2010 through October 31, 2010. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of special compliance conditions • Discussion of the facility’s environmental impacts During the 2010 partial reporting year, an estimated 3.646 million gallons of wastewater were discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 13 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the Ground Water Quality Rule Primary and Secondary Constituent Standards.

  7. Geologic and hydrologic investigations of a potential nuclear waste disposal site at Yucca Mountain, southern Nevada

    SciTech Connect (OSTI)

    Carr, M.D.; Yount, J.C. (eds.)

    1988-12-31T23:59:59.000Z

    Yucca Mountain in southern Nye County, Nevada, has been selected by the United States Department of Energy as one of three potential sites for the nation`s first high-level nuclear waste repository. Its deep water table, closed-basin ground-water flow, potentially favorable host rock, and sparse population have made the Yucca Mountain area a viable candidate during the search for a nuclear waste disposal site. Yucca Mountain, however, lies within the southern Great Basin, a region of known contemporary tectonism and young volcanic activity, and the characterization of tectonism and volcanism remains as a fundamental problem for the Yucca Mountain site. The United States Geological Survey has been conducting extensive studies to evaluate the geologic setting of Yucca Mountain, as well as the timing and rates of tectonic and volcanic activity in the region. A workshop was convened by the Geologic Survey in Denver, Colorado, on August 19, 20, and 21, 1985, to review the scientific progress and direction of these studies. Considerable debate resulted. This collection of papers represents the results of some of the studies presented at the workshop, but by no means covers all of the scientific results and viewpoints presented. Rather, the volume is meant to serve as a progress report on some of the studies within the Geological Survey`s continuing research program toward characterizing the tectonic framework of Yucca Mountain. Individual papers were processed separately for the data base.

  8. Environmental assessment for liquid waste treatment at the Nevada Test Site, Nye County, Nevada

    SciTech Connect (OSTI)

    NONE

    1997-01-01T23:59:59.000Z

    This environmental assessment (EA) examines the potential impacts to the environment from treatment of low-level radioactive liquid and low-level mixed liquid and semi-solid wastes generated at the Nevada Test Site (NTS). The potential impacts of the proposed action and alternative actions are discussed herein in accordance with the National Environmental Policy Act (NEPA) of 1969, as amended in Title 42 U.S.C. (4321), and the US Department of Energy (DOE) policies and procedures set forth in Title 10 Code of Federal Regulations (CFR) Part 1021 and DOE Order 451.1, ``NEPA Compliance Program.`` The potential environmental impacts of the proposed action, construction and operation of a centralized liquid waste treatment facility, were addressed in the Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada. However, DOE is reevaluating the need for a centralized facility and is considering other alternative treatment options. This EA retains a centralized treatment facility as the proposed action but also considers other feasible alternatives.

  9. NRC Monitoring of Salt Waste Disposal at the Savannah River Site - 13147

    SciTech Connect (OSTI)

    Pinkston, Karen E.; Ridge, A. Christianne; Alexander, George W.; Barr, Cynthia S.; Devaser, Nishka J.; Felsher, Harry D. [U.S. Nuclear Regulatory Commission (United States)] [U.S. Nuclear Regulatory Commission (United States)

    2013-07-01T23:59:59.000Z

    As part of monitoring required under Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA), the NRC staff reviewed an updated DOE performance assessment (PA) for salt waste disposal at the Saltstone Disposal Facility (SDF). The NRC staff concluded that it has reasonable assurance that waste disposal at the SDF meets the 10 CFR 61 performance objectives for protection of individuals against intrusion (chap.61.42), protection of individuals during operations (chap.61.43), and site stability (chap.61.44). However, based on its evaluation of DOE's results and independent sensitivity analyses conducted with DOE's models, the NRC staff concluded that it did not have reasonable assurance that DOE's disposal activities at the SDF meet the performance objective for protection of the general population from releases of radioactivity (chap.61.41) evaluated at a dose limit of 0.25 mSv/yr (25 mrem/yr) total effective dose equivalent (TEDE). NRC staff also concluded that the potential dose to a member of the public is expected to be limited (i.e., is expected to be similar to or less than the public dose limit in chap.20.1301 of 1 mSv/yr [100 mrem/yr] TEDE) and is expected to occur many years after site closure. The NRC staff used risk insights gained from review of the SDF PA, its experience monitoring DOE disposal actions at the SDF over the last 5 years, as well as independent analysis and modeling to identify factors that are important to assessing whether DOE's disposal actions meet the performance objectives. Many of these factors are similar to factors identified in the NRC staff's 2005 review of salt waste disposal at the SDF. Key areas of interest continue to be waste form and disposal unit degradation, the effectiveness of infiltration and erosion controls, and estimation of the radiological inventory. Based on these factors, NRC is revising its plan for monitoring salt waste disposal at the SDF in coordination with South Carolina Department of Health and Environmental Control (SCDHEC). DOE has completed or begun additional work related to salt waste disposal to address these factors. NRC staff continues to evaluate information related to the performance of the SDF and has been working with DOE and SCDHEC to resolve NRC staff's technical concerns. (authors)

  10. Closure Report for Corrective Action Unit 562: Waste Systems, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2012-08-15T23:59:59.000Z

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 562, Waste Systems, and provides documentation supporting the completed corrective actions and confirmation that closure objectives for CAU 562 were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 as amended). CAU 562 consists of the following 13 Corrective Action Sites (CASs), located in Areas 2, 23, and 25 of the Nevada National Security Site: · CAS 02-26-11, Lead Shot · CAS 02-44-02, Paint Spills and French Drain · CAS 02-59-01, Septic System · CAS 02-60-01, Concrete Drain · CAS 02-60-02, French Drain · CAS 02-60-03, Steam Cleaning Drain · CAS 02-60-04, French Drain · CAS 02-60-05, French Drain · CAS 02-60-06, French Drain · CAS 02-60-07, French Drain · CAS 23-60-01, Mud Trap Drain and Outfall · CAS 23-99-06, Grease Trap · CAS 25-60-04, Building 3123 Outfalls Closure activities began in October 2011 and were completed in April 2012. Activities were conducted according to the Corrective Action Plan for CAU 562 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2011). The corrective actions included No Further Action and Clean Closure. Closure activities generated sanitary waste and hazardous waste. Some wastes exceeded land disposal limits and required offsite treatment prior to disposal. Other wastes met land disposal restrictions and were disposed in appropriate onsite or offsite landfills. NNSA/NSO requests the following: · A Notice of Completion from the Nevada Division of Environmental Protection to NNSA/NSO for closure of CAU 562 · The transfer of CAU 562 from Appendix III to Appendix IV, Closed Corrective Action Units, of the FFACO

  11. Groundwater Monitoring Optimization of Post Closure Waste Sites at SRS - 13184

    SciTech Connect (OSTI)

    Ross, Jeff; O'Quinn, Sadika [Savannah River Nuclear Solutions, LLC, Aiken, SC 29808 (United States)] [Savannah River Nuclear Solutions, LLC, Aiken, SC 29808 (United States); Adams, Karen; Prater, Phil [Department of Energy - Savannah River Site, Aiken, SC 29808 (United States)] [Department of Energy - Savannah River Site, Aiken, SC 29808 (United States)

    2013-07-01T23:59:59.000Z

    Groundwater monitoring at the Savannah River Site (SRS) is required at dozens of waste sites and includes sampling at over 1,000 monitoring wells. The expected longevity of groundwater contamination and associated groundwater monitoring and reporting constitutes a significant long-term cost that represents an increasing proportion of the environmental management budget as surface waste units are closed. Therefore, a comprehensive evaluation of the monitoring program for eighteen regulated waste units was conducted to identify areas where monitoring could be optimized. The units evaluated varied considerably in the scope of monitoring; ranging from two wells to hundreds of wells. In order to systematically evaluate such disparate monitoring networks, SRS developed a decision-logic analysis using flow sheets to address potential areas of optimization. Five areas were identified for evaluation, including: (1) Comparison of current monitoring to regulatory requirements, (2) Spatial distribution, (3) Temporal sampling, (4) Analyte requirements, and (5) Reporting frequency and content. Optimization recommendations were made for fifteen of the eighteen groundwater units. The spatial evaluation resulted in recommendations to suspend sampling in 79 wells and add sampling at 16 wells. The temporal evaluation resulted in recommendations to reduce the number of well visits per year by 504. Analyte reductions were recommended at three groundwater units, with increases at three other units. Reporting frequency reductions were recommended for five units. Approximately $700,000 (direct dollars) of potential annualized cost savings were identified for these groundwater units, provided all recommendations are approved. The largest area of savings was associated with reducing the reporting frequency. The optimization approach has been presented to the EPA and South Carolina Department of Environmental Control (SCHDEC), with unit-specific recommendations approved for all five units presented. This approach can be expected to be highly successful for sites with rich historical data sets and where the requirements in regulatory monitoring plans can be negotiated. (authors)

  12. Polybrominated diphenyl ethers in e-waste: Level and transfer in a typical e-waste recycling site in Shanghai, Eastern China

    SciTech Connect (OSTI)

    Li, Yue; Duan, Yan-Ping, E-mail: duanyanping@tongji.edu.cn; Huang, Fan; Yang, Jing; Xiang, Nan; Meng, Xiang-Zhou; Chen, Ling

    2014-06-01T23:59:59.000Z

    Highlights: • PBDEs were detected in the majority of e-waste. • PBDEs were found in TVs made in China after 1990. • The levels of ?PBDEs in e-waste made in Japan far exceed the threshold limit of RoHS. • The inappropriate recycling and disposal of e-waste is an important source of PBDEs. - Abstract: Very few data for polybrominated diphenyl ethers (PBDEs) were available in the electronic waste (e-waste) as one of the most PBDEs emission source. This study reported concentrations of PBDEs in e-waste including printer, rice cooker, computer monitor, TV, electric iron and water dispenser, as well as dust from e-waste, e-waste dismantling workshop and surface soil from inside and outside of an e-waste recycling plant in Shanghai, Eastern China. The results showed that PBDEs were detected in the majority of e-waste, and the concentrations of ?PBDEs ranged from not detected to 175 g/kg, with a mean value of 10.8 g/kg. PBDEs were found in TVs made in China after 1990. The mean concentrations of ?PBDEs in e-waste made in Korea, Japan, Singapore and China were 1.84 g/kg, 20.5 g/kg, 0.91 g/kg, 4.48 g/kg, respectively. The levels of ?PBDEs in e-waste made in Japan far exceed the threshold limit of RoHS (1.00 g/kg). BDE-209 dominated in e-waste, accounting for over 93%. The compositional patterns of PBDEs congeners resembled the profile of Saytex 102E, indicating the source of deca-BDE. Among the samples of dust and surface soil from a typical e-waste recycling site, the highest concentrations of ?{sub 18}PBDEs and BDE-209 were found in dust in e-waste, ranging from 1960 to 340,710 ng/g and from 910 to 320,400 ng/g, which were 1–2 orders of magnitude higher than other samples. It suggested that PBDEs released from e-waste via dust, and then transferred to surrounding environment.

  13. DOE/WIPP-11-2225 Waste Isolation Pilot Plant Annual Site Environmental

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePARTOffice ofHale Plan24,7,INL4211-2225 Waste

  14. Home and community composting for on-site treatment of urban organic waste: perspective for Europe and Canada

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Home and community composting for on-site treatment of urban organic waste: perspective for Europe practice (Base Sce), this paper examines on-site UOW composting strategies using a combination of centralized composting facilities (CCF), community composting centres (CCC) and home composting (HC) (Sce 1, 2

  15. Field implementation complexities of EPA developmental methods during remediation at hazardous waste sites: Case study

    SciTech Connect (OSTI)

    Green, E.L. [Eagle Environmental Health, Inc., Houston, TX (United States); Cunningham, E.A. [Tenneco, Inc., Houston, TX (United States); Grabinski, C. [Joslyn Corp., Chicago, IL (United States)

    1995-12-31T23:59:59.000Z

    The objective of this presentation is to provide insight into the complexities of field implementation of Environmental Protection Agency developmental methods for polynuclear aromatic hydrocarbons, pentachlorophenol, particulates and metals at hazardous waste site remediations. A remedial action plan developed for the site called for the development and subsequent execution of an air monitoring plan during the removal of affected subsurface soils. Ambient air monitoring for polynuclear aromatic hydrocarbons, pentachlorophenol, total particulates and arsenic, chromium and copper was conducted from February through May, 1992. After May, sampling for arsenic, chromium and copper was dropped from the plan because of the extremely low levels of metals associated with the soils. Real-time monitoring for total suspended particulates was conducted from February through September, 1992.

  16. Decommissioning of facilities and encapsulation of wastes for an uranium mill site in Spain

    SciTech Connect (OSTI)

    Santiago, J.L. [Enresa, Madrid (Spain); Sanchez, M. [Initec, Madrid (Spain)

    1994-12-31T23:59:59.000Z

    In the south of Spain on the outskirts of the town of Andujar an inactive uranium mill tailings site is being remediated in place. Mill equipment, buildings and process facilities have been dismantled and demolished and the resulting metal wastes and debris have been placed in the tailings pile. The tailings mass has been reshaped by flattening the sideslopes to improve stability and a cover system has been placed over the pile. Remedial action works started in February 1991 and will be completed by March 1994. This paper describes the progress of the remediation works for the closure of the Andujar mill site and in particular discusses the approaches used for the dismantling and demolition of the processing facilities and the stabilization of the tailings pile.

  17. Applicability of petroleum horizontal drilling technology to hazardous waste site characterization and remediation

    SciTech Connect (OSTI)

    Goranson, C.

    1992-09-01T23:59:59.000Z

    Horizontal wells have the potential to become an important tool for use in characterization, remediation and monitoring operations at hazardous waste disposal, chemical manufacturing, refining and other sites where subsurface pollution may develop from operations or spills. Subsurface pollution of groundwater aquifers can occur at these sites by leakage of surface disposal ponds, surface storage tanks, underground storage tanks (UST), subsurface pipelines or leakage from surface operations. Characterization and remediation of aquifers at or near these sites requires drilling operations that are typically shallow, less than 500-feet in depth. Due to the shallow nature of polluted aquifers, waste site subsurface geologic formations frequently consist of unconsolidated materials. Fractured, jointed and/or layered high compressive strength formations or compacted caliche type formations can also be encountered. Some formations are unsaturated and have pore spaces that are only partially filled with water. Completely saturated underpressured aquifers may be encountered in areas where the static ground water levels are well below the ground surface. Each of these subsurface conditions can complicate the drilling and completion of wells needed for monitoring, characterization and remediation activities. This report describes some of the equipment that is available from petroleum drilling operations that has direct application to groundwater characterization and remediation activities. A brief discussion of petroleum directional and horizontal well drilling methodologies is given to allow the reader to gain an understanding of the equipment needed to drill and complete horizontal wells. Equipment used in river crossing drilling technology is also discussed. The final portion of this report is a description of the drilling equipment available and how it can be applied to groundwater characterization and remediation activities.

  18. Surficial geology and performance assessment for a Radioactive Waste Management Facility at the Nevada Test Site

    SciTech Connect (OSTI)

    Snyder, K.E. [Lockheed Environmental Systems and Technologies, Co., Las Vegas, NV (United States); Gustafson, D.L.; Huckins-Gang, H.E.; Miller, J.J.; Rawlinson, S.E. [Raytheon Services Nevada, Las Vegas, NV (United States)

    1995-02-01T23:59:59.000Z

    At the Nevada Test Site, one potentially disruptive scenario being evaluated for the Greater Confinement Disposal (GCD) Facility Performance Assessment is deep post-closure erosion that would expose buried radioactive waste to the accessible environment. The GCD Facility located at the Area 5 Radioactive Waste Management Site (RWMS) lies at the juncture of three alluvial fan systems. Geomorphic surface mapping in northern Frenchman Flat indicates that reaches of these fans where the RWMS is now located have been constructional since at least the middle Quaternary. Mapping indicates a regular sequence of prograding fans with entrenchment of the older fan surfaces near the mountain fronts and construction of progressively younger inset fans farther from the mountain fronts. At the facility, the oldest fan surfaces are of late Pleistocene and Holocene age. More recent geomorphic activity has been limited to erosion and deposition along small channels. Trench and pit wall mapping found maximum incision in the vicinity of the RWMS to be less than 1.5 m. Based on collected data, natural geomorphic processes are unlikely to result in erosion to a depth of more than approximately 2 m at the facility within the 10,000-year regulatory period.

  19. Modeling of batch operations in the Defense Waste Processing Facility at the Savannah River Site

    SciTech Connect (OSTI)

    Smith, F.G.

    1995-02-01T23:59:59.000Z

    A computer model is in development to provide a dynamic simulation of batch operations within the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). The DWPF will chemically treat high level waste materials from the site tank farm and vitrify the resulting slurry into a borosilicate glass for permanent disposal. The DWPF consists of three major processing areas: Salt Processing Cell (SPC), Chemical Processing Cell (CPC) and the Melt Cell. Separate models have been developed for each of these process units using the SPEEDUP{trademark} software from Aspen Technology. Except for glass production in the Melt Cell, all of the chemical operations within DWPF are batch processes. Since the SPEEDUP software is designed for dynamic modeling of continuous processes, considerable effort was required to devise batch process algorithms. This effort was successful and the models are able to simulate batch operations and the dynamic behavior of the process. In this paper, we will describe the SPC model in some detail and present preliminary results from a few simulation studies.

  20. A Brief Review of Filtration Studies for Waste Treatment at the Hanford Site

    SciTech Connect (OSTI)

    Daniel, Richard C.; Schonewill, Philip P.; Shimskey, Rick W.; Peterson, Reid A.

    2010-12-01T23:59:59.000Z

    This document completes the requirements of Milestone 1-2, PNNL Draft Literature Review, discussed in the scope of work outlined in the EM-31 Support Project task plan WP-2.3.6-2010-1. The focus of task WP 2.3.6 is to improve the U.S. Department of Energy’s (DOE’s) understanding of filtration operations for high-level waste (HLW) to enhance filtration and cleaning efficiencies, thereby increasing process throughput and reducing the sodium demand (through acid neutralization). Developing the processes for fulfilling the cleaning/backpulsing requirements will result in more efficient operations for both the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and the Savannah River Site (SRS), thereby increasing throughput by limiting cleaning cycles. The purpose of this document is to summarize Pacific Northwest National Laboratory’s (PNNL’s) literature review of historical filtration testing at the laboratory and of testing found in peer-reviewed journals. Eventually, the contents of this document will be merged with a literature review by SRS to produce a summary report for DOE of the results of previous filtration testing at the laboratories and the types of testing that still need to be completed to address the questions about improved filtration performance at WTP and SRS. To this end, this report presents 1) a review of the current state of crossflow filtration knowledge available in the peer-reviewed literature, 2) a detailed review of PNNL-related filtration studies specific to the Hanford site, and 3) an overview of current waste filtration models developed by PNNL and suggested avenues for future model development.

  1. Remaining Sites Verification Package for the 1607-B2 Septic System and 100-B-14:2 Sanitary Sewer System, Waste Site Reclassification Form 2006-055

    SciTech Connect (OSTI)

    L. M. Dittmer

    2007-03-21T23:59:59.000Z

    The 1607-B2 waste site is a former septic system associated with various 100-B facilities, including the 105-B, 108-B, 115-B/C, and 185/190-B buildings. The site was evaluated based on confirmatory results for feeder lines within the 100-B-14:2 subsite and determined to require remediation. The 1607-B2 waste site has been remediated to achieve the remedial action objectives specified in the Remaining Sites ROD. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  2. 2011 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    SciTech Connect (OSTI)

    David Frederick

    2012-02-01T23:59:59.000Z

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (LA-000160-01), for the wastewater reuse site at the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2010 through October 31, 2011. The report contains the following information: (1) Facility and system description; (2) Permit required effluent monitoring data and loading rates; (3) Groundwater monitoring data; (4) Status of special compliance conditions; and (5) Discussion of the facility's environmental impacts. During the 2011 reporting year, an estimated 6.99 million gallons of wastewater were discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 13 million gallons per year. Using the dissolved iron data, the concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the Ground Water Quality Rule Primary and Secondary Constituent Standards.

  3. Long-Term Performance of Transuranic Waste Inadvertently Disposed in a Shallow Land Burial Trench at the Nevada Test Site

    SciTech Connect (OSTI)

    Gregory J. Shott; Vefa Yucel

    2009-07-16T23:59:59.000Z

    In 1986, 21 m3 of transuranic (TRU) waste was inadvertently disposed in a shallow land burial trench at the Area 5 Radioactive Waste Management Site on the Nevada Test Site. U.S. Department of Energy (DOE) TRU waste must be disposed in accordance with Title 40, Code of Federal Regulations (CFR), Part 191, Environmental Radiation Protection Standard for Management and Disposal of Spent Nuclear Fuel, High-Level, and Transuranic Radioactive Wastes. The Waste Isolation Pilot Plant is the only facility meeting these requirements. The National Research Council, however, has found that exhumation of buried TRU waste for disposal in a deep geologic repository may not be warranted when the effort, exposures, and expense of retrieval are not commensurate with the risk reduction achieved. The long-term risks of leaving the TRU waste in-place are evaluated in two probabilistic performance assessments. A composite analysis, assessing the dose from all disposed waste and interacting sources of residual contamination, estimates an annual total effective dose equivalent (TEDE) of 0.01 mSv, or 3 percent of the dose constraint. A 40 CFR 191 performance assessment also indicates there is reasonable assurance of meeting all requirements. The 40 CFR 191.15 annual mean TEDE for a member of the public is estimated to reach a maximum of 0.055 mSv at 10,000 years, or approximately 37 percent of the 0.15 mSv individual protection requirement. In both assessments greater than 99 percent of the dose is from co-disposed low-level waste. The simulated probability of the 40 CFR 191.13 cumulative release exceeding 1 and 10 times the release limit is estimated to be 0.0093 and less than 0.0001, respectively. Site characterization data and hydrologic process modeling support a conclusion of no groundwater pathway within 10,000 years. Monte Carlo uncertainty analysis indicates that there is reasonable assurance of meeting all regulatory requirements. Sensitivity analysis indicates that the results are insensitive to TRU waste-related parameters. Limited quantities of TRU waste in a shallow land burial trench can meet DOE performance objectives for disposal of TRU waste and contribute negligibly to disposal site risk. Leaving limited quantities of buried TRU waste in-place may be preferred over retrieval for disposal in a deep geologic repository.

  4. Siting Study for the Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Lisa Harvego; Joan Connolly; Lance Peterson; Brennon Orr; Bob Starr

    2010-10-01T23:59:59.000Z

    The U.S. Department of Energy has identified a mission need for continued disposal capacity for remote-handled low-level waste (LLW) generated at the Idaho National Laboratory (INL). An alternatives analysis that was conducted to evaluate strategies to achieve this mission need identified two broad options for disposal of INL generated remote-handled LLW: (1) offsite disposal and (2) onsite disposal. The purpose of this study is to identify candidate sites or locations within INL boundaries for the alternative of an onsite remote handled LLW disposal facility and recommend the highest-ranked locations for consideration in the National Environmental Policy Act process. The study implements an evaluation based on consideration of five key elements: (1) regulations, (2) key assumptions, (3) conceptual design, (4) facility performance, and (5) previous INL siting study criteria, and uses a five-step process to identify, screen, evaluate, score, and rank 34 separate sites located across INL. The result of the evaluation is identification of two recommended alternative locations for siting an onsite remote-handled LLW disposal facility. The two alternative locations that best meet the evaluation criteria are (1) near the Advanced Test Reactor Complex and (2) west of the Idaho Comprehensive Environmental Response, Compensation, and Liability Act Disposal Facility.

  5. RCRA Part A and Part B Permit Application for Waste Management Activities at the Nevada Test Site: Proposed Mixed Waste Disposal Unit (MWSU)

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2010-07-19T23:59:59.000Z

    The proposed Mixed Waste Storage Unit (MWSU) will be located within the Area 5 Radioactive Waste Management Complex (RWMC). Existing facilities at the RWMC will be used to store low-level mixed waste (LLMW). Storage is required to accommodate offsite-generated LLMW shipped to the Nevada Test Site (NTS) for disposal in the new Mixed Waste Disposal Unit (MWDU) currently in the design/build stage. LLMW generated at the NTS (onsite) is currently stored on the Transuranic (TRU) Pad (TP) in Area 5 under a Mutual Consent Agreement (MCA) with the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). When the proposed MWSU is permitted, the U.S. Department of Energy (DOE) will ask that NDEP revoke the MCA and onsite-generated LLMW will fall under the MWSU permit terms and conditions. The unit will also store polychlorinated biphenyl (PCB) waste and friable and non-friable asbestos waste that meets the acceptance criteria in the Waste Analysis Plan (Exhibit 2) for disposal in the MWDU. In addition to Resource Conservation and Recovery Act (RCRA) requirements, the proposed MWSU will also be subject to Department of Energy (DOE) orders and other applicable state and federal regulations. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational RCRA units at the NTS and their respective regulatory status.

  6. 2013 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect (OSTI)

    Mike Lewis

    2014-02-01T23:59:59.000Z

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond from November 1, 2012–October 31, 2013. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of compliance activities • Noncompliance issues • Discussion of the facility’s environmental impacts. During the 2013 permit year, approximately 238 million gallons of wastewater was discharged to the Cold Waste Pond. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters are below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.

  7. 2010 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect (OSTI)

    mike lewis

    2011-02-01T23:59:59.000Z

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond from November 1, 2009 through October 31, 2010. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of compliance activities • Discussion of the facility’s environmental impacts During the 2010 permit year, approximately 164 million gallons of wastewater were discharged to the Cold Waste Pond. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters were below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.

  8. Closure End States for Facilities, Waste Sites, and Subsurface Contamination - 12543

    SciTech Connect (OSTI)

    Gerdes, Kurt; Chamberlain, Grover; Whitehurst, Latrincy; Marble, Justin [Office of Groundwater and Soil Remediation, U.S. Department of Energy, Washington, DC 20585 (United States); Wellman, Dawn [Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Deeb, Rula; Hawley, Elisabeth [ARCADIS U.S., Inc., Emeryville, CA 94608 (United States)

    2012-07-01T23:59:59.000Z

    The United States (U.S.) Department of Energy (DOE) manages the largest groundwater and soil cleanup effort in the world. DOE's Office of Environmental Management (EM) has made significant progress in its restoration efforts at sites such as Fernald and Rocky Flats. However, remaining sites, such as Savannah River Site, Oak Ridge Site, Hanford Site, Los Alamos, Paducah Gaseous Diffusion Plant, Portsmouth Gaseous Diffusion Plant, and West Valley Demonstration Project possess the most complex challenges ever encountered by the technical community and represent a challenge that will face DOE for the next decade. Closure of the remaining 18 sites in the DOE EM Program requires remediation of 75 million cubic yards of contaminated soil and 1.7 trillion gallons of contaminated groundwater, deactivation and decommissioning (D and D) of over 3000 contaminated facilities and thousands of miles of contaminated piping, removal and disposition of millions of cubic yards of legacy materials, treatment of millions of gallons of high level tank waste and disposition of hundreds of contaminated tanks. The financial obligation required to remediate this volume of contaminated environment is estimated to cost more than 7% of the to-go life-cycle cost. Critical in meeting this goal within the current life-cycle cost projections is defining technically achievable end states that formally acknowledge that remedial goals will not be achieved for a long time and that residual contamination will be managed in the interim in ways that are protective of human health and environment. Formally acknowledging the long timeframe needed for remediation can be a basis for establishing common expectations for remedy performance, thereby minimizing the risk of re-evaluating the selected remedy at a later time. Once the expectations for long-term management are in place, remedial efforts can be directed towards near-term objectives (e.g., reducing the risk of exposure to residual contamination) instead of focusing on long-term cleanup requirements. An acknowledgement of the long timeframe for complete restoration and the need for long-term management can also help a site transition from the process of pilot testing different remedial strategies to selecting a final remedy and establishing a long-term management and monitoring approach. This approach has led to cost savings and the more efficient use of resources across the Department of Defense complex and at numerous industrial sites across the U.S. Defensible end states provide numerous benefits for the DOE environmental remediation programs including cost-effective, sustainable long-term monitoring strategies, remediation and site transition decision support, and long-term management of closure sites. (authors)

  9. Environmental Management Waste Management Facility (EMWMF) Site-Specific Health and Safety Plan, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Flynn, N.C. Bechtel Jacobs

    2008-04-21T23:59:59.000Z

    The Bechtel Jacobs Company LLC (BJC) policy is to provide a safe and healthy workplace for all employees and subcontractors. The implementation of this policy requires that operations of the Environmental Management Waste Management Facility (EMWMF), located one-half mile west of the U.S. Department of Energy (DOE) Y-12 National Security Complex, be guided by an overall plan and consistent proactive approach to environment, safety and health (ES&H) issues. The BJC governing document for worker safety and health, BJC/OR-1745, 'Worker Safety and Health Program', describes the key elements of the BJC Safety and Industrial Hygiene (IH) programs, which includes the requirement for development and implementation of a site-specific Health and Safety Plan (HASP) where required by regulation (refer also to BJC-EH-1012, 'Development and Approval of Safety and Health Plans'). BJC/OR-1745, 'Worker Safety and Health Program', implements the requirements for worker protection contained in Title 10 Code of Federal Regulations (CFR) Part 851. The EMWMF site-specific HASP requirements identifies safe operating procedures, work controls, personal protective equipment, roles and responsibilities, potential site hazards and control measures, site access requirements, frequency and types of monitoring, site work areas, decontamination procedures, and outlines emergency response actions. This HASP will be available on site for use by all workers, management and supervisors, oversight personnel and visitors. All EMWMF assigned personnel will be briefed on the contents of this HASP and will be required to follow the procedures and protocols as specified. The policies and procedures referenced in this HASP apply to all EMWMF operations activities. In addition the HASP establishes ES&H criteria for the day-to-day activities to prevent or minimize any adverse effect on the environment and personnel safety and health and to meet standards that define acceptable waste management practices. The HASP is written to make use of past experience and best management practices to eliminate or minimize hazards to workers or the environment from events such as fires, falls, mechanical hazards, or any unplanned release to the environment.

  10. Corrective Action Investigation Plan for Corrective Action Unit 545: Dumps, Waste Disposal Sites, and Buried Radioactive Materials Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Alfred Wickline

    2007-06-01T23:59:59.000Z

    Corrective Action Unit 545, Dumps, Waste Disposal Sites, and Buried Radioactive Materials, consists of seven inactive sites located in the Yucca Flat area and one inactive site in the Pahute Mesa area. The eight CAU 545 sites consist of craters used for mud disposal, surface or buried waste disposed within craters or potential crater areas, and sites where surface or buried waste was disposed. The CAU 545 sites were used to support nuclear testing conducted in the Yucca Flat area during the 1950s through the early 1990s, and in Area 20 in the mid-1970s. This Corrective Action Investigation Plan has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. Under the Federal Facility Agreement and Consent Order, this Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection for approval. Fieldwork will be conducted following approval.

  11. METHODOLOGY & CALCULATIONS FOR THE ASSIGNMENT OF WASTE GROUPS FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE

    SciTech Connect (OSTI)

    BARKER, S.A.

    2006-07-27T23:59:59.000Z

    Waste stored within tank farm double-shell tanks (DST) and single-shell tanks (SST) generates flammable gas (principally hydrogen) to varying degrees depending on the type, amount, geometry, and condition of the waste. The waste generates hydrogen through the radiolysis of water and organic compounds, thermolytic decomposition of organic compounds, and corrosion of a tank's carbon steel walls. Radiolysis and thermolytic decomposition also generates ammonia. Nonflammable gases, which act as dilutents (such as nitrous oxide), are also produced. Additional flammable gases (e.g., methane) are generated by chemical reactions between various degradation products of organic chemicals present in the tanks. Volatile and semi-volatile organic chemicals in tanks also produce organic vapors. The generated gases in tank waste are either released continuously to the tank headspace or are retained in the waste matrix. Retained gas may be released in a spontaneous or induced gas release event (GRE) that can significantly increase the flammable gas concentration in the tank headspace as described in RPP-7771. The document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 5 is the annual update of the methodology and calculations of the flammable gas Waste Groups for DSTs and SSTs.

  12. METHODOLOGY & CALCULATIONS FOR THE ASSIGNMENT OF WASTE FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE

    SciTech Connect (OSTI)

    TU, T.A.

    2007-01-04T23:59:59.000Z

    Waste stored within tank farm double-shell tanks (DST) and single-shell tanks (SST) generates flammable gas (principally hydrogen) to varying degrees depending on the type, amount, geometry, and condition of the waste. The waste generates hydrogen through the radiolysis of water and organic compounds, thermolytic decomposition of organic compounds, and corrosion of a tank's carbon steel walls. Radiolysis and thermolytic decomposition also generates ammonia. Nonflammable gases, which act as dilutents (such as nitrous oxide), are also produced. Additional flammable gases (e.g., methane) are generated by chemical reactions between various degradation products of organic chemicals present in the tanks. Volatile and semi-volatile organic chemicals in tanks also produce organic vapors. The generated gases in tank waste are either released continuously to the tank headspace or are retained in the waste matrix. Retained gas may be released in a spontaneous or induced gas release event (GRE) that can significantly increase the flammable gas concentration in the tank headspace as described in RPP-7771, Flammable Gas Safety Isme Resolution. Appendices A through I provide supporting information. The document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste and characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 6 is the annual update of the flammable gas Waste Groups for DSTs and SSTs.

  13. HANFORD SITE RIVER PROTECTION PROJECT (RPP) TRANSURANIC (TRU) TANK WASTE IDENTIFICATION & PLANNING FOR REVRIEVAL TREATMENT & EVENTUAL DISPOSAL AT WIPP

    SciTech Connect (OSTI)

    KRISTOFZSKI, J.G.; TEDESCHI, R.; JOHNSON, M.E.; JENNINGS, M

    2006-01-18T23:59:59.000Z

    The CH2M HILL Manford Group, Inc. (CHG) conducts business to achieve the goals of the Office of River Protection (ORP) at Hanford. As an employee owned company, CHG employees have a strong motivation to develop innovative solutions to enhance project and company performance while ensuring protection of human health and the environment. CHG is responsible to manage and perform work required to safely store, enhance readiness for waste feed delivery, and prepare for treated waste receipts for the approximately 53 million gallons of legacy mixed radioactive waste currently at the Hanford Site tank farms. Safety and environmental awareness is integrated into all activities and work is accomplished in a manner that achieves high levels of quality while protecting the environment and the safety and health of workers and the public. This paper focuses on the innovative strategy to identify, retrieve, treat, and dispose of Hanford Transuranic (TRU) tank waste at the Waste Isolation Pilot Plant (WIPP).

  14. Special Analysis of the Area 3 Radioactive Waste Management Site at the Nevada National Security Site, Nye County, Nevada

    SciTech Connect (OSTI)

    National Security Technologies, LLC, Environmental Management

    2012-09-30T23:59:59.000Z

    This report describes the methods and results of a special analysis (SA) of the Area 3 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). The purpose of the SA is to determine if the approved performance assessment (PA) and composite analysis (CA) (Shott et al., 2001) remain valid. The Area 3 RWMS PA and CA were prepared as a single document and received conditional approval on October 6, 1999. A conditional Disposal Authorization Statement (DAS) for the Area 3 RWMS was issued on October 20, 1999. Since preparation of the approved PA and CA, new information and additional environmental monitoring data have been used to update the PA and CA. At the same time, continual advancements in computer processors and software have allowed improvement to the PA and CA models. Annual reviews of the PA and CA required by U.S. Department of Energy (DOE) Order DOE O 435.1 have documented multiple changes occurring since preparation of the PA and CA. Potentially important changes include: Development of a new and improved baseline PA and CA model implemented in the probabilistic GoldSim simulation platform. A significant increase in the waste inventory disposed at the site. Revision and updating of model parameters based on additional years of site monitoring data and new research and development results. Although changes have occurred, many important PA/CA issues remain unchanged, including the site conceptual model, important features, events, and processes, and the points of compliance. The SA is performed to document the current status of the PA/CA model and to quantitatively assess the impact of cumulative changes on the PA and CA results. The results of the SA are used to assess the validity of the approved PA/CA and make a determination if revision of the PA or CA is necessary. The SA was performed using the Area 3 RWMS, version 2.102, GoldSim model, the current baseline PA/CA model. Comparison of the maximum SA results with the PA performance objectives indicates that there continues to be a reasonable expectation of compliance. The resident exposure scenario was evaluated for compliance with the air pathway and all-pathways annual total effective dose (TED) performance objectives. The maximum mean air pathway TED, 7E-6 millisievert (mSv) at 1,000 years (y) has decreased relative to the approved PA and is significantly less than the 0.1 mSv limit. The maximum mean all-pathways annual TED, 7E-5 mSv at 1,000 y has increased but remains a small fraction of the 0.25 mSv limit. The SA maximum mean radon-222 (222Rn) flux density, 0.03 becquerel per square meter per second (Bq m-2 s-1), has increased relative to the PA results but is significantly less than the 0.74 Bq m-2 s-1 limit. The SA results continue to support a conclusion that the disposed waste inventory is protective of intruders and groundwater resources. The maximum mean intruder TED, 0.01 mSv for an acute construction scenario at the U-3ah/at disposal unit, was less than the 5 mSv performance measure. Site monitoring data and research results continue to support a conclusion that a groundwater pathway will not exist within the 1,000 y compliance period. Projected releases to the environment are a small fraction of the performance objectives. Cost-effective options for reducing releases further are unlikely to exist. Therefore, releases from the Area 3 RWMS are judged to be as low as reasonably achievable. Comparison of the maximum CA result with the 0.3 mSv CA dose constraint indicates that no action is required to reduce the dose from the Area 3 RWMS and all interacting sources of residual radioactive contamination. The SA maximum mean CA annual TED, 0.02 mSv at 1,000 y, has increased from the approved CA result but remains less than 10% of the dose constraint. The CA TED continues to be due predominantly to inhalation of plutonium-239 resuspended from soils contaminated by nuclear weapons tests conducted near the Area 3 RWMS. The SA results estimated with the Area 3 RWMS version 2.102 model indicate that changes to the PA and CA do not

  15. Recommendation by the Secretary of Energy Regarding the Suitability of the Yucca Mountain Site for a Repository Under the Nuclear Waste Policy Act of 1982

    Broader source: Energy.gov [DOE]

    Recommendation by the Secretary of Energy Regarding the Suitability of the Yucca Mountain Site for a Repository Under the Nuclear Waste Policy Act of 1982

  16. Scoping evaluation of the technical capabilities of DOE sites for disposal of hazardous metals in mixed low-level waste

    SciTech Connect (OSTI)

    Gruebel, M.M.; Waters, R.D.; Langkopf, B.S.

    1997-05-01T23:59:59.000Z

    A team of analysts designed and conducted a scoping evaluation to estimate the technical capabilities of fifteen Department of Energy sites for disposal of the hazardous metals in mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Eight hazardous metals were evaluated: arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver. The analysis considered transport only through the groundwater pathway. The results are reported as site-specific estimates of maximum concentrations of each hazardous metal in treated mixed low-level waste that do not exceed the performance measures established for the analysis. Also reported are site-specific estimates of travel times of each hazardous metal to the point of compliance.

  17. Effect of soil erosion on the long-term stability of FUSRAP near-surface waste-burial sites

    SciTech Connect (OSTI)

    Knight, M.J.

    1983-04-01T23:59:59.000Z

    Decontamination of FUSRAP sites could result in the generation of large volumes (in excess of 400,000 m/sup 3/) of low-activity radioactive wastes (primarily contaminated soil and building materials) requiring subsequent disposal. It is likely that near-surface burial will be seriously considered as an option for disposal of these materials. A number of factors - including soil erosion - could adversely affect the long-term stability of a near-surface waste-burial site. The majority of FUSRAP sites are located in the humid eastern United States, where the principal cause of erosion is the action of water. This report examines the effect of soil erosion by water on burial-site stability based on analysis of four hypothetical near-surface burial sites. The Universal Soil Loss Equation was employed to estimate average annual soil loss from burial sites and the 1000-year effects of soil loss on the soil barrier (burial trench cap) placed over low-activity wastes. Results suggest that the land use of the burial site and the slope gradient of the burial trench cap significantly affect the rate of soil erosion. The development of measures limiting the potential land use of a burial site (e.g., mixing large rocks into the burial trench cap) may be required to preserve the integrity of a burial trench for long periods of time.

  18. Remaining Sites Verification Package for the 600-111, P-11 Critical Mass Laboratory Crib, and UPR-600-16, Fire and Contamination Spread Waste Sites, Waste Site Reclassification Form 2004-065

    SciTech Connect (OSTI)

    J. M. Capron

    2008-10-28T23:59:59.000Z

    The 600-111, P-11 Critical Mass Laboratory Crib waste site, also referred to as the P-11 Facility, included the 120 Experimental Building, the 123 Control Building, and the P-11 Crib. The facility was constructed in 1949 and was used as a laboratory for plutonium criticality studies. In accordance with this evaluation, the confirmatory and verification sampling results support a reclassification of this site to Interim Closed Out. The results of confirmatory and verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  19. Study of the VOC emissions from a municipal solid waste storage pilot-scale cell: Comparison with biogases from municipal waste landfill site

    SciTech Connect (OSTI)

    Chiriac, R., E-mail: rodica.chiriac@univ-lyon1.fr [Universite de Lyon, Universite Lyon 1, CNRS, UMR 5615, Laboratoire des Multimateriaux et Interfaces, 43 boulevard du 11 Novembre 1918, F-69622 Villeurbanne (France); De Araujos Morais, J. [Universite Federal de Paraiba, Campus I Departamento de Engenharia Civil e Ambiental, Joao Pessoa, Paraiba (Brazil); Carre, J. [Universite de Lyon, Universite Lyon 1, CNRS, UMR 5256, Institut de Recherche sur la Catalyse et l'Environnement, 43 boulevard du 11 Novembre 1918, F-69622 Villeurbanne (France); Bayard, R. [Universite de Lyon, INSA de Lyon, Laboratoire de Genie Civil et d'Ingenierie environnementale (LGCIE), F-69622 Villeurbanne (France); Chovelon, J.M. [Universite de Lyon, Universite Lyon 1, CNRS, UMR 5256, Institut de Recherche sur la Catalyse et l'Environnement, 43 boulevard du 11 Novembre 1918, F-69622 Villeurbanne (France); Gourdon, R. [Universite de Lyon, INSA de Lyon, Laboratoire de Genie Civil et d'Ingenierie environnementale (LGCIE), F-69622 Villeurbanne (France)

    2011-11-15T23:59:59.000Z

    Highlights: > Follow-up of the emission of VOCs in a municipal waste pilot-scale cell during the acidogenesis and acetogenesis phases. > Study from the very start of waste storage leading to a better understanding of the decomposition/degradation of waste. > Comparison of the results obtained on the pilot-scale cell with those from 3 biogases coming from the same landfill site. > A methodology of characterization for the progression of the stabilization/maturation of waste is finally proposed. - Abstract: The emission of volatile organic compounds (VOCs) from municipal solid waste stored in a pilot-scale cell containing 6.4 tonnes of waste (storage facility which is left open during the first period (40 days) and then closed with recirculation of leachates during a second period (100 days)) was followed by dynamic sampling on activated carbon and analysed by GC-MS after solvent extraction. This was done in order to know the VOC emissions before the installation of a methanogenesis process for the entire waste mass. The results, expressed in reference to toluene, were exploited during the whole study on all the analyzable VOCs: alcohols, ketones and esters, alkanes, benzenic and cyclic compounds, chlorinated compounds, terpene, and organic sulphides. The results of this study on the pilot-scale cell are then compared with those concerning three biogases from a municipal waste landfill: biogas (1) coming from waste cells being filled or recently closed, biogas (2) from all the waste storage cells on site, and biogas (3) which is a residual gas from old storage cells without aspiration of the gas. The analysis of the results obtained revealed: (i) a high emission of VOCs, principally alcohols, ketones and esters during the acidogenesis; (ii) a decrease in the alkane content and an increase in the terpene content were observed in the VOCs emitted during the production of methane; (iii) the production of heavier alkanes and an increase in the average number of carbon atoms per molecule of alkane with the progression of the stabilisation/maturation process were also observed. Previous studies have concentrated almost on the analysis of biogases from landfills. Our research aimed at gaining a more complete understanding of the decomposition/degradation of municipal solid waste by measuring the VOCs emitted from the very start of the landfill process i.e. during the acidogenesis and acetogenesis phases.

  20. Conceptual Model of Uranium in the Vadose Zone for Acidic and Alkaline Wastes Discharged at the Hanford Site Central Plateau

    SciTech Connect (OSTI)

    Truex, Michael J.; Szecsody, James E.; Qafoku, Nikolla; Serne, R. Jeffrey

    2014-09-01T23:59:59.000Z

    Historically, uranium was disposed in waste solutions of varying waste chemistry at the Hanford Site Central Plateau. The character of how uranium was distributed in the vadose zone during disposal, how it has continued to migrate through the vadose zone, and the magnitude of potential impacts on groundwater are strongly influenced by geochemical reactions in the vadose zone. These geochemical reactions can be significantly influenced by the disposed-waste chemistry near the disposal location. This report provides conceptual models and supporting information to describe uranium fate and transport in the vadose zone for both acidic and alkaline wastes discharged at a substantial number of waste sites in the Hanford Site Central Plateau. The conceptual models include consideration of how co-disposed acidic or alkaline fluids influence uranium mobility in terms of induced dissolution/precipitation reactions and changes in uranium sorption with a focus on the conditions near the disposal site. This information, when combined with the extensive information describing uranium fate and transport at near background pH conditions, enables focused characterization to support effective fate and transport estimates for uranium in the subsurface.

  1. Native Plant Uptake Model for Radioactive Waste Disposal Areas at the Nevada Test Site

    SciTech Connect (OSTI)

    BROWN,THERESA J.; WIRTH,SHARON

    1999-09-01T23:59:59.000Z

    This report defines and defends the basic framework, methodology, and associated input parameters for modeling plant uptake of radionuclides for use in Performance Assessment (PA) activities of Radioactive Waste Management Sites (RWMS) at the Nevada Test Site (NTS). PAs are used to help determine whether waste disposal configurations meet applicable regulatory standards for the protection of human health, the environment, or both. Plants adapted to the arid climate of the NTS are able to rapidly capture infiltrating moisture. In addition to capturing soil moisture, plant roots absorb nutrients, minerals, and heavy metals, transporting them within the plant to the above-ground biomass. In this fashion, plant uptake affects the movement of radionuclides. The plant uptake model presented reflects rooting characteristics important to plant uptake, biomass turnover rates, and the ability of plants to uptake radionuclides from the soil. Parameters are provided for modeling plant uptake and estimating surface contaminant flux due to plant uptake under both current and potential future climate conditions with increased effective soil moisture. The term ''effective moisture'' is used throughout this report to indicate the soil moisture that is available to plants and is intended to be inclusive of all the variables that control soil moisture at a site (e.g., precipitation, temperature, soil texture, and soil chemistry). Effective moisture is a concept used to simplify a number of complex, interrelated soil processes for which there are too little data to model actual plant available moisture. The PA simulates both the flux of radionuclides across the land surface and the potential dose to humans from that flux. Surface flux is modeled here as the amount of soil contamination that is transferred from the soil by roots and incorporated into aboveground biomass. Movement of contaminants to the surface is the only transport mechanism evaluated with the model presented here. Parameters necessary for estimating surface contaminant flux due to native plants expected to inhabit the NTS RWMSS are developed in this report. The model is specific to the plant communities found at the NTS and is designed for both short-term (<1,000 years) and long-term (>1,000 years) modeling efforts. While the model has been crafted for general applicability to any NTS PA, the key radionuclides considered are limited to the transuranic (TRU) wastes disposed of at the NTS.

  2. Waste Isolation Pilot Plant site environmental report for calendar year 1994

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    US Department of Energy (DOE) Order 5400.1 General Environmental Protection Program, requires each DOE facility that conducts significant environmental protection programs to prepare an Annual Site Environmental Report (ASER). The purpose of the ASER is to summarize environmental data in order to characterize site environmental management performance, to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts. This ASER not only documents the required data, it also documents new and continued monitoring and compliance activities during the 1994 calendar year. Data contained in this report are derived from those monitoring programs directed by the Waste Isolation Pilot Plant (WIPP) Environmental Monitoring Plan (EMP) (DOE/WIPP 94-024). The EMP defines a comprehensive set of parameters that must be monitored to detect potential impacts to the environment and to establish baseline measurements for future environmental evaluations. Surface water, groundwater, air, soil, and biotics are monitored for radiological and nonradiological activity levels. The baseline radiological surveillance program covers the broader geographic area that encompasses nearby ranches, villages, and cities. Nonradiological studies focus on the area immediately surrounding the WIPP site.

  3. Communication across 300 generations: deterring human interference with waste deposit sites

    SciTech Connect (OSTI)

    Tannenbaum, P.H.

    1984-04-01T23:59:59.000Z

    The conditions attendant on the deep land burial of nuclear waste products raise a number of possible scenarios to cover the necessary 10,000 years of burial. However, no matter what kind of futuristic scenario obtains, it is desirable to develop an information system indicating the locale and nature of the deposit site and the types of materials stored, along with forewarnings not to interefere with the sites. A variety of such informational sites are suggested. Attention then turns to the recipients of such messages, recognizing from the outset that the psychological/perceptual makeup of individuals across the next 300 or so generations is virtually impossible to predict, particularly since new technologies may well alter that makeup in the furture. Nevertheless, current evidence suggests that certain human characteristics may be considered universal, and that these suggest the incorporation of selected sign signification into the message system. There are other such characteristics that, while probably not intrinsic, can probably be acquired with a minimum of formal training. That still leaves much of the message content to be deliberately created and, hence, learned. The common trefoil or other developed biohazardous signs emerge as the best candidates for a generic base symbol for the buried material.

  4. Remaining Sites Verification Package for the 126-B-3, 184-B Coal Pit Dumping Area, Waste Site Reclassification Form 2005-028

    SciTech Connect (OSTI)

    L. M. Dittmer

    2006-08-07T23:59:59.000Z

    The 126-B-3 waste site is the former coal storage pit for the 184-B Powerhouse. During demolition operations in the 1970s, the site was used for disposal of demolition debris from 100-B/C Area facilities. The site has been remediated by removing debris and contaminated soils. The results of verification sampling demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also showed that residual contaminant concentrations are protective of groundwater and the Columbia River.

  5. Remaining Sites Verification Package for the 100-F-33, 146-F Aquatic Biology Fish Ponds, Waste Site Reclassification Form 2006-021

    SciTech Connect (OSTI)

    L. M. Dittmer

    2006-08-25T23:59:59.000Z

    The 100-F-33, 146-F Aquatice Biology Fish Ponds waste site was an area with six small rectangular ponds and one large circular pond used to conduct tests on fish using various mixtures of river and reactor effluent water. The current site conditions achieve the remedial action objectives specified in the Remaining Sites ROD. The results of verification and applicable confirmatory sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  6. Costs for off-site disposal of nonhazardous oil field wastes: Salt caverns versus other disposal methods

    SciTech Connect (OSTI)

    Veil, J.A.

    1997-09-01T23:59:59.000Z

    According to an American Petroleum Institute production waste survey reported on by P.G. Wakim in 1987 and 1988, the exploration and production segment of the US oil and gas industry generated more than 360 million barrels (bbl) of drilling wastes, more than 20 billion bbl of produced water, and nearly 12 million bbl of associated wastes in 1985. Current exploration and production activities are believed to be generating comparable quantities of these oil field wastes. Wakim estimates that 28% of drilling wastes, less than 2% of produced water, and 52% of associated wastes are disposed of in off-site commercial facilities. In recent years, interest in disposing of oil field wastes in solution-mined salt caverns has been growing. This report provides information on the availability of commercial disposal companies in oil-and gas-producing states, the treatment and disposal methods they employ, and the amounts they charge. It also compares cavern disposal costs with the costs of other forms of waste disposal.

  7. Remaining Sites Verification Package for the 100-F-26:13, 108-F Drain Pipelines, Waste Site Reclassification Form 2005-011

    SciTech Connect (OSTI)

    L. M. Dittmer

    2008-03-03T23:59:59.000Z

    The 100-F-26:13 waste site is the network of process sewer pipelines that received effluent from the 108-F Biological Laboratory and discharged it to the 188-F Ash Disposal Area (126-F-1 waste site). The pipelines included one 0.15-m (6-in.)-, two 0.2-m (8-in.)-, and one 0.31-m (12-in.)-diameter vitrified clay pipe segments encased in concrete. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also showed that residual contaminant concentrations are protective of groundwater and the Columbia River.

  8. Post-Closure Evaluation of the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada National Security Site in Support of the Site-Wide Environmental Impact Statement

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2011-04-26T23:59:59.000Z

    The post-closure performance of the Area 3 Radioactive Waste Management Site (RWMS) and Area 5 RWMS are evaluated for the Site-Wide Environmental Impact Statement using current performance assessment and composite analysis methods and models. Two alternatives with different future waste volumes and inventories are evaluated. The No Action Alternative evaluates the inventory disposed through fiscal year (FY) 2010 plus an additional 4.5E5 cubic meters (m3) (1.59E7 cubic feet [ft3]) of waste disposed at the Area 5 RWMS. The Expanded Operations Alternative evaluates the FY 2010 inventory plus an additional 1.42E6 m3 (5.03E7 ft3) of waste disposed at the Area 5 RWMS and 4.93E4 m3 (1.74E6 ft3) disposed at the Area 3 RWMS. Both the No Action and Expanded Operations Alternatives have a reasonable expectation of meeting all performance objectives of U.S. Department of Energy Order DOE O 435.1, “Radioactive Waste Management.” No significant difference between the two alternatives was found because the waste concentrations are similar. The performance assessment model assesses radiological risk for residents at the RWMS boundary where risk is more closely related to waste concentration than total waste inventory. Results for the composite analysis also indicate that the dose constraint and dose limit can be met for both alternatives.

  9. Remaining Sites Verification Package for the 600-111, P-11 Critical Mass Laboratory Crib, and UPR-600-16, Fire and Contamination Spread Waste Sites, Waste Site Reclassification Form 2008-045

    SciTech Connect (OSTI)

    J. M. Capron

    2008-10-28T23:59:59.000Z

    The UPR-600-16, Fire and Contamination Spread waste site is an unplanned release that occurred on December 4, 1951, when plutonium contamination was spread by a fire that ignited inside the 120 Experimental Building. The 120 Experimental Building was a laboratory building that was constructed in 1949 and used for plutonium criticality studies as part of the P-11 Project. In November 1951, a criticality occurred in the 120 Experimental Building that resulted in extensive plutonium contamination inside the building. The confirmatory evaluation supports a reclassification of this site to Interim Closed Out. The current site conditions achieve the remedial action objectives and the corresponding remedial action goals established in the Remaining Sites ROD. The results of the extensive radiological survey of the surface soil and the confirmatory and verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  10. Use of engineered soils and other site modifications for low-level radioactive waste disposal

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    The U.S. Nuclear Regulatory Commission requires that low-level radioactive waste (LLW) disposal facilities be designed to minimize contact between waste and infiltrating water through the use of site design features. The purpose of this investigation is to identify engineered barriers and evaluate their ability to enhance the long-term performance of an LLW disposal facility. Previously used barriers such as concrete overpacks, vaults, backfill, and engineered soil covers, are evaluated as well as state-of-the-art barriers, including an engineered sorptive soil layer underlying a facility and an advanced design soil cover incorporating a double-capillary layer. The purpose of this investigation is also to provide information in incorporating or excluding specific engineered barriers as part of new disposal facility designs. Evaluations are performed using performance assessment modeling techniques. A generic reference disposal facility design is used as a baseline for comparing the improvements in long-term performance offered by designs incorporating engineered barriers in generic and humid environments. These evaluations simulate water infiltration through the facility, waste leaching, radionuclide transport through the facility, and decay and ingrowth. They also calculate a maximum (peak annual) dose for each disposal system design. A relative dose reduction factor is calculated for each design evaluated. The results of this investigation are presented for concrete overpacks, concrete vaults, sorptive backfill, sorptive engineered soil underlying the facility, and sloped engineered soil covers using a single-capillary barrier and a double-capillary barrier. Designs using combinations of barriers are also evaluated. These designs include a vault plus overpacks, sorptive backfill plus overpacks, and overpack with vault plus sorptive backfill, underlying sorptive soil, and engineered soil cover.

  11. Product consistency leach tests of Savannah River Site radioactive waste glasses

    SciTech Connect (OSTI)

    Bibler, N.E. (Westinghouse Savannah River Co., Aiken, SC (United States)); Bates, J.K. (Argonne National Lab., IL (United States))

    1989-01-01T23:59:59.000Z

    The Product Consistency Test (PCT) is a glass leach test that was developed at the Savannah River Site (SRS) to routinely confirm the durability of nuclear waste glasses that will be produced in the Defense Waste Processing Facility. The PCT is a 7 day, crushed glass leach test in deionized water at 90{degree}C. Final leachates are filtered and acidified prior to analysis. To demonstrate the reproducibility of the PCT when performed remotely, SRS and Argonne National Laboratory have performed the PCT on samples of two radioactive glasses. The tests were also performed to compare the releases of the radionuclides with the major nonradioactive glass components and to determine if radiation from the glass was affecting the results of the PCT. The test was performed in triplicate at each laboratory. For the major soluble elements, B, Li, Na, and Si, in the glass, each investigator obtained relative precisions in the range 2--5% in the triplicate tests. This range indicates good precision for the PCT when performed remotely with master slave manipulators in a shielded cell environment.

  12. A Multiattribute Utility Analysis of Sites Nominated For Characterization For the First Radioactive Waste Repository- A Decision Aiding Methodology

    Broader source: Energy.gov [DOE]

    In December 1984, the Department of Energy (DOE) published draft environmental assessments (EAs) to support the proposed nomination of five sites and the recommendation of three sites for characterization for the first radioactive-waste repository. A chapter common to all the draft EAs (Chapter 7) presented rankings of the five sites against the postclosure and the preclosure technical siting guidelines. To determine which three sites appeared most favorable for recommendation for characterization, three simple quantitative methods were used to aggregate the rankings assigned to each site for the various technical guidelines. In response to numerous comments on the methods, the DOE has undertaken a formal application of one of them (hereafter referred to as the decision-aiding methodology) for the purpose of obtaining a more rigorous evaluation of the nominated sites.

  13. ADVANTAGES AND DISADVANTAGES TO OPERATING AN ON-SITE LABORATORY AT THE SANDIA NATIONAL LABORATORIES CHEMICAL WASTE LANDFILL

    SciTech Connect (OSTI)

    Young, S.G.; Creech, M.N.

    2003-02-27T23:59:59.000Z

    During the excavation of the Sandia National Laboratories, New Mexico (SNL/NM) Chemical Waste Landfill (CWL), operations were realized by the presence of URS' (formerly known as United Research Services) On-site Mobile Laboratory (OSML) and the close proximity of the SNL/NM Environmental Restoration Chemical Laboratory (ERCL). The laboratory was located adjacent to the landfill in order to provide soil characterization, health and safety support, and waste management data. Although the cost of maintaining and operating an analytical laboratory can be higher than off-site analysis, there are many benefits to providing on site analytical services. This paper describes the synergies between the laboratory, as well as the advantages and disadvantages to having a laboratory on-site during the excavation of SNL/NM CWL.

  14. 2012 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect (OSTI)

    Mike Lewis

    2013-02-01T23:59:59.000Z

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond from November 1, 2011 through October 31, 2012. The report contains the following information: Facility and system description Permit required effluent monitoring data and loading rates Groundwater monitoring data Status of compliance activities Noncompliance issues Discussion of the facility’s environmental impacts During the 2012 permit year, approximately 183 million gallons of wastewater were discharged to the Cold Waste Pond. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters were below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.

  15. Combustion and fuel loading characteristics of Hanford Site transuranic solid waste

    SciTech Connect (OSTI)

    Greenhalgh, W.O.

    1994-08-08T23:59:59.000Z

    The Waste Receiving and Processing (WRAP) Facility is being designed for construction in the north end of the Central Waste Complex. The WRAP Facility will receive, store, and process radioactive solid waste of both transuranic (TRU) and mixed waste (mixed radioactive-chemical waste) categories. Most of the waste is in 208-L (55-gal) steel drums. Other containers such as wood and steel boxes, and various sized drums will also be processed in the facility. The largest volume of waste and the type addressed in this report is TRU in 208-L (55-gal) drums that is scheduled to be processed in the Waste Receiving and Processing Facility Module 1 (WRAP 1). Half of the TRU waste processed by WRAP 1 is expected to be retrieved stored waste and the other half newly generated waste. Both the stored and new waste will be processed to certify it for permanent storage in the Waste Isolation Pilot Plant (WIPP) or disposal. The stored waste will go through a process of retrieval, examination, analysis, segregation, repackaging, relabeling, and documentation before certification and WIPP shipment. Newly generated waste should be much easier to process and certify. However, a substantial number of drums of both retrievable and newly generated waste will require temporary storage and handling in WRAP. Most of the TRU waste is combustible or has combustible components. Therefore, the presence of a substantial volume of drummed combustible waste raises concern about fire safety in WRAP and similar waste drum storage facilities. This report analyzes the fire related characteristics of the expected WRAP TRU waste stream.

  16. Application of United States Department of Transportation regulations to hazardous material and waste shipments on the Hanford Site

    SciTech Connect (OSTI)

    Burnside, M.E.

    1992-01-01T23:59:59.000Z

    All hazardous material and waste transported over roadways open to the public must be in compliance with the US Department of Transportation (DOT) regulations. The DOT states that the hazardous material regulations (HMR) also apply to government-owned, contractor-operated (GOCO) transportation operations over any US Department of Energy (DOE) site roadway where the public has free and unrestricted access. Hazardous material and waste in packages that do not meet DOE regulations must be transported on DOE site roadways in a manner that excludes the public and nonessential workers. At the DOE Richland Field Office (the Hanford Site), hazardous material and waste movements that do not meet DOE requirements are transported over public access roadways during off-peak hours with the roadways barricaded. These movements are accomplished using a transportation plan that involves the DOE, DOE contractors, and private utilities who operate on or near the Hanford Site. This method, which is used at the Hanford Site to comply with DOE regulations onsite, can be communicated to other DOE sites to provide a basis for achieving consistency in similar transportation operations.

  17. Site characterization plan for groundwater in Waste Area Grouping 1 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Lee, R.R.; Curtis, A.H.; Houlberg, L.M.; Purucker, S.T.; Singer, M.L.; Tardiff, M.F.; Wolf, D.A.

    1994-07-01T23:59:59.000Z

    The Waste Area Grouping (WAG) 1 Groundwater Operable Unit (OU) at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, is undergoing a site characterization to identify environmental contamination that may be present. This document, Site Characterization Report for Groundwater in Waste Area Grouping I at Oak Ridge National Laboratory, Oak Ridge, Tennessee, identifies areas of concern with respect to WAG 1 groundwater and presents the rationale, justification, and objectives for conducting this continuing site characterization. This report summarizes the operations that have taken place at each of the areas of concern in WAG 1, summarizes previous characterization studies that have been performed, presents interpretations of previously collected data and information, identifies contaminants of concern, and presents an action plan for further site investigations and early actions that will lead to identification of contaminant sources, their major groundwater pathways, and reduced off-site migration of contaminated groundwater to surface water. Site characterization Activities performed to date at WAG I have indicated that groundwater contamination, principally radiological contamination, is widespread. An extensive network of underground pipelines and utilities have contributed to the dispersal of contaminants to an unknown extent. The general absence of radiological contamination in surface water at the perimeter of WAG 1 is attributed to the presence of pipelines and underground waste storage tank sumps and dry wells distributed throughout WAG 1 which remove more than about 40 million gal of contaminated groundwater per year.

  18. Crystallization In High Level Waste (HLW) Glass Melters: Operational Experience From The Savannah River Site

    SciTech Connect (OSTI)

    Fox, K. M.

    2014-02-27T23:59:59.000Z

    processing strategy for the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The basis of this alternative approach is an empirical model predicting the crystal accumulation in the WTP glass discharge riser and melter bottom as a function of glass composition, time, and temperature. When coupled with an associated operating limit (e.g., the maximum tolerable thickness of an accumulated layer of crystals), this model could then be integrated into the process control algorithms to formulate crystal tolerant high level waste (HLW) glasses targeting higher waste loadings while still meeting process related limits and melter lifetime expectancies. This report provides a review of the scaled melter testing that was completed in support of the Defense Waste Processing Facility (DWPF) melter. Testing with scaled melters provided the data to define the DWPF operating limits to avoid bulk (volume) crystallization in the un-agitated DWPF melter and provided the data to distinguish between spinels generated by K-3 refractory corrosion versus spinels that precipitated from the HLW glass melt pool. This report includes a review of the crystallization observed with the scaled melters and the full scale DWPF melters (DWPF Melter 1 and DWPF Melter 2). Examples of actual DWPF melter attainment with Melter 2 are given. The intent is to provide an overview of lessons learned, including some example data, that can be used to advance the development and implementation of an empirical model and operating limit for crystal accumulation for WTP. Operation of the first and second (current) DWPF melters has demonstrated that the strategy of using a liquidus temperature predictive model combined with a 100 °C offset from the normal melter operating temperature of 1150 °C (i.e., the predicted liquidus temperature (TL) of the glass must be 1050 °C or less) has been successful in preventing any detrimental accumulation of spinel in the DWPF melt pool, and spinel has not been observed in any of the pour stream glass samples. Spinel was observed at the bottom of DWPF Melter 1 as a result of K-3 refractory corrosion. Issues have occurred with accumulation of spinel in the pour spout during periods of operation at higher waste loadings. Given that both DWPF melters were or have been in operation for greater than 8 years, the service life of the melters has far exceeded design expectations. It is possible that the DWPF liquidus temperature approach is conservative, in that it may be possible to successfully operate the melter with a small degree of allowable crystallization in the glass. This could be a viable approach to increasing waste loading in the glass assuming that the crystals are suspended in the melt and swept out through the riser and pour spout. Additional study is needed, and development work for WTP might be leveraged to support a different operating limit for the DWPF. Several recommendations are made regarding considerations that need to be included as part of the WTP crystal tolerant strategy based on the DWPF development work and operational data reviewed here. These include: Identify and consider the impacts of potential heat sinks in the WTP melter and glass pouring system; Consider the contributions of refractory corrosion products, which may serve to nucleate additional crystals leading to further accumulation; Consider volatilization of components from the melt (e.g., boron, alkali, halides, etc.) and determine their impacts on glass crystallization behavior; Evaluate the impacts of glass REDuction/OXidation (REDOX) conditions and the distribution of temperature within the WTP melt pool and melter pour chamber on crystal accumulation rate; Consider the impact of precipitated crystals on glass viscosity; Consider the impact of an accumulated crystalline layer on thermal convection currents and bubbler effectiveness within the melt pool; Evaluate the impact of spinel accumulation on Joule heating of the WTP melt pool; and Include noble metals in glass melt experiments because of their potential to act as nucleation site

  19. HIGH LEVEL WASTE MECHANCIAL SLUDGE REMOVAL AT THE SAVANNAH RIVER SITE F TANK FARM CLOSURE PROJECT

    SciTech Connect (OSTI)

    Jolly, R; Bruce Martin, B

    2008-01-15T23:59:59.000Z

    The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal (MSR) using the Waste on Wheels (WOW) system for the first time within one of its storage tanks. The WOW system is designed to be relatively mobile with the ability for many components to be redeployed to multiple waste tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. In addition, the project is currently preparing another waste tank for MSR utilizing lessons learned from this previous operational activity. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2,840 cubic meters (750,000 gallons) each. The construction of these tanks was completed in 1953, and they were placed into waste storage service in 1959. The tank's primary shell is 23 meters (75 feet) in diameter, and 7.5 meters (24.5 feet) in height. Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. Both Tank 5 and Tank 6 received and stored F-PUREX waste during their operating service time before sludge removal was performed. DOE intends to remove from service and operationally close (fill with grout) Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. Mechanical Sludge Removal, the first step in the tank closure process, will be followed by chemical cleaning. After obtaining regulatory approval, the tanks will be isolated and filled with grout for long-term stabilization. Mechanical Sludge Removal operations within Tank 6 removed approximately 75% of the original 95,000 liters (25,000 gallons). This sludge material was transferred in batches to an interim storage tank to prepare for vitrification. This operation consisted of eleven (11) Submersible Mixer Pump(s) mixing campaigns and multiple intraarea transfers utilizing STPs from July 2006 to August 2007. This operation and successful removal of sludge material meets requirement of approximately 19,000 to 28,000 liters (5,000 to 7,500 gallons) remaining prior to the Chemical Cleaning process. Removal of the last 35% of sludge was exponentially more difficult, as less and less sludge was available to mobilize and the lighter sludge particles were likely removed during the early mixing campaigns. The removal of the 72,000 liters (19,000 gallons) of sludge was challenging due to a number factors. One primary factor was the complex internal cooling coil array within Tank 6 that obstructed mixer discharge jets and impacted the Effective Cleaning Radius (ECR) of the Submersible Mixer Pumps. Minimal access locations into the tank through tank openings (risers) presented a challenge because the available options for equipment locations were very limited. Mechanical Sludge Removal activities using SMPs caused the sludge to migrate to areas of the tank that were outside of the SMP ECR. Various SMP operational strategies were used to address the challenge of moving sludge from remote areas of the tank to the transfer pump. This paper describes in detail the Mechanical Sludge Removal activities and mitigative solutions to cooling coil obstructions and other challenges. The performance of the WOW system and SMP operational strategies were evaluated and the resulting lessons learned are described for application to future Mechanical Sludge Removal operations.

  20. Composite analysis for low-level waste disposal in the 200 area plateau of the Hanford Site

    SciTech Connect (OSTI)

    Kincaid, C.T.; Bergeron, M.P.; Cole, C.R. [and others

    1998-03-01T23:59:59.000Z

    This report presents the first iteration of the Composite Analysis for Low-Level Waste Disposal in the 200 Area Plateau of the Hanford Site (Composite Analysis) prepared in response to the U.S. Department of Energy Implementation Plan for the Defense Nuclear Facility Safety Board Recommendation 94-2. The Composite Analysis is a companion document to published analyses of four active or planned low-level waste disposal actions: the solid waste burial grounds in the 200 West Area, the solid waste burial grounds in the 200 East Area, the Environmental Restoration Disposal Facility, and the disposal facilities for immobilized low-activity waste. A single Composite Analysis was prepared for the Hanford Site considering only sources on the 200 Area Plateau. The performance objectives prescribed in U.S. Department of Energy guidance for the Composite Analysis were 100 mrem in a year and examination of a lower dose (30 mrem in a year) to ensure the {open_quotes}as low as reasonably achievable{close_quotes} concept is followed. The 100 mrem in a year limit was the maximum allowable all-pathways dose for 1000 years following Hanford Site closure, which is assumed to occur in 2050. These performance objectives apply to an accessible environment defined as the area between a buffer zone surrounding an exclusive waste management area on the 200 Area Plateau, and the Columbia River. Estimating doses to hypothetical future members of the public for the Composite Analysis was a multistep process involving the estimation or simulation of inventories; waste release to the environment; migration through the vadose zone, groundwater, and atmospheric pathways; and exposure and dose. Doses were estimated for scenarios based on agriculture, residential, industrial, and recreational land use. The radionuclides included in the vadose zone and groundwater pathway analyses of future releases were carbon-14, chlorine-36, selenium-79, technetium-99, iodine-129, and uranium isotopes.

  1. 1999 data report: Groundwater monitoring program Area 5 Radioactive Waste Management Site

    SciTech Connect (OSTI)

    Yvonne Townsend

    2000-03-01T23:59:59.000Z

    This report is a compilation of the annual 1999 groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). Contamination indicator data are presented in control chart and tabular form with investigation levels indicated. Gross water chemistry data are presented in graphical and tabular form. Other information in the report includes, the Cumulative Chronology for Area 5 RWMS Groundwater Monitoring Program, a brief description of the site hydrogeology and the groundwater sampling procedure. Wells Ue5PW-1, Ue5PW-2, and Ue5PW-3 were sampled semiannually for pH, specific conductance, major cations/anions, metals, tritium, total organic carbon (TOC), and total organic halogen (TOX). Results indicate that there has been no measurable impact to the uppermost aquifer from the Resource Conservation and Recovery Act (RCRA) regulated unit within the Area 5 RWMS. Groundwater elevation was monitored quarterly with no major changes noted. There continues to be an extremely small gradient to the northeast with a flow velocity less than one foot per year; however, this is subject to change because the wells have a similar groundwater elevation.

  2. Remaining Sites Verification Package for the 1607-F1 Sanitary Sewer System (124-F-1) and the 100-F-26:8 (1607-F1) Sanitary Sewer Pipelines Waste Sites, Waste Site Reclassification Form 2004-130

    SciTech Connect (OSTI)

    L. M. Dittmer

    2008-03-14T23:59:59.000Z

    The 1607-F1 Sanitary Sewer System (124-F-1), consisted of a septic tank, drain field, and associated pipelines that received sanitary waste water from the 1701-F Gatehouse, 1709-F Fire Station, and the 1720-F Administrative Office via the 100-F-26:8 pipelines. The septic tank required remedial action based on confirmatory sampling. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  3. Rooting Characteristics of Vegetation Near Areas 3 and 5 Radioactive Waste Management Sites at the Nevada Test Site--Part 1

    SciTech Connect (OSTI)

    D. J. Hansen

    2003-09-30T23:59:59.000Z

    The U.S. Department of Energy emplaced high-specific-activity low-level radioactive wastes and limited quantities of classified transuranic wastes in Greater Confinement Disposal (GCD) boreholes from 1984 to 1989. The boreholes are located at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada Test Site (NTS) in southern Nevada. The boreholes were backfilled with native alluvium soil. The surface of these boreholes and trenches is expected to be colonized by native vegetation in the future. Considering the long-term performance of the disposal facilities, bioturbation (the disruption of buried wastes by biota) is considered a primary release mechanism for radionuclides disposed in GCD boreholes as well as trenches at both Areas 3 and 5 RWMSs. This report provides information about rooting characteristics of vegetation near Areas 3 and 5 RWMSs. Data from this report are being used to resolve uncertainties involving parameterization of performance assessment models used to characterize the biotic mixing of soils and radionuclide transport processes by biota. The objectives of this study were to: (1) survey the prior ecological literature on the NTS and identify pertinent information about the vegetation, (2) conduct limited field studies to describe the current vegetation in the vicinity of Areas 3 and 5 RWMSs so as to correlate findings with more extensive vegetation data collected at Yucca Mountain and the NTS, ( 3 ) review prior performance assessment documents and evaluate model assumptions based on current ecological information, and (4) identify data deficiencies and make recommendations for correcting such deficiencies.

  4. Integrated Closure and Monitoring Plan for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site

    SciTech Connect (OSTI)

    S. E. Rawlinson

    2001-09-01T23:59:59.000Z

    Bechtel Nevada (BN) manages two low-level Radioactive Waste Management Sites (RWMSs) (one site is in Area 3 and the other is in Area 5) at the Nevada Test Site (NTS) for the U.S. Department of Energy's (DOE's) National Nuclear Security Administration Nevada Operations Office (NNSA/NV). The current DOE Order governing management of radioactive waste is 435.1. Associated with DOE Order 435.1 is a Manual (DOE M 435.1-1) and Guidance (DOE G 435.1-1). The Manual and Guidance specify that preliminary closure and monitoring plans for a low-level waste (LLW) management facility be developed and initially submitted with the Performance Assessment (PA) and Composite Analysis (CA) for that facility. The Manual and Guidance, and the Disposal Authorization Statement (DAS) issued for the Area 3 RWMS further specify that the preliminary closure and monitoring plans be updated within one year following issuance of a DAS. This Integrated Closure and Monitoring Plan (ICMP) fulfills both requirements. Additional updates will be conducted every third year hereafter. This document is an integrated plan for closing and monitoring both RWMSs, and is based on guidance issued in 1999 by the DOE for developing closure plans. The plan does not follow the format suggested by the DOE guidance in order to better accommodate differences between the two RWMSs, especially in terms of operations and site characteristics. The modification reduces redundancy and provides a smoother progression of the discussion. The closure and monitoring plans were integrated because much of the information that would be included in individual plans is the same, and integration provides efficient presentation and program management. The ICMP identifies the regulatory requirements, describes the disposal sites and the physical environment where they are located, and defines the approach and schedule for both closing and monitoring the sites.

  5. Summary Report of Geophysical Logging For The Seismic Boreholes Project at the Hanford Site Waste Treatment Plant.

    SciTech Connect (OSTI)

    Gardner, Martin G.; Price, Randall K.

    2007-02-01T23:59:59.000Z

    During the period of June through October 2006, three deep boreholes and one corehole were drilled beneath the site of the Waste Treatment Plant (WTP) at the U.S. Department of Energy (DOE) Hanford Site near Richland, Washington. The boreholes were drilled to provide information on ground-motion attenuation in the basalt and interbedded sediments underlying the WTP site. This report describes the geophysical logging of the deep boreholes that was conducted in support of the Seismic Boreholes Project, defined below. The detailed drilling and geological descriptions of the boreholes and seismic data collected and analysis of that data are reported elsewhere.

  6. Remaining Sites Verification Package for the 116-F-8, 1904-F Outfall Structure and the 100-F-42, 1904-F Spillway, Waste Site Reclassification Form 2006-038

    SciTech Connect (OSTI)

    L. M. Dittmer

    2006-09-25T23:59:59.000Z

    The 116-F-8 waste site is the former 1904-F Outfall Structure used to discharge reactor cooling water effluent fro mthe 107-F Retention Basin to the Columbia River. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  7. Site-specific EIS ordered but injunctive relief deined in nuclear waste storage case

    SciTech Connect (OSTI)

    Barnhart y Chavez, S.

    1980-01-01T23:59:59.000Z

    The Energy Research and Development Administration (ERDA) received appropriations in 1976-77 to construct 22 tanks for storage of high level radioactive wastes generated by its nuclear weapons materials production program. The tanks were to replace older, leaking tanks at the Hanford Reservation in Richland, Washington and the Savannah River Plant in Aiken, South Carolina. The Natural Resources Defense Council (NRDC) had unsuccessfully requested that ERDA obtain a construction permit from the Nuclear Regulatory Commission (NRC). NRDC also petitioned NRC to exercise its licensing authority over the tanks under Section 202(4) of the Energy Reorganization Act of 1974. In response to the NRDC request, ERDA claimed the tanks were only for short-term storage and therefore a license was unnecessary. NRC claimed it lacked jurisdiction over the tanks. NRDC filed suit in United States District Court for the District of Columbia, alleging that ERDA had violated Section 102(2)(C) of the National Environmental Policy Act, and that both ERDA and NRC had violated Section 202(4) of the Energy Reorganization Act. NRDC requested an injunction against further construction of the tanks. Although ERDA did not have to obtain an NRC construction permit for the nuclear waste storage tanks at Hanford Reservation and Savannah River Plant, the programmatic Environmental Impact Statement submitted was insufficient and site-specific statements must be prepared. Injunctive relief pending the statements was denied for the social and economic costs of delaying the tanks project. NRC decisions even remotely connected to its licensing power should be contested in federal courts of appeals, not district courts. The court gave NRDC a hollow victory by ordering a more specific EIS, but denying an injunction.

  8. Remaining Sites Verification Package for the 600-243 Petroleum-Contaminated Soil Bioremediation Pad, Waste Site Reclassification Form 2007-033

    SciTech Connect (OSTI)

    J. M. Capron

    2008-11-07T23:59:59.000Z

    The 600-243 waste site consisted of a bioremediation pad for petroleum-contaminated soils resulting from the 1100 Area Underground Storage Tank (UST) upgrades in 1994. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  9. Addendum to the Corrective Action Decision Document/Closure Report for Corrective Action Unit 34: Area 3 Contaminated Waste Sites, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    Lynn Kidman

    2008-10-01T23:59:59.000Z

    This document constitutes an addendum to the April 2002, Corrective Action Decision Document/Closure Report for Corrective Action Unit 34: Area 3 Contaminated Waste Sites as described in the document Recommendations and Justifications for Modifications for Use Restrictions Established under the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Federal Facility Agreement and Consent Order (UR Modification document) dated February 2008. The UR Modification document was approved by NDEP on February 26, 2008. The approval of the UR Modification document constituted approval of each of the recommended UR modifications.

  10. Remaining Sites Verification Package for the 100-F-44:2, Discovery Pipeline Near 108-F Building, Waste Site Reclassification Form 2007-006

    SciTech Connect (OSTI)

    J. M. Capron

    2008-05-30T23:59:59.000Z

    The 100-F-44:2 waste site is a steel pipeline that was discovered in a junction box during confirmatory sampling of the 100-F-26:4 pipeline from December 2004 through January 2005. The 100-F-44:2 pipeline feeds into the 100-F-26:4 subsite vitrified clay pipe (VCP) process sewer pipeline from the 108-F Biology Laboratory at the junction box. In accordance with this evaluation, the confirmatory sampling results support a reclassification of this site to No Action. The current site conditions achieve the remedial action objectives and the corresponding remedial action goals established in the Remaining Sites ROD. The results of confirmatory sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  11. SAVANNAH RIVER SITE INCIPIENT SLUDGE MIXING IN RADIOACTIVE LIQUID WASTE STORAGE TANKS DURING SALT SOLUTION BLENDING

    SciTech Connect (OSTI)

    Leishear, R.; Poirier, M.; Lee, S.; Steeper, T.; Fowley, M.; Parkinson, K.

    2011-01-12T23:59:59.000Z

    This paper is the second in a series of four publications to document ongoing pilot scale testing and computational fluid dynamics (CFD) modeling of mixing processes in 85 foot diameter, 1.3 million gallon, radioactive liquid waste, storage tanks at Savannah River Site (SRS). Homogeneous blending of salt solutions is required in waste tanks. Settled solids (i.e., sludge) are required to remain undisturbed on the bottom of waste tanks during blending. Suspension of sludge during blending may potentially release radiolytically generated hydrogen trapped in the sludge, which is a safety concern. The first paper (Leishear, et. al. [1]) presented pilot scale blending experiments of miscible fluids to provide initial design requirements for a full scale blending pump. Scaling techniques for an 8 foot diameter pilot scale tank were also justified in that work. This second paper describes the overall reasons to perform tests, and documents pilot scale experiments performed to investigate disturbance of sludge, using non-radioactive sludge simulants. A third paper will document pilot scale CFD modeling for comparison to experimental pilot scale test results for both blending tests and sludge disturbance tests. That paper will also describe full scale CFD results. The final paper will document additional blending test results for stratified layers in salt solutions, scale up techniques, final full scale pump design recommendations, and operational recommendations. Specifically, this paper documents a series of pilot scale tests, where sludge simulant disturbance due to a blending pump or transfer pump are investigated. A principle design requirement for a blending pump is UoD, where Uo is the pump discharge nozzle velocity, and D is the nozzle diameter. Pilot scale test results showed that sludge was undisturbed below UoD = 0.47 ft{sup 2}/s, and that below UoD = 0.58 ft{sup 2}/s minimal sludge disturbance was observed. If sludge is minimally disturbed, hydrogen will not be released. Installation requirements were also determined for a transfer pump which will remove tank contents, and which is also required to not disturb sludge. Testing techniques and test results for both types of pumps are presented.

  12. 2011 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect (OSTI)

    Mike Lewis

    2012-02-01T23:59:59.000Z

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste Pond from November 1, 2010 through October 31, 2011. The report contains the following information: Facility and system description Permit required effluent monitoring data and loading rates Groundwater monitoring data Status of compliance activities Noncompliance and other issues Discussion of the facility's environmental impacts During the 2011 permit year, approximately 166 million gallons of wastewater were discharged to the Cold Waste Pond. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters were below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.

  13. A Title 40 Code of Federal Regulations Part 191 Evaluation of Buried Transuranic Waste at the Nevada Test Site

    SciTech Connect (OSTI)

    G. J. Shott, V. Yucel, L. Desotell

    2008-04-01T23:59:59.000Z

    In 1986, 21 m{sup 3} of transuranic (TRU) waste was inadvertently buried in a shallow land burial trench at the Area 5 Radioactive Waste Management Site on the Nevada Test Site (NTS). The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office is considered five options for management of the buried TRU waste. One option is to leave the waste in-place if the disposal can meet the requirements of Title 40 Code of Federal Regulations (CFR) Part 191, 'Environmental Radiation Protection Standard for Management and Disposal of Spent Nuclear Fuel, High-Level, and Transuranic Radioactive Wastes'. This paper describes analyses that assess the likelihood that TRU waste in shallow land burial can meet the 40 CFR 191 standards for a geologic repository. The simulated probability of the cumulative release exceeding 1 and 10 times the 40 CFR 191.13 containment requirements is estimated to be 0.009 and less than 0.0001, respectively. The cumulative release is most sensitive to the number of groundwater withdrawal wells drilled through the disposal trench. The mean total effective dose equivalent for a member of the public is estimated to reach a maximum of 0.014 milliSievert (mSv) at 10,000 years, or approximately 10 percent of the 0.15 mSv 40 CFR 191.15 individual protection requirement. The dose is predominantly from inhalation of short-lived Rn-222 progeny in air produced by low-level waste disposed in the same trench. The transuranic radionuclide released in greatest amounts, Pu-239, contributes only 0.4 percent of the dose. The member of public dose is most sensitive to the U-234 inventory and the radon emanation coefficient. Reasonable assurance of compliance with the Subpart C groundwater protection standard is provided by site characterization data and hydrologic processes modeling which support a conclusion of no groundwater pathway within 10,000 years. Limited quantities of transuranic waste in a shallow land burial trench at the NTS can meet the requirements of 40 CFR 191.

  14. A Title 40 Code of Federal Regulations Part 191 Evaluation of Buried Transuranic Waste at the Nevada Test Site

    SciTech Connect (OSTI)

    Shott, G.J.; Yucel, V.; Desotell, L. [National Security Technologies, LLC, Las Vegas, NV (United States); Pyles, G.; Carilli, J. [U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Las Vegas, NV (United States)

    2008-07-01T23:59:59.000Z

    In 1986, 21 m{sup 3} of transuranic (TRU) waste was inadvertently buried in a shallow land burial trench at the Area 5 Radioactive Waste Management Site on the Nevada Test Site (NTS). The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office is considered five options for management of the buried TRU waste. One option is to leave the waste in-place if the disposal can meet the requirements of Title 40 Code of Federal Regulations (CFR) Part 191, 'Environmental Radiation Protection Standard for Management and Disposal of Spent Nuclear Fuel, High-Level, and Transuranic Radioactive Wastes'. This paper describes analyses that assess the likelihood that TRU waste in shallow land burial can meet the 40 CFR 191 standards for a geologic repository. The simulated probability of the cumulative release exceeding 1 and 10 times the 40 CFR 191.13 containment requirements is estimated to be 0.009 and less than 0.0001, respectively. The cumulative release is most sensitive to the number of groundwater withdrawal wells drilled through the disposal trench. The mean total effective dose equivalent for a member of the public is estimated to reach a maximum of 0.014 milli-Sievert (mSv) at 10,000 years, or approximately 10 percent of the 0.15 mSv 40 CFR 191.15 individual protection requirement. The dose is predominantly from inhalation of short-lived Rn-222 progeny in air produced by low-level waste disposed in the same trench. The transuranic radionuclide released in greatest amounts, Pu-239, contributes only 0.4 percent of the dose. The member of public dose is most sensitive to the U-234 inventory and the radon emanation coefficient. Reasonable assurance of compliance with the Subpart C groundwater protection standard is provided by site characterization data and hydrologic processes modeling which support a conclusion of no groundwater pathway within 10,000 years. Limited quantities of transuranic waste in a shallow land burial trench at the NTS can meet the requirements of 40 CFR 191. (authors)

  15. Special Analysis for the Disposal of the Consolidated Edison Uranium Solidification Project Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2013-01-31T23:59:59.000Z

    The purpose of this Special Analysis (SA) is to determine if the Oak Ridge (OR) Consolidated Edison Uranium Solidification Project (CEUSP) uranium-233 (233U) waste stream (DRTK000000050, Revision 0) is acceptable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). The CEUSP 233U waste stream requires a special analysis because the concentrations of thorium-229 (229Th), 230Th, 232U, 233U, and 234U exceeded their NNSS Waste Acceptance Criteria action levels. The acceptability of the waste stream is evaluated by determining if performance assessment (PA) modeling provides a reasonable expectation that SLB disposal is protective of human health and the environment. The CEUSP 233U waste stream is a long-lived waste with unique radiological hazards. The SA evaluates the long-term acceptability of the CEUSP 233U waste stream for near-surface disposal as a two tier process. The first tier, which is the usual SA process, uses the approved probabilistic PA model to determine if there is a reasonable expectation that disposal of the CEUSP 233U waste stream can meet the performance objectives of U.S. Department of Energy Manual DOE M 435.1-1, “Radioactive Waste Management,” for a period of 1,000 years (y) after closure. The second tier addresses the acceptability of the OR CEUSP 233U waste stream for near-surface disposal by evaluating long-term site stability and security, by performing extended (i.e., 10,000 and 60,000 y) modeling analyses, and by evaluating the effect of containers and the depth of burial on performance. Tier I results indicate that there is a reasonable expectation of compliance with all performance objectives if the OR CEUSP 233U waste stream is disposed in the Area 5 RWMS SLB disposal units. The maximum mean and 95th percentile PA results are all less than the performance objective for 1,000 y. Monte Carlo uncertainty analysis indicates that there is a high likelihood of compliance with all performance objectives. Tier II results indicate that the long-term performance of the OR CEUSP 233U waste stream is protective of human health and the environment. The Area 5 RWMS is located in one of the least populated and most arid regions of the U.S. Site characterization data indicate that infiltration of precipitation below the plant root zone at 2.5 meters (8.2 feet) ceased 10,000 to 15,000 y ago. The site is not expected to have a groundwater pathway as long as the current arid climate persists. The national security mission of the NNSS and the location of the Area 5 RWMS within the Frenchman Flat Corrective Action Unit require that access controls and land use restrictions be maintained indefinitely. PA modeling results for 10,000 to 60,000 y also indicate that the OR CEUSP 233U waste stream is acceptable for near-surface disposal. The mean resident air pathway annual total effective dose (TED), the resident all-pathways annual TED, and the acute drilling TED are less than their performance objectives for 10,000 y after closure. The mean radon-222 (222Rn) flux density exceeds the performance objective at 4,200 y, but this is due to waste already disposed at the Area 5 RWMS and is only slightly affected by disposal of the CEUSP 233U. The peak resident all-pathways annual TED from CEUSP key radionuclides occurs at 48,000 y and is less than the 0.25 millisievert performance objective. Disposal of the OR CEUSP 233U waste stream in a typical SLB trench slightly increases PA results. Increasing the depth was found to eliminate any impacts of the OR CEUSP 233U waste stream. Containers could not be shown to have any significant impact on performance due to the long half-life of the waste stream and a lack of data for pitting corrosion rates of stainless steel in soil. The results of the SA indicate that all performance objectives can be met with disposal of the OR CEUSP 233U waste stream in the SLB units at the Area 5 RWMS. The long-term performance of the OR CEUSP 233U waste stream disposed in the near surface is protective of human health

  16. TECHNICAL ASSESSMENT OF BULK VITRIFICATION PROCESS & PRODUCT FOR TANK WASTE TREATMENT AT THE DEPARTMENT OF ENERGY HANFORD SITE

    SciTech Connect (OSTI)

    SCHAUS, P.S.

    2006-07-21T23:59:59.000Z

    At the U.S. Department of Energy (DOE) Hanford Site, the Waste Treatment Plant (WTP) is being constructed to immobilize both high-level waste (IUW) for disposal in a national repository and low-activity waste (LAW) for onsite, near-surface disposal. The schedule-controlling step for the WTP Project is vitrification of the large volume of LAW, current capacity of the WTP (as planned) would require 50 years to treat the Hanford tank waste, if the entire LAW volume were to be processed through the WTP. To reduce the time and cost for treatment of Hanford Tank Waste, and as required by the Tank Waste Remediation System Environmental Impact Statement Record of Decision and the Hanford Federal Facility Consent Agreement (Tn-Party Agreement), DOE plans to supplement the LAW treatment capacity of the WTP. Since 2002, DOE, in cooperation with the Environmental Protection Agency and State of Washington Department of Ecology has been evaluating technologies that could provide safe and effective supplemental treatment of LAW. Current efforts at Hanford are intended to provide additional information to aid a joint agency decision on which technology will be used to supplement the WTP. A Research, Development and Demonstration permit has been issued by the State of Washington to build and (for a limited time) operate a Demonstration Bulk Vitrification System (DBVS) facility to provide information for the decision on a supplemental treatment technology for up to 50% of the LAW. In the Bulk Vitrification (BV) process, LAW, soil, and glass-forming chemicals are mixed, dried, and placed in a refractory-lined box, Electric current, supplied through two graphite electrodes in the box, melts the waste feed, producing a durable glass waste-form. Although recent modifications to the process have resulted in significant improvements, there are continuing technical concerns.

  17. Composite Analysis for Low-Level Waste Disposal in the 200 Area Plateau of the Hanford Site, Southeast Washington

    SciTech Connect (OSTI)

    Kincaid, Charles T.; Bergeron, Marcel P.; Cole, Charles R.; Freshley, Mark D.; Johnson, Vernon G.; Kaplan, D. I.; Serne, R. Jeffrey; Streile, Gary P.; Strenge, Dennis L.; Thorne, Paul D.; Vail, Lance W.; Whyatt, Greg A.; Wurstner, Signe K.

    2000-03-01T23:59:59.000Z

    A composite analysis of low-level radioactive waste disposal and other radioactive sources was recently completed for the Hanford Site in Southeast Washington State. Impacts from source release and environmental transport were estimated for a 1000-year period following Site closure in a multi-step process involving 1) estimation of radiological inventories and release, 2) assessment of contaminant migration through the vadose zone, groundwater, and atmospheric pathways, 3) and estimation of doses. The analysis showed that most of the radionuclide inventory in past-practice liquid discharge sites and pre-1988 solid waste burial grounds on the 200 Area Plateau will be released in the first several hundred years following Hanford Site closure, well before projected releases from active and planned disposals of solid waste. The maximum predicted agricultural dose was less than 6 mrem/y in 2050 and declined thereafter. The maximum doses for the residential, industrial, and recreational scenarios, were 2.2, 0.7, and 0.04 mrem/y, respectively, and also declined after 2050.

  18. Savannah River Site High-Level Waste Tank Closure Final Environmental Impact Statement

    SciTech Connect (OSTI)

    N /A

    2002-05-31T23:59:59.000Z

    The U.S. Atomic Energy Commission, a U.S. Department of Energy (DOE) predecessor agency, established the Savannah River Site (SRS) near Aiken, South Carolina, in the early 1950s. The primary mission of SRS was to produce nuclear materials for national defense. With the end of the Cold War and the reduction in the size of the United States stockpile of nuclear weapons, the SRS mission has changed. While national defense is still an important facet of the mission, SRS no longer produces nuclear materials and the mission is focused on material stabilization, environmental restoration, waste management, and decontamination and decommissioning of facilities that are no longer needed. As a result of its nuclear materials production mission, SRS generated large quantities of high-level radioactive waste (HLW). The HLW resulted from dissolving spent reactor fuel and nuclear targets to recover the valuable radioactive isotopes. DOE had stored the HLW in 51 large underground storage tanks located in the F- and H-Area Tank Farms at SRS. DOE has emptied and closed two of those tanks. DOE is treating the HLW, using a process called vitrification. The highly radioactive portion of the waste is mixed with a glass like material and stored in stainless steel canisters at SRS, pending shipment to a geologic repository for disposal. This process is currently underway at SRS in the Defense Waste Processing Facility (DWPF). The HLW tanks at SRS are of four different types, which provide varying degrees of protection to the environment due to different degrees of containment. The tanks are operated under the authority of the Atomic Energy Act of 1954 (AEA) and DOE Orders issued under the AEA. The tanks are permitted by the South Carolina Department of Health and Environmental Control (SCDHEC) under South Carolina wastewater regulations, which require permitted facilities to be closed after they are removed from service. DOE has entered into an agreement with the U.S. Environmental Protection Agency (EPA) and SCDHEC to close the HLW tanks after they have been removed from service. Closure of the HLW tanks would comply with DOE's responsibilities under the AEA and the South Carolina closure requirements and be carried out under a schedule agreed to by DOE, EPA, and SCDHEC. There are several ways to close the HLW tanks. DOE has prepared this Environmental Impact Statement (EIS) to ensure that the public and DOE's decision makers have a thorough understanding of the potential environmental impacts of alternative means of closing the tanks. This Summary: (1) describes the HLW tanks and the closure process, (2) describes the National Environmental Policy Act (NEPA) process that DOE is using to aid in decision making, (3) summarizes the alternatives for closing the HLW tanks and identifies DOE.s preferred alternative, and (4) identifies the major conclusions regarding environmental impacts, areas of controversy, and issues that remain to be resolved as DOE proceeds with the HLW tank closure process.

  19. CHARACTERIZING DOE HANFORD SITE WASTE ENCAPSULATION STORAGE FACILITY CELLS USING RADBALL

    SciTech Connect (OSTI)

    Farfan, E.; Coleman, R.

    2011-03-31T23:59:59.000Z

    RadBall{trademark} is a novel technology that can locate and quantify unknown radioactive hazards within contaminated areas, hot cells, and gloveboxes. The device consists of a colander-like outer tungsten collimator that houses a radiation-sensitive polymer semi-sphere. The collimator has a number of small holes with tungsten inserts; as a result, specific areas of the polymer are exposed to radiation becoming increasingly more opaque in proportion to the absorbed dose. The polymer semi-sphere is imaged in an optical computed tomography scanner that produces a high resolution 3D map of optical attenuation coefficients. A subsequent analysis of the optical attenuation data using a reverse ray tracing or backprojection technique provides information on the spatial distribution of gamma-ray sources in a given area forming a 3D characterization of the area of interest. RadBall{trademark} was originally designed for dry deployments and several tests, completed at Savannah River National Laboratory and Oak Ridge National Laboratory, substantiate its modeled capabilities. This study involves the investigation of the RadBall{trademark} technology during four submerged deployments in two water filled cells at the DOE Hanford Site's Waste Encapsulation Storage Facility.

  20. Passive soil venting at the Chemical Waste Landfill Site at Sandia National Laboratories, Albuquerque, New Mexico

    SciTech Connect (OSTI)

    Phelan, J.M.; Reavis, B.; Cheng, W.C.

    1995-05-01T23:59:59.000Z

    Passive Soil Vapor Extraction was tested at the Chemical Waste Landfill (CWL) site at Sandia National Laboratories, New Mexico (SNLIW). Data collected included ambient pressures, differential pressures between soil gas and ambient air, gas flow rates into and out of the soil and concentrations of volatile organic compounds (VOCS) in vented soil gas. From the differential pressure and flow rate data, estimates of permeability were arrived at and compared with estimates from other studies. Flow, differential pressure, and ambient pressure data were collected for nearly 30 days. VOC data were collected for two six-hour periods during this time. Total VOC emissions were calculated and found to be under the limit set by the Resource Conservation and Recovery Act (RCRA). Although a complete process evaluation is not possible with the data gathered, some of the necessary information for designing a passive venting process was determined and the important parameters for designing the process were indicated. More study is required to evaluate long-term VOC removal using passive venting and to establish total remediation costs when passive venting is used as a polishing process following active soil vapor extraction.

  1. Decontamination and decommissioning assessment for the Waste Incineration Facility (Building 232-Z) Hanford Site, [Hanford], WA

    SciTech Connect (OSTI)

    Dean, L.N. [Advanced Sciences, Inc., (United States)

    1994-02-01T23:59:59.000Z

    Building 232-Z is an element of the Plutonium Finishing Plant (PFP) located in the 200 West Area of the Hanford Site. From 1961 until 1972, plutonium-bearing combustible materials were incinerated in the building. Between 1972 and 1983, following shutdown of the incinerator, the facility was used for waste segregation activities. The facility was placed in retired inactive status in 1984 and classified as a Limited Control Facility pursuant to DOE Order 5480.5, Safety of Nuclear Facilities, and 6430.1A, General Design Criteria. The current plutonium inventory within the building is estimated to be approximately 848 grams, the majority of which is retained within the process hood ventilation system. As a contaminated retired facility, Building 232-Z is included in the DOE Surplus Facility Management Program. The objective of this Decontamination and Decommissioning (D&D) assessment is to remove Building 232-Z, thereby elmininating the radiological and environmental hazards associated with the plutonium inventory within the structure. The steps to accomplish the plan objectives are: (1) identifying the locations of the most significant amounts of plutonium, (2) removing residual plutonium, (3) removing and decontaminating remaining building equipment, (4) dismantling the remaining structure, and (5) closing out the project.

  2. STATISTICAL SAMPLING FOR IN-SERVICE INSPECTION OF LIQUID WASTE TANKS AT THE SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Harris, S.; Baxter, L.

    2011-04-07T23:59:59.000Z

    Savannah River Remediation, LLC (SRR) is implementing a statistical sampling strategy for In-Service Inspection (ISI) of Liquid Waste (LW) Tanks at the United States Department of Energy's Savannah River Site (SRS) in Aiken, South Carolina. As a component of SRS's corrosion control program, the ISI program assesses tank wall structural integrity through the use of ultrasonic testing (UT). The statistical strategy for ISI is based on the random sampling of a number of vertically oriented unit areas, called strips, within each tank. The number of strips to inspect was determined so as to attain, over time, a high probability of observing at least one of the worst 5% in terms of pitting and corrosion across all tanks. The probability estimation to determine the number of strips to inspect was performed using the hypergeometric distribution. Statistical tolerance limits for pit depth and corrosion rates were calculated by fitting the lognormal distribution to the data. In addition to the strip sampling strategy, a single strip within each tank was identified to serve as the baseline for a longitudinal assessment of the tank safe operational life. The statistical sampling strategy enables the ISI program to develop individual profiles of LW tank wall structural integrity that collectively provide a high confidence in their safety and integrity over operational lifetimes.

  3. Corrective Action Decision Document/Closure Report for Corrective Action Unit 545: Dumps, Waste Disposal Sites, and Buried Radioactive Materials Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Alfred Wickline

    2008-04-01T23:59:59.000Z

    This Corrective Action Decision Document (CADD)/Closure Report (CR) has been prepared for Corrective Action Unit (CAU) 545, Dumps, Waste Disposal Sites, and Buried Radioactive Materials, in Areas 2, 3, 9, and 20 of the Nevada Test Site, Nevada, in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management (1996, as amended February 2008). Corrective Action Unit 545 is comprised of the following eight Corrective Action Sites (CASs): • 02-09-01, Mud Disposal Area • 03-08-03, Mud Disposal Site • 03-17-01, Waste Consolidation Site 3B • 03-23-02, Waste Disposal Site • 03-23-05, Europium Disposal Site • 03-99-14, Radioactive Material Disposal Area • 09-23-02, U-9y Drilling Mud Disposal Crater • 20-19-01, Waste Disposal Site While all eight CASs are addressed in this CADD/CR, sufficient information was available for the following three CASs; therefore, a field investigation was not conducted at these sites: • For CAS 03-08-03, though the potential for subsidence of the craters was judged to be extremely unlikely, the data quality objective (DQO) meeting participants agreed that sufficient information existed about disposal and releases at the site and that a corrective action of close in place with a use restriction is recommended. Sampling in the craters was not considered necessary. • For CAS 03-23-02, there were no potential releases of hazardous or radioactive contaminants identified. Therefore, the Corrective Action Investigation Plan for CAU 545 concluded that: “Sufficient information exists to conclude that this CAS does not exist as originally identified. Therefore, there is no environmental concern associated with CAS 03-23-02.” This CAS is closed with no further action. • For CAS 03-23-05, existing information about the two buried sources and lead pig was considered to be sufficient, and safety concerns existed about the stability of the crater component. Therefore, a corrective action of close in place with a use restriction is recommended, and sampling at the site was not considered necessary. The purpose of this CADD/CR is to provide justification and documentation to support the recommendation for closure of CAU 545 with no further corrective action. To achieve this, corrective action investigation (CAI) activities were performed from August 20 through November 02, 2007, as set forth in the CAU 545 Corrective Action Investigation Plan. The purpose of the CAI was to fulfill the following data needs as defined during the DQO process: • Determine whether contaminants of concern (COCs) are present. • If COCs are present, determine their nature and extent. • Provide sufficient information and data to complete appropriate corrective actions. The CAU 545 dataset from the investigation results was evaluated based on the data quality indicator parameters. This evaluation demonstrated the quality and acceptability of the dataset for use in fulfilling the DQO data needs. Analytes detected during the CAI were evaluated against final action levels established in this CADD/CR. The results of the CAI identified no COCs at the five CASs investigated in CAU 545. As a best management practice, repair of the fence enclosing CAS 03-08-03 has been completed. Therefore, the DOE, National Nuclear Security Administration Nevada Site Office provides the following recommendations: • Close in place COCs at CASs 03-08-03 and 03-23-05 with use restrictions. • No further corrective action for CAU 545. • No Corrective Action Plan. • Corrective Action Unit 545 should be moved from Appendix III to Appendix IV of the Federal Facility Agreement and Consent Order. • A Notice of Completion to the DOE, National Nuclear Security Administration Nevada Site Office is requested from the Nevada Division of Environmental Protection for closure of CAU 545.

  4. Hazardous Wastes Management (Alabama)

    Broader source: Energy.gov [DOE]

    This legislation gives regulatory authority to the Department of Environmental Management to monitor commercial sites for hazardous wastes; fees on waste received at such sites; hearings and...

  5. Facility Utilization and Risk Analysis for Remediation of Legacy Transuranic Waste at the Savannah River Site - 13572

    SciTech Connect (OSTI)

    Gilles, Michael L.; Gilmour, John C. [Savannah River Nuclear Solutions, LLC (United States)] [Savannah River Nuclear Solutions, LLC (United States)

    2013-07-01T23:59:59.000Z

    Savannah River Nuclear Solutions (SRNS) completed the Accelerated TRU Project for remediating legacy waste at the Savannah River Site with significant cost and schedule efficiencies due to early identification of resources and utilization of risk matrices. Initial project planning included identification of existing facilities that could be modified to meet the technical requirements needed for repackaging and remediating the waste. The project schedule was then optimized by utilization of risk matrices that identified alternate strategies and parallel processing paths which drove the overall success of the project. Early completion of the Accelerated TRU Project allowed SRNS to pursue stretch goals associated with remediating very difficult TRU waste such as concrete casks from the hot cells in the Savannah River National Laboratory. Project planning for stretch goals also utilized existing facilities and the risk matrices. The Accelerated TRU project and stretch goals were funded under the American Recovery and Reinvestment Act (ARRA). (authors)

  6. Nuclear Operations Application to Environmental Restoration at Corrective Action Unit 547, Miscellaneous Contaminated Waste Sites, at the Nevada National Security Site

    SciTech Connect (OSTI)

    Kevin Cabble (NSO), Mark Krauss and Patrick Matthews (N-I)

    2011-03-03T23:59:59.000Z

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office has responsibility for environmental restoration at the Nevada National Security Site (formerly the Nevada Test Site). This includes remediation at locations where past testing activities have resulted in the release of plutonium to the environment. One of the current remediation efforts involves a site where an underground subcritical nuclear safety test was conducted in 1964. The underground test was vented through a steel pipe to the surface in a closed system where gas samples were obtained. The piping downstream of the gas-sampling apparatus was routed belowground to a location where it was allowed to vent into an existing radioactively contaminated borehole. The length of the pipe above the ground surface is approximately 200 meters. This pipe remained in place until remediation efforts began in 2007, at which time internal plutonium contamination was discovered. Following this discovery, an assessment was conducted to determine the quantity of plutonium present in the pipe. This site has been identified as Corrective Action Unit (CAU) 547, Miscellaneous Contaminated Waste Sites. The quantity of plutonium identified at CAU 547 exceeded the Hazard Category 3 threshold but was below the Hazard Category 2 threshold specified in DOE Standard DOE-STD-1027-92. This CAU, therefore, was initially categorized as a Hazard Category 3 environmental restoration site. A contaminated facility or site that is initially categorized as Hazard Category 3, however, may be downgraded to below Hazard Category 3 if it can be demonstrated through further analysis that the form of the material and the energy available for release support reducing the hazard category. This is an important consideration when performing hazard categorization of environmental restoration sites because energy sources available for release of material are generally fewer at an environmental restoration site than at an operating facility and environmental restoration activities may result in the complete removal of source material.

  7. Corrective Action Plan for Corrective Action Unit 562: Waste Systems, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2011-04-30T23:59:59.000Z

    This Corrective Action Plan has been prepared for Corrective Action Unit (CAU) 562, Waste Systems, in accordance with the Federal Facility Agreement and Consent Order (1996; as amended March 2010). CAU 562 consists of 13 Corrective Action Sites (CASs) located in Areas 2, 23, and 25 of the Nevada National Security Site. Site characterization activities were performed in 2009 and 2010, and the results are presented in Appendix A of the Corrective Action Decision Document for CAU 562. The scope of work required to implement the recommended closure alternatives is summarized. (1) CAS 02-26-11, Lead Shot, will be clean closed by removing shot. (2) CAS 02-44-02, Paint Spills and French Drain, will be clean closed by removing paint and contaminated soil. As a best management practice (BMP), asbestos tile will be removed. (3) CAS 02-59-01, Septic System, will be clean closed by removing septic tank contents. As a BMP, the septic tank will be removed. (4) CAS 02-60-01, Concrete Drain, contains no contaminants of concern (COCs) above action levels. No further action is required; however, as a BMP, the concrete drain will be removed. (5) CAS 02-60-02, French Drain, was clean closed. Corrective actions were completed during corrective action investigation activities. As a BMP, the drain grates and drain pipe will be removed. (6) CAS 02-60-03, Steam Cleaning Drain, will be clean closed by removing contaminated soil. As a BMP, the steam cleaning sump grate and outfall pipe will be removed. (7) CAS 02-60-04, French Drain, was clean closed. Corrective actions were completed during corrective action investigation activities. (8) CAS 02-60-05, French Drain, will be clean closed by removing contaminated soil. (9) CAS 02-60-06, French Drain, contains no COCs above action levels. No further action is required. (10) CAS 02-60-07, French Drain, requires no further action. The french drain identified in historical documentation was not located during corrective action investigation activities. (11) CAS 23-60-01, Mud Trap Drain and Outfall, will be clean closed by removing sediment from the mud trap. As a BMP, the mud trap and outfall pipe will be removed. (12) CAS 23-99-06, Grease Trap, will be clean closed by removing sediment from the grease trap and backfilling the grease trap with grout. (13) CAS 25-60-04, Building 3123 Outfalls, will be clean closed by removing contaminated soil and the sludge-containing outfall pipe.

  8. Fall Protection Procedures for Sealing Bulk Waste Shipments by Rail Cars at Formerly Utilized Sites Remedial Action Program (FUSRAP) Sites - 13509

    SciTech Connect (OSTI)

    Boyle, J.D. [U.S. Army Corps of Engineers - Buffalo District, Buffalo, New York 14207 (United States)] [U.S. Army Corps of Engineers - Buffalo District, Buffalo, New York 14207 (United States); Fort, E. Joseph; Lorenz, William [Cabrera Services (Cabrera) East Harford, CT 06108 (United States)] [Cabrera Services (Cabrera) East Harford, CT 06108 (United States); Mills, Andy [Shaw Environmental and Infrastructure, Inc. (Shaw) Baton Rouge, LA 70809 (United States)] [Shaw Environmental and Infrastructure, Inc. (Shaw) Baton Rouge, LA 70809 (United States)

    2013-07-01T23:59:59.000Z

    Rail-cars loaded with radioactive materials must be closed and fastened to comply with United States Department of Transportation (DOT) requirements before they shipped. Securing waste shipments in a manner that meets these regulations typically results in the use of a sealable rail-car liner. Workers accessing the tops of the 2.74 m high rail-cars to seal and inspect liners for compliance prior to shipment may be exposed to a fall hazard. Relatively recent revisions to the Fall Protection requirements in the Safety and Health Requirements Manual (EM385-1-1, U.S. Army Corps of Engineers) have necessitated modifications to the fall protection systems previously employed for rail-car loading at Formerly Utilized Sites Remedial Action Program (FUSRAP) sites. In response these projects have developed site-specific procedures to protect workers and maintain compliance with the improved fall protection regulations. (authors)

  9. Identification of items and activities important to waste form acceptance by Westinghouse GoCo sites

    SciTech Connect (OSTI)

    Plodinec, M.J.; Marra, S.L. [Westinghouse Savannah River Co., Aiken, SC (United States); Dempster, J. [West Valley Demonstration Project, NY (United States); Randklev, E.H. [Hanford Waste Vitrification Plant (United States)

    1993-10-12T23:59:59.000Z

    The Department of Energy has established specifications (Waste Acceptance Product Specifications for Vitrified High-Level Waste Forms, or WAPS) for canistered waste forms produced at Hanford, Savannah River, and West Valley. Compliance with these specifications requires that each waste form producer identify the items and activities which must be controlled to ensure compliance. As part of quality assurance oversight activities, reviewers have tried to compare the methodologies used by the waste form producers to identify items and activities important to waste form acceptance. Due to the lack of a documented comparison of the methods used by each producer, confusion has resulted over whether the methods being used are consistent. This confusion has been exacerbated by different systems of nomenclature used by each producer, and the different stages of development of each project. The waste form producers have met three times in the last two years, most recently on June 28, 1993, to exchange information on each producer`s program. These meetings have been sponsored by the Westinghouse GoCo HLW Vitrification Committee. This document is the result of this most recent exchange. It fills the need for a documented comparison of the methodologies used to identify items and activities important to waste form acceptance. In this document, the methodology being used by each waste form producer is summarized, and the degree of consistency among the waste form producers is determined.

  10. EA-0981: Solid Waste Retrieval Complex, Enhanced Radioactive and Mixed Waste Storage Facility, Infrastructure Upgrades, and Central Waste Support Complex, Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to retrieve transuranic waste (TRU), provide storage capacity for retrieved and newly generated TRU, Greater-than-Category 3, and mixed...

  11. Waste Not, Want Not: Analyzing the Economic and Environmental Viability of Waste-to-Energy (WTE) Technology for Site-Specific Optimization of Renewable Energy Options

    SciTech Connect (OSTI)

    Funk, K.; Milford, J.; Simpkins, T.

    2013-02-01T23:59:59.000Z

    Waste-to-energy (WTE) technology burns municipal solid waste (MSW) in an environmentally safe combustion system to generate electricity, provide district heat, and reduce the need for landfill disposal. While this technology has gained acceptance in Europe, it has yet to be commonly recognized as an option in the United States. Section 1 of this report provides an overview of WTE as a renewable energy technology and describes a high-level model developed to assess the feasibility of WTE at a site. Section 2 reviews results from previous life cycle assessment (LCA) studies of WTE, and then uses an LCA inventory tool to perform a screening-level analysis of cost, net energy production, greenhouse gas (GHG) emissions, and conventional air pollution impacts of WTE for residual MSW in Boulder, Colorado. Section 3 of this report describes the federal regulations that govern the permitting, monitoring, and operating practices of MSW combustors and provides emissions limits for WTE projects.

  12. Remote Sensing Analysis of the Sierra Blanca (Faskin Ranch) Low-Level Radioactive Waste Disposal Site, Hudspeth County, Texas

    SciTech Connect (OSTI)

    LeMone, D. V.; Dodge, R.; Xie, H.; Langford, R. P.; Keller, G. R.

    2002-02-26T23:59:59.000Z

    Remote sensing images provide useful physical information, revealing such features as geological structure, vegetation, drainage patterns, and variations in consolidated and unconsolidated lithologies. That technology has been applied to the failed Sierra Blanca (Faskin Ranch) shallow burial low-level radioactive waste disposal site selected by the Texas Low-Level Radioactive Waste Disposal Authority. It has been re-examined using data from LANDSAT satellite series. The comparison of the earlier LANDSAT V (5/20/86) (30-m resolution) with the later new, higher resolution ETM imagery (10/23/99) LANDSAT VII data (15-m resolution) clearly shows the superiority of the LANDSAT VII data. The search for surficial indications of evidence of fatal flaws at the Sierra Blanca site utilizing was not successful, as it had been in the case of the earlier remote sensing analysis of the failed Fort Hancock site utilizing LANDSAT V data. The authors conclude that the tectonic activity at the Sierra Blanca site is much less recent and active than in the previously studied Fort Hancock site. The Sierra Blanca site failed primarily on the further needed documentation concerning a subsurface fault underneath the site and environmental justice issues. The presence of this fault was not revealed using the newer LANDSAT VII data. Despite this fact, it must be remembered that remote sensing provides baseline documentation for determining future physical and financial remediation responsibilities. On the basis of the two sites examined by LANDSAT remote sensing imaging, it is concluded that it is an essential, cost-effective tool that should be utilized not only in site examination but also in all nuclear-related facilities.

  13. Remaining Sites Verification Package for 132-DR-1, 1608-DR Effluent Pumping Station, Waste Site Reclassification Form 2005-035

    SciTech Connect (OSTI)

    R. A. Carlson

    2005-09-22T23:59:59.000Z

    Radiological characterization, decommissioning and demolition of the 132-DR-1 site, 1608-DR Effluent Pumping Station was performed in 1987. The current site conditions achieve the remedial action objectives and the corresponding remedial action goals established in the Remaining Sites ROD. Residual concentrations support future land uses that can be represented by a rural-residential scenario and pose no threat to groundwater or the Columbia River based on RESRAD modeling.

  14. ALL-PATHWAYS DOSE ANALYSIS FOR THE PORTSMOUTH ON-SITE WASTE DISPOSAL FACILITY

    SciTech Connect (OSTI)

    Smith, F.; Phifer, M.

    2014-04-10T23:59:59.000Z

    A Portsmouth On-Site Waste Disposal Facility (OSWDF) All-Pathways analysis has been conducted that considers the radiological impacts to a resident farmer. It is assumed that the resident farmer utilizes a farm pond contaminated by the OSWDF to irrigate a garden and pasture and water livestock from which food for the resident farmer is obtained, and that the farmer utilizes groundwater from the Berea sandstone aquifer for domestic purposes (i.e. drinking water and showering). As described by FBP 2014b the Hydrologic Evaluation of Landfill Performance (HELP) model (Schroeder et al. 1994) and the Surface Transport Over Multiple Phases (STOMP) model (White and Oostrom 2000, 2006) were used to model the flow and transport from the OSWDF to the Points of Assessment (POAs) associated with the 680-ft elevation sandstone layer (680 SSL) and the Berea sandstone aquifer. From this modeling the activity concentrations radionuclides were projected over time at the POAs. The activity concentrations were utilized as input to a GoldSimTM (GTG 2010) dose model, described herein, in order to project the dose to a resident farmer over time. A base case and five sensitivity cases were analyzed. The sensitivity cases included an evaluation of the impacts of using a conservative inventory, an uncased well to the Berea sandstone aquifer, a low waste zone uranium distribution coefficient (Kd), different transfer factors, and reference person exposure parameters (i.e. at 95 percentile). The maximum base case dose within the 1,000 year assessment period was projected to be 1.5E-14 mrem/yr, and the maximum base case dose at any time less than 10,000 years was projected to be 0.002 mrem/yr. The maximum projected dose of any sensitivity case was approximately 2.6 mrem/yr associated with the use of an uncased well to the Berea sandstone aquifer. This sensitivity case is considered very unlikely because it assumes leakage from the location of greatest concentration in the 680 SSL in to the Berea sandstone aquiver over time and does not conform to standard private water well construction practices. The bottom-line is that all predicted doses from the base case and five sensitivity cases fall well below the DOE all-pathways 25 mrem/yr Performance Objective.

  15. Environmental Assessment for the construction and operation of the Three Rivers Solid Waste Authority regional waste management center at the Savannah River Site

    SciTech Connect (OSTI)

    NONE

    1995-12-01T23:59:59.000Z

    This Environmental Assessment (EA) has been prepared by the US Department of Energy (DOE) to assess the potential environmental impacts associated with the construction and operation of a landfill and technology center for regionally-generated municipal solid waste at the Savannah River Site (SRS) near Aiken, South Carolina. The facility would serve the municipal solid waste disposal needs for SRS and at least nine of the surrounding counties who currently comprise the Three Rivers Solid Waste Authority (TRSWA). Additional counties could become included in the proposed action at some future date. Current Federal and state requirements do not afford individual counties and municipalities within the region encompassing SRS the ability to efficiently or economically operate modern waste management facilities. In addition, consolidation of regional municipal solid waste at one location would have the benefit of reducing the duplicity of environmental consequences associated with the construction and operation of county-level facilities. The option to seek a combined disposal and technology development facility based on a regionally-cooperative effort was selected as a viable alternative to the existing individual SRS or county disposal activities. This document was prepared in compliance with the National Environmental Policy Act (NEPA) of 1969, as amended, the requirements of the Council on Environmental Quality Regulations for Implementing NEPA (40 CFR Part 1021). NEPA requires the assessment of environmental consequences of Federal actions that may affect the quality of the human environment. Based on the potential for impacts described for impacts described herein, DOE will either publish a Finding of No Significant Impact or prepare an environmental impact statement (EIS).

  16. Program plan for evaluation and remediation of the generation and release of flammable gases in Hanford Site waste tanks

    SciTech Connect (OSTI)

    Johnson, G.D. (comp.)

    1991-08-01T23:59:59.000Z

    This program plan describes the activities being conducted for the resolution of the flammable gas problem that is associated with 23 high-level waste tanks at the Hanford Site. The classification of the wastes in all of these tanks is not final and some wastes may not be high-level wastes. However, until the characterization and classification is complete, all the tanks are treated as if they contain high-level waste. Of the 23 tanks, Tank 241-SY-101 (referred to as Tank 101-SY) has exhibited significant episodic releases of flammable gases (hydrogen and nitrous oxide) for the past 10 years. The major near-term focus of this program is for the understanding and stabilization of this tank. An understanding of the mechanism for gas generation and the processes for the episodic release will be obtained through sampling of the tank contents, laboratory studies, and modeling of the tank behavior. Additional information will be obtained through new and upgraded instrumentation for the tank. A number of remediation, or stabilization, concepts will be evaluated for near-term (2 to 3 years) applications to Tank 101-SY. Detailed safety assessments are required for all activities that will occur in the tank (sampling, removal of equipment, and addition of new instruments). This program plan presents a discussion of each task, provides schedules for near-term activities, and gives a summary of the expected work for fiscal years 1991, 1992, and 1993. 16 refs., 7 figs., 8 tabs.

  17. Adaption of the Magnetometer Towed Array geophysical system to meet Department of Energy needs for hazardous waste site characterization

    SciTech Connect (OSTI)

    Cochran, J.R. [Sandia National Labs., Albuquerque, NM (United States); McDonald, J.R. [Naval Research Lab., Washington, DC (United States); Russell, R.J. [Geo-Centers, Inc., Newton, MA (United States); Robertson, R. [Hughes Associates, Inc., Washington, DC (United States); Hensel, E. [New Mexico State Univ., Las Cruces, NM (United States). Dept. of Mechanical Engineering

    1995-10-01T23:59:59.000Z

    This report documents US Department of Energy (DOE)-funded activities that have adapted the US Navy`s Surface Towed Ordnance Locator System (STOLS) to meet DOE needs for a ``... better, faster, safer and cheaper ...`` system for characterizing inactive hazardous waste sites. These activities were undertaken by Sandia National Laboratories (Sandia), the Naval Research Laboratory, Geo-Centers Inc., New Mexico State University and others under the title of the Magnetometer Towed Array (MTA).

  18. Addendum to Composite Analysis for Low-Level Waste Disposal in the 200 Area Plateau of the Hanford Site

    SciTech Connect (OSTI)

    Bergeron, Marcel P.; Freeman, Eugene J.; Wurstner, Signe K.; Kincaid, Charles T.; Coony, Mike M.; Strenge, Dennis L.; Aaberg, Rosanne L.; Eslinger, Paul W.

    2001-09-28T23:59:59.000Z

    This report summarizes efforts to complete an addendum analysis to the first iteration of the Composite Analysis for Low-Level Waste Disposal in the 200 Area Plateau of the Hanford Site (Composite Analysis). This document describes the background and performance objectives of the Composite Analysis and this addendum analysis. The methods used, results, and conclusions for this Addendum analysis are summarized, and recommendations are made for work to be undertaken in anticipation of a second analysis.

  19. CERTIFICATION OF WASTE GENERATOR SITES 2009 EPA WIPP RECERTIFICATION FACT SHEET United States Environmental Protection Agency | Office of Air and Radiation (6608J) | June 2009

    E-Print Network [OSTI]

    ) · Advanced Mixed Waste Treatment Project (AMWTP) at INL · Savannah River Site (SRS) · Oak Ridge National of 40 CFR §194.8 are: · Hanford Site ­ Richland Operational Office · Idaho National Laboratory (INL Laboratory (ORNL) · Los Alamos National Laboratory (LANL) These sites are identified as yellow circles

  20. EIS-0303: Savannah River Site High-Level Waste Tank Closure

    Broader source: Energy.gov [DOE]

    This EIS evaluates alternatives for closing 49 high-level radioactive waste tanks and associated equipment such as evaporator systems, transfer pipelines, diversion boxes, and pump pits. DOE...

  1. Hanford Site Tank 241-C-108 Residual Waste Contaminant Release Models and Supporting Data

    SciTech Connect (OSTI)

    Cantrell, Kirk J.; Krupka, Kenneth M.; Geiszler, Keith N.; Arey, Bruce W.; Schaef, Herbert T.

    2010-06-18T23:59:59.000Z

    This report presents the results of laboratory characterization, testing, and analysis for a composite sample (designated 20578) of residual waste collected from single-shell tank C-108 during the waste retrieval process after modified sluicing. These studies were completed to characterize concentration and form of contaminant of interest in the residual waste; assess the leachability of contaminants from the solids; and develop release models for contaminants of interest. Because modified sluicing did not achieve 99% removal of the waste, it is expected that additional retrieval processing will take place. As a result, the sample analyzed here is not expected to represent final retrieval sample.

  2. 1998 report on Hanford Site land disposal restrictions for mixed waste

    SciTech Connect (OSTI)

    Black, D.G.

    1998-04-10T23:59:59.000Z

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-26-01H. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of managing land-disposal-restricted mixed waste at the Hanford Facility. The US Department of Energy, its predecessors, and contractors on the Hanford Facility were involved in the production and purification of nuclear defense materials from the early 1940s to the late 1980s. These production activities have generated large quantities of liquid and solid mixed waste. This waste is regulated under authority of both the Resource Conservation and Recovery Act of l976 and the Atomic Energy Act of 1954. This report covers only mixed waste. The Washington State Department of Ecology, US Environmental Protection Agency, and US Department of Energy have entered into the Tri-Party Agreement to bring the Hanford Facility operations into compliance with dangerous waste regulations. The Tri-Party Agreement required development of the original land disposal restrictions (LDR) plan and its annual updates to comply with LDR requirements for mixed waste. This report is the eighth update of the plan first issued in 1990. The Tri-Party Agreement requires and the baseline plan and annual update reports provide the following information: (1) Waste Characterization Information -- Provides information about characterizing each LDR mixed waste stream. The sampling and analysis methods and protocols, past characterization results, and, where available, a schedule for providing the characterization information are discussed. (2) Storage Data -- Identifies and describes the mixed waste on the Hanford Facility. Storage data include the Resource Conservation and Recovery Act of 1976 dangerous waste codes, generator process knowledge needed to identify the waste and to make LDR determinations, quantities stored, generation rates, location and method of storage, an assessment of storage-unit compliance status, storage capacity, and the bases and assumptions used in making the estimates.

  3. Interpretations of Tracer Tests Performed in the Culebra Dolomite at the Waste Isolation Pilot Plant Site

    SciTech Connect (OSTI)

    MEIGS,LUCY C.; BEAUHEIM,RICHARD L.; JONES,TOYA L.

    2000-08-01T23:59:59.000Z

    This report provides (1) an overview of all tracer testing conducted in the Culebra Dolomite Member of the Rustler Formation at the Waste Isolation Pilot Plant (WPP) site, (2) a detailed description of the important information about the 1995-96 tracer tests and the current interpretations of the data, and (3) a summary of the knowledge gained to date through tracer testing in the Culebra. Tracer tests have been used to identify transport processes occurring within the Culebra and quantify relevant parameters for use in performance assessment of the WIPP. The data, especially those from the tests performed in 1995-96, provide valuable insight into transport processes within the Culebra. Interpretations of the tracer tests in combination with geologic information, hydraulic-test information, and laboratory studies have resulted in a greatly improved conceptual model of transport processes within the Culebra. At locations where the transmissivity of the Culebra is low (< 4 x 10{sup -6} m{sup 2}/s), we conceptualize the Culebra as a single-porosity medium in which advection occurs largely through the primary porosity of the dolomite matrix. At locations where the transmissivity of the Culebra is high (> 4 x 10{sup -6} m{sup 2}/s), we conceptualize the Culebra as a heterogeneous, layered, fractured medium in which advection occurs largely through fractures and solutes diffuse between fractures and matrix at multiple rates. The variations in diffusion rate can be attributed to both variations in fracture spacing (or the spacing of advective pathways) and matrix heterogeneity. Flow and transport appear to be concentrated in the lower Culebra. At all locations, diffusion is the dominant transport process in the portions of the matrix that tracer does not access by flow.

  4. Independent Assessment of the Savannah River Site High-Level Waste Salt Disposition Alternatives Evaluation

    SciTech Connect (OSTI)

    J. T. Case (DOE-ID); M. L. Renfro (INEEL)

    1998-12-01T23:59:59.000Z

    This report presents the results of the Independent Project Evaluation (IPE) Team assessment of the Westinghouse Savannah River Company High-Level Waste Salt Disposition Systems Engineering (SE) Team's deliberations, evaluations, and selections. The Westinghouse Savannah River Company concluded in early 1998 that production goals and safety requirements for processing SRS HLW salt to remove Cs-137 could not be met in the existing In-Tank Precipitation Facility as currently configured for precipitation of cesium tetraphenylborate. The SE Team was chartered to evaluate and recommend an alternative(s) for processing the existing HLW salt to remove Cs-137. To replace the In-Tank Precipitation process, the Savannah River Site HLW Salt Disposition SE Team downselected (October 1998) 140 candidate separation technologies to two alternatives: Small-Tank Tetraphenylborate (TPB) Precipitation (primary alternative) and Crystalline Silicotitanate (CST) Nonelutable Ion Exchange (backup alternative). The IPE Team, commissioned by the Department of Energy, concurs that both alternatives are technically feasible and should meet all salt disposition requirements. But the IPE Team judges that the SE Team's qualitative criteria and judgments used in their downselection to a primary and a backup alternative do not clearly discriminate between the two alternatives. To properly choose between Small-Tank TPB and CST Ion Exchange for the primary alternative, the IPE Team suggests the following path forward: Complete all essential R and D activities for both alternatives and formulate an appropriate set of quantitative decision criteria that will be rigorously applied at the end of the R and D activities. Concurrent conceptual design activities should be limited to common elements of the alternatives.

  5. Corrective Action Decision Document/Closure Report for Corrective Action Unit 190: Contaminated Waste Sites, Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Alfred Wickline

    2008-03-01T23:59:59.000Z

    This Corrective Action Decision Document/Closure Report has been prepared for Corrective Action Unit (CAU) 190, Contaminated Waste Sites, Nevada Test Site, Nevada, in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; U.S. Department of Energy, Environmental Management; U.S. Department of Defense; and DOE, Legacy Management (1996, as amended January 2007). Corrective Action Unit 190 is comprised of the following four corrective action sites (CASs): • 11-02-01, Underground Centrifuge • 11-02-02, Drain Lines and Outfall • 11-59-01, Tweezer Facility Septic System • 14-23-01, LTU-6 Test Area The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation for closure of CAU 190 with no further corrective action. To achieve this, corrective action investigation (CAI) activities were performed from March 21 through June 26, 2007. All CAI activities were conducted as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 190: Contaminated Waste Sites, Nevada Test Site, Nevada (NNSA/NSO, 2006). The purpose of the CAI was to fulfill the following data needs as defined during the data quality objective process: • Determine whether contaminants of concern (COCs) are present. • If COCs are present, determine their nature and extent. • Provide sufficient information and data to complete appropriate corrective actions. The CAU 190 dataset from the investigation results was evaluated based on the data quality indicator parameters. This evaluation demonstrated the quality and acceptability of the dataset for use in fulfilling the data quality objective data needs.

  6. Savannah River Site - Salt Waste Processing Facility: Briefing on the Salt Waste Processing Facility Independent Technical Review

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSARDevelopmentalEfficiency | Department ofEnergySaraKSALT WASTE

  7. Remaining Sites Verification Package for the 1607-F7, 141-M Building Septic Tank, Waste Site Reclassification Form 2006-040

    SciTech Connect (OSTI)

    L. M. Dittmer

    2006-10-19T23:59:59.000Z

    The 1607-F7, 141-M Building Septic Tank waste site was a septic tank and drain field that received sanitary sewage from the former 141-M Building. Remedial action was performed in August and November 2005. The results of verification sampling demonstrate that residual contaminant concentrations support future unrestricted land uses that can be represented by a rural-residential scenario. These results also show that residual concentrations support unrestricted future use of shallow zone soil and that contaminant levels remaining in the soil are protective of groundwater and the Columbia River.

  8. EIS-0356: Retrieval, Treatment and Disposal of Tank Wastes and Closure of Single-Shell Tanks at the Hanford Site, Richland, WA

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's proposed retrieval, treatment, and disposal of the waste being managed in the high-level waste (HLW) tank farms at the Hanford Site near Richland, Washington, and closure of the 149 single-shell tanks (SSTs) and associated facilities in the HLW tank farms.

  9. Record of Technical Change for Corrective Action Plan for Corrective Action Unit 140: Waste Dumps, burn Pits, and Storage Area, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office; Bechtel Nevada

    2005-01-05T23:59:59.000Z

    Record of Technical Change for Corrective Action Plan for Corrective Action Unit 140: Waste Dumps, Burn Pits, and Storage Area, Nevada Test Site, Nevada (DOE/NV--963-Rev 2, dated November 2004).

  10. EA-1793: Replacement Capability for Disposal of Remote-handled Low-level Waste Generated at the Department of Energy's Idaho Site

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of replacement capability for disposal of remote-handled low-level radioactive waste (LLW) generated at the Idaho National Laboratory (INL) site beginning in October 2017.

  11. Draft environmental assessment: Richton Dome site, Mississippi. Nuclear Waste Policy Act (Section 112). [Contains Glossary

    SciTech Connect (OSTI)

    Not Available

    1984-12-01T23:59:59.000Z

    In February 1983, the US Department of Energy identified the Richton dome site as one of the nine potentially acceptable sites for a mined geo

  12. RCRA Assessment Plan for Single-Shell Tank Waste Management Area S-SX at the Hanford Site

    SciTech Connect (OSTI)

    Chou, C.J.; Johnson, V.G.

    1999-10-06T23:59:59.000Z

    A groundwater quality assessment plan was prepared for waste management area S-SX at the Hanford Site. Groundwater monitoring is conducted at this facility in accordance with Title 40, Code of Federal Regulation (CFR) Part 265, Subpart F [and by reference of Washington Administrative Code (WAC) 173-303-400(3)]. The facility was placed in assessment groundwater monitoring program status after elevated waste constituents and indicator parameter measurements (i.e., chromium, technetium-99 and specific conductance) in downgradient monitoring wells were observed and confirmed. A first determination, as allowed under 40 CFR 265.93(d), provides the owner/operator of a facility an opportunity to demonstrate that the regulated unit is not the source of groundwater contamination. Based on results of the first determination it was concluded that multiple source locations in the waste management area could account for observed spatial and temporal groundwater contamination patterns. Consequently, a continued investigation is required. This plan, developed using the data quality objectives process, is intended to comply with the continued investigation requirement. Accordingly, the primary purpose of the present plan is to determine the rate and extent of dangerous waste (hexavalent chromium and nitrate) and radioactive constituents (e.g., technetium-99) in groundwater and to determine their concentrations in groundwater beneath waste management area S-SX. Comments and concerns expressed by the Washington State Department of Ecology on the initial waste management area S-SX assessment report were addressed in the descriptive narrative of this plan as well as in the planned activities. Comment disposition is documented in a separate addendum to this plan.

  13. Remaining Sites Verification Package for the 100-C-9:1 Main Process Sewer Collection Line, Waste Site Reclassification Form 2004-012

    SciTech Connect (OSTI)

    L. M. Dittmer

    2007-06-11T23:59:59.000Z

    The 100-C-9:1 main process sewer pipeline, also known as the twin box culvert, was a dual reinforced process sewer that collected process effluent from the 183-C and 190-C water treatment facilities, discharging at the 132-C-2 Outfall. For remedial action purposes, the 100-C-9:1 waste site was subdivided into northern and southern sections. The 100-C-9:1 subsite has been remediated to achieve the remedial action objectives specified in the Remaining Sites ROD. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  14. Remaining Sites Verification Package for the 100-F-26:12, 1.8-m (72-in.) Main Process Sewer Pipeline, Waste Site Reclassification Form 2007-034

    SciTech Connect (OSTI)

    J. M. Capron

    2008-04-29T23:59:59.000Z

    The 100-F-26:12 waste site was an approximately 308-m-long, 1.8-m-diameter east-west-trending reinforced concrete pipe that joined the North Process Sewer Pipelines (100-F-26:1) and the South Process Pipelines (100-F-26:4) with the 1.8-m reactor cooling water effluent pipeline (100-F-19). In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  15. Project plan for resolution of the organic waste tank safety issues at the Hanford Site

    SciTech Connect (OSTI)

    Meacham, J.E.

    1996-10-03T23:59:59.000Z

    A multi-year project plan for the Organic Safety Project has been developed with the objective of resolving the organic safety issues associated with the High Level Waste (HLW) in Hanford`s single-shell tanks (SSTS) and double-shell tanks (DSTs). The objective of the Organic Safety Project is to ensure safe interim storage until retrieval for pretreatment and disposal operations begins, and to resolve the organic safety issues by September 2001. Since the initial identification of organics as a tank waste safety issue, progress has been made in understanding the specific aspects of organic waste combustibility, and in developing and implementing activities to resolve the organic safety issues.

  16. Research on jet mixing of settled sludges in nuclear waste tanks at Hanford and other DOE sites: A historical perspective

    SciTech Connect (OSTI)

    Powell, M.R.; Onishi, Y.; Shekarriz, R.

    1997-09-01T23:59:59.000Z

    Jet mixer pumps will be used in the Hanford Site double-shell tanks to mobilize and mix the settled solids layer (sludge) with the tank supernatant liquid. Predicting the performance of the jet mixer pumps has been the subject of analysis and testing at Hanford and other U.S. Department of Energy (DOE) waste sites. One important aspect of mixer pump performance is sludge mobilization. The research that correlates mixer pump design and operation with the extent of sludge mobilization is the subject of this report. Sludge mobilization tests have been conducted in tanks ranging from 1/25-scale (3 ft-diameter) to full scale have been conducted at Hanford and other DOE sites over the past 20 years. These tests are described in Sections 3.0 and 4.0 of this report. The computational modeling of sludge mobilization and mixing that has been performed at Hanford is discussed in Section 5.0.

  17. Development of Site-Specific Soil Design Basis Earthquake (DBE) Parameters for the Integrated Waste Treatment Unit (IWTU)

    SciTech Connect (OSTI)

    Payne, Suzette

    2008-08-01T23:59:59.000Z

    Horizontal and vertical PC 3 (2,500 yr) Soil Design Basis Earthquake (DBE) 5% damped spectra, corresponding time histories, and strain-compatible soil properties were developed for the Integrated Waste Treatment Unit (IWTU). The IWTU is located at the Idaho Nuclear Technology and Engineering Center (INTEC) at the Idaho National Laboratory (INL). Mean and 84th percentile horizontal DBE spectra derived from site-specific site response analyses were evaluated for the IWTU. The horizontal and vertical PC 3 (2,500 yr) Soil DBE 5% damped spectra at the 84th percentile were selected for Soil Structure Interaction (SSI) analyses at IWTU. The site response analyses were performed consistent with applicable Department of Energy (DOE) Standards, recommended guidance of the Nuclear Regulatory Commission (NRC), American Society of Civil Engineers (ASCE) Standards, and recommendations of the Blue Ribbon Panel (BRP) and Defense Nuclear Facilities Safety Board (DNFSB).

  18. GAMMA-PULSE-HEIGHT EVALUATION OF A USA SAVANNAH RIVER SITE BURIAL GROUND SPECIAL CONFIGURATION WASTE ITEM

    SciTech Connect (OSTI)

    Dewberry, R.; Sigg, R.; Salaymeh, S.

    2009-03-23T23:59:59.000Z

    The Savannah River Site (SRS) Burial Ground had a container labeled as Box 33 for which they had no reliable solid waste stream designation. The container consisted of an outer box of dimensions 48-inch x 46-inch x 66-inch and an inner box that contained high density and high radiation dose material. From the outer box Radiation Control measured an extremity dose rate of 22 mrem/h. With the lid removed from the outer box, the maximum dose rate measured from the inner box was 100 mrem/h extremity and 80 mrem/h whole body. From the outer box the material was sufficiently high in density that the Solid Waste Management operators were unable to obtain a Co-60 radiograph of the contents. Solid Waste Management requested that the Analytical Development Section of Savannah River National Laboratory perform a {gamma}-ray assay of the item to evaluate the radioactive content and possibly to designate a solid waste stream. This paper contains the results of three models used to analyze the measured {gamma}-ray data acquired in an unusual configuration.

  19. Status and use of the Rocky Flats Environmental Technology Site Pipe Overpack Container for TRU waste storage and shipments

    SciTech Connect (OSTI)

    Thorp, D.T.; Geinitz, R.R. [Safe Sites of Colorado, L.L.C., Golden, CO (United States); Rivera, M.A. [Los Alamos Technical Associates (United States)

    1998-03-03T23:59:59.000Z

    The Pipe Overpack Container was designed to optimize shipments of high plutonium content transuranic waste from Rocky Flats Environmental Technology Site (RFETS) to Waste Isolation Pilot Plant (WIPP). The container was approved for use in the TRUPACT-II shipping container by the Nuclear Regulatory Commission in February 1997. The container optimizes shipments to WIPP by increasing the TRUPACT-II criticality limit from 325 fissile grams equivalent (FGE) to 2,800 FGE and provides additional shielding for handling wastes with high americium-241 (Am-241) content. The container was subsequently evaluated and approved for storage of highly dispersible TRU wastes and residues at RFETS. Thermal evaluation of the container shows that the container will mitigate the impact of a worst case thermal event from reactive or potentially pyrophoric materials. These materials contain hazards postulated by the Defense Nuclear Facilities Safety Board for interim storage. Packaging these reactive or potentially pyrophoric residues in the container without stabilizing the materials is under consideration at RFETS. The design, testing, and evaluations used in the approvals, and the current status of the container usage, will be discussed.

  20. Analysis of the technical capabilities of DOE sites for disposal of residuals from the treatment of mixed low-level waste

    SciTech Connect (OSTI)

    Waters, R.D.; Gruebel, M.M.; Langkopf, B.S.; Kuehne, P.B.

    1997-04-01T23:59:59.000Z

    The US Department of Energy (DOE) has stored or expects to generate over the next five years more than 130,000 m{sup 3} of mixed low-level waste (MLLW). Before disposal, MLLW is usually treated to comply with the land disposal restrictions of the Resource Conservation and Recovery Act. Depending on the type of treatment, the original volume of MLLW and the radionuclide concentrations in the waste streams may change. These changes must be taken into account in determining the necessary disposal capacity at a site. Treatment may remove the characteristic in some waste that caused it to be classified as mixed. Treatment of some waste may, by reduction of the mass, increase the concentrations of some transuranic radionuclides sufficiently so that it becomes transuranic waste. In this report, the DOE MLLW streams were analyzed to determine after-treatment volumes and radionuclide concentrations. The waste streams were reclassified as residual MLLW or low-level or transuranic waste resulting from treatment. The volume analysis indicated that about 89,000 m{sup 3} of waste will require disposal as residual MLLW. Fifteen DOE sites were then evaluated to determine their capabilities for hosting disposal facilities for some or all of the residual MLLW. Waste streams associated with about 90% of the total residual MLLW volume are likely to present no significant issues for disposal and require little additional analysis. Future studies should focus on the remaining waste streams that are potentially problematic by examining site-specific waste acceptance criteria, alternative treatment processes, alternative waste forms for disposal, and pending changes in regulatory requirements.

  1. Waste processing air cleaning

    SciTech Connect (OSTI)

    Kriskovich, J.R.

    1998-07-27T23:59:59.000Z

    Waste processing and preparing waste to support waste processing relies heavily on ventilation. Ventilation is used at the Hanford Site on the waste storage tanks to provide confinement, cooling, and removal of flammable gases.

  2. EA-1189: Non-thermal Treatment of Hanford Site Low-level Mixed Waste, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to demonstrate the feasibility of commercial treatment of contact-handled low-level mixed waste to meet existing Federal and State...

  3. EA-1115: Liquid Waste Treatment at the Nevada Test Site, Nye County, Nevada

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to treat low-level radioactive liquid and low-level mixed liquid and semi-solid wastes generated at the U.S. Department of Energy Nevada...

  4. Best Practices for Siting Solar Photovoltaics on Municipal Solid Waste Landfills. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Kiatreungwattana, K.; Mosey, G.; Jones-Johnson, S.; Dufficy, C.; Bourg, J.; Conroy, A.; Keenan, M.; Michaud, W.; Brown, K.

    2013-04-01T23:59:59.000Z

    The Environmental Protection Agency and the National Renewable Energy Laboratory developed this best practices document to address common technical challenges for siting solar photovoltaics (PV) on municipal solid waste (MSW) landfills. The purpose of this document is to promote the use of MSW landfills for solar energy systems. Closed landfills and portions of active landfills with closed cells represent thousands of acres of property that may be suitable for siting solar photovoltaics (PV). These closed landfills may be suitable for near-term construction, making these sites strong candidate to take advantage of the 30% Federal Business Energy Investment Tax Credit. It was prepared in response to the increasing interest in siting renewable energy on landfills from solar developers; landfill owners; and federal, state, and local governments. It contains examples of solar PV projects on landfills and technical considerations and best practices that were gathered from examining the implementation of several of these projects.

  5. MEASUREMENTS TAKEN IN SUPPORT OF QUALIFICATION OF PROCESSING SAVANNAH RIVER SITE LOW-LEVEL LIQUID WASTE INTO SALTSTONE

    SciTech Connect (OSTI)

    Reigel, M.; Bibler, N.; Diprete, C.; Cozzi, A.; Staub, A.; Ray, J.

    2010-01-27T23:59:59.000Z

    The Saltstone Facility at the Savannah River Site (SRS) immobilizes low-level liquid waste into Saltstone to be disposed of in the Z-Area Saltstone Disposal Facility, Class Three Landfill. In order to meet the permit conditions and regulatory limits set by the South Carolina Department of Health and Environmental Control (SCDHEC), the Resource Conservation and Recovery Act (RCRA) and the Environmental Protection Agency (EPA), both the low-level salt solution and Saltstone samples are analyzed quarterly. Waste acceptance criteria (WAC) are designed to confirm the salt solution sample from the Tank Farm meets specific radioactive and chemical limits. The toxic characteristic leaching procedure (TCLP) is used to confirm that the treatment has immobilized the hazardous constituents of the salt solution. This paper discusses the methods used to characterize the salt solution and final Saltstone samples from 2007-2009.

  6. Evaluation of melter technologies for vitrification of Hanford site low-level tank waste - phase 1 testing summary report

    SciTech Connect (OSTI)

    Wilson, C.N., Westinghouse Hanford

    1996-06-27T23:59:59.000Z

    Following negotiation of the fourth amendment to the Tri- Party Agreement for Hanford Site cleanup, commercially available melter technologies were tested during 1994 and 1995 for vitrification of the low-level waste (LLW) stream to be derived from retrieval and pretreatment of the radioactive defense wastes stored in 177 underground tanks. Seven vendors were selected for Phase 1 testing to demonstrate vitrification of a high-sodium content liquid LLW simulant. The tested melter technologies included four Joule-heated melters, a carbon electrode melter, a combustion melter, and a plasma melter. Various dry and slurry melter feed preparation processes also were tested. The technologies and Phase 1 testing results were evaluated and a preliminary technology down-selection completed. This report describes the Phase 1 LLW melter vendor testing and the tested technologies, and summarizes the testing results and the preliminary technology recommendations.

  7. Environmental restoration and waste management site specific plan for Oak Ridge Operation Office Paducah Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Not Available

    1990-07-18T23:59:59.000Z

    The Paducah Gaseous Diffusion Plant (PGDP) occupies 748 security-fenced acres located on a 3,400-acre tract in McCracken County, Kentucky, which was previously part of the Kentucky Ordnance Works. The principle objective on-site process at PGDP is the separation of uranium isotopes through gaseous diffusion. The process produces enriched uranium, which is used for nuclear fuel in commercial power plants and for military purposes. This document provides an overview of the major environmental and waste management concerns at PGDP, requirements for implementation, organization/management, corrective activities, environmental restoration, waste management options, compliance with National Environmental Policy Act (NEPA), reporting and data management, quality assurance and federal, state and local interactions. 12 refs., 6 figs., 5 tabs.

  8. Integration of a Process Waste Gas into a Site's Energy Concept 

    E-Print Network [OSTI]

    Peterson, J.

    2000-01-01T23:59:59.000Z

    In 1996, the BASF Corporation's Geismar, Louisiana site determined that the increased steam demands of their aggressive investment program would require them to expand their steam generation capacity. The site had operated a gas turbine based...

  9. Integration of a Process Waste Gas into a Site's Energy Concept

    E-Print Network [OSTI]

    Peterson, J.

    In 1996, the BASF Corporation's Geismar, Louisiana site determined that the increased steam demands of their aggressive investment program would require them to expand their steam generation capacity. The site had operated a gas turbine based...

  10. Safe interim storage of Hanford tank wastes, draft environmental impact statement, Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    Not Available

    1994-07-01T23:59:59.000Z

    This Draft EIS is prepared pursuant to the National Environmental Policy Act (NEPA) and the Washington State Environmental Policy Act (SEPA). DOE and Ecology have identified the need to resolve near-term tank safety issues associated with Watchlist tanks as identified pursuant to Public Law (P.L.) 101-510, Section 3137, ``Safety Measures for Waste Tanks at Hanford Nuclear Reservation,`` of the National Defense Authorization Act for Fiscal Year 1991, while continuing to provide safe storage for other Hanford wastes. This would be an interim action pending other actions that could be taken to convert waste to a more stable form based on decisions resulting from the Tank Waste Remediation System (TWRS) EIS. The purpose for this action is to resolve safety issues concerning the generation of unacceptable levels of hydrogen in two Watchlist tanks, 101-SY and 103-SY. Retrieving waste in dilute form from Tanks 101-SY and 103-SY, hydrogen-generating Watchlist double shell tanks (DSTs) in the 200 West Area, and storage in new tanks is the preferred alternative for resolution of the hydrogen safety issues.

  11. Guidance on the application of quality assurance for characterizing a low-level radioactive waste disposal site

    SciTech Connect (OSTI)

    Pittiglio, C.L. Jr.; Starmer, R.J.; Hedges, D.

    1990-10-01T23:59:59.000Z

    This document provides the Nuclear Regulatory Commission's staff guidance to an applicant on meeting the quality control (QC) requirements of Title 10 of the Code of Federal Regulations, Part 61, Section 61.12 (10 CFR 61.12), for a low-level waste disposal facility. The QC requirements combined with the requirements for managerial controls and audits are the basis for developing a quality assurance (QA) program and for the guidance provided herein. QA guidance is specified for site characterization activities necessary to meet the performance objectives of 10 CFR Part 61 and to limit exposure to or the release of radioactivity. 1 tab.

  12. DOE issues Finding of No Significant Impact on Environmental Assessment for Replacement Capability for Disposal of Remote-Handled Low Level Radioactive Waste Generated at Idaho Site

    Broader source: Energy.gov [DOE]

    Idaho Falls, ID – After completing a careful assessment, the U.S. Department of Energy has determined that building a new facility at its Idaho National Laboratory site for continued disposal of remote-handled low level radioactive waste generated by operations at the site will not have a significant impact on the environment.

  13. 2007 Annual Summary Report for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site, Nye County, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2008-01-01T23:59:59.000Z

    This report summarizes the results of an annual review of conditions affecting the operation of the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) and a determination of the continuing adequacy of the performance assessments (PAs) and composite analyses (CAs). The Area 5 RWMS PA documentation consists of the original PA (Shott et al., 1998), referred to as the 1998 Area 5 RWMS PA and supporting addenda (Bechtel Nevada [BN], 2001b; 2006a). The Area 5 RWMS CA was issued as a single document (BN, 2001a) and has a single addendum (BN, 2001c). The Area 3 PA and CA were issued in a single document (Shott et al., 2000). The Maintenance Plan for the PAs and CAs (National Security Technologies, LLC [NSTec], 2006) and the Disposal Authorization Statements (DASs) for the Area 3 and 5 RWMSs (U.S. Department of Energy [DOE], 2000; 2002) require preparation of an annual summary and a determination of the continuing adequacy of the PAs and CAs. The annual summary report is submitted to DOE Headquarters. Following the annual report format in the DOE PA/CA Maintenance Guide (DOE, 1999), this report presents the annual summary for the PAs in Section 2.0 and the CAs in Section 3.0. The annual summary for the PAs includes the following: Section 2.1 summarizes changes in waste disposal operations; Section 2.1.5 provides an evaluation of the new estimates of the closure inventories derived from the actual disposals through fiscal year (FY) 2007; Section 2.2 summarizes the results of the monitoring conducted under the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's (NNSA/NSO's) Integrated Closure and Monitoring Plan for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site (BN, 2005), and the research and development (R&D) activities; Section 2.4 is a summary of changes in facility design, operation, or expected future conditions; monitoring and R&D activities; and the maintenance program; and Section 2.5 discusses the recommended changes in disposal facility design and operations, monitoring and R&D activities, and the maintenance program. Similarly, the annual summary for the CAs (presented in Section 3.0) includes the following: Section 3.1 presents the assessment of the adequacy of the CAs, with a summary of the relevant factors reviewed in FY 2007; Section 3.2 presents an assessment of the relevant site activities at the Nevada Test Site (NTS) that would impact the sources of residual radioactive material considered in the CAs; Section 3.3 summarizes the monitoring and R&D results that were reviewed in FY 2007; Section 3.4 presents a summary of changes in relevant site programs (including monitoring, R&D, and the maintenance program) that occurred since the CAs were prepared; and Section 3.5 summarizes the recommended changes to these programs.

  14. MEASUREMENT AND CALCULATION OF RADIONUCLIDE ACTIVITIES IN SAVANNAH RIVER SITE HIGH LEVEL WASTE SLUDGE FOR ACCEPTANCE OF DEFENSE WASTE PROCESSING FACILITY GLASS IN A FEDERAL REPOSITORY

    SciTech Connect (OSTI)

    Bannochie, C; David Diprete, D; Ned Bibler, N

    2008-12-31T23:59:59.000Z

    This paper describes the results of the analyses of High Level Waste (HLW) sludge slurry samples and of the calculations necessary to decay the radionuclides to meet the reporting requirement in the Waste Acceptance Product Specifications (WAPS) [1]. The concentrations of 45 radionuclides were measured. The results of these analyses provide input for radioactive decay calculations used to project the radionuclide inventory at the specified index years, 2015 and 3115. This information is necessary to complete the Production Records at Savannah River Site's Defense Waste Processing Facility (DWPF) so that the final glass product resulting from Macrobatch 5 (MB5) can eventually be submitted to a Federal Repository. Five of the necessary input radionuclides for the decay calculations could not be measured directly due to their low concentrations and/or analytical interferences. These isotopes are Nb-93m, Pd-107, Cd-113m, Cs-135, and Cm-248. Methods for calculating these species from concentrations of appropriate other radionuclides will be discussed. Also the average age of the MB5 HLW had to be calculated from decay of Sr-90 in order to predict the initial concentration of Nb-93m. As a result of the measurements and calculations, thirty-one WAPS reportable radioactive isotopes were identified for MB5. The total activity of MB5 sludge solids will decrease from 1.6E+04 {micro}Ci (1 {micro}Ci = 3.7E+04 Bq) per gram of total solids in 2008 to 2.3E+01 {micro}Ci per gram of total solids in 3115, a decrease of approximately 700 fold. Finally, evidence will be given for the low observed concentrations of the radionuclides Tc-99, I-129, and Sm-151 in the HLW sludges. These radionuclides were reduced in the MB5 sludge slurry to a fraction of their expected production levels due to SRS processing conditions.

  15. Corrective Action Investigation Plan for Corrective Action Unit 34: Area 3 Contaminated Waste Site, Nevada Test Site, Nevada (Rev. 0, March 2001)

    SciTech Connect (OSTI)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office

    2001-03-27T23:59:59.000Z

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 34 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 34 consists of four Corrective Action Sites (CASs). The CAU is located within the Area 3 Compound at the Nevada Test Site (NTS) in the vicinity of the Mud Plant Facility in Yucca Valley. Historically, CAS 03-09-07, Mud Pit, was used for disposal of excess mud from washing drilling equipment from 1968 to 1974, at which time it began to be used for excess mud disposal (currently inactive); CAS 03-44-01, Chromium Contamination Spill, was used to store additives used in the formulation of drilling mud from the early 1960s to the mid-1990s; CAS 03-47-02, Area 3 Mud Plant Pond, was used as a freshwater storage reservoir for the mud plant as well as supplied water for a number of activities including the mixing of mud, the rinsing and cleaning of tanks, and various washdowns from the 1960s through 1990s; and CAS 03-09-06, Mud Disposal Crater, was created in 1962 by an underground nuclear detonation (i.e., Chinchilla test) and was used to mix and store mud, dispose of receiving waste from the mud plant floor drains and excess drilling mud, and clean/flush mix tanks through the mid-1990s. Based on site history, the scope of this plan is to identify potentially contaminated ground soil at each of the four CASs and determine the quantity, nature, and extent of contaminants of potential concern (COPCs). The investigation will include systematic and biased surface and subsurface soil and mud sampling using hand-auguring and direct-push techniques; visual, video, and/or electromagnetic surveys of pipes; field screening for volatile organic compounds (VOCs) and alpha/beta-emitting radionuclides; and laboratory analysis to characterize any investigation-derived waste for disposal both on site at NTS and at off-site locations. Historical information provided by former NTS employees indicates that COPCs include VOCs, semivolatile organic compounds, Resource Conservation and Recovery Act metals, petroleum hydrocarbons, gamma-emitting radionuclides, isotopic plutonium, and strontium-90. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.

  16. Interrelation of technologies for RW preparation and sites for final isolation of the wastes from pyrochemical processing of SNF

    SciTech Connect (OSTI)

    Gupalo, V.S.; Chistyakov, V.N. [JSC - Design-Prospecting and Scientific-Research Institute of Industrial Technology -, Kashirskoye Highway, 33, Moscow 115409 (Russian Federation); Kormilitsyn, M.V.; Kormilitsyna, L.A. [JSC - State Scientific Center - Research Institute of Atomic Reactors -, Ulyanovsk region, Dimitrovgrad - 10, 433510 (Russian Federation)

    2013-07-01T23:59:59.000Z

    For the justification of engineering solutions and practical testing of the radiochemical component of the perspective nuclear power complex with on-site variant of nuclear fuel cycle (NFC), it is planned to establish a multi-functional research-development complex (MFCRC) for radiochemical processing of spent nuclear fuels (SNF) from fast reactors. MFCRC is being established at the NIIAR site, it comprises technological process lines, where innovation pyro-electrochemical and hydrometallurgical technologies are realized, with an option for closing the inter-chain material flows for testing the combined radiochemically converted materials. The technological flowchart for processing at the MFCRC is subdivided into 3 segments: -) complex of the lead operations for dismantling the fuel elements (FE) and fuel assemblies (FA), -) pyrochemical extraction flowchart for processing SNF, and -) hydrometallurgical flowchart for processing SNF. The engineered solutions for the management and disposition of the radioactive wastes from MFCRC are reviewed.

  17. Recommended Method To Account For Daughter Ingrowth For The Portsmouth On-Site Waste Disposal Facility Performance Assessment Modeling

    SciTech Connect (OSTI)

    Phifer, Mark A.; Smith, Frank G. III

    2013-06-21T23:59:59.000Z

    A 3-D STOMP model has been developed for the Portsmouth On-Site Waste Disposal Facility (OSWDF) at Site D as outlined in Appendix K of FBP 2013. This model projects the flow and transport of the following radionuclides to various points of assessments: Tc-99, U-234, U-235, U-236, U-238, Am-241, Np-237, Pu-238, Pu-239, Pu-240, Th-228, and Th-230. The model includes the radioactive decay of these parents, but does not include the associated daughter ingrowth because the STOMP model does not have the capability to model daughter ingrowth. The Savannah River National Laboratory (SRNL) provides herein a recommended method to account for daughter ingrowth in association with the Portsmouth OSWDF Performance Assessment (PA) modeling.

  18. Remaining Sites Verification Package for the 100-D-9 Boiler Fuel Oil Tank Site, Waste Site Reclassification Form 2006-030

    SciTech Connect (OSTI)

    L. M. Dittmer

    2006-08-10T23:59:59.000Z

    The 100-D-9 site is the former location of an underground storage tank used for holding fuel for the 184-DA Boiler House. Results of soil-gas samples taken from six soil-gas probes in a rectangle around the site the tank had been removed from concluded that there were no volatile organic compounds at detectable levels in the area. The 100-D-9 Boiler Fuel Oil Tank Site meets the remedial action objectives specified in the Remaining Sites ROD. The results demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  19. Performance evaluation of the technical capabilities of DOE sites for disposal of mixed low-level waste. Volume 2: Technical basis and discussion of results

    SciTech Connect (OSTI)

    Waters, R.D.; Gruebel, M.M.; Hospelhorn, M.B. [and others

    1996-03-01T23:59:59.000Z

    A team of analysts designed and conducted a performance evaluation to estimate the technical capabilities of fifteen Department of Energy sites for disposal of mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Volume 1 summarizes the process for selecting the fifteen sites, the methodology used in the evaluation, and the conclusions derived from the evaluation. Volume 2 first describes the screening process used to determine the sites to be considered in the PEs. This volume then provides the technical details of the methodology for conducting the performance evaluations. It also provides a comparison and analysis of the overall results for all sites that were evaluated. Volume 3 contains detailed evaluations of the fifteen sites and discussions of the results for each site.

  20. Ferrocyanide Safety Program: Analysis of postulated energetic reactions and resultant aerosol generation in Hanford Site Waste Tanks

    SciTech Connect (OSTI)

    Postma, A.K. [G and P Consulting, Inc., Dallas, OR (United States); Dickinson, D.R. [Westinghouse Hanford Co., Richland, WA (United States)

    1995-09-01T23:59:59.000Z

    This report reviews work done to estimate the possible consequences of postulated energetic reactions in ferrocyanide waste stored in underground tanks at the Hanford Site. The issue of explosive reactions was raised in the 1987 Environmental Impact Statement (EIS), where a detonation-like explosion was postulated for the purpose of defining an upper bound on dose consequences for various disposal options. A review of the explosion scenario by the General Accounting Office (GAO) indicated that the aerosol generation and consequent radioactive doses projected for the explosion postulated in the EIS were understated by one to two orders of magnitude. The US DOE has sponsored an extensive study of the hazard posed by uncontrolled exothermic reactions in ferrocyanide waste, and results obtained during the past three years have allowed this hazard to be more realistically assessed. The objective of this report is to summarize the improved knowledge base that now indicates that explosive or vigorous chemical reactions are not credible in the ferrocyanide waste stored in underground tanks. This improved understanding supports the decision not to proceed with further analyses or predictions of the consequences of such an event or with aerosol tests in support of such predictions. 53 refs., 2 tabs.

  1. Site characterization plan: Conceptual design report: Volume 4, Appendices F-O: Nevada Nuclear Waste Storage Investigations Project

    SciTech Connect (OSTI)

    MacDougall, H R; Scully, L W; Tillerson, J R [comps.] [comps.

    1987-09-01T23:59:59.000Z

    The site for the prospective repository is located at Yucca Mountain in southwestern Nevada, and the waste emplacement area will be constructed in the underlying volcanic tuffs. The target horizon for waste emplacement is a sloping bed of densely welded tuff more than 650 ft below the surface and typically more than 600 ft above the water table. The conceptual design described in this report is unique among repository designs in that it uses ramps in addition to shafts to gain access to the underground facility, the emplacement horizon is located above the water table, and it is possible that 300- to 400-ft-long horizontal waste emplacement boreholes will be used. This report summarizes the design bases, design and performance criteria, and the design analyses performed. The current status of meeting the preclosure performance objectives for licensing and of resolving the repository design and preclosure issues is presented. The repository design presented in this report will be expanded and refined during the advanced conceptual design, the license application design, and the final procurement and construction design phases. Volume 4 contains Appendices F to O.

  2. A demonstration of remote survey and characterization of a buried waste site using the SRIP (Soldier Robot Interface Project) testbed

    SciTech Connect (OSTI)

    Burks, B.L.; Richardson, B.S.; Armstrong, G.A.; Hamel, W.R.; Jansen, J.F.; Killough, S.M.; Thompson, D.H.; Emery, M.S.

    1990-01-01T23:59:59.000Z

    During FY 1990, the Oak Ridge National Laboratory (ORNL) supported the Department of Energy (DOE) Environmental Restoration and Waste Management (ER WM) Office of Technology Development through several projects including the development of a semiautonomous survey of a buried waste site using a remotely operated all-terrain robotic testbed borrowed from the US Army. The testbed was developed for the US Army's Human Engineering Laboratory (HEL) for the US Army's Soldier Robot Interface Project (SRIP). Initial development of the SRIP testbed was performed by a team including ORNL, HEL, Tooele Army Depot, and Odetics, Inc., as an experimental testbed for a variety of human factors issues related to military applications of robotics. The SRIP testbed was made available to the DOE and ORNL for the further development required for a remote landfill survey. The robot was modified extensively, equipped with environmental sensors, and used to demonstrate an automated remote survey of Solid Waste Storage Area No. 3 (SWSA 3) at ORNL on Tuesday, September 18, 1990. Burial trenches in this area containing contaminated materials were covered with soil nearly twenty years ago. This paper describes the SRIP testbed and work performed in FY 1990 to demonstrate a semiautonomous landfill survey at ORNL. 5 refs.

  3. RCRA Assessment Plan for Single-Shell Tank Waste Management Area B-BX-BY at the Hanford Site

    SciTech Connect (OSTI)

    Narbutovskih, Susan M.

    2006-09-29T23:59:59.000Z

    This document was prepared as a groundwater quality assessment plan revision for the single-shell tank systems in Waste Management Area B-BX-BY at the Hanford Site. Groundwater monitoring is conducted at this facility in accordance with 40 CFR Part 265, Subpart F. In FY 1996, the groundwater monitoring program was changed from detection-level indicator evaluation to a groundwater quality assessment program when elevated specific conductance in downgradient monitoring well 299 E33-32 was confirmed by verification sampling. During the course of the ensuing investigation, elevated technetium-99 and nitrate were observed above the drinking water standard at well 299-E33-41, a well located between 241-B and 241-BX Tank Farms. Earlier observations of the groundwater contamination and tank farm leak occurrences combined with a qualitative analysis of possible solutions, led to the conclusion that waste from the waste management area had entered the groundwater and were observed in this well. Based on 40 CFR 265.93 [d] paragraph (7), the owner-operator must continue to make the minimum required determinations of contaminant level and rate/extent of migrations on a quarterly basis until final facility closure. These continued determinations are required because the groundwater quality assessment was implemented prior to final closure of the facility.

  4. 1999 Report on Hanford Site land disposal restriction for mixed waste

    SciTech Connect (OSTI)

    BLACK, D.G.

    1999-03-25T23:59:59.000Z

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-26-011. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of managing land-disposal-restricted mixed waste at the Hanford Facility.

  5. LOCAL ARRANGEMENTS FOR WASTE DISPOSAL (BEGBROKE SITE) Landfill (England & Wales) Regulations 2002

    E-Print Network [OSTI]

    Paxton, Anthony T.

    are to be disposed of as hazardous waste in the same way as chemicals. EMPTY CHEMICAL BOTTLES Empty plastic chemical washed them out and have cleaned the outside of the bottles before throwing them in the skips. Bottles that cannot be washed out (e.g. hydrofluoric acid bottles) or bottles that stubbornly resist cleaning must

  6. LOCAL ARRANGEMENTS FOR WASTE DISPOSAL (MAIN SITE) Landfill (England & Wales) Regulations 2002

    E-Print Network [OSTI]

    Paxton, Anthony T.

    the Chemicals Technicians when they have empty glass bottles for disposal. EMPTY PLASTIC CHEMICAL BOTTLES Plastic containers that have open necks, e.g. solvent bottles, may be washed out and disposed of via be disposed of as non-hazardous waste. EMPTY (GLASS) CHEMICAL BOTTLES University regulations governing

  7. The siting record: An account of the programs of federal agencies and events that have led to the selection of a potential site for a geologic respository for high-level radioactive waste

    SciTech Connect (OSTI)

    Lomenick, T.F.

    1996-03-01T23:59:59.000Z

    This record of siting a geologic repository for high-level radioactive wastes (HLW) and spent fuel describes the many investigations that culminated on December 22, 1987 in the designation of Yucca Mountain (YM), as the site to undergo detailed geologic characterization. It recounts the important issues and events that have been instrumental in shaping the course of siting over the last three and one half decades. In this long task, which was initiated in 1954, more than 60 regions, areas, or sites involving nine different rock types have been investigated. This effort became sharply focused in 1983 with the identification of nine potentially suitable sites for the first repository. From these nine sites, five were subsequently nominated by the U.S. Department of Energy (DOE) as suitable for characterization and then, in 1986, as required by the Nuclear Waste Policy Act of 1982 (NWPA), three of these five were recommended to the President as candidates for site characterization. President Reagan approved the recommendation on May 28, 1986. DOE was preparing site characterization plans for the three candidate sites, namely Deaf Smith County, Texas; Hanford Site, Washington; and YM. As a consequence of the 1987 Amendment to the NWPA, only the latter was authorized to undergo detailed characterization. A final Site Characterization Plan for Yucca Mountain was published in 1988. Prior to 1954, there was no program for the siting of disposal facilities for high-level waste (HLW). In the 1940s and 1950s, the volume of waste, which was small and which resulted entirely from military weapons and research programs, was stored as a liquid in large steel tanks buried at geographically remote government installations principally in Washington and Tennessee.

  8. Remaining Sites Verification Package for the 100-B-18, 184-B Powerhouse Debris Pile, Waste Site Reclassification Form 2007-020

    SciTech Connect (OSTI)

    L. M. Dittmer

    2007-11-30T23:59:59.000Z

    The 100-B-18 Powerhouse Debris Pile contained miscellaneous demolition waste from the decommissioning activities of the 184-B Powerhouse. The debris covered an area roughly 15 m by 30 m and included materials such as concrete blocks, mixed aggregate/concrete slabs, stone rubble, asphalt rubble, traces of tar/coal, broken fluorescent lights, brick chimney remnants, and rubber hoses. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  9. ASSESSING EXPOSURE TO THE PUBLIC FROM LOW LEVEL RADIOACTIVE WASTE (LLW) TRANSPORTATION TO THE NEVADA TEST SITE.

    SciTech Connect (OSTI)

    Miller, J.J.; Campbell, S.; Church, B.W.; Shafer, D. S.; Gillespie, D.; Sedano, S.; Cebe, J.J.

    2003-02-27T23:59:59.000Z

    The United States (U.S.) Department of Energy (DOE) Nevada Test Site (NTS) is one of two regional sites where low-level radioactive waste (LLW) from approved DOE and U.S. DOD generators across the United States is disposed. In federal fiscal year (FY) 2002, over 57,000 cubic meters of waste was transported to and disposed at the NTS. DOE and U.S. Department of Transportation (DOT) regulations ensure that radiation exposure from truck shipments to members of the public is negligible. Nevertheless, particularly in rural communities along transportation routes in Utah and Nevada, there is perceived risk from members of the public about incremental exposure from LLW trucks, especially when ''Main Street'' and the LLW transportation route are the same. To better quantify the exposure to gamma radiation, a stationary monitoring array of four pressurized ion chambers (PICs) have been set up in a pullout just before LLW trucks reach the entrance to the NTS. The PICs are positioned at a distance of one meter from the sides of the truck trailer and at a height appropriate for the design of the trucks that will be used in FY2003 to haul LLW to the NTS. The use of four PICs (two on each side of the truck) is to minimize and to correct for non-uniformity where radiation levels from waste packages vary from side to side, and from front to back in the truck trailer. The PIC array is being calibrated by collecting readings from each PIC exposed to a known 137Cs source that was positioned at different locations on a flatbed stationed in the PIC array, along with taking secondary readings from other known sources. Continuous data collection using the PICs, with and without a truck in the array, is being used to develop background readings. In addition, acoustic sensors are positioned on each side of the PIC array to record when a large object (presumably a truck) enters the array. In FY2003, PIC surveys from as many incoming LLW trucks as possible will be made and survey data recorded automatically by dataloggers that will be periodically downloaded. Solar panels provide power for the batteries to run both the dataloggers and PICs. Truck drivers have been asked to park their truck within the PIC array for only the time it takes to complete an information log before moving on to one of two Radioactive Waste Management Sites (RWMS) on the NTS. On the log, the truck drivers record their shipment identification number, the time of day, where the waste originated, and information on the route they used to reach the NTS. This data will facilitate comparison of PIC readings with waste manifests and other waste disposal operations data collected at the RWMSs. Gamma radiation measurements collected from the PICs will be analyzed using standard health physics and statistical methods for comparison to DOT standards, but with the added benefit of obtaining an improved understanding of the variability of readings that can occur in the near vicinity of a LLW truck. The data collected will be combined with measurements of street width and other information about transportation routes through towns to develop realistic dose scenarios for citizens in Nevada and Utah towns.

  10. Summary of Natural Resources that Potentially Influence Human Intrusion at the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nye County, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2007-06-01T23:59:59.000Z

    In 1993, Raytheon Services Nevada completed a review of natural resource literature and other sources to identify potentially exploitable resources and potential future land uses near the Area 5 Radioactive Waste Management Site (RWMS) of the Nevada Test Site (NTS), Nye County, Nevada, that could lead to future inadvertent human intrusion and subsequent release of radionuclides to the accessible environment. National Security Technologies, LLC, revised the original limited-distribution document to conform to current editorial standards and U.S. Department of Energy requirements for public release. The researchers examined the potential for future development of sand, gravel, mineral, petroleum, water resources, and rural land uses, such as agriculture, grazing, and hunting. The study was part of the performance assessment for Greater Confinement Disposal boreholes. Sand and gravel are not considered exploitable site resources because the materials are common throughout the area and the quality at the Area 5 RWMS is not ideal for typical commercial uses. Site information also indicates a very low mineral potential for the area. None of the 23 mining districts in southern Nye County report occurrences of economic mineral deposits in unconsolidated alluvium. The potential for oil and natural gas is low for southern Nye County. No occurrences of coal, tar sand, or oil shale on the NTS are reported in available literature. Several potential future uses of water were considered. Agricultural irrigation is impractical due to poor soils and existing water supply regulations. Use of water for geothermal energy development is unlikely because temperatures are too low for typical commercial applications using current technology. Human consumption of water has the most potential for cause of intrusion. The economics of future water needs may create a demand for the development of deep carbonate aquifers in the region. However, the Area 5 RWMS is not an optimal location for extraction of groundwater from the deep carbonate aquifer. Grazing and hunting are unlikely to be potential causes for inadvertent human intrusion into waste areas because of vegetation characteristics and lack of significant game animal populations.

  11. Hydrologic evaluation methodology for estimating water movement through the unsaturated zone at commercial low-level radioactive waste disposal sites

    SciTech Connect (OSTI)

    Meyer, P.D.; Rockhold, M.L.; Nichols, W.E.; Gee, G.W. [Pacific Northwest Lab., Richland, WA (United States)

    1996-01-01T23:59:59.000Z

    This report identifies key technical issues related to hydrologic assessment of water flow in the unsaturated zone at low-level radioactive waste (LLW) disposal facilities. In addition, a methodology for incorporating these issues in the performance assessment of proposed LLW disposal facilities is identified and evaluated. The issues discussed fall into four areas: estimating the water balance at a site (i.e., infiltration, runoff, water storage, evapotranspiration, and recharge); analyzing the hydrologic performance of engineered components of a facility; evaluating the application of models to the prediction of facility performance; and estimating the uncertainty in predicted facility performance. To illustrate the application of the methodology, two examples are presented. The first example is of a below ground vault located in a humid environment. The second example looks at a shallow land burial facility located in an arid environment. The examples utilize actual site-specific data and realistic facility designs. The two examples illustrate the issues unique to humid and arid sites as well as the issues common to all LLW sites. Strategies for addressing the analytical difficulties arising in any complex hydrologic evaluation of the unsaturated zone are demonstrated.

  12. National survey of crystalline rocks and recommendations of regions to be explored for high-level radioactive waste repository sites

    SciTech Connect (OSTI)

    Smedes, H.W.

    1983-04-01T23:59:59.000Z

    A reconnaissance of the geological literature on large regions of exposed crystalline rocks in the United States provides the basis for evaluating if any of those regions warrant further exploration toward identifying potential sites for development of a high-level radioactive waste repository. The reconnaissance does not serve as a detailed evaluation of regions or of any smaller subunits within the regions. Site performance criteria were selected and applied insofar as a national data base exists, and guidelines were adopted that relate the data to those criteria. The criteria include consideration of size, vertical movements, faulting, earthquakes, seismically induced ground motion, Quaternary volcanic rocks, mineral deposits, high-temperature convective ground-water systems, hydraulic gradients, and erosion. Brief summaries of each major region of exposed crystalline rock, and national maps of relevant data provided the means for applying the guidelines and for recommending regions for further study. It is concluded that there is a reasonable likelihood that geologically suitable repository sites exist in each of the major regions of crystalline rocks. The recommendation is made that further studies first be conducted of the Lake Superior, Northern Appalachian and Adirondack, and the Southern Appalachian Regions. It is believed that those regions could be explored more effectively and suitable sites probably could be found, characterized, verified, and licensed more readily there than in the other regions.

  13. HWMA/RCRA Closure Plan for the TRA/MTR Warm Waste System Voluntary Consent Order SITE-TANK-005 Tank System TRA-007

    SciTech Connect (OSTI)

    K. Winterholler

    2007-01-30T23:59:59.000Z

    This Hazardous Waste Management Act/Resource Conservation and Recovery Act Closure Plan was developed for portions of the Test Reactor Area/Materials Test Reactor Warm Waste System located in the Materials Test Reactor Building (TRA-603) at the Reactor Technology Complex, Idaho National Laboratory Site, to meet a further milestone established under Voluntary Consent Order Action Plan SITE-TANK-005 for the Tank System TRA-007. The reactor drain tank and canal sump to be closed are included in the Test Reactor Area/Materials Test Reactor Warm Waste System. The reactor drain tank and the canal sump will be closed in accordance with the interim status requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act as implemented by the Idaho Administrative Procedures Act 58.01.05.009 and Code of Federal Regulations 265. This closure plan presents the closure performance standards and methods for achieving those standards.

  14. Establishment of a Cost-Effective and Robust Planning Basis for the Processing of M-91 Waste at the Hanford Site

    SciTech Connect (OSTI)

    Johnson, Wayne L.; Parker, Brian M.

    2004-07-30T23:59:59.000Z

    This report identifies and evaluates viable alternatives for the accelerated processing of Hanford Site transuranic (TRU) and mixed low-level wastes (MLLW) that cannot be processed using existing site capabilities. Accelerated processing of these waste streams will lead to earlier reduction of risk and considerable life-cycle cost savings. The processing need is to handle both oversized MLLW and TRU containers as well as containers with surface contact dose rates greater than 200 mrem/hr. This capability is known as the ''M-91'' processing capability required by the Tri-Party Agreement milestone M-91--01. The new, phased approach proposed in this evaluation would use a combination of existing and planned processing capabilities to treat and more easily manage contact-handled waste streams first and would provide for earlier processing of these wastes.

  15. Core analyses for selected samples from the Culebra Dolomite at the Waste Isolation Pilot Plant site

    SciTech Connect (OSTI)

    Kelley, V.A.; Saulnier, G.J. Jr. (INTERA, Inc., Austin, TX (USA))

    1990-11-01T23:59:59.000Z

    Two groups of core samples from the Culebra Dolomite Member of the Rustler Formation at and near the Waste Isolation Pilot Plant were analyzed to provide estimates of hydrologic parameters for use in flow-and-transport modeling. Whole-core and core-plug samples were analyzed by helium porosimetry, resaturation and porosimetry, mercury-intrusion porosimetry, electrical-resistivity techniques, and gas-permeability methods. 33 refs., 25 figs., 10 tabs.

  16. Electro-Mechanical Manipulator for Use in the Remote Equipment Decontamination Cell at the Defense Waste Processing Facility, Savannah River Site - 12454

    SciTech Connect (OSTI)

    Lambrecht, Bill; Dixon, Joe [Par Systems, Shoreview, Minnesota, 55126 (United States); Neuville, John R. [Savannah River Remediation, Savannah River Site, Aiken, South Carolina, 29808 (United States)

    2012-07-01T23:59:59.000Z

    One of the legacies of the cold war is millions of liters of radioactive waste. One of the locations where this waste is stored is at the Savannah River Site (SRS) in South Carolina. A major effort to clean up this waste is on-going at the defense waste processing facility (DWPF) at SRS. A piece of this effort is decontamination of the equipment used in the DWPF to process the waste. The remote equipment decontamination cell (REDC) in the DWPF uses electro-mechanical manipulators (EMM) arms manufactured and supplied by PaR Systems to decontaminate DWPF process equipment. The decontamination fluid creates a highly corrosive environment. After 25 years of operational use the original EMM arms are aging and need replacement. To support continued operation of the DWPF, two direct replacement EMM arms were delivered to the REDC in the summer of 2011. (authors)

  17. Performance evaluation of the technical capabilities of DOE sites for disposal of mixed low-level waste. Volume 1: Executive summary

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    A team of analysts designed and conducted a performance evaluation (PE) to estimate the technical capabilities of fifteen Department of Energy sites for disposal of mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Volume 1 summarizes the process for selecting the fifteen sites, the methodology used in the evaluation, and the conclusions derived from the evaluation. Volume 1 is an executive summary both of the PE methodology and of the results obtained from the PEs. While this volume briefly reviews the scope and method of analyses, its main objective is to emphasize the important insights and conclusions derived from the conduct of the PEs. Volume 2 provides details about the site-selection process, the performance-evaluation methodology, and the overall results of the analysis. Volume 3 contains detailed evaluations of the fifteen sites and discussions of the results for each site.

  18. RCRA Permit for a Hazardous Waste Management Facility Permit Number NEV HW0101 Annual Summary/Waste Minimization Report Calendar Year 2012, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    Arnold, P. M.

    2013-02-21T23:59:59.000Z

    This report summarizes the U.S. Environmental Protection Agency (EPA) identification number of each generator from which the Permittee received a waste stream, a description and quantity of each waste stream in tons and cubic feet received at the facility, the method of treatment, storage, and/or disposal for each waste stream, a description of the waste minimization efforts undertaken, a description of the changes in volume and toxicity of waste actually received, any unusual occurrences, and the results of tank integrity assessments. This Annual Summary/Waste Minimization Report is prepared in accordance with Section 2.13.3 of Permit Number NEV HW0101, issued 10/17/10.

  19. Corrective Action Decision Document/Corrective Action Plan for Corrective Action Unit 547: Miscellaneous Contaminated Waste Sites, Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Mark Krauss

    2011-09-01T23:59:59.000Z

    The purpose of this CADD/CAP is to present the corrective action alternatives (CAAs) evaluated for CAU 547, provide justification for selection of the recommended alternative, and describe the plan for implementing the selected alternative. Corrective Action Unit 547 consists of the following three corrective action sites (CASs): (1) CAS 02-37-02, Gas Sampling Assembly; (2) CAS 03-99-19, Gas Sampling Assembly; and(3) CAS 09-99-06, Gas Sampling Assembly. The gas sampling assemblies consist of inactive process piping, equipment, and instrumentation that were left in place after completion of underground safety experiments. The purpose of these safety experiments was to confirm that a nuclear explosion would not occur in the case of an accidental detonation of the high-explosive component of the device. The gas sampling assemblies allowed for the direct sampling of the gases and particulates produced by the safety experiments. Corrective Action Site 02-37-02 is located in Area 2 of the Nevada National Security Site (NNSS) and is associated with the Mullet safety experiment conducted in emplacement borehole U2ag on October 17, 1963. Corrective Action Site 03-99-19 is located in Area 3 of the NNSS and is associated with the Tejon safety experiment conducted in emplacement borehole U3cg on May 17, 1963. Corrective Action Site 09-99-06 is located in Area 9 of the NNSS and is associated with the Player safety experiment conducted in emplacement borehole U9cc on August 27, 1964. The CAU 547 CASs were investigated in accordance with the data quality objectives (DQOs) developed by representatives of the Nevada Division of Environmental Protection (NDEP) and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to determine and implement appropriate corrective actions for CAU 547. Existing radiological survey data and historical knowledge of the CASs were sufficient to meet the DQOs and evaluate CAAs without additional investigation. As a result, further investigation of the CAU 547 CASs was not required. The following CAAs were identified for the gas sampling assemblies: (1) clean closure, (2) closure in place, (3) modified closure in place, (4) no further action (with administrative controls), and (5) no further action. Based on the CAAs evaluation, the recommended corrective action for the three CASs in CAU 547 is closure in place. This corrective action will involve construction of a soil cover on top of the gas sampling assembly components and establishment of use restrictions at each site. The closure in place alternative was selected as the best and most appropriate corrective action for the CASs at CAU 547 based on the following factors: (1) Provides long-term protection of human health and the environment; (2) Minimizes short-term risk to site workers in implementing corrective action; (3) Is easily implemented using existing technology; (4) Complies with regulatory requirements; (5) Fulfills FFACO requirements for site closure; (6) Does not generate transuranic waste requiring offsite disposal; (7) Is consistent with anticipated future land use of the areas (i.e., testing and support activities); and (8) Is consistent with other NNSS site closures where contamination was left in place.

  20. Salt Waste Processing Initiatives

    Office of Environmental Management (EM)

    1 Patricia Suggs Salt Processing Team Lead Assistant Manager for Waste Disposition Project Office of Environmental Management Savannah River Site Salt Waste Processing Initiatives...

  1. Accelerated cleanup of mixed waste units on the Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    Patterson, J.K.; Johnson, W.L.; Downey, H.D.

    1993-09-01T23:59:59.000Z

    This report provides a status of the expedited response action (ERA) projects currently being implemented at the Hanford Site. A detailed review of the accomplishments to date, the technologies employed, the problems encountered, and an analysis of the lessons learned are included. A total of nine ERAs have been initiated at the Hanford Site and are presented in a case study format with emphasis on the progress being made and the challenges ahead.

  2. Fate and transport processes controlling the migration of hazardous and radioactive materials from the Area 5 Radioactive Waste Management Site (RWMS)

    SciTech Connect (OSTI)

    Estrella, R.

    1994-10-01T23:59:59.000Z

    Desert vadose zones have been considered as suitable environments for the safe and long-term isolation of hazardous wastes. Low precipitation, high evapotranspiration and thick unsaturated alluvial deposits commonly found in deserts make them attractive as waste disposal sites. The fate and transport of any contaminant in the subsurface is ultimately determined by the operating retention and transformation processes in the system and the end result of the interactions among them. Retention (sorption) and transformation are the two major processes that affect the amount of a contaminant present and available for transport. Retention processes do not affect the total amount of a contaminant in the soil system, but rather decrease or eliminate the amount available for transport at a given point in time. Sorption reactions retard the contaminant migration. Permanent binding of solute by the sorbent is also possible. These processes and their interactions are controlled by the nature of the hazardous waste, the properties of the porous media and the geochemical and environmental conditions (temperature, moisture and vegetation). The present study summarizes the available data and investigates the fate and transport processes that govern the migration of contaminants from the Radioactive Waste Management Site (RWMS) in Area 5 of the Nevada Test Site (NTS). While the site is currently used only for low-level radioactive waste disposal, past practices have included burial of material now considered hazardous. Fundamentals of chemical and biological transformation processes are discussed subsequently, followed by a discussion of relevant results.

  3. Closure Report for Corrective Action Unit 357: Mud Pits and Waste Dump, Nevada Test Site, Nevada, Rev. No.: 0

    SciTech Connect (OSTI)

    Laura A. Pastor

    2005-04-01T23:59:59.000Z

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 357: Mud Pits and Waste Dump, Nevada Test Site (NTS), Nevada. The CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada, U.S. Department of Energy (DOE), and the U.S. Department of Defense (FFACO, 1996). Corrective Action Unit 357 is comprised of 14 Corrective Action Sites (CASs) located in Areas 1, 4, 7, 8, 10, and 25 of the NTS (Figure 1-1). The NTS is located approximately 65 miles (mi) northwest of Las Vegas, Nevada. Corrective Action Unit 357 consists of 11 CASs that are mud pits located in Areas 7, 8, and 10. The mud pits were associated with drilling activities conducted on the NTS in support of the underground nuclear weapons testing. The remaining three CASs are boxes and pipes associated with Building 1-31.2el, lead bricks, and a waste dump. These CAS are located in Areas 1, 4, and 25, respectively. The following CASs are shown on Figure 1-1: CAS 07-09-02, Mud Pit; CAS 07-09-03, Mud Pit; CAS 07-09-04, Mud Pit; CAS 07-09-05, Mud Pit; CAS 08-09-01, Mud Pit; CAS 08-09-02, Mud Pit; CAS 08-09-03, Mud Pit; CAS 10-09-02, Mud Pit; CAS 10-09-04, Mud Pit; CAS 10-09-05, Mud Pit; CAS 10-09-06, Mud Pit, Stains, Material; CAS 01-99-01, Boxes, Pipes; CAS 04-26-03, Lead Bricks; and CAS 25-15-01, Waste Dump. The purpose of the corrective action activities was to obtain analytical data that supports the closure of CAU 357. Environmental samples were collected during the investigation to determine whether contaminants exist and if detected, their extent. The investigation and sampling strategy was designed to target locations and media most likely to be contaminated (biased sampling). A general site conceptual model was developed for each CAS to support and guide the investigation as outlined in the Streamlined Approach for Environmental Restoration (SAFER) Plan (NNSA/NSO, 2003b). This CR summarizes the results of corrective action activities, provides the data confirming the selection of corrective actions, and provides documentation of the completed closure activities conducted in accordance with the SAFER Plan (NNSA/NSO, 2003b). A brief description of the CAU and associated CASs is provided in the following section. A more detailed history of each CAS is provided in the SAFER Plan for CAU 357 (NNSA/NSO, 2003b).

  4. Results of the radiological survey at the Sacandaga site Glenville, New York. Waste Management Research and Development Programs

    SciTech Connect (OSTI)

    Foley, R.D.; Cottrell, W.D.; Carrier, R.F.

    1992-08-01T23:59:59.000Z

    The Sacandaga site, located on Sacandaga Road, Glenville, New York, was operated by the General Electric Company for the Atomic Energy Commission (AEC) between 1947 and 1951. Originally used for the study and development of radar during World War II, the facilities housed later operations involving physics studies and sodium technology development in support of breeder reactor design and other AEC programs. Though not in use since the original equipment was dismantled and removed in the early 1950s, portions of the 51-acre site are known to contain buried rubble from demolished structures used in former operations. At the request of the Office of Naval Reactors through the Office of Remedial Action and Waste Technology, a characterization of current radiological conditions over the site was performed between August and October 1989. The survey included the measurement of direct radiation levels (gamma, alpha, and beta-gamma) over all surfaces both inside and outside the building and tunnel, radionuclide analysis of systematic, biased, and auger hole soil samples, and analysis of sediments from underground structures. Gamma logging of auger holes was conducted and removable contamination levels inside the tunnel were determined. Samples of soil and structural materials from within and around an excavated concrete bunker were analyzed to determine concentrations of radionuclides and nonradioactive elemental beryllium.

  5. Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality, August 2012

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, anEnergy nepdg_5251_5500.pdfAnalysis of Downwash fromWaste Treatment

  6. Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality, May 2013

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, anEnergy nepdg_5251_5500.pdfAnalysis of Downwash fromWaste

  7. Review of the Hanford Site Waste Treatment and Immobilization Plant Project Construction Quality, March 2012

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, anEnergy nepdg_5251_5500.pdfAnalysis of Downwash fromWaste Hanford

  8. 2008 Annual Summary Report for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site, Nye County, Nevada: Review of the Performance Assessments and Composite Analyses

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2009-03-30T23:59:59.000Z

    The Maintenance Plan for the Performance Assessments and Composite Analyses for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site requires an annual review to assess the adequacy of the Performance Assessments (PAs) and Composite Analyses (CAs) for each of the facilities, with the results submitted annually to U.S. Department of Energy (DOE) Headquarters. The Disposal Authorization Statements for the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) also require that such reviews be made and that secondary or minor unresolved issues be tracked and addressed as part of the maintenance plan. The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) performed an annual review in fiscal year (FY) 2008 by evaluating operational factors and research results that impact the continuing validity of the PAs and CAs. This annual summary report presents data and conclusions from the FY 2008 review, and determines the adequacy of the PAs and CAs. Operational factors (e.g., waste forms and containers, facility design, and waste receipts), closure plans, monitoring results, and research and development (R&D) activities were reviewed to determine the adequacy of the PAs. Likewise, the environmental restoration activities at the Nevada Test Site relevant to the sources of residual radioactive material that are considered in the CAs, the land-use planning, and the results of the environmental monitoring and R&D activities were reviewed to determine the adequacy of the CAs.

  9. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cleanup Document Date: 10162009 Keywords: recovery, waste site, BC Control, soil, contamination Area: BC Control Area Description: Using Recovery Act funding, contractors are...

  10. State of the art design: A closure system for the largest hazardous waste landfill at the Savannah River Site

    SciTech Connect (OSTI)

    Bartlett, S.F.; Serrato, M.G.; McMullin, S.R.

    1992-12-31T23:59:59.000Z

    This paper discusses the cover system proposed for a 55-acre, hazardous waste closure of the sanitary landfill at the Savannah River Site, near Aiken, South Carolina. The proposed cover system has been designed to accommodate a significant amount of post-closure settlement while maintaining a permeability of 1 {times} 10{sup {minus}7} cm/s or less throughout its 30-year, regulatory lifetime. A composite cover consisting of a geomembrane (GM) underlain by a geosynthetic clay liner (GCL) was selected because of its extremely low permeability, ability to elongate without tearing, and capacity to ``self-heal`` if punctured. These characteristics will enable the cover system to accommodate differential settlement without cracking or tearing, this providing long-term protection with minimal maintenance. Also, to improve the ability of the cover system to span voids that may develop in the underlying waste, a geogrid has been included in the foundation layer. A gas vent layer has been included to allow for the safe collection and venting of landfill gases.

  11. State of the art design: A closure system for the largest hazardous waste landfill at the Savannah River Site

    SciTech Connect (OSTI)

    Bartlett, S.F.; Serrato, M.G.; McMullin, S.R.

    1992-01-01T23:59:59.000Z

    This paper discusses the cover system proposed for a 55-acre, hazardous waste closure of the sanitary landfill at the Savannah River Site, near Aiken, South Carolina. The proposed cover system has been designed to accommodate a significant amount of post-closure settlement while maintaining a permeability of 1 [times] 10[sup [minus]7] cm/s or less throughout its 30-year, regulatory lifetime. A composite cover consisting of a geomembrane (GM) underlain by a geosynthetic clay liner (GCL) was selected because of its extremely low permeability, ability to elongate without tearing, and capacity to self-heal'' if punctured. These characteristics will enable the cover system to accommodate differential settlement without cracking or tearing, this providing long-term protection with minimal maintenance. Also, to improve the ability of the cover system to span voids that may develop in the underlying waste, a geogrid has been included in the foundation layer. A gas vent layer has been included to allow for the safe collection and venting of landfill gases.

  12. Discrete-event simulation of nuclear-waste transport in geologic sites subject to disruptive events. Final report

    SciTech Connect (OSTI)

    Aggarwal, S.; Ryland, S.; Peck, R.

    1980-06-19T23:59:59.000Z

    This report outlines a methodology to study the effects of disruptive events on nuclear waste material in stable geologic sites. The methodology is based upon developing a discrete events model that can be simulated on the computer. This methodology allows a natural development of simulation models that use computer resources in an efficient manner. Accurate modeling in this area depends in large part upon accurate modeling of ion transport behavior in the storage media. Unfortunately, developments in this area are not at a stage where there is any consensus on proper models for such transport. Consequently, our work is directed primarily towards showing how disruptive events can be properly incorporated in such a model, rather than as a predictive tool at this stage. When and if proper geologic parameters can be determined, then it would be possible to use this as a predictive model. Assumptions and their bases are discussed, and the mathematical and computer model are described.

  13. Nuclear Archeology in a Bottle: Evidence of Pre-Trinity U.S. Weapons Activities from a Waste Burial Site

    SciTech Connect (OSTI)

    Schwantes, Jon M.; Douglas, Matthew; Bonde, Steven E.; Briggs, David; Farmer, Orville T.; Greenwood, Lawrence R.; Lepel, Elwood A.; Orton, Christopher R.; Wacker, John F.; Luksic, Andrzej T.

    2009-02-15T23:59:59.000Z

    During World War II, the Hanford Site in Washington was chosen for plutonium production. In 2004, a bottle containing a sample of plutonium was recovered from a Hanford waste trench. Isotopic age dating indicated the sample was separated from the fuel pellet 64 ±2.8 years earlier. Detectable products of secondary nuclear reactions, such as 22Na, proved useful as 1) a detectable analog for alpha emitting actinides, 2) an indicator of sample splitting, and 3) a measure of the time since sample splitting. The sample origin was identified as the X-10 reactor, Oak Ridge, TN. Corroborated by historical documents, we concluded this sample was part of the first batch of Pu separated at T-Plant, Hanford, the world’s first industrial-scale reprocessing facility, on December 9, 1944.

  14. Remaining Sites Verification Package for the 100-B-21:2 Subsite (100-B/C Discovery Pipeline DS-100BC-002), Waste Site Reclassification Form 2008-003

    SciTech Connect (OSTI)

    J. M. Capron

    2008-06-16T23:59:59.000Z

    The 100-B-21:2 waste site consists of the immediate area of the DS-100BC-02 pipeline. In accordance with this evaluation, the confirmatory and verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  15. A field strategy to monitor radioactivity associated with investigation derived wastes returned from deep drilling sites

    SciTech Connect (OSTI)

    Rego, J.H.; Smith, D.K.; Friensehner, A.V.

    1995-05-26T23:59:59.000Z

    The U.S. Department of Energy, Nevada Operations Office, Underground Test Area Operable Unit (UGTA) is drilling deep (>1500m) monitoring wells that penetrate both unsaturated (vadose) and saturated zones potentially contaminated by sub-surface nuclear weapons testing at the Nevada Test Site, Nye County, Nevada. Drill site radiological monitoring returns data on drilling effluents to make informed management decisions concerning fluid management. Because of rapid turn-around required for on-site monitoring, a representative sample will be analyzed simultaneously for {alpha}, {beta} and {gamma} emitters by instrumentation deployed on-site. For the purposes of field survey, accurate and precise data is returned, in many cases, with minimal sample treatment. A 30% efficient high purity germanium detector and a discriminating liquid scintillation detector are being evaluated for {gamma} and {alpha}/{beta} monitoring respectively. Implementation of these detector systems complements a successful on-site tritium monitoring program. Residual radioactivity associated with underground nuclear tests include tritium, activation products, fission products and actinides. Pulse shape discrimination (PSD) is used in {alpha}/{beta} liquid scintillation counting and is a function of the time distribution of photon emission. In particular, we hope to measure {sup 241}Am produced from {sup 241}Pu by {beta} decay. Because {sup 241}Pu is depleted in fissile bomb fuels, maximum PSD resolution will be required. The high purity germanium detector employs a multichannel analyzer to count gamma emitting radionuclides; we will designate specific window configurations to selectively monitor diagnostic fission product radionuclides (i.e., {sup 137}Cs).

  16. Corrective Action Investigation Plan for Corrective Action Unit 561: Waste Disposal Areas, Nevada Test Site, Nevada with ROTC 1, Revision 0

    SciTech Connect (OSTI)

    Grant Evenson

    2008-07-01T23:59:59.000Z

    Corrective Action Unit (CAU) 561 is located in Areas 1, 2, 3, 5, 12, 22, 23, and 25 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 561 is comprised of the 10 corrective action sites (CASs) listed below: • 01-19-01, Waste Dump • 02-08-02, Waste Dump and Burn Area • 03-19-02, Debris Pile • 05-62-01, Radioactive Gravel Pile • 12-23-09, Radioactive Waste Dump • 22-19-06, Buried Waste Disposal Site • 23-21-04, Waste Disposal Trenches • 25-08-02, Waste Dump • 25-23-21, Radioactive Waste Dump • 25-25-19, Hydrocarbon Stains and Trench These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on April 28, 2008, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 561. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. The scope of the Corrective Action Investigation for CAU 561 includes the following activities: • Move surface debris and/or materials, as needed, to facilitate sampling. • Conduct radiological surveys. • Perform exploratory excavations. • Perform field screening. • Collect and submit environmental samples for laboratory analysis to determine the nature and extent of any contamination released by each CAS. • Collect samples of source material to determine the potential for a release. • Collect samples of potential remediation wastes. • Collect quality control samples.

  17. SUCCESSES AND EMERGING ISSUES IN SIMULATING THE PROCESSING BEHAVIOR OF LIQUID-PARTICLE NUCLEAR WASTE SLURRIES AT THE SAVANNAH RIVER SITE - 205E

    SciTech Connect (OSTI)

    Koopman, D.; Lambert, D.; Stone, M.

    2009-09-02T23:59:59.000Z

    Slurries of inorganic solids, containing both stable and radioactive elements, were produced during the cold war as by-products of the production of plutonium and enriched uranium and stored in large tanks at the Savannah River Site. Some of this high level waste is being processed into a stable glass waste form today. Waste processing involves various large scale operations such as tank mixing, inter-tank transfers, washing, gravity settling and decanting, chemical adjustment, and vitrification. The rheological properties of waste slurries are of particular interest. Methods for modeling flow curve data and predicting the properties of slurry blends are particularly important during certain operational phases. Several methods have been evaluated to predict the rheological properties of sludge slurry blends from the data on the individual slurries. These have been relatively successful.

  18. Site characterization plan conceptual design report for a high-level nuclear waste repository in salt, vertical emplacement mode: Volume 1

    SciTech Connect (OSTI)

    Not Available

    1987-12-01T23:59:59.000Z

    This Conceptual Design Report describes the conceptual design of a high-level nuclear waste repository in salt at a proposed site in Deaf Smith County, Texas. Waste receipt, processing, packing, and other surface facility operations are described. Operations in the shafts underground are described, including waste hoisting, transfer, and vertical emplacement. This report specifically addresses the vertical emplacement mode, the reference design for the repository. Waste retrieval capability is described. The report includes a description of the layout of the surface, shafts, and underground. Major equipment items are identified. The report includes plans for decommissioning and sealing of the facility. The report discusses how the repository will satisfy performance objectives. Chapters are included on basis for design, design analyses, and data requirements for completion of future design efforts. 105 figs., 52 tabs.

  19. Hazard Ranking System evaluation of CERCLA (Comprehensive Environmental Response, Compensation, and Liability Act) inactive waste sites at Hanford: Volume 1, Evaluation methods and results

    SciTech Connect (OSTI)

    Stenner, R.D.; Cramer, K.H.; Higley, K.A.; Jette, S.J.; Lamar, D.A.; McLaughlin, T.J.; Sherwood, D.R.; Van Houten, N.C.

    1988-10-01T23:59:59.000Z

    The purpose of this report is to formally document the individual site Hazard Ranking System (HRS) evaluations conducted as part of the preliminary assessment/site inspection (PA/SI) activities at the US Department of Energy (DOE) Hanford Site. These activities were carried out pursuant to the DOE orders that describe the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Program addressing the cleanup of inactive waste sites. These orders incorporate the US Environmental Protection Agency methodology, which is based on the Superfund Amendments and Reauthorization Act of 1986 (SARA). The methodology includes six parts: PA/SI, remedial investigation/feasibility study, record of decision, design and implementation of remedial action, operation and monitoring, and verification monitoring. Volume 1 of this report discusses the CERCLA inactive waste-site evaluation process, assumptions, and results of the HRS methodology employed. Volume 2 presents the data on the individual CERCLA engineered-facility sites at Hanford, as contained in the Hanford Inactive Site Surveillance (HISS) Data Base. Volume 3 presents the data on the individual CERCLA unplanned-release sites at Hanford, as contained in the HISS Data Base. 34 refs., 43 figs., 47 tabs.

  20. DOE/WIPP-10-2225 Waste Isolation Pilot Plant Annual Site Environmental

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePARTOffice ofHale Plan24,7,INL42

  1. Los Alamos Lab Completes Excavation of Waste Disposal Site Used in the 1940s

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions forCheney suggesting a bill entitledIncreaseSites |Lorrenda

  2. Corrective Action Investigation Plan for Corrective Action Unit 562: Waste Systems Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Alfred Wickline

    2009-04-01T23:59:59.000Z

    Corrective Action Unit 562 is located in Areas 2, 23, and 25 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 562 is comprised of the 13 corrective action sites (CASs) listed below: • 02-26-11, Lead Shot • 02-44-02, Paint Spills and French Drain • 02-59-01, Septic System • 02-60-01, Concrete Drain • 02-60-02, French Drain • 02-60-03, Steam Cleaning Drain • 02-60-04, French Drain • 02-60-05, French Drain • 02-60-06, French Drain • 02-60-07, French Drain • 23-60-01, Mud Trap Drain and Outfall • 23-99-06, Grease Trap • 25-60-04, Building 3123 Outfalls These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on December 11, 2008, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 562. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. The scope of the corrective action investigation for CAU 562 includes the following activities: • Move surface debris and/or materials, as needed, to facilitate sampling. • Conduct radiological surveys. • Perform field screening. • Collect and submit environmental samples for laboratory analysis to determine the nature and extent of any contamination released by each CAS. • Collect samples of source material to determine the potential for a release. • Collect samples of potential remediation wastes. • Collect quality control samples. This Corrective Action Investigation Plan has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; DOE, Environmental Management; U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996; as amended February 2008). Under the Federal Facility Agreement and Consent Order, this Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection for approval. Fieldwork will be conducted following approval of the plan.

  3. 2009 Annual Summary Report for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site, Nye County, Nevada: Review of the Performance Assessments and Composite Analysis

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2010-03-15T23:59:59.000Z

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office performed an annual review of the Area 3 and Area 5 Radioactive Wate Management Site (RWMS) Performance Assessments (PAs) and Composite Analyses (CAs) in fiscal year (FY) 2009. This annual summary report presents data and conclusions from the FY 2009 review, and determines the adequacy of the PAs and CAs. Operational factors (e.g., waste forms and containers, facility design, and waste receipts), closure plans, monitoring results, and research and development (R&D) activities were reviewed to determine the adequacy of the PAs. Likewise, the environmental restoration activities at the Nevada Test Site relevant to the sources of residual radioactive material that are considered in the CAs, the land-use planning, and the results of the environmental monitoring and R&D activities were reviewed to determine the adequacy of the CAs.

  4. THE IMPACT OF OZONE ON THE LOWER FLAMMABLE LIMIT OF HYDROGEN IN VESSELS CONTAINING SAVANNAH RIVER SITE HIGH LEVEL WASTE

    SciTech Connect (OSTI)

    Sherburne, Carol [Savannah River Site (SRS), Aiken, SC (United States). Savannah River Remediation, LLC; Osterberg, Paul [Fauske and Associates, LLC, Burr Ridge, IL (United States); Johnson, Tom [Fauske and Associates, LLC, Burr Ridge, IL (United States); Frawely, Thomas [Fauske and Associates, LLC, Burr Ridge, IL (United States)

    2013-01-23T23:59:59.000Z

    The Savannah River Site, in conjunction with AREVA Federal services, has designed a process to treat dissolved radioactive waste solids with ozone. It is known that in this radioactive waste process, radionuclides radiolytically break down water into gaseous hydrogen and oxygen, which presents a well defined flammability hazard. Flammability limits have been established for both ozone and hydrogen separately; however, there is little information on mixtures of hydrogen and ozone. Therefore, testing was designed to provide critical flammability information necessary to support safety related considerations for the development of ozone treatment and potential scale-up to the commercial level. Since information was lacking on flammability issues at low levels of hydrogen and ozone, a testing program was developed to focus on filling this portion of the information gap. A 2-L vessel was used to conduct flammability tests at atmospheric pressure and temperature using a fuse wire ignition source at 1 percent ozone intervals spanning from no ozone to the Lower Flammable Limit (LFL) of ozone in the vessel, determined as 8.4%(v/v) ozone. An ozone generator and ozone detector were used to generate and measure the ozone concentration within the vessel in situ, since ozone decomposes rapidly on standing. The lower flammability limit of hydrogen in an ozone-oxygen mixture was found to decrease from the LFL of hydrogen in air, determined as 4.2 % (v/v) in this vessel. From the results of this testing, Savannah River was able to develop safety procedures and operating parameters to effectively minimize the formation of a flammable atmosphere.

  5. RADIONUCLIDE DATA PACKAGE FOR PERFORMANCE ASSESSMENT CALCULATIONS RELATED TO THE E-AREA LOW-LEVEL WASTE FACILITY AT THE SAVANNAH RIVER SITE.

    SciTech Connect (OSTI)

    Cook, J

    2007-03-20T23:59:59.000Z

    The Savannah River Site disposes of low-level radioactive waste within on-site engineered disposal facilities. The Savannah River Site must demonstrate that these disposals meet the requirements of DOE Order 435 . 1 through a process known as performance assessment (PA). The objective of this document is to provide the radionuclide -specific data needed for the PA calculations . This work is part of an on-going program to periodically review and update existing PA work as new data becomes available. Revision of the E -Area Low-Level Waste Facility PA is currently underway. The number of radionuclides selected to undergo detailed analysis in the PA is determined by a screening process. The basis of this process is described. Radionuclide-specific data for half-lives, decay modes, daughters, dose conversion factors and groundwater concentration limits are presented with source references and methodologies.

  6. Corrective Action Investigation Plan for Corrective Action Unit 511: Waste Dumps (Piles & Debris), Nevada Test Site, Nevada, Rev. No.: 0 with ROTC 1

    SciTech Connect (OSTI)

    David A. Strand

    2004-08-01T23:59:59.000Z

    This Corrective Action Investigation Plan for Corrective Action Unit 511: Waste Dumps (Piles & Debris), Nevada Test Site, Nevada, has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada, U.S. Department of Energy, and the U.S. Department of Defense. The general purpose of the investigation is to ensure adequate data are collected to provide sufficient and reliable information to identify, evaluate, and select viable corrective actions. This Corrective Action Investigation Plan provides investigative details for CAU 511, whereas programmatic aspects of this project are discussed in the ''Project Management Plan'' (DOE/NV, 1994). General field and laboratory quality assurance and quality control issues are presented in the ''Industrial Sites Quality Assurance Project Plan'' (NNSA/NV, 2002). Health and safety aspects of the project are documented in the current version of the Environmental Engineering Services Contractor's Health and Safety Plan and will be supplemented with a site-specific safety basis document. Corrective Action Unit 511 is comprised of the following nine corrective action sites in Nevada Test Site Areas 3, 4, 6, 7, 18, and 19: (1) 03-08-02, Waste Dump (Piles & Debris); (2) 03-99-11, Waste Dump (Piles); (3) 03-99-12, Waste Dump (Piles & Debris); (4) 04-99-04, Contaminated Trench/Berm; (5) 06-16-01, Waste Dump (Piles & Debris); (6) 06-17-02, Scattered Ordnance/Automatic Weapons Range; (7) 07-08-01, Contaminated Mound; (8) 18-99-10, Ammunition Dump; and (9) 19-19-03, Waste Dump (Piles & Debris). Corrective Action Sites 18-99-10 and 19-19-03 were identified after a review of the ''1992 RCRA Part B Permit Application for Waste Management Activities at the Nevada Test Site, Volume IV, Section L Potential Solid Waste Management Unit'' (DOE/NV, 1992). The remaining seven sites were first identified in the 1991 Reynolds Electrical & Engineering Co., Inc. document entitled, ''Nevada Test Site Inventory of Inactive and Abandoned Facilities and Waste Sites''. The seven-step data quality objectives (DQO) proces