Powered by Deep Web Technologies
Note: This page contains sample records for the topic "waste processing program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Progress of the High Level Waste Program at the Defense Waste Processing Facility - 13178  

SciTech Connect (OSTI)

The Defense Waste Processing Facility at the Savannah River Site treats and immobilizes High Level Waste into a durable borosilicate glass for safe, permanent storage. The High Level Waste program significantly reduces environmental risks associated with the storage of radioactive waste from legacy efforts to separate fissionable nuclear material from irradiated targets and fuels. In an effort to support the disposition of radioactive waste and accelerate tank closure at the Savannah River Site, the Defense Waste Processing Facility recently implemented facility and flowsheet modifications to improve production by 25%. These improvements, while low in cost, translated to record facility production in fiscal years 2011 and 2012. In addition, significant progress has been accomplished on longer term projects aimed at simplifying and expanding the flexibility of the existing flowsheet in order to accommodate future processing needs and goals. (authors)

Bricker, Jonathan M.; Fellinger, Terri L.; Staub, Aaron V.; Ray, Jeff W.; Iaukea, John F. [Savannah River Remediation, Aiken, South Carolina, 29808 (United States)] [Savannah River Remediation, Aiken, South Carolina, 29808 (United States)

2013-07-01T23:59:59.000Z

2

Materials evaluation programs at the Defense Waste Processing Facility  

SciTech Connect (OSTI)

The Savannah River Site (SRS) has been operating a nuclear fuel cycle since the 1950s to produce nuclear materials in support of the national defense effort. About 83 million gallons of high-level waste produced since operations began has been consolidated by evaporation into 33 million gallons at the waste tank farm. The Department of Energy authorized the construction of the Defense Waste Processing Facility (DWPF), the function of which is to immobilize the waste as a durable borosilicate glass contained in stainless steel canisters prior to the placement of the canisters in a federal repository. The DWPF is now mechanically complete and is undergoing commissioning and run-in activities. A brief description of the DWPF process is provided.

Gee, J.T.; Iverson, D.C.; Bickford, D.F.

1992-01-01T23:59:59.000Z

3

Materials evaluation programs at the Defense Waste Processing Facility  

SciTech Connect (OSTI)

The Savannah River Site (SRS) has been operating a nuclear fuel cycle since the 1950s to produce nuclear materials in support of the national defense effort. About 83 million gallons of high-level waste produced since operations began has been consolidated by evaporation into 33 million gallons at the waste tank farm. The Department of Energy authorized the construction of the Defense Waste Processing Facility (DWPF), the function of which is to immobilize the waste as a durable borosilicate glass contained in stainless steel canisters prior to the placement of the canisters in a federal repository. The DWPF is now mechanically complete and is undergoing commissioning and run-in activities. A brief description of the DWPF process is provided.

Gee, J.T.; Iverson, D.C.; Bickford, D.F.

1992-12-31T23:59:59.000Z

4

Defense Waste Processing Facility (DWPF), Modular CSSX Unit (CSSX), and Waste Transfer Line System of Salt Processing Program (U)  

SciTech Connect (OSTI)

All of the waste streams from ARP, MCU, and SWPF processes will be sent to DWPF for vitrification. The impact these new waste streams will have on DWPF's ability to meet its canister production goal and its ability to support the Salt Processing Program (ARP, MCU, and SWPF) throughput needed to be evaluated. DWPF Engineering and Operations requested OBU Systems Engineering to evaluate DWPF operations and determine how the process could be optimized. The ultimate goal will be to evaluate all of the Liquid Radioactive Waste (LRW) System by developing process modules to cover all facilities/projects which are relevant to the LRW Program and to link the modules together to: (1) study the interfaces issues, (2) identify bottlenecks, and (3) determine the most cost effective way to eliminate them. The results from the evaluation can be used to assist DWPF in identifying improvement opportunities, to assist CBU in LRW strategic planning/tank space management, and to determine the project completion date for the Salt Processing Program.

CHANG, ROBERT

2006-02-02T23:59:59.000Z

5

Summary of LLNL`s accomplishments for the FY93 Waste Processing Operations Program  

SciTech Connect (OSTI)

Under the US Department of Energy`s (DOE`s) Office of Technology Development (OTD)-Robotic Technology Development Program (RTDP), the Waste Processing Operations (WPO) Program was initiated in FY92 to address the development of automated material handling and automated chemical and physical processing systems for mixed wastes. The Program`s mission was to develop a strategy for the treatment of all DOE mixed, low-level, and transuranic wastes. As part of this mission, DOE`s Mixed Waste Integrated Program (MWIP) was charged with the development of innovative waste treatment technologies to surmount shortcomings of existing baseline systems. Current technology advancements and applications results from cooperation of private industry, educational institutions, and several national laboratories operated for DOE. This summary document presents the LLNL Environmental Restoration and Waste Management (ER and WM) Automation and Robotics Section`s contributions in support of DOE`s FY93 WPO Program. This document further describes the technological developments that were integrated in the 1993 Mixed Waste Operations (MWO) Demonstration held at SRTC in November 1993.

Grasz, E.; Domning, E.; Heggins, D.; Huber, L.; Hurd, R.; Martz, H.; Roberson, P.; Wilhelmsen, K.

1994-04-01T23:59:59.000Z

6

Nuclear Safety R&D in the Waste Processing Technology Development & Deployment Program  

Broader source: Energy.gov (indexed) [DOE]

R&D in the Waste Processing R&D in the Waste Processing Technology Development & Deployment Program Presentation to the DOE High Level Waste Corporate Board July 29, 2009 Al Baione Office of Waste Processing DOE-EM Office of Engineering & Technology 2 Outline Nuclear Safety Research & Development Overview Summary of EM- NSR&D Presentations from February 2009 Evaluating Performance of Nuclear Grade HEPA Filters under Fire/Smoke Challenge Conditions Structural Integrity Initiative for HLW Tanks Pipeline Plugging and Prevention Advanced Mixing Models Basic Science Opportunities in HLW Storage and Processing Safety Cementitious Barriers Partnership 3 Nuclear Safety Research & Development Overview DNFSB 2004-1 identified need for renewed DOE attention to nuclear safety R&D

7

SRS - Programs - Waste Solidification  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Waste Solidification Waste Solidification The two primary facilities operated within the Waste Solidification program are Saltstone and the Defense Waste Processing Facility (DWPF). Each DWPF canister is 10 feet tall and 2 feet in diameter, and typically takes a little over a day to fill. Each DWPF canister is 10 feet tall and 2 feet in diameter, and typically takes a little over a day to fill. The largest radioactive waste glassification plant in the world, DWPF converts the high-level liquid nuclear waste currently stored at the Savannah River Site (SRS) into a solid glass form suitable for long-term storage and disposal. Scientists have long considered this glassification process, called "vitrification," as the preferred option for immobilizing high-level radioactive liquids into a more stable, manageable form until a federal

8

Technology development program for Idaho Chemical Processing Plant spent fuel and waste management  

SciTech Connect (OSTI)

Acidic high-level radioactive waste (HLW) resulting from fuel reprocessing at the Idaho Chemical Processing Plant (ICPP) for the U.S. Department of Energy (DOE) has been solidified to a calcine since 1963 and stored in stainless steel bins enclosed by concrete vaults. Several different types of unprocessed irradiated DOE-owned fuels are also in storage at the ICPP. In April, 1992, DOE announced that spent fuel would no longer be reprocessed to recover enriched uranium and called for a shutdown of the reprocessing facilities at the ICPP. A new Spent Fuel and HLW Technology Development program was subsequently initiated to develop technologies for immobilizing ICPP spent fuels and HLW for disposal, in accordance with the Nuclear Waste Policy Act. The Program elements include Systems Analysis, Graphite Fuel Disposal, Other Spent Fuel Disposal, Sodium-Bearing Liquid Waste Processing, Calcine Immobilization, and Metal Recycle/Waste Minimization. This paper presents an overview of the ICPP radioactive wastes and current spent fuels, and describes the Spent Fuel and HLW Technology program in more detail.

Ermold, L.F.; Knecht, D.A.; Hogg, G.W.; Olson, A.L.

1993-08-01T23:59:59.000Z

9

Voluntary Protection Program Onsite Review, Transuranic Waste...  

Energy Savers [EERE]

Transuranic Waste Processing Center - September 2012 Voluntary Protection Program Onsite Review, Transuranic Waste Processing Center - September 2012 September 2012 Evaluation to...

10

Waste Processing | Department of Energy  

Office of Environmental Management (EM)

Processing Waste Processing Workers process and repackage waste at the Transuranic Waste Processing Centers Cask Processing Enclosure. Workers process and repackage waste at...

11

Waste reduction assistance program (WRAP) on-site consultation audit report: Seafood processing plant  

SciTech Connect (OSTI)

The waste audit study was conducted at a seafood processing plant in Alaska. The report discusses process descriptions, waste types and quantities, current waste and materials management practices, and waste reduction alternatives. The company's current practices include use of fish waste, burning of used oil and solvents, and water conservation. Additional opportunities include microfiltration of solvents and oils, recycling of used batteries, inventory control and formation of a waste reduction team. Appendices include a summary of state regulations, a fact sheet on used oil, and a list of vendors and services.

Not Available

1989-07-29T23:59:59.000Z

12

Voluntary Protection Program Onsite Review, Transuranic Waste Processing Center- September 2012  

Broader source: Energy.gov [DOE]

Evaluation to determine whether Transuranic Waste Processing Center is continuing to perform at a level deserving DOE-VPP Star recognition.

13

Voluntary Protection Program Onsite Review, Salt Waste Processing Facility Construction Project- February 2013  

Broader source: Energy.gov [DOE]

Evaluation to determine whether Salt Waste Processing Facility Construction Project is continuing to perform at a level deserving DOE-VPP Star recognition.

14

SRS - Programs - Liquid Waste Disposition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Liquid Waste Disposition Liquid Waste Disposition This includes both the solidification of highly radioactive liquid wastes stored in SRS's tank farms and disposal of liquid low-level waste generated as a by-product of the separations process and tank farm operations. This low-level waste is treated in the Effluent Treatment Facility. High-activity liquid waste is generated at SRS as by-products from the processing of nuclear materials for national defense, research and medical programs. The waste, totaling about 36 million gallons, is currently stored in 49 underground carbon-steel waste tanks grouped into two "tank farms" at SRS. While the waste is stored in the tanks, it separates into two parts: a sludge that settles on the bottom of the tank, and a liquid supernate that resides on top of the sludge. The waste is reduced to about 30 percent of its original volume by evaporation. The condensed evaporator "overheads" are transferred to the Effluent Treatment Project for final cleanup prior to release to the environment. As the concentrate cools a portion of it crystallizes forming solid saltcake. The concentrated supernate and saltcake are less mobile and therefore less likely to escape to the environment in the event of a tank crack or leak.

15

Citrus Waste Biomass Program  

SciTech Connect (OSTI)

Renewable Spirits is developing an innovative pilot plant bio-refinery to establish the commercial viability of ehtanol production utilizing a processing waste from citrus juice production. A novel process based on enzymatic hydrolysis of citrus processing waste and fermentation of resulting sugars to ethanol by yeasts was successfully developed in collaboration with a CRADA partner, USDA/ARS Citrus and Subtropical Products Laboratory. The process was also successfully scaled up from laboratory scale to 10,000 gal fermentor level.

Karel Grohman; Scott Stevenson

2007-01-30T23:59:59.000Z

16

Salt Waste Processing Initiatives  

Broader source: Energy.gov (indexed) [DOE]

Patricia Suggs Patricia Suggs Salt Processing Team Lead Assistant Manager for Waste Disposition Project Office of Environmental Management Savannah River Site Salt Waste Processing Initiatives 2 Overview * Current SRS Liquid Waste System status * Opportunity to accelerate salt processing - transformational technologies - Rotary Microfiltration (RMF) and Small Column Ion Exchange (SCIX) - Actinide Removal Process/Modular Caustic Side Solvent Extraction (ARP/MCU) extension with next generation extractant - Salt Waste Processing Facility (SWPF) performance enhancement - Saltstone enhancements * Life-cycle impacts and benefits 3 SRS Liquid Waste Total Volume >37 Million Gallons (Mgal) Total Curies 183 MCi (51% ) 175 MCi (49% ) >358 Million Curies (MCi) Sludge 34.3 Mgal (92% ) 3.0 Mgal (8%)

17

Waste Management Program. Technical progress report, Aporil-June 1983  

SciTech Connect (OSTI)

This quarterly report provides current information on operations and development programs for the management of radioactive wastes from operation of the Savannah River Plant. The studies on environmental and safety assessments, process and equipment development, TRU waste, and low-level waste are a part of the Long-Term Waste Management Technology Program. The following studies are reported for the SR Interim Waste Operations Program: surveillance and maintenance, waste concentration, low-level effluent waste, tank replacement/waste transfer, and solid waste storage and related activities.

None

1984-02-01T23:59:59.000Z

18

Waste Processing Annual Technology Development Report 2007 |...  

Office of Environmental Management (EM)

Waste Processing Annual Technology Development Report 2007 Waste Processing Annual Technology Development Report 2007 Waste Processing Annual Technology Development Report 2007...

19

Mixed Waste Focus Area program management plan  

SciTech Connect (OSTI)

This plan describes the program management principles and functions to be implemented in the Mixed Waste Focus Area (MWFA). The mission of the MWFA is to provide acceptable technologies that enable implementation of mixed waste treatment systems developed in partnership with end-users, stakeholders, tribal governments and regulators. The MWFA will develop, demonstrate and deliver implementable technologies for treatment of mixed waste within the DOE Complex. Treatment refers to all post waste-generation activities including sampling and analysis, characterization, storage, processing, packaging, transportation and disposal.

Beitel, G.A.

1996-10-01T23:59:59.000Z

20

Hydrothermal Processing of Wet Wastes  

Broader source: Energy.gov [DOE]

Breakout Session 3AConversion Technologies III: Energy from Our WasteWill we Be Rich in Fuel or Knee Deep in Trash by 2025? Hydrothermal Processing of Wet Wastes James R. Oyler, President, Genifuel Corporation

Note: This page contains sample records for the topic "waste processing program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Radioactive waste processing apparatus  

DOE Patents [OSTI]

Apparatus for use in processing radioactive waste materials for shipment and storage in solid form in a container is disclosed. The container includes a top, and an opening in the top which is smaller than the outer circumference of the container. The apparatus includes an enclosure into which the container is placed, solution feed apparatus for adding a solution containing radioactive waste materials into the container through the container opening, and at least one rotatable blade for blending the solution with a fixing agent such as cement or the like as the solution is added into the container. The blade is constructed so that it can pass through the opening in the top of the container. The rotational axis of the blade is displaced from the center of the blade so that after the blade passes through the opening, the blade and container can be adjusted so that one edge of the blade is adjacent the cylindrical wall of the container, to insure thorough mixing. When the blade is inside the container, a substantially sealed chamber is formed to contain vapors created by the chemical action of the waste solution and fixant, and vapors emanating through the opening in the container. The chamber may be formed by placing a removable extension over the top of the container. The extension communicates with the apparatus so that such vapors are contained within the container, extension and solution feed apparatus. A portion of the chamber includes coolant which condenses the vapors. The resulting condensate is returned to the container by the force of gravity.

Nelson, R.E.; Ziegler, A.A.; Serino, D.F.; Basnar, P.J.

1985-08-30T23:59:59.000Z

22

Process for preparing liquid wastes  

DOE Patents [OSTI]

A process for preparing radioactive and other hazardous liquid wastes for treatment by the method of vitrification or melting is provided for.

Oden, Laurance L. (Albany, OR); Turner, Paul C. (Albany, OR); O'Connor, William K. (Lebanon, OR); Hansen, Jeffrey S. (Corvallis, OR)

1997-01-01T23:59:59.000Z

23

Tank Waste Disposal Program redefinition  

SciTech Connect (OSTI)

The record of decision (ROD) (DOE 1988) on the Final Environmental Impact Statement, Hanford Defense High-Level, Transuranic and Tank Wastes, Hanford Site, Richland Washington identifies the method for disposal of double-shell tank waste and cesium and strontium capsules at the Hanford Site. The ROD also identifies the need for additional evaluations before a final decision is made on the disposal of single-shell tank waste. This document presents the results of systematic evaluation of the present technical circumstances, alternatives, and regulatory requirements in light of the values of the leaders and constitutents of the program. It recommends a three-phased approach for disposing of tank wastes. This approach allows mature technologies to be applied to the treatment of well-understood waste forms in the near term, while providing time for the development and deployment of successively more advanced pretreatment technologies. The advanced technologies will accelerate disposal by reducing the volume of waste to be vitrified. This document also recommends integration of the double-and single-shell tank waste disposal programs, provides a target schedule for implementation of the selected approach, and describes the essential elements of a program to be baselined in 1992.

Grygiel, M.L.; Augustine, C.A.; Cahill, M.A.; Garfield, J.S.; Johnson, M.E.; Kupfer, M.J.; Meyer, G.A.; Roecker, J.H. [Westinghouse Hanford Co., Richland, WA (United States); Holton, L.K.; Hunter, V.L.; Triplett, M.B. [Pacific Northwest Lab., Richland, WA (United States)

1991-10-01T23:59:59.000Z

24

Independent Oversight Review of the Fire Protection Program and Fire Protection Systems at the Transuranic Waste Processing Center, December 2013  

Broader source: Energy.gov (indexed) [DOE]

and Fire Protection Systems and Fire Protection Systems at the Transuranic Waste Processing Center December 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U. S. Department of Energy Table of Contents 1.0 Purpose.................................................................................................................................................... 1 2.0 Background ............................................................................................................................................. 1 3.0 Scope....................................................................................................................................................... 2 4.0 Methodology .......................................................................................................................................... 2

25

Independent Oversight Review, Oak Ridge Transuranic Waste Processing...  

Broader source: Energy.gov (indexed) [DOE]

Facility - December 2013 Independent Oversight Review, Oak Ridge Transuranic Waste Processing Facility - December 2013 December 2013 Review of the Fire Protection Program and Fire...

26

Automotive Waste Heat Conversion to Power Program  

Broader source: Energy.gov (indexed) [DOE]

or otherwise restricted information Project ID ace47lagrandeur Automotive Waste Heat Conversion to Power Program- 2009 Hydrogen Program and Vehicle Technologies Program...

27

Automotive Waste Heat Conversion to Power Program  

Broader source: Energy.gov (indexed) [DOE]

Start Date: Oct '04 Program End date: Oct '10 Percent Complete: 80% 2 Automotive Waste Heat Conversion to Power Program- Vehicle Technologies Program Annual Merit Review- June...

28

New Facility Saves $20 Million, Accelerates Waste Processing | Department  

Broader source: Energy.gov (indexed) [DOE]

Facility Saves $20 Million, Accelerates Waste Processing Facility Saves $20 Million, Accelerates Waste Processing New Facility Saves $20 Million, Accelerates Waste Processing August 15, 2012 - 12:00pm Addthis The new Cask Processing Enclosure (CPE) facility is located at the Transuranic Waste Processing Center (TWPC). The Transuranic Waste Processing Center (TWPC) processes, repackages, and ships the site's legacy TRU waste offsite. OAK RIDGE, Tenn. - Oak Ridge's EM program recently began operations at a newly constructed facility that will accelerate the completion of remote-handled transuranic (TRU) waste processing at the site by two years and save taxpayers more than $20 million. The new Cask Processing Enclosure (CPE) facility is located at the Transuranic Waste Processing Center (TWPC). TWPC processes, repackages, and

29

Sandia National Laboratories: Defense Waste Management Programs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Programs provides scientific analyses and programmatic advice to the U.S. Department of Energy in support of defense waste management challenges. Defense waste encompasses...

30

Tank Waste and Waste Processing | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Tank Waste and Waste Processing Tank Waste and Waste Processing Tank Waste and Waste Processing Tank Waste and Waste Processing The Defense Waste Processing Facility set a record by producing 267 canisters filled with glassified waste in a year. New bubbler technology and other enhancements will increase canister production in the future. The Defense Waste Processing Facility set a record by producing 267 canisters filled with glassified waste in a year. New bubbler technology and other enhancements will increase canister production in the future. A Savannah River Remediation employee uses a manipulator located inside a shielded enclosure at the Defense Waste Processing Facility where the melter is pouring molten glass inside a canister. A Savannah River Remediation employee uses a manipulator located inside a

31

LLNL Waste Minimization Program Plan  

SciTech Connect (OSTI)

This document is the February 14, 1990 version of the LLNL Waste Minimization Program Plan (WMPP). The Waste Minimization Policy field has undergone continuous changes since its formal inception in the 1984 HSWA legislation. The first LLNL WMPP, Revision A, is dated March 1985. A series of informal revision were made on approximately a semi-annual basis. This Revision 2 is the third formal issuance of the WMPP document. EPA has issued a proposed new policy statement on source reduction and recycling. This policy reflects a preventative strategy to reduce or eliminate the generation of environmentally-harmful pollutants which may be released to the air, land surface, water, or ground water. In accordance with this new policy new guidance to hazardous waste generators on the elements of a Waste Minimization Program was issued. In response to these policies, DOE has revised and issued implementation guidance for DOE Order 5400.1, Waste Minimization Plan and Waste Reduction reporting of DOE Hazardous, Radioactive, and Radioactive Mixed Wastes, final draft January 1990. This WMPP is formatted to meet the current DOE guidance outlines. The current WMPP will be revised to reflect all of these proposed changes when guidelines are established. Updates, changes and revisions to the overall LLNL WMPP will be made as appropriate to reflect ever-changing regulatory requirements. 3 figs., 4 tabs.

Not Available

1990-02-14T23:59:59.000Z

32

Efficient separations & processing crosscutting program  

SciTech Connect (OSTI)

The Efficient Separations and Processing Crosscutting Program (ESP) was created in 1991 to identify, develop, and perfect chemical and physical separations technologies and chemical processes which treat wastes and address environmental problems throughout the DOE complex. The ESP funds several multiyear tasks that address high-priority waste remediation problems involving high-level, low-level, transuranic, hazardous, and mixed (radioactive and hazardous) wastes. The ESP supports applied research and development (R & D) leading to the demonstration or use of these separations technologies by other organizations within the Department of Energy (DOE), Office of Environmental Management.

NONE

1996-08-01T23:59:59.000Z

33

Process Waste Assessment, Mechanics Shop  

SciTech Connect (OSTI)

This Process Waste Assessment was conducted to evaluate hazardous wastes generated in the Mechanics Shop. The Mechanics Shop maintains and repairs motorized vehicles and equipment on the SNL/California site, to include motorized carts, backhoes, street sweepers, trash truck, portable emergency generators, trencher, portable crane, and man lifts. The major hazardous waste streams routinely generated by the Mechanics Shop are used oil, spent off filters, oily rags, and spent batteries. The used off and spent off filters make up a significant portion of the overall hazardous waste stream. Waste oil and spent batteries are sent off-site for recycling. The rags and spent on filters are not recycled. They are disposed of as hazardous waste. Mechanics Shop personnel continuously look for opportunities to minimize hazardous wastes.

Phillips, N.M.

1993-05-01T23:59:59.000Z

34

ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2009  

SciTech Connect (OSTI)

Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2009 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2009 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per LWO-LWE-2008-00423, HLW Tank Farm Inspection Plan for 2009, were completed. All Ultrasonic measurements (UT) performed in 2009 met the requirements of C-ESG-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 1, and WSRC-TR-2002-00061, Rev.4. UT inspections were performed on Tank 29 and the findings are documented in SRNL-STI-2009-00559, Tank Inspection NDE Results for Fiscal Year 2009, Waste Tank 29. Post chemical cleaning UT measurements were made in Tank 6 and the results are documented in SRNL-STI-2009-00560, Tank Inspection NDE Results Tank 6, Including Summary of Waste Removal Support Activities in Tanks 5 and 6. A total of 6669 photographs were made and 1276 visual and video inspections were performed during 2009. Twenty-Two new leaksites were identified in 2009. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.4. Fifteen leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. Five leaksites at Tank 6 were documented during tank wall/annulus cleaning activities. Two new leaksites were identified at Tank 19 during waste removal activities. Previously documented leaksites were reactivated at Tanks 5 and 12 during waste removal activities. Also, a very small amount of additional leakage from a previously identified leaksite at Tank 14 was observed.

West, B.; Waltz, R.

2010-06-21T23:59:59.000Z

35

TRU waste-sampling program  

SciTech Connect (OSTI)

As part of a TRU waste-sampling program, Los Alamos National Laboratory retrieved and examined 44 drums of /sup 238/Pu- and /sup 239/Pu-contaminated waste. The drums ranged in age from 8 months to 9 years. The majority of drums were tested for pressure, and gas samples withdrawn from the drums were analyzed by a mass spectrometer. Real-time radiography and visual examination were used to determine both void volumes and waste content. Drum walls were measured for deterioration, and selected drum contents were reassayed for comparison with original assays and WIPP criteria. Each drum tested at atmospheric pressure. Mass spectrometry revealed no problem with /sup 239/Pu-contaminated waste, but three 8-month-old drums of /sup 238/Pu-contaminated waste contained a potentially hazardous gas mixture. Void volumes fell within the 81 to 97% range. Measurements of drum walls showed no significant corrosion or deterioration. All reassayed contents were within WIPP waste acceptance criteria. Five of the drums opened and examined (15%) could not be certified as packaged. Three contained free liquids, one had corrosive materials, and one had too much unstabilized particulate. Eleven drums had the wrong (or not the most appropriate) waste code. In many cases, disposal volumes had been inefficiently used. 2 refs., 23 figs., 7 tabs.

Warren, J.L.; Zerwekh, A.

1985-08-01T23:59:59.000Z

36

Method for processing aqueous wastes  

DOE Patents [OSTI]

A method for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply.

Pickett, John B. (3922 Wood Valley Dr., Aiken, SC 29803); Martin, Hollis L. (Rt. 1, Box 188KB, McCormick, SC 29835); Langton, Christine A. (455 Sumter St. SE., Aiken, SC 29801); Harley, Willie W. (110 Fairchild St., Batesburg, SC 29006)

1993-01-01T23:59:59.000Z

37

Oak Ridge National Laboratory TRU Waste Processing Center Tank Waste Processing Supernate Processing System  

Broader source: Energy.gov (indexed) [DOE]

TRU Waste Processing Center TRU Waste Processing Center ORNL TRU Waste Processing Center Tank Waste Processing Supernate (SN) Processing System Presented by Don F. Gagel Vice President and Chief Technology Officer EnergX LLC ORNL TRU Waste Processing Center 1/21/09 2 SRS Technology Transfer, ORNL SN Process Overview SN Process Facility ORNL TRU Waste Processing Center 3 Waste Concentration Using Evaporator Evaporator Concentrates Waste Vapor stream superheated and HEPA-filtered Vapor stream exhausted to main ventilation system Supernate Pump and Evaporator Discharge Pump circulate waste between selected tank and evaporator during concentration. Evaporator Discharge Pump Supernate Pump Supernate Tank Evaporator Exhaust Blower ORNL TRU Waste Processing Center 4 Tank Sampling/ Transfer To Dryer Tank

38

Systems engineering programs for geologic nuclear waste disposal  

SciTech Connect (OSTI)

The design sequence and system programs presented begin with general approximate solutions that permit inexpensive analysis of a multitude of possible wastes, disposal media, and disposal process properties and configurations. It then continues through progressively more precise solutions as parts of the design become fixed, and ends with repository and waste form optimization studies. The programs cover both solid and gaseous waste forms. The analytical development, a program listing, a users guide, and examples are presented for each program. Sensitivity studies showing the effects of disposal media and waste form thermophysical properties and repository layouts are presented as examples.

Klett, R. D.; Hertel, Jr., E. S.; Ellis, M. A.

1980-06-01T23:59:59.000Z

39

ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2010  

SciTech Connect (OSTI)

Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2010 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2010 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2009-00138, HLW Tank Farm Inspection Plan for 2010, were completed. Ultrasonic measurements (UT) performed in 2010 met the requirements of C-ESG-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 30, 31 and 32 and the findings are documented in SRNL-STI-2010-00533, Tank Inspection NDE Results for Fiscal Year 2010, Waste Tanks 30, 31 and 32. A total of 5824 photographs were made and 1087 visual and video inspections were performed during 2010. Ten new leaksites at Tank 5 were identified in 2010. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.5. Ten leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. None of these new leaksites resulted in a release to the environment. The leaksites were documented during wall cleaning activities and the waste nodules associated with the leaksites were washed away. Previously documented leaksites were reactivated at Tank 12 during waste removal activities.

West, B.; Waltz, R.

2011-06-23T23:59:59.000Z

40

Independent Oversight Assessment, Salt Waste Processing Facility...  

Broader source: Energy.gov (indexed) [DOE]

Salt Waste Processing Facility Project - January 2013 January 2013 Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project The U.S. Department of Energy...

Note: This page contains sample records for the topic "waste processing program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Solid Waste Program Website | Open Energy Information  

Open Energy Info (EERE)

Program Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Solid Waste Program Website Author Alaska Division of Environmental Health Published...

42

Emergency Management Program Review at the Waste Isolation Pilot Plant  

Broader source: Energy.gov (indexed) [DOE]

Waste Waste Isolation Pilot Plant Emergency Management Program Review at the May 2000 OVERSIGHT Table of Contents EXECUTIVE SUMMARY ................................................................... 1 1.0 INTRODUCTION ........................................................................... 4 2.0 RESULTS ......................................................................................... 6 Hazards Survey and Hazards Assessments .................................. 6 Program Plans, Procedures, and Responder Performance ........ 9 Training, Drills, and Exercises ..................................................... 13 Emergency Public Information and Offsite Response Interfaces ....................................................................................... 15 Feedback and Continuous Improvement Process

43

SRNL PHASE 1 ASSESSMENT OF THE WTP WASTE QUALIFICATION PROGRAM  

SciTech Connect (OSTI)

The Hanford Tank Waste Treatment and Immobilization Plant (WTP) Project is currently transitioning its emphasis from an engineering design and construction phase toward facility completion, start-up and commissioning. With this transition, the WTP Project has initiated more detailed assessments of the requirements that must be met during the actual processing of the Hanford Site tank waste. One particular area of interest is the waste qualification program. In general, the waste qualification program involves testing and analysis to demonstrate compliance with waste acceptance criteria, determine waste processability, and demonstrate laboratory-scale unit operations to support WTP operations. The testing and analysis are driven by data quality objectives (DQO) requirements necessary for meeting waste acceptance criteria for transfer of high-level wastes from the tank farms to the WTP, and for ensuring waste processability including proper glass formulations during processing within the WTP complex. Given the successful implementation of similar waste qualification efforts at the Savannah River Site (SRS) which were based on critical technical support and guidance from the Savannah River National Laboratory (SRNL), WTP requested subject matter experts (SMEs) from SRNL to support a technology exchange with respect to waste qualification programs in which a critical review of the WTP program could be initiated and lessons learned could be shared. The technology exchange was held on July 18-20, 2011 in Richland, Washington, and was the initial step in a multi-phased approach to support development and implementation of a successful waste qualification program at the WTP. The 3-day workshop was hosted by WTP with representatives from the Tank Operations Contractor (TOC) and SRNL in attendance as well as representatives from the US DOE Office of River Protection (ORP) and the Defense Nuclear Facility Safety Board (DNFSB) Site Representative office. The purpose of the workshop was to share lessons learned and provide a technology exchange to support development of a technically defensible waste qualification program. The objective of this report is to provide a review, from SRNL's perspective, of the WTP waste qualification program as presented during the workshop. In addition to SRNL's perspective on the general approach to the waste qualification program, more detailed insight into the specific unit operations presented by WTP during the workshop is provided. This report also provides a general overview of the SRS qualification program which serves as a basis for a comparison between the two programs. Recommendations regarding specific steps are made based on the review and SRNL's lessons learned from qualification of SRS low-activity waste (LAW) and high-level waste (HLW) to support maturation of the waste qualification program leading to WTP implementation.

Peeler, D.; Hansen, E.; Herman, C.; Marra, S.; Wilmarth, B.

2012-03-06T23:59:59.000Z

44

TRU Waste Sampling Program: Volume I. Waste characterization  

SciTech Connect (OSTI)

Volume I of the TRU Waste Sampling Program report presents the waste characterization information obtained from sampling and characterizing various aged transuranic waste retrieved from storage at the Idaho National Engineering Laboratory and the Los Alamos National Laboratory. The data contained in this report include the results of gas sampling and gas generation, radiographic examinations, waste visual examination results, and waste compliance with the Waste Isolation Pilot Plant-Waste Acceptance Criteria (WIPP-WAC). A separate report, Volume II, contains data from the gas generation studies.

Clements, T.L. Jr.; Kudera, D.E.

1985-09-01T23:59:59.000Z

45

Hanford Tank Waste Treatment and Immobilization Plant (WTP) Waste Feed Qualification Program Development Approach - 13114  

SciTech Connect (OSTI)

The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is a nuclear waste treatment facility being designed and constructed for the U.S. Department of Energy by Bechtel National, Inc. and subcontractor URS Corporation (under contract DE-AC27-01RV14136 [1]) to process and vitrify radioactive waste that is currently stored in underground tanks at the Hanford Site. A wide range of planning is in progress to prepare for safe start-up, commissioning, and operation. The waste feed qualification program is being developed to protect the WTP design, safety basis, and technical basis by assuring acceptance requirements can be met before the transfer of waste. The WTP Project has partnered with Savannah River National Laboratory to develop the waste feed qualification program. The results of waste feed qualification activities will be implemented using a batch processing methodology, and will establish an acceptable range of operator controllable parameters needed to treat the staged waste. Waste feed qualification program development is being implemented in three separate phases. Phase 1 required identification of analytical methods and gaps. This activity has been completed, and provides the foundation for a technically defensible approach for waste feed qualification. Phase 2 of the program development is in progress. The activities in this phase include the closure of analytical methodology gaps identified during Phase 1, design and fabrication of laboratory-scale test apparatus, and determination of the waste feed qualification sample volume. Phase 3 will demonstrate waste feed qualification testing in support of Cold Commissioning. (authors)

Markillie, Jeffrey R.; Arakali, Aruna V.; Benson, Peter A.; Halverson, Thomas G. [Hanford Tank Waste Treatment and Immobilization Plant Project, Richland, WA 99354 (United States)] [Hanford Tank Waste Treatment and Immobilization Plant Project, Richland, WA 99354 (United States); Adamson, Duane J.; Herman, Connie C.; Peeler, David K. [Savannah River National Laboratory, Aiken, SC 29808 (United States)] [Savannah River National Laboratory, Aiken, SC 29808 (United States)

2013-07-01T23:59:59.000Z

46

Chapter 38 Hazardous Waste Permitting Process (Kentucky) | Department of  

Broader source: Energy.gov (indexed) [DOE]

8 Hazardous Waste Permitting Process (Kentucky) 8 Hazardous Waste Permitting Process (Kentucky) Chapter 38 Hazardous Waste Permitting Process (Kentucky) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Schools State/Provincial Govt Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Kentucky Program Type Environmental Regulations Provider Department for Environmental Protection This administrative regulation establishes the general provisions for storage, treatment, recycling, or disposal of hazardous waste. It provides information about permits and specific requirements for containers, tanks,

47

Hazardous Waste Compliance Program Plan  

SciTech Connect (OSTI)

The Hazardous Waste Compliance Program Plan (HWCPP) describes how the Rocky Flats Plant institutes a more effective waste management program designed to achieve and maintain strict adherence to the Resource Conservation and Recovery Act (RCRA) requirements. Emphasis is given to improve integration of line operations with programmatic and functional support activities necessary to achieve physical compliance to RCRA regulated equipment, facilities and operations at the floor level. This program focuses on specific activities occurring or which need to occur within buildings containing RCRA regulated units and activities. The plan describes a new approach to achieving and maintaining compliance. This approach concentrates authority and accountability for compliance with the line operating personnel, with support provided from the programmatic functions. This approach requires a higher degree of integration and coordination between operating and program support organizations. The principal changes in emphases are; (1) increased line operations involvement, knowledge and accountability in compliance activities, (2) improved management systems to identify, correct and/or avoid deficiencies and (3) enhanced management attention and employee awareness of compliance related matters.

Potter, G.L.; Holstein, K.A.

1994-05-01T23:59:59.000Z

48

Performance Demonstration Program Plan for Nondestructive Assay of Drummed Wastes for the TRU Waste Characterization Program  

SciTech Connect (OSTI)

The Performance Demonstration Program (PDP) for nondestructive assay (NDA) consists of a series of tests to evaluate the capability for NDA of transuranic (TRU) waste throughout the Department of Energy (DOE) complex. Each test is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements obtained from NDA systems used to characterize the radiological constituents of TRU waste. The primary documents governing the conduct of the PDP are the Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WAC; DOE 1999a) and the Quality Assurance Program Document (QAPD; DOE 1999b). The WAC requires participation in the PDP; the PDP must comply with the QAPD and the WAC. The WAC contains technical and quality requirements for acceptable NDA. This plan implements the general requirements of the QAPD and applicable requirements of the WAC for the NDA PDP. Measurement facilities demonstrate acceptable performance by the successful testing of simulated waste containers according to the criteria set by this PDP Plan. Comparison among DOE measurement groups and commercial assay services is achieved by comparing the results of measurements on similar simulated waste containers reported by the different measurement facilities. These tests are used as an independent means to assess the performance of measurement groups regarding compliance with established quality assurance objectives (QAO's). Measurement facilities must analyze the simulated waste containers using the same procedures used for normal waste characterization activities. For the drummed waste PDP, a simulated waste container consists of a 55-gallon matrix drum emplaced with radioactive standards and fabricated matrix inserts. These PDP sample components are distributed to the participating measurement facilities that have been designated and authorized by the Carlsbad Field Office (CBFO). The NDA Drum PDP materials are stored at these sites under secure conditions to protect them from loss, tampering, or accidental damage. Using removable PDP radioactive standards, isotopic activities in the simulated waste containers are varied to the extent possible over the range of concentrations anticipated in actual waste characterization situations. Manufactured matrices simulate expected waste matrix conditions and provide acceptable consistency in the sample preparation process at each measurement facility. Analyses that are required by the Waste Isolation Pilot Plant (WIPP) to demonstrate compliance with various regulatory requirements and that are included in the PDP may only be performed by measurement facilities that demonstrate acceptable performance in the PDP. These analyses are referred to as WIPP analyses, and the wastes on which they are performed are referred to as WIPP wastes in this document.

DOE Carlsbad Field Office

2001-04-06T23:59:59.000Z

49

Animal Waste Treatment System Loan Program (Missouri)  

Broader source: Energy.gov [DOE]

The purpose of the Animal Waste Treatment System Loan Program is to finance animal waste treatment systems for independent livestock and poultry producers at below conventional interest rates. Loan...

50

Thermoelectric Waste Heat Recovery Program for Passenger Vehicles...  

Broader source: Energy.gov (indexed) [DOE]

Thermoelectric Waste Heat Recovery Program for Passenger Vehicles Thermoelectric Waste Heat Recovery Program for Passenger Vehicles 2013 DOE Hydrogen and Fuel Cells Program and...

51

Thermoelectric Waste Heat Recovery Program for Passenger Vehicles...  

Broader source: Energy.gov (indexed) [DOE]

Thermoelectric Waste Heat Recovery Program for Passenger Vehicles Thermoelectric Waste Heat Recovery Program for Passenger Vehicles 2012 DOE Hydrogen and Fuel Cells Program and...

52

Automotive Waste Heat Conversion to Power Program  

Broader source: Energy.gov (indexed) [DOE]

Emissions Reduction (DEER) Conference (presentation) - "Status of a Cylindrical Waste Heat Power Generator for Vehicles Development Program", J. LaGrandeur, L. Bell, D. Crane *...

53

Bubblers Speed Nuclear Waste Processing at SRS  

ScienceCinema (OSTI)

At the Department of Energy's Savannah River Site, American Recovery and Reinvestment Act funding has supported installation of bubbler technology and related enhancements in the Defense Waste Processing Facility (DWPF). The improvements will accelerate the processing of radioactive waste into a safe, stable form for storage and permit expedited closure of underground waste tanks holding 37 million gallons of liquid nuclear waste.

None

2014-08-06T23:59:59.000Z

54

Bubblers Speed Nuclear Waste Processing at SRS  

SciTech Connect (OSTI)

At the Department of Energy's Savannah River Site, American Recovery and Reinvestment Act funding has supported installation of bubbler technology and related enhancements in the Defense Waste Processing Facility (DWPF). The improvements will accelerate the processing of radioactive waste into a safe, stable form for storage and permit expedited closure of underground waste tanks holding 37 million gallons of liquid nuclear waste.

None

2010-11-14T23:59:59.000Z

55

Waste minimization in semiconductor processing  

SciTech Connect (OSTI)

The US semiconductor industry uses 5--7 thousand pounds of arsine annually. Fifty to eighty percent of the arsine used becomes a waste product, which requires abatement. Traditional methods of abatement are reviewed with an emphasis on dry chemical scrubbing. A variety of dry chemical scrubbing materials were evaluated for arsine capacity, using activated carbon as the baseline for comparison. Of the available technologies, dry chemical scrubbing is the most effective means of minimizing arsenic containing waste generated from semiconductor effluents. A copper oxide based media has been identified which has high capacity, high efficiency and treats the spectrum of gases used in MOCVD processes. Reclaim and recovery of spent scrubber media has the potential to drastically reduce arsenic waste from semiconductor manufacturing.

Hardwick, S.J.; Mailloux, J.C. [Novapure Corp., Danbury, CT (United States)

1994-12-31T23:59:59.000Z

56

Buried waste integrated demonstration technology integration process  

SciTech Connect (OSTI)

A Technology integration Process was developed for the Idaho National Energy Laboratories (INEL) Buried Waste Integrated Demonstration (BWID) Program to facilitate the transfer of technology and knowledge from industry, universities, and other Federal agencies into the BWID; to successfully transfer demonstrated technology and knowledge from the BWID to industry, universities, and other Federal agencies; and to share demonstrated technologies and knowledge between Integrated Demonstrations and other Department of Energy (DOE) spread throughout the DOE Complex. This document also details specific methods and tools for integrating and transferring technologies into or out of the BWID program. The document provides background on the BWID program and technology development needs, demonstrates the direction of technology transfer, illustrates current processes for this transfer, and lists points of contact for prospective participants in the BWID technology transfer efforts. The Technology Integration Process was prepared to ensure compliance with the requirements of DOE`s Office of Technology Development (OTD).

Ferguson, J.S.; Ferguson, J.E.

1992-04-01T23:59:59.000Z

57

Buried waste integrated demonstration technology integration process  

SciTech Connect (OSTI)

A Technology integration Process was developed for the Idaho National Energy Laboratories (INEL) Buried Waste Integrated Demonstration (BWID) Program to facilitate the transfer of technology and knowledge from industry, universities, and other Federal agencies into the BWID; to successfully transfer demonstrated technology and knowledge from the BWID to industry, universities, and other Federal agencies; and to share demonstrated technologies and knowledge between Integrated Demonstrations and other Department of Energy (DOE) spread throughout the DOE Complex. This document also details specific methods and tools for integrating and transferring technologies into or out of the BWID program. The document provides background on the BWID program and technology development needs, demonstrates the direction of technology transfer, illustrates current processes for this transfer, and lists points of contact for prospective participants in the BWID technology transfer efforts. The Technology Integration Process was prepared to ensure compliance with the requirements of DOE's Office of Technology Development (OTD).

Ferguson, J.S.; Ferguson, J.E.

1992-04-01T23:59:59.000Z

58

Solid Waste Program (Alabama) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Program (Alabama) Program (Alabama) Solid Waste Program (Alabama) < Back Eligibility Commercial Construction Developer General Public/Consumer Industrial Residential Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Alabama Program Type Environmental Regulations This article states the authority of the department, regulations for the control of unauthorized dumping, disposal fees, violations and penalties. Solid waste refers to any garbage, rubbish, construction or demolition debris, ash, or sludge from a waste treatment facility, water supply plant, or air pollution control facility, and any other discarded materials, including solid, liquid, semisolid, or contained gaseous material resulting

59

Performance Demonstration Program Plan for Nondestructive Assay of Boxed Wastes for the TRU Waste Characterization Program  

SciTech Connect (OSTI)

The Performance Demonstration Program (PDP) for nondestructive assay (NDA) consists of a series of tests to evaluate the capability for NDA of transuranic (TRU) waste throughout the Department of Energy (DOE) complex. Each test is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements obtained from NDA systems used to characterize the radiological constituents of TRU waste. The primary documents governing the conduct of the PDP are the Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WAC; DOE 1999a) and the Quality Assurance Program Document (QAPD; DOE 1999b). The WAC requires participation in the PDP; the PDP must comply with the QAPD and the WAC. The WAC contains technical and quality requirements for acceptable NDA. This plan implements the general requirements of the QAPD and applicable requirements of the WAC for the NDA PDP for boxed waste assay systems. Measurement facilities demonstrate acceptable performance by the successful testing of simulated waste containers according to the criteria set by this PDP Plan. Comparison among DOE measurement groups and commercial assay services is achieved by comparing the results of measurements on similar simulated waste containers reported by the different measurement facilities. These tests are used as an independent means to assess the performance of measurement groups regarding compliance with established quality assurance objectives (QAOs). Measurement facilities must analyze the simulated waste containers using the same procedures used for normal waste characterization activities. For the boxed waste PDP, a simulated waste container consists of a modified standard waste box (SWB) emplaced with radioactive standards and fabricated matrix inserts. An SWB is a waste box with ends designed specifically to fit the TRUPACT-II shipping container. SWBs will be used to package a substantial volume of the TRU waste for disposal. These PDP sample components are distributed to the participating measurement facilities that have been designated and authorized by the Carlsbad Field Office (CBFO). The NDA Box PDP materials are stored at these sites under secure conditions to protect them from loss, tampering, or accidental damage. Using removable PDP radioactive standards, isotopic activities in the simulated waste containers are varied to the extent possible over the range of concentrations anticipated in actual waste characterization situations. Manufactured matrices simulate expected waste matrix configurations and provide acceptable consistency in the sample preparation process at each measurement facility. Analyses that are required by the Waste Isolation Pilot Plant (WIPP) to demonstrate compliance with various regulatory requirements and that are included in the PDP may only be performed by measurement facilities that demonstrate acceptable performance in the PDP. These analyses are referred to as WIPP analyses, and the wastes on which they are performed are referred to as WIPP wastes in this document.

Carlsbad Field Office

2001-01-31T23:59:59.000Z

60

Solid waste recycling programs at Rocky Flats  

SciTech Connect (OSTI)

The Rocky Flats (RFP) recycling programs for solid waste materials have been in place for over ten years. Within the last three years, the programs were centralized under the direction of the Rocky Flats Waste Minimization department, with the assistance of various plant organizations (e.g., Trucking, Building Services, Regulated Waste Operations, property Utilization and Disposal and Security). Waste Minimization designs collection and transportation systems for recyclable materials and evaluates recycling markets for opportunities to add new commodities to the existing programs. The Waste Minimization department also promotes employee participation in the Rocky Flats Recycling Programs, and collects all recycling data for publication. A description of the program status as of January 1994 is given.

Millette, R.L.; Blackman, T.E.; Shepard, M.D. [EG and G Rocky Flats, Inc., Golden, CO (United States)

1994-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "waste processing program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Independent Oversight Review, Oak Ridge Transuranic Waste Processing  

Broader source: Energy.gov (indexed) [DOE]

Oak Ridge Transuranic Waste Oak Ridge Transuranic Waste Processing Facility - December 2013 Independent Oversight Review, Oak Ridge Transuranic Waste Processing Facility - December 2013 December 2013 Review of the Fire Protection Program and Fire Protection Systems at the Transuranic Waste Processing Center This report documents the results of an independent oversight review of the fire protection programs and systems at the Oak Ridge Transuranic Waste Processing Center. The review was performed during May 20-23, 2013, and July 15-19, 2013, by the U.S. Department of Energy's (DOE) Office of Safety and Emergency Management Evaluations, which is within the DOE Office of Health, Safety and Security. The review was one part of a targeted assessment of fire protection at nuclear facilities across the DOE complex.

62

Quality Assurance Program Plan (QAPP) Waste Management Project  

SciTech Connect (OSTI)

This document is the Quality Assurance Program Plan (QAPP) for Waste Management Federal Services of Hanford, Inc. (WMH), that implements the requirements of the Project Hanford Management Contract (PHMC), HNF-MP-599, Project Hanford Quality Assurance Program Description (QAPD) document, and the Hanford Federal Facility Agreement with Consent Order (Tri-Party Agreement), Sections 6.5 and 7.8. WHM is responsible for the treatment, storage, and disposal of liquid and solid wastes generated at the Hanford Site as well as those wastes received from other US Department of Energy (DOE) and non-DOE sites. WMH operations include the Low-Level Burial Grounds, Central Waste Complex (a mixed-waste storage complex), a nonradioactive dangerous waste storage facility, the Transuranic Storage Facility, T Plant, Waste Receiving and Processing Facility, 200 Area Liquid Effluent Facility, 200 Area Treated Effluent Disposal Facility, the Liquid Effluent Retention Facility, the 242-A Evaporator, 300 Area Treatment Effluent Disposal Facility, the 340 Facility (a radioactive liquid waste handling facility), 222-S Laboratory, the Waste Sampling and Characterization Facility, and the Hanford TRU Waste Program.

VOLKMAN, D.D.

1999-10-27T23:59:59.000Z

63

Transfer Lines to Connect Liquid Waste Facilities and Salt Waste Processing Facility  

Broader source: Energy.gov [DOE]

AIKEN, S.C. Officials with the EM program at Savannah River Site (SRS) recently announced a key milestone in preparation for the startup of the Salt Waste Processing Facility (SWPF): workers installed more than 1,200 feet of new transfer lines that will eventually connect existing liquid waste facilities to SWPF.

64

Thermal processing systems for TRU mixed waste  

SciTech Connect (OSTI)

This paper presents preliminary ex situ thermal processing system concepts and related processing considerations for remediation of transuranic (TRU)-contaminated wastes (TRUW) buried at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Anticipated waste stream components and problems are considered. Thermal processing conditions required to obtain a high-integrity, low-leachability glass/ceramic final waste form are considered. Five practical thermal process system designs are compared. Thermal processing of mixed waste and soils with essentially no presorting and using incineration followed by high temperature melting is recommended. Applied research and development necessary for demonstration is also recommended.

Eddy, T.L.; Raivo, B.D.; Anderson, G.L.

1992-01-01T23:59:59.000Z

65

Thermal processing systems for TRU mixed waste  

SciTech Connect (OSTI)

This paper presents preliminary ex situ thermal processing system concepts and related processing considerations for remediation of transuranic (TRU)-contaminated wastes (TRUW) buried at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Anticipated waste stream components and problems are considered. Thermal processing conditions required to obtain a high-integrity, low-leachability glass/ceramic final waste form are considered. Five practical thermal process system designs are compared. Thermal processing of mixed waste and soils with essentially no presorting and using incineration followed by high temperature melting is recommended. Applied research and development necessary for demonstration is also recommended.

Eddy, T.L.; Raivo, B.D.; Anderson, G.L.

1992-08-01T23:59:59.000Z

66

Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and Increase Profits Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and Increase Profits April 8,...

67

2008 DOE FCVT Merit Review: BSST Waste Heat Recovery Program...  

Broader source: Energy.gov (indexed) [DOE]

Documents & Publications Automotive Waste Heat Conversion to Power Program Thermoelectric Waste Heat Recovery Program for Passenger Vehicles Development of a 100-Watt High...

68

Waste Isolation Pilot Plant, National Transuranic Program Have...  

Office of Environmental Management (EM)

Waste Isolation Pilot Plant, National Transuranic Program Have Banner Year in 2013 Waste Isolation Pilot Plant, National Transuranic Program Have Banner Year in 2013 December 24,...

69

Process removes Sr from nuclear wastes  

Science Journals Connector (OSTI)

Process removes Sr from nuclear wastes ... Scientists at Argonne National Laboratory have devised a chemical process for extracting and recovering strontium-90 from liquid nuclear wastes. ... Argonne chemist E. Philip Horwitz, head of the team, says it could be a significant aid in managing such radioactive wastes. ...

WARD WORTHY

1990-09-10T23:59:59.000Z

70

Independent Oversight Review, Oak Ridge Transuranic Waste Processing  

Broader source: Energy.gov (indexed) [DOE]

Oak Ridge Transuranic Waste Oak Ridge Transuranic Waste Processing Center, September 2013 Independent Oversight Review, Oak Ridge Transuranic Waste Processing Center, September 2013 September 2013 Review of Management of Safety Systems at the Oak Ridge Transuranic Waste Processing Center and Associated Feedback and Improvement Processes. This report documents the results of an independent oversight review of the management of safety significant structures, systems, and components at the Oak Ridge Transuranic Waste Processing Center (TWPC). The review was performed April 2-5, April 15-19, and May 19-23, 2013, by the Department of Energy's (DOE) Office of Safety and Emergency Management Evaluations, which is within the DOE Office of Health, Safety and Security. The review was carried out within the broader context of an ongoing program of

71

WIPP WASTE MINIMIZATION PROGRAM DESCRIPTION  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carlsbad, New Mexico 8822 Carlsbad, New Mexico 8822 1 NOV 2 3 2011 Mr. John Kieling , Acting Bureau Chief Hazardous Waste Bureau New Mexico Environme nt Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Transmittal of the Waste Isolation Pilot Plant Annual Waste Minimization Report Dear Mr. Kieling: This letter provides the submittal of the Waste Isolation Pilot Plant Annual Waste Minimization Report. This report is required by and has bee n prepared in accordance with the WIPP Hazardous Waste Facility Perm it Part 2, Permit Condition 2.4. We certify under penalty of law that this document and all enclosures were prepared under our direction or supervision according to a system designed to assure that qualified personnel properly gather and evaluate the information submitted

72

Process for remediation of plastic waste  

DOE Patents [OSTI]

A single step process for degrading plastic waste by converting the plastic waste into carbonaceous products via thermal decomposition of the plastic waste by placing the plastic waste into a reactor, heating the plastic waste under an inert or air atmosphere until the temperature of about 700.degree. C. is achieved, allowing the reactor to cool down, and recovering the resulting decomposition products therefrom. The decomposition products that this process yields are carbonaceous materials, and more specifically carbon nanotubes having a partially filled core (encapsulated) adjacent to one end of the nanotube. Additionally, in the presence of a transition metal compound, this thermal decomposition process produces multi-walled carbon nanotubes.

Pol, Vilas G; Thiyagarajan, Pappannan

2013-11-12T23:59:59.000Z

73

Process for remediation of plastic waste  

DOE Patents [OSTI]

A single step process for degrading plastic waste by converting the plastic waste into carbonaceous products via thermal decomposition of the plastic waste by placing the plastic waste into a reactor, heating the plastic waste under an inert or air atmosphere until the temperature of 700.degree. C. is achieved, allowing the reactor to cool down, and recovering the resulting decomposition products therefrom. The decomposition products that this process yields are carbonaceous materials, and more specifically egg-shaped and spherical-shaped solid carbons. Additionally, in the presence of a transition metal compound, this thermal decomposition process produces multi-walled carbon nanotubes.

Pol, Vilas G. (Westmont, IL); Thiyagarajan, Pappannan (Germantown, MD)

2012-04-10T23:59:59.000Z

74

WIPP WASTE MINIMIZATION PROGRAM DESCRIPTION  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

or statements that outline goals, objectives, and methods for source reduction and recycling of hazardous and mixed waste at the facility; 2. Employee training or incentive...

75

Co-processing of agricultural and biomass waste with coal  

SciTech Connect (OSTI)

A major thrust of our research program is the use of waste materials as co-liquefaction agents for the first-stage conversion of coal to liquid fuels. By fulfilling one or more of the roles of an expensive solvent in the direct coal liquefaction (DCL) process, the waste material is disposed off ex-landfill, and may improve the overall economics of DCL. Work in our group has concentrated on co-liquefaction with waste rubber tires, some results from which are presented elsewhere in these Preprints. In this paper, we report on preliminary results with agricultural and biomass-type waste as co-liquefaction agents.

Stiller, A.H.; Dadyburjor, D.B.; Wann, Ji-Perng [West Virginia Univ., Morgantown, WV (United States)] [and others

1995-12-31T23:59:59.000Z

76

Hanford's Simulated Low Activity Waste Cast Stone Processing  

SciTech Connect (OSTI)

Cast Stone is undergoing evaluation as the supplemental treatment technology for Hanfords (Washington) high activity waste (HAW) and low activity waste (LAW). This report will only cover the LAW Cast Stone. The programs used for this simulated Cast Stone were gradient density change, compressive strength, and salt waste form phase identification. Gradient density changes show a favorable outcome by showing uniformity even though it was hypothesized differently. Compressive strength exceeded the minimum strength required by Hanford and greater compressive strength increase seen between the uses of different salt solution The salt waste form phase is still an ongoing process as this time and could not be concluded.

Kim, Young

2013-08-20T23:59:59.000Z

77

Transuranic (TRU) Waste Processing Center- Overview  

Broader source: Energy.gov [DOE]

DOE established the TRU Waste Processing Center (TWPC) as a regional center for the management, treatment, packaging and shipment of DOE TRU waste legacy inventory. TWPC is also responsible for managing and treating Low Level and Mixed Low Level Waste generated at ORNL. TWPC is operated by Wastren Advantage, Inc. (WAI) under contract to the DOE's Oak Ridge Office.

78

Lab Ahead of Schedule Processing Waste in Large Boxes | Department of  

Broader source: Energy.gov (indexed) [DOE]

Lab Ahead of Schedule Processing Waste in Large Boxes Lab Ahead of Schedule Processing Waste in Large Boxes Lab Ahead of Schedule Processing Waste in Large Boxes March 30, 2012 - 12:00pm Addthis A framework agreement between DOE and the State of New Mexico calls for the Lab’s TRU Waste Program to ship 3,706 cubic meters of combustible or dispersible transuranic waste to WIPP for permanent disposal by June 30, 2014. A framework agreement between DOE and the State of New Mexico calls for the Lab's TRU Waste Program to ship 3,706 cubic meters of combustible or dispersible transuranic waste to WIPP for permanent disposal by June 30, 2014. Processing waste in large boxes is ahead of schedule due to worker skill, efficient processing and good planning. Processing waste in large boxes is ahead of schedule due to worker skill,

79

Zero Waste Program 2011 Recycling Benefits  

E-Print Network [OSTI]

Rutgers Zero Waste Program 2011 Recycling Benefits Through WM's Recycling Program, our company saved energy and reduced Greenhouse Gases through recycling. Recycling uses less energy, preserves from recycled material than from virgin, raw material. RESOURCE SAVINGS 4203 Metric Tons (MTCO2E

Delgado, Mauricio

80

TRU Waste Management Program cost/schedule optimization analysis  

SciTech Connect (OSTI)

The cost/schedule optimization task is a necessary function to insure that program goals and plans are optimized from a cost and schedule aspect. Results of this study will offer DOE information with which it can establish, within institutional constraints, the most efficient program for the long-term management and disposal of contact handled transuranic waste (CH-TRU). To this end, a comprehensive review of program cost/schedule tradeoffs has been made, to identify any major cost saving opportunities that may be realized by modification of current program plans. It was decided that all promising scenarios would be explored, and institutional limitations to implementation would be described. Since a virtually limitless number of possible scenarios can be envisioned, it was necessary to distill these possibilities into a manageable number of alternatives. The resultant scenarios were described in the cost/schedule strategy and work plan document. Each scenario was compared with the base case: waste processing at the originating site; transport of CH-TRU wastes in TRUPACT; shipment of drums in 6-Packs; 25 year stored waste workoff; WIPP operational 10/88, with all sites shipping to WIPP beginning 10/88; and no processing at WIPP. Major savings were identified in two alternate scenarios: centralize waste processing at INEL and eliminate rail shipment of TRUPACT. No attempt was made to calculate savings due to combination of scenarios. 1 ref., 5 figs., 1 tab. (MHB)

Detamore, J.A. (Rockwell International Corp., Albuquerque, NM (United States). Joint Integration Office); Raudenbush, M.H.; Wolaver, R.W.; Hastings, G.A. (Stoller (S.M.) Corp., Boulder, CO (United States))

1985-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste processing program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Hanford Site Solid Waste Acceptance Program - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About Us > Hanford Site Wide Programs > Hanford Site Solid Waste Acceptance Program About Us Hanford Overview and History Hanford Cleanup Hanford Site Wide Programs Hanford Site...

82

EA-437; Environmental Assessment Process Equipment Waste and Process Waste Liquid Collection Systems Idaho Chemical Processing Plant Idaho National Engineering Laboratory  

Broader source: Energy.gov (indexed) [DOE]

437; Environmental Assessment Process Equipment Waste and 437; Environmental Assessment Process Equipment Waste and Process Waste Liquid Collection Systems Idaho Chemical Processing Plant Idaho National Engineering Laboratory TABLE OF CONTENTS Environmental Assessment Process Equipment Waste and Process Waste Liquid Collection Systems Idaho Chemical Processing Plant Idaho National Engineering Laboratory 1. INTRODUCTION 2. DESCRIPTION OF THE PROPOSED ACTION AND ALTERNATIVES 2.1 Purpose and Need of the Proposed Action 2.2 Description of the Affected Facilities 2.3 Description of Proposed Action 2.4 Alternatives to the Proposed Action 2.5 Separate But Related Actions 3. AFFECTED ENVIRONMENT 3.1 Introduction 3.2 Physical Environment 3.3 Biological Resources 3.4 Cultural Resources 3.5 Environmental Quality and Monitoring Programs

83

EIS-0286: Hanford Solid (Radioactive and Hazardous) Waste Program  

Broader source: Energy.gov [DOE]

The Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement (HSW EIS) analyzes the proposed waste management practices at the Hanford Site.

84

Automotive Waste Heat Conversion to Power Program | Department...  

Broader source: Energy.gov (indexed) [DOE]

-- Washington D.C. ace47lagrandeur.pdf More Documents & Publications Automotive Waste Heat Conversion to Power Program 2008 DOE FCVT Merit Review: BSST Waste Heat Recovery...

85

Hydrothermal Processing of Wet Wastes  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Mill Waste, Plastic Bottles Aquatic Water Hyacinths, Kelp (Marine), Red Algae (Marine), Green Algae (Brackish), Green Algae (Marine), Green Algae (Fresh), Diatoms, Cyanobacteria...

86

Waste Processing Annual Technology Development Report 2007  

Broader source: Energy.gov (indexed) [DOE]

Processing Processing Annual Technology Development Report 2007 SRNS-STI-2008-00040 United States Department of Energy Waste Processing Annual Technology Development Report 2007 Prepared and edited by S. R. Bush EM Technical Integration Office Savannah River National Laboratory Reviewed by Dr. W. R. Wilmarth, Manager EM Technical Integration Office Savannah River National Laboratory Approved by Dr. S. L. Krahn, Director EM-21 Office of Waste Processing U. S. Department of Energy APPROVED for Release for Unlimited (Release to Public) (Signed 08/13/2008) (Signed 08/13/2008) (Signed 08/13/2008) EM-21 Waste Processing Annual Report for Calendar Year 2007 2/74

87

Industrial Waste Reduction Program annual report, FY 1993  

SciTech Connect (OSTI)

The Department of Energy`s Industrial Waste Reduction Program (IWRP) sponsors the development, demonstration, and deployment of technologies that offer a significant opportunity to reduce waste generation, improve productivity, and enhance environmental performance in US industry. The program emphasizes technology-driven solutions that are economically beneficial and environmentally sound. Its goal is to improve the energy efficiency and competitiveness of private industry by cost-effectively reducing waste. Industry, universities, national laboratories and other government agencies are working cooperatively to meet this goal. The IWRP emphasizes the timely commercialization of new technologies that can produce measurable energy, environmental, and economic benefits. All projects are substantially cost-shared with private companies to foster the commercialization process. The program is proud to claim four successfully commercialized technologies that have begun generating benefits. The current IWRP portfolio boasts 32 projects in progress. Funding for the IWRP has grown from $1.7 million in 1990 to $13 million in 1994. New companies join the program each year, reaping the benefits of working cooperatively with government. New technologies are expected to reach commercial success in fiscal year (FY) 1994, further increasing the benefits already accrued. Future Annual Reports will also include projects from the Waste Utilization and Conversion Program. Descriptions of the program`s 32 active projects are organized in this report according these elements. Each project description provides a brief background and the major accomplishments during FY 1993.

Not Available

1994-01-01T23:59:59.000Z

88

Salt Waste Processing Facility Fact Sheet | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Services » Waste Management » Tank Waste and Waste Processing » Services » Waste Management » Tank Waste and Waste Processing » Salt Waste Processing Facility Fact Sheet Salt Waste Processing Facility Fact Sheet Nuclear material production operations at SRS resulted in the generation of liquid radioactive waste that is being stored, on an interim basis, in 49 underground waste storage tanks in the F- and H-Area Tank Farms. SWPF Fact Sheet More Documents & Publications EIS-0082-S2: Amended Record of Decision Savannah River Site Salt Waste Processing Facility Technology Readiness Assessment Report EIS-0082-S2: Record of Decision Waste Management Nuclear Materials & Waste Tank Waste and Waste Processing Waste Disposition Packaging and Transportation Site & Facility Restoration Deactivation & Decommissioning (D&D)

89

Waste immobilization demonstration program for the Hanford Site`s Mixed Waste Facility  

SciTech Connect (OSTI)

This paper presents an overview of the Waste Receiving and Processing facility, Module 2A> waste immobilization demonstration program, focusing on the cooperation between Hanford Site, commercial, and international participants. Important highlights of the development and demonstration activities is discussed from the standpoint of findings that have had significant from the standpoint of findings that have had significant impact on the evolution of the facility design. A brief description of the future direction of the program is presented, with emphasis on the key aspects of the technologies that call for further detailed investigation.

Burbank, D.A.; Weingardt, K.M.

1994-05-01T23:59:59.000Z

90

Chemical Engineering Division fuel cycle programs. Quarterly progress report, April-June 1979. [Pyrochemical/dry processing; waste encapsulation in metal; transport in geologic media  

SciTech Connect (OSTI)

For pyrochemical and dry processing materials development included exposure to molten metal and salt of Mo-0.5% Ti-0.07% Ti-0.01% C, Mo-30% W, SiC, Si/sub 2/ON/sub 2/, ZrB/sub 2/-SiC, MgAl/sub 2/O/sub 4/, Al/sub 2/O/sub 3/, AlN, HfB/sub 2/, Y/sub 2/O/sub 3/, BeO, Si/sub 3/N/sub 4/, nickel nitrate-infiltrated W, W-coated Mo, and W-metallized alumina-yttria. Work on Th-U salt transport processing included solubility of Th in liquid Cd, defining the Cd-Th and Cd-Mg-Th phase diagrams, ThO/sub 2/ reduction experiments, and electrolysis of CaO in molten salt. Work on pyrochemical processes and associated hardware for coprocessing U and Pu in spent FBR fuels included a second-generation computer model of the transport process, turntable transport process design, work on the U-Cu-Mg system, and U and Pu distribution coefficients between molten salt and metal. Refractory metal vessels are being service-life tested. The chloride volatility processing of Th-based fuel was evaluated for its proliferation resistance, and a preliminary ternary phase diagram for the Zn-U-Pu system was computed. Material characterization and process analysis were conducted on the Exportable Pyrochemical process (Pyro-Civex process). Literature data on oxidation of fissile metals to oxides were reviewed. Work was done on chemical bases for the reprocessing of actinide oxides in molten salts. Flowsheets are being developed for the processing of fuel in molten tin. Work on encapsulation of solidified radioactive waste in metal matrix included studies of leach rate of crystalline waste materials and of the impact resistance of metal-matrix waste forms. In work on the transport properties of nuclear waste in geologic media, adsorption of Sr on oolitic limestone was studied, as well as the migration of Cs in basalt. Fitting of data on the adsorption of iodate by hematite to a mathematical model was attempted.

Steindler, M.J.; Ader, M.; Barletta, R.E.

1980-09-01T23:59:59.000Z

91

Savannah River Site (SRS) high level waste (HLW) structural integrity program  

SciTech Connect (OSTI)

The Savannah River Site has fifty-one underground tanks for radioactive waste storage and processing with doubly-contained piping systems for waste transfer. The SRS High Level Waste structural Integrity Program provides a process for evaluation and documenting material aging issues for structures, systems and components (SSC) in these facilities to maintain their confinement function. SRS has been monitoring waste, waste storage tanks, testing transfer lines and controlling waste chemistry for many years. A successful structural integrity (SI) program requires the following: detailed understanding of applicable degradation mechanisms; controlled chemistries and additions, as necessary; regular chemistry sampling and monitoring; structural capacity considerations; and a combination of on-line and periodic inspection and testing programs to provide early detection of generic degradation and verify effectiveness of the management of degradation under aging conditions identified by the SI Program. The application of these elements in the HLW SI Program achieves confinement in the facilities throughout desired service life.

Marra, J.E.; Abodishish, H.A.; Barnes, D.M.; Sindelar, R.L.; Flanders, H.E.; Houston, T.W.; Wiersma, B.J.; McNatt, F.G. Sr.; Cowfer, C.D. [Westinghouse Savannah River Co., Aiken, SC (United States)

1995-12-01T23:59:59.000Z

92

EM-21 Multi-Year Program Plan Prioritization Process  

Broader source: Energy.gov (indexed) [DOE]

July 24, 2008 July 24, 2008 EM-21 Multi-Year Program Plan Prioritization Process A presentation to the Department of Energy High Level Waste Corporate Board 2 Topics to be Covered ¡ Initiative Development Team approach and structure ¡ Goals ¡ Background on prioritization process ¡ Lessons Learned from FY 2008 ¡ Prioritization Process l Overview l Criteria l Task Development and Selection l Current status l Process output ¡ Program Management 3 Waste Processing Programs Initiative Development Team Structure Waste Processing Programs (WBS 1.0) Steve Krahn (EM-21) Texas Chee (EM-21) Lead - Jeff Griffin (SRNL) Deputy - Paul Bredt (PNNL) Jay Roach (INL) Ben Lewis (ORNL) Blue - EM-20 Green - SRNL Red - INL Purple - PNNL Brown - ORNL Black - Other Affiliated Institutions Legend: Personnel: Improved Waste Storage

93

National Low-Level Waste Management Program Radionuclide Report Series  

SciTech Connect (OSTI)

This volume serves as an introduction to the National Low-Level Radioactive Waste Management Program Radionuclide Report Series. This report includes discussions of radionuclides listed in Title 10 of the Code of Federal Regulations Part 61.55, Tables 1 and 2 (including alpha-emitting transuranics with half-lives greater than five years). Each report includes information regarding radiological and chemical characteristics of specific radionuclides. Information is also included discussing waste streams and waste forms that may contain each radionuclide, and radionuclide behavior in the environment and in the human body. Not all radionuclides commonly found at low-level radioactive waste sites are included in this report. The discussion in this volume explains the rationale of the radionuclide selection process.

Rudin, M.J.; Garcia, R.S.

1992-02-01T23:59:59.000Z

94

Transuranic Waste Processing Center Contract Awarded to Wastren...  

Office of Environmental Management (EM)

Transuranic Waste Processing Center Contract Awarded to Wastren Advantage, Inc. Transuranic Waste Processing Center Contract Awarded to Wastren Advantage, Inc. October 22, 2009 -...

95

Independent Oversight Review, Oak Ridge Transuranic Waste Processing...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Transuranic Waste Processing Center, September 2013 Independent Oversight Review, Oak Ridge Transuranic Waste Processing Center, September 2013 September 2013 Review of Management...

96

Overview of Fiscal Year 2002 Research and Development for Savannah River Site's Salt Waste Processing Facility  

SciTech Connect (OSTI)

The Department of Energy's (DOE) Savannah River Site (SRS) high-level waste program is responsible for storage, treatment, and immobilization of high-level waste for disposal. The Salt Processing Program (SPP) is the salt (soluble) waste treatment portion of the SRS high-level waste effort. The overall SPP encompasses the selection, design, construction and operation of treatment technologies to prepare the salt waste feed material for the site's grout facility (Saltstone) and vitrification facility (Defense Waste Processing Facility). Major constituents that must be removed from the salt waste and sent as feed to Defense Waste Processing Facility include actinides, strontium, cesium, and entrained sludge. In fiscal year 2002 (FY02), research and development (R&D) on the actinide and strontium removal and Caustic-Side Solvent Extraction (CSSX) processes transitioned from technology development for baseline process selection to providing input for conceptual design of the Salt Waste Processing Facility. The SPP R&D focused on advancing the technical maturity, risk reduction, engineering development, and design support for DOE's engineering, procurement, and construction (EPC) contractors for the Salt Waste Processing Facility. Thus, R&D in FY02 addressed the areas of actual waste performance, process chemistry, engineering tests of equipment, and chemical and physical properties relevant to safety. All of the testing, studies, and reports were summarized and provided to the DOE to support the Salt Waste Processing Facility, which began conceptual design in September 2002.

H. D. Harmon, R. Leugemors, PNNL; S. Fink, M. Thompson, D. Walker, WSRC; P. Suggs, W. D. Clark, Jr

2003-02-26T23:59:59.000Z

97

Transuranic (TRU) Waste Processing Center- Cask Processing Enclosure  

Broader source: Energy.gov [DOE]

Wastren Advantage, Inc., the DOE Prime contractor for the TRU Waste Processing Center (TWPC) conceived, designed, and constructed the new Cask Processing Enclosure (CPE) approach based on experience gained to date from Remote Handled (RH) waste processing. The CPE was designed August to October 2011, constructed from October 2011 to April 2012, and Start-up Readiness activities have just been completed. Initial radiological operations are targeted for July 19, 2012.

98

The waste isolation pilot plant regulatory compliance program  

SciTech Connect (OSTI)

The passage of the WIPP Land Withdrawal Act of 1992 (LWA) marked a turning point for the Waste Isolation Pilot Plant (WIPP) program. It established a Congressional mandate to open the WIPP in as short a time as possible, thereby initiating the process of addressing this nation`s transuranic (TRU) waste problem. The DOE responded to the LWA by shifting the priority at the WIPP from scientific investigations to regulatory compliance and the completion of prerequisites for the initiation of operations. Regulatory compliance activities have taken four main focuses: (1) preparing regulatory submittals; (2) aggressive schedules; (3) regulator interface; and (4) public interactions

Mewhinney, J.A. [U.S. Dept. of Energy, Carlsbad, NM (United States); Kehrman, R.F. [Westinghouse Electric Corp., Carlsbad, NM (United States)

1996-06-01T23:59:59.000Z

99

Process for treating alkaline wastes for vitrification  

DOE Patents [OSTI]

According to its major aspects and broadly stated, the present invention is a process for treating alkaline waste materials, including high level radioactive wastes, for vitrification. The process involves adjusting the pH of the wastes with nitric acid, adding formic acid (or a process stream containing formic acid) to reduce mercury compounds to elemental mercury and MnO{sub 2} to the Mn(II) ion, and mixing with class formers to produce a melter feed. The process minimizes production of hydrogen due to noble metal-catalyzed formic acid decomposition during, treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product. An important feature of the present invention is the use of different acidifying and reducing, agents to treat the wastes. The nitric acid acidifies the wastes to improve yield stress and supplies acid for various reactions; then the formic acid reduces mercury compounds to elemental mercury and MnO{sub 2}) to the Mn(II) ion. When the pH of the waste is lower, reduction of mercury compounds and MnO{sub 2}) is faster and less formic acid is needed, and the production of hydrogen caused by catalytically-active noble metals is decreased.

Hsu, Chia-lin W.

1994-01-01T23:59:59.000Z

100

DEVELOPMENT AND DEMONSTRATION OF POLYMER MICROENCAPSULATION OF MIXED WASTE USING KINETIC MIXER PROCESSING  

SciTech Connect (OSTI)

Thermokinetic mixing was investigated as an alternative processing method for polyethylene microencapsulation, a technology well demonstrated for treatment of hazardous, low-level radioactive and low-level mixed wastes. Polyethylene encapsulation by extrusion has been previously shown to be applicable to a wide range of waste types but often pretreatment of the wastes is necessary due to process limitations regarding the maximum waste moisture content and particle size distribution. Development testing was conducted with kinetic mixing in order to demonstrate technology viability and show improved process applicability in these areas. Testing to establish process capabilities and relevant operating parameters was performed with waste surrogates including an aqueous evaporator concentrate and soil. Using a pilot-scale kinetic mixer which was installed and modified for this program, the maximum waste moisture content and particle size was determined. Following process development with surrogate wastes, the technology was successfully demonstrated at BNL using actual mixed waste.

LAGERAAEN,P.R.; KALB,P.D.; MILIAN,L.W.; ADAMS,J.W.

1997-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste processing program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

2 - Radioactive waste (RAW) categories, characterization and processing route selection  

Science Journals Connector (OSTI)

Abstract: The principal approach to radioactive waste management is to transform as generated waste to a waste package suitable for safe long-term storage or ultimate disposal. A waste characterization system allows an assessment of the potential risks connected with waste handling and disposal and also allows the waste to be classified into groups (streams) according to their properties and projected processing routes. A properly selected waste classification system also enables the selection of the proper processing technology for each class of waste, tailored to waste volume, properties and available technologies in each country or waste processing organization. Long-term safe disposal of processed waste is a basic requirement of all waste classification and waste processing schemes discussed in this chapter.

R. Burcl

2013-01-01T23:59:59.000Z

102

Tank waste remediation system program plan  

SciTech Connect (OSTI)

This TWRS Program plan presents the planning requirements and schedules and management strategies and policies for accomplishing the TWRS Project mission. It defines the systems and practices used to establish consistency for business practices, engineering, physical configuration and facility documentation, and to maintain this consistency throughout the program life cycle, particularly as changes are made. Specifically, this plan defines the following: Mission needs and requirements (what must be done and when must it be done); Technical objectives/approach (how well must it be done); Organizational structure and philosophy (roles, responsibilities, and interfaces); and Operational methods (objectives and how work is to be conducted in both management and technical areas). The plan focuses on the TWRS Retrieval and Disposal Mission and supports the DOE mid-1998 Readiness to Proceed with Privatized Waste Treatment evaluation for establishing contracts with private contractors for the treatment (immobilization) of Hanford tank high-level radioactive waste.

Powell, R.W.

1998-01-09T23:59:59.000Z

103

Annual radioactive waste tank inspection program: 1995  

SciTech Connect (OSTI)

Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1995 to evaluate these vessels and evaluations based on data accrued by inspections performed since the tanks were constructed are the subject of this report

McNatt, F.G. Sr.

1996-04-01T23:59:59.000Z

104

Nuclear waste programs; Semiannual progress report, October 1991--March 1992  

SciTech Connect (OSTI)

This document reports on the work done by the Nuclear Waste Programs of the Chemical Technology Division (CMT), Argonne National Laboratory, in the period October 1991-March 1992. In these programs, studies are underway on the performance of waste glass and spent fuel in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories

Bates, J.K.; Bradley, C.R.; Buck, E.C.; Dietz, N.L.; Ebert, W.L.; Emery, J.W.; Feng, X.; Finn, P.A.; Gerding, T.J.; Hoh, J.C. [and others

1993-11-01T23:59:59.000Z

105

Waste Heat Management Options for Improving Industrial Process...  

Broader source: Energy.gov (indexed) [DOE]

of waste heat streams, and options for recovery including Combined Heat and Power. Waste Heat Management Options for Improving Industrial Process Heating Systems...

106

Waste Heat Management Options for Improving Industrial Process Heating Systems  

Broader source: Energy.gov [DOE]

This presentation covers typical sources of waste heat from process heating equipment, characteristics of waste heat streams, and options for recovery including Combined Heat and Power.

107

Program integration on the Civilian Radioactive Waste Management System  

SciTech Connect (OSTI)

The recent development and implementation of a revised Program Approach for the Civilian Radioactive Waste Management System (CRWMS) was accomplished in response to significant changes in the environment in which the program was being executed. The lack of an interim storage site, growing costs and schedule delays to accomplish the full Yucca Mountain site characterization plan, and the development and incorporation of a multi-purpose (storage, transport, and disposal) canister (MPC) into the CRWMS required a reexamination of Program plans and priorities. Dr. Daniel A. Dreyfus, the Director of the Office of Civilian Radioactive Waste Management (OCRWM), established top-level schedule, targets and cost goals and commissioned a Program-wide task force of DOE and contractor personnel to identify and evaluate alternatives to meet them. The evaluation of the suitability of Yucca Mountain site by 1998 and the repository license application data of 2001 were maintained and a target date of January 1998 for MPC availability was established. An increased multi-year funding profile was baselined and agreed to by Congress. A $1.3 billion reduction in Yucca Mountain site characterization costs was mandated to hold the cost to $5 billion. The replanning process superseded all previous budget allocations and focused on program requirements and their relative priorities within the cost profiles. This paper discusses the process for defining alternative scenarios to achieve the top-level program goals in an integrated fashion.

Trebules, V.B. [USDOE Office of Civilian Radioactive Waste Management, Washington, DC (United States). Program Management Div.; King, M.H. [TRW Environmental Safety Systems Inc., Vienna, VA (United States)

1995-09-01T23:59:59.000Z

108

Performance Demonstration Program Plan for Nondestructive Assay of Drummed Wastes for the TRU Waste Characterization Program  

SciTech Connect (OSTI)

The Performance Demonstration Program (PDP) for Nondestructive Assay (NDA) is a test program designed to yield data on measurement system capability to characterize drummed transuranic (TRU) waste generated throughout the Department of Energy (DOE) complex. The tests are conducted periodically and provide a mechanism for the independent and objective assessment of NDA system performance and capability relative to the radiological characterization objectives and criteria of the Office of Characterization and Transportation (OCT). The primary documents requiring an NDA PDP are the Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WAC), which requires annual characterization facility participation in the PDP, and the Quality Assurance Program Document (QAPD). This NDA PDP implements the general requirements of the QAPD and applicable requirements of the WAC. Measurement facilities must demonstrate acceptable radiological characterization performance through measurement of test samples comprised of pre-specified PDP matrix drum/radioactive source configurations. Measurement facilities are required to analyze the NDA PDP drum samples using the same procedures approved and implemented for routine operational waste characterization activities. The test samples provide an independent means to assess NDA measurement system performance and compliance per criteria delineated in the NDA PDP Plan. General inter-comparison of NDA measurement system performance among DOE measurement facilities and commercial NDA services can also be evaluated using measurement results on similar NDA PDP test samples. A PDP test sample consists of a 55-gallon matrix drum containing a waste matrix type representative of a particular category of the DOE waste inventory and nuclear material standards of known radionuclide and isotopic composition typical of DOE radioactive material. The PDP sample components are made available to participating measurement facilities as designated by the Carlsbad Field Office (CBFO). The nuclear material type, mass and associated alpha activity of the NDA PDP radioactive standard sets have been specified and fabricated to allow assembly of PDP samples that simulate TRU alpha activity concentrations, radionuclidic/isotopic distributions and physical forms typical of the DOE TRU waste inventory. The PDP matrix drum waste matrix types were derived from an evaluation of information contained in the Transuranic Waste Baseline Inventory Report (TWBIR) to ensure representation of prevalent waste types and their associated matrix characteristics in NDA PDP testing. NDA drum analyses required by the Waste Isolation Pilot Plant (WIPP) may only be performed by measurement facilities that comply with the performance criteria as set forth in the NDA PDP Plan. In this document, these analyses are referred to as WIPP analyses, and the wastes on which they are performed are referred to as WIPP wastes.

Carlsbad Field Office

2005-08-03T23:59:59.000Z

109

ORISE: Process and Program Evaluation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Process and Program Evaluation Process and Program Evaluation As an integral part of producing effective health and safety programs, the Oak Ridge Institute for Science and Education (ORISE) conducts scientific-based process and program evaluation to provide government agencies and organizations with the tools to improve the health of workers and the general public. Whether the goal is to change awareness, attitudes, beliefs, behaviors, policies or systems, ORISE helps determine the right evaluation methods based on specific needs and resources, including: Formative evaluations to assess the problem, target audience needs and guide successful process implementation Assessments to identify unmet needs in programs, organizations or communities Audience evaluations to learn about targeted populations

110

Record of Decision for the Solid Waste Program, Hanford Site, Richland, WA: Storage and Treatment of Low-Level Waste and Mixed Low-Level Waste; Disposal of Low-Level Waste and Mixed Low-Level Waste, and Storage, Processing, and Certification of Transuran  

Broader source: Energy.gov (indexed) [DOE]

9 9 Federal Register / Vol. 69, No. 125 / Wednesday, June 30, 2004 / Notices mixed low-level waste, and TRU waste shipments using Year 2000 census data and an updated version of the RADTRAN computer code to calculate potential risks associated with shipping. This analysis included the route- specific impacts of transporting the West Jefferson TRU waste to Hanford and subsequent shipment of this waste to WIPP. Due to the additional TRU waste generated and identified at West Jefferson subsequent to DOE's September 6, 2002, decision, DOE's currently estimated total number of 18 shipments (3 completed RH-TRU waste shipments, 14 remaining RH-TRU waste shipments, and 1 remaining CH-TRU waste shipment) exceeds DOE's prior estimate of total shipments by 3. However, the currently estimated

111

Mission Plan for the Civilian Radioactive Waste Management Program |  

Broader source: Energy.gov (indexed) [DOE]

Mission Plan for the Civilian Radioactive Waste Management Program Mission Plan for the Civilian Radioactive Waste Management Program Mission Plan for the Civilian Radioactive Waste Management Program Summary In response to the the requirement of the Nuclear Waste Policy Act of 1982, the Office of Civilian Radioactive Waste Management in the Department of Energy (DOE) has prepared this Mission Plan for the Civilian Radioactive Waste Management Program. The Mission Plan is divided into two parts. Part I describes the overall goals, objectives, and strategy for the disposal of spent nuclear fuel and high-level waste. It explains that, to meet the directives of the Nuclear Waste Policy Act, the DOE intends to site, design, construct., and start operating a mined geologic repository by January 31, 1998. The Act specifies that the costs of these

112

Los Alamos National Laboratory Transuranic Waste Program Exceeds Planned  

Broader source: Energy.gov (indexed) [DOE]

Los Alamos National Laboratory Transuranic Waste Program Exceeds Los Alamos National Laboratory Transuranic Waste Program Exceeds Planned Shipping Goal Los Alamos National Laboratory Transuranic Waste Program Exceeds Planned Shipping Goal May 1, 2012 - 12:00pm Addthis LOS ALAMOS, N.M. - Los Alamos National Laboratory's (LANL) Transuranic (TRU) Waste Program is looking at another record-setting month for the amount of TRU waste leaving Material Disposal Area G, headed to the Waste Isolation Pilot Plant (WIPP) for permanent disposal. LANL exceeded its planned removal of TRU waste from Area G in April, shipping more than 91 cubic meters of waste to WIPP - more than the Lab has ever shipped there in a single month. The Lab is headed for an even more successful May, with 99 cubic meters shipped to WIPP as of May 22. "Our shipping performance reflects the acceleration that began last

113

Experimental program plan for the Waste Isolation Pilot Plant  

SciTech Connect (OSTI)

The US Department of Energy has prepared this Experimental Program Plan for the Waste Isolation Pilot Plant (EPP) to provide a summary of the DOE experimental efforts needed for the performance assessment process for the WIPP, and of the linkages of this process to the appropriate regulations. The Plan encompasses a program of analyses of the performance of the planned repository based on scientific studies, including tests with transuranic waste at laboratory sites, directed at evaluating compliance with the principal regulations governing the WIPP. The Plan begins with background information on the WIPP project, the requirements of the LWA (Land Withdrawal Act), and its objective and scope. It then presents an overview of the regulatory requirements and the compliance approach. Next are comprehensive discussions of plans for compliance with disposal regulations, followed by the SWDA (Solid Waste Disposal Act) and descriptions of activity programs designed to provide information needed for determining compliance. Descriptions and justifications of all currently planned studies designed to support regulatory compliance activities are also included.

Not Available

1994-01-01T23:59:59.000Z

114

Office of Waste Processing Technical Exchange  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Event Media Links Event Media Links Session 1: Technical Exchange Opening Topic Speaker PDF Podcast S01-01 Welcome T. Michalske, SRNL N/A Podcast S01-03 Introductions G. Flowers, SRNS N/A Podcast S01-04 Opening Remarks I. Triay, DOE-EM Presentation PDF Podcast S01-05 Status of Waste Processing Technology Development S. Schneider, DOE-EM Presentation PDF Podcast S01-06 Hanford/SRS Tank Waste Path Forward K. Subramanian/ T. Sams, SRR/WRPS Presentation PDF Podcast S01-07 Fluidized Bed Steam Reformer Overview B. Mason, TTT Presentation PDF Podcast S01-08 Next Generation Cesium Solvent B.Moyer/S. Fink/M. Geeting, ORNL/SRNL/SRR Presentation PDF Podcast S01-09 Rotary Microfilter Development/Small Column Ion Exchange D. Herman/ R. Edwards, SRNL/SRR Presentation PDF Podcast Session 2: Increased Waste Loading - Improved Current Processing

115

Establishing and Implementing a Waste Minimization Program in the Chemical and Oil Industries  

E-Print Network [OSTI]

The incentives for establishing and the expertise for implementing successful waste minimization programs can be found in every company. The in-house expertise that discovers, designs, builds and manages manufacturing processes understand...

Hollod, G. J.; Marton, R. J.

116

Organic Tanks Safety Program: Waste aging studies  

SciTech Connect (OSTI)

The underground storage tanks at the Hanford Complex contain wastes generated from many years of plutonium production and recovery processes, and mixed wastes from radiological degradation processes. The chemical changes of the organic materials used in the extraction processes have a direct on several specific safety issues, including potential energy releases from these tanks. This report details the first year`s findings of a study charged with determining how thermal and radiological processes may change the composition of organic compounds disposed to the tank. Their approach relies on literature precedent, experiments with simulated waste, and studies of model reactions. During the past year, efforts have focused on the global reaction kinetics of a simulated waste exposed to {gamma} radiation, the reactions of organic radicals with nitrite ion, and the decomposition reactions of nitro compounds. In experiments with an organic tank non-radioactive simulant, the authors found that gas production is predominantly radiolytically induced. Concurrent with gas generation they observe the disappearance of EDTA, TBP, DBP and hexone. In the absence of radiolysis, the TBP readily saponifies in the basic medium, but decomposition of the other compounds required radiolysis. Key organic intermediates in the model are C-N bonded compounds such as oximes. As discussed in the report, oximes and nitro compounds decompose in strong base to yield aldehydes, ketones and carboxylic acids (from nitriles). Certain aldehydes can react in the absence of radiolysis to form H{sub 2}. Thus, if the pathways are correct, then organic compounds reacting via these pathways are oxidizing to lower energy content. 75 refs.

Camaioni, D.M.; Samuels, W.D.; Lenihan, B.D.; Clauss, S.A.; Wahl, K.L.; Campbell, J.A.

1994-11-01T23:59:59.000Z

117

ORISE: Process and Program Evaluation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

As an integral part of producing effective health and safety programs, the Oak Ridge Institute for Science and Education (ORISE) conducts scientific-based process and...

118

Office of Waste Processing Technical Exchange  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EM Waste Processing Technical Exchange 2010 Agenda EM Waste Processing Technical Exchange 2010 Agenda (Sponsored by EM Office of Waste Processing) November 16 - 18, 2010; Loews Hotel, Atlanta, GA 11/2/2010 Monday, November 15, 2010 5:00 - 7:00 pm Early Registration and Speaker Check-in *Light Refreshments Tuesday Morning, November 16, 2010 Session 1: Technical Exchange Opening (Chair: W. Wilmarth); Salon D Live Webcast Click the video icon to view Session 1 Live Webcast Submit Question Click the Question icon to submit a question. Time Topic Speaker 7:00 am Registration and Check-in 8:00 am S01-01 Welcome T. Michalske, SRNL 8:05 am S01-02 Opening Comments Y. Collazo, DOE-EM 8:15 am S01-03 Introductions G. Flowers, SRNS 8:20 am S01-04 Opening Remarks I. Triay, DOE-EM 8:45 am S01-05 Status of Waste Processing Technology Development

119

Tank waste remediation system vadose zone program plan  

SciTech Connect (OSTI)

The objective of the vadose zone characterization under this program is to develop a better conceptual geohydrologic model of identified tank farms which will be characterized so that threats to human health and the environment from past leaks and spills, intentional liquid discharges, potential future leaks during retrieval, and from residual contaminants that may remain in tank farms at closure can be explicitly addressed in decision processes. This model will include geologic, hydrologic, and hydrochemical parameters as defined by the requirements of each of the TWRS programs identified here. The intent of this TWRS Vadose Zone Program Plan is to provide justification and an implementation plan for the following activities: Develop a sufficient understanding of subsurface conditions and transport processes to support decisions on management, cleanup, and containment of past leaks, spills, and intentional liquid discharges; Develop a sufficient understanding of transport processes to support decisions on controlling potential retrieval leaks; Develop a sufficient understanding of transport processes to support decisions on tank farm closure, including allowable residual waste that may remain at closure; and Provide new information on geotechnical properties in the 200 Area to supplement data used for design and performance assessment for immobilized low-activity waste disposal facilities.

Fredenburg, E.A.

1998-07-27T23:59:59.000Z

120

Idaho Site Taps Old World Process to Treat Nuclear Waste | Department of  

Broader source: Energy.gov (indexed) [DOE]

Idaho Site Taps Old World Process to Treat Nuclear Waste Idaho Site Taps Old World Process to Treat Nuclear Waste Idaho Site Taps Old World Process to Treat Nuclear Waste September 9, 2013 - 12:00pm Addthis The Idaho site's sodium distillation system. The Idaho site's sodium distillation system. The top of a sodium distillation vessel, where waste enters the system. The top of a sodium distillation vessel, where waste enters the system. The Idaho site's sodium distillation system. The top of a sodium distillation vessel, where waste enters the system. IDAHO FALLS, Idaho - The EM program at the Idaho site is using an age-old process to treat transuranic (TRU) waste left over from nuclear reactor experiments. Developed in the first century and perfected by moonshiners in the 19th century, distillation will be used at the Idaho Nuclear Technology and

Note: This page contains sample records for the topic "waste processing program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Apply process integration to waste minimization  

SciTech Connect (OSTI)

This article presents a systematic method for identifying process modifications to minimize waste generation. It is based on the hierarchical decision procedure, which provides a framework for identifying process improvement options and evaluating heat and mass integration opportunities. The article deals specifically with an adaptation of the hierarchical decision approach for use in pollution abatement applications. The article also illustrates the use of the technique by applying it to the fluid catalytic cracking unit at Amoco Oil Co.'s Yorktown, VA, refinery.

Rossiter, A.P.; Spriggs, H.D. (Linnhoff March, Inc., Leesburg, VA (United States)); Klee, H. Jr. (Amoco Corp., Chicago, IL (United States))

1993-01-01T23:59:59.000Z

122

A model for a national low level waste program  

SciTech Connect (OSTI)

A national program for the management of low level waste is essential to the success of environmental clean-up, decontamination and decommissioning, current operations and future missions. The value of a national program is recognized through procedural consistency and a shared set of resources. A national program requires a clear waste definition and an understanding of waste characteristics matched against available and proposed disposal options. A national program requires the development and implementation of standards and procedures for implementing the waste hierarchy, with a specitic emphasis on waste avoidance, minimization and recycling. It requires a common set of objectives for waste characterization based on the disposal facility's waste acceptance criteria, regulatory and license requirements and performance assessments. Finally, a national waste certification program is required to ensure compliance. To facilitate and enhance the national program, a centralized generator services organization, tasked with providing technical services to the generators on behalf of the national program, is necessary. These subject matter experts are the interface between the generating sites and the disposal facility(s). They provide an invaluable service to the generating organizations through their involvement in waste planning prior to waste generation and through championing implementation of the waste hierarchy. Through their interface, national treatment and transportation services are optimized and new business opportunities are identified. This national model is based on extensive experience in the development and on-going management of a national transuranic waste program and management of the national repository, the Waste Isolation Pilot Plant. The Low Level Program at the Savannah River Site also successfully developed and implemented the waste hierarchy, waste certification and waste generator services concepts presented below. The Savannah River Site services over forty generators and has historically managed over 12,000 cubic meters of low level waste annually. The results of the waste minimization program at the site resulted in over 900 initiatives, avoiding over 220,000 cubic meters of waste for a life cycle cost savings of $275 million. At the Los Alamos National Laboratory, the low level waste program services over 20 major generators and several hundred smaller generators that produce over 4,000 cubic meters of low level waste annually. The Los Alamos National Laboratory low level waste program utilizes both on-site and off-site disposal capabilities. Off-site disposal requires the implementation of certification requirements to utilize both federal and commercial options. The Waste Isolation Pilot Plant is the US Department of Energy's first deep geological repository for the permanent disposal of Transuanic waste. Transuranic waste was generated and retrievably stored at 39 sites across the US. Transuranic waste is defined as waste with a radionuclide concentration equal to or greater than 100 nCi/g consisting of radionuclides with half-lives greater than 20 years and with an atomic mass greater than uranium. Combining the lessons learned from the national transuranic waste program, the successful low level waste program at Savannah River Site and the experience of off-site disposal options at Los Alamos National Laboratory provides the framework and basis for developing a viable national strategy for managing low level waste.

Blankenhorn, James A [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

123

Process for treating alkaline wastes for vitrification  

DOE Patents [OSTI]

A process for treating alkaline wastes for vitrification. The process involves acidifying the wastes with an oxidizing agent such as nitric acid, then adding formic acid as a reducing agent, and then mixing with glass formers to produce a melter feed. The nitric acid contributes nitrates that act as an oxidant to balance the redox of the melter feed, prevent reduction of certain species to produce conducting metals, and lower the pH of the wastes to a suitable level for melter operation. The formic acid reduces mercury compounds to elemental mercury for removal by steam stripping, and MnO.sub.2 to the Mn(II) ion to prevent foaming of the glass melt. The optimum amounts of nitric acid and formic acid are determined in relation to the composition of the wastes, including the concentrations of mercury (II) and MnO.sub.2, noble metal compounds, nitrates, formates and so forth. The process minimizes the amount of hydrogen generated during treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product.

Hsu, Chia-lin W. (Augusta, GA)

1995-01-01T23:59:59.000Z

124

Process for treating alkaline wastes for vitrification  

DOE Patents [OSTI]

A process is described for treating alkaline wastes for vitrification. The process involves acidifying the wastes with an oxidizing agent such as nitric acid, then adding formic acid as a reducing agent, and then mixing with glass formers to produce a melter feed. The nitric acid contributes nitrates that act as an oxidant to balance the redox of the melter feed, prevent reduction of certain species to produce conducting metals, and lower the pH of the wastes to a suitable level for melter operation. The formic acid reduces mercury compounds to elemental mercury for removal by steam stripping, and MnO{sub 2} to the Mn(II) ion to prevent foaming of the glass melt. The optimum amounts of nitric acid and formic acid are determined in relation to the composition of the wastes, including the concentrations of mercury (II) and MnO{sub 2}, noble metal compounds, nitrates, formates and so forth. The process minimizes the amount of hydrogen generated during treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product. 4 figs.

Hsu, C.L.W.

1995-07-25T23:59:59.000Z

125

Land treatment for seafood processing waste  

SciTech Connect (OSTI)

The purpose of this paper is twofold. The first is to describe selected waste water parameters at two small seafood processing plants in the eastern part of North Carolina. The second is to describe the land treatment system serving these industries and to characterize the quality of the shallow ground water exiting these systems. One of the seafood processing plants is a flounder fileting operation and the other processes crabs. Both plants employ between 10 and 40 individuals, and the processing operation is done mostly by hand.

Rubin, A.R.; McClease, J.D.; Morgan, C.B.

1983-12-01T23:59:59.000Z

126

Geotechnical/geochemical characterization of advanced coal process waste streams: Task 2  

SciTech Connect (OSTI)

Successful disposal practices for solid wastes produced from advanced coal combustion and coal conversion processes must provide for efficient management of relatively large volumes of wastes in a cost-effective and environmentally safe manner. At present, most coal-utilization solid wastes are disposed of using various types of land-based systems, and it is probable that this disposal mode will continue to be widely used in the future for advanced process wastes. Proper design and operation of land-based disposal systems for coal combustion wastes normally require appropriate waste transfer, storage, and conditioning subsystems at the plant to prepare the waste for transport to an ultimate disposal site. Further, the overall waste management plan should include a by-product marketing program to minimize the amount of waste that will require disposal. In order to properly design and operate waste management systems for advanced coal-utilization processes, a fundamental understanding of the physical properties, chemical and mineral compositions, and leaching behaviors of the wastes is required. In order to gain information about the wastes produced by advanced coal-utilization processes, 55 waste samples from 16 different coal gasification, fluidized-bed coal combustion (FBC), and advanced flue gas scrubbing processes were collected. Thirty-four of these wastes were analyzed for their bulk chemical and mineral compositions and tested for a detailed set of disposal-related physical properties. The results of these waste characterizations are presented in this report. In addition to the waste characterization data, this report contains a discussion of potentially useful waste management practices for advanced coal utilization processes.

Moretti, C.J.; Olson, E.S.

1992-09-01T23:59:59.000Z

127

Optimizing the National TRU waste system transportation program.  

SciTech Connect (OSTI)

The goal of the National TRU Waste Program (NTP) is to operate the system safely and cost-effectively, in compliance with applicable regulations and agreements, and at full capacity in a fully integrated mode. One of the objectives of the Department of Energy's Carlsbad Field Office (DOE/CBFO) is to complete the current Waste Isolation Pilot Plant (WIPP) mission for the disposal of the nation's legacy transuranic (TRU) waste at least IO years earlier thus saving approximately %7B. The National TRU Waste Optimization Plan (1) recommends changes to accomplish this. This paper discusses the optimization of the National TRU Waste System Transportation Program.

Lott, S. A. (Sheila A.); Countiss, S. (Sue)

2002-01-01T23:59:59.000Z

128

DOE's Transuranic Waste Processing Center Surpasses 3 Million...  

Office of Environmental Management (EM)

DOE's Transuranic Waste Processing Center Surpasses 3 Million Safe Work Hours DOE's Transuranic Waste Processing Center Surpasses 3 Million Safe Work Hours August 1, 2011 - 12:00pm...

129

Waste immobilization process development at the Savannah River Plant  

SciTech Connect (OSTI)

Processes to immobilize various wasteforms, including waste salt solution, transuranic waste, and low-level incinerator ash, are being developed. Wasteform characteristics, process and equipment details, and results from field/pilot tests and mathematical modeling studies are discussed.

Charlesworth, D L

1986-01-01T23:59:59.000Z

130

Title 40 CFR 270: EPA Administered Programs: The Hazardous Waste...  

Open Energy Info (EERE)

: EPA Administered Programs: The Hazardous Waste Program Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 40 CFR 270:...

131

Waste Treatment Plant and Tank Farm Program | Department of Energy  

Office of Environmental Management (EM)

Plant and Tank Farm Program Waste Treatment Plant and Tank Farm Program This photo shows the Pretreatment Facility control room building pad at the Office of River Protection at...

132

The Rocky Flats Plant Waste Stream and Residue Identification and Characterization Program (WSRIC): Progress and achievements  

SciTech Connect (OSTI)

The Waste Stream and Residue Identification and Characterization (WSRIC) Program, as described in the WSRIC Program Description delineates the process knowledge used to identify and characterize currently-generated waste from approximately 5404 waste streams originating from 576 processes in 288 buildings at Rocky Flats Plant (RFP). Annual updates to the WSRIC documents are required by the Federal Facilities Compliance Agreement between the US Department of Energy, the Colorado Department of Health and the Environmental Protection Agency. Accurate determination and characterization of waste is a crucial component in RFP`s waste management strategy to assure compliance with Resource Conservation and Recovery Act (RCRA) storage and treatment requirements, as well as disposal acceptance criteria. The WSRIC Program was rebaselined in September 1992, and serves as the linchpin for documenting process knowledge in RFP`s RCRA operating record. Enhancements to the WSRIC include strengthening the waste characterization rationale, expanding WSRIC training for waste generators, and incorporating analytical information into the WSRIC building books. These enhancements will improve credibility with the regulators and increase waste generators` understanding of the basis for credible waste characterizations.

Ideker, V.L. [EG and G Rocky Flats, Inc., Golden, CO (United States). Rocky Flats Plant; Doyle, G.M. [USDOE Rocky Flats Office, Golden, CO (United States)

1994-02-01T23:59:59.000Z

133

Solid Waste Management Policy and Programs (Minnesota) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Policy and Programs (Minnesota) Policy and Programs (Minnesota) Solid Waste Management Policy and Programs (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State Minnesota Program Type Siting and Permitting These statutes encourage the State and local governments to develop waste management strategies to achieve the maximum possible reduction in waste generation, eliminate or reduce adverse environmental impacts, encourage

134

Office of Waste Processing Technical Exchange  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Agenda Hotel Register Contacts Event Media Speaker Information Home Agenda Hotel Register Contacts Event Media Speaker Information Home Environmental Management Waste Processing Technical Exchange 2010 in Atlanta, GA, November 16 - 18. Over the past eight years, personnel from the three sites, Savannah River/Hanford/Idaho along with others receiving funding from the Environmental Management Office of Waste Processing have met to exchange recent results of on-going field operations and technology development. The purpose of this exchange is to provide a forum for discussion of each Site's efforts to accelerate cleanup operations. Keys to success and lessons learned are openly exchanged in a manner to allow for open discussion between operations, engineering and scientists to accelerate transition of technologies from concepts to field implementation.

135

Waste minimization at a plutonium processing facility  

SciTech Connect (OSTI)

As part of Los Alamos National Laboratory`s (LANL) mission to reduce the nuclear danger throughout the world, the plutonium processing facility at LANL maintains expertise and skills in nuclear weapons technologies as well as leadership in all peaceful applications of plutonium technologies, including fuel fabrication for terrestrial and space reactors and heat sources and thermoelectric generators for space missions. Another near-term challenge resulted from two safety assessments performed by the Defense Nuclear Facilities Safety Board and the U.S. Department of Energy during the past two years. These assessments have necessitated the processing and stabilization of plutonium contained in tons of residues so that they can be stored safely for an indefinite period. This report describes waste streams and approaches to waste reduction of plutonium management.

Pillay, K.K.S. [Los Alamos National Laboratory, NM (United States)

1995-12-31T23:59:59.000Z

136

Radioactive waste isolation in salt: peer review of Office of Nuclear Waste Isolation's Socioeconomic Program Plan  

SciTech Connect (OSTI)

The following recommendations have been abstracted from the body of this report. The Office of Nuclear Waste Isolation's Socioeconomic Program Plan for the Establishment of Mined Geologic Repositories to Isolate Nuclear Waste should be modified to: (1) encourage active public participation in the decision-making processes leading to repository site selection; (2) clearly define mechanisms for incorporating the concerns of local residents, state and local governments, and other potentially interested parties into the early stages of the site selection process. In addition, the Office of Nuclear Waste Isolation should carefully review the overall role that these persons and groups, including local pressure groups organized in the face of potential repository development, will play in the siting process; (3) place significantly greater emphasis on using primary socioeconomic data during the site selection process, reversing the current overemphasis on secondary data collection, description of socioeconomic conditions at potential locations, and development of analytical methodologies; (4) include additional approaches to solving socioeconomic problems. For example, a reluctance to acknowledge that solutions to socioeconomic problems need to be found jointly with interested parties is evident in the plan; (5) recognize that mitigation mechanisms other than compensation and incentives may be effective; (6) as soon as potential sites are identified, the US Department of Energy (DOE) should begin discussing impact mitigation agreements with local officials and other interested parties; and (7) comply fully with the pertinent provisions of NWPA.

Winter, R.; Fenster, D.; O'Hare, M.; Zillman, D.; Harrison, W.; Tisue, M.

1984-07-01T23:59:59.000Z

137

An approach for sampling solid heterogeneous waste at the Hanford Site waste receiving and processing and solid waste projects  

SciTech Connect (OSTI)

This paper addresses the problem of obtaining meaningful data from samples of solid heterogeneous waste while maintaining sample rates as low as practical. The Waste Receiving and Processing Facility, Module 1, at the Hanford Site in south-central Washington State will process mostly heterogeneous solid wastes. The presence of hazardous materials is documented for some packages and unknown for others. Waste characterization is needed to segregate the waste, meet waste acceptance and shipping requirements, and meet facility permitting requirements. Sampling and analysis are expensive, and no amount of sampling will produce absolute certainty of waste contents. A sampling strategy is proposed that provides acceptable confidence with achievable sampling rates.

Sexton, R.A.

1993-03-01T23:59:59.000Z

138

Efficient Separations and Processing Crosscutting Program. Technology summary  

SciTech Connect (OSTI)

The Efficient Separations and Processing (ESP) Crosscutting Program was created in 1991 to identify, develop, and perfect separations technologies and processes to treat wastes and address environmental problems throughout the DOE Complex. The ESP funds several multi-year tasks that address high-priority waste remediation problems involving high-level, low-level, transuranic, hazardous, and mixed (radioactive and hazardous) wastes. The ESP supports applied research and development (R and D) leading to demonstration or use of these separations technologies by other organizations within DOE-EM. Treating essentially all DOE defense wastes requires separation methods that concentrate the contaminants and/or purify waste streams for release to the environment or for downgrading to a waste form less difficult and expensive to dispose of. Initially, ESP R and D efforts focused on treatment of high-level waste (HLW) from underground storage tanks (USTs) because of the potential for large reductions in disposal costs and hazards. As further separations needs emerge and as waste management and environmental restoration priorities change, the program has evolved to encompass the breadth of waste management and environmental remediation problems.

NONE

1995-06-01T23:59:59.000Z

139

Hazardous Waste Facility Siting Program (Maryland) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Facility Siting Program (Maryland) Facility Siting Program (Maryland) Hazardous Waste Facility Siting Program (Maryland) < Back Eligibility Commercial Construction Industrial Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Transportation Utility Program Info State Maryland Program Type Siting and Permitting Provider Maryland Department of the Environment The Hazardous Waste Facilities Siting Board is responsible for overseeing the siting of hazardous waste facilities in Maryland, and will treat hazardous waste facilities separately from low-level nuclear waste facilities. This legislation describes the factors considered by the Board in making siting decisions. The Board is authorized to enact rules and regulations pertaining to the siting of hazardous and low-level nuclear

140

Oak Ridge National Laboratory Transuranic Waste Certification Program  

SciTech Connect (OSTI)

The US Department of Energy (DOE) has requested that all DOE facilities handling defense transuranic (TRU) waste develop and implement a program whereby all TRU waste will be contained, stored, and shipped to the Waste Isolation Pilot Plant (WIPP) in accordance with the requirements set forth in the DOE certification documents WIPP-DOE-069, 114, 120, 137, 157, and 158. The program described in this report describes how Oak Ridge National Laboratory (ORNL) intends to comply with these requirements and the techniques and procedures used to ensure that ORNL TRU wastes are certifiable for shipment to WIPP. This document describes the program for certification of newly generated (NG) contact-handled transuranic (CH-TRU) waste. Previsions have been made for addenda, which will extend the coverage of this document to include certification of stored CH-TRU and NG and stored remote-handled transuranic (RH-TRU) waste, as necessary. 24 refs., 11 figs., 4 tabs.

Smith, J.H.; Bates, L.D.; Box, W.D.; Aaron, W.S.; Setaro, J.A.

1988-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste processing program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Savannah River Site Marks Waste Processing Milestone with Melter's  

Broader source: Energy.gov (indexed) [DOE]

Savannah River Site Marks Waste Processing Milestone with Savannah River Site Marks Waste Processing Milestone with Melter's 2,000th Waste Canister Savannah River Site Marks Waste Processing Milestone with Melter's 2,000th Waste Canister February 1, 2012 - 12:00pm Addthis A Savannah River Remediation employee uses a manipulator located inside a shielded enclosure at the Defense Waste Processing Facility, where a melter pours molten glass into a canister. A Savannah River Remediation employee uses a manipulator located inside a shielded enclosure at the Defense Waste Processing Facility, where a melter pours molten glass into a canister. AIKEN, S.C. - The second melter to operate in the 16-year history of the nation's largest radioactive waste glassification plant shows no signs of slowing after recently pouring its 2,000 canister of glass-formed hazardous

142

Savannah River Site Marks Waste Processing Milestone with Melter's  

Broader source: Energy.gov (indexed) [DOE]

Marks Waste Processing Milestone with Marks Waste Processing Milestone with Melter's 2,000th Waste Canister Savannah River Site Marks Waste Processing Milestone with Melter's 2,000th Waste Canister February 1, 2012 - 12:00pm Addthis A Savannah River Remediation employee uses a manipulator located inside a shielded enclosure at the Defense Waste Processing Facility, where a melter pours molten glass into a canister. A Savannah River Remediation employee uses a manipulator located inside a shielded enclosure at the Defense Waste Processing Facility, where a melter pours molten glass into a canister. AIKEN, S.C. - The second melter to operate in the 16-year history of the nation's largest radioactive waste glassification plant shows no signs of slowing after recently pouring its 2,000 canister of glass-formed hazardous

143

November 8, 1983: Defense Waste Processing Facility | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

November 8, 1983: Defense Waste Processing Facility November 8, 1983: Defense Waste Processing Facility November 8, 1983: Defense Waste Processing Facility November 8, 1983: Defense Waste Processing Facility November 8, 1983 The Department begins construction of the Defense Waste Processing Facility (DWPF) at the Savannah River Plant in South Carolina. DWPF is designed to make high-level nuclear waste into a glass-like substance, which will then be shipped to a repository. DWPF will mix borosilicate glass with the waste, heat it to 2000 degrees F, and pour the mixture into stainless steel canisters. The mixture will cool into solid glass that can be permanently stored. DWPF will immobilize the more than 34 million gallons of liquid high-level waste that have accumulated from producing defense-related nuclear materials

144

Solid Waste Program Fiscal Year 1996 Multi-Year Program Plan WBS 1.2.1, Revision 1  

SciTech Connect (OSTI)

This document contains the Fiscal Year 1996 Multi-Year Program Plan for the Solid Waste Program at the Hanford Reservation in Richland, Washington. The Solid Waste Program treats, stores, and disposes of a wide variety of solid wastes consisting of radioactive, nonradioactive and hazardous material types. Solid waste types are typically classified as transuranic waste, low-level radioactive waste, low-level mixed waste, and non-radioactive hazardous waste. This report describes the mission, goals and program strategies for the Solid Waste Program for fiscal year 1996 and beyond.

NONE

1995-09-01T23:59:59.000Z

145

Facility design philosophy: Tank Waste Remediation System Process support and infrastructure definition  

SciTech Connect (OSTI)

This report documents the current facility design philosophy for the Tank Waste Remediation System (TWRS) process support and infrastructure definition. The Tank Waste Remediation System Facility Configuration Study (FCS) initially documented the identification and definition of support functions and infrastructure essential to the TWRS processing mission. Since the issuance of the FCS, the Westinghouse Hanford Company (WHC) has proceeded to develop information and requirements essential for the technical definition of the TWRS treatment processing programs.

Leach, C.E.; Galbraith, J.D. [Westinghouse Hanford Co., Richland, WA (United States); Grant, P.R.; Francuz, D.J.; Schroeder, P.J. [Fluor Daniel, Inc., Richland, WA (United States)

1995-11-01T23:59:59.000Z

146

Hanford site waste minimization and pollution prevention awareness program  

SciTech Connect (OSTI)

This plan documents the requirements of the Hanford Site Waste Minimization/Pollution Prevention (WMin/P2) Program. The plan specifies requirements for Hanford contractors to prevent pollution from entering the environment, to conserve resources and energy, and to reduce the quantity and toxicity of hazardous, radioactive, mixed, and sanitary waste generated at Hanford. The Pollution Prevention Awareness Program required by DOE 5400.1 (DOE 1988A) is included in the Hanford WMin/P2 Program.

Kirkendall, J.R.

1996-09-23T23:59:59.000Z

147

Savannah River Site- Salt Waste Processing Facility: Briefing on the Salt Waste Processing Facility Independent Technical Review  

Broader source: Energy.gov [DOE]

This is a presentation outlining the Salt Waste Processing Facility process, major risks, approach for conducting reviews, discussion of the findings, and conclusions.

148

Transuranic Waste Characterization Quality Assurance Program Plan  

SciTech Connect (OSTI)

This quality assurance plan identifies the data necessary, and techniques designed to attain the required quality, to meet the specific data quality objectives associated with the DOE Waste Isolation Pilot Plant (WIPP). This report specifies sampling, waste testing, and analytical methods for transuranic wastes.

NONE

1995-04-30T23:59:59.000Z

149

EPA Citizens Guide to Hazardous Waste Permitting Process | Open...  

Open Energy Info (EERE)

Citizens Guide to Hazardous Waste Permitting Process Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA Citizens Guide to Hazardous Waste Permitting...

150

GEOTECHNICAL/GEOCHEMICAL CHARACTERIZATION OF ADVANCED COAL PROCESS WASTE STREAMS  

SciTech Connect (OSTI)

Thirteen solid wastes, six coals and one unreacted sorbent produced from seven advanced coal utilization processes were characterized for task three of this project. The advanced processes from which samples were obtained included a gas-reburning sorbent injection process, a pressurized fluidized-bed coal combustion process, a coal-reburning process, a SO{sub x}, NO{sub x}, RO{sub x}, BOX process, an advanced flue desulfurization process, and an advanced coal cleaning process. The waste samples ranged from coarse materials, such as bottom ashes and spent bed materials, to fine materials such as fly ashes and cyclone ashes. Based on the results of the waste characterizations, an analysis of appropriate waste management practices for the advanced process wastes was done. The analysis indicated that using conventional waste management technology should be possible for disposal of all the advanced process wastes studied for task three. However, some wastes did possess properties that could present special problems for conventional waste management systems. Several task three wastes were self-hardening materials and one was self-heating. Self-hardening is caused by cementitious and pozzolanic reactions that occur when water is added to the waste. All of the self-hardening wastes setup slowly (in a matter of hours or days rather than minutes). Thus these wastes can still be handled with conventional management systems if care is taken not to allow them to setup in storage bins or transport vehicles. Waste self-heating is caused by the exothermic hydration of lime when the waste is mixed with conditioning water. If enough lime is present, the temperature of the waste will rise until steam is produced. It is recommended that self-heating wastes be conditioned in a controlled manner so that the heat will be safely dissipated before the material is transported to an ultimate disposal site. Waste utilization is important because an advanced process waste will not require ultimate disposal when it is put to use. Each task three waste was evaluated for utilization potential based on its physical properties, bulk chemical composition, and mineral composition. Only one of the thirteen materials studied might be suitable for use as a pozzolanic concrete additive. However, many wastes appeared to be suitable for other high-volume uses such as blasting grit, fine aggregate for asphalt concrete, road deicer, structural fill material, soil stabilization additives, waste stabilization additives, landfill cover material, and pavement base course construction.

Edwin S. Olson; Charles J. Moretti

1999-11-01T23:59:59.000Z

151

Radioactive waste isolation in salt: peer review of Office of Nuclear Waste Isolation's Socioeconomic Program Plan  

SciTech Connect (OSTI)

The ONWI Socioeconomic Program Plan spells out DOE's approach to analyzing the socioeconomic impacts from siting, constructing, and operating radioactive waste repositories and discusses mitigation strategies. The peer review indicated the following modifications should be made to the Plan: encourage active public participation in the decision-making processes leading to repository site selection; clearly define mechanisms for incorporating the concerns of local residents, state and local governments, and other potentially interested parties into the early stages of the site selection process; place significantly greater emphasis on using primary socioeconomic data during the site selection process, reversing the current overemphasis on secondary data collection, description of socioeconomic conditions at potential locations, and development of analytical methodologies; recognize that mitigation mechanisms other than compensation and incentives may be effective; as soon as potential sites are identified, the US Department of Energy (DOE) should begin discussing impact mitigation agreements with local officials and other interested parties; and comply fully with the pertinent provisions of NWPA.

Winter, R.; Fenster, D.; O'Hare, M.; Zillman, D.; Harrison, W.; Tisue, M.

1984-02-01T23:59:59.000Z

152

Construction Begins on New Waste Processing Facility | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Construction Begins on New Waste Processing Facility Construction Begins on New Waste Processing Facility Construction Begins on New Waste Processing Facility February 9, 2012 - 12:00pm Addthis Workers construct a new facility that will help Los Alamos National Laboratory accelerate the shipment of transuranic (TRU) waste to the Waste Isolation Pilot Plant (WIPP) in Carlsbad for permanent disposal. Workers construct a new facility that will help Los Alamos National Laboratory accelerate the shipment of transuranic (TRU) waste to the Waste Isolation Pilot Plant (WIPP) in Carlsbad for permanent disposal. Construction has begun on a new facility that will help Los Alamos National Laboratory accelerate the shipment of transuranic (TRU) waste stored in large boxes at Technical Area 54, Area G. Construction has begun on a new facility that will help Los Alamos National

153

DOE Seeks Independent Evaluation of Remote-Handled Waste Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Seeks Independent Evaluation Seeks Independent Evaluation Of Remote-Handled Waste Program CARLSBAD, N.M., July 24, 2001 - An independent panel of scientific and engineering experts will convene July 30 in Carlsbad to evaluate U.S. Department of Energy (DOE) plans for managing remote-handled (RH) transuranic (TRU) waste at the Waste Isolation Pilot Plant (WIPP). DOE's Carlsbad Field Office has asked the American Society of Mechanical Engineers and the Institute for Regulatory Science to review its proposed RH-TRU waste program. The program must be approved by the New Mexico Environment Department and the U.S. Environmental Protection Agency before DOE will be permitted to accept and dispose of RH-TRU waste at WIPP. "Safety and compliance are our primary considerations in developing the plans for

154

Federal Energy Management Program: Metering Process  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Process Process to someone by E-mail Share Federal Energy Management Program: Metering Process on Facebook Tweet about Federal Energy Management Program: Metering Process on Twitter Bookmark Federal Energy Management Program: Metering Process on Google Bookmark Federal Energy Management Program: Metering Process on Delicious Rank Federal Energy Management Program: Metering Process on Digg Find More places to share Federal Energy Management Program: Metering Process on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance Federal Requirements Program Management Commissioning Metering Systems Approaches Process Computerized Maintenance Management Systems Maintenance Types Major Equipment Types Resources Contacts Greenhouse Gases Water Efficiency Data Center Energy Efficiency

155

WAC - 173 - 226 - Waste Discharge General Permit Program | Open...  

Open Energy Info (EERE)

Reference LibraryAdd to library Legal Document- RegulationRegulation: WAC - 173 - 226 - Waste Discharge General Permit ProgramLegal Published NA Year Signed or Took Effect 2002...

156

Independent Oversight Assessment, Salt Waste Processing Facility Project -  

Broader source: Energy.gov (indexed) [DOE]

Salt Waste Processing Facility Salt Waste Processing Facility Project - January 2013 Independent Oversight Assessment, Salt Waste Processing Facility Project - January 2013 January 2013 Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project The U.S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security (HSS), conducted an independent assessment of nuclear safety culture at the Salt Waste Processing Facility (SWPF) Project. The primary objective of the evaluation was to provide information regarding the status of the safety culture at the SWPF Project. The data collection phase of the assessment occurred during August - September 2012. Independent Oversight Assessment, Salt Waste Processing Facility Project -

157

Environmentally-friendly organochlorine waste processing and recycling  

E-Print Network [OSTI]

; 5) purification of VCM; 6) burning organochlorine waste (OCW) (Lakshmanan et al., 1999). In additionEnvironmentally-friendly organochlorine waste processing and recycling Sergei A. Kurta a , Alex A in revised form 12 May 2013 Accepted 12 May 2013 Available online 20 May 2013 Keywords: Organochlorine waste

Volinsky, Alex A.

158

EIS-0082: Defense Waste Processing Facility, Savannah River Plant  

Broader source: Energy.gov [DOE]

The Office of Defense Waste and Byproducts Management developed this EIS to provide environmental input into both the selection of an appropriate strategy for the permanent disposal of the high-level radioactive waste currently stored at the Savannah River Plant (SRP) and the subsequent decision to construct and operate a Defense Waste Processing Facility at the SRP site.

159

Effects of biodrying process on municipal solid waste properties  

Science Journals Connector (OSTI)

In this paper, the effect of biodrying process on municipal solid waste (MSW) properties was studied. The results obtained indicated that after 14d, biodrying reduced the water content of waste, allowing the production of biodried waste with a net heating value (NHV) of 16,7792,074kJkg?1 wet weight, i.e. 41% higher than that of untreated waste. The low moisture content of the biodried material reduced, also, the potential impacts of the waste, i.e. potential self-ignition and potential odors production. Low waste impacts suggest to landfill the biodried material obtaining energy via biogas production by waste re-moistening, i.e. bioreactor. Nevertheless, results of this work indicate that biodrying process because of the partial degradation of the organic fraction contained in the waste (losses of 290gkg?1 VS), reduced of about 28% the total producible biogas.

F. Tambone; B. Scaglia; S. Scotti; F. Adani

2011-01-01T23:59:59.000Z

160

Federal Energy Management Program: Commissioning Process  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Commissioning Commissioning Process to someone by E-mail Share Federal Energy Management Program: Commissioning Process on Facebook Tweet about Federal Energy Management Program: Commissioning Process on Twitter Bookmark Federal Energy Management Program: Commissioning Process on Google Bookmark Federal Energy Management Program: Commissioning Process on Delicious Rank Federal Energy Management Program: Commissioning Process on Digg Find More places to share Federal Energy Management Program: Commissioning Process on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance Federal Requirements Program Management Commissioning Types Process Metering Computerized Maintenance Management Systems Maintenance Types Major Equipment Types Resources Contacts Greenhouse Gases

Note: This page contains sample records for the topic "waste processing program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Characterization of industrial process waste heat and input heat streams  

SciTech Connect (OSTI)

The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

1984-05-01T23:59:59.000Z

162

Transuranic Waste Processing Center Oak Ridge Site Specific...  

Broader source: Energy.gov (indexed) [DOE]

Transuranic Waste Processing Update Oak Ridge Site Specific Advisory Board May 14, 2014 Laura Wilkerson, Portfolio Federal Project Director Karen Deacon, Deputy Federal Project...

163

Electromagnetic mixed-waste processing system for asbestos decontamination  

SciTech Connect (OSTI)

The first phase of a program to develop and demonstrate a cost-effective, integrated process for remediation of asbestos-containing material that is contaminated with organics, heavy metals, and radioactive compounds was successfully completed. Laboratory scale tests were performed to demonstrate initial process viability for asbestos conversion, organics removal, and radionuclide and heavy metal removal. All success criteria for the laboratory tests were met. (1) Ohio DSI demonstrated greater than 99% asbestos conversion to amorphous solids using their commercial process. (2) KAI demonstrated 90% removal of organics from the asbestos suspension. (3) Westinghouse STC achieved the required metals removal criteria on a laboratory scale (e.g., 92% removal of uranium from solution, resin loadings of 0.6 equivalents per liter, and greater than 50% regeneration of resin in a batch test.) Using the information gained in the laboratory tests, the process was reconfigured to provide the basis for the mixed waste remediation system. An integrated process is conceptually developed, and a Phase 2 program plan is proposed to provide the bench-scale development needed in order to refine the design basis for a pilot processing system.

NONE

1995-04-01T23:59:59.000Z

164

Waste Analysis Plan for the Waste Receiving and Processing (WRAP) Facility  

SciTech Connect (OSTI)

The purpose of this waste analysis plan (WAP) is to document the waste acceptance process, sampling methodologies, analytical techniques, and overall processes that are undertaken for dangerous, mixed, and radioactive waste accepted for confirmation, nondestructive examination (NDE) and nondestructive assay (NDA), repackaging, certification, and/or storage at the Waste Receiving and Processing Facility (WRAP). Mixed and/or radioactive waste is treated at WRAP. WRAP is located in the 200 West Area of the Hanford Facility, Richland, Washington. Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge.

TRINER, G.C.

1999-11-01T23:59:59.000Z

165

Thermal processing system concepts and considerations for RWMC buried waste  

SciTech Connect (OSTI)

This report presents a preliminary determination of ex situ thermal processing system concepts and related processing considerations for application to remediation of transuranic (TRU)-contaminated buried wastes (TRUW) at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Beginning with top-level thermal treatment concepts and requirements identified in a previous Preliminary Systems Design Study (SDS), a more detailed consideration of the waste materials thermal processing problem is provided. Anticipated waste stream elements and problem characteristics are identified and considered. Final waste form performance criteria, requirements, and options are examined within the context of providing a high-integrity, low-leachability glass/ceramic, final waste form material. Thermal processing conditions required and capability of key systems components (equipment) to provide these material process conditions are considered. Information from closely related companion study reports on melter technology development needs assessment and INEL Iron-Enriched Basalt (IEB) research are considered. Five potentially practicable thermal process system design configuration concepts are defined and compared. A scenario for thermal processing of a mixed waste and soils stream with essentially no complex presorting and using a series process of incineration and high temperature melting is recommended. Recommendations for applied research and development necessary to further detail and demonstrate the final waste form, required thermal processes, and melter process equipment are provided.

Eddy, T.L.; Kong, P.C.; Raivo, B.D.; Anderson, G.L.

1992-02-01T23:59:59.000Z

166

SRS Liquid Waste Program Partnering Agreement  

Broader source: Energy.gov [DOE]

We the members of the SRS Liquid Waste Partnering Team do hereby mutually agree to work in a collaborative and cooperative manner through open communication and coordination with team members, and...

167

Nuclear Waste Program Faces Political Burial  

Science Journals Connector (OSTI)

...seeking to halt funding for site work in...United States waste disposal Western U.S...choice ofwaste disposal sites. They just...Washington; Yucca Mountain, Nevada; and...list of proposed disposal sites. Titcomb...

ELIOT MARSHALL

1986-08-22T23:59:59.000Z

168

Federal Energy Management Program: Product Designation Process  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Product Product Designation Process to someone by E-mail Share Federal Energy Management Program: Product Designation Process on Facebook Tweet about Federal Energy Management Program: Product Designation Process on Twitter Bookmark Federal Energy Management Program: Product Designation Process on Google Bookmark Federal Energy Management Program: Product Designation Process on Delicious Rank Federal Energy Management Program: Product Designation Process on Digg Find More places to share Federal Energy Management Program: Product Designation Process on AddThis.com... Energy-Efficient Products Federal Requirements Covered Product Categories Product Designation Process Low Standby Power Energy & Cost Savings Calculators Model Acquisitions Language Working Group Resources

169

Application to ship nonmixed transuranic waste to the Nevada Test Site for interim storage. Waste Cerification Program  

SciTech Connect (OSTI)

This report documents various regulations on radioactive waste processing and discusses how the Waste Isolation Pilot Plant will comply with and meet these requirements. Specific procedures are discussed concerning transuranic, metal scrap, salt block, solid, and glove box wastes.

Not Available

1993-12-01T23:59:59.000Z

170

JABSOM EHSO E-WASTE Recycling Program Created: May 13, 2010 Revised: January 6, 2013  

E-Print Network [OSTI]

JABSOM EHSO ­ E-WASTE Recycling Program Created: May 13, 2010 ­ Revised: January 6, 2013 Page 1 of 2 UH eWaste Recycling Program at JABSOM Kaka'ako The University of Hawaii has established a long-term, free-of-charge quarterly recycling program of UH electronic waste (eWaste), compliments of APPLE

Olsen, Stephen L.

171

Process development for remote-handled mixed-waste treatment  

SciTech Connect (OSTI)

The Oak Ridge National Laboratory (ORNL) is developing a treatment process for remote-handled (RH) liquid transuranic mixed waste governed by the concept of minimizing the volume of waste requiring disposal. This task is to be accomplished by decontaminating the bulk components so the process effluent can be disposed with less risk and expense. Practical processes have been demonstrated on the laboratory scale for removing cesium 137 and strontium 90 isotopes from the waste, generating a concentrated waste volume, and rendering the bulk of the waste nearly radiation free for downstream processing. The process is projected to give decontamination factors of 10{sup 4} for cesium and 10{sup 3} for strontium. Because of the extent of decontamination, downstream processing will be contact handled. The transuranic, radioactive fraction of the mixed waste stream will be solidified using a thin-film evaporator and/or microwave solidification system. Resultant solidified waste will be disposed at the Waste Isolation Pilot Plant (WIPP). 8 refs., 2 figs., 3 tabs.

Berry, J.B.; Campbell, D.O.; Lee, D.D.; White, T.L.

1990-01-01T23:59:59.000Z

172

SEP Success Story: Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and Increase Profits  

Broader source: Energy.gov [DOE]

E3, a joint federal initiative between the Energy Departments State Energy Program, the Environmental Protection Agency, the Department of Labor, USDA, the Small Business Administration, and the National Institute of Standards and Technologys Manufacturing Extension Partnership, is helping manufacturing facilities increase competitiveness through efficient production processes, reducing waste, lowering costs, growing jobs and encouraging innovation. Learn more.

173

Independent Oversight Review, Savannah River Site Salt Waste Processing  

Broader source: Energy.gov (indexed) [DOE]

Savannah River Site Salt Waste Savannah River Site Salt Waste Processing Facility - August 2013 Independent Oversight Review, Savannah River Site Salt Waste Processing Facility - August 2013 August 2013 Review of the Savannah River Site Salt Waste Processing Facility Safety Basis and Design Development. This report documents the results of an independent oversight review of the safety basis and design development for the Salt Waste Processing Facility (SWPF) at the U.S. Department of Energy (DOE) Savannah River Site. The review was performed February 12-14, 2013 by DOE's Office of Safety and Emergency Management Evaluations, which is within the DOE Office of Health, Safety and Security. The purpose of the review was to evaluate the safety basis, design, and the associated technical documents developed for

174

Independent Oversight Review, Savannah River Site Salt Waste Processing  

Broader source: Energy.gov (indexed) [DOE]

Savannah River Site Salt Waste Savannah River Site Salt Waste Processing Facility - August 2013 Independent Oversight Review, Savannah River Site Salt Waste Processing Facility - August 2013 August 2013 Review of the Savannah River Site Salt Waste Processing Facility Safety Basis and Design Development. This report documents the results of an independent oversight review of the safety basis and design development for the Salt Waste Processing Facility (SWPF) at the U.S. Department of Energy (DOE) Savannah River Site. The review was performed February 12-14, 2013 by DOE's Office of Safety and Emergency Management Evaluations, which is within the DOE Office of Health, Safety and Security. The purpose of the review was to evaluate the safety basis, design, and the associated technical documents developed for

175

TRU Waste Management Program. Cost/schedule optimization analysis  

SciTech Connect (OSTI)

This Current Year Work Plan presents in detail a description of the activities to be performed by the Joint Integration Office Rockwell International (JIO/RI) during FY86. It breaks down the activities into two major work areas: Program Management and Program Analysis. Program Management is performed by the JIO/RI by providing technical planning and guidance for the development of advanced TRU waste management capabilities. This includes equipment/facility design, engineering, construction, and operations. These functions are integrated to allow transition from interim storage to final disposition. JIO/RI tasks include program requirements identification, long-range technical planning, budget development, program planning document preparation, task guidance development, task monitoring, task progress information gathering and reporting to DOE, interfacing with other agencies and DOE lead programs, integrating public involvement with program efforts, and preparation of reports for DOE detailing program status. Program Analysis is performed by the JIO/RI to support identification and assessment of alternatives, and development of long-term TRU waste program capabilities. These analyses include short-term analyses in response to DOE information requests, along with performing an RH Cost/Schedule Optimization report. Systems models will be developed, updated, and upgraded as needed to enhance JIO/RI's capability to evaluate the adequacy of program efforts in various fields. A TRU program data base will be maintained and updated to provide DOE with timely responses to inventory related questions.

Detamore, J.A.; Raudenbush, M.H.; Wolaver, R.W.; Hastings, G.A.

1985-10-01T23:59:59.000Z

176

Process for removing sulfate anions from waste water  

DOE Patents [OSTI]

A liquid emulsion membrane process for removing sulfate anions from waste water is disclosed. The liquid emulsion membrane process includes the steps of: (a) providing a liquid emulsion formed from an aqueous strip solution and an organic phase that contains an extractant capable of removing sulfate anions from waste water; (b) dispersing the liquid emulsion in globule form into a quantity of waste water containing sulfate anions to allow the organic phase in each globule of the emulsion to extract and absorb sulfate anions from the waste water and (c) separating the emulsion including its organic phase and absorbed sulfate anions from the waste water to provide waste water containing substantially no sulfate anions.

Nilsen, David N. (Lebanon, OR); Galvan, Gloria J. (Albany, OR); Hundley, Gary L. (Corvallis, OR); Wright, John B. (Albany, OR)

1997-01-01T23:59:59.000Z

177

RESULTS OF THE EXTRACTION-SCRUB-STRIP TESTING USING AN IMPROVED SOLVENT FORMULATION AND SALT WASTE PROCESSING FACILITY SIMULATED WASTE  

SciTech Connect (OSTI)

The Office of Waste Processing, within the Office of Technology Innovation and Development, is funding the development of an enhanced solvent - also known as the next generation solvent (NGS) - for deployment at the Savannah River Site to remove cesium from High Level Waste. The technical effort is a collaborative effort between Oak Ridge National Laboratory (ORNL) and Savannah River National Laboratory (SRNL). As part of the program, the Savannah River National Laboratory (SRNL) has performed a number of Extraction-Scrub-Strip (ESS) tests. These batch contact tests serve as first indicators of the cesium mass transfer solvent performance with actual or simulated waste. The test detailed in this report used simulated Tank 49H material, with the addition of extra potassium. The potassium was added at 1677 mg/L, the maximum projected (i.e., a worst case feed scenario) value for the Salt Waste Processing Facility (SWPF). The results of the test gave favorable results given that the potassium concentration was elevated (1677 mg/L compared to the current 513 mg/L). The cesium distribution value, DCs, for extraction was 57.1. As a comparison, a typical D{sub Cs} in an ESS test, using the baseline solvent formulation and the typical waste feed, is {approx}15. The Modular Caustic Side Solvent Extraction Unit (MCU) uses the Caustic-Side Solvent Extraction (CSSX) process to remove cesium (Cs) from alkaline waste. This process involves the use of an organic extractant, BoBCalixC6, in an organic matrix to selectively remove cesium from the caustic waste. The organic solvent mixture flows counter-current to the caustic aqueous waste stream within centrifugal contactors. After extracting the cesium, the loaded solvent is stripped of cesium by contact with dilute nitric acid and the cesium concentrate is transferred to the Defense Waste Processing Facility (DWPF), while the organic solvent is cleaned and recycled for further use. The Salt Waste Processing Facility (SWPF), under construction, will use the same process chemistry. The Office of Waste Processing (EM-31) expressed an interest in investigating the further optimization of the organic solvent by replacing the BoBCalixC6 extractant with a more efficient extractant. This replacement should yield dividends in improving cesium removal from the caustic waste stream, and in the rate at which the caustic waste can be processed. To that end, EM-31 provided funding for both the Savannah River National Laboratory (SRNL) and the Oak Ridge National Laboratory (ORNL). SRNL wrote a Task Technical Quality and Assurance Plan for this work. As part of the envisioned testing regime, it was decided to perform an ESS test using a simulated waste that simulated a typical envisioned SWPF feed, but with added potassium to make the waste more challenging. Potassium interferes in the cesium removal, and its concentration is limited in the feed to <1950 mg/L. The feed to MCU has typically contained <500 mg/L of potassium.

Peters, T.; Washington, A.; Fink, S.

2012-01-09T23:59:59.000Z

178

Process to separate transuranic elements from nuclear waste  

DOE Patents [OSTI]

A process for removing transuranic elements from a waste chloride electrolytic salt containing transuranic elements in addition to rare earth and other fission product elements so the salt waste may be disposed of more easily and the valuable transuranic elements may be recovered for reuse. The salt is contacted with a cadmium-uranium alloy which selectively extracts the transuranic elements from the salt. The waste salt is generated during the reprocessing of nuclear fuel associated with the Integral Fast Reactor (IFR).

Johnson, Terry R. (Wheaton, IL); Ackerman, John P. (Downers Grove, IL); Tomczuk, Zygmunt (Orland Park, IL); Fischer, Donald F. (Glen Ellyn, IL)

1989-01-01T23:59:59.000Z

179

Waste reduction assistance program (WRAP) on-site audit report: Secondary seafood processor  

SciTech Connect (OSTI)

The waste audit report presents the findings of a study at a fish processing plant in Alaska. Process descriptions, waste generation, waste management practices, and waste reduction alternatives are discussed. Recommendations for waste reduction include implementing a heat recovery system, using alternative packaging, and mechanizing processes. Appendices include state regulations and information on the Alaska Science and Technology Foundation.

Not Available

1989-07-28T23:59:59.000Z

180

Organic tanks safety program FY96 waste aging studies  

SciTech Connect (OSTI)

Uranium and plutonium production at the Hanford Site produced large quantities of radioactive by-products and contaminated process chemicals, which are stored in underground tanks awaiting treatment and disposal. Having been made strongly alkaline and then subjected to successive water evaporation campaigns to increase storage capacity, the wastes now exist in the physical forms of salt cakes, metal oxide sludges, and partially saturated aqueous brine solutions. The tanks that contain organic process chemicals mixed with nitrate/nitrite salt wastes may be at risk for fuel- nitrate combustion accidents. The purpose of the Waste Aging Task is to elucidate how chemical and radiological processes will have aged or degraded the organic compounds stored in the tanks. Ultimately, the task seeks to develop quantitative measures of how aging changes the energetic properties of the wastes. This information will directly support efforts to evaluate the hazard as well as to develop potential control and mitigation strategies.

Camaioni, D.M.; Samuels, W.D.; Linehan, J.C.; Clauss, S.A.; Sharma, A.K.; Wahl, K.L.; Campbell, J.A.

1996-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste processing program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Automotive Waste Heat Conversion to Power Program  

Broader source: Energy.gov [DOE]

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

182

Waste Heat Recovery from Industrial Process Heating Equipment -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Waste Heat Recovery from Industrial Process Heating Equipment - Waste Heat Recovery from Industrial Process Heating Equipment - Cross-cutting Research and Development Priorities Speaker(s): Sachin Nimbalkar Date: January 17, 2013 - 11:00am Location: 90-2063 Seminar Host/Point of Contact: Aimee McKane Waste heat is generated from several industrial systems used in manufacturing. The waste heat sources are distributed throughout a plant. The largest source for most industries is exhaust / flue gases or heated air from heating systems. This includes the high temperature gases from burners in process heating, lower temperature gases from heat treat, dryers, and heaters, heat from heat exchangers, cooling liquids and gases etc. The previous studies and direct contact with the industry as well as equipment suppliers have shown that a large amount of waste heat is not

183

Summary of national and international fuel cycle and radioactive waste management programs, 1984  

SciTech Connect (OSTI)

Worldwide activities related to nuclear fuel cycle and radioactive waste management programs are summarized. Several trends have developed in waste management strategy: All countries having to dispose of reprocessing wastes plan on conversion of the high-level waste (HLW) stream to a borosilicate glass and eventual emplacement of the glass logs, suitably packaged, in a deep geologic repository. Countries that must deal with plutonium-contaminated waste emphasize pluonium recovery, volume reduction and fixation in cement or bitumen in their treatment plans and expect to use deep geologic repositories for final disposal. Commercially available, classical engineering processing are being used worldwide to treat and immobilize low- and intermediate-level wastes (LLW, ILW); disposal to surface structures, shallow-land burial and deep-underground repositories, such as played-out mines, is being done widely with no obvious technical problems. Many countries have established extensive programs to prepare for construction and operation of geologic repositories. Geologic media being studied fall into three main classes: argillites (clay or shale); crystalline rock (granite, basalt, gneiss or gabbro); and evaporates (salt formations). Most nations plan to allow 30 years or longer between discharge of fuel from the reactor and emplacement of HLW or spent fuel is a repository to permit thermal and radioactive decay. Most repository designs are based on the mined-gallery concept, placing waste or spent fuel packages into shallow holes in the floor of the gallery. Many countries have established extensive and costly programs of site evaluation, repository development and safety assessment. Two other waste management problems are the subject of major R and D programs in several countries: stabilization of uranium mill tailing piles; and immobilization or disposal of contaminated nuclear facilities, namely reactors, fuel cycle plants and R and D laboratories.

Harmon, K.M.; Lakey, L.T.; Leigh, I.W.

1984-07-01T23:59:59.000Z

184

UNITED STATES DEPARTMENT OF ENERGY WASTE PROCESSING ANNUAL TECHNOLOGY DEVELOPMENT REPORT 2007  

SciTech Connect (OSTI)

The Office of Environmental Management's (EM) Roadmap, U.S. Department of Energy--Office of Environmental Management Engineering & Technology Roadmap (Roadmap), defines the Department's intent to reduce the technical risk and uncertainty in its cleanup programs. The unique nature of many of the remaining facilities will require a strong and responsive engineering and technology program to improve worker and public safety, and reduce costs and environmental impacts while completing the cleanup program. The technical risks and uncertainties associated with cleanup program were identified through: (1) project risk assessments, (2) programmatic external technical reviews and technology readiness assessments, and (3) direct site input. In order to address these needs, the technical risks and uncertainties were compiled and divided into the program areas of: Waste Processing, Groundwater and Soil Remediation, and Deactivation and Decommissioning (D&D). Strategic initiatives were then developed within each program area to address the technical risks and uncertainties in that program area. These strategic initiatives were subsequently incorporated into the Roadmap, where they form the strategic framework of the EM Engineering & Technology Program. The EM-21 Multi-Year Program Plan (MYPP) supports the goals and objectives of the Roadmap by providing direction for technology enhancement, development, and demonstrations that will lead to a reduction of technical uncertainties in EM waste processing activities. The current MYPP summarizes the strategic initiatives and the scope of the activities within each initiative that are proposed for the next five years (FY2008-2012) to improve safety and reduce costs and environmental impacts associated with waste processing; authorized budget levels will impact how much of the scope of activities can be executed, on a year-to-year basis. As a result of the importance of reducing technical risk and uncertainty in the EM Waste Processing programs, EM-21 has focused considerable effort on identifying the key areas of risk in the Waste Processing programs. The resulting summary of technical risks and needs was captured in the Roadmap. The Roadmap identifies key Waste Processing initiative areas where technology development work should be focused. These areas are listed below, along with the Work Breakdown Structure (WBS) designation given to each initiative area. The WBS designations will be used throughout this document.

Bush, S

2008-08-12T23:59:59.000Z

185

Preliminary Assessment of the Hanford Tank Waste Feed Acceptance and Product Qualification Programs  

SciTech Connect (OSTI)

The U.S. Department of Energy Office of Environmental Management (EM) is engaging the national laboratories to provide the scientific and technological rigor to support EM program and project planning, technology development and deployment, project execution, and assessment of program outcomes. As an early demonstration of this new responsibility, Savannah River National Laboratory (SRNL) and Pacific Northwest National Laboratory (PNNL) have been chartered to implement a science and technology program addressing Hanford Tank waste feed acceptance and product qualification. As a first step, the laboratories examined the technical risks and uncertainties associated with the planned waste feed acceptance and qualification testing for Hanford tank wastes. Science and technology gaps were identified for work associated with 1) feed criteria development with emphasis on identifying the feed properties and the process requirements, 2) the Tank Waste Treatment and Immobilization Plant (WTP) process qualification program, and 3) the WTP HLW glass product qualification program. Opportunities for streamlining the accetpance and qualification programs were also considered in the gap assessment. Technical approaches to address the science and technology gaps and/or implement the opportunities were identified. These approaches will be further refined and developed as strong integrated teams of researchers from national laboratories, contractors, industry, and academia are brought together to provide the best science and technology solutions. Pursuing the identified approaches will have immediate and long-term benefits to DOE in reducing risks and uncertainties associated with tank waste removal and preparation, transfers from the tank farm to the WTP, processing within the WTP Pretreatment Facility, and in producing qualified HLW glass products. Additionally, implementation of the identified opportunities provides the potential for long-term cost savings given the anticipated facility life of WTP.

Herman, C. C.; Adamson, Duane J.; Herman, D. T.; Peeler, David K.; Poirier, Micheal R.; Reboul, S. H.; Stone, M. E.; Peterson, Reid A.; Chun, Jaehun; Fort, James A.; Vienna, John D.; Wells, Beric E.

2013-04-01T23:59:59.000Z

186

Retrieval process development and enhancements waste simulant compositions and defensibility  

SciTech Connect (OSTI)

The purpose of this report is to document the physical waste simulant development efforts of the EM-50 Tanks Focus Area at the Hanford Site. Waste simulants are used in the testing and development of waste treatment and handling processes because performing such tests using actual tank waste is hazardous and prohibitively expensive. This document addresses the simulant development work that supports the testing of waste retrieval processes using simulants that mimic certain key physical properties of the tank waste. Development and testing of chemical simulants are described elsewhere. This work was funded through the EM-50 Tanks Focus Area as part of the Retrieval Process Development and Enhancements (RPD&E) Project at the Pacific Northwest National Laboratory (PNNL). The mission of RPD&E is to understand retrieval processes, including emerging and existing processes, gather performance data on those processes, and relate the data to specific tank problems to provide end users with the requisite technical bases to make retrieval and closure decisions. Physical simulants are prepared using relatively nonhazardous and inexpensive materials rather than the chemicals known to be in tank waste. Consequently, only some of the waste properties are matched by the simulant. Deciding which properties need to be matched and which do not requires a detailed knowledge of the physics of the process to be tested using the simulant. Developing this knowledge requires reviews of available literature, consultation with experts, and parametric tests. Once the relevant properties are identified, waste characterization data are reviewed to establish the target ranges for each property. Simulants are then developed that possess the desired ranges of properties.

Powell, M.R.; Golcar, G.R.; Geeting, J.G.H.

1997-09-01T23:59:59.000Z

187

IWater Processing and Waste Management SystemsIntegrated System Health Management 2007 Phase II  

E-Print Network [OSTI]

SBIR SBIR 44 45 IWater Processing and Waste Management SystemsIntegrated System Health Management valuable and, in some cases, critical features for Integrated System Health Management (ISHM) developersDE DP) to TRL 6 or higher. To facilitate Phase III NASA transition, the second program goal is deploying

188

Waste Isolation Pilot Plant, National Transuranic Program Have Banner Year  

Broader source: Energy.gov (indexed) [DOE]

Plant, National Transuranic Program Have Plant, National Transuranic Program Have Banner Year in 2013 Waste Isolation Pilot Plant, National Transuranic Program Have Banner Year in 2013 December 24, 2013 - 12:00pm Addthis Since WIPP became operational in March 1999, it has surpassed receiving 11,000 shipments, which traveled over 14 million safe loaded miles over the nation’s highways through WIPP’s transportation program — equal to about 29 trips around the moon. WIPP has permanently disposed of more than 89,000 cubic meters of TRU waste — enough to fill more than 35 Olympic-size swimming pools. In 2013, WIPP is on course in support of the Los Alamos National Laboratory framework agreement with the State of New Mexico for complete removal of the above ground TRU waste stored at Area G by June 30, 2014. WIPP has cleaned 22 sites of legacy TRU waste.

189

Building 251 Radioactive Waste Characterization by Process Knowledge  

SciTech Connect (OSTI)

Building 251 is the Lawrence Livermore National Laboratory Heavy Elements Facility. Operations that involved heavy elements with uncontained radioisotopes including transuranic elements took place inside of glove boxes and fume hoods. These operations included process and solution chemistry, dissolutions, titrations, centrifuging, etc., and isotope separation. Operations with radioactive material which presently take place outside of glove boxes include storage, assaying, packing and unpacking and inventory verification. Wastes generated inside glove boxes will generally be considered TRU or Greater Than Class C (GTCC). Wastes generated in the RMA, outside glove boxes, is presumed to be low level waste. This process knowledge quantification method may be applied to waste generated anywhere within or around B251. The method is suitable only for quantification of waste which measures below the MDA of the Blue Alpha meter (i.e. only material which measures as Non-Detect with the blue alpha is to be characterized by this method).

Dominick, J L

2002-05-29T23:59:59.000Z

190

Comparative assessment of TRU waste forms and processes. Volume II. Waste form data, process descriptions, and costs.  

SciTech Connect (OSTI)

This volume contains supporting information for the comparative assessment of the transuranic waste forms and processes summarized in Volume I. Detailed data on the characterization of the waste forms selected for the assessment, process descriptions, and cost information are provided. The purpose of this volume is to provide additional information that may be useful when using the data in Volume I and to provide greater detail on particular waste forms and processes. Volume II is divided into two sections and two appendixes. The first section provides information on the preparation of the waste form specimens used in this study and additional characterization data in support of that in Volume I. The second section includes detailed process descriptions for the eight processes evaluated. Appendix A lists the results of MCC-1 leach test and Appendix B lists additional cost data. 56 figures, 12 tables.

Ross, W.A.; Lokken, R.O.; May, R.P.; Roberts, F.P.; Thornhill, R.E.; Timmerman, C.L.; Treat, R.L.; Westsik, J.H. Jr.

1982-09-01T23:59:59.000Z

191

Cooperative Research Program in Coal-Waste Liquefaction  

SciTech Connect (OSTI)

The results of a feasibility study for a demonstration plant for the liquefaction of waste plastic and tires and the coprocessing of these waste polymers with coal are presented. The study was conducted by a committee that included nine representatives from the CFFS, six from the U.S. Department of Energy - Federal Energy Technology Center (FETC), and four from Burns and Roe, Inc. The study included: (1) An assessment of current recycling practices, particularly feedstock recycling in Germany; (2) A review of pertinent research, and a survey of feedstock availability for various types of waste polymers; and (3) A conceptual design for a demonstration plant was developed and an economic analysis for various feedstock mixes. The base case for feedstock scenarios was chosen to be 200 tons per day of waste plastic and 100 tons per day of waste tires. For this base case with oil priced at $20 per barrel, the return on investment (ROI) was found to range from 9% to 20%, using tipping fees for waste plastic and tires typical of those existing in the U.S. The most profitable feedstock appeared to waste plastic alone, with a plant processing 300 t/d of plastic yielding ROI's from 13 to 27 %, depending on the tipping fees for waste plastic. Feedstock recycling of tires was highly dependent on the price that could be obtained for recovered carbon. Addition of even relatively small amounts (20 t/d) of coal to waste plastic and/or coal feeds lowered the ROI's substantially. It should also be noted that increasing the size of the plant significantly improved all ROI's. For example, increasing plant size from 300 t/d to1200 t/d approximately doubles the estimated ROI's for a waste plastic feedstock.

Gerald Huffman

2000-03-31T23:59:59.000Z

192

Accelerator Production of Tritium project process waste assessment  

SciTech Connect (OSTI)

DOE has made a commitment to compliance with all applicable environmental regulatory requirements. In this respect, it is important to consider and design all tritium supply alternatives so that they can comply with these requirements. The management of waste is an integral part of this activity and it is therefore necessary to estimate the quantities and specific wastes that will be generated by all tritium supply alternatives. A thorough assessment of waste streams includes waste characterization, quantification, and the identification of treatment and disposal options. The waste assessment for APT has been covered in two reports. The first report was a process waste assessment (PWA) that identified and quantified waste streams associated with both target designs and fulfilled the requirements of APT Work Breakdown Structure (WBS) Item 5.5.2.1. This second report is an expanded version of the first that includes all of the data of the first report, plus an assessment of treatment and disposal options for each waste stream identified in the initial report. The latter information was initially planned to be issued as a separate Waste Treatment and Disposal Options Assessment Report (WBS Item 5.5.2.2).

Carson, S.D.; Peterson, P.K.

1995-09-01T23:59:59.000Z

193

Source term characterization program for the decommissioning waste from a CANDU reactor  

Science Journals Connector (OSTI)

An automatic source term characterization program was developed, and its structure, logic, and function are explained here in detail. Called the CANDU Activated Source Term Evaluator (CASE), the developed program is equipped with a convenient graphical user interface; it uses MCNP for the neutron transport calculation and ORIGEN2 for activation analysis. CASE can prepare the MCNP input and run MCNP to obtain the neutron flux and the cross section. It can also prepare the ORIGEN2 input for the activation analysis of the region of interest, process the ORIGEN2 output, and compare the estimated specific activity of activated waste with the waste classification standard. CASE is expected to be very useful for reducing the engineering time, minimizing human error, and enhancing the reliability of source term evaluations of decommissioning waste from CANDU reactors.

Dong-Keun Cho; Jeong-Hun Cha; Dong-Hak Kook; Jong-Youl Lee; Heui-Joo Choi; Jongwon Choi; Won-il Ko; Jeong-Ho Park

2012-01-01T23:59:59.000Z

194

Reliability analysis of common hazardous waste treatment processes  

SciTech Connect (OSTI)

Five hazardous waste treatment processes are analyzed probabilistically using Monte Carlo simulation to elucidate the relationships between process safety factors and reliability levels. The treatment processes evaluated are packed tower aeration, reverse osmosis, activated sludge, upflow anaerobic sludge blanket, and activated carbon adsorption.

Waters, R.D. [Vanderbilt Univ., Nashville, TN (United States)

1993-05-01T23:59:59.000Z

195

Systematic Waste Minimization in Chemical Processes. 1. Methodology  

Science Journals Connector (OSTI)

22 In MFM, the functional structure of a system is described using a set of interrelated structures for mass, energy, and information flows. ... (1)?Dantus, M. M.; High, K. A. Economic Evaluation for the Retrofit of Chemical Processes through Waste Minimization and Process Integration. ... Price-Targeting Through Iterative Flowsheet Syntheses in Developing Novel Processing Equipment:? Pervaporation ...

Iskandar Halim; Rajagopalan Srinivasan

2002-01-16T23:59:59.000Z

196

Deployment of Performance Management Methodology as part of Liquid Waste Program at Savannah River Site - 12178  

SciTech Connect (OSTI)

In 2009, Savannah River Remediation LLC (SRR) assumed the management lead of the Liquid Waste (LW) Program at the Savannah River Site (SRS). The four SRR partners and AREVA, as an integrated subcontractor are performing the ongoing effort to safely and reliably: - Close High Level Waste (HLW) storage tanks; - Maximize waste throughput at the Defense Waste Processing Facility (DWPF); - Process salt waste into stable final waste form; - Manage the HLW liquid waste material stored at SRS. As part of these initiatives, SRR and AREVA deployed a performance management methodology based on Overall Equipment Effectiveness (OEE) at the DWPF in order to support the required production increase. This project took advantage of lessons learned by AREVA through the deployment of Total Productive Maintenance and Visual Management methodologies at the La Hague reprocessing facility in France. The project also took advantage of measurement data collected from different steps of the DWPF process by the SRR team (Melter Engineering, Chemical Process Engineering, Laboratory Operations, Plant Operations). Today the SRR team has a standard method for measuring processing time throughout the facility, a reliable source of objective data for use in decision-making at all levels, and a better balance between engineering department goals and operational goals. Preliminary results show that the deployment of this performance management methodology to the LW program at SRS has already significantly contributed to the DWPF throughput increases and is being deployed in the Saltstone facility. As part of the liquid waste program on Savannah River Site, SRR committed to enhance production throughput of DWPF. Beyond technical modifications implemented at different location of the facility, SRR deployed performance management methodology based on OEE metrics. The implementation benefited from the experience gained by AREVA in its own facilities in France. OEE proved to be a valuable tool in order to support the enhancement program in DWPF by providing unified metrics to measure plant performances, identify bottleneck location, and rank the most time consuming causes from objective data shared between the different groups belonging to the organization. Beyond OEE, the Visual Management tool adapted from the one used at La Hague were also provided in order to further enhance communication within the operating teams. As a result of all the initiatives implemented on DWPF, achieved production has been increased to record rates from FY10 to FY11. It is expected that thanks to the performance management tools now available within DWPF, these results will be sustained and even improved in the future to meet system plan targets. (authors)

Prod'homme, A.; Drouvot, O.; Gregory, J. [AREVA, Paris (France); Barnes, B.; Hodges, B.; Hart, M. [SRR, Aiken, SC (United States)

2012-07-01T23:59:59.000Z

197

Treatment plan for aqueous/organic/decontamination wastes under the Oak Ridge Reservation FFCA Development, Demonstration, Testing, and Evaluation Program  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Oak Ridge Operations Office and the U.S. Environmental Protection Agency (EPA)-Region IV have entered into a Federal Facility Compliance Agreement (FFCA) which seeks to facilitate the treatment of low-level mixed wastes currently stored at the Oak Ridge Reservation (ORR) in violation of the Resource, Conservation and Recovery Act Land Disposal Restrictions. The FFCA establishes schedules for DOE to identify treatment for wastes, referred to as Appendix B wastes, that current have no identified or existing capacity for treatment. A development, demonstration, testing, and evaluation (DDT&E) program was established to provide the support necessary to identify treatment methods for mixed was meeting the Appendix B criteria. The Program has assembled project teams to address treatment development needs for major categories of the Appendix B wastes based on the waste characteristics and possible treatment technologies. The Aqueous, Organic, and Decontamination (A/O/D) project team was established to identify pretreatment options for aqueous and organic wastes which will render the waste acceptable for treatment in existing waste treatment facilities and to identify the processes to decontaminate heterogeneous debris waste. In addition, the project must also address the treatment of secondary waste generated by other DDT&E projects. This report details the activities to be performed under the A/O/D Project in support of the identification, selection, and evaluation of treatment processes. The goals of this plan are (1) to determine the major aqueous and organic waste streams requiring treatment, (2) to determine the treatment steps necessary to make the aqueous and organic waste acceptable for treatment in existing treatment facilities on the ORR or off-site, and (3) to determine the processes necessary to decontaminate heterogeneous wastes that are considered debris.

Backus, P.M.; Benson, C.E.; Gilbert, V.P.

1994-08-01T23:59:59.000Z

198

Electromagnetic mixed waste processing system for asbestos decontamination  

SciTech Connect (OSTI)

DOE sites contain a broad spectrum of asbestos materials (cloth, pipe lagging, sprayed insulation and other substances) which are contaminated with a combination of hazardous and radioactive wastes due to its use during the development of the US nuclear weapons complex. These wastes consist of cutting oils, lubricants, solvents, PCBs, heavy metals and radioactive contaminants. The radioactive contaminants are the activation, decay, and fission products of DOE operations. To allow disposal, the asbestos must be converted chemically, followed by removing and separating the hazardous and radioactive materials to prevent the formation of mixed wastes and to allow for both sanitary disposal and effective decontamination. Currently, no technology exists that can meet these sanitary and other objectives. An attempt was made to apply techniques that have already proved successful in the mining, oil, and metals processing industries to the development of a multi-stage process to remove and separate hazardous chemical radioactive materials from asbestos. This process uses three methods: ABCOV chemicals which converts the asbestos to a sanitary waste; dielectric heating to volatilize the organic materials; and electrochemical processing for the removal of heavy metals, RCRA wastes and radionuclides. This process will result in the destruction of over 99% of the asbestos; limit radioactive metal contamination to 0.2 Bq alpha per gram and 1 Bq beta and gamma per gram; reduce hazardous organics to levels compatible with current EPA policy for RCRA delisting; and achieve TCLP limits for all solidified waste.

Kasevich, R.S.; Nocito, T.; Vaux, W.G.; Snyder, T.

1994-12-31T23:59:59.000Z

199

Waste Treatment Technology Process Development Plan For Hanford Waste Treatment Plant Low Activity Waste Recycle  

SciTech Connect (OSTI)

The purpose of this Process Development Plan is to summarize the objectives and plans for the technology development activities for an alternative path for disposition of the recycle stream that will be generated in the Hanford Waste Treatment Plant Low Activity Waste (LAW) vitrification facility (LAW Recycle). This plan covers the first phase of the development activities. The baseline plan for disposition of this stream is to recycle it to the WTP Pretreatment Facility, where it will be concentrated by evaporation and returned to the LAW vitrification facility. Because this stream contains components that are volatile at melter temperatures and are also problematic for the glass waste form, they accumulate in the Recycle stream, exacerbating their impact on the number of LAW glass containers. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and reducing the halides in the Recycle is a key component of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, this stream does not have a proven disposition path, and resolving this gap becomes vitally important. This task seeks to examine the impact of potential future disposition of this stream in the Hanford tank farms, and to develop a process that will remove radionuclides from this stream and allow its diversion to another disposition path, greatly decreasing the LAW vitrification mission duration and quantity of glass waste. The origin of this LAW Recycle stream will be from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover or precipitates of scrubbed components (e.g. carbonates). The soluble components are mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet, and will not be available until the WTP begins operation, causing uncertainty in its composition, particularly the radionuclide content. This plan will provide an estimate of the likely composition and the basis for it, assess likely treatment technologies, identify potential disposition paths, establish target treatment limits, and recommend the testing needed to show feasibility. Two primary disposition options are proposed for investigation, one is concentration for storage in the tank farms, and the other is treatment prior to disposition in the Effluent Treatment Facility. One of the radionuclides that is volatile and expected to be in high concentration in this LAW Recycle stream is Technetium-99 ({sup 99}Tc), a long-lived radionuclide with a half-life of 210,000 years. Technetium will not be removed from the aqueous waste in the Hanford Waste Treatment and Immobilization Plant (WTP), and will primarily end up immobilized in the LAW glass, which will be disposed in the Integrated Disposal Facility (IDF). Because {sup 99}Tc has a very long half-life and is highly mobile, it is the largest dose contributor to the Performance Assessment (PA) of the IDF. Other radionuclides that are also expected to be in appreciable concentration in the LAW Recycle are {sup 129}I, {sup 90}Sr, {sup 137}Cs, and {sup 241}Am. The concentrations of these radionuclides in this stream will be much lower than in the LAW, but they will still be higher than limits for some of the other disposition pathways currently available. Although the baseline process will recycle this stream to the Pretreatment Facility, if the LAW facility begins operation first, this stream will not have a disposition path internal to WTP. One potential solution is to return the stream to the tank farms where it can be evaporated in the 242-A evaporator, or perhaps deploy an auxiliary evaporator to concentrate it prior to return to the tank farms. In either case, testing is needed to evaluat

McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.

2013-08-29T23:59:59.000Z

200

DOE Office of Waste Processing Technical Exchange - Agenda  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

June 1, 2009 June 1, 2009 Agenda Hotel Information Registration Presentation Guidelines Poster Guidelines Webcast Waiver Contacts Home Waste Processing Technical Exchange Agenda (Version 1.1) Pre-Registration: Monday, May 18, 5:00p - 7:00p Organizer/Session Chair: Blocker (early registration & speaker check-in) Day 1: Tuesday, May 19 Registration - 7:00a - 8:00a Session One - Opening Session Two - Waste Retrieval and Closure 1 Session Three - Waste Form Development Day 2: Wednesday, May 20 Session Four - Pretreatment 1 Session Five - Facility Readiness and Start-up Session Six - Pretreatment 2 Session Seven - Waste Retrieval and Closure 2 Session Eight - Poster Presentations Day 3: Thursday, May 21 Session Nine - Regulatory Activity and Performance Assessment Session Ten - Waste Storage and Tank Farm Operational Improvements

Note: This page contains sample records for the topic "waste processing program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Process Simulation as Applied to Transuranic Waste Management  

SciTech Connect (OSTI)

The National Transuranic Waste System Model (the Model) is a computer simulation designed to evaluate the preparation and flow of TRU waste from generator sites throughout the Department of Energy (the Department) complex to the Waste Isolation Pilot Plant (WIPP) facility for disposal. The Model uses process simulation software to predict waste outputs of waste management operations as a function of time over the life of the WIPP. Process simulation modeling is a tool used by many industries, both private and public, to evaluate complex systems. For example a manufacturing plant might use process simulation to determine the possible effects of increasing the rate of production: will there be adequate resources (labor pool, raw goods, transportation capability); can the new production rate be sustained for an indefinite period of time without adding additional infrastructure. Process simulation modeling is also used by various military branches to ensure adequate supplies are delivered in a timely manner. The Department currently uses this technique as the basis for its National TRU Waste Management Plan Rev. 1 (DOE, 1997).

Brown, M.; Downes, S.; Trone, J.

1999-01-01T23:59:59.000Z

202

DOE high-level waste tank safety program. Final report  

SciTech Connect (OSTI)

The overall objective of the work was to provide LANL with support to the DOE High-Level Waste Tank Safety Program. This effort included direct support to the DOE High-Level Waste Tank Working Groups, development of a database to track all identified safety issues, development of requirements for waste tank modernization, evaluation of external comments regarding safety-related guidance/instruction developed previously, examination of current federal and state regulations associated with DOE Tank farm operations, and performance of a conduct of operations review. All tasks which were assigned under this Task Order were completed. Descriptions of the objectives of each task and effort performed to complete each objective is provided.

NONE

1998-11-01T23:59:59.000Z

203

RECENT PROCESS AND EQUIPMENT IMPROVEMENTS TO INCREASE HIGH LEVEL WASTE THROUGHPUT AT THE DEFENSE WASTE PROCESSING FACILITY  

SciTech Connect (OSTI)

The Savannah River Site's (SRS) Defense Waste Processing Facility (DWPF) began stabilizing high level waste (HLW) in a glass matrix in 1996. Over the past few years, there have been several process and equipment improvements at the DWPF to increase the rate at which the high level waste can be stabilized. These improvements have either directly increased waste processing rates or have desensitized the process to upsets, thereby minimizing downtime and increasing production. Improvements due to optimization of waste throughput with increased HLW loading of the glass resulted in a 6% waste throughput increase based upon operational efficiencies. Improvements in canister production include the pour spout heated bellows liner (5%), glass surge (siphon) protection software (2%), melter feed pump software logic change to prevent spurious interlocks of the feed pump with subsequent dilution of feed stock (2%) and optimization of the steam atomized scrubber (SAS) operation to minimize downtime (3%) for a total increase in canister production of 12%. A number of process recovery efforts have allowed continued operation. These include the off gas system pluggage and restoration, slurry mix evaporator (SME) tank repair and replacement, remote cleaning of melter top head center nozzle, remote melter internal inspection, SAS pump J-Tube recovery, inadvertent pour scenario resolutions, dome heater transformer bus bar cooling water leak repair and new Infra-red camera for determination of glass height in the canister are discussed.

Odriscoll, R; Allan Barnes, A; Jim Coleman, J; Timothy Glover, T; Robert Hopkins, R; Dan Iverson, D; Jeff Leita, J

2008-01-15T23:59:59.000Z

204

Checkout and start-up of the integrated DWPF (Defense Waste Processing Facility) melter system  

SciTech Connect (OSTI)

The Integrated DWPF Melter System (IDMS) is a one-ninth-scale demonstration of the Defense Waste Processing Facility (DWPF) feed preparation, melter, and off-gas systems. The IDMS will be the first engineering-scale melter system at SRL to process mercury and flowsheet levels of halides and sulfates. This report includes a summary of the IDMS program objectives, system and equipment descriptions, and detailed discussions of the system checkout and start-up. 10 refs., 44 figs., 20 tabs.

Smith, M.E.; Hutson, N.D.; Miller, D.H.; Morrison, J.; Shah, H.; Shuford, J.A.; Glascock, J.; Wurzinger, F.H.; Zamecnik, J.R.

1989-11-11T23:59:59.000Z

205

Field study of disposed solid wastes from advanced coal processes  

SciTech Connect (OSTI)

Radian Corporation and the North Dakota Energy and Environmental Research Center (EERC) are funded to develop information to be used by private industry and government agencies for managing solid waste produced by advanced coal processes. This information will be developed by conducting several field studies on disposed wastes from these processes. Data will be collected to characterize these wastes and their interactions with the environments in which they are disposed. Three sites have been selected for the field studies: Colorado Ute's fluidized bed combustion (FBC) unit in Nucla, Colorado; Ohio Edison's limestone injection multistage burner (LIMB) retrofit in Lorain, Ohio; and Freeman United's site using waste from Midwest Grain's FBC unit in central Illinois. A fourth site is under consideration at the Dakota Gasification Company in North Dakota. The first two tasks of this project involved the development of test plans and obtaining site access.

Not Available

1990-01-01T23:59:59.000Z

206

Process to separate transuranic elements from nuclear waste  

DOE Patents [OSTI]

A process is described for removing transuranic elements from a waste chloride electrolytic salt containing transuranic elements in addition to rare earth and other fission product elements so the salt waste may be disposed of more easily and the valuable transuranic elements may be recovered for reuse. The salt is contacted with a cadmium-uranium alloy which selectively extracts the transuranic elements from the salt. The waste salt is generated during the reprocessing of nuclear fuel associated with the Integral Fast Reactor (IFR). 2 figs.

Johnson, T.R.; Ackerman, J.P.; Tomczuk, Z.; Fischer, D.F.

1989-03-21T23:59:59.000Z

207

Process to separate transuranic elements from nuclear waste  

DOE Patents [OSTI]

A process for removing transuranic elements from a waste chloride electrolytic salt containing transuranic elements in addition to rare earth and other fission product elements so the salt waste may be disposed of more easily and the valuable transuranic elements may be recovered for reuse. The salt is contacted with a cadmium-uranium alloy which selectively extracts the transuranic elements from the salt. The waste salt is generated during the reprocessing of nuclear fuel associated with the Integral Fast Reactor (IFR). 2 figs.

Johnson, T.R.; Ackerman, J.P.; Tomczuk, Z.; Fischer, D.F.

1988-07-12T23:59:59.000Z

208

Independent Oversight Review, Savannah River Site Salt Waste Processing Facility- August 2013  

Broader source: Energy.gov [DOE]

Review of the Savannah River Site Salt Waste Processing Facility Safety Basis and Design Development.

209

Independent Oversight Review, Savannah River Site Salt Waste Processing Facility- April 2014  

Broader source: Energy.gov [DOE]

Review of the Savannah River Site Salt Waste Processing Facility Construction Quality and Fire Protection Systems

210

Project Management Plan for the Idaho National Engineering Laboratory Waste Isolation Pilot Plant Experimental Test Program  

SciTech Connect (OSTI)

EG&G Idaho, Inc. and Argonne National Laboratory-West (ANL-W) are participating in the Idaho National Engineering Laboratory`s (INEL`s) Waste Isolation Pilot Plant (WIPP) Experimental Test Program (WETP). The purpose of the INEL WET is to provide chemical, physical, and radiochemical data on transuranic (TRU) waste to be stored at WIPP. The waste characterization data collected will be used to support the WIPP Performance Assessment (PA), development of the disposal No-Migration Variance Petition (NMVP), and to support the WIPP disposal decision. The PA is an analysis required by the Code of Federal Regulations (CFR), Title 40, Part 191 (40 CFR 191), which identifies the processes and events that may affect the disposal system (WIPP) and examines the effects of those processes and events on the performance of WIPP. A NMVP is required for the WIPP by 40 CFR 268 in order to dispose of land disposal restriction (LDR) mixed TRU waste in WIPP. It is anticipated that the detailed Resource Conservation and Recovery Act (RCRA) waste characterization data of all INEL retrievably-stored TRU waste to be stored in WIPP will be required for the NMVP. Waste characterization requirements for PA and RCRA may not necessarily be identical. Waste characterization requirements for the PA will be defined by Sandia National Laboratories. The requirements for RCRA are defined in 40 CFR 268, WIPP RCRA Part B Application Waste Analysis Plan (WAP), and WIPP Waste Characterization Program Plan (WWCP). This Project Management Plan (PMP) addresses only the characterization of the contact handled (CH) TRU waste at the INEL. This document will address all work in which EG&G Idaho is responsible concerning the INEL WETP. Even though EG&G Idaho has no responsibility for the work that ANL-W is performing, EG&G Idaho will keep a current status and provide a project coordination effort with ANL-W to ensure that the INEL, as a whole, is effectively and efficiently completing the requirements for WETP.

Connolly, M.J.; Sayer, D.L.

1993-11-01T23:59:59.000Z

211

Savannah River Site Salt Waste Processing Facility Technology Readiness Assessment Report  

Broader source: Energy.gov (indexed) [DOE]

Salt Waste Processing Facility Salt Waste Processing Facility Technology Readiness Assessment Report Kurt D. Gerdes Harry D. Harmon Herbert G. Sutter Major C. Thompson John R. Shultz Sahid C. Smith July 13, 2009 Prepared by the U.S. Department of Energy Washington, D.C. SRS Salt Waste Processing Facility Technology Readiness Assessment July 13, 2009 ii This page intentionally left blank SRS Salt Waste Processing Facility Technology Readiness Assessment July 13, 2009 iii SRS Salt Waste Processing Facility Technology Readiness Assessment July 13, 2009 iii Signatures SRS Salt Waste Processing Facility Technology Readiness Assessment July 13, 2009 iv This page intentionally left blank SRS Salt Waste Processing Facility

212

TECHNOLOGY SUMMARY ADVANCING TANK WASTE RETREIVAL AND PROCESSING  

SciTech Connect (OSTI)

This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

SAMS TL

2010-07-07T23:59:59.000Z

213

Independent Oversight Review, Oak Ridge Transuranic Waste Processing Center, September 2013  

Broader source: Energy.gov [DOE]

Review of Management of Safety Systems at the Oak Ridge Transuranic Waste Processing Center and Associated Feedback and Improvement Processes

214

Savannah River Site - Salt Waste Processing Facility Independent Technical Review  

Broader source: Energy.gov (indexed) [DOE]

SALT WASTE PROCESSING FACILITY SALT WASTE PROCESSING FACILITY INDEPENDENT TECHNICAL REVIEW November 22, 2006 Conducted by: Harry Harmon, Team Lead Civil/Structural Sub Team Facility Safety Sub Team Engineering Sub Team Peter Lowry, Lead James Langsted, Lead George Krauter, Lead Robert Kennedy Chuck Negin Art Etchells Les Youd Jerry Evatt Oliver Block Loring Wyllie Richard Stark Tim Adams Tom Anderson Todd LaPointe Stephen Gosselin Carl Costantino Norman Moreau Patrick Corcoran John Christian Ken Cooper Kari McDaniel _____________________________ Harry D. Harmon ITR Team Leader SPD-SWPF-217 SPD-SWPF-217: Salt Waste Processing Facility Independent Technical Review 11/22/2006 ACKNOWLEDGEMENT The ITR Team wishes to thank Shari Clifford of Pacific Northwest National Laboratory for

215

Demonstrating Reliable High Level Waste Slurry Sampling Techniques to Support Hanford Waste Processing  

SciTech Connect (OSTI)

The Hanford Tank Operations Contractor (TOC) and the Hanford Waste Treatment and Immobilization Plant (WTP) contractor are both engaged in demonstrating mixing, sampling, and transfer system capability using simulated Hanford High-Level Waste (HL W) formulations. This work represents one of the remaining technical issues with the high-level waste treatment mission at Hanford. The TOC must demonstrate the ability to adequately mix and sample high-level waste feed to meet the WTP Waste Acceptance Criteria and Data Quality Objectives. The sampling method employed must support both TOC and WTP requirements. To facilitate information transfer between the two facilities the mixing and sampling demonstrations are led by the One System Integrated Project Team. The One System team, Waste Feed Delivery Mixing and Sampling Program, has developed a full scale sampling loop to demonstrate sampler capability. This paper discusses the full scale sampling loops ability to meet precision and accuracy requirements, including lessons learned during testing. Results of the testing showed that the Isolok(R) sampler chosen for implementation provides precise, repeatable results. The Isolok(R) sampler accuracy as tested did not meet test success criteria. Review of test data and the test platform following testing by a sampling expert identified several issues regarding the sampler used to provide reference material used to judge the Isolok's accuracy. Recommendations were made to obtain new data to evaluate the sampler's accuracy utilizing a reference sampler that follows good sampling protocol.

Kelly, Steven E.

2013-11-11T23:59:59.000Z

216

Microsoft PowerPoint - EM Waste 10-03 Processing Technical Exchange Antifoam 11-17-2010.ppt  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

664, Rev A 664, Rev A Improved Antifoam Agents for SRS Dan Lambert Fellow Engineer, SRNL Dr Darsh T. Wasan, Dr. Alex D. Nikolov, Illinois Institute of Technology EM Waste Processing Technical Exchange Session 10: Advanced Unit Operations and Scaling Print Close 2 SRNL-STI-2010-00698, Rev A Outline Needs/Benefits Background Scope Experimental/Method Results Future work Process Technology Programs Print Close 3 SRNL-STI-2010-00698, Rev A Needs/Benefits Needs: Increase waste processing (melter) throughput Benefits: Maximize Boilup Rate during waste processing at boiling, resulting in an increase in a reduction in overall processing time. Minimize carryover of insoluble solids, resulting in less facility downtime due to foamover into condensate. Process Technology Programs Print Close

217

Edinburgh Research Explorer Probabilistic Programming Process Algebra  

E-Print Network [OSTI]

Edinburgh Research Explorer Probabilistic Programming Process Algebra Citation for published version: Georgoulas, A, Hillston, J, Milios, D & Sanguinetti, G 2014, 'Probabilistic Programming Process.1007/978-3-319-10696-0_21 Link: Link to publication record in Edinburgh Research Explorer Document Version: Preprint (usually

Millar, Andrew J.

218

Missouri Hazardous Waste Management Law (Missouri)  

Broader source: Energy.gov [DOE]

The Hazardous Waste Program, administered by the Hazardous Waste Management Commission in the Department of Natural Resources, regulates the processing, transportation, and disposal of hazardous...

219

Prevention of Food-Processing Wastes  

Science Journals Connector (OSTI)

...beans 99.8 99.8 Corn on the cob 46.0...green beans, and corn on the cob. Tests...starch and glu by new, wet processing of wheat...food exist.) Dry milling and air classification...con-ventional wheat-milling equipment. rom Two...from the conventional wet process and the proposed...

Sam R. Hoover

1974-03-01T23:59:59.000Z

220

Low-level waste management program and interim waste operations technologies  

SciTech Connect (OSTI)

The Department of Energy currently supports an integrated technology development and transfer program aimed at ensuring that the technology necessary for the safe management and disposal of LLW by the commercial and defense sectors is available. The program focuses on five technical areas: (1) corrective measures technology, (2) improved shallow land burial technology, (3) greater confinement disposal technology, (4) model development and validation, and (5) treatment methods for problem wastes. The results of activities in these areas are reported in the open literature and the Proceedings of the LLWMP Annual Participants Information Meeting.

Mezga, L.J.

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste processing program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Teaching Radioactive Waste Management in an Undergraduate Engineering Program - 13269  

SciTech Connect (OSTI)

The University of Ontario Institute of Technology is Ontario's newest university and the only one in Canada that offers an accredited Bachelor of Nuclear Engineering (Honours) degree. The nuclear engineering program consists of 48 full-semester courses, including one on radioactive waste management. This is a design course that challenges young engineers to develop a fundamental understanding of how to manage the storage and disposal of various types and forms of radioactive waste, and to recognize the social consequences of their practices and decisions. Students are tasked with developing a major project based on an environmental assessment of a simple conceptual design for a waste disposal facility. They use collaborative learning and self-directed exploration to gain the requisite knowledge of the waste management system. The project constitutes 70% of their mark, but is broken down into several small components that include, an environmental assessment comprehensive study report, a technical review, a facility design, and a public defense of their proposal. Many aspects of the project mirror industry team project situations, including the various levels of participation. The success of the students is correlated with their engagement in the project, the highest final examination scores achieved by students with the strongest effort in the project. (authors)

Ikeda, Brian M. [Faculty of Energy Systems and Nuclear Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4 (Canada)] [Faculty of Energy Systems and Nuclear Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4 (Canada)

2013-07-01T23:59:59.000Z

222

AISI waste oxide recycling program. Final technical report  

SciTech Connect (OSTI)

In March 1995 AISI completed a five-year, $60 million collaborative development program on Direct Steelmaking cost-shared by DOE under the Metals Initiative. This program defined an energy-efficient and environmentally-friendly technology to produce hot metal for steelmaking directly from coal and iron ore pellets without incurring the high capital costs and environmental problems associated with traditional coke oven and blast furnace technology. As it becomes necessary to replace present capacity, this new technology will be favored because of reduced capital costs, higher energy efficiency, and lower operating costs. In April 1994, having failed to move forward with a demonstration plant for direct ironmaking, despite substantial efforts by both Stelco and Geneva Steel, an alternative opportunity was sought to commercialize this new technology without waiting until existing ironmaking capacity needed to be replaced. Recycling and resource recovery of steel plant waste oxides was considered an attractive possibility. This led to approval of a ten-month, $8.3 million joint program with DOE on recycling steel plant waste oxides utilizing this new smelting technology. This highly successful trial program was completed in December 1994. The results of the pilot plant work and a feasibility study for a recycling demonstration plant are presented in this final technical report.

Aukrust, E.; Downing, K.B.; Sarma, B.

1995-08-01T23:59:59.000Z

223

Waste Heat Management Options: Industrial Process Heating Systems  

Broader source: Energy.gov (indexed) [DOE]

Heat Management Options Heat Management Options Industrial Process Heating Systems By Dr. Arvind C. Thekdi E-mail: athekdi@e3minc.com E3M, Inc. August 20, 2009 2 Source of Waste Heat in Industries * Steam Generation * Fluid Heating * Calcining * Drying * Heat Treating * Metal Heating * Metal and Non-metal Melting * Smelting, agglomeration etc. * Curing and Forming * Other Heating Waste heat is everywhere! Arvind Thekdi, E3M Inc Arvind Thekdi, E3M Inc 3 Waste Heat Sources from Process Heating Equipment * Hot gases - combustion products - Temperature from 300 deg. F. to 3000 deg.F. * Radiation-Convection heat loss - From temperature source of 500 deg. F. to 2500 deg. F. * Sensible-latent heat in heated product - From temperature 400 deg. F. to 2200 deg. F. * Cooling water or other liquids - Temperature from 100 deg. F. to 180 deg. F.

224

Financing Program Implementation Process Flow  

Broader source: Energy.gov [DOE]

The implementation process flow for financing with two models: a generic option for primary markets and a conceptual option for secondary markets.

225

Savannah River Site - Salt Waste Processing Facility: Briefing on the Salt Waste Processing Facility Independent Technical Review  

Broader source: Energy.gov (indexed) [DOE]

Salt Waste Processing Facility Independent Technical Review Harry Harmon January 9, 2007 2 U.S. Department of Energy Outline * SWPF Process Overview * Major Risks * Approach for Conducting Review * Discussion of Findings * Conclusions 3 U.S. Department of Energy Salt Waste Processing Facility 4 U.S. Department of Energy SWPF Process Overview Alpha Finishing Process CSSX Alpha Strike Process MST/ Sludge Cs Strip Effluent DSS 5 U.S. Department of Energy BOTTOM LINE The SWPF Project is ready to move into final design. 6 U.S. Department of Energy Major Risks * Final geotechnical data potentially could result in redesign of the PC-3 CPA base mat and structure. * Cost and schedule impacts arising from the change from ISO-9001 to NQA-1 quality assurance requirements. * The "de-inventory, flush, and then hands-on

226

Field study of disposed solid wastes from advanced coal processes  

SciTech Connect (OSTI)

Radian Corporation and the North Dakota Energy and Environmental Research Center (EERC) are funded to develop information to be used by private industry and government agencies for managing solid wastes produced by advanced coal combustion processes. This information will be developed by conducting several field studies on disposed wastes from these processes. Data will be collected to characterize these wastes and their interactions with the environments in which they are disposed. Three sites were selected for the field studies: Colorado Ute's fluidized bed combustion (FBC) unit in Nucla, Colorado; Ohio Edison's limestone injection multistage burner (LIMB) retrofit in Lorain, Ohio; and Freeman United's mine site in central Illinois with wastes supplied by the nearby Midwest Grain FBC unit. During the past year, field monitoring and sampling of the four landfill test cases constructed in 1989 and 1991 has continued. Option 1 of the contract was approved last year to add financing for the fifth test case at the Freeman United site. The construction of the Test Case 5 cells is scheduled to begin in November, 1992. Work during this past year has focused on obtaining data on the physical and chemical properties of the landfilled wastes, and on developing a conceptual framework for interpreting this information. Results to date indicate that hydration reactions within the landfilled wastes have had a major impact on the physical and chemical properties of the materials but these reactions largely ceased after the first year, and physical properties have changed little since then. Conditions in Colorado remained dry and no porewater samples were collected. In Ohio, hydration reactions and increases in the moisture content of the waste tied up much of the water initially infiltrating the test cells.

Not Available

1992-01-01T23:59:59.000Z

227

Direction of CRT waste glass processing: Electronics recycling industry communication  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Given a large flow rate of CRT glass {approx}10% of the panel glass stream will be leaded. Black-Right-Pointing-Pointer The supply of CRT waste glass exceeded demand in 2009. Black-Right-Pointing-Pointer Recyclers should use UV-light to detect lead oxide during the separation process. Black-Right-Pointing-Pointer Recycling market analysis techniques and results are given for CRT glass. Black-Right-Pointing-Pointer Academic initiatives and the necessary expansion of novel product markets are discussed. - Abstract: Cathode Ray Tube, CRT, waste glass recycling has plagued glass manufacturers, electronics recyclers and electronics waste policy makers for decades because the total supply of waste glass exceeds demand, and the formulations of CRT glass are ill suited for most reuse options. The solutions are to separate the undesirable components (e.g. lead oxide) in the waste and create demand for new products. Achieving this is no simple feat, however, as there are many obstacles: limited knowledge of waste glass composition; limited automation in the recycling process; transportation of recycled material; and a weak and underdeveloped market. Thus one of the main goals of this paper is to advise electronic glass recyclers on how to best manage a diverse supply of glass waste and successfully market to end users. Further, this paper offers future directions for academic and industry research. To develop the recommendations offered here, a combination of approaches were used: (1) a thorough study of historic trends in CRT glass chemistry; (2) bulk glass collection and analysis of cullet from a large-scale glass recycler; (3) conversations with industry members and a review of potential applications; and (4) evaluation of the economic viability of specific uses for recycled CRT glass. If academia and industry can solve these problems (for example by creating a database of composition organized by manufacturer and glass source) then the reuse of CRT glass can be increased.

Mueller, Julia R., E-mail: mueller.143@osu.edu [Ohio State University, William G. Lowrie Department of Chemical and Biomolecular Engineering, OH (United States) and University of Queensland, School of Chemical Engineering (Australia) and Ohio State University, Materials Science and Engineering, OH (United States); Boehm, Michael W. [University of Queensland, School of Chemical Engineering (Australia); Drummond, Charles [Ohio State University, Materials Science and Engineering, OH (United States)

2012-08-15T23:59:59.000Z

228

Prevention of Food-Processing Wastes  

Science Journals Connector (OSTI)

...continuously. Minor amounts of water lost by evaporation...re-placed. Because the water recycled from the resin...soapstock, and the water evap-orated in drying...the United States. Electrodialysis has been in com-mercial...processes constitute a treatment problem. Liquid whey...

Sam R. Hoover

1974-03-01T23:59:59.000Z

229

Waste Energy Analysis Recovery for a Typical Food Processing Plant  

E-Print Network [OSTI]

An energy analysis made for the Joan of Arc Food Processing Plant in St. Francisville, Louisiana indicated that a significant quantity of waste heat energy was being released to the atmosphere in the forms of low quality steam and hot flue gases...

Miller, P. H.; Mann, L., Jr.

1980-01-01T23:59:59.000Z

230

Waste Heat Recovery from Refrigeration in a Meat Processing Facility  

E-Print Network [OSTI]

A case study is reviewed on a heat recovery system installed in a meat processing facility to preheat water for the plant hot water supply. The system utilizes waste superheat from the facility's 1,350-ton ammonia refrigeration system. The heat...

Murphy, W. T.; Woods, B. E.; Gerdes, J. E.

1980-01-01T23:59:59.000Z

231

Support for DOE program in mineral waste-form development  

SciTech Connect (OSTI)

This research investigation relates to sintered simulation ceramic waste forms of the generic SYNROC compositional type. Though they have been formulated with simulated wastes only, they serve as prototypes for potential hot, processed, crystalline waste forms whose combined thermodynamic stability and physical integrity are considered to render them capable of long-term imobilization of high-level radwastes under deep geologic disposal conditions. The problems involved are nontrivial, largely because of the very complex nature of the radwastes: a typical waste stream would contain more than 31 cation species. When the stabilizing matrix constituents are included, the final batch composition must successfully account (and find substitutional homes for some 35 different cation species. One of the important objectives of this study thus has been to develop a computer-based method for simulating these complex ion substitutions, and for calculating the resultant phase demands and batch formulations. Primary goals of the study have been (1) use of that computer simulation capability to incorporate rationally the radwaste ions from a specific waste stream (PW-7a) into the available SYNROC lattice sites and (2) utilization of existing ceramic processing and sintering methodologies to assure (and to understand) the attainment of high density, fine microstructure, full phase development and other features of the sintered product which are known to relate directly to its integrity and leach resistance. Though improved resistance to leaching has been a continuing goal, time and budget constraints have precluded initiation of any leachability studies of these new compositions during this contract period. 27 references, 15 figures, 6 tables.

Palmour, H. III; Hare, T.M.; Russ, J.C.; Batchelor, A.D.; Paisley, M.J.; Freed, L.E.

1982-09-01T23:59:59.000Z

232

Study on a regeneration process of LiCl-KCl eutectic based waste salt generated from the pyrochemical process  

SciTech Connect (OSTI)

A regeneration process of LiCl-KCl eutectic waste salt generated from the pyrochemical process of spent nuclear fuel has been studied. This regeneration process is composed of a chemical conversion process and a vacuum distillation process. Through the regeneration process, a high efficiency of renewable salt recovery can be obtained from the waste salt and rare earth nuclides in the waste salt can be separated as oxide or phosphate forms. Thus, the regeneration process can contribute greatly to a reduction of the waste volume and a creation of durable final waste forms. (authors)

Eun, H.C.; Cho, Y.Z.; Choi, J.H.; Kim, J.H.; Lee, T.K.; Park, H.S.; Kim, I.T.; Park, G.I. [Nuclear Fuel Cycle Waste Treatment Research Division, Korea Atomic Energy Research Institute, 989-111 Daedeok-Daero, Yuseong-Gu, Daejeon 3054-353 (Korea, Republic of)

2013-07-01T23:59:59.000Z

233

Process for recovery of palladium from nuclear fuel reprocessing wastes  

DOE Patents [OSTI]

Palladium is selectively removed from spent nuclear fuel reprocessing waste by adding sugar to a strong nitric acid solution of the waste to partially denitrate the solution and cause formation of an insoluble palladium compound. The process includes the steps of: (a) adjusting the nitric acid content of the starting solution to about 10 M; (b) adding 50% sucrose solution in an amount sufficient to effect the precipitation of the palladium compound; (c) heating the solution at reflux temperature until precipitation is complete; and (d) centrifuging the solution to separate the precipitated palladium compound from the supernatant liquid.

Campbell, D.O.; Buxton, S.R.

1980-06-16T23:59:59.000Z

234

Office of Civilian Radioactive Waste Management Transportation Program: Tribal Initiatives  

Broader source: Energy.gov (indexed) [DOE]

COMMUNICATIONS BREAKOUT COMMUNICATIONS BREAKOUT SESSION Jay Jones Office of Civilian Radioactive Waste Management April 22, 2004 Albuquerque, New Mexico 2 Session Overview * Meeting objectives and expectations * Topic Group Background and History * Transportation information products - Information Product Survey results - Alliance for Transportation Research Institute Assessments * Discussion on future DOE communications * Information Display 3 Objectives and Expectations * OCRWM communications approach - Transportation Strategic Plan Collaborative effort with stakeholders Two-way interactions with program participants and public - provide information and receive feedback * Implement communications strategy - Identify stakeholders and issues - Engage nationally, regionally and with States - Participate through discussion and issue resolution

235

Visual programming expedites process control  

SciTech Connect (OSTI)

Software development and maintenance costs continue to decrease as recent graphical user-interface (GUI) techniques advance. Improvement in the hardware cost-performance has also supported GUI success. In the area of modulating control for power plants, however, cost decreases have already been achieved through user-friendly forms. In the area of programmable logic controllers, there are three types of programming methods: relay ladder logic, Boolean, and high level language. Recently, the development of a programmable logic controller with the latest fashioned user interface (such as the window, icon, menu, and pointer environment on a control engineering workstation) has come on the market. Although its GUI features are quite good, it is not easy for plant engineers to use due to the various programming forms (e.g., ladder logic diagrams) which are often used. The system featured in this article has been developed and commercialized for direct digital modulating control (DDC) prior to the programmable controller. The construction and maintenance tools for the system are set up in workstations and personal computers. The tool is familiar to instrument and control designers and has more GUI uses. The key to the design of this system, however, is the use of input frames containing control block diagrams, which are constructed from several standard operational elements.

Isomura, S.; Katoh, M.

1996-10-01T23:59:59.000Z

236

The Ceramic Waste Form Process at Idaho National Laboratory  

SciTech Connect (OSTI)

The treatment of spent nuclear fuel for disposition using an electrometallurgical technique results in two high-level waste forms: a ceramic waste form (CWF) and a metal waste form. Reactive metal fuel constituents, including all the transuranic metals and the majority of the fission products remain in the salt as chlorides and are processed into the CWF. The solidified salt is containerized and transferred to the CWF process where it is ground in an argon atmosphere. Zeolite 4A is ground and then dried in a mechanically-fluidized dryer. The salt and zeolite are mixed in a V-mixer and heated to 500C to occlude the salt into the structure of the zeolite. The salt-loaded zeolite is cooled, mixed with borosilicate glass frit, and transferred to a crucible, which is placed in a furnace and heated to 925C. During this process, known as pressureless consolidation, the zeolite is converted to the final sodalite form and the glass thoroughly encapsulates the sodalite, producing a dense, leach-resistant final waste form.

Stephen Priebe

2007-05-01T23:59:59.000Z

237

Foreign programs for the storage of spent nuclear power plant fuels, high-level waste canisters and transuranic wastes  

SciTech Connect (OSTI)

The various national programs for developing and applying technology for the interim storage of spent fuel, high-level radioactive waste, and TRU wastes are summarized. Primary emphasis of the report is on dry storage techniques for uranium dioxide fuels, but data are also provided concerning pool storage.

Harmon, K.M.; Johnson, A.B. Jr.

1984-04-01T23:59:59.000Z

238

Design of electrochemical processes for treatment of unusual waste streams  

SciTech Connect (OSTI)

UCRL- JC- 129438 PREPRINT This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising or product endorsement purposes. Introduction. An overview of work done on the development of three electrochemical processes that meet the specific needs of low- level waste treatment is presented. These technologies include: mediated electrochemical oxidation [I- 4]; bipolar membrane electrodialysis [5]; and electrosorption of carbon aerogel electrodes [6- 9]. Design strategies are presented to assess the suitability of these electrochemical processes for Mediated electrochemical oxidation. Mixed wastes include both hazardous and radioactive components. It is desirable to reduce the overall volume of the waste before immobilization and disposal in repositories. While incineration is an attractive technique for the destruction of organic fractions of mixed wastes, such high-temperature thermal processes pose the threat of volatilizing various radionuclides. By destroying organics in the aqueous phase at low temperature and ambient pressure, the risk of volatilization can be reduced. One approach that is attractive is the use of eiectrochemically generated mediators such as Ag( ll), Co( Ill) and Fe( III). These oxidants react with organicsin Bipolar membrane electrodialysis. in the aqueous processing of nuclear materials, process steps arise that require the neutralization of an acidic stream with a strong base. Ultimately, these neutralized salt solutions become aqueous waste streams, requiring further treatment and disposal. By "splitting" such neutralized salt solutions into their acid and base components, the generation of aqueous mixed waste can be greatly reduced. At LLNL, a bipolar membrane electrodialysis cell has been used to separate neutral solutions of NaCl, NaNO1 and Na, SO, into product streams of NaOH, HCI, HNOj and H2S0,, which could be recycled. The eftlciency of this particular process will be discussed, as well as practical limitations of the technology. Basic principles of engineering design of such systems will be reviewed.

Farmer, J.C.

1998-01-01T23:59:59.000Z

239

Savannah River Site 2012 Outlook: Transuranic Waste Program Set to Safely  

Broader source: Energy.gov (indexed) [DOE]

Site 2012 Outlook: Transuranic Waste Program Set to Site 2012 Outlook: Transuranic Waste Program Set to Safely Reach Milestone Savannah River Site 2012 Outlook: Transuranic Waste Program Set to Safely Reach Milestone January 1, 2012 - 12:00pm Addthis By May, Savannah River Nuclear Solutions expects to be shipping transuranic waste to the Waste Isolation Pilot Plant almost continuously, using six TRUPACT-III shipping containers like the one shown here. By May, Savannah River Nuclear Solutions expects to be shipping transuranic waste to the Waste Isolation Pilot Plant almost continuously, using six TRUPACT-III shipping containers like the one shown here. Workers relocate a pipe overpack container used to transport small amounts of excess plutonium oxide destined for long-term storage at the Waste Isolation Pilot Plant in Carlsbad, New Mexico.

240

Hanford High-Level Waste Vitrification Program at the Pacific Northwest National Laboratory: technology development - annotated bibliography  

SciTech Connect (OSTI)

This report provides a collection of annotated bibliographies for documents prepared under the Hanford High-Level Waste Vitrification (Plant) Program. The bibliographies are for documents from Fiscal Year 1983 through Fiscal Year 1995, and include work conducted at or under the direction of the Pacific Northwest National Laboratory. The bibliographies included focus on the technology developed over the specified time period for vitrifying Hanford pretreated high-level waste. The following subject areas are included: General Documentation; Program Documentation; High-Level Waste Characterization; Glass Formulation and Characterization; Feed Preparation; Radioactive Feed Preparation and Glass Properties Testing; Full-Scale Feed Preparation Testing; Equipment Materials Testing; Melter Performance Assessment and Evaluations; Liquid-Fed Ceramic Melter; Cold Crucible Melter; Stirred Melter; High-Temperature Melter; Melter Off-Gas Treatment; Vitrification Waste Treatment; Process, Product Control and Modeling; Analytical; and Canister Closure, Decontamination, and Handling

Larson, D.E.

1996-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste processing program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Defense High-Level Waste Leaching Mechanisms Program. Final report  

SciTech Connect (OSTI)

The Defense High-Level Waste Leaching Mechanisms Program brought six major US laboratories together for three years of cooperative research. The participants reached a consensus that solubility of the leached glass species, particularly solubility in the altered surface layer, is the dominant factor controlling the leaching behavior of defense waste glass in a system in which the flow of leachant is constrained, as it will be in a deep geologic repository. Also, once the surface of waste glass is contacted by ground water, the kinetics of establishing solubility control are relatively rapid. The concentrations of leached species reach saturation, or steady-state concentrations, within a few months to a year at 70 to 90/sup 0/C. Thus, reaction kinetics, which were the main subject of earlier leaching mechanisms studies, are now shown to assume much less importance. The dominance of solubility means that the leach rate is, in fact, directly proportional to ground water flow rate. Doubling the flow rate doubles the effective leach rate. This relationship is expected to obtain in most, if not all, repository situations.

Mendel, J.E. (compiler)

1984-08-01T23:59:59.000Z

242

Processing of solid mixed waste containing radioactive and hazardous materials  

DOE Patents [OSTI]

Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

1998-05-12T23:59:59.000Z

243

Process for the recovery of curium-244 from nuclear waste  

SciTech Connect (OSTI)

A process has been designed for the recovery of curium from purex waste. Curium and americium are separated from the lanthanides by a TALSPEAK extraction process using differential extraction. Equations were derived for the estimation of the economically optimum conditions for the extraction using laboratory batch extraction data. The preparation of feed for the extraction involves the removal of nitric acid from the Purex waste by vaporization under reduced pressure, the leaching of soluble nitrates from the resulting cake, and the oxalate precipitation of a pure lanthanide-actinide fraction. Final separation of the curium from americium is done by ion-exchange. The steps of the process, except ion-exchange, were tested on a laboratory scale and workable conditions were determined.

Posey, J.C.

1980-10-01T23:59:59.000Z

244

Waste Isolation Pilot Plant Groundwater Protection Management Program Plan  

SciTech Connect (OSTI)

U.S. Department of Energy (DOE) Order 5400.1, General Environmental Protection Program, requires each DOE site to prepare a Groundwater Protection Management Program Plan. This document fulfills the requirement for the Waste Isolation Pilot Plant (WIPP). This document was prepared by the Hydrology Section of the Westinghouse TRU Solutions LLC (WTS) Environmental Compliance Department, and it is the responsibility of this group to review the plan annually and update it every three years. This document is not, nor is it intended to be, an implementing document that sets forth specific details on carrying out field projects or operational policy. Rather, it is intended to give the reader insight to the groundwater protection philosophy at WIPP.

Washington TRU Solutions

2002-09-24T23:59:59.000Z

245

Summary - SRS Salt Waste Processing Facility  

Broader source: Energy.gov (indexed) [DOE]

SRS Co SRS Co DOE S Proces concen actinid in a se remov adjustm sorben sorben solutio passed separa stream extract sufficie separa (with S vitrifica (DWP Sr/acti federa assure and ha Critica The te (CTE) descrip Readin The Ele Site: S roject: S F Report Date: J ited States Why DOE omposite High Lev Savannah Rive ssing Facility (S ntrate targeted des) from High eries of unit ope ved by contactin ment) with a m nt in a batch m nt (containing S on by cross flow d to a solvent e ated to an aque m. The bulk so tion process, w ently low levels ated high activi Sr and actinide ation in the Def F). Provisions inides adsorpti al project direct e that the plann ave been matu al Decision-3 ap What th eam identified e of the SWPF w ption. All CTE ness Level of 6 To view the full T http://www.em.doe. objective of a Tech ements (CTEs), usin

246

An Effective Waste Management Process for Segregation and Disposal of Legacy Mixed Waste at Sandia National Laboratories/New Mexico  

SciTech Connect (OSTI)

Sandia National Laboratories/New Mexico (SNL/NM) is a research and development facility that generates many highly diverse, low-volume mixed waste streams. Under the Federal Facility Compliance Act, SNL/NM must treat its mixed waste in storage to meet the Land Disposal Restrictions treatment standards. Since 1989, approximately 70 cubic meters (2500 cubic feet) of heterogeneous, poorly characterized and inventoried mixed waste was placed in storage that could not be treated as specified in the SNL/NM Site Treatment Plan. A process was created to sort the legacy waste into sixteen well- defined, properly characterized, and precisely inventoried mixed waste streams (Treatability Groups) and two low-level waste streams ready for treatment or disposal. From June 1995 through September 1996, the entire volume of this stored mixed waste was sorted and inventoried through this process. This process was planned to meet the technical requirements of the sorting operation and to identify and address the hazards this operation presented. The operations were routinely adapted to safely and efficiently handle a variety of waste matrices, hazards, and radiological conditions. This flexibility was accomplished through administrative and physical controls integrated into the sorting operations. Many Department of Energy facilities are currently facing the prospect of sorting, characterizing, and treating a large inventory of mixed waste. The process described in this paper is a proven method for preparing a diverse, heterogeneous mixed waste volume into segregated, characterized, inventoried, and documented waste streams ready for treatment or disposal.

Hallman, Anne K. [Sandia National Labs., Albuquerque, NM (United States); Meyer, Dann [IT Corporation, Albuquerque, NM (United States); Rellergert, Carla A. [Roy F. Weston, Inc., Albuquerque, NM (United States); Schriner, Joseph A. [Automated Solutions of Albuquerque, Albuquerque, NM (United States)

1998-06-01T23:59:59.000Z

247

Process modeling of hydrogen production from municipal solid waste  

SciTech Connect (OSTI)

The ASPEN PLUS commercial simulation software has been used to develop a process model for a conceptual process to convert municipal solid waste (MSW) to hydrogen. The process consists of hydrothermal treatment of the MSW in water to create a slurry suitable as feedstock for an oxygen blown Texaco gasifier. A method of reducing the complicated MSW feed material to a manageable set of components is outlined along with a framework for modeling the stoichiometric changes associated with the hydrothermal treatment process. Model results indicate that 0.672 kmol/s of hydrogen can be produced from the processing of 30 kg/s (2600 tonne/day) of raw MSW. A number of variations on the basic processing parameters are explored and indicate that there is a clear incentive to reduce the inert fraction in the processed slurry feed and that cofeeding a low value heavy oil may be economically attractive.

Thorsness, C.B.

1995-01-01T23:59:59.000Z

248

Integrated mixed waste storage program for spent solvent and laboratory waste  

SciTech Connect (OSTI)

A new tank project was initiated to provide a facility capable of providing the necessary storage capacity while meeting the South Carolina Hazardous Waste Management Regulations. The new project was initiated as a Category 11, General Plant Project. This project funding strategy would have allowed SRS access to project funding without Congressional approval as a Line Item, permitting the use of an expedited schedule for design and construction. The project team and Department of Energy -- Savannah River were successful in obtaining FY94 Line Item funding for the new tank project. However, the operational date for the new tank project was extended to October 1996. The revised facility operational date did not support the date submitted to South Carolina Department of Heath and Environmental Control as part of the existing facility closure plan. A plan to alleviate the South Carolina Department of Heath and Environmental Control concerns with the SRS existing tanks system had to be developed prior to notifying the state that the operational date was extended to October 1996. The remainder of this paper presents the plan that was developed and presented to the South Carolina Department of Heath and Environmental Control. The SRS integrated mixed waste storage program is divided into three separate phase: (1) interim waste storage for the period between facility closure and operation of the new tank facility, (2) closure of the existing facility and (3) the new solvent storage facility.

Walker, C.M.

1994-03-01T23:59:59.000Z

249

National Low-Level Waste Management Program Radionuclide Report Series, Volume 17: Plutonium-239  

SciTech Connect (OSTI)

This report, Volume 17 of the National Low-Level Waste Management Program Radionuclide Report Series, discusses the radiological and chemical characteristics of plutonium-239 (Pu-239). This report also discusses waste types and forms in which Pu-239 can be found, waste and disposal information on Pu-239, and Pu-239 behavior in the environment and in the human body.

J. P. Adams; M. L. Carboneau

1999-03-01T23:59:59.000Z

250

THE USE OF POLYMERS IN RADIOACTIVE WASTE PROCESSING SYSTEMS  

SciTech Connect (OSTI)

The Savannah River Site (SRS), one of the largest U.S. Department of Energy (DOE) sites, has operated since the early 1950s. The early mission of the site was to produce critical nuclear materials for national defense. Many facilities have been constructed at the SRS over the years to process, stabilize and/or store radioactive waste and related materials. The primary materials of construction used in such facilities are inorganic (metals, concrete), but polymeric materials are inevitably used in various applications. The effects of aging, radiation, chemicals, heat and other environmental variables must therefore be understood to maximize service life of polymeric components. In particular, the potential for dose rate effects and synergistic effects on polymeric materials in multivariable environments can complicate compatibility reviews and life predictions. The selection and performance of polymeric materials in radioactive waste processing systems at the SRS are discussed.

Skidmore, E.; Fondeur, F.

2013-04-15T23:59:59.000Z

251

National low-level waste management program radionuclide report series, Volume 15: Uranium-238  

SciTech Connect (OSTI)

This report, Volume 15 of the National Low-Level Waste Management Program Radionuclide Report Series, discusses the radiological and chemical characteristics of uranium-238 ({sup 238}U). The purpose of the National Low-Level Waste Management Program Radionuclide Report Series is to provide information to state representatives and developers of low-level radioactive waste disposal facilities about the radiological, chemical, and physical characteristics of selected radionuclides and their behavior in the waste disposal facility environment. This report also includes discussions about waste types and forms in which {sup 238}U can be found, and {sup 238}U behavior in the environment and in the human body.

Adams, J.P.

1995-09-01T23:59:59.000Z

252

Erosion/corrosion concerns in feed preparation systems at the Defense Waste Processing Facility  

SciTech Connect (OSTI)

The Savannah River Site (SRS) has been operating a nuclear fuel cycle since the 1950`s to produce nuclear materials in support of the national defense effort. The Department of Energy authorized the construction of the Defense Waste Processing Facility (DWPF) to immobilize the high level radioactive waste resulting from these processes as a durable borosilicate glass. The DWPF, after having undergone extensive testing, has been approved for operations and is currently immobilizing radioactive waste. To ensure reliability of the DWPF remote canyon processing equipment, a materials evaluation program was performed prior to radioactive operations to determine to what extent erosion/corrosion would impact design life of equipment. The program consisted of performing pre-service baseline inspections on critical equipment and follow-up inspections after completion of DWPF cold chemical demonstration runs. Non-destructive examination (NDE) techniques were used to assess erosion/corrosion as well as evaluation of corrosion coupon racks. These results were used to arrive at predicted equipment life for selected feed preparation equipment. It was concluded with the exception of the coil and agitator for the slurry mix evaporator (SME), which are exposed to erosive glass frit particles, all of the equipment should meet its design life.

Gee, J.T.; Chandler, C.T.; Daugherty, W.L.; Imrich, K.J.; Jenkins, C.F.

1997-12-31T23:59:59.000Z

253

An effective waste management process for segregation and disposal of legacy mixed waste at Sandia National Laboratories/New Mexico  

SciTech Connect (OSTI)

Sandia National Laboratories/New Mexico (SNL/NM) is a research and development facility that generates many highly diverse, low-volume mixed waste streams. Under the Federal Facility Compliance Act, SNL/NM must treat its mixed waste in storage to meet the Land Disposal Restrictions treatment standards. Since 1989, approximately 70 cubic meters (2,500 cubic feet) of heterogeneous, poorly characterized and inventoried mixed waste was placed in storage that could not be treated as specified in the SNL/NM Site Treatment Plan. A process was created to sort the legacy waste into sixteen well-defined, properly characterized, and accurately inventoried mixed waste streams (Treatability Groups) and two low-level waste streams ready for treatment or disposal. From June 1995 through September 1996, the entire volume of this stored mixed waste was sorted and inventoried. This process was planned to meet the technical requirements of the sorting operation and to identify and address the hazards this operation presented. The operations were routinely adapted to safely and efficiently handle a variety of waste matrices, hazards, and radiological conditions. This flexibility was accomplished through administrative and physical controls integrated into the sorting operations. Many Department of Energy facilities are currently facing the prospect of sorting, characterizing, and treating a large inventory of mixed waste. The process described in this report is a proven method for preparing a diverse, heterogeneous mixed waste volume into segregated, characterized, inventoried, and documented waste streams ready for treatment or disposal.

Hallman, A.K. [Sandia National Labs., Albuquerque, NM (United States); Meyer, D. [IT Corp., Albuquerque, NM (United States); Rellergert, C.A. [Roy F. Weston, Inc., Albuquerque, NM (United States); Schriner, J.A. [Automated Solutions of Albuquerque, Inc., NM (United States)

1998-04-01T23:59:59.000Z

254

Savannah River Site Interim Waste Management Program Plan FY 1991--1992  

SciTech Connect (OSTI)

The primary purpose of the Waste Management Program Plan is to provide an annual report of how Waste Management's operations are conducted, what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year. In addition, this document projects activities for several years beyond the coming fiscal year in order to adequately plan for safe handling, storage, and disposal of radioactive wastes generated at the Savannah River Site and for developing technology for improved management of wastes. In this document, work descriptions and milestone schedules are current as of December 1991.

Chavis, D.M.

1992-05-01T23:59:59.000Z

255

Savannah River Site Interim Waste Management Program Plan FY 1991--1992  

SciTech Connect (OSTI)

The primary purpose of the Waste Management Program Plan is to provide an annual report of how Waste Management`s operations are conducted, what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year. In addition, this document projects activities for several years beyond the coming fiscal year in order to adequately plan for safe handling, storage, and disposal of radioactive wastes generated at the Savannah River Site and for developing technology for improved management of wastes. In this document, work descriptions and milestone schedules are current as of December 1991.

Chavis, D.M.

1992-05-01T23:59:59.000Z

256

Multi-discipline Waste Acceptance Process at the Nevada National Security Site - 13573  

SciTech Connect (OSTI)

The Nevada National Security Site low-level radioactive waste disposal facility acceptance process requires multiple disciplines to ensure the protection of workers, the public, and the environment. These disciplines, which include waste acceptance, nuclear criticality, safety, permitting, operations, and performance assessment, combine into the overall waste acceptance process to assess low-level radioactive waste streams for disposal at the Area 5 Radioactive Waste Management Site. Four waste streams recently highlighted the integration of these disciplines: the Oak Ridge Radioisotope Thermoelectric Generators and Consolidated Edison Uranium Solidification Project material, West Valley Melter, and classified waste. (authors)

Carilli, Jhon T. [US Department Of Energy, Nevada Site Office, P. O. Box 98518, Las Vegas, Nevada 89193-8518 (United States)] [US Department Of Energy, Nevada Site Office, P. O. Box 98518, Las Vegas, Nevada 89193-8518 (United States); Krenzien, Susan K. [Navarro-Intera, LLC, P. O. Box 98952, Las Vegas, Nevada 89193-8952 (United States)] [Navarro-Intera, LLC, P. O. Box 98952, Las Vegas, Nevada 89193-8952 (United States)

2013-07-01T23:59:59.000Z

257

The Ceramic Waste Form Process at the Idaho National Laboratory  

SciTech Connect (OSTI)

The treatment of spent nuclear fuel for disposition using an electrometallurgical technique results in two high-level waste forms: a ceramic waste form (CWF) and a metal waste form (MWF). The CWF is a composite of sodalite and glass, which stabilizes the active fission products (alkali, alkaline earths, and rare earths) and transuranic (TRU) elements. Reactive metal fuel constituents, including all the TRU metals and the majority of the fission products remain in the salt as chlorides and are processed into the CWF. The solidified salt is containerized and transferred to the CWF process where it is ground in an argon atmosphere. Zeolite 4A is dried in a mechanically-fluidized dryer to about 0.1 wt% moisture and ground to a particle-size range of 45 to 250. The salt and zeolite are mixed in a V-mixer and heated to 500C for about 18 hours. During this process, the salt occludes into the structure of the zeolite. The salt-loaded zeolite (SLZ) is cooled and then mixed with borosilicate glass frit with a comparable particle-size range. The SLZ/glass mixture is transferred to a crucible, which is placed in a furnace and heated to 925C. During this process, known as pressureless consolidation, the zeolite is converted to the final sodalite form and the glass thoroughly encapsulates the sodalite, producing a dense, leach-resistant final waste form. During the last several years, changes have occurred to the process, including: particle size of input materials and conversion from hot isostatic pressing to pressureless consolidation, This paper is intended to provide the current status of the CWF process focusing on the adaptation to pressureless consolidation. Discussions will include impacts of particle size on final waste form and the pressureless consolidation cycle. A model will be presented that shows the heating and cooling cycles and the effect of radioactive decay heat on the amount of fission products that can be incorporated into the CWF.

Ken Bateman; Stephen Priebe

2006-08-01T23:59:59.000Z

258

Public Participation in Nuclear Waste Management : a Comparative Analysis of the Swedish and Canadian Processes.  

E-Print Network [OSTI]

??This thesis addresses the issue of public participation in the implementation of nuclear waste management (NWM) strategies by comparing the NWM programs of Sweden and (more)

Camacho, Rosanne

2005-01-01T23:59:59.000Z

259

GRR/Section 18-ID-b - Hazardous Waste Permit Process | Open Energy  

Open Energy Info (EERE)

GRR/Section 18-ID-b - Hazardous Waste Permit Process GRR/Section 18-ID-b - Hazardous Waste Permit Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-ID-b - Hazardous Waste Permit Process 18IDBHazardousWastePermitProcess.pdf Click to View Fullscreen Contact Agencies Idaho Department of Environmental Quality Regulations & Policies Idaho Hazardous Waste Management Act IDAPA 58.01.05 Rules and Standards for Hazardous Waste 40 CFR 124.31 Pre-application public meeting and notice 40 CRF 124.10 Public notice of permit actions and public comment period 40 CFR 124.12 Public hearings 40 CFR 270.13 Contents of Part A of the permit application Triggers None specified Click "Edit With Form" above to add content 18IDBHazardousWastePermitProcess.pdf 18IDBHazardousWastePermitProcess.pdf

260

GRR/Section 18-CO-b - Hazardous Waste Permit Process | Open Energy  

Open Energy Info (EERE)

GRR/Section 18-CO-b - Hazardous Waste Permit Process GRR/Section 18-CO-b - Hazardous Waste Permit Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-CO-b - Hazardous Waste Permit Process 18COBHazardousWastePermitProcess.pdf Click to View Fullscreen Contact Agencies Colorado Department of Public Health and Environment Regulations & Policies Colorado Hazardous Waste Regulations Part 260 Triggers None specified Click "Edit With Form" above to add content 18COBHazardousWastePermitProcess.pdf 18COBHazardousWastePermitProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Hazardous waste is a regulated substance and facilities that treat, store

Note: This page contains sample records for the topic "waste processing program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Waste Isolation Pilot Plant Groundwater Protection Management Program Plan  

SciTech Connect (OSTI)

The DOE has mandated in DOE Order 5400.1 that its operations will be conducted in an environmentally safe manner. The Waste Isolation Pilot Plant (WIPP) will comply with DOE Order 5400.1 and will conduct its operations in a manner that ensures the safety of the environment and the public. This document outlines how the WIPP will protect and preserve groundwater within and surrounding the WIPP facility. Groundwater protection is just one aspect of the WIPP environmental protection effort. The WIPP groundwater surveillance program is designed to determine statistically if any changes are occurring in groundwater characteristics within and surrounding the WIPP facility. If a change is noted, the cause will be determined and appropriate corrective action initiated.

Not Available

1993-12-31T23:59:59.000Z

262

Assessment of alternatives for management of ORNL retrievable transuranic waste. Nuclear Waste Program: transuranic waste (Activity No. AR 05 15 15 0; ONL-WT04)  

SciTech Connect (OSTI)

Since 1970, solid waste with TRU or U-233 contamination in excess of 10 ..mu..Ci per kilogram of waste has been stored in a retrievable fashion at ORNL, such as in ss drums, concrete casks, and ss-lined wells. This report describes the results of a study performed to identify and evaluate alternatives for management of this waste and of the additional waste projected to be stored through 1995. The study was limited to consideration of the following basic strategies: Strategy 1: Leave waste in place as is; Strategy 2: Improve waste confinement; and Strategy 3: Retrieve waste and process for shipment to a Federal repository. Seven alternatives were identified and evaluated, one each for Strategies 1 and 2 and five for Strategy 3. Each alternative was evaluated from the standpoint of technical feasibility, cost, radiological risk and impact, regulatory factors and nonradiological environmental impact.

Not Available

1980-10-01T23:59:59.000Z

263

Waste Isolation Pilot Plant Groundwater Protection Management Program Plan  

SciTech Connect (OSTI)

The DOE established the Groundwater Monitoring Program (GMP) (WP 02-1) to monitor groundwater resources at WIPP. In the past, the GMP was conducted to establish background data of existing conditions of groundwater quality and quantity in the WIPP vicinity, and to develop and maintain a water quality database as required by regulation. Today the GMP is conducted consistent with 204.1.500 NMAC (New MexicoAdministrative Code), "Adoption of 40 CFR [Code of Federal Regulations] Part 264,"specifically 40 CFR 264.90 through 264.101. These sections of 20.4.1 NMAC provide guidance for detection monitoring of groundwater that is, or could be, affected by waste management activities at WIPP. Detection monitoring at WIPP is designed to detect contaminants in the groundwater long before the general population is exposed. Early detection will allow cleanup efforts to be accomplished before any exposure to the general population can occur. Title 40 CFR Part 264, Subpart F, stipulates minimum requirements of Resource Conservation and Recovery Act of 1976 (42 United States Code [U.S.C.] 6901 et seq.) (RCRA) groundwater monitoring programs including the number and location of monitoring wells; sampling and reporting schedules; analytical methods and accuracy requirements; monitoring parameters; and statistical treatment of monitoring data. This document outlines how WIPP intends to protect and preserve groundwater within the WIPP Land Withdrawal Area (WLWA). Groundwater protection is just one aspect of the WIPP environmental protection effort. An overview of the entire environmental protection effort can be found in DOE/WIPP 99-2194, Waste Isolation Pilot Plant Environmental Monitoring Plan. The WIPP GMP is designed to statistically determine if any changes are occurring in groundwater characteristics within and surrounding the WIPP facility. If a change is noted, the cause will then be determined and the appropriate corrective action(s) initiated.

Washington Regulatory and Environmental Services

2005-07-01T23:59:59.000Z

264

Waste-heat recovery in batch processes using heat storage  

SciTech Connect (OSTI)

The waste-heat recovery in batch processes has been studied using the pinch-point method. The aim of the work has been to investigate theoretical and practical approaches to the design of heat-exchanger networks, including heat storage, for waste-heat recovery in batch processes. The study is limited to the incorporation of energy-storage systems based on fixed-temperature variable-mass stores. The background for preferring this to the alternatives (variable-temperature fixed-mass and constant-mass constant-temperature (latent-heat) stores) is given. It is shown that the maximum energy-saving targets as calculated by the pinch-point method (time average model, TAM) can be achieved by locating energy stores at either end of each process stream. This theoretically large number of heat-storage tanks (twice the number of process streams) can be reduced to just a few tanks. A simple procedure for determining a number of heat-storage tanks sufficient to achieve the maximum energy-saving targets as calculated by the pinch-point method is described. This procedure relies on combinatorial considerations, and could therefore be labeled the combinatorial method for incorporation of heat storage in heat-exchanger networks. Qualitative arguments justifying the procedure are presented. For simple systems, waste-heat recovery systems with only three heat-storage temperatures (a hot storage, a cold storage, and a heat store at the pinch temperature) often can achieve the maximum energy-saving targets. Through case studies, six of which are presented, it is found that a theoretically large number of heat-storage tanks (twice the number of process streams) can be reduced to just a few tanks. The description of these six cases is intended to be sufficiently detailed to serve as benchmark cases for development of alternative methods.

Stoltze, S.; Mikkelsen, J.; Lorentzen, B.; Petersen, P.M.; Qvale, B. [Technical Univ. of Denmark, Lyngby (Denmark). Lab. for Energetics

1995-06-01T23:59:59.000Z

265

Independent Oversight Review, Savannah River Site Salt Waste...  

Energy Savers [EERE]

Waste Treatment and Immobilization Plant - May 2013 Voluntary Protection Program Onsite Review, Salt Waste Processing Facility Construction Project - February 2013 CRAD,...

266

Reevaluation of Vitrified High-Level Waste Form Criteria for Potential Cost Savings at the Defense Waste Processing Facility - 13598  

SciTech Connect (OSTI)

At the Savannah River Site (SRS) the Defense Waste Processing Facility (DWPF) has been immobilizing SRS's radioactive high level waste (HLW) sludge into a durable borosilicate glass since 1996. Currently the DWPF has poured over 3,500 canisters, all of which are compliant with the U. S. Department of Energy's (DOE) Waste Acceptance Product Specifications for Vitrified High-Level Waste Forms (WAPS) and therefore ready to be shipped to a federal geologic repository for permanent disposal. Due to DOE petitioning to withdraw the Yucca Mountain License Application (LA) from the Nuclear Regulatory Commission (NRC) in 2010 and thus no clear disposal path for SRS canistered waste forms, there are opportunities for cost savings with future canister production at DWPF and other DOE producer sites by reevaluating high-level waste form requirements and compliance strategies and reducing/eliminating those that will not negatively impact the quality of the canistered waste form. (authors)

Ray, J.W. [Savannah River Remediation (United States)] [Savannah River Remediation (United States); Marra, S.L.; Herman, C.C. [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States)] [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States)

2013-07-01T23:59:59.000Z

267

Reevaluation Of Vitrified High-Level Waste Form Criteria For Potential Cost Savings At The Defense Waste Processing Facility  

SciTech Connect (OSTI)

At the Savannah River Site (SRS) the Defense Waste Processing Facility (DWPF) has been immobilizing SRS's radioactive high level waste (HLW) sludge into a durable borosilicate glass since 1996. Currently the DWPF has poured over 3,500 canisters, all of which are compliant with the U. S. Department of Energy's (DOE) Waste Acceptance Product Specifications for Vitrified High-Level Waste Forms (WAPS) and therefore ready to be shipped to a federal geologic repository for permanent disposal. Due to DOE petitioning to withdraw the Yucca Mountain License Application (LA) from the Nuclear Regulatory Commission (NRC) in 2010 and thus no clear disposal path for SRS canistered waste forms, there are opportunities for cost savings with future canister production at DWPF and other DOE producer sites by reevaluating high-level waste form requirements and compliance strategies and reducing/eliminating those that will not negatively impact the quality of the canistered waste form.

Ray, J. W.; Marra, S. L.; Herman, C. C.

2013-01-09T23:59:59.000Z

268

Identification of permit and waste acceptance criteria provisions requiring modification for acceptance of commercial mixed waste. National Low-Level Waste Management Program  

SciTech Connect (OSTI)

In October 1990, representatives of States and compact regions requested that the US Department of Energy (DOE) explore an agreement with host States and compact regions under which DOE would accept commercial mixed low-level radioactive waste (LLW) at DOE`s own treatment and disposal facilities. A program for DOE management of commercial mixed waste is made potentially more attractive in light of the low commercial mixed waste volumes, high regulatory burdens, public opposition to new disposal sites, and relatively high cost of constructing commercial disposal facilities. Several studies were identified as essential in determining the feasibility of DOE accepting commercial mixed waste for disposal. The purpose of this report is to identify any current or proposed waste acceptance criteria (WAC) or Resource Conservation and Recovery Act (RCRA) provisions that would have to be modified for commercial mixed waste acceptance at specified DOE facilities. Following the introduction, Section 2 of this report (a) provides a background summary of existing and proposed mixed waste disposal facilities at each DOE site, and (b) summarizes the status of any RCRA Part B permit and WAC provisions relating to the disposal of mixed waste, including provisions relating to acceptance of offsite waste. Section 3 provides overall conclusions regarding the current status and permit modifications that must be implemented in order to grant DOE sites authority under their permits to accept commercial mixed waste for disposal. Section 4 contains a list of references.

Not Available

1994-03-01T23:59:59.000Z

269

Review of Catalytic Hydrogen Generation in the Defense Waste Processing Facility (DWPF) Chemical Processing Cell  

SciTech Connect (OSTI)

This report was prepared to fulfill the Phase I deliverable for HLW/DWPF/TTR-98-0018, Rev. 2, ''Hydrogen Generation in the DWPF Chemical Processing Cell'', 6/4/2001. The primary objective for the preliminary phase of the hydrogen generation study was to complete a review of past data on hydrogen generation and to prepare a summary of the findings. The understanding was that the focus should be on catalytic hydrogen generation, not on hydrogen generation by radiolysis. The secondary objective was to develop scope for follow-up experimental and analytical work. The majority of this report provides a summary of past hydrogen generation work with radioactive and simulated Savannah River Site (SRS) waste sludges. The report also includes some work done with Hanford waste sludges and simulants. The review extends to idealized systems containing no sludge, such as solutions of sodium formate and formic acid doped with a noble metal catalyst. This includes general information from the literature, as well as the focused study done by the University of Georgia for the SRS. The various studies had a number of points of universal agreement. For example, noble metals, such as Pd, Rh, and Ru, catalyze hydrogen generation from formic acid and formate ions, and more acid leads to more hydrogen generation. There were also some points of disagreement between different sources on a few topics such as the impact of mercury on the noble metal catalysts and the identity of the most active catalyst species. Finally, there were some issues of potential interest to SRS that apparently have not been systematically studied, e.g. the role of nitrite ion in catalyst activation and reactivity. The review includes studies covering the period from about 1924-2002, or from before the discovery of hydrogen generation during simulant sludge processing in 1988 through the Shielded Cells qualification testing for Sludge Batch 2. The review of prior studies is followed by a discussion of proposed experimental work, additional data analysis, and future modeling programs. These proposals have led to recent investigations into the mercury issue and the effect of co-precipitating noble metals which will be documented in two separate reports. SRS hydrogen generation work since 2002 will also be collected and summarized in a future report on the effect of noble metal-sludge matrix interactions on hydrogen generation. Other potential factors for experimental investigation include sludge composition variations related to both the washing process and to the insoluble species with particular attention given to the role of silver and to improving the understanding of the interaction of nitrite ion with the noble metals.

Koopman, D. C.

2004-12-31T23:59:59.000Z

270

GRR/Section 18-UT-b - Hazardous Waste Permit Process | Open Energy  

Open Energy Info (EERE)

UT-b - Hazardous Waste Permit Process UT-b - Hazardous Waste Permit Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-UT-b - Hazardous Waste Permit Process 18UTBHazardousWastePermitProcess (1).pdf Click to View Fullscreen Contact Agencies Utah Department of Environmental Quality Regulations & Policies Hazardous Waste Rules R315-1 et seq Triggers None specified Click "Edit With Form" above to add content 18UTBHazardousWastePermitProcess (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative A hazardous waste is specifically listed by the Utah Solid and Hazardous Waste Rules or exhibits a characteristic such as ignitability, corrosivity,

271

Summary - Salt Waste Processing Facility Design at the Savannah River Site  

Broader source: Energy.gov (indexed) [DOE]

Salt Waste Processing Facility Salt Waste Processing Facility ETR Report Date: November 2006 ETR-4 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Salt Waste Processing Facility Design at the Savannah River Site (SRS) Why DOE-EM Did This Review The Salt Waste Processing Facility (SWPF) is intended to remove and concentrate the radioactive strontium (Sr), actinides, and cesium (Cs) from the bulk salt waste solutions in the SRS high-level waste tanks. The sludge and strip effluent from the SWPF that contain concentrated Sr, actinide, and Cs wastes will be sent to the SRS Defense Waste Processing Facility (DWPF), where they will be vitrified. The decontaminated salt solution (DSS) that is left after removal of the highly

272

STATUS OF THE DEVELOPMENT OF IN-TANK/AT-TANK SEPARATIONS TECHNOLOGIES FOR FOR HIGH-LEVEL WASTE PROCESSING FOR THE U.S. DEPARTMENT OF ENERGY  

SciTech Connect (OSTI)

Within the U.S. Department of Energy's (DOE) Office of Technology Innovation and Development, the Office of Waste Processing manages a research and development program related to the treatment and disposition of radioactive waste. At the Savannah River (South Carolina) and Hanford (Washington) Sites, approximately 90 million gallons of waste are distributed among 226 storage tanks (grouped or collocated in 'tank farms'). This waste may be considered to contain mixed and stratified high activity and low activity constituent waste liquids, salts and sludges that are collectively managed as high level waste (HLW). A large majority of these wastes and associated facilities are unique to the DOE, meaning many of the programs to treat these materials are 'first-of-a-kind' and unprecedented in scope and complexity. As a result, the technologies required to disposition these wastes must be developed from basic principles, or require significant re-engineering to adapt to DOE's specific applications. Of particular interest recently, the development of In-tank or At-Tank separation processes have the potential to treat waste with high returns on financial investment. The primary objective associated with In-Tank or At-Tank separation processes is to accelerate waste processing. Insertion of the technologies will (1) maximize available tank space to efficiently support permanent waste disposition including vitrification; (2) treat problematic waste prior to transfer to the primary processing facilities at either site (i.e., Hanford's Waste Treatment and Immobilization Plant (WTP) or Savannah River's Salt Waste Processing Facility (SWPF)); and (3) create a parallel treatment process to shorten the overall treatment duration. This paper will review the status of several of the R&D projects being developed by the U.S. DOE including insertion of the ion exchange (IX) technologies, such as Small Column Ion Exchange (SCIX) at Savannah River. This has the potential to align the salt and sludge processing life cycle, thereby reducing the Defense Waste Processing Facility (DWPF) mission by 7 years. Additionally at the Hanford site, problematic waste streams, such as high boehmite and phosphate wastes, could be treated prior to receipt by WTP and thus dramatically improve the capacity of the facility to process HLW. Treatment of boehmite by continuous sludge leaching (CSL) before receipt by WTP will dramatically reduce the process cycle time for the WTP pretreatment facility, while treatment of phosphate will significantly reduce the number of HLW borosilicate glass canisters produced at the WTP. These and other promising technologies will be discussed.

Aaron, G.; Wilmarth, B.

2011-09-19T23:59:59.000Z

273

Conversion of historic waste treatment process for production of an LDR and WIPP/WAC compliant TRU wasteform  

SciTech Connect (OSTI)

In support of the historic weapons production mission at the, Rocky Flats Environmental Technology Site (RFETS), several liquid waste treatment processes were designed, built and operated for treatment of plutonium-contaminated aqueous waste. Most of these @ processes ultimately resulted in the production of a cemented wasteform. One of these treatment processes was the Miscellaneous Aqueous Waste Handling and Solidification Process, commonly referred to as the Bottlebox process. Due to a lack of processing demand, Bottlebox operations were curtailed in late 1989. Starting in 1992, a treatment capability for stabilization of miscellaneous, Resource Conservation and Recovery Act (RCRA) hazardous, plutonium-nitrate solutions was identified. This treatment was required to address potentially unsafe storage conditions for these liquids. The treatment would produce a TRU wasteform. It thus became necessary to restart the Bottlebox process, but under vastly different conditions and constraints than existed prior to its curtailment. This paper provides a description of the historical Bottlebox process and process controls; and then describes, in detail, all of the process and process control changes that were implemented to convert the treatment system such that a Waste Isolation Pilot Plant (WIPP) and a Land Disposal Requirements (LDR) compliant wasteform would be produced. The rationale for imposition of LDRs on a TRU wasteform is discussed. In addition, this paper discusses the program changes implemented to meet modem criticality safety, Conduct of Operations, and Department of Energy Nuclear Facility restart requirements.

Dunn, R.P.; Wagner, R.A.

1997-03-01T23:59:59.000Z

274

Solid Waste Processing Center Primary Opening Cells Systems, Equipment and Tools  

SciTech Connect (OSTI)

This document addresses the remote systems and design integration aspects of the development of the Solid Waste Processing Center (SWPC), a facility to remotely open, sort, size reduce, and repackage mixed low-level waste (MLLW) and transuranic (TRU)/TRU mixed waste that is either contact-handled (CH) waste in large containers or remote-handled (RH) waste in various-sized packages.

Bailey, Sharon A.; Baker, Carl P.; Mullen, O Dennis; Valdez, Patrick LJ

2006-04-17T23:59:59.000Z

275

Waste and Water Top 2013 Accomplishments for Los Alamos EM Program |  

Broader source: Energy.gov (indexed) [DOE]

Waste and Water Top 2013 Accomplishments for Los Alamos EM Program Waste and Water Top 2013 Accomplishments for Los Alamos EM Program Waste and Water Top 2013 Accomplishments for Los Alamos EM Program December 24, 2013 - 12:00pm Addthis Unusually heavy rain in early September caused flash flooding in canyons surrounding Los Alamos. Unusually heavy rain in early September caused flash flooding in canyons surrounding Los Alamos. LOS ALAMOS, N.M. - Los Alamos National Laboratory's biggest environmental cleanup accomplishments during 2013 centered around waste and water. The laboratory's 3706 TRU Waste Campaign, an accelerated shipping effort spurred by a massive wildfire in 2011, completed another record-breaking year in 2013, removing a cumulative 1,825 cubic meters of transuranic (TRU) waste and exceeding every previous shipping record.

276

Technology needs for remediation: Hanford and other DOE sites. Buried Waste Integrated Demonstration Program  

SciTech Connect (OSTI)

Technologies are being developed under the Buried Waste Integrated Demonstration (BWID) program to facilitate remediation of the US Department of Energy`s (DOE) buried and stored low-level radioactive, transuranic (TRU), and mixed radioactive and hazardous buried wastes. The BWID program is being coordinated by the Idaho National Engineering Laboratory (INEL) in southeastern Idaho, a DOE site that has large volumes of buried radioactive wastes. The program is currently focusing its efforts on the problems at INEL`s Subsurface Disposal Area (SDA) of the Radioactive Waste Management Complex (RWMC). As specific technologies are successfully demonstrated, they will be available for transfer to applications at other DOE buried waste sites. The purpose of this study is to present buried waste technology needs that have been identified for DOE sites other than INEL.

Stapp, D.C.

1993-01-01T23:59:59.000Z

277

Radiological accidents potentially important to human health risk in the U.S. Department of Energy waste management program  

SciTech Connect (OSTI)

Human health risks as a consequence of potential radiological releases resulting from plausible accident scenarios constitute an important consideration in the US Department of Energy (DOE) national program to manage the treatment, storage, and disposal of wastes. As part of this program, the Office of Environmental Management (EM) is currently preparing a Programmatic Environmental Impact Statement (PEIS) that evaluates the risks that could result from managing five different waste types. This paper (1) briefly reviews the overall approach used to assess process and facility accidents for the EM PEIS; (2) summarizes the key inventory, storage, and treatment characteristics of the various DOE waste types important to the selection of accidents; (3) discusses in detail the key assumptions in modeling risk-dominant accidents; and (4) relates comparative source term results and sensitivities.

Mueller, C.; Roglans-Ribas, J.; Folga, S.; Nabelssi, B. [Argonne National Lab., IL (United States); Jackson, R. [Science Applications International Corp., Golden, CO (United States)

1995-03-01T23:59:59.000Z

278

Performance Assessment Program for the Savannah River Site Liquid Waste Facilities - 13610  

SciTech Connect (OSTI)

The Liquid Waste facilities at the U.S. Department of Energy's (DOE) Savannah River Site (SRS) are operated by Liquid Waste Operations contractor Savannah River Remediation LLC (SRR). A separate Performance Assessment (PA) is prepared to support disposal operations at the Saltstone Disposal Facility and closure evaluations for the two liquid waste tank farm facilities at SRS, F-Tank Farm and H-Tank Farm. A PA provides the technical basis and results to be used in subsequent documents to demonstrate compliance with the pertinent requirements identified in operations and closure regulatory guidance. The Saltstone Disposal Facility is subject to a State of South Carolina industrial solid waste landfill permit and the tank farms are subject to a state industrial waste water permit. The three Liquid Waste facilities are also subject to a Federal Facility Agreement approved by the State, DOE and the Environmental Protection Agency (EPA). Due to the regulatory structure, a PA is a key technical document reviewed by the DOE, the State of South Carolina and the EPA. As the waste material disposed of in the Saltstone Disposal Facility and the residual material in the closed tank farms is also subject to reclassification prior to closure via a waste determination pursuant to Section 3116 of the Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005, the U.S. Nuclear Regulatory Commission (NRC) is also a reviewing agency for the PAs. Pursuant to the Act, the NRC also has a continuing role to monitor disposal actions to assess compliance with stated performance objectives. The Liquid Waste PA program at SRS represents a continual process over the life of the disposal and closure operations. When the need for a PA or PA revision is identified, the first step is to develop a conceptual model to best represent the facility conditions. The conceptual model will include physical dimensions of the closed system, both the engineered and natural system, and modeling input parameters associated with the modeled features, both initial values (at the time of facility closure) and degradation rates/values. During the development of the PA, evaluations are conducted to reflect not only the results associated with the best available information at the time but also to evaluate potential uncertainties and sensitivities associated with the modeled system. While the PA will reflect the modeled system results from the best available information, it will also identify areas for future work to reduce overall PA uncertainties moving forward. DOE requires a PA Maintenance Program such that work continues to reduce model uncertainties, thus bolstering confidence in PA results that support regulatory decisions. This maintenance work may include new Research and Development activities or modeling as informed by previous PA results and other new information that becomes available. As new information becomes available, it is evaluated against previous PAs and appropriate actions are taken to ensure continued confidence in the regulatory decisions. Therefore, the PA program is a continual process that is not just the development of a PA but seeks to incorporate new information to reduce overall model uncertainty and provide continuing confidence in regulatory decisions. (author)

Rosenberger, Kent H. [Savannah River Remediation LLC, Building 705-1C, Aiken, SC 29808 (United States)] [Savannah River Remediation LLC, Building 705-1C, Aiken, SC 29808 (United States)

2013-07-01T23:59:59.000Z

279

Radioactive Waste Radioactive Waste  

E-Print Network [OSTI]

#12;Radioactive Waste at UF Bldg 831 392-8400 #12;Radioactive Waste · Program is designed to;Radioactive Waste · Program requires · Generator support · Proper segregation · Packaging · labeling #12;Radioactive Waste · What is radioactive waste? · Anything that · Contains · or is contaminated

Slatton, Clint

280

Process for treating waste water having low concentrations of metallic contaminants  

DOE Patents [OSTI]

A process for treating waste water having a low level of metallic contaminants by reducing the toxicity level of metallic contaminants to an acceptable level and subsequently discharging the treated waste water into the environment without removing the treated contaminants.

Looney, Brian B; Millings, Margaret R; Nichols, Ralph L; Payne, William L

2014-12-16T23:59:59.000Z

Note: This page contains sample records for the topic "waste processing program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Method for co-processing waste rubber and carbonaceous material  

SciTech Connect (OSTI)

In a process for the co-processing of waste rubber and carbonaceous material to form a useful liquid product, the rubber and the carbonaceous material are combined and heated to the depolymerization temperature of the rubber in the presence of a source of hydrogen. The deploymerized rubber acts as a liquefying solvent for the carbonaceous material while a beneficial catalytic effect is obtained from the carbon black released on deploymerization the reinforced rubber. The reaction is carried out at liquefaction conditions of 380--600{degrees}C and 70--280 atmospheres hydrogen pressure. The resulting liquid is separated from residual solids and further processed such as by distillation or solvent extraction to provide a carbonaceous liquid useful for fuels and other purposes.

Farcasiu, M.; Smith, C.M.

1990-10-09T23:59:59.000Z

282

Co-processing of agriculture and biomass waste with coal  

SciTech Connect (OSTI)

Biomass and bio-processed waste are potential candidates for co-liquefaction with coal. Specific materials used here include sawdust and poultry manure. Liquefaction experiments were run on each of these materials, separately and with coal, using tetralin as solvent at 350{degrees}C and 1000 psi(cold) hydrogen pressure for 1h. Total conversion was monitored, as well as conversion to asphaltenes, oils and gases. All the biomass samples are converted to oils and gases under the reaction conditions. Poultry manure seems to convert coal more completely, and to produce more oils and gases, than conventional liquefaction.

Stiller, A.H.; Dadyburjor, D.B.; Wann, J.P. [West Virginia Univ., Morgantown, WV (United States)

1995-12-01T23:59:59.000Z

283

Greater-than-Class C low-level waste characterization technical review process  

SciTech Connect (OSTI)

Existing volume projections of greater-than-Class C low-level waste (GTCC LLW) vary significantly. The Department of Energy (DOE) National Low-Level Waste Management Program (NLLWMP) has undertaken activities to develop a best estimate of GTCC LLW volumes and activities for use as the planning basis. Initial information about the generation of GTCC LLW was obtained through a DOE Energy Information Administration survey. That information, combined with information from other related literature, formed the basis of a computer model, which projects potential GTCC LLW. This paper describes uncertainties in existing GTCC LLW characterization and volume projections data and describes the technical review process that is being used to assist in projections of GTCC LLW expected for storage and disposal. 8 refs., 2 tabs.

Hutchison, D.; Magleby, M.

1990-01-01T23:59:59.000Z

284

Development programs in the United States of America for the application of cement-based grouts in radioactive waste management  

SciTech Connect (OSTI)

This paper briefly reviews seven cement-based waste form development programs at six of the US Department of Energy (DOE) sites. These sites have developed a variety of processes that range from producing 25 mm (1 in.) diameter pellets in a glove box to producing 240 m (800 ft.) diameter grout sheets within the bedding planes of a deep shale formation. These successful applications of cement-based waste forms to the many radioactive waste streams from nuclear facilities bear witness to the flexibility and reliability of this class of materials. This paper also discusses the major issues regarding the application of cement-based waste forms to radioactive waste management problems. These issues are (1) leachability, (2) radiation stability, (3) thermal stability, (4) phase complexity of the matrix, and (5) effects of the waste stream composition. A cursory review of current research in each of these areas is given This paper also discusses future trends in cement-based waste form development and applications. 31 references, 11 figures.

Dole, L.R.; Row, T.H.

1984-01-01T23:59:59.000Z

285

Performance Demonstration Program Plan for Nondestructive Assay for the TRU Waste Characterization Program. Revision 1  

SciTech Connect (OSTI)

The Performance Demonstration Program (PDP) for Nondestructive Assay (NDA) consists of a series of tests conducted on a regular frequency to evaluate the capability for nondestructive assay of transuranic (TRU) waste throughout the Department of Energy (DOE) complex. Each test is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements performed with TRU waste characterization systems. Measurement facility performance will be demonstrated by the successful analysis of blind audit samples according to the criteria set by this Program Plan. Intercomparison between measurement groups of the DOE complex will be achieved by comparing the results of measurements on similar or identical blind samples reported by the different measurement facilities. Blind audit samples (hereinafter referred to as PDP samples) will be used as an independent means to assess the performance of measurement groups regarding compliance with established Quality Assurance Objectives (QAOs). As defined for this program, a PDP sample consists of a 55-gallon matrix drum emplaced with radioactive standards and fabricated matrix inserts. These PDP sample components, once manufactured, will be secured and stored at each participating measurement facility designated and authorized by Carlsbad Area Office (CAO) under secure conditions to protect them from loss, tampering, or accidental damage.

None

1997-05-01T23:59:59.000Z

286

Evaluation program effectiveness of household hazardous waste collection: The Seattle-King County experience  

SciTech Connect (OSTI)

The Seattle-King County Hazardous Waste Management Plan provides the framework for an intensive effort to keep Household Hazardous and Small Quantity Generator (SQG) wastes from entering the normal'' municipal waste streams. The Plan sets ambitious goals for diverting thousands of tons of hazardous wastes from being thrown, poured or dumped in the municipal waste stream. During the first five years, over $30 millon will be spent for a variety of HHW and SQG programs. The Plan incorporates a wide range of elements, including education, collection, and compliance components. Many of the hazardous waste education and collection programs have been developed in response to the Plan, so their effectiveness is still undetermined. A key component of the Plan is program evaluation. This report provides descriptions of two evaluation methods used to establish baselines for assessing the effectiveness of the Hazardous Waste Management Plan's programs. Focusing on the Plan's household hazardous waste programs, the findings of the baseline evaluations are discussed and conclusions are made. A general population survey, conducted through telephone interviews, was designed to assess changes in knowledge, attitudes, and behaviors of area residents. Characterization of the solid waste stream was used to identify the hazardous constituents contributed to municipal solid waste by households. Monitoring changes in the amount of hazardous materials present in the waste stream was used to indicate whether or not Program strategies are influencing disposal behaviors. Comparing the data gathered by these two evaluation methods provided a unique opportunity to cross-check the findings and validate that change, if any, has occurred. From the comparisons, the report draws a number of conclusions.

Not Available

1991-10-01T23:59:59.000Z

287

Evaluation program effectiveness of household hazardous waste collection: The Seattle-King County experience  

SciTech Connect (OSTI)

The Seattle-King County Hazardous Waste Management Plan provides the framework for an intensive effort to keep Household Hazardous and Small Quantity Generator (SQG) wastes from entering the ``normal`` municipal waste streams. The Plan sets ambitious goals for diverting thousands of tons of hazardous wastes from being thrown, poured or dumped in the municipal waste stream. During the first five years, over $30 millon will be spent for a variety of HHW and SQG programs. The Plan incorporates a wide range of elements, including education, collection, and compliance components. Many of the hazardous waste education and collection programs have been developed in response to the Plan, so their effectiveness is still undetermined. A key component of the Plan is program evaluation. This report provides descriptions of two evaluation methods used to establish baselines for assessing the effectiveness of the Hazardous Waste Management Plan`s programs. Focusing on the Plan`s household hazardous waste programs, the findings of the baseline evaluations are discussed and conclusions are made. A general population survey, conducted through telephone interviews, was designed to assess changes in knowledge, attitudes, and behaviors of area residents. Characterization of the solid waste stream was used to identify the hazardous constituents contributed to municipal solid waste by households. Monitoring changes in the amount of hazardous materials present in the waste stream was used to indicate whether or not Program strategies are influencing disposal behaviors. Comparing the data gathered by these two evaluation methods provided a unique opportunity to cross-check the findings and validate that change, if any, has occurred. From the comparisons, the report draws a number of conclusions.

Not Available

1991-10-01T23:59:59.000Z

288

Results of a Strategic Assessment of NRC's Low-Level Radioactive Waste Program  

SciTech Connect (OSTI)

NRC recently completed a strategic assessment of its low-level radioactive waste (LLW) regulatory program. In this paper, we provide the results of this assessment - a prioritized list of activities for our LLW program in the next several years - along with a description of the circumstances that required us to undertake this assessment and the process we used. We obtained ideas from a wide variety of stakeholders on activities we could undertake, and we evaluated them in light of our overall strategic objectives for ensuring safety and security, as well as a number of other factors. We ranked 7 of the 20 activities evaluated as high priority. Their completion in the next several years will help to ensure that LLW will continue to be managed and disposed of safely and securely. (authors)

Bradford, A.W.; Camper, L.W.; Flanders, S.C.; Kennedy, J.E.; Shaffner, J.A.; Tokar, M.; Whited, A.R. [NRC LLW Branch, Mail Stop T-8-F-5, U.S. Nuclear Regulatory Commission, Washington DC (United States)

2008-07-01T23:59:59.000Z

289

Mixed Waste Management Options: 1995 Update. National Low-Level Waste Management Program  

SciTech Connect (OSTI)

In the original mixed Waste Management Options (DOE/LLW-134) issued in December 1991, the question was posed, ``Can mixed waste be managed out of existence?`` That study found that most, but not all, of the Nation`s mixed waste can theoretically be managed out of existence. Four years later, the Nation is still faced with a lack of disposal options for commercially generated mixed waste. However, since publication of the original Mixed Waste Management Options report in 1991, limited disposal capacity and new technologies to treat mixed waste have become available. A more detailed estimate of the Nation`s mixed waste also became available when the US Environmental Protection Agency (EPA) and the US Nuclear Regulatory Commission (NRC) published their comprehensive assessment, titled National Profile on Commercially Generated Low-Level Radioactive Mixed Waste (National Profile). These advancements in our knowledge about mixed waste inventories and generation, coupled with greater treatment and disposal options, lead to a more applied question posed for this updated report: ``Which mixed waste has no treatment option?`` Beyond estimating the volume of mixed waste requiring jointly regulated disposal, this report also provides a general background on the Atomic Energy Act (AEA) and the Resource Conservation and Recovery Act (RCRA). It also presents a methodical approach for generators to use when deciding how to manage their mixed waste. The volume of mixed waste that may require land disposal in a jointly regulated facility each year was estimated through the application of this methodology.

Kirner, N.; Kelly, J.; Faison, G.; Johnson, D. [Foster Wheeler Environmental Corp. (United States)

1995-05-01T23:59:59.000Z

290

Process Knowledge Summary Report for Materials and Fuels Complex Contact-Handled Transuranic Debris Waste  

SciTech Connect (OSTI)

This Process Knowledge Summary Report summarizes the information collected to satisfy the transportation and waste acceptance requirements for the transfer of transuranic (TRU) waste between the Materials and Fuels Complex (MFC) and the Advanced Mixed Waste Treatment Project (AMWTP). The information collected includes documentation that addresses the requirements for AMWTP and the applicable portion of their Resource Conservation and Recovery Act permits for receipt and treatment of TRU debris waste in AMWTP. This report has been prepared for contact-handled TRU debris waste generated by the Idaho National Laboratory at MFC. The TRU debris waste will be shipped to AMWTP for purposes of supercompaction. This Process Knowledge Summary Report includes information regarding, but not limited to, the generation process, the physical form, radiological characteristics, and chemical contaminants of the TRU debris waste, prohibited items, and packaging configuration. This report, along with the referenced supporting documents, will create a defensible and auditable record for waste originating from MFC.

R. P. Grant; P. J. Crane; S. Butler; M. A. Henry

2010-02-01T23:59:59.000Z

291

Tank waste remediation system process engineering instruction manual  

SciTech Connect (OSTI)

The purpose of the Tank Waste Remediation System (TWRS) Process Engineering Instruction Manual is to provide guidance and direction to TWRS Process Engineering staff regarding conduct of business. The objective is to establish a disciplined and consistent approach to business such that the work processes within TWRS Process Engineering are safe, high quality, disciplined, efficient, and consistent with Lockheed Martin Hanford Corporation Policies and Procedures. The sections within this manual are of two types: for compliance and for guidance. For compliance sections are intended to be followed per-the-letter until such time as they are formally changed per Section 2.0 of this manual. For guidance sections are intended to be used by the staff for guidance in the conduct of work where technical judgment and discernment are required. The guidance sections shall also be changed per Section 2.0 of this manual. The required header for each manual section is illustrated in Section 2.0, Manual Change Control procedure. It is intended that this manual be used as a training and indoctrination resource for employees of the TWRS Process Engineering organization. The manual shall be required reading for all TWRS Process Engineering staff, matrixed, and subcontracted employees.

ADAMS, M.R.

1998-11-04T23:59:59.000Z

292

Order Module--self-study program: HAZARDOUS WASTE OPERATIONS AND EMERGENCY  

Broader source: Energy.gov (indexed) [DOE]

self-study program: HAZARDOUS WASTE OPERATIONS AND self-study program: HAZARDOUS WASTE OPERATIONS AND EMERGENCY RESPONSE Order Module--self-study program: HAZARDOUS WASTE OPERATIONS AND EMERGENCY RESPONSE This module will discuss the objectives and requirements associated with this rule from the code of federal regulations. We have provided an example to help familiarize you with the material. The example will also help prepare you for the practice at the end of this module and for the criterion test. Before continuing, you should obtain a copy of the regulation at Hazardous waste operations and emergency response or through the course manager. You may need to refer to these documents to complete the example, practice, and criterion test. DOE Order Self Study Modules - 29 CFR 1910.120 Hazardous Waste Operations

293

Summary of non-US national and international radioactive waste management programs 1981  

SciTech Connect (OSTI)

Many nations and international agencies are working to develop improved technology and industrial capability for neuclear fuel cycle and waste management operations. The effort in some countries is limited to research in university laboratories on treating low-level waste from reactor plant operations. In other countries, national nuclear research institutes are engaged in major programs in all phases of the fuel cycle and waste management, and there is a national effort to commercialize fuel cycle operations. Since late 1976, staff members of Pacific Northwest Laboratory have been working under US Department of Energy sponsorship to assemble and consolidate openly available information on foreign and international nuclear waste management programs and technology. This report summarizes the information collected on the status of fuel cycle and waste management programs in selected countries making major efforts in these fields as of the end of May 1981.

Harmon, K.M.; Kelman, J.A.

1981-06-01T23:59:59.000Z

294

An evaluation of neutralization for processing sodium-bearing liquid waste  

SciTech Connect (OSTI)

This report addresses an alternative concept for potentially managing the sodium-bearing liquid waste generated at the Idaho Chemical Processing Plant from the current method of calcining a blend of sodium waste and high-level liquid waste. The concept is based on removing the radioactive components from sodium-bearing waste by neutralization and grouting the resulting low-level waste for on-site near-surface disposal. Solidifying the sodium waste as a remote-handled transuranic waste is not considered to be practical because of excessive costs and inability to dispose of the waste in a timely fashion. Although neutralization can remove most radioactive components to provide feed for a solidified low-level waste, and can reduce liquid inventories four to nine years more rapidly than the current practice of blending sodium-bearing liquid waste with first-cycle raffinite, the alternative will require major new facilities and will generate large volumes of low-level waste. Additional facility and operating costs are estimated to be at least $500 million above the current practice of blending and calcining. On-site, low-level waste disposal may be technically difficult and conflict which national and state policies. Therefore, it is recommended that the current practice of calcining a blend of sodium-bearing liquid waste and high-level liquid waste be continued to minimize overall cost and process complexities. 17 refs., 4 figs., 16 tabs.

Chipman, N.A.; Engelgau, G.O.; Berreth, J.R.

1989-01-01T23:59:59.000Z

295

Preliminary evaluation of alternative waste form solidification processes. Volume II. Evaluation of the processes  

SciTech Connect (OSTI)

This Volume II presents engineering feasibility evaluations of the eleven processes for solidification of nuclear high-level liquid wastes (HHLW) described in Volume I of this report. Each evaluation was based in a systematic assessment of the process in respect to six principal evaluation criteria: complexity of process; state of development; safety; process requirements; development work required; and facility requirements. The principal criteria were further subdivided into a total of 22 subcriteria, each of which was assigned a weight. Each process was then assigned a figure of merit, on a scale of 1 to 10, for each of the subcriteria. A total rating was obtained for each process by summing the products of the subcriteria ratings and the subcriteria weights. The evaluations were based on the process descriptions presented in Volume I of this report, supplemented by information obtained from the literature, including publications by the originators of the various processes. Waste form properties were, in general, not evaluated. This document describes the approach which was taken, the developent and application of the rating criteria and subcriteria, and the evaluation results. A series of appendices set forth summary descriptions of the processes and the ratings, together with the complete numerical ratings assigned; two appendices present further technical details on the rating process.

Not Available

1980-08-01T23:59:59.000Z

296

Defense Waste Processing Facility wasteform and canister description: Revision 2  

SciTech Connect (OSTI)

This document describes the reference wasteform and canister for the Defense Waste Processing Facility (DWPF). The principal changes include revised feed and glass product compositions, an estimate of glass product characteristics as a function of time after the start of vitrification, and additional data on glass leaching performance. The feed and glass product composition data are identical to that described in the DWPF Basic Data Report, Revision 90/91. The DWPF facility is located at the Savannah River Plant in Aiken, SC, and it is scheduled for construction completion during December 1989. The wasteform is borosilicate glass containing approximately 28 wt % sludge oxides, with the balance consisting of glass-forming chemicals, primarily glass frit. Borosilicate glass was chosen because of its stability toward reaction with potential repository groundwaters, its relatively high ability to incorporate nuclides found in the sludge into the solid matrix, and its reasonably low melting temperature. The glass frit contains approximately 71% SiO/sub 2/, 12% B/sub 2/O/sub 3/, and 10% Na/sub 2/O. Tests to quantify the stability of DWPF waste glass have been performed under a wide variety of conditions, including simulations of potential repository environments. Based on these tests, DWPF waste glass should easily meet repository criteria. The canister is filled with about 3700 lb of glass which occupies 85% of the free canister volume. The filled canister will generate approximately 690 watts when filled with oxides from 5-year-old sludge and precipitate from 15-year-old supernate. The radionuclide activity of the canister is about 233,000 curies, with an estimated radiation level of 5600 rad/hour at the canister surface. 14 figs., 28 tabs.

Baxter, R.G.

1988-12-01T23:59:59.000Z

297

National Low-Level Waste Management Program radionuclide report series. Volume 13, Curium-242  

SciTech Connect (OSTI)

This report, Volume 13 of the National Low-Level Waste Management Program Radionuclide Report Series, discusses the radiological and chemical characteristics of curium-242 ({sup 242}Cm). This report also includes discussions about waste types and forms in which {sup 242}Cm can be found and {sup 242}Cm behavior in the environment and in the human body.

Adams, J.P.

1995-08-01T23:59:59.000Z

298

National low-level waste management program radionuclide report series, Volume 14: Americium-241  

SciTech Connect (OSTI)

This report, Volume 14 of the National Low-Level Waste Management Program Radionuclide Report Series, discusses the radiological and chemical characteristics of americium-241 ({sup 241}Am). This report also includes discussions about waste types and forms in which {sup 241}Am can be found and {sup 241}Am behavior in the environment and in the human body.

Winberg, M.R.; Garcia, R.S.

1995-09-01T23:59:59.000Z

299

Voluntary Protection Program Onsite, Liquid Waste Contract Savannah...  

Energy Savers [EERE]

2011 More Documents & Publications Voluntary Protection Program Onsite Review, Savannah River Site - May 2010 VPP Program Document Voluntary Protection Program Onsite Review, Los...

300

Overview of Fords Thermoelectric Programs: Waste Heat Recovery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Overview of progress in TE waste heat recovery from sedan gasoline-engine exhaust, TE HVAC system in hybrid sedan, and establishing targets for cost, power density, packaging,...

Note: This page contains sample records for the topic "waste processing program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes  

DOE Patents [OSTI]

The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogenous molten matrix. The molten matrix may be directed in a "clean" polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment.

Kalb, Paul D. (Wading River, NY); Colombo, Peter (Patchogue, NY)

1998-03-24T23:59:59.000Z

302

Composition and process for the encapsulation and stabilization of radioactive hazardous and mixed wastes  

DOE Patents [OSTI]

The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogeneous molten matrix. The molten matrix may be directed in a ``clean`` polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment. 2 figs.

Kalb, P.D.; Colombo, P.

1997-07-15T23:59:59.000Z

303

Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes  

DOE Patents [OSTI]

The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogeneous molten matrix. The molten matrix may be directed in a ``clean`` polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment. 2 figs.

Kalb, P.D.; Colombo, P.

1998-03-24T23:59:59.000Z

304

Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes  

DOE Patents [OSTI]

The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogeneous molten matrix. The molten matrix may be directed in a clean'' polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment. 2 figs.

Kalb, P.D.; Colombo, P.

1999-07-20T23:59:59.000Z

305

Composition and process for the encapsulation and stabilization of radioactive hazardous and mixed wastes  

DOE Patents [OSTI]

The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogenous molten matrix. The molten matrix may be directed in a "clean" polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment.

Kalb, Paul D. (21 Barnes Road, Wading River, NY 11792); Colombo, Peter (44 N. Pinelake Dr., Patchogue, NY 11772)

1997-01-01T23:59:59.000Z

306

Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes  

DOE Patents [OSTI]

The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogenous molten matrix. The molten matrix may be directed in a "clean" polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment.

Kalb, Paul D. (Wading River, NY); Colombo, Peter (Patchogue, NY)

1999-07-20T23:59:59.000Z

307

Waste Receiving and Processing, Module 2A, feed specification: Revision 1  

SciTech Connect (OSTI)

Detailed descriptions of the various mixed low-level waste feed streams that will be processed in the Waste Receiving and Processing Facility, Module 2A (WRAP 2A) are provided. Feed stream descriptions are based on available reports, the solid waste information tracking system database, and the 1993 solid waste forecast data. Available chemical and physical attributes, radionuclide data, waste codes, and packaging information are shown for 15 feed streams. The information sources and methodology for obtaining projections for WRAP 2A expected feed stream volumes also are described.

Kruger, O.L.; Sheriff, M.L.

1994-11-14T23:59:59.000Z

308

Salt Waste Processing Facility Fact Sheet | Department of Energy  

Office of Environmental Management (EM)

waste that is being stored, on an interim basis, in 49 underground waste storage tanks in the F- and H-Area Tank Farms. SWPF Fact Sheet More Documents & Publications...

309

Waste Heat Management Options: Industrial Process Heating Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

itself * Waste heat recovery or auxiliary or adjoining systems within a plant * Waste heat to power conversion Recycle Copyrighted - E3M Inc. August 20, 2009 Arvind Thekdi, E3M...

310

SWEDISH-AMERICAN COOPERATIVE PROGRAM ON RADIOACTIVE WASTE STORAGE IN MINED CAVERNS. PROGRAM SUMMARY  

E-Print Network [OSTI]

WASTE STORAGE IN MINED CAVERNS by P. A. Witherspoon LawrenceWASTE STORAGE IN MINED CAVERNS INTRODUCTION Final and safeon the possibility of using mined caverns in salt as waste

Witherspoon, P.A.

2011-01-01T23:59:59.000Z

311

Thermoelectric Waste Heat Recovery Program for Passenger Vehicles  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

312

Thermoelectric Waste Heat Recovery Program for Passenger Vehicles  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

313

GRR/Section 18 - Waste and Hazardous Material Assessment Process | Open  

Open Energy Info (EERE)

- Waste and Hazardous Material Assessment Process - Waste and Hazardous Material Assessment Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18 - Waste and Hazardous Material Assessment Process 18 - WasteAndHazardousMaterialAssessmentProcess.pdf Click to View Fullscreen Contact Agencies Environmental Protection Agency Regulations & Policies RCRA CERCLA 40 CFR 261 Triggers None specified Click "Edit With Form" above to add content 18 - WasteAndHazardousMaterialAssessmentProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The use of underground and above ground storage tanks, discovery of waste

314

GRR/Section 18-AK-c - Waste Disposal Permit Process | Open Energy  

Open Energy Info (EERE)

AK-c - Waste Disposal Permit Process AK-c - Waste Disposal Permit Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-AK-c - Waste Disposal Permit Process 18AKC - WasteDisposalPermitProcess (1).pdf Click to View Fullscreen Contact Agencies Alaska Department of Environmental Conservation Regulations & Policies AS 46.03.110 Waste Disposal Permit Regulations 18 AAC 60.200 et seq Triggers None specified Click "Edit With Form" above to add content 18AKC - WasteDisposalPermitProcess (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Alaska Department of Environmental Conservation (DEC) is responsible

315

GRR/Section 18-OR-b - Hazardous Waste Permit Process | Open Energy  

Open Energy Info (EERE)

OR-b - Hazardous Waste Permit Process OR-b - Hazardous Waste Permit Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-OR-b - Hazardous Waste Permit Process 18ORBHazardousWastePermitProcess (1).pdf Click to View Fullscreen Contact Agencies United States Environmental Protection Agency Oregon Department of Environmental Quality Oregon Public Health Division Oregon Public Utility Commission Oregon Department of Fish and Wildlife Oregon Water Resources Department Regulations & Policies OAR 340-105: Management Facility Permits OAR 340-120: Hazardous Waste Management ORS 466: Storage, Treatment, and Disposal Triggers None specified Click "Edit With Form" above to add content 18ORBHazardousWastePermitProcess (1).pdf

316

Evaluation of the transport and resuspension of a simulated nuclear waste slurry: Nuclear Waste Treatment Program  

SciTech Connect (OSTI)

The Department of Chemical Engineering at the University of Idaho conducted research on the transport and resuspension of a simulated high-level nuclear waste slurry. In the United States, the reference process for treating both defense and civilian HLLW is vitrification using the liquid-fed ceramic melter process. The non-Newtonian behavior of the slurry complicates the evaluation of the transport and resuspension characteristics of the slurry. The resuspension of a simulated (nonradioactive) melter feed slurry was evaluated using a slurry designated as WV-205. The simulated slurry was developed for the West Valley Demonstration Project and was used during a pilot-scale ceramic melter (PSCM) experiment conducted at PNL in July 1985 (PSCM-21). This study involved determining the transport characteristics of a fully suspended slurry and the resuspension characteristics of settled solids in a pilot-scale pipe loop. The goal was to predict the transport and resuspension of a full-scale system based on rheological data for a specific slurry. The rheological behavior of the slurry was evaluated using a concentric cylinder rotational viscometer, a capillary tube viscometer, and the pilot-scale pipe loop. The results obtained from the three approaches were compared. 40 refs., 74 figs., 15 tabs.

Carleson, T.E.; Drown, D.C.; Hart, R.E.; Peterson, M.E.

1987-09-01T23:59:59.000Z

317

Waste receiving and processing plant control system; system design description  

SciTech Connect (OSTI)

The Plant Control System (PCS) is a heterogeneous computer system composed of numerous sub-systems. The PCS represents every major computer system that is used to support operation of the Waste Receiving and Processing (WRAP) facility. This document, the System Design Description (PCS SDD), includes several chapters and appendices. Each chapter is devoted to a separate PCS sub-system. Typically, each chapter includes an overview description of the system, a list of associated documents related to operation of that system, and a detailed description of relevant system features. Each appendice provides configuration information for selected PCS sub-systems. The appendices are designed as separate sections to assist in maintaining this document due to frequent changes in system configurations. This document is intended to serve as the primary reference for configuration of PCS computer systems. The use of this document is further described in the WRAP System Configuration Management Plan, WMH-350, Section 4.1.

LANE, M.P.

1999-02-24T23:59:59.000Z

318

INVESTIGATION OF WASTE GLASS POURING PROCESS OVER A KNIFE EDGE  

SciTech Connect (OSTI)

Vitrification is the process of capturing radioactive waste in glass. The Savannah River Site's (SRS) Defense Waste Processing Facility (DWPF) is one of the facilities using the vitrification technology to treat and immobilize radioactive waste. The objective of the project is to investigate the pouring behavior of molten glass over a pour spout knife edge. Experiments are run using simulant glass containing the same chemical formulation as the radioactive sludge glass, but without radioactive contaminants. The purpose of these tests is to obtain actual glass data that, when combined with previous cold data from other fluids, will provide an overall understanding of the physics of liquids flowing over a pour spout and knife edge, A specific objective is to verify computational fluid dynamics (CFD) models with a range of liquid data with particular emphasis on glass so as to provide confidence in use of these CFD models for designing a new improved pour spout for the DWPF melter. The work to be performed at FIU-HCET includes assembling the melting and pouring system that mimics the DWPF melter and determining the key parameters that may influence wicking. Information from the FIU-HCET melter tests will lead to better operating guidelines for the DWPF melter so as to avoid wicking. During FY98, a bench-scale melter complete with pour spout and a knife edge was designed and assembled at FIU-HCET. Initially, the system was tested with glycerine. Subsequently, glass provided by SRS was used for experimentation. Flow visualization tests were performed with the melter in FY98 to investigate the pouring behavior of molten glass over a pour spout model simulating a DWPF pour spout of the original design. Simulant glass containing the same chemical formulation as sludge glass but without radioactive contaminants was used in the tests. All the tasks and milestones mentioned in the PTP for the project were accomplished. The project completed its second year, and this document reports the tasks and milestones that were accomplished during the 1998 fiscal year.

M.A. Ebadian, Ph.D.

1999-01-01T23:59:59.000Z

319

Organic tanks safety program FY95 waste aging studies  

SciTech Connect (OSTI)

This report gives the second year`s findings of a study of how thermal and radiological processes may change the composition of organic compounds in the underground tanks at Hanford. Efforts were focused on the global reaction kinetics in a simulated waste exposed to {gamma} rays and the reactions of organic radicals with nitrite ion. The gas production is predominantly radiolytic. Decarboxylation of carboxylates is probably an aging pathway. TBP was totaly consumed in almost every run. Radiation clearly accelerated consumption of the other compounds. EDTA is more reactive than citrate. Oximes and possibly organic nitro compounds are key intermediates in the radiolytic redox reactions of organic compounds with nitrate/nitrite. Observations are consistent with organic compounds being progressively degraded to compounds with greater numbers of C-O bonds and fewer C-H and C-C bonds, resulting in an overall lower energy content. If the radwaste tanks are adequately ventilated and continually dosed by radioactivity, their total energy content should have declined. Level of risk depends on how rapidly carboxylate salts of moderate energy content (including EDTA fragments) degrade to low energy oxalate and formate.

Camaioni, D.M.; Samuels, W.D.; Clauss, S.A.; Lenihan, B.D.; Wahl, K.L.; Campbell, J.A.; Shaw, W.J.

1995-09-01T23:59:59.000Z

320

Quality Services: Solid Wastes, Part 360: Solid Waste Management Facilities  

Broader source: Energy.gov (indexed) [DOE]

0: Solid Waste Management 0: Solid Waste Management Facilities (New York) Quality Services: Solid Wastes, Part 360: Solid Waste Management Facilities (New York) < Back Eligibility Agricultural Commercial Fuel Distributor Industrial Institutional Investor-Owned Utility Multi-Family Residential Municipal/Public Utility Rural Electric Cooperative Transportation Utility Program Info State New York Program Type Environmental Regulations Provider NY Department of Environmental Conservation These regulations apply to all solid wastes with the exception of hazardous or radioactive waste. Proposed solid waste processing facilities are required to obtain permits prior to construction, and the regulations provide details about permitting, construction, registration, and operation requirements. The regulations contain specific guidance for land

Note: This page contains sample records for the topic "waste processing program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Design report for the interim waste containment facility at the Niagara Falls Storage Site. [Surplus Facilities Management Program  

SciTech Connect (OSTI)

Low-level radioactive residues from pitchblende processing and thorium- and radium-contaminated sand, soil, and building rubble are presently stored at the Niagara Falls Storage Site (NFSS) in Lewiston, New York. These residues and wastes derive from past NFSS operations and from similar operations at other sites in the United States conducted during the 1940s by the Manhattan Engineer District (MED) and subsequently by the Atomic Energy Commission (AEC). The US Department of Energy (DOE), successor to MED/AEC, is conducting remedial action at the NFSS under two programs: on-site work under the Surplus Facilities Managemnt Program and off-site cleanup of vicinity properties under the Formerly Utilized Sites Remedial Action Program. On-site remedial action consists of consolidating the residues and wastes within a designated waste containment area and constructing a waste containment facility to prevent contaminant migration. The service life of the system is 25 to 50 years. Near-term remedial action construction activities will not jeopardize or preclude implementation of any other remedial action alternative at a later date. Should DOE decide to extend the service life of the system, the waste containment area would be upgraded to provide a minimum service life of 200 years. This report describes the design for the containment system. Pertinent information on site geology and hydrology and on regional seismicity and meteorology is also provided. Engineering calculations and validated computer modeling studies based on site-specific and conservative parameters confirm the adequacy of the design for its intended purposes of waste containment and environmental protection.

Not Available

1986-05-01T23:59:59.000Z

322

Ventilation System to Improve Savannah River Site's Liquid Waste Operations  

Broader source: Energy.gov [DOE]

AIKEN, S.C. The EM program and its liquid waste contractor at the Savannah River Site are improving salt waste disposition work and preparing for eventual operations of the Salt Waste Processing Facility (SWPF) currently being constructed.

323

Cost benefit and risk assessment for selected tank waste process testing alternatives  

SciTech Connect (OSTI)

The US Department of Energy has established the Tank Waste Remediation System (TWRS) program to safely manage wastes currently stored in underground tank at the Hanford Site. A TWRS testing and development strategy was recently developed to define long-range TWRS testing plans. The testing and development strategy considered four alternatives. The primary variable in the alternatives is the level of pilot-scale testing involving actual waste. This study evaluates the cost benefit and risks associated with the four alternatives. Four types of risk were evaluated: programmatic schedule risk, process mishap risk, worker risk, and public health risk. The structure of this report is as follows: Section 1 introduces the report subject; Section 2 describes the test strategy alternative evaluation; Section 3 describes the approach used in this study to assess risk and cost benefit; Section 4 describes the assessment methodologies for costs and risks; Section 5 describes the bases and assumptions used to estimate the costs and risks; Section 6 presents the detailed costs and risks; and Section 7 describes the results of the cost benefit analysis and presents conclusions.

Gasper, K.A. [Westinghouse Hanford Co., Richland, WA (United States)

1995-05-22T23:59:59.000Z

324

Zone Freezing Study for Pyrochemical Process Waste Minimization  

SciTech Connect (OSTI)

Pyroprocessing technology is a non-aqueous separation process for treatment of used nuclear fuel. At the heart of pyroprocessing lies the electrorefiner, which electrochemically dissolves uranium from the used fuel at the anode and deposits it onto a cathode. During this operation, sodium, transuranics, and fission product chlorides accumulate in the electrolyte salt (LiCl-KCl). These contaminates change the characteristics of the salt overtime and as a result, large volumes of contaminated salt are being removed, reprocessed and stored as radioactive waste. To reduce the storage volumes and improve recycling process for cost minimization, a salt purification method called zone freezing has been proposed at Korea Atomic Energy Research Institute (KAERI). Zone freezing is melt crystallization process similar to the vertical Bridgeman method. In this process, the eutectic salt is slowly cooled axially from top to bottom. As solidification occurs, the fission products are rejected from the solid interface and forced into the liquid phase. The resulting product is a grown crystal with the bulk of the fission products near the bottom of the salt ingot, where they can be easily be sectioned and removed. Despite successful feasibility report from KAERI on this process, there were many unexplored parameters to help understanding and improving its operational routines. Thus, this becomes the main motivation of this proposed study. The majority of this work has been focused on the CsCl-LiCl-KCl ternary salt. CeCl3-LiCl-KCl was also investigated to check whether or not this process is feasible for the trivalent speciessurrogate for rare-earths and transuranics. For the main part of the work, several parameters were varied, they are: (1) the retort advancement rate1.8, 3.2, and 5.0 mm/hr, (2) the crucible lid configurationslid versus no-lid, (3) the amount or size of mixture50 and 400 g, (4) the composition of CsCl in the salt1, 3, and 5 wt%, and (5) the temperature differences between the high and low furnace zones200 and 300 ?C. During each experiment, the temperatures at selected locations around the crucible were measured and recorded to provide temperature profiles. Following each experiment, samples were collected and elemental analysis was done to determine the composition of iii the salt. Several modelsnon-mixed, well-mixed, Favier, and hybridwere explored to describe the zone freezing process. For CsCl-LiCl-KCl system, experimental results indicate that through this process up to 90% of the used salt can be recycled, effectively reducing waste volume by a factor of ten. The optimal configuration was found to be a 5.0 mm/hr rate with a lid configuration and a ?T of 200C. The larger 400 g mixtures had recycle percentages similar to the 50 g mixtures; however, the throughput per time was greater for the 400 g case. As a result, the 400 g case is recommended. For the CeCl3-LiCl-KCl system, the result implies that it is possible to use this process to separate the rare-earth and transuranics chlorides. Different models were applied to only CsCl ternary system. The best fit model was the hybrid model as a result of a solute transport transition from non- mixed to well-mixed throughout the growing process.

Ammon Williams

2012-05-01T23:59:59.000Z

325

Airborne Process Commercial Scale Demonstration Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CCPI 2) CCPI 2) contacts Brad tomer Director Office of Major Demonstrations National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-4692 brad.tomer@netl.doe.gov PaRtIcIPant Mustang Clean Energy, LLC, a subsidiary of Peabody Energy St. Louis, MO. Airborne Process(tm) commerciAl scAle DemonstrAtion ProgrAm (withDrAwn Prior to AwArD) Project Description Mustang Clean Energy will design, construct, and operate a full scale sodium-based multi-pollutant scrubber in conjunction with a revenue-generating fertilizer by-product processing plant at Mustang Energy Company, LLC's Mustang Generating Station. Both Mustang Clean Energy and Mustang Energy Company are subsidiaries of Peabody Energy, the world's largest coal company. The 300 MW (net) station will

326

Oak Ridge National Laboratory contact-handled Transuranic Waste Certification Program plan  

SciTech Connect (OSTI)

The Oak Ridge National Laboratory (ORNL) is required by Department of Energy (DOE) Order 5820.2A to package its transuranic (TRU) waste to comply with waste acceptance criteria (WAC) for the Waste Isolation Pilot Plant (WIPP). TRU wastes are defined in DOE Order 5820.A as those radioactive wastes that are contaminated with alpha-emitting transuranium radionuclides having half-lives greater than 20 years and concentrations greater than 100 nCi/g at the time of the assay. In addition, ORNL handles U{sup 233}, Cm{sup 244}, and Cf{sup 252} as TRU waste radionuclides. The ORNL Transuranic Waste Certification Program was established to ensure that all TRU waste at ORNL is packaged to meet the required transportation and storage criteria for shipping to and storage at the WIPP. The objective of this document is to describe the methods that will be used at ORNL to package contact handled-transuranic (CH-TRU) waste to meet the criteria set forth in the WIPP certification requirements documents. This document addresses newly generated (NG) CH-TRU waste. Stored CH-TRU will be repackaged. This document is organized to provide a brief overview of waste generation operations at ORNL, along with details on data management for CH-TRU waste. The methods used to implement this plan are discussed briefly along with the responsibilities and authorities of applicable organizations. Techniques used for waste data collection, records control, and data archiving are defined. Procedures for the procurement and handling of waste containers are also described along with related quality control methods. 11 refs., 3 figs.

Smith, J.H.; Smith, M.A.

1990-08-01T23:59:59.000Z

327

Followup of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process Systems Hazards Analysis Activity Review, March 2013  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

HSS Independent Activity Report - HSS Independent Activity Report - Rev. 0 Report Number: HIAR-WTP-2013-03-18 Site: Hanford Site Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Follow-up of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity Review Dates of Activity : 03/18/13 - 03/21/13 Report Preparer: James O. Low Activity Description/Purpose: The Office of Health, Safety and Security (HSS) staff observed a limited portion of the restart of the Hazard Analysis (HA) for the Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) Melter Process (LMP) System. The primary purpose of this HSS field activity, on March 18-21, 2013, was to observe and understand the revised approach

328

Followup of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process Systems Hazards Analysis Activity Review, March 2013  

Broader source: Energy.gov (indexed) [DOE]

HSS Independent Activity Report - HSS Independent Activity Report - Rev. 0 Report Number: HIAR-WTP-2013-03-18 Site: Hanford Site Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Follow-up of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity Review Dates of Activity : 03/18/13 - 03/21/13 Report Preparer: James O. Low Activity Description/Purpose: The Office of Health, Safety and Security (HSS) staff observed a limited portion of the restart of the Hazard Analysis (HA) for the Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) Melter Process (LMP) System. The primary purpose of this HSS field activity, on March 18-21, 2013, was to observe and understand the revised approach

329

Vitrification of F006 plating waste sludge by Reactive Additive Stabilization Process (RASP)  

SciTech Connect (OSTI)

Solidification into glass of nickel-on-uranium plating wastewater treatment plant sludge (F006 Mixed Waste) has been demonstrated at the Savannah River She (SRS). Vitrification using high surface area additives, the Reactive Additive Stabilization Process (RASP), greatly enhanced the solubility and retention of heavy metals In glass. The bench-scale tests using RASP achieved 76 wt% waste loading In both soda-lime-silica and borosilicate glasses. The RASP has been Independently verified by a commercial waste management company, and a contract awarded to vitrify the approximately 500,000 gallons of stored waste sludge. The waste volume reduction of 89% will greatly reduce the disposal costs, and delisting of the glass waste is anticipated. This will be the world`s first commercial-scale vitrification system used for environmental cleanup of Mixed Waste. Its stabilization and volume reduction abilities are expected to set standards for the future of the waste management Industry.

Martin, H.L.; Jantzen, C.M.; Pickett, J.B.

1994-06-01T23:59:59.000Z

330

Proceedings of the Third Annual Information Meeting DOE Low-Level Waste-Management Program  

SciTech Connect (OSTI)

The Third Annual Participants Information Meeting of the Low-Level Waste Management Program was held in New Orleans, Louisiana, November 4-6, 1981 The specific purpose was to bring together appropriate representatives of industry, USNRC, program management, participating field offices, and contractors to: (1) exchange information and analyze program needs, and (2) involve participants in planning, developing and implementing technology for low-level waste management. One hundred seven registrants participated in the meeting. Presentation and workshop findings are included in these proceedings under the following headings: low-level waste activities; waste treatment; shallow land burial; remedial action; greater confinement; ORNL reports; panel workshops; and summary. Forty-six papers have been abstracted and indexed for the data base.

Large, D.E.; Lowrie, R.S.; Stratton, L.E.; Jacobs, D.G. (comps.)

1981-12-01T23:59:59.000Z

331

Hanford Site waste minimization and pollution prevention awareness program plan. Revision 1  

SciTech Connect (OSTI)

The Hanford Site WMin/P2 program is an organized, comprehensive, and continual effort to systematically reduce the quantity and toxicity of hazardous, radioactive, mixed, and sanitary wastes; conserve resources; and prevent or minimize pollutant releases to all environmental media from all Site activities. The Hanford Site WMin/P2 program plan reflects national and DOE waste minimization and pollution prevention goals and policies, and represents an ongoing effort to make WMin/P2 part of the Site operating philosophy. In accordance with these policies, a hierarchical approach to environmental management has been adopted and is applied to all types of polluting and waste generating activities. Pollution prevention and waste minimization through source reduction are first priority in the Hanford WMin/P2 program, followed by environmentally safe recycling. Treatment to reduce the quantity, toxicity, and/or mobility will be considered only when prevention or recycling are not possible or practical. Environmentally safe disposal is the last option.

Not Available

1994-05-01T23:59:59.000Z

332

Characterization of decontamination and decommissioning wastes expected from the major processing facilities in the 200 Areas  

SciTech Connect (OSTI)

This study was intended to characterize and estimate the amounts of equipment and other materials that are candidates for removal and subsequent processing in a solid waste facility when the major processing and handling facilities in the 200 Areas of the Hanford Site are decontaminated and decommissioned. The facilities in this study were selected based on processing history and on the magnitude of the estimated decommissioning cost cited in the Surplus Facilities Program Plan; Fiscal Year 1993 (Winship and Hughes 1992). The facilities chosen for this study include B Plant (221-B), T Plant (221-T), U Plant (221-U), the Uranium Trioxide (UO{sub 3}) Plant (224-U and 224-UA), the Reduction Oxidation (REDOX) or S Plant (202-S), the Plutonium Concentration Facility for B Plant (224-B), and the Concentration Facility for the Plutonium Finishing Plant (PFP) and REDOX (233-S). This information is required to support planning activities for current and future solid waste treatment, storage, and disposal operations and facilities.

Amato, L.C.; Franklin, J.D.; Hyre, R.A.; Lowy, R.M.; Millar, J.S.; Pottmeyer, J.A. [Los Alamos Technical Associates, Kennewick, WA (United States); Duncan, D.R. [Westinghouse Hanford Co., Richland, WA (United States)

1994-08-01T23:59:59.000Z

333

EA-0915: Waste Tank Safety Program Hanford Site, Richland, Washington  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of the proposal to resolve waste tank safety issues at the Hanford Site near the City of Richland, Washington, and to reduce the risks associated with...

334

Order Module--self-study program: HAZARDOUS WASTE OPERATIONS...  

Energy Savers [EERE]

also help prepare you for the practice at the end of this module and for the criterion test. Before continuing, you should obtain a copy of the regulation at Hazardous waste...

335

Automotive Waste Heat Conversion to Power Program | Department...  

Broader source: Energy.gov (indexed) [DOE]

1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ace051lagrandeur2011o.pdf More Documents & Publications...

336

Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Import Statement, Richland, Washington  

Broader source: Energy.gov (indexed) [DOE]

COVER SHEET 1 COVER SHEET 1 U.S. Department of Energy, Richland Operations Office 2 3 TITLE: 4 Revised Draft Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact 5 Statement, Richland, Benton County, Washington (DOE/EIS-0286D2) 6 7 CONTACT: 8 For further information on this document, write or call: Mr. Michael S. Collins HSW EIS Document Manager Richland Operations Office U.S. Department of Energy, A6-38 P.O. Box 550 Richland, Washington 99352-0550 Telephone: (800) 426-4914 Fax: (509) 372-1926 Email: hsweis@rl.gov For further information on the Department's National Environmental Policy Act process, contact: Ms. Carol M. Borgstrom, Director Office of NEPA Policy and Compliance, EH-42 U.S. Department of Energy 1000 Independence Avenue, S.W.

337

Final Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement Richland, Washington  

Broader source: Energy.gov (indexed) [DOE]

COVER SHEET COVER SHEET U.S. Department of Energy, Richland Operations Office TITLE: Final Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement, Richland, Benton County, Washington (DOE/EIS-0286F) CONTACT: For further information on this document, write or call: Mr. Michael S. Collins HSW EIS Document Manager Richland Operations Office U.S. Department of Energy, A6-38 P.O. Box 550 Richland, Washington 99352-0550 Telephone: (509) 376-6536 Fax: (509) 372-1926 Email: hsweis@rl.gov For further information on the Department's National Environmental Policy Act (NEPA) process, contact: Ms. Carol M. Borgstrom, Director Office of NEPA Policy and Compliance, EH-42 U.S. Department of Energy 1000 Independence Avenue, S.W.

338

Revised Draft Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Import Statement, Richland, Washington - Summary  

Broader source: Energy.gov (indexed) [DOE]

Link to Main Report Link to Main Report RESPONSIBLE AGENCY: COVER SHEET 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 U.S. Department of Energy, Richland Operations Office TITLE: Revised Draft Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement, Richland, Benton County, Washington (DOE/EIS-0286D2) CONTACT: For further information on this document, write or call: Mr. Michael S. Collins HSW EIS Document Manager Richland Operations Office U.S. Department of Energy, A6-38 P.O. Box 550 Richland, Washington 99352-0550 Telephone: (800) 426-4914 Fax: (509) 372-1926 Email: hsweis@rl.gov For further information on the Department's National Environmental Policy Act process,

339

Accident Fault Trees for Defense Waste Processing Facility  

SciTech Connect (OSTI)

The purpose of this report is to document fault tree analyses which have been completed for the Defense Waste Processing Facility (DWPF) safety analysis. Logic models for equipment failures and human error combinations that could lead to flammable gas explosions in various process tanks, or failure of critical support systems were developed for internal initiating events and for earthquakes. These fault trees provide frequency estimates for support systems failures and accidents that could lead to radioactive and hazardous chemical releases both on-site and off-site. Top event frequency results from these fault trees will be used in further APET analyses to calculate accident risk associated with DWPF facility operations. This report lists and explains important underlying assumptions, provides references for failure data sources, and briefly describes the fault tree method used. Specific commitments from DWPF to provide new procedural/administrative controls or system design changes are listed in the ''Facility Commitments'' section. The purpose of the ''Assumptions'' section is to clarify the basis for fault tree modeling, and is not necessarily a list of items required to be protected by Technical Safety Requirements (TSRs).

Sarrack, A.G.

1999-06-22T23:59:59.000Z

340

ANL Technical Support Program for DOE Environmental Restoration and Waste Management; Annual report, October 1992--September 1993  

SciTech Connect (OSTI)

This report is an overview of the progress during FY 1993 for the Technical Support Program that is part of the ANL Technology Support Activity for DOE Environmental Restoration and Waste Management (EM). The purpose is to evaluate, before hot start-up of the Defense Waste Processing Facility (DWPF) and the West Valley Demonstration Project (WVDP), factors that are anticipated to affect glass reaction in an unsaturated environment typical of what may be expected for the candidate Yucca Mountain repository site. Specific goals for the testing program include the following: reviewing and evaluating available data on parameters that will be important in establishing the long-term performance of glass in a repository environment; performing tests to further quantify the effects of important variables where there are deficiencies in the available data; and initiating long-term tests to determine glass performance under a range of conditions applicable to repository disposal.

Bates, J.K.; Bourcier, W.L.; Bradley, C.R. [and others

1994-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste processing program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oversight Assessment of Oversight Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project May 2011 January 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Independent Oversight Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project

342

Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project  

Broader source: Energy.gov (indexed) [DOE]

Oversight Assessment of Oversight Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project May 2011 January 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Independent Oversight Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project

343

Process Description for the Retrieval of Earth Covered Transuranic (TRU) Waste Containers at the Hanford Site  

SciTech Connect (OSTI)

This document describes process and operational options for retrieval of the contact-handled suspect transuranic waste drums currently stored below grade in earth-covered trenches at the Hanford Site. Retrieval processes and options discussed include excavation, container retrieval, venting, non-destructive assay, criticality avoidance, incidental waste handling, site preparation, equipment, and shipping.

DEROSA, D.C.

2000-01-13T23:59:59.000Z

344

Mobile/Modular Deployment Project-Enhancing Efficiencies within the National Transuranic Waste Program.  

SciTech Connect (OSTI)

In 1999, the National Transuranic (TRU) Waste Program (NTP) achieved two significant milestones. First, the Waste Isolation Plant (WIPP) opened in March for the permanent disposal of TRU waste generated by, and temporarily stored at, various sites supporting the nation's defense programs. Second, the Hazardous Waste Facility Permit, issued by the New Mexico Environment Department, for WIPP became effective in November. While the opening of WIPP brought to closure a number of scientific, engineering, regulatory, and political challenges, achieving this major milestone led to a new set of challenges-how to achieve the Department of Energy's (DOE's) NTP end-state vision: All TRU waste from DOE sites scheduled for closure is removed All legacy TRU waste from DOE sites with an ongoing nuclear mission is disposed 0 All newly generated TRU waste is disposed as it is generated The goal is to operate the national TRU waste program safely, cost effectively, in compliance with applicable regulations and agreements, and at full capacity in a fully integrated mode. The existing schedule for TRU waste disposition would achieve the NTP vision in 2034 at an estimated life-cycle cost of $16B. The DOE's Carlsbad Field Office (CBFO) seeks to achieve this vision early-by at least 10 years- while saving the nation an estimated $48 to $6B. CBFO's approach is to optimize, or to make as functional as possible, TRU waste disposition. That is, to remove barriers that impede waste disposition, and increase the rate and cost efficiency of waste disposal at WIPP, while maintaining safety. The Mobile/Modular Deployment Project (MMDP) is the principal vehicle for implementing DOE's new commercial model of using best business practices of national authorization basis, standardization, and economies of scale to accelerate the completion of WIPP's mission. The MMDP is one of the cornerstones of the National TRU Waste System Optimization Project (1). The objective of the MMDP is to increase TRU waste shipment and disposal rates from currently certified sites as well as to provide a means to remove TRU waste from sites that have no characterization capability.

Triay, I. R. (Ines R.); Basabilvazo, G. B. (George B.); Countiss, S. (Sue); Moody, D. C. (David C.); Behrens, R. G. (Robert G.); Lott, S. A. (Sheila A.)

2002-01-01T23:59:59.000Z

345

Hot demonstrations of nuclear-waste processing technologies  

Science Journals Connector (OSTI)

Several types of nuclear-waste-treatment technologies are currently being demonstrated at Argonne National Laboratory-West, ranging from complex,...

H. F. McFarlane; K. M. Goff; F. S. Felicione; C. C. Dwight; D. B. Barber

1997-07-01T23:59:59.000Z

346

Contact glow discharge electrolysis for liquid waste processing  

E-Print Network [OSTI]

for an alka- line water electrolysis at a small pin verticaldischarge electrolysis applied to waste water treatment.water treatment induced by plasma with contact glow discharge electrolysis.

Sharma, Neeraj

2014-01-01T23:59:59.000Z

347

Comparison of simulants to actual neutralized current acid waste: process and product testing of three NCAW core samples from Tanks 101-AZ and 102-AZ  

SciTech Connect (OSTI)

A vitrification plant is planned to process the high-level waste (HLW) solids from Hanford Site tanks into canistered glass logs for disposal in a national repository. Programs were established within the Pacific Northwest Laboratory Vitrification Technology Development (PVTD) Project to test and model simulated waste to support design, feed processability, operations, permitting, safety, and waste-form qualification. Parallel testing with actual radioactive waste was performed on a laboratory-scale to confirm the validity of using simulants and glass property models developed from simulants. Laboratory-scale testing has been completed on three radioactive core samples from tanks 101-AZ and 102-AZ containing neutralized current acid waste (NCAW), which is one of the first waste types to be processed in the high-level waste vitrification plant under a privatization scenario. Properties of the radioactive waste measured during process and product testing were compared to simulant properties and model predictions to confirm the validity of simulant and glass property ,models work. This report includes results from the three NCAW core samples, comparable results from slurry and glass simulants, and comparisons to glass property model predictions.

Morrey, E.V.; Tingey, J.M.; Elliott, M.L.

1996-10-01T23:59:59.000Z

348

GRR/Section 18-AK-b - Hazardous Waste Permit Process | Open Energy  

Open Energy Info (EERE)

8-AK-b - Hazardous Waste Permit Process 8-AK-b - Hazardous Waste Permit Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-AK-b - Hazardous Waste Permit Process 18AKB - HazardousWastePermitProcess (1).pdf Click to View Fullscreen Contact Agencies Alaska Department of Environmental Conservation United States Environmental Protection Agency Regulations & Policies AS 46.03.302 18 AAC 60.020 Triggers None specified Click "Edit With Form" above to add content 18AKB - HazardousWastePermitProcess (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Alaska Department of Environmental Conservation defers to the federal

349

Using Waste Heat for External Processes (English/Chinese) (Fact Sheet)  

SciTech Connect (OSTI)

Chinese translation of the Using Waste Heat for External Processes fact sheet. Provides suggestions on how to use waste heat in industrial applications. The temperature of exhaust gases from fuel-fired industrial processes depends mainly on the process temperature and the waste heat recovery method. Figure 1 shows the heat lost in exhaust gases at various exhaust gas temperatures and percentages of excess air. Energy from gases exhausted from higher temperature processes (primary processes) can be recovered and used for lower temperature processes (secondary processes). One example is to generate steam using waste heat boilers for the fluid heaters used in petroleum crude processing. In addition, many companies install heat exchangers on the exhaust stacks of furnaces and ovens to produce hot water or to generate hot air for space heating.

Not Available

2011-10-01T23:59:59.000Z

350

Advanced thermal processing alternatives for solid waste management  

SciTech Connect (OSTI)

The 1990`s have seen a resurgence of interest in the development of new thermal processing alternatives for municipal solid waste (MSW). Sparked by increasingly stringent environmental regulations, much of this creative energy has been applied to technologies for the gasification of MSW: converting the solid, hard to handle material into a clean, medium to high-Btu fuel gas. Other developers have focussed on full combustion technology but with a {open_quotes}twist{close_quotes} that lowers emissions or reduces cost. A comprehensive study of these new technologies was recently completed under the sponsorship of the National Renewable Energy Laboratory of the U.S. Department of Energy. The study characterized the state-of-the-art among emerging MSW thermal processing technologies that have reached the point of `incipient commercialization.` More than 45 technologies now under development were screened to develop a short list of seven processes that have passed through the idea stage, laboratory and benchscale testing, and have been prototyped at an MSW feed rate of at least several tons per hour. In-depth review of these seven included inspections of operating pilot or prototype units and a detailed analysis of technical, environmental and economic feasibility issues. No attempt was made to select `the best` technology since best can only be defined in the context of the constraints, aspirations and circumstances of a specific, local situation. The basic flowsheet, heat and material balances and available environmental data were summarized to help the reader grasp the underlying technical concepts and their embodiment in hardware. Remaining development needs, as seen by the study team are presented. Economic analysis shows the general balance of capital and operating costs.

Niessen, W.R. [Camp Dresser & McKee Inc., Cambridge, MA (United States)

1997-12-01T23:59:59.000Z

351

Transuranic Waste Program Framework Agreement - December Deliverable July 2012  

SciTech Connect (OSTI)

Framework agreement deliverables are: (1) 'DOE/NNSA commits to complete removal of all non-cemented above-ground EM Legacy TRU and newly generated TRU currently-stored at Area G as of October 1, 2011, by no later than June 30, 2014. This inventory of above-ground TRU is defined as 3706 cubic meters of material.' (2) 'DOE commits to the complete removal of all newly generated TRU received in Area G during FY 2012 and 2013 by no later than December 31, 2014.' (3) 'Based on projected funding profiles, DOE/NNSA will develop by December 31, 2012, a schedule, including pacing milestones, for disposition of the below-ground TRU requiring retrieval at Area G.' Objectives are to: (1) restore the 'Core Team' to develop the December, 2012 deliverable; (2) obtain agreement on the strategy for below ground water disposition; and (3) establish timeline for completion of the deliverable. Below Grade Waste Strategy is to: (1) Perform an evaluation on below grade waste currently considered retrievable TRU; (2) Only commit to retrieve waste that must be retrieved; (3) Develop the Deliverable including Pacing Milestones based on planned commitments; (4) Align all Regulatory Documents for Consistency; and (5) answer these 3 primary questions, is the waste TRU; is the waste retrievable, can retrieval cause more harm than benefit?

Jones, Patricia [Los Alamos National Laboratory

2012-07-19T23:59:59.000Z

352

Federal Energy Management Program: ESPC ENABLE Procurement Process  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Procurement Process to someone by E-mail Procurement Process to someone by E-mail Share Federal Energy Management Program: ESPC ENABLE Procurement Process on Facebook Tweet about Federal Energy Management Program: ESPC ENABLE Procurement Process on Twitter Bookmark Federal Energy Management Program: ESPC ENABLE Procurement Process on Google Bookmark Federal Energy Management Program: ESPC ENABLE Procurement Process on Delicious Rank Federal Energy Management Program: ESPC ENABLE Procurement Process on Digg Find More places to share Federal Energy Management Program: ESPC ENABLE Procurement Process on AddThis.com... Energy Savings Performance Contracts ENABLE Procurement Process Energy Service Company Options Project Assistance & Training Utility Energy Service Contracts On-Site Renewable Power Purchase Agreements

353

Toxicity Characteristic Leaching Procedure (TCLP) testing of Defense Waste Processing Facility (DWPF) projected glass compositions  

SciTech Connect (OSTI)

Vitrification of Savannah River Site (SRS) high level radioactive waste is scheduled to begin in late 1995. The vitrification operation will take place at the SRS Defense waste Processing Facility (DWPF). The US Department of Energy has instituted specifications which provide technical criteria which must be met by the DWPF to ensure that the waste glass will be suitable for permanent disposal in a federal geologic repository. Included in these criteria is a specification requiring DWPF to determine whether its high level, radioactive waste glass should also be classified as characteristically hazardous waste. A study was performed, using the anticipated range of glass compositions which will be produced over the lifetime of the DWPF, which definitively proved that DWPF waste glass should not be classified as characteristic hazardous waste.

Applewhite-Ramsey, A.

1994-06-01T23:59:59.000Z

354

Treatment of phosphogypsum waste produced from phosphate ore processing  

Science Journals Connector (OSTI)

Phosphogypsum (PG), primary byproduct from phosphoric acid production, is accumulated in large stockpiles and occupies vast areas of land. Phosphogypsum is a technologically enhanced naturally occurring radioactive material (TE-NORM) that contains radionuclides from 238U and 232Th decay series which are of most radio-toxicity. The reduction in concentration of radionuclides content from PG was based on leaching of 226Ra, 210Pb, 238U and 40K using tri-butyl phosphate (TBP) and tri-octyl phosphine oxide (TOPO) in kerosene. The factors which affect the leaching process such as contact time, concentration of the solvent and temperature were optimized. Based on the experimental results, about 92.1, 88.9, 83.4, 94.6% of 226Ra, 210Pb, 238U and 40K respectively were successfully removed from the PG. The reduction in the concentration of radionuclides was accompanied by reduction in the concentration of rare earth elements (?REE) equals to 80.1%. Using the desired organic extractant under optimum conditions for treatment of the PG waste leads to obtain a decontaminated product that can be safely used in many industrial applications.

H. El-Didamony; H.S. Gado; N.S. Awwad; M.M. Fawzy; M.F. Attallah

2013-01-01T23:59:59.000Z

355

Adequacy of a Small Quantity Site RH-TRU Waste Program in Meeting Proposed WIPP Characterization Objectives  

SciTech Connect (OSTI)

The first remote-handled transuranic (RH-TRU) waste is expected to be permanently disposed of at the Waste Isolation Pilot Plant (WIPP) during Fiscal Year (FY) 2003. The first RH-TRU waste shipments are scheduled from the Battelle Columbus Laboratories (BCL) to WIPP in order to facilitate compliance with BCL Decommissioning Project (BCLDP) milestones. Milestones requiring RH-TRU waste containerization and removal from the site by 2004 in order to meet a 2006 site closure goal, established by Congress in the Defense Facilities Closure Projects account, necessitated the establishment and implementation of a site-specific program to direct the packaging of BCLDP RH-TRU waste prior to the finalization of WIPP RH-TRU waste characterization requirements. The program was designed to collect waste data, including audio and videotape records of waste packaging, such that upon completion of waste packaging, comprehensive data records exist from which compliance with final WIPP RH-TRU waste characterization requirements can be demonstrated. With the BCLDP data records generated to date and the development by the U.S. Department of Energy (DOE)-Carlsbad Field Office (CBFO) of preliminary documents proposing the WIPP RH-TRU waste characterization program, it is possible to evaluate the adequacy of the BCLDP program with respect to meeting proposed characterization objectives. The BCLDP characterization program uses primarily acceptable knowledge (AK) and visual examination (VE) during waste packaging to characterize RH-TRU waste. These methods are used to estimate physical waste parameters, including weight percentages of metals, cellulosics, plastics, and rubber in the waste, and to determine the absence of prohibited items, including free liquids. AK combined with computer modeling is used to estimate radiological waste parameters, including total activity on a waste container basis, for the majority of BCLDP RH-TRU waste. AK combined with direct analysis is used to characterize radiological parameters for the small populations of the RH-TRU waste generated by the BCLDP. All characterization based on AK is verified. Per its design for comprehensive waste data collection, the BCLDP characterization program using AK and waste packaging procedures, including VE during packaging, meets the proposed WIPP RH-TRU waste characterization objectives. The conservative program design implemented generates certification data that will be adequate to meet any additional program requirements that may be imposed by the CBFO.

Biedscheid, J.; Stahl, S.; Devarakonda, M.; Peters, K.; Eide, J.

2002-02-26T23:59:59.000Z

356

Caustic Recycle from Hanford Tank Waste Using NaSICON Ceramic Membrane Salt Splitting Process  

SciTech Connect (OSTI)

A family of inorganic ceramic materials, called sodium (Na) Super Ion Conductors (NaSICON), has been studied at Pacific Northwest National Laboratory (PNNL) to investigate their ability to separate sodium from radioactively contaminated sodium salt solutions for treating U.S. Department of Energy (DOE) tank wastes. Ceramatec Inc. developed and fabricated a membrane containing a proprietary NAS-GY material formulation that was electrochemically tested in a bench-scale apparatus with both a simulant and a radioactive tank-waste solution to determine the membrane performance when removing sodium from DOE tank wastes. Implementing this sodium separation process can result in significant cost savings by reducing the disposal volume of low-activity wastes and by producing a NaOH feedstock product for recycle into waste treatment processes such as sludge leaching, regenerating ion exchange resins, inhibiting corrosion in carbon-steel tanks, or retrieving tank wastes.

Fountain, Matthew S.; Kurath, Dean E.; Sevigny, Gary J.; Poloski, Adam P.; Pendleton, J.; Balagopal, S.; Quist, M.; Clay, D.

2009-02-20T23:59:59.000Z

357

Integrated municipal solid waste scenario model using advanced pretreatment and waste to energy processes  

Science Journals Connector (OSTI)

Abstract In this paper an Integrated Municipal Solid Waste scenario model (IMSW-SM) with a potential practical application in the waste management sector is analyzed. The model takes into account quantification and characterization of Municipal Solid Waste (MSW) streams from different sources, selective collection (SC), advanced mechanical sorting, material recovery and advanced thermal treatment. The paper provides a unique chain of advanced waste pretreatment stages of fully commingled waste streams, leading to an original set of suggestions and future contributions to a sustainable IMSWS, taking into account real data and EU principles. The selection of the input data was made on MSW management real case studies from two European regions. Four scenarios were developed varying mainly SC strategies and thermal treatment options. The results offer useful directions for decision makers in order to calibrate modern strategies in different realities.

Gabriela Ionescu; Elena Cristina Rada; Marco Ragazzi; Cosmin M?rculescu; Adrian Badea; Tiberiu Apostol

2013-01-01T23:59:59.000Z

358

Savannah River Site, Liquid Waste Program, Savannah River Remediation American Recovery and Reinvestment Act Benefits and Lessons Learned - 12559  

SciTech Connect (OSTI)

Utilizing funding provided by the American Recovery and Reinvestment Act (ARRA), the Liquid Waste Program at Savannah River site successfully executed forty-one design, procurement, construction, and operating activities in the period from September 2009 through December 2011. Project Management of the program included noteworthy practices involving safety, integrated project teams, communication, and cost, schedule and risk management. Significant upgrades to plant capacity, progress toward waste tank closure and procurement of needed infrastructure were accomplished. Over 1.5 million hours were worked without a single lost work day case. Lessons Learned were continually identified and applied to enhance the program. Investment of Recovery Act monies into the Liquid Waste Program has ensured continued success in the disposition of radioactive wastes and the closure of high level waste tanks at SRS. The funding of a portion of the Liquid Waste Program at SRS by ARRA was a major success. Significant upgrades to plant capacity, progress toward waste tank closure and procurement of needed infrastructure was accomplished. Integrated Project Teams ensured quality products and services were provided to the Operations customers. Over 1.5 million hours were worked without a single lost work day case. Lessons Learned were continually reviewed and reapplied to enhance the program. Investment of Recovery Act monies into the Liquid Waste Program has ensured continued success in the disposition of radioactive wastes and the closure of high level waste tanks at SRS. (authors)

Schmitz, Mark A.; Crouse, Thomas N. [Savannah River Remediation, Aiken, South Carolina 29808 (United States)

2012-07-01T23:59:59.000Z

359

Waste Tank Organic Safety Program: Analytical methods development. Progress report, FY 1994  

SciTech Connect (OSTI)

The objectives of this task are to develop and document extraction and analysis methods for organics in waste tanks, and to extend these methods to the analysis of actual core samples to support the Waste Tank organic Safety Program. This report documents progress at Pacific Northwest Laboratory (a) during FY 1994 on methods development, the analysis of waste from Tank 241-C-103 (Tank C-103) and T-111, and the transfer of documented, developed analytical methods to personnel in the Analytical Chemistry Laboratory (ACL) and 222-S laboratory. This report is intended as an annual report, not a completed work.

Campbell, J.A.; Clauss, S.A.; Grant, K.E. [and others

1994-09-01T23:59:59.000Z

360

Wood processing wastes recovery and composted product field test  

SciTech Connect (OSTI)

Lumber mill waste, more than 3,000 tons per month, is one of the main waste sources in I-Lan area. Most of the lumber mill waste is sawdust which takes a large parts of organic-containing wastes in I-Lan county. Wastes from seafood plants around the Sueou Harbor causes a treatment problem because of their high nitrogen and phosphorous concentrations. Furthermore, the distiller-by products in I-Lan Winery are easy to become spoiled and result in odor. In this study, the compost method is suggested to deal with these waste problems and make energy recovery. Microorganisms incubating in the laboratory provide the stable seed needed for composting. Flowers and vegetable raising are scheduled to be used in field to verify the efficiency of the products. The optimal combination ration of wastes and operation criteria then will be concluded in this study after economic analyzing. The results show that the Zinnia elegans leaves growth is relative with organic fertilizer. It can also be illustrated from the statistical value that the F value is 19.4 and above the critical value 9.4.

Chang, C.T.; Lin, K.L. [National Inst. of I-Lan Agriculture and Technology, I-Lan City (Taiwan, Province of China)

1997-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "waste processing program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Management of salt waste from electrochemical processing of used nuclear fuel  

SciTech Connect (OSTI)

Electrochemical processing of used nuclear fuel involves operation of one or more cells containing molten salt electrolyte. Processing of the fuel results in contamination of the salt via accumulation of fission products and transuranic (TRU) actinides. Upon reaching contamination limits, the salt must be removed and either disposed or treated to remove the contaminants and recycled back to the process. During development of the Experimental Breeder Reactor-II spent fuel treatment process, waste salt from the electro-refiner was to be stabilized in a ceramic waste form and disposed of in a high-level waste repository. With the cancellation of the Yucca Mountain high-level waste repository, other options are now being considered. One approach that involves direct disposal of the salt in a geologic salt formation has been evaluated. While waste forms such as the ceramic provide near-term resistance to corrosion, they may not be necessary to ensure adequate performance of the repository. To improve the feasibility of direct disposal, recycling a substantial fraction of the useful salt back to the process equipment could minimize the volume of the waste. Experiments have been run in which a cold finger is used for this purpose to crystallize LiCl from LiCl/CsCl. If it is found to be unsuitable for transportation, the salt waste could also be immobilized in zeolite without conversion to the ceramic waste form. (authors)

Simpson, M.F.; Patterson, M.N. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, Idaho 83415 (United States); Lee, J.; Wang, Y. [Sandia National Laboratory, Albuquerque, NM (United States); Versey, J.; Phongikaroon, S. [University of Idaho, Idaho Falls, ID (United States)

2013-07-01T23:59:59.000Z

362

Assessing the Power Generation Solution by Thermal-chemical Conversion of Meat Processing Industry Waste  

Science Journals Connector (OSTI)

Abstract The paper presents a waste to energy conversion solution using a pyro-air-gasification process applied to biodegradable residues from meat processing industry integrated with small scale thermodynamic cycle for power generation. The solution of air- gasification at atmospheric pressure is based on experimental research and engineering computation developed during the study. The input data, such as: waste chemical composition, low/high heating value and proximate analysis, correspond to real waste products, sampled directly from the industrial processing line. Separate drying as first stage pre-treatment and integrated partial drying inside the reactor was used. The syngas low heating value of about 4.3MJ/Nm3 is insured by its combustible fraction (H2 12.2%, CO 19.2%, CH4 1.6%). According to syngas composition the thermodynamic cycle was chosen Otto gas engine. For a given waste feed-in flow considered in our computation of about 110kg/h the power output obtained is about 50 kWel. The global energy efficiency of the unit is about 15%. The results offer answers to energy recovery waste disposal for residues with characteristics that are not suitable for classic incineration or limit the energy efficiency of the process making it non-economical (the average humidity of the raw waste is about 42% in mass). The research focused on waste to energy conversion process energy efficiency, waste neutralization and power generation.

Cosmin Marculescu; Florin Alexe

2014-01-01T23:59:59.000Z

363

Environmental management 1994. Progress and plans of the environmental restoration and waste management program  

SciTech Connect (OSTI)

The Department of Energy currently faces one of the largest environmental challenges in the world. The Department`s Environmental Restoration and Waste Management program is responsible for identifying and reducing risks and managing waste at 137 sites in 34 States and territories where nuclear energy or weapons research and production resulted in radioactive, hazardous, and mixed waste contamination. The number of sites continues to grow as facilities are transferred to be cleaned up and closed down. The program`s main challenge is to balance technical and financial realities with the public`s expectations and develop a strategy that enables the Department to meet its commitments to the American people. This document provides a closer look at what is being done around the country. Included are detailed discussions of the largest sites in the region, followed by site activities organized by state, and a summary of activities at FUSRAP and UMTRA sites in the region.

Not Available

1994-02-01T23:59:59.000Z

364

Federal Energy Management Program: Portfolio-Based Planning Process for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Portfolio-Based Portfolio-Based Planning Process for Greenhouse Gas Mitigation to someone by E-mail Share Federal Energy Management Program: Portfolio-Based Planning Process for Greenhouse Gas Mitigation on Facebook Tweet about Federal Energy Management Program: Portfolio-Based Planning Process for Greenhouse Gas Mitigation on Twitter Bookmark Federal Energy Management Program: Portfolio-Based Planning Process for Greenhouse Gas Mitigation on Google Bookmark Federal Energy Management Program: Portfolio-Based Planning Process for Greenhouse Gas Mitigation on Delicious Rank Federal Energy Management Program: Portfolio-Based Planning Process for Greenhouse Gas Mitigation on Digg Find More places to share Federal Energy Management Program: Portfolio-Based Planning Process for Greenhouse Gas Mitigation on

365

Process for immobilizing plutonium into vitreous ceramic waste forms  

DOE Patents [OSTI]

Disclosed is a method for converting spent nuclear fuel and surplus plutonium into a vitreous ceramic final waste form wherein spent nuclear fuel is bound in a crystalline matrix which is in turn bound within glass.

Feng, X.; Einziger, R.E.

1997-08-12T23:59:59.000Z

366

Process for immobilizing plutonium into vitreous ceramic waste forms  

DOE Patents [OSTI]

Disclosed is a method for converting spent nuclear fuel and surplus plutonium into a vitreous ceramic final waste form wherein spent nuclear fuel is bound in a crystalline matrix which is in turn bound within glass.

Feng, X.; Einziger, R.E.

1997-01-28T23:59:59.000Z

367

Pyrolysis Autoclave Technology Demonstration Program for Treatment of DOE Solidified Organic Wastes  

SciTech Connect (OSTI)

In the summer of 2005, MSE Technologies Applications, Inc. (MSE) and THOR Treatment Technologies, LLC (TTT) conducted a demonstration test of the Thermal Organic Reduction (THOR{sup sm}) in-drum pyrolysis autoclave system under contract to the Department of Energy. The purpose of the test was to demonstrate that the THOR{sup sm} pyrolysis autoclave system could successfully treat solidified organic waste to remove organics from the waste drums. The target waste was created at Rocky Flats and currently resides at the Radioactive Waste Management Complex (RWMC) at the Idaho National Laboratory (INL). Removing the organics from these drums would allow them to be shipped to the Waste Isolation Pilot Plant for disposal. Two drums of simulated organic setup waste were successfully treated. The simulated waste was virtually identical to the expected waste except for the absence of radioactive components. The simulated waste included carbon tetrachloride, trichloroethylene, perchloroethylene, Texaco Regal oil, and other organics mixed with calcium silicate and Portland cement stabilization agents. The two-stage process consisted of the THOR{sup sm} electrically heated pyrolysis autoclave followed by the MSE off gas treatment system. The treatment resulted in a final waste composition that meets the requirements for WIPP transportation and disposal. There were no detectable volatile organic compounds in the treated solid residues. The destruction and removal efficiency (DRE) for total organics in the two drums ranged from >99.999% to >99.9999%. The operation of the process proved to be easily controllable using the pyrolysis autoclave heaters. Complete treatment of a fully loaded surrogate waste drum including heat-up and cooldown took place over a two-day period. This paper discusses the results of the successful pyrolysis autoclave demonstration testing. (authors)

Roesener, W.S.; Mason, J.B.; Ryan, K. [THOR Treatment Technologies, LLC, 7800 E Union Ave, Denver, CO 80237 (United States); Bryson, S. [MSE Technologies Applications, Inc., 200 Technology Way, Butte, MT 59702 (United States); Eldredge, H.B. [Eldredge Engineering, P.A., 1090 Blue Ridge Dr., Idaho Falls, ID 83402 (United States)

2006-07-01T23:59:59.000Z

368

Waste Isolation Pilot Plant Medical Screening Program, Phase I: Needs Assessment  

Broader source: Energy.gov (indexed) [DOE]

Waste Isolation Pilot Plant Waste Isolation Pilot Plant Medical Screening Program Phase I: Needs Assessment Presented to the Office of Worker Screening and Compensation Support, Office of Health, Safety, and Security U.S. Department of Energy Prepared by Queens College, City University of New York United Steelworkers Original Draft: August 22, 2011 Updated Version: May 1, 2012 Table of Contents Summary.............................................................................3 I. Background on the Former Worker Program................................4 II. History of the WIPP Facility......................................................4 III. Scope of this Report.................................................................7 IV. Exposure Characterization........................................................8

369

Environmental Restoration and Waste Management (EM) program: An introduction  

SciTech Connect (OSTI)

This booklet introduces the reader to the mission and functions of a major new unit within the US Department of Energy (DOE): the Office of Environmental Restoration and Waste Management (EM). The Secretary of Energy established EM in November 1989, implementing a central purpose of DOE's first annual Environmental Restoration and Waste Management Five-Year Plan, which had appeared three months earlier. The contents of this booklet, and their arrangement, reflect the annual update of the Five-Year Plan. The Five-Year Plan supports DOE's strategy for meeting its 30-year compliance and cleanup goal. This strategy involves: focusing DOE's activities on eliminating or reducing known or recognized potential risks to worker and public health and the environment, containing or isolating, removing, or detoxifying onsite and offsite contamination, and developing technology to achieve DOE's environmental goals.

Not Available

1990-12-01T23:59:59.000Z

370

Waste treatment by reverse osmosis and membrane processing. (Latest citations from the NTIS Bibliographic database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning the technology of reverse osmosis and membrane processing in sewage and industrial waste treatment. Citations discuss ultrafiltration, industrial water reuse, hazardous waste treatment, municipal wastes, and materials recovery. Waste reduction and recycling in electroplating, metal finishing, and circuit board manufacturing are considered. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1994-11-01T23:59:59.000Z

371

Waste treatment by reverse osmosis and membrane processing. (Latest citations from the NTIS bibliographic database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning the technology of reverse osmosis and membrane processing in sewage and industrial waste treatment. Citations discuss ultrafiltration, industrial water reuse, hazardous waste treatment, municipal wastes, and materials recovery. Waste reduction and recycling in electroplating, metal finishing, and circuit board manufacturing are considered. (Contains a minimum of 245 citations and includes a subject term index and title list.)

Not Available

1994-03-01T23:59:59.000Z

372

Hanford tank waste simulants specification and their applicability for the retrieval, pretreatment, and vitrification processes  

SciTech Connect (OSTI)

A wide variety of waste simulants were developed over the past few years to test various retrieval, pretreatment and waste immobilization technologies and unit operations. Experiments can be performed cost-effectively using non-radioactive waste simulants in open laboratories. This document reviews the composition of many previously used waste simulants for remediation of tank wastes at the Hanford reservation. In this review, the simulants used in testing for the retrieval, pretreatment, and vitrification processes are compiled, and the representative chemical and physical characteristics of each simulant are specified. The retrieval and transport simulants may be useful for testing in-plant fluidic devices and in some cases for filtration technologies. The pretreatment simulants will be useful for filtration, Sr/TRU removal, and ion exchange testing. The vitrification simulants will be useful for testing melter, melter feed preparation technologies, and for waste form evaluations.

GR Golcar; NG Colton; JG Darab; HD Smith

2000-04-04T23:59:59.000Z

373

Seafood processing waste management and its impact on local community in Cochin Corporation, India  

Science Journals Connector (OSTI)

This study utilised face to face survey method through semi structured interview schedule for gathering information regarding the quantity of seafood raw materials procured and the associated waste generation pattern, waste management issues and ultimately the impact excreted by the waste produced to the local community, in India's one of the major seafood processing zone, the Cochin Corporation (CC), in the state of Kerala. In the study area, large quantities of seafood solid waste is left as unutilised, and are managed largely by the private sector for disposal. The unregulated disposal of seafood solid and liquid waste has created environmental and social ill effects in the area. It is hoped that this study would prove as a tool for future waste management planning and by-product valorisation decisions by the seafood industry as well as the authorities.

Abhilash Sasidharan; K.K. Baiju; Saleena Mathew

2013-01-01T23:59:59.000Z

374

Macroencapsulation of low-level debris waste with the phosphate ceramic process  

SciTech Connect (OSTI)

Across the DOE complex, large quantities of contaminated debris and irradiated lead bricks require disposal. The preferred method for disposing of these wastes is macroencapsulation under U.S. Environmental Protection Agency Alternative Treatment Standards. Chemically bonded phosphate ceramics serve as a novel binder, developed at Argonne National Laboratory, for stabilizing and solidifying various low-level mixed wastes. Extremely strong, dense, and impervious to water intrusion, this material was developed with support from the U.S. Department of Energy`s Office of Science and Technology (DOE OST). In this investigation, CBPCs have been used to demonstrate macroencapsulation of various contaminated debris wastes, including cryofractured debris, lead bricks, and lead-lined plastic gloves. This paper describes the processing steps for fabricating the waste forms and the results of various characterizations performed on the waste forms. The conclusion is that simple and low-cost CBPCs are excellent material systems for macroencapsulating debris wastes.

Singh, D.; Wagh, A.S.; Tlustochowicz, M.; Jeong, S.Y.

1997-03-01T23:59:59.000Z

375

Tank Waste Remediation System fiscal year 1996 multi-year program plan WBS 1.1. Revision 1, Appendix A  

SciTech Connect (OSTI)

This document is a compilation of data relating to the Tank Waste Remediation System Multi-Year Program. Topics discussed include: management systems; waste volume, transfer and evaporation management; transition of 200 East and West areas; ferricyanide, volatile organic vapor, and flammable gas management; waste characterization; retrieval from SSTs and DSTs; heat management; interim storage; low-level and high-level radioactive waste management; and tank farm closure.

NONE

1995-09-01T23:59:59.000Z

376

Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions  

SciTech Connect (OSTI)

The scope of this program is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 {times} 3.0 {times} 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by RBOSC to carry out this study. Research objectives were designed to evaluate hydrologic, geotechnical, and chemical properties and conditions which would affect the design and performance of large-scale embankments. The objectives of this research are: assess the unsaturated movement and redistribution of water and the development of potential saturated zones and drainage in disposed processed oil shale under natural and simulated climatic conditions; assess the unsaturated movement of solubles and major chemical constituents in disposed processed oil shale under natural and simulated climatic conditions; assess the physical and constitutive properties of the processed oil shale and determine potential changes in these properties caused by disposal and weathering by natural and simulated climatic conditions; assess the use of previously developed computer model(s) to describe the infiltration, unsaturated movement, redistribution, and drainage of water in disposed processed oil shale; evaluate the stability of field scale processed oil shale solid waste embankments using computer models.

Reeves, T.L.; Turner, J.P.; Hasfurther, V.R.; Skinner, Q.D.

1992-06-01T23:59:59.000Z

377

Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions  

SciTech Connect (OSTI)

The scope of this program is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 [times] 3.0 [times] 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by RBOSC to carry out this study. Research objectives were designed to evaluate hydrologic, geotechnical, and chemical properties and conditions which would affect the design and performance of large-scale embankments. The objectives of this research are: assess the unsaturated movement and redistribution of water and the development of potential saturated zones and drainage in disposed processed oil shale under natural and simulated climatic conditions; assess the unsaturated movement of solubles and major chemical constituents in disposed processed oil shale under natural and simulated climatic conditions; assess the physical and constitutive properties of the processed oil shale and determine potential changes in these properties caused by disposal and weathering by natural and simulated climatic conditions; assess the use of previously developed computer model(s) to describe the infiltration, unsaturated movement, redistribution, and drainage of water in disposed processed oil shale; evaluate the stability of field scale processed oil shale solid waste embankments using computer models.

Reeves, T.L.; Turner, J.P.; Hasfurther, V.R.; Skinner, Q.D.

1992-06-01T23:59:59.000Z

378

Hazardous Waste Management: The Role of Journalists in Decision Making Process  

SciTech Connect (OSTI)

The journalists are crucial for informing and education of general public about facts related to hazardous and radioactive waste management. Radio programs, TV and newspapers are daily reporting on relevant facts and news. In general, it is true that the majority of journalists are interested more in so called daily politics than in educating general public on certain technical or scientific topics. Therefore, hazardous and radioactive waste management was introduced to Croatian general public in last ten years mainly through various news on site selection of radioactive waste disposal facilities and some problems related to hazardous waste management. This paper presents APO's experience with journalists in last ten years includes program and activities referring informing and educating of journalists from all media.

Eerskov-Klika, M.; Lokner, V.; Subasiae, D.; Schaller, A.

2002-02-28T23:59:59.000Z

379

Evaluation of System Level Modeling and Simulation Tools in Support of Savannah River Site Liquid Waste Process  

Broader source: Energy.gov (indexed) [DOE]

Savannah River Site Liquid Waste Process Savannah River Site Liquid Waste Process June 2009 Monica C. Regalbuto Office of Waste Processing DOE/EM Kevin G. Brown Vanderbilt University and CRESP David W. DePaoli Oak Ridge National Laboratory Candido Pereira Argonne National Laboratory John R. Shultz Office of Waste Processing DOE/EM Sahid C. Smith Office of Waste Processing DOE/EM External Technical Review for Evaluation of System Level Modeling and Simulation Tools in Support of Savannah River Site Liquid Waste Process June 2009 ACKNOWLEDGEMENTS The Review Team thanks Ms. Sonitza Blanco, Team Lead Planning and Coordination Waste Disposition Project U.S. Department of Energy Savannah River Operations Office and Mr. Pete Hill, Liquid Waste Planning Manager for Washington Savannah River Company, for their

380

SRS - Programs - Nonproliferation Programs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3/2012 3/2012 SEARCH GO spacer SRS Home Nonproliferation Programs In the crucial field of nuclear nonproliferation, SRS employee contributions helped to advance all three of the planned plutonium disposition facilities at the Savannah River Site: the Pit Disassembly and Conversion Facility (PDCF); Waste Solidification Building (WSB); and the Mixed Oxide (MOX) Fuel Fabrication Facility. A $345 million project, the WSB will process liquid waste from the MOX facility. After material is processed at the WSB, transuranic waste will be packaged and sent to the Waste Isolation Pilot Plant in New Mexico, and low-level waste will be packaged and sent to onsite or commercial off-site low-level waste disposal facilities. The mixed oxide fuel fabrication facility will be a major component in the United States' program to dispose of excess weapons grade plutonium.

Note: This page contains sample records for the topic "waste processing program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

A Robust Power Remote Manipulator for Use in Waste Sorting, Processing, and Packaging - 12158  

SciTech Connect (OSTI)

Disposition of radioactive waste is one of the Department of Energy's (DOE's) highest priorities. A critical component of the waste disposition strategy is shipment of Transuranic (TRU) waste from DOE's Oak Ridge Reservation to the Waste Isolation Plant Project (WIPP) in Carlsbad, New Mexico. This is the mission of the DOE TRU Waste Processing Center (TWPC). The remote-handled TRU waste at the Oak Ridge Reservation is currently in a mixed waste form that must be repackaged in to meet WIPP Waste Acceptance Criteria (WAC). Because this remote-handled legacy waste is very diverse, sorting, size reducing, and packaging will require equipment flexibility and strength that is not possible with standard master-slave manipulators. To perform the wide range of tasks necessary with such diverse, highly contaminated material, TWPC worked with S.A. Technology (SAT) to modify SAT's Power Remote Manipulator (PRM) technology to provide the processing center with an added degree of dexterity and high load handling capability inside its shielded cells. TWPC and SAT incorporated innovative technologies into the PRM design to better suit the operations required at TWPC, and to increase the overall capability of the PRM system. Improving on an already proven PRM system will ensure that TWPC gains the capabilities necessary to efficiently complete its TRU waste disposition mission. The collaborative effort between TWPC and S.A. Technology has yielded an extremely capable and robust solution to perform the wide range of tasks necessary to repackage TRU waste containers at TWPC. Incorporating innovative technologies into a proven manipulator system, these PRMs are expected to be an important addition to the capabilities available to shielded cell operators. The PRMs provide operators with the ability to reach anywhere in the cell, lift heavy objects, perform size reduction associated with the disposition of noncompliant waste. Factory acceptance testing of the TWPC Powered Remote Manipulators has completed at SAT's Colorado facility, and on-site training at TWPC is scheduled to start in early 2012. (authors)

Cole, Matt; Martin, Scott [S.A. Technology, Loveland, Colorado 80537, Transuranic Waste Processing Center, Lenoir City, TN 37771 (United States)

2012-07-01T23:59:59.000Z

382

Performance demonstration program plan for RCRA constituent analysis of solidified wastes  

SciTech Connect (OSTI)

Performance Demonstration Programs (PDPS) are designed to help ensure compliance with the Quality Assurance Objectives (QAOs) for the Waste Isolation Pilot Plant (WIPP). The PDPs are intended for use by the Department of Energy (DOE) Carlsbad Area Office (CAO) to assess and approve the laboratories and other measurement facilities supplying services for the characterization of WIPP TRU waste. The PDPs may also be used by CAO in qualifying laboratories proposing to supply additional analytical services that are required for other than waste characterization, such as WIPP site operations. The purpose of this PDP is to test laboratory performance for the analysis of solidified waste samples for TRU waste characterization. This performance will be demonstrated by the successful analysis of blind audit samples of simulated, solidified TRU waste according to the criteria established in this plan. Blind audit samples (hereinafter referred to as PDP samples) will be used as an independent means to assess laboratory performance regarding compliance with the QAOs. The concentration of analytes in the PDP samples will address levels of regulatory concern and will encompass the range of concentrations anticipated in actual waste characterization samples. Analyses that are required by the WIPP to demonstrate compliance with various regulatory requirements and which are included in the PDP must be performed by laboratories that demonstrate acceptable performance in the PDP. These analyses are referred to as WIPP analyses and the samples on which they are performed are referred to as WIPP samples for the balance of this document.

NONE

1995-06-01T23:59:59.000Z

383

National Low-Level Waste Management Program radionuclide report series. Volume 2, Niobium-94  

SciTech Connect (OSTI)

The Purpose of the National Low-Level Waste Management Program Radionuclide Report Series is to provide information to, state representatives and developers of low-level radioactive waste disposal facilities about the radiological chemical, and physical characteristics of selected radionuclides and their behavior in the low-level radioactive waste disposal facility environment. Extensive surveys of available literature provided information used to produce this series of reports and an introductory report. This report is Volume 11 of the series. It outlines the basic radiological, chemical, and physical characteristics of niobium-94, waste types and forms that contain it, and its behavior in environmental media such as soils, plants, groundwater, air, animals and the human body.

Adams, J.P.; Carboneau, M.L.

1995-04-01T23:59:59.000Z

384

Plasma chemical process for treatment of hazardous wastes  

Science Journals Connector (OSTI)

The conventional methods of combustion are not always effective. One of the new methods for waste treatment is the destruction in plasma jet of chemical reactive gases. An unit with plasmotron power up to 50 kW is constructed for the investigations. Sulphur, chlorine and nitrogen containing organic toxic wastes are subjected to destruction. Water steam, air and their mixture are used as plasma generating gas and chemical reagent. The studies are carried out at a different ratio of plasma generating gasltoxic wastes at temperatures to 2000C. The products are analysed by gas mass spectroscopy. The released gas is composed of Co, H2 and CO2. There were found no hydrocarbons, dioxine and furan. Gas heat value is good for its burning without environment pollution.

Iv. Georgiev; Zh. Bulgaranova; B. Kumanova

1995-01-01T23:59:59.000Z

385

Salt Processing at the Savannah River Site: Results of Technology Down-Selection and Research and Development to Support New Salt Waste Processing Facility  

SciTech Connect (OSTI)

The Department of Energy's (DOE) Savannah River Site (SRS) high-level waste (HLW) program is responsible for storage, treatment, and immobilization of HLW for disposal. The Salt Processing Project (SPP) is the salt waste (water-soluble) treatment portion of this effort. The overall SPP encompasses the selection, design, construction, and operation of technologies to prepare the salt-waste feed material for immobilization at the site's Saltstone Production Facility (SPF) and vitrification facility (Defense Waste Processing Facility [DWPF]). Major constituents that must be removed from the salt waste and sent as feed to DWPF include cesium (Cs), strontium (Sr), and actinides. In April 2000, the DOE Deputy Secretary for Project Completion (EM-40) established the SRS Salt Processing Project Technical Working Group (TWG) to manage technology development of treatment alternatives for SRS high-level salt wastes. The separation alternatives investigated included three candidate Cs-removal processes selected, as well as actinide and Sr removal that are also required as a part of each process. The candidate Cs-removal processes are: crystalline Silicotitanate Non-Elutable Ion Exchange (CST); caustic Side Solvent Extraction (CSSX); and small Tank Tetraphenylborate Precipitation (STTP). The Tanks Focus Area was asked to assist DOE by managing the SPP research and development (R&D), revising roadmaps, and developing down-selection criteria. The down-selection decision process focused its analysis on three levels: (a) identification of goals that the selected technology should achieve, (b) selection criteria that are a measure of performance of the goal, and (c) criteria scoring and weighting for each technology alternative. After identifying the goals and criteria, the TWG analyzed R&D results and engineering data and scored the technology alternatives versus the criteria. Based their analysis and scoring, the TWG recommended CSSX as the preferred alternative. This recommendation was formalized in July 2001 when DOE published the Savannah River Site Salt Processing Alternatives Final Supplemental Environmental Impact Statement (SEIS) and was finalized in the DOE Record of Decision issued in October 2001.

Lang, K.; Gerdes, K.; Picha, K.; Spader, W.; McCullough, J.; Reynolds, J.; Morin, J. P.; Harmon, H. D.

2002-02-26T23:59:59.000Z

386

Formulation and Characterization of Waste Glasses with Varying Processing Temperature  

SciTech Connect (OSTI)

This report documents the preliminary results of glass formulation and characterization accomplished within the finished scope of the EM-31 technology development tasks for WP-4 and WP-5, including WP-4.1.2: Glass Formulation for Next Generation Melter, WP-5.1.2.3: Systematic Glass Studies, and WP-5.1.2.4: Glass Formulation for Specific Wastes. This report also presents the suggested studies for eventual restart of these tasks. The initial glass formulation efforts for the cold crucible induction melter (CCIM), operating at {approx}1200 C, with selected HLW (AZ-101) and LAW (AN-105) successfully developed glasses with significant increase of waste loading compared to that is likely to be achieved based on expected reference WTP formulations. Three glasses formulated for AZ-101HLW and one glass for AN-105 LAW were selected for the initial CCIM demonstration melter tests. Melter tests were not performed within the finished scope of the WP-4.1.2 task. Glass formulations for CCIM were expanded to cover additional HLWs that have high potential to successfully demonstrate the unique advantages of the CCIM technologies based on projected composition of Hanford wastes. However, only the preliminary scoping tests were completed with selected wastes within the finished scope. Advanced glass formulations for the reference WTP melter, operating at {approx}1200 C, were initiated with selected specific wastes to determine the estimated maximum waste loading. The incomplete results from these initial formulation efforts are summarized. For systematic glass studies, a test matrix of 32 high-aluminum glasses was completed based on a new method developed in this study.

Kim, Dong-Sang; Schweiger, M. J.; Rodriguez, Carmen P.; Lepry, William C.; Lang, Jesse B.; Crum, Jarrod V.; Vienna, John D.; Johnson, Fabienne; Marra, James C.; Peeler, David K.

2011-10-17T23:59:59.000Z

387

Evaluation of Seafood Processing Wastes in Prepared Feeds for Red Drum (Sciaenops ocellatus)  

E-Print Network [OSTI]

byproduct consistently provided the highest performance values at 80 percent replacement. The catfish byproduct yielded the lowest fish performance at all levels. This study indicates that dry extrusion of seafood processing wastes can be used to replace a...

Pernu, Benjamin Mark

2012-07-16T23:59:59.000Z

388

Process Waste Heat Recovery in the Food Industry - A System Analysis  

E-Print Network [OSTI]

An analysis of an industrial waste heat recovery system concept is discussed. For example purposes, a food processing plant operating an ammonia refrigeration system for storage and blast freezing is considered. Heat is withdrawn from...

Lundberg, W. L.; Mutone, G. A.

1983-01-01T23:59:59.000Z

389

Two-stage thermal/nonthermal waste treatment process  

SciTech Connect (OSTI)

An innovative waste treatment technology is being developed in Los Alamos to address the destruction of hazardous organic wastes. The technology described in this report uses two stages: a packed bed reactor (PBR) in the first stage to volatilize and/or combust liquid organics and a silent discharge plasma (SDP) reactor to remove entrained hazardous compounds in the off-gas to even lower levels. We have constructed pre-pilot-scale PBR-SDP apparatus and tested the two stages separately and in combined modes. These tests are described in the report.

Rosocha, L.A.; Anderson, G.K.; Coogan, J.J.; Kang, M.; Tennant, R.A.; Wantuck, P.J.

1993-05-01T23:59:59.000Z

390

Waste management technology development and demonstration programs at Brookhaven National Laboratory  

SciTech Connect (OSTI)

Two thermoplastic processes for improved treatment of radioactive, hazardous, and mixed wastes have been developed from bench-scale through technology demonstration: polyethylene encapsulation and modified sulfur cement encapsulation. The steps required to bring technologies from the research and development stage through full-scale implementation are described. Both systems result in durable waste forms that meet current Nuclear Regulatory Commission and Environmental Protection Agency regulatory criteria and provide significant improvements over conventional solidification systems such as hydraulic cement. For example, the polyethylene process can encapsulate up to 70 wt % nitrate salt, compared with a maximum of about 20 wt % for the best hydraulic cement formulation. Modified sulfur cement waste forms containing as much as 43 wt % incinerator fly ash have been formulated, whereas the maximum quantity of this waste in hydraulic cement is 16 wt %.

Kalb, P.D.; Colombo, P.

1991-12-31T23:59:59.000Z

391

Waste management technology development and demonstration programs at Brookhaven National Laboratory  

SciTech Connect (OSTI)

Two thermoplastic processes for improved treatment of radioactive, hazardous, and mixed wastes have been developed from bench-scale through technology demonstration: polyethylene encapsulation and modified sulfur cement encapsulation. The steps required to bring technologies from the research and development stage through full-scale implementation are described. Both systems result in durable waste forms that meet current Nuclear Regulatory Commission and Environmental Protection Agency regulatory criteria and provide significant improvements over conventional solidification systems such as hydraulic cement. For example, the polyethylene process can encapsulate up to 70 wt % nitrate salt, compared with a maximum of about 20 wt % for the best hydraulic cement formulation. Modified sulfur cement waste forms containing as much as 43 wt % incinerator fly ash have been formulated, whereas the maximum quantity of this waste in hydraulic cement is 16 wt %.

Kalb, P.D.; Colombo, P.

1991-01-01T23:59:59.000Z

392

Low-Level Liquid Waste Processing Pilot Studies Using a Vibratory Shear Enhancing Process (VSEP) for Filtration  

SciTech Connect (OSTI)

A previous EPRI study evaluated potential treatment methods for the removal of iron from BWR waste streams. Of the methods investigated, high shear filtration using the vibratory shear-enhanced process (VSEP) showed the most promise to effectively and economically remove high iron concentrations from backwash receiving tank waste. A VSEP filter uses oscillatory vibration to create high shear at the surface of the filter membrane. This high shear force significantly improves the filter's resistance to fouling thereby enabling high throughputs with very little secondary waste generation. With a VSEP filter, the waste feed stream is split into two effluents- a permeate stream with little or no suspended solids and a concentrate stream with a suspended solids concentration much higher than that of the feed stream. To evaluate the feasibility of using a VSEP concept for processing typical high iron containing BWR radwaste, a surrogate feedstream containing up to 1,700 ppm iron oxide (as Fe2O3) was used. This surrogate waste simulates radioactive waste found at Exelon's Limerick and Peach Bottom (powdered resin condensate) plants, and in Hope Creek's (deep bed condensate) radwaste systems. Testing was done using a series L (laboratory scale) VSEP unit at the manufacturer's and contractor's laboratories. These tests successfully demonstrated the VSEP capability for producing highly concentrated waste streams with totally ''recyclable'' permeate (e.g., greater than 95% recovery).

Bushart, S.; Tran, P.; Asay, R.

2002-02-25T23:59:59.000Z

393

An evaluation of hydrologic, geotechnical, and chemical behavior of processed oil shale solid waste 2; The use of time domain reflectometry (TDR) for monitoring in-situ volumetric water content in processed oil shale  

SciTech Connect (OSTI)

This paper describes the use of time domain reflectometry (TDR) for monitoring volumetric water contents in processed oil shale solid waste. TDR measures soil water content via a correlation between the dielectric constant (K) of the 3 phase (soil-water-air) system and the volumetric water content ({theta}{sub v}). An extensive bench top research program has been conducted to evaluate and verify the use of this technique in processed oil shale solid waste. This study utilizes columns of processed oil shale packed to known densities and varying water contents and compares the columetric water content measured via TDR and the volumetric water content measured through gravimetric determination.

Reeves, T.L.; Elgezawi, S.M. (Wyoming Univ., Laramie, WY (USA). Dept. of Civil Engineering); Kaser, T.G. (GIGO Computer and Electronic, Laramie, WY (US))

1989-01-01T23:59:59.000Z

394

Precipitate hydrolysis process for the removal of organic compounds from nuclear waste slurries  

DOE Patents [OSTI]

A process for removing organic compounds from a nuclear waste slurry comprising reacting a mixture of radioactive waste precipitate slurry and an acid in the presence of a catalytically effective amount of a copper (II) catalyst whereby the organic compounds in the precipitate slurry are hydrolyzed to form volatile organic compounds which are separated from the reacting mixture. The resulting waste slurry, containing less than 10 percent of the orginal organic compounds, is subsequently blended with high level radioactive sludge and transferred to a virtrification facility for processing into borosilicate glass for long-term storage.

Doherty, Joseph P. (Elkton, MD); Marek, James C. (Augusta, GA)

1989-01-01T23:59:59.000Z

395

Precipitate hydrolysis process for the removal of organic compounds from nuclear waste slurries  

DOE Patents [OSTI]

A process for removing organic compounds from a nuclear waste slurry comprising reacting a mixture of radioactive waste precipitate slurry and an acid in the presence of a catalytically effective amount of a copper(II) catalyst whereby the organic compounds in the precipitate slurry are hydrolyzed to form volatile organic compounds which are separated from the reacting mixture. The resulting waste slurry, containing less than 10 percent of the original organic compounds, is subsequently blended with high level radioactive sludge land transferred to a vitrification facility for processing into borosilicate glass for long-term storage. 2 figs., 3 tabs.

Doherty, J.P.; Marek, J.C.

1987-02-25T23:59:59.000Z

396

Evaluation of high-level waste pretreatment processes with an approximate reasoning model  

SciTech Connect (OSTI)

The development of an approximate-reasoning (AR)-based model to analyze pretreatment options for high-level waste is presented. AR methods are used to emulate the processes used by experts in arriving at a judgment. In this paper, the authors first consider two specific issues in applying AR to the analysis of pretreatment options. They examine how to combine quantitative and qualitative evidence to infer the acceptability of a process result using the example of cesium content in low-level waste. They then demonstrate the use of simple physical models to structure expert elicitation and to produce inferences consistent with a problem involving waste particle size effects.

Bott, T.F.; Eisenhawer, S.W.; Agnew, S.F.

1999-04-01T23:59:59.000Z

397

Waste Receiving and Processing Facility Module 2A: Advanced Conceptual Design Report. Volume 2  

SciTech Connect (OSTI)

This volume presents the Total Estimated Cost (TEC) for the WRAP (Waste Receiving and Processing) 2A facility. The TEC is $81.9 million, including an overall project contingency of 25% and escalation of 13%, based on a 1997 construction midpoint. (The mission of WRAP 2A is to receive, process, package, certify, and ship for permanent burial at the Hanford site disposal facilities the Category 1 and 3 contact handled low-level radioactive mixed wastes that are currently in retrievable storage, and are forecast to be generated over the next 30 years by Hanford, and waste to be shipped to Hanford site from about 20 DOE sites.)

Not Available

1994-03-01T23:59:59.000Z

398

Process for immobilizing radioactive boric acid liquid wastes  

DOE Patents [OSTI]

A method of immobilizing boric acid liquid wastes containing radionuclides by neutralizing the solution and evaporating the resulting precipitate to near dryness. The dry residue is then fused into a reduced volume, insoluble, inert, solid form containing substantially all the radionuclides.

Greenhalgh, Wilbur O. (Richland, WA)

1986-01-01T23:59:59.000Z

399

Hanford Low-Activity Waste Processing: Demonstration of the Off-Gas Recycle Flowsheet - 13443  

SciTech Connect (OSTI)

Vitrification of Hanford Low-Activity Waste (LAW) is nominally the thermal conversion and incorporation of sodium salts and radionuclides into borosilicate glass. One key radionuclide present in LAW is technetium-99. Technetium-99 is a low energy, long-lived beta emitting radionuclide present in the waste feed in concentrations on the order of 1-10 ppm. The long half-life combined with a high solubility in groundwater results in technetium-99 having considerable impact on performance modeling (as potential release to the environment) of both the waste glass and associated secondary waste products. The current Hanford Tank Waste Treatment and Immobilization Plant (WTP) process flowsheet calls for the recycle of vitrification process off-gas condensates to maximize the portion of technetium ultimately immobilized in the waste glass. This is required as technetium acts as a semi-volatile specie, i.e. considerable loss of the radionuclide to the process off-gas stream can occur during the vitrification process. To test the process flowsheet assumptions, a prototypic off-gas system with recycle capability was added to a laboratory melter (on the order of 1/200 scale) and testing performed. Key test goals included determination of the process mass balance for technetium, a non-radioactive surrogate (rhenium), and other soluble species (sulfate, halides, etc.) which are concentrated by recycling off-gas condensates. The studies performed are the initial demonstrations of process recycle for this type of liquid-fed melter system. This paper describes the process recycle system, the waste feeds processed, and experimental results. Comparisons between data gathered using process recycle and previous single pass melter testing as well as mathematical modeling simulations are also provided. (authors)

Ramsey, William G.; Esparza, Brian P. [Washington River Protection Solutions, LLC, Richland, WA 99532 (United States)] [Washington River Protection Solutions, LLC, Richland, WA 99532 (United States)

2013-07-01T23:59:59.000Z

400

Comment on Solid Recovered Fuel: Materials Flow Analysis and Fuel Property Development during the Mechanical Processing of Biodried Waste  

Science Journals Connector (OSTI)

Comment on Solid Recovered Fuel: Materials Flow Analysis and Fuel Property Development during the Mechanical Processing of Biodried Waste ... Validated material flow models of waste treatment systems form a sound basis to evaluate system performance in view of environmental pollution as well as with respect to resource recovery. ... characteristics of refuse-derived fuels (RDF) that are processed from residual household waste by mech. ...

David Laner; Oliver Cencic

2013-12-05T23:59:59.000Z

Note: This page contains sample records for the topic "waste processing program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Energy Technical Assistance: Industrial Processes Program  

E-Print Network [OSTI]

The Energy Technical Assistance Division of Texas Engineering Extension Service (TEEX) has implemented an energy conservation program to assist small industry in using energy more efficiently. This full time service, an outgrowth of the Texas A...

McClure, J. D.

1980-01-01T23:59:59.000Z

402

Towards model-based control of a steam Rankine process for engine waste heat recovery  

E-Print Network [OSTI]

Towards model-based control of a steam Rankine process for engine waste heat recovery Johan Peralez steam process for exhaust gas heat recovery from a spark-ignition engine, focusing in particular results on a steam process for SI engines, [3] on generic control issues and [4] which provides a comp

Paris-Sud XI, Université de

403

Waste Receiving and Processing (WRAP) Facility Final Safety Analysis Report (FSAR)  

SciTech Connect (OSTI)

The Waste Receiving and Processing Facility (WRAP), 2336W Building, on the Hanford Site is designed to receive, confirm, repackage, certify, treat, store, and ship contact-handled transuranic and low-level radioactive waste from past and present U.S. Department of Energy activities. The WRAP facility is comprised of three buildings: 2336W, the main processing facility (also referred to generically as WRAP); 2740W, an administrative support building; and 2620W, a maintenance support building. The support buildings are subject to the normal hazards associated with industrial buildings (no radiological materials are handled) and are not part of this analysis except as they are impacted by operations in the processing building, 2336W. WRAP is designed to provide safer, more efficient methods of handling the waste than currently exist on the Hanford Site and contributes to the achievement of as low as reasonably achievable goals for Hanford Site waste management.

TOMASZEWSKI, T.A.

2000-04-25T23:59:59.000Z

404

Process waste treatment system upgrades: Clarifier startup at the nonradiological wastewater treatment plant  

SciTech Connect (OSTI)

The Waste Management Operations Division at Oak Ridge National Laboratory recently modified the design of a reactor/clarifier at the Nonradiological Wastewater Treatment Plant, which is now referred to as the Process Waste Treatment Complex--Building 3608, to replace the sludge-blanket softener/clarifier at the Process Waste Treatment Plant, now referred to as the Process Waste Treatment Complex-Building 3544 (PWTC-3544). This work was conducted because periodic hydraulic overloads caused poor water-softening performance in the PWTC-3544 softener, which was detrimental to the performance and operating costs of downstream ion-exchange operations. Over a 2-month time frame, the modified reactor/clarifier was tested with nonradiological wastewater and then with radioactive wastewater to optimize softening performance. Based on performance to date, the new system has operated more effectively than the former one, with reduced employee radiological exposure, less downtime, lower costs, and improved effluent quality.

Lucero, A.J.; McTaggart, D.R.; Van Essen, D.C.; Kent, T.E.; West, G.D.; Taylor, P.A.

1998-07-01T23:59:59.000Z

405

Genetic programming and serial processing for time series classification  

Science Journals Connector (OSTI)

This work describes an approach devised by the authors for time series classification. In our approach genetic programming is used in combination with a serial processing of data, where the last output is the result of the classification. The use of ... Keywords: Classification, genetic programming, real world applications, serial data processing, time series

Eva Alfaro-Cid; Ken Sharman; Anna I. Esparcia-Alczar

2014-06-01T23:59:59.000Z

407

INSTALLATION OF BUBBLERS IN THE SAVANNAH RIVER SITED DEFENSE WASTE PROCESSING FACILITY MELTER  

SciTech Connect (OSTI)

Savannah River Remediation (SRR) LLC assumed the liquid waste contract at the Savannah River Site (SRS) in the summer of 2009. The main contractual agreement was to close 22 High Level Waste (HLW) tanks in eight years. To achieve this aggressive commitment, faster waste processing throughout the SRS liquid waste facilities will be required. Part of the approach to achieve faster waste processing is to increase the canister production rate of the Defense Waste Processing Facility (DWPF) from approximately 200 canisters filled with radioactive waste glass per year to 400 canisters per year. To reach this rate for melter throughput, four bubblers were installed in the DWPF Melter in the late summer of 2010. This effort required collaboration between SRR, SRR critical subcontractor EnergySolutions, and Savannah River Nuclear Solutions, including the Savannah River National Laboratory (SRNL). The tasks included design and fabrication of the bubblers and related equipment, testing of the bubblers for various technical issues, the actual installation of the bubblers and related equipment, and the initial successful operation of the bubblers in the DWPF Melter.

Smith, M.; Iverson, D.

2010-12-08T23:59:59.000Z

408

Alcohol-free alkoxide process for containing nuclear waste  

DOE Patents [OSTI]

Disclosed is a method of containing nuclear waste. A composition is first prepared of about 25 to about 80%, calculated as SiO.sub.2, of a partially hydrolyzed silicon compound, up to about 30%, calculated as metal oxide, of a partially hydrolyzed aluminum or calcium compound, about 5 to about 20%, calculated as metal oxide, of a partially hydrolyzed boron or calcium compound, about 3 to about 25%, calculated as metal oxide, of a partially hydrolyzed sodium, potassium or lithium compound, an alcohol in a weight ratio to hydrolyzed alkoxide of about 1.5 to about 3% and sufficient water to remove at least 99% of the alcohol as an azeotrope. The azeotrope is boiled off and up to about 40%, based on solids in the product, of the nuclear waste, is mixed into the composition. The mixture is evaporated to about 25 to about 45% solids and is melted and cooled.

Pope, James M. (Monroeville, PA); Lahoda, Edward J. (Edgewood, PA)

1984-01-01T23:59:59.000Z

409

Management of Solid Waste (Oklahoma) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Management of Solid Waste (Oklahoma) Management of Solid Waste (Oklahoma) Management of Solid Waste (Oklahoma) < Back Eligibility Utility Agricultural Investor-Owned Utility Industrial Municipal/Public Utility Rural Electric Cooperative Program Info State Oklahoma Program Type Environmental Regulations Provider Oklahoma Department of Environmental Quality The Solid Waste Management Division of the Department of Environmental Quality regulates solid waste disposal or any person who generates, collects, transports, processes, and/or disposes of solid waste and/or waste tires. The following solid waste disposal facilities require a solid waste permit prior to construction and/or operation: land disposal facilities; solid waste processing facilities, including: transfer stations; solid waste incinerators receiving waste from off-site sources; regulated medical waste

410

Technical requirements for the actinide source-term waste test program  

SciTech Connect (OSTI)

This document defines the technical requirements for a test program designed to measure time-dependent concentrations of actinide elements from contact-handled transuranic (CH TRU) waste immersed in brines similar to those found in the underground workings of the Waste Isolation Pilot Plant (WIPP). This test program wig determine the influences of TRU waste constituents on the concentrations of dissolved and suspended actinides relevant to the performance of the WIPP. These influences (which include pH, Eh, complexing agents, sorbent phases, and colloidal particles) can affect solubilities and colloidal mobilization of actinides. The test concept involves fully inundating several TRU waste types with simulated WIPP brines in sealed containers and monitoring the concentrations of actinide species in the leachate as a function of time. The results from this program will be used to test numeric models of actinide concentrations derived from laboratory studies. The model is required for WIPP performance assessment with respect to the Environmental Protection Agency`s 40 CFR Part 191B.

Phillips, M.L.F.; Molecke, M.A.

1993-10-01T23:59:59.000Z

411

Organic tanks safety program waste aging studies. Final report, Revision 1  

SciTech Connect (OSTI)

Uranium and plutonium production at the Hanford Site produced large quantities of radioactive byproducts and contaminated process chemicals that are stored in underground tanks awaiting treatment and disposal. Having been made strongly alkaline and then subjected to successive water evaporation campaigns to increase storage capacity, the wastes now exist in the physical forms of saltcakes, metal oxide sludges, and aqueous brine solutions. Tanks that contain organic process chemicals mixed with nitrate/nitrite salt wastes might be at risk for fuel-nitrate combustion accidents. This project started in fiscal year 1993 to provide information on the chemical fate of stored organic wastes. While historical records had identified the organic compounds originally purchased and potentially present in wastes, aging experiments were needed to identify the probable degradation products and evaluate the current hazard. The determination of the rates and pathways of degradation have facilitated prediction of how the hazard changes with time and altered storage conditions. Also, the work with aged simulated waste contributed to the development of analytical methods for characterizing actual wastes. Finally, the results for simulants provide a baseline for comparing and interpreting tank characterization data.

Camaioni, D.M.; Samuels, W.D.; Linehan, J.C. [and others

1998-09-01T23:59:59.000Z

412

Processing results of 1,800 gallons of mercury and radioactively contaminated mixed waste rinse solution  

SciTech Connect (OSTI)

The mercury-contaminated rinse solution (INEL waste ID{number_sign} 123; File 8 waste) was successfully treated at the Idaho National Engineering Laboratory (INEL). This waste was generated during the decontamination of the Heat Transfer Reactor Experiment 3 (HTRE-3) reactor shield tank. Approximately 1,800 gal of waste was generated and was placed into 33 drums. Each drum contained precipitated sludge material ranging from 1--10 in. in depth, with the average depth of about 2.5 in. The pH of each drum varied from 3--11. The bulk liquid waste had a mercury level of 7.0 mg/l, which exceeded the Resource Conservation and Recovery Act (RCRA) limit of 0.2 mg/l. The average liquid bulk radioactivity was about 2.1 pCi/ml, while the average sludge contamination was about 13,800 pci/g. Treatment of the waste required separation of the liquid from the sludge, filtration, pH adjustment, and ion exchange. Because of difficulties in processing, three trials were required to reduce the mercury levels to below the RCRA limit. In the first trial, insufficient filtration of the waste allowed solid particulate produced during pH adjustment to enter into the ion exchange columns and ultimately the waste storage tank. In the second trial, the waste was filtered down to 0.1 {mu} to remove all solid mercury compounds. However, before filtration could take place, a solid mercury complex dissolved and mercury levels exceeded the RCRA limit after filtration. In the third trial, the waste was filtered through 0.3-A filters and then passed through the S-920 resin to remove the dissolved mercury. The resulting solution had mercury levels at 0.0186 mg/l and radioactivity of 0.282 pCi/ml. This solution was disposed of at the TAN warm waste pond, TAN782, TSF-10.

Thiesen, B.P.

1993-01-01T23:59:59.000Z

413

INTERNATIONAL UNION OF OPERATING ENGINEERS NATIONAL HAZMAT PROGRAM - HANDSS-55 TRANSURANIC WASTE REPACKAGING MODULE  

SciTech Connect (OSTI)

The Transuranic waste generated at the Savannah River Site from nuclear weapons research, development, and production is currently estimated to be over 10,000 cubic meters. Over half of this amount is stored in 55-gallon drums. The waste in drums is primarily job control waste and equipment generated as the result of routine maintenance performed on the plutonium processing operations. Over the years that the drums have been accumulating, the regulatory definitions of materials approved for disposal have changed. Consequently, many of the drums now contain items that are not approved for disposal at DOE Waste Isolation Pilot Plant (WIPP). The HANDSS-55 technology is being developed to allow remote sorting of the items in these drums and then repackaging of the compliant items for disposal at WIPP.

Unknown

2001-08-31T23:59:59.000Z

414

Resource Conservation and Recovery Act, Part B Permit Application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 2, Chapter C, Appendix C1--Chapter C, Appendix C3 (beginning), Revision 3  

SciTech Connect (OSTI)

This volume contains appendices for the following: Rocky Flats Plant and Idaho National Engineering Laboratory waste process information; TRUPACT-II content codes (TRUCON); TRUPACT-II chemical list; chemical compatibility analysis for Rocky Flats Plant waste forms; chemical compatibility analysis for waste forms across all sites; TRU mixed waste characterization database; hazardous constituents of Rocky Flats Transuranic waste; summary of waste components in TRU waste sampling program at INEL; TRU waste sampling program; and waste analysis data.

Not Available

1993-03-01T23:59:59.000Z

415

Waste disposal and treatment in the food processing industry. (Latest citations from the Biobusiness database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning waste treatment and disposal in the food processing industry. Methods, equipment, and technology are considered. References discuss waste heat recovery and examine treatment of wastes resulting from meat and seafood processing, dairy and beverage production, and fruit and vegetable processing. The citations explore conversion of the treated waste to fertilizer and for use in animal feeds, combustion for energy production, biogas production, and composting. The recovery and recycling of usable chemicals from the food waste are also covered. Food packaging recycling is considered in a related bibliography. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1994-02-01T23:59:59.000Z

416

Waste disposal and treatment in the food processing industry. (Latest citations from the Biobusiness database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning waste treatment and disposal in the food processing industry. Methods, equipment, and technology are considered. References discuss waste heat recovery and examine treatment of wastes resulting from meat and seafood processing, dairy and beverage production, and fruit and vegetable processing. The citations explore conversion of the treated waste to fertilizer and for use in animal feeds, combustion for energy production, biogas production, and composting. The recovery and recycling of usable chemicals from the food waste are also covered. Food packaging recycling is considered in a related bibliography. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1995-12-01T23:59:59.000Z

417

Waste disposal and treatment in the food processing industry. (Latest citations from the Biobusiness database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning waste treatment and disposal in the food processing industry. Methods, equipment, and technology are considered. References discuss waste heat recovery and examine treatment of wastes resulting from meat and seafood processing, dairy and beverage production, and fruit and vegetable processing. The citations explore conversion of the treated waste to fertilizer and for use in animal feeds, combustion for energy production, biogas production, and composting. The recovery and recycling of usable chemicals from the food waste are also covered. Food packaging recycling is considered in a related bibliography. (Contains 250 citations and includes a subject term index and title list.)

NONE

1995-01-01T23:59:59.000Z

418

Waste disposal and treatment in the food-processing industry. (Latest citations from the Biobusiness data base). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning waste treatment and disposal in the food processing industry. Methods, equipment, and technology are considered. Specific areas include waste heat recovery, and food industry wastes from meat and seafood processing, dairy and beverage production, and processing of fruits and vegetables. The citations explore conversion of the treated waste to fertilizer, and uses in animal feeds, combustion for energy production, biogas production, and composting. The recovery and recycling of usable chemicals from the food waste is also covered. Food packaging recycling is considered in a related bibliography. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1992-08-01T23:59:59.000Z

419

SWEDISH-AMERICAN COOPERATIVE PROGRAM ON RADIOACTIVE WASTE STORAGE IN MINED CAVERNS. PROGRAM SUMMARY  

E-Print Network [OSTI]

Research and Development Administration and the Swedish Nuclear Fuel Supply Company Concerning a Cooperative Program

Witherspoon, P.A.

2011-01-01T23:59:59.000Z

420

Project characteristics monitoring report: BWIP (Basalt Waste Isolation Program) repository project  

SciTech Connect (OSTI)

This monitoring report has been prepared to show compliance with provisions of the Nuclear Waste Policy Act of 1982 (NWPA) and to provide local and state government agencies with information concerning the Basalt Waste Isolation Program (BWIP). This report contains data for the time period May 26, 1986 to February 1988. The data include employment figures, salaries, project purchases, taxes and fees paid, worker survey results, and project closedown personal interview summaries. This information has become particularly important since the decision in December 1987 to stop all BWIP activities except those for site reclamation. The Nuclear Waste Policy Amendments Act of 1987 requires nonreclamation work at the Hanford Site to stop as of March 22, 1988. 7 refs., 6 figs., 28 tabs.

Friedli, E.A.; Herborn, D.I.; Taylor, C.D.; Tomlinson, K.M.

1988-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste processing program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Environmental Statements, Availability, Etc., Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs  

Broader source: Energy.gov (indexed) [DOE]

8679 8679 Thursday June 1, 1995 Part III Department of Energy Environmental Statements, Availability, Etc.; Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs: Notice 28680 Federal Register / Vol. 60, No. 105 / Thursday, June 1, 1995 / Notices DEPARTMENT OF ENERGY Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs AGENCY: Department of Energy. ACTION: Record of decision. SUMMARY: The Department of Energy has issued a Record of Decision on Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs. The Record of Decision includes a Department-wide decision to

422

Process and technological aspects of municipal solid waste gasification. A review  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Critical assessment of the main commercially available MSW gasifiers. Black-Right-Pointing-Pointer Detailed discussion of the basic features of gasification process. Black-Right-Pointing-Pointer Description of configurations of gasification-based waste-to-energy units. Black-Right-Pointing-Pointer Environmental performance analysis, on the basis of independent sources data. - Abstract: The paper proposes a critical assessment of municipal solid waste gasification today, starting from basic aspects of the process (process types and steps, operating and performance parameters) and arriving to a comparative analysis of the reactors (fixed bed, fluidized bed, entrained bed, vertical shaft, moving grate furnace, rotary kiln, plasma reactor) as well as of the possible plant configurations (heat gasifier and power gasifier) and the environmental performances of the main commercially available gasifiers for municipal solid wastes. The analysis indicates that gasification is a technically viable option for the solid waste conversion, including residual waste from separate collection of municipal solid waste. It is able to meet existing emission limits and can have a remarkable effect on reduction of landfill disposal option.

Arena, Umberto, E-mail: umberto.arena@unina2.it [Department of Environmental Sciences, Second University of Naples, Via A. Vivaldi, 43, 81100 Caserta (Italy)

2012-04-15T23:59:59.000Z

423

Performance Demonstration Program Plan for RCRA Constituent Analysis of Solidified Wastes  

SciTech Connect (OSTI)

The Performance Demonstration Program (PDP) for Resource Conservation and Recovery Act (RCRA) constituents distributes test samples for analysis of volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), and metals in solid matrices. Each distribution of test samples is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements performed for transuranic (TRU) waste characterization. The primary documents governing the conduct of the PDP are the Quality Assurance Program Document (QAPD; DOE/CBFO-94-1012) and the Waste Isolation Pilot Plant (WIPP) Waste Analysis Plan (WAP) contained in the Hazardous Waste Facility Permit (NM4890139088-TSDF) issued by the New Mexico Environment Department. The WAP requires participation in the PDP; the PDP must comply with the QAPD and the WAP. This plan implements the general requirements of the QAPD and the applicable requirements of the WAP for the RCRA PDP. Participating laboratories demonstrate acceptable performance by successfully analyzing single- blind performance evaluation samples (subsequently referred to as PDP samples) according to the criteria established in this plan. PDP samples are used as an independent means to assess laboratory performance regarding compliance with the WAP quality assurance objectives (QAOs). The concentrations of analytes in the PDP samples address levels of regulatory concern and encompass the range of concentrations anticipated in waste characterization samples. The WIPP requires analyses of homogeneous solid wastes to demonstrate compliance with regulatory requirements. These analyses must be performed by laboratories that demonstrate acceptable performance in this PDP. These analyses are referred to as WIPP analyses, and the samples on which they are performed are referred to as WIPP samples. Participating laboratories must analyze PDP samples using the same procedures used for WIPP samples.

Carlsbad Field Office

2006-09-21T23:59:59.000Z

424

Developing the Broad Process Excellence Program  

E-Print Network [OSTI]

This thesis is based on the author's experience as an intern at the Broad Institute of MIT and Harvard. The Broad Institute has been working on applying and implementing traditional manufacturing process improvement tools ...

Datta, Subhrangshu, 1975-

2007-01-01T23:59:59.000Z