Powered by Deep Web Technologies
Note: This page contains sample records for the topic "waste processing facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Salt Waste Processing Facility Fact Sheet | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Waste Management » Tank Waste and Waste Processing » Services » Waste Management » Tank Waste and Waste Processing » Salt Waste Processing Facility Fact Sheet Salt Waste Processing Facility Fact Sheet Nuclear material production operations at SRS resulted in the generation of liquid radioactive waste that is being stored, on an interim basis, in 49 underground waste storage tanks in the F- and H-Area Tank Farms. SWPF Fact Sheet More Documents & Publications EIS-0082-S2: Amended Record of Decision Savannah River Site Salt Waste Processing Facility Technology Readiness Assessment Report EIS-0082-S2: Record of Decision Waste Management Nuclear Materials & Waste Tank Waste and Waste Processing Waste Disposition Packaging and Transportation Site & Facility Restoration Deactivation & Decommissioning (D&D)

2

New Facility Saves $20 Million, Accelerates Waste Processing | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facility Saves $20 Million, Accelerates Waste Processing Facility Saves $20 Million, Accelerates Waste Processing New Facility Saves $20 Million, Accelerates Waste Processing August 15, 2012 - 12:00pm Addthis The new Cask Processing Enclosure (CPE) facility is located at the Transuranic Waste Processing Center (TWPC). The Transuranic Waste Processing Center (TWPC) processes, repackages, and ships the site's legacy TRU waste offsite. OAK RIDGE, Tenn. - Oak Ridge's EM program recently began operations at a newly constructed facility that will accelerate the completion of remote-handled transuranic (TRU) waste processing at the site by two years and save taxpayers more than $20 million. The new Cask Processing Enclosure (CPE) facility is located at the Transuranic Waste Processing Center (TWPC). TWPC processes, repackages, and

3

Construction Begins on New Waste Processing Facility | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Construction Begins on New Waste Processing Facility Construction Begins on New Waste Processing Facility Construction Begins on New Waste Processing Facility February 9, 2012 - 12:00pm Addthis Workers construct a new facility that will help Los Alamos National Laboratory accelerate the shipment of transuranic (TRU) waste to the Waste Isolation Pilot Plant (WIPP) in Carlsbad for permanent disposal. Workers construct a new facility that will help Los Alamos National Laboratory accelerate the shipment of transuranic (TRU) waste to the Waste Isolation Pilot Plant (WIPP) in Carlsbad for permanent disposal. Construction has begun on a new facility that will help Los Alamos National Laboratory accelerate the shipment of transuranic (TRU) waste stored in large boxes at Technical Area 54, Area G. Construction has begun on a new facility that will help Los Alamos National

4

Savannah River Site - Salt Waste Processing Facility: Briefing on the Salt Waste Processing Facility Independent Technical Review  

Energy.gov (U.S. Department of Energy (DOE))

This is a presentation outlining the Salt Waste Processing Facility process, major risks, approach for conducting reviews, discussion of the findings, and conclusions.

5

November 8, 1983: Defense Waste Processing Facility | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 8, 1983: Defense Waste Processing Facility November 8, 1983: Defense Waste Processing Facility November 8, 1983: Defense Waste Processing Facility November 8, 1983: Defense Waste Processing Facility November 8, 1983 The Department begins construction of the Defense Waste Processing Facility (DWPF) at the Savannah River Plant in South Carolina. DWPF is designed to make high-level nuclear waste into a glass-like substance, which will then be shipped to a repository. DWPF will mix borosilicate glass with the waste, heat it to 2000 degrees F, and pour the mixture into stainless steel canisters. The mixture will cool into solid glass that can be permanently stored. DWPF will immobilize the more than 34 million gallons of liquid high-level waste that have accumulated from producing defense-related nuclear materials

6

Independent Oversight Assessment, Salt Waste Processing Facility Project -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Salt Waste Processing Facility Salt Waste Processing Facility Project - January 2013 Independent Oversight Assessment, Salt Waste Processing Facility Project - January 2013 January 2013 Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project The U.S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security (HSS), conducted an independent assessment of nuclear safety culture at the Salt Waste Processing Facility (SWPF) Project. The primary objective of the evaluation was to provide information regarding the status of the safety culture at the SWPF Project. The data collection phase of the assessment occurred during August - September 2012. Independent Oversight Assessment, Salt Waste Processing Facility Project -

7

Review of the Savannah River Site Salt Waste Processing Facility...  

NLE Websites -- All DOE Office Websites (Extended Search)

River Site Salt Waste Processing Facility Safety Basis and Design Development May 2011 August 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement...

8

Savannah River Site - Salt Waste Processing Facility Independent Technical Review  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SALT WASTE PROCESSING FACILITY SALT WASTE PROCESSING FACILITY INDEPENDENT TECHNICAL REVIEW November 22, 2006 Conducted by: Harry Harmon, Team Lead Civil/Structural Sub Team Facility Safety Sub Team Engineering Sub Team Peter Lowry, Lead James Langsted, Lead George Krauter, Lead Robert Kennedy Chuck Negin Art Etchells Les Youd Jerry Evatt Oliver Block Loring Wyllie Richard Stark Tim Adams Tom Anderson Todd LaPointe Stephen Gosselin Carl Costantino Norman Moreau Patrick Corcoran John Christian Ken Cooper Kari McDaniel _____________________________ Harry D. Harmon ITR Team Leader SPD-SWPF-217 SPD-SWPF-217: Salt Waste Processing Facility Independent Technical Review 11/22/2006 ACKNOWLEDGEMENT The ITR Team wishes to thank Shari Clifford of Pacific Northwest National Laboratory for

9

Salt Waste Processing Facility Fact Sheet  

Energy.gov (U.S. Department of Energy (DOE))

Nuclear material production operations at SRS resulted in the generation of liquid radioactive waste that is being stored, on an interim basis, in 49 underground waste storage tanks in the F- and H-Area Tank Farms.

10

The Defense Waste Processing Facility: Two Years of Radioactive Operation  

Science Conference Proceedings (OSTI)

The Defense Waste Processing Facility (DWPF) at the Savannah River Site in Aiken, SC is currently immobilizing high level radioactive sludge waste in borosilicate glass. The DWPF began vitrification of radioactive waste in May, 1996. Prior to that time, an extensive startup test program was completed with simulated waste. The DWPF is a first of its kind facility. The experience gained and data collected during the startup program and early years of operation can provide valuable information to other similar facilities. This experience involves many areas such as process enhancements, analytical improvements, glass pouring issues, and documentation/data collection and tracking. A summary of this experience and the results of the first two years of operation will be presented.

Marra, S.L. [Westinghouse Savannah River Company, AIKEN, SC (United States); Gee, J.T.; Sproull, J.F.

1998-05-01T23:59:59.000Z

11

Savannah River Site Salt Waste Processing Facility Technology Readiness Assessment Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Salt Waste Processing Facility Salt Waste Processing Facility Technology Readiness Assessment Report Kurt D. Gerdes Harry D. Harmon Herbert G. Sutter Major C. Thompson John R. Shultz Sahid C. Smith July 13, 2009 Prepared by the U.S. Department of Energy Washington, D.C. SRS Salt Waste Processing Facility Technology Readiness Assessment July 13, 2009 ii This page intentionally left blank SRS Salt Waste Processing Facility Technology Readiness Assessment July 13, 2009 iii SRS Salt Waste Processing Facility Technology Readiness Assessment July 13, 2009 iii Signatures SRS Salt Waste Processing Facility Technology Readiness Assessment July 13, 2009 iv This page intentionally left blank SRS Salt Waste Processing Facility

12

Summary - SRS Salt Waste Processing Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SRS Co SRS Co DOE S Proces concen actinid in a se remov adjustm sorben sorben solutio passed separa stream extract sufficie separa (with S vitrifica (DWP Sr/acti federa assure and ha Critica The te (CTE) descrip Readin The Ele Site: S roject: S F Report Date: J ited States Why DOE omposite High Lev Savannah Rive ssing Facility (S ntrate targeted des) from High eries of unit ope ved by contactin ment) with a m nt in a batch m nt (containing S on by cross flow d to a solvent e ated to an aque m. The bulk so tion process, w ently low levels ated high activi Sr and actinide ation in the Def F). Provisions inides adsorpti al project direct e that the plann ave been matu al Decision-3 ap What th eam identified e of the SWPF w ption. All CTE ness Level of 6 To view the full T http://www.em.doe. objective of a Tech ements (CTEs), usin

13

Technical Safety Requirements (TSR) for Waste Receiving & Processing (WRAP) facility  

SciTech Connect

These Technical Safety Requirements (TSRs) define the Administrative Controls required to ensure safe operation of the Waste Receiving and Processing Facility (WRAP). As will be shown in the report, Safety Limits, Limiting Control Settings, Limiting Conditions for Operation, and Surveillance Requirements are not required for safe operation of WRAP.

TOMASZEWSKI, T.A.

2001-07-10T23:59:59.000Z

14

Savannah River Site - Salt Waste Processing Facility: Briefing on the Salt Waste Processing Facility Independent Technical Review  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Salt Waste Processing Facility Independent Technical Review Harry Harmon January 9, 2007 2 U.S. Department of Energy Outline * SWPF Process Overview * Major Risks * Approach for Conducting Review * Discussion of Findings * Conclusions 3 U.S. Department of Energy Salt Waste Processing Facility 4 U.S. Department of Energy SWPF Process Overview Alpha Finishing Process CSSX Alpha Strike Process MST/ Sludge Cs Strip Effluent DSS 5 U.S. Department of Energy BOTTOM LINE The SWPF Project is ready to move into final design. 6 U.S. Department of Energy Major Risks * Final geotechnical data potentially could result in redesign of the PC-3 CPA base mat and structure. * Cost and schedule impacts arising from the change from ISO-9001 to NQA-1 quality assurance requirements. * The "de-inventory, flush, and then hands-on

15

Defense Waste Processing Facility -- Radioactive operations -- Part 3 -- Remote operations  

SciTech Connect

The Savannah River Site`s Defense Waste Processing Facility (DWPF) near Aiken, South Carolina is the nation`s first and world`s largest vitrification facility. Following a ten year construction period and nearly three years of non-radioactive testing, the DWPF began radioactive operations in March 1996. Radioactive glass is poured from the joule heated melter into the stainless steel canisters. The canisters are then temporarily sealed, decontaminated, resistance welded for final closure, and transported to an interim storage facility. All of these operations are conducted remotely with equipment specially designed for these processes. This paper reviews canister processing during the first nine months of radioactive operations at DWPF. The fundamental design consideration for DWPF remote canister processing and handling equipment are discussed as well as interim canister storage.

Barnes, W.M.; Kerley, W.D.; Hughes, P.D.

1997-06-01T23:59:59.000Z

16

IMPACT OF THE SMALL COLUMN ION EXCHANGE PROCESS ON THE DEFENSE WASTE PROCESSING FACILITY - 12112  

SciTech Connect

The Savannah River Site (SRS) is investigating the deployment of a parallel technology to the Salt Waste Processing Facility (SWPF, presently under construction) to accelerate high activity salt waste processing. The proposed technology combines large waste tank strikes of monosodium titanate (MST) to sorb strontium and actinides with two ion exchange columns packed with crystalline silicotitanate (CST) resin to sorb cesium. The new process was designated Small Column Ion Exchange (SCIX), since the ion exchange columns were sized to fit within a waste storage tank riser. Loaded resins are to be combined with high activity sludge waste and fed to the Defense Waste Processing Facility (DWPF) for incorporation into the current glass waste form. Decontaminated salt solution produced by SCIX will be fed to the SRS Saltstone Facility for on-site immobilization as a grout waste form. Determining the potential impact of SCIX resins on DWPF processing was the basis for this study. Accelerated salt waste treatment is projected to produce a significant savings in the overall life cycle cost of waste treatment at SRS.

Koopman, D.; Lambert, D.; Fox, K.; Stone, M.

2011-11-07T23:59:59.000Z

17

Accident Fault Trees for Defense Waste Processing Facility  

Science Conference Proceedings (OSTI)

The purpose of this report is to document fault tree analyses which have been completed for the Defense Waste Processing Facility (DWPF) safety analysis. Logic models for equipment failures and human error combinations that could lead to flammable gas explosions in various process tanks, or failure of critical support systems were developed for internal initiating events and for earthquakes. These fault trees provide frequency estimates for support systems failures and accidents that could lead to radioactive and hazardous chemical releases both on-site and off-site. Top event frequency results from these fault trees will be used in further APET analyses to calculate accident risk associated with DWPF facility operations. This report lists and explains important underlying assumptions, provides references for failure data sources, and briefly describes the fault tree method used. Specific commitments from DWPF to provide new procedural/administrative controls or system design changes are listed in the ''Facility Commitments'' section. The purpose of the ''Assumptions'' section is to clarify the basis for fault tree modeling, and is not necessarily a list of items required to be protected by Technical Safety Requirements (TSRs).

Sarrack, A.G.

1999-06-22T23:59:59.000Z

18

Summary - Salt Waste Processing Facility Design at the Savannah River Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Salt Waste Processing Facility Salt Waste Processing Facility ETR Report Date: November 2006 ETR-4 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Salt Waste Processing Facility Design at the Savannah River Site (SRS) Why DOE-EM Did This Review The Salt Waste Processing Facility (SWPF) is intended to remove and concentrate the radioactive strontium (Sr), actinides, and cesium (Cs) from the bulk salt waste solutions in the SRS high-level waste tanks. The sludge and strip effluent from the SWPF that contain concentrated Sr, actinide, and Cs wastes will be sent to the SRS Defense Waste Processing Facility (DWPF), where they will be vitrified. The decontaminated salt solution (DSS) that is left after removal of the highly

19

BLENDING ANALYSIS FOR RADIOACTIVE SALT WASTE PROCESSING FACILITY  

SciTech Connect

Savannah River National Laboratory (SRNL) evaluated methods to mix and blend the contents of the blend tanks to ensure the contents are properly blended before they are transferred from the blend tank such as Tank 21 and Tank 24 to the Salt Waste Processing Facility (SWPF) feed tank. The tank contents consist of three forms: dissolved salt solution, other waste salt solutions, and sludge containing settled solids. This paper focuses on developing the computational model and estimating the operation time of submersible slurry pump when the tank contents are adequately blended prior to their transfer to the SWPF facility. A three-dimensional computational fluid dynamics approach was taken by using the full scale configuration of SRS Type-IV tank, Tank 21H. Major solid obstructions such as the tank wall boundary, the transfer pump column, and three slurry pump housings including one active and two inactive pumps were included in the mixing performance model. Basic flow pattern results predicted by the computational model were benchmarked against the SRNL test results and literature data. Tank 21 is a waste tank that is used to prepare batches of salt feed for SWPF. The salt feed must be a homogeneous solution satisfying the acceptance criterion of the solids entrainment during transfer operation. The work scope described here consists of two modeling areas. They are the steady state flow pattern calculations before the addition of acid solution for tank blending operation and the transient mixing analysis during miscible liquid blending operation. The transient blending calculations were performed by using the 95% homogeneity criterion for the entire liquid domain of the tank. The initial conditions for the entire modeling domain were based on the steady-state flow pattern results with zero second phase concentration. The performance model was also benchmarked against the SRNL test results and literature data.

Lee, S.

2012-05-10T23:59:59.000Z

20

Overview of Fiscal Year 2002 Research and Development for Savannah River Site's Salt Waste Processing Facility  

SciTech Connect

The Department of Energy's (DOE) Savannah River Site (SRS) high-level waste program is responsible for storage, treatment, and immobilization of high-level waste for disposal. The Salt Processing Program (SPP) is the salt (soluble) waste treatment portion of the SRS high-level waste effort. The overall SPP encompasses the selection, design, construction and operation of treatment technologies to prepare the salt waste feed material for the site's grout facility (Saltstone) and vitrification facility (Defense Waste Processing Facility). Major constituents that must be removed from the salt waste and sent as feed to Defense Waste Processing Facility include actinides, strontium, cesium, and entrained sludge. In fiscal year 2002 (FY02), research and development (R&D) on the actinide and strontium removal and Caustic-Side Solvent Extraction (CSSX) processes transitioned from technology development for baseline process selection to providing input for conceptual design of the Salt Waste Processing Facility. The SPP R&D focused on advancing the technical maturity, risk reduction, engineering development, and design support for DOE's engineering, procurement, and construction (EPC) contractors for the Salt Waste Processing Facility. Thus, R&D in FY02 addressed the areas of actual waste performance, process chemistry, engineering tests of equipment, and chemical and physical properties relevant to safety. All of the testing, studies, and reports were summarized and provided to the DOE to support the Salt Waste Processing Facility, which began conceptual design in September 2002.

H. D. Harmon, R. Leugemors, PNNL; S. Fink, M. Thompson, D. Walker, WSRC; P. Suggs, W. D. Clark, Jr

2003-02-26T23:59:59.000Z

Note: This page contains sample records for the topic "waste processing facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Waste Heat Recovery from Refrigeration in a Meat Processing Facility  

E-Print Network (OSTI)

A case study is reviewed on a heat recovery system installed in a meat processing facility to preheat water for the plant hot water supply. The system utilizes waste superheat from the facility's 1,350-ton ammonia refrigeration system. The heat recovery system consists of a shell and tube heat exchanger (16"? x 14'0") installed in the compressor hot gas discharge line. Water is recirculated from a 23,000-gallon tempered water storage tank to the heat exchanger by a circulating pump at the rate of 100 gallons per minute. All make-up water to the plant hot water system is supplied from this tempered water storage tank, which is maintained at a constant filled level. Tests to determine the actual rate of heat recovery were conducted from October 3, 1979 to October 12, 1979, disclosing an average usage of 147,000 gallons of hot water daily. These tests illustrated a varied heat recovery of from 0.5 to 1.0 million BTU per hour. The deviations were the result of both changing refrigeration demands and compressor operating modes. An average of 16 million BTU per day was realized, resulting in reduced boiler fuel costs of $30,000 annually, based on the present $.80 per gallon #2 fuel oil price. At the total installed cost of $79,000, including test instrumentation, the project was found to be economically viable. The study has demonstrated the technical and economic feasibility of refrigeration waste heat recovery as a positive energy conservation strategy which has broad applications in industry and commerce.

Murphy, W. T.; Woods, B. E.; Gerdes, J. E.

1980-01-01T23:59:59.000Z

22

Waste Receiving and Processing Facility (WRAP) Drawing List  

SciTech Connect

This supporting document delineates the process of identification, categorization, and/or classification of the WRAP facility drawings used to support facility operations and maintenance. This document provides a listing of those essential or safety related drawings which have been identified to date. All other WRAP facility drawings have been classified as general.

WEIDERT, J.R.

1999-10-25T23:59:59.000Z

23

Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oversight Assessment of Oversight Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project May 2011 January 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Independent Oversight Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project

24

Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Oversight Assessment of Oversight Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project May 2011 January 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Independent Oversight Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project

25

Integrated Waste Treatment Facility Fact Sheet | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Management Tank Waste and Waste Processing Integrated Waste Treatment Facility Fact Sheet Integrated Waste Treatment Facility Fact Sheet Waste Management Nuclear...

26

Tank 42 sludge-only process development for the Defense Waste Processing Facility (DWPF)  

SciTech Connect

Defense Waste Processing Facility (DWPF) requested the development of a sludge-only process for Tank 42 sludge since at the current processing rate, the Tank 51 sludge has been projected to be depleted as early as August 1998. Testing was completed using a non-radioactive Tank 42 sludge simulant. The testing was completed under a range of operating conditions, including worst case conditions, to develop the processing conditions for radioactive Tank 42 sludge. The existing Tank 51 sludge-only process is adequate with the exception that 10 percent additional acid is recommended during sludge receipt and adjustment tank (SRAT) processing to ensure adequate destruction of nitrite during the SRAT cycle.

Lambert, D.P.

2000-03-22T23:59:59.000Z

27

Facility design philosophy: Tank Waste Remediation System Process support and infrastructure definition  

Science Conference Proceedings (OSTI)

This report documents the current facility design philosophy for the Tank Waste Remediation System (TWRS) process support and infrastructure definition. The Tank Waste Remediation System Facility Configuration Study (FCS) initially documented the identification and definition of support functions and infrastructure essential to the TWRS processing mission. Since the issuance of the FCS, the Westinghouse Hanford Company (WHC) has proceeded to develop information and requirements essential for the technical definition of the TWRS treatment processing programs.

Leach, C.E.; Galbraith, J.D. [Westinghouse Hanford Co., Richland, WA (United States); Grant, P.R.; Francuz, D.J.; Schroeder, P.J. [Fluor Daniel, Inc., Richland, WA (United States)

1995-11-01T23:59:59.000Z

28

Zero-Release Mixed Waste Process Facility Design and Testing  

SciTech Connect

A zero-release offgas cleaning system for mixed-waste thermal treatment processes has been evaluated through experimental scoping tests and process modeling. The principles can possibly be adapted to a fluidized-bed calcination or stream reforming process, a waste melter, a rotarykiln process, and possibly other waste treatment thermal processes. The basic concept of a zero-release offgas cleaning system is to recycle the bulk of the offgas stream to the thermal treatment process. A slip stream is taken off the offgas recycle to separate and purge benign constituents that may build up in the gas, such as water vapor, argon, nitrogen, and CO2. Contaminants are separated from the slip stream and returned to the thermal unit for eventual destruction or incorporation into the waste immobilization media. In the current study, a standard packed-bed scrubber, followed by gas separation membranes, is proposed for removal of contaminants from the offgas recycle slipstream. The scrub solution is continuously regenerated by cooling and precipitating sulfate, nitrate, and other salts that reach a solubility limit in the scrub solution. Mercury is also separated by the scrubber. A miscible chemical oxidizing agent was shown to effectively oxidize mercury and also NO, thus increasing their removal efficiency. The current study indicates that the proposed process is a viable option for reducing offgas emissions. Consideration of the proposed closed-system offgas cleaning loop is warranted when emissions limits are stringent, or when a reduction in the total gas emissions volume is desired. Although the current closed-loop appears to be technically feasible, economical considerations must be also be evaluated on a case-by-case basis.

Richard D. Boardman; John A. Deldebbio; Robert J. Kirkham; Martin K. Clemens; Robert Geosits; Ping Wan

2004-02-01T23:59:59.000Z

29

Nuclear Solid Waste Processing Design at the Idaho Spent Fuels Facility  

Science Conference Proceedings (OSTI)

A spent nuclear fuels (SNF) repackaging and storage facility was designed for the Idaho National Engineering and Environmental Laboratory (INEEL), with nuclear solid waste processing capability. Nuclear solid waste included contaminated or potentially contaminated spent fuel containers, associated hardware, machinery parts, light bulbs, tools, PPE, rags, swabs, tarps, weld rod, and HEPA filters. Design of the nuclear solid waste processing facilities included consideration of contractual, regulatory, ALARA (as low as reasonably achievable) exposure, economic, logistical, and space availability requirements. The design also included non-attended transfer methods between the fuel packaging area (FPA) (hot cell) and the waste processing area. A monitoring system was designed for use within the FPA of the facility, to pre-screen the most potentially contaminated fuel canister waste materials, according to contact- or non-contact-handled capability. Fuel canister waste materials which are not able to be contact-handled after attempted decontamination will be processed remotely and packaged within the FPA. Noncontact- handled materials processing includes size-reduction, as required to fit into INEEL permitted containers which will provide sufficient additional shielding to allow contact handling within the waste areas of the facility. The current design, which satisfied all of the requirements, employs mostly simple equipment and requires minimal use of customized components. The waste processing operation also minimizes operator exposure and operator attendance for equipment maintenance. Recently, discussions with the INEEL indicate that large canister waste materials can possibly be shipped to the burial facility without size-reduction. New waste containers would have to be designed to meet the drop tests required for transportation packages. The SNF waste processing facilities could then be highly simplified, resulting in capital equipment cost savings, operational time savings, and significantly improved ALARA exposure.

Dippre, M. A.

2003-02-25T23:59:59.000Z

30

Waste Receiving and Processing Facility Module 1 Data Management System Software Requirements Specification  

Science Conference Proceedings (OSTI)

This document provides the software requirements for Waste Receiving and Processing (WRAP) Module 1 Data Management System (DMS). The DMS is one of the plant computer systems for the new WRAP 1 facility (Project W-026). The DMS will collect, store and report data required to certify the low level waste (LLW) and transuranic (TRU) waste items processed at WRAP 1 as acceptable for shipment, storage, or disposal.

Brann, E.C. II

1994-09-09T23:59:59.000Z

31

Nuclear criticality safety analysis summary report: The S-area defense waste processing facility  

SciTech Connect

The S-Area Defense Waste Processing Facility (DWPF) can process all of the high level radioactive wastes currently stored at the Savannah River Site with negligible risk of nuclear criticality. The characteristics which make the DWPF critically safe are: (1) abundance of neutron absorbers in the waste feeds; (2) and low concentration of fissionable material. This report documents the criticality safety arguments for the S-Area DWPF process as required by DOE orders to characterize and to justify the low potential for criticality. It documents that the nature of the waste feeds and the nature of the DWPF process chemistry preclude criticality.

Ha, B.C.

1994-10-21T23:59:59.000Z

32

The performance assessment process for DOE low-level waste disposal facilities  

Science Conference Proceedings (OSTI)

Safety of the low-level waste disposal facilities, as well as al US DOE facilities, is a primary criterion in their design and operation. Safety of low-level waste disposal facilities is evaluated from two perspectives. Operational safety is evaluated based on the perceived level of hazard of the operation. The safety evaluations vary from simple safety assessments to very complex safety analysis reports, depending on the degree of hazard associated with the facility operation. Operational requirements for the Department's low-level waste disposal facilities, including long-term safety are contained in DOE Order 5820.2A, Radioactive Waste Management (1). This paper will focus on the process of conducting long-term performance analyses rather than on operational safety analysis.

Wilhite, E.L.

1992-01-01T23:59:59.000Z

33

The performance assessment process for DOE low-level waste disposal facilities  

Science Conference Proceedings (OSTI)

Safety of the low-level waste disposal facilities, as well as al US DOE facilities, is a primary criterion in their design and operation. Safety of low-level waste disposal facilities is evaluated from two perspectives. Operational safety is evaluated based on the perceived level of hazard of the operation. The safety evaluations vary from simple safety assessments to very complex safety analysis reports, depending on the degree of hazard associated with the facility operation. Operational requirements for the Department`s low-level waste disposal facilities, including long-term safety are contained in DOE Order 5820.2A, Radioactive Waste Management (1). This paper will focus on the process of conducting long-term performance analyses rather than on operational safety analysis.

Wilhite, E.L.

1992-11-01T23:59:59.000Z

34

Liquid Waste Processing Facilities (LWPF) Reliability and Availability and Maintainability (RAM) Analysis  

SciTech Connect

A reliability, availability, and maintainability (RAM) analysis was prepared for the liquid effluents support being provided to the River Protection Project Waste Treatment Plant (WTP). The availability of liquid effluents services to the WTP was determined. Recommendations are provided on improvements and upgrades to increase the availability of the Liquid Waste Processing Facilities treatment and disposal systems.

LOWE, S.S.

2001-02-20T23:59:59.000Z

35

Waste Receiving and Processing (WRAP) Facility Final Safety Analysis Report (FSAR)  

Science Conference Proceedings (OSTI)

The Waste Receiving and Processing Facility (WRAP), 2336W Building, on the Hanford Site is designed to receive, confirm, repackage, certify, treat, store, and ship contact-handled transuranic and low-level radioactive waste from past and present U.S. Department of Energy activities. The WRAP facility is comprised of three buildings: 2336W, the main processing facility (also referred to generically as WRAP); 2740W, an administrative support building; and 2620W, a maintenance support building. The support buildings are subject to the normal hazards associated with industrial buildings (no radiological materials are handled) and are not part of this analysis except as they are impacted by operations in the processing building, 2336W. WRAP is designed to provide safer, more efficient methods of handling the waste than currently exist on the Hanford Site and contributes to the achievement of as low as reasonably achievable goals for Hanford Site waste management.

TOMASZEWSKI, T.A.

2000-04-25T23:59:59.000Z

36

Waste receiving and processing facility module 1, detailed design report  

Science Conference Proceedings (OSTI)

WRAP 1 baseline documents which guided the technical development of the Title design included: (a) A/E Statement of Work (SOW) Revision 4C: This DOE-RL contractual document specified the workscope, deliverables, schedule, method of performance and reference criteria for the Title design preparation. (b) Functional Design Criteria (FDC) Revision 1: This DOE-RL technical criteria document specified the overall operational criteria for the facility. The document was a Revision 0 at the beginning of the design and advanced to Revision 1 during the tenure of the Title design. (c) Supplemental Design Requirements Document (SDRD) Revision 3: This baseline criteria document prepared by WHC for DOE-RL augments the FDC by providing further definition of the process, operational safety, and facility requirements to the A/E for guidance in preparing the design. The document was at a very preliminary stage at the onset of Title design and was revised in concert with the results of the engineering studies that were performed to resolve the numerous technical issues that the project faced when Title I was initiated, as well as, by requirements established during the course of the Title II design.

Not Available

1993-10-01T23:59:59.000Z

37

RECOMMENDED FRIT COMPOSITION FOR INITIAL SLUDGE BATCH 5 PROCESSING AT THE DEFENSE WASTE PROCESSING FACILITY  

SciTech Connect

The Savannah River National Laboratory (SRNL) Frit Development Team recommends that the Defense Waste Processing Facility (DWPF) utilize Frit 418 for initial processing of high level waste (HLW) Sludge Batch 5 (SB5). The extended SB5 preparation time and need for DWPF feed have necessitated the use of a frit that is already included on the DWPF procurement specification. Frit 418 has been used previously in vitrification of Sludge Batches 3 and 4. Paper study assessments predict that Frit 418 will form an acceptable glass when combined with SB5 over a range of waste loadings (WLs), typically 30-41% based on nominal projected SB5 compositions. Frit 418 has a relatively high degree of robustness with regard to variation in the projected SB5 composition, particularly when the Na{sub 2}O concentration is varied. The acceptability (chemical durability) and model applicability of the Frit 418-SB5 system will be verified experimentally through a variability study, to be documented separately. Frit 418 has not been designed to provide an optimal melt rate with SB5, but is recommended for initial processing of SB5 until experimental testing to optimize a frit composition for melt rate can be completed. Melt rate performance can not be predicted at this time and must be determined experimentally. Note that melt rate testing may either identify an improved frit for SB5 processing (one which produces an acceptable glass at a faster rate than Frit 418) or confirm that Frit 418 is the best option.

Fox, K; Tommy Edwards, T; David Peeler, D

2008-06-25T23:59:59.000Z

38

FRIT OPTIMIZATION FOR SLUDGE BATCH PROCESSING AT THE DEFENSE WASTE PROCESSING FACILITY  

SciTech Connect

The Savannah River National Laboratory (SRNL) Frit Development Team recommends that the Defense Waste Processing Facility (DWPF) utilize Frit 418 for initial processing of high level waste (HLW) Sludge Batch 5 (SB5). The extended SB5 preparation time and need for DWPF feed have necessitated the use of a frit that is already included on the DWPF procurement specification. Frit 418 has been used previously in vitrification of Sludge Batches 3 and 4. Paper study assessments predict that Frit 418 will form an acceptable glass when combined with SB5 over a range of waste loadings (WLs), typically 30-41% based on nominal projected SB5 compositions. Frit 418 has a relatively high degree of robustness with regard to variation in the projected SB5 composition, particularly when the Na{sub 2}O concentration is varied. The acceptability (chemical durability) and model applicability of the Frit 418-SB5 system will be verified experimentally through a variability study, to be documented separately. Frit 418 has not been designed to provide an optimal melt rate with SB5, but is recommended for initial processing of SB5 until experimental testing to optimize a frit composition for melt rate can be completed. Melt rate performance can not be predicted at this time and must be determined experimentally. Note that melt rate testing may either identify an improved frit for SB5 processing (one which produces an acceptable glass at a faster rate than Frit 418) or confirm that Frit 418 is the best option.

Fox, K.

2009-01-28T23:59:59.000Z

39

New Waste Calcining Facility Non-radioactive Process Decontamination  

Science Conference Proceedings (OSTI)

This report documents the results of a test of the New Calcining Facility (NWCF) process decontamination system. The decontamination system test occurred in December 1981, during non-radioactive testing of the NWCF. The purpose of the decontamination system test was to identify equipment whose design prevented effective calcine removal and decontamination. Effective equipment decontamination was essential to reduce radiation fields for in-cell work after radioactive processing began. The decontamination system test began with a pre-decontamination inspection of the equipment. The pre-decontamination inspection documented the initial condition and cleanliness of the equipment. It provided a basis for judging the effectiveness of the decontamination. The decontamination consisted of a series of equipment flushes using nitric acid and water. A post-decontamination equipment inspection determined the effectiveness of the decontamination. The pre-decontamination and post-decontamination equipment inspections were documented with hotographs. The decontamination system was effective in removing calcine from most of the NWCF equipment as evidenced by little visible calcine residue in the equipment after decontamination. The decontamination test identified four areas where the decontamination system required improvement. These included the Calciner off-gas line, Cyclone off-gas line, fluidizing air line, and the Calciner baffle plates. Physical modifications to enhance decontamination were made to those areas, resulting in an effective NWCF decontamination system.

Swenson, Michael Clair

2001-09-01T23:59:59.000Z

40

New Waste Calcining Facility Non-Radioactive Process Decontamination  

SciTech Connect

This report documents the results of a test of the New Calcining Facility (NWCF) process decontamination system. The decontamination system test occurred in December 1981, during non-radioactive testing of the NWCF. The purpose of the decontamination system test was to identify equipment whose design prevented effective calcine removal and decontamination. Effective equipment decontamination was essential to reduce radiation fields for in-cell work after radioactive processing began. The decontamination system test began with a pre-decontamination inspection of the equipment. The pre- decontamination inspection documented the initial condition and cleanliness of the equipment. It provided a basis for judging the effectiveness of the decontamination. The decontamination consisted of a series of equipment flushes using nitric acid and water. A post-decontamination equipment inspection determined the effectiveness of the decontamination. The pre-decontamination and post-decontamination equipment inspections were documented with photographs. The decontamination system was effective in removing calcine from most of the NWCF equipment as evidenced by little visible calcine residue in the equipment after decontamination. The decontamination test identified four areas where the decontamination system required improvement. These included the Calciner off-gas line, Cyclone off-gas line, fluidizing air line, and the Calciner baffle plates. Physical modifications to enhance decontamination were made to those areas, resulting in an effective NWCF decontamination system.

Swenson, Michael C.

2001-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "waste processing facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Waste Receiving and Processing (WRAP) Facility Weight Scale Analysis Fairbanks Weight Scale Evaluation Results  

SciTech Connect

Fairbanks Weight Scales are used at the Waste Receiving and Processing (WRAP) facility to determine the weight of waste drums as they are received, processed, and shipped. Due to recent problems, discovered during calibration, the WRAP Engineering Department has completed this document which outlines both the investigation of the infeed conveyor scale failure in September of 1999 and recommendations for calibration procedure modifications designed to correct deficiencies in the current procedures.

JOHNSON, M.D.

2000-03-13T23:59:59.000Z

42

GRR/Section 18-CA-b - RCRA Process (Hazardous Waste Facility Permit) | Open  

Open Energy Info (EERE)

18-CA-b - RCRA Process (Hazardous Waste Facility Permit) 18-CA-b - RCRA Process (Hazardous Waste Facility Permit) < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-CA-b - RCRA Process (Hazardous Waste Facility Permit) 18CABRCRAProcess (2).pdf Click to View Fullscreen Contact Agencies California Environmental Protection Agency Department of Toxic Substances Control Regulations & Policies Resource Conservation and Recovery Act 40 CRF 261 Title 22, California Code of Regulations, Division 4.5 Triggers None specified Click "Edit With Form" above to add content 18CABRCRAProcess (2).pdf 18CABRCRAProcess (2).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative

43

Waste Receiving and Processing Facility Module 2A: Advanced Conceptual Design Report. Volume 1  

Science Conference Proceedings (OSTI)

This ACDR was performed following completed of the Conceptual Design Report in July 1992; the work encompassed August 1992 to January 1994. Mission of the WRAP Module 2A facility is to receive, process, package, certify, and ship for permanent burial at the Hanford site disposal facilities the Category 1 and 3 contact handled low-level radioactive mixed wastes that are currently in retrievable storage at Hanford and are forecast to be generated over the next 30 years by Hanford, and waste to be shipped to Hanford from about DOE sites. This volume provides an introduction to the ACDR process and the scope of the task along with a project summary of the facility, treatment technologies, cost, and schedule. Major areas of departure from the CDR are highlighted. Descriptions of the facility layout and operations are included.

Not Available

1994-03-01T23:59:59.000Z

44

Characterization of decontamination and decommissioning wastes expected from the major processing facilities in the 200 Areas  

SciTech Connect

This study was intended to characterize and estimate the amounts of equipment and other materials that are candidates for removal and subsequent processing in a solid waste facility when the major processing and handling facilities in the 200 Areas of the Hanford Site are decontaminated and decommissioned. The facilities in this study were selected based on processing history and on the magnitude of the estimated decommissioning cost cited in the Surplus Facilities Program Plan; Fiscal Year 1993 (Winship and Hughes 1992). The facilities chosen for this study include B Plant (221-B), T Plant (221-T), U Plant (221-U), the Uranium Trioxide (UO{sub 3}) Plant (224-U and 224-UA), the Reduction Oxidation (REDOX) or S Plant (202-S), the Plutonium Concentration Facility for B Plant (224-B), and the Concentration Facility for the Plutonium Finishing Plant (PFP) and REDOX (233-S). This information is required to support planning activities for current and future solid waste treatment, storage, and disposal operations and facilities.

Amato, L.C.; Franklin, J.D.; Hyre, R.A.; Lowy, R.M.; Millar, J.S.; Pottmeyer, J.A. [Los Alamos Technical Associates, Kennewick, WA (United States); Duncan, D.R. [Westinghouse Hanford Co., Richland, WA (United States)

1994-08-01T23:59:59.000Z

45

INSTALLATION OF BUBBLERS IN THE SAVANNAH RIVER SITED DEFENSE WASTE PROCESSING FACILITY MELTER  

Science Conference Proceedings (OSTI)

Savannah River Remediation (SRR) LLC assumed the liquid waste contract at the Savannah River Site (SRS) in the summer of 2009. The main contractual agreement was to close 22 High Level Waste (HLW) tanks in eight years. To achieve this aggressive commitment, faster waste processing throughout the SRS liquid waste facilities will be required. Part of the approach to achieve faster waste processing is to increase the canister production rate of the Defense Waste Processing Facility (DWPF) from approximately 200 canisters filled with radioactive waste glass per year to 400 canisters per year. To reach this rate for melter throughput, four bubblers were installed in the DWPF Melter in the late summer of 2010. This effort required collaboration between SRR, SRR critical subcontractor EnergySolutions, and Savannah River Nuclear Solutions, including the Savannah River National Laboratory (SRNL). The tasks included design and fabrication of the bubblers and related equipment, testing of the bubblers for various technical issues, the actual installation of the bubblers and related equipment, and the initial successful operation of the bubblers in the DWPF Melter.

Smith, M.; Iverson, D.

2010-12-08T23:59:59.000Z

46

Idaho Waste Vitrification Facilities Project Vitrified Waste Interim Storage Facility  

SciTech Connect

This feasibility study report presents a draft design of the Vitrified Waste Interim Storage Facility (VWISF), which is one of three subprojects of the Idaho Waste Vitrification Facilities (IWVF) project. The primary goal of the IWVF project is to design and construct a treatment process system that will vitrify the sodium-bearing waste (SBW) to a final waste form. The project will consist of three subprojects that include the Waste Collection Tanks Facility, the Waste Vitrification Facility (WVF), and the VWISF. The Waste Collection Tanks Facility will provide for waste collection, feed mixing, and surge storage for SBW and newly generated liquid waste from ongoing operations at the Idaho Nuclear Technology and Engineering Center. The WVF will contain the vitrification process that will mix the waste with glass-forming chemicals or frit and turn the waste into glass. The VWISF will provide a shielded storage facility for the glass until the waste can be disposed at either the Waste Isolation Pilot Plant as mixed transuranic waste or at the future national geological repository as high-level waste glass, pending the outcome of a Waste Incidental to Reprocessing determination, which is currently in progress. A secondary goal is to provide a facility that can be easily modified later to accommodate storage of the vitrified high-level waste calcine. The objective of this study was to determine the feasibility of the VWISF, which would be constructed in compliance with applicable federal, state, and local laws. This project supports the Department of Energys Environmental Management missions of safely storing and treating radioactive wastes as well as meeting Federal Facility Compliance commitments made to the State of Idaho.

Bonnema, Bruce Edward

2001-09-01T23:59:59.000Z

47

Summary - Salt Waste Processing Facility Design at the Savannah...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

a seismically qualified valve that isolates the process system in the event of an earthquake. The design of this valve is very different from other valves which have been...

48

Waste minimization and the goal of an environmentally benign plutonium processing facility: A strategic plan  

SciTech Connect

To maintain capabilities in nuclear weapons technologies, the Department of Energy (DOE) has to maintain a plutonium processing facility that meets all the current and emerging standards of environmental regulations. A strategic goal to transform the Plutonium Processing Facility at Los Alamos into an environmentally benign operation is identified. A variety of technologies and systems necessary to meet this goal are identified. Two initiatives now in early stages of implementation are described in some detail. A highly motivated and trained work force and a systems approach to waste minimization and pollution prevention are necessary to maintain technical capabilities, to comply with regulations, and to meet the strategic goal.

Pillay, K.K.S.

1994-02-01T23:59:59.000Z

49

Assessment of nuclear safety and nuclear criticality potential in the Defense Waste Processing Facility. Revision 1  

SciTech Connect

The S-Area Defense Waste Processing Facility (DWPF) will initially process Batch 1 sludge in the sludge-only processing mode, with simulated non-radioactive Precipitate Hydrolysis, Aqueous (PHA) product, without the risk of nuclear criticality. The dilute concentration of fissile material in the sludge combined with excess of neutron absorbers during normal operations make criticality throughout the whole process incredible. Subsequent batches of the DWPF involving radioactive precipitate slurry and PHA will require additional analysis. Any abnormal or upset process operations, which are not considered in this report and could potentially separate fissile material, must be individually evaluated. Scheduled maintenance operation procedures are not considered to be abnormal.

Ha, B.C.

1993-07-20T23:59:59.000Z

50

RESULTS OF THE EXTRACTION-SCRUB-STRIP TESTING USING AN IMPROVED SOLVENT FORMULATION AND SALT WASTE PROCESSING FACILITY SIMULATED WASTE  

Science Conference Proceedings (OSTI)

The Office of Waste Processing, within the Office of Technology Innovation and Development, is funding the development of an enhanced solvent - also known as the next generation solvent (NGS) - for deployment at the Savannah River Site to remove cesium from High Level Waste. The technical effort is a collaborative effort between Oak Ridge National Laboratory (ORNL) and Savannah River National Laboratory (SRNL). As part of the program, the Savannah River National Laboratory (SRNL) has performed a number of Extraction-Scrub-Strip (ESS) tests. These batch contact tests serve as first indicators of the cesium mass transfer solvent performance with actual or simulated waste. The test detailed in this report used simulated Tank 49H material, with the addition of extra potassium. The potassium was added at 1677 mg/L, the maximum projected (i.e., a worst case feed scenario) value for the Salt Waste Processing Facility (SWPF). The results of the test gave favorable results given that the potassium concentration was elevated (1677 mg/L compared to the current 513 mg/L). The cesium distribution value, DCs, for extraction was 57.1. As a comparison, a typical D{sub Cs} in an ESS test, using the baseline solvent formulation and the typical waste feed, is {approx}15. The Modular Caustic Side Solvent Extraction Unit (MCU) uses the Caustic-Side Solvent Extraction (CSSX) process to remove cesium (Cs) from alkaline waste. This process involves the use of an organic extractant, BoBCalixC6, in an organic matrix to selectively remove cesium from the caustic waste. The organic solvent mixture flows counter-current to the caustic aqueous waste stream within centrifugal contactors. After extracting the cesium, the loaded solvent is stripped of cesium by contact with dilute nitric acid and the cesium concentrate is transferred to the Defense Waste Processing Facility (DWPF), while the organic solvent is cleaned and recycled for further use. The Salt Waste Processing Facility (SWPF), under construction, will use the same process chemistry. The Office of Waste Processing (EM-31) expressed an interest in investigating the further optimization of the organic solvent by replacing the BoBCalixC6 extractant with a more efficient extractant. This replacement should yield dividends in improving cesium removal from the caustic waste stream, and in the rate at which the caustic waste can be processed. To that end, EM-31 provided funding for both the Savannah River National Laboratory (SRNL) and the Oak Ridge National Laboratory (ORNL). SRNL wrote a Task Technical Quality and Assurance Plan for this work. As part of the envisioned testing regime, it was decided to perform an ESS test using a simulated waste that simulated a typical envisioned SWPF feed, but with added potassium to make the waste more challenging. Potassium interferes in the cesium removal, and its concentration is limited in the feed to <1950 mg/L. The feed to MCU has typically contained <500 mg/L of potassium.

Peters, T.; Washington, A.; Fink, S.

2012-01-09T23:59:59.000Z

51

Review of Safety Basis Development for the Savannah River Site Salt Waste Processing Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of5 of5 U.S. Department of Energy Subject: Review of Safety Basis Development for the Savannah River Site Salt Waste Processing Facility - Inspection Criteria, Approach, and Line:~ HS: Rev: Eff. Date: HSS CRAD 45-57 0 January 31,2013 Office of Safety and Emergency Management Evaluations Acting Direc or, Office of Sifety and Emergency Management Evaluations Date: January 31, 2013 Criteria Review and Approach Document LL.v. ~·M Criteria Lead:ife\riew of Safety Basis Development for the Savannah River Site Salt Waste Processing Facility Page 1 of 5 Date: January 31, 2013 1.0 PURPOSE Within the Office of Health, Safety and Security (HSS), the Office of Enforcement and Oversight, Office of Safety and Emergency Management Evaluations (HS-45) mission is to assess the effectiveness of the

52

Commercial Light Water Reactor -Tritium Extraction Facility Process Waste Assessment (Project S-6091)  

Science Conference Proceedings (OSTI)

The Savannah River Site (SRS) has been tasked by the Department of Energy (DOE) to design and construct a Tritium Extraction Facility (TEF) to process irradiated tritium producing burnable absorber rods (TPBARs) from a Commercial Light Water Reactor (CLWR). The plan is for the CLWR-TEF to provide tritium to the SRS Replacement Tritium Facility (RTF) in Building 233-H in support of DOE requirements. The CLWR-TEF is being designed to provide 3 kg of new tritium per year, from TPBARS and other sources of tritium (Ref. 1-4).The CLWR TPBAR concept is being developed by Pacific Northwest National Laboratory (PNNL). The TPBAR assemblies will be irradiated in a Commercial Utility light water nuclear reactor and transported to the SRS for tritium extraction and processing at the CLWR-TEF. A Conceptual Design Report for the CLWR-TEF Project was issued in July 1997 (Ref. 4).The scope of this Process Waste Assessment (PWA) will be limited to CLWR-TEF processing of CLWR irradiated TPBARs. Although the CLWR- TEF will also be designed to extract APT tritium-containing materials, they will be excluded at this time to facilitate timely development of this PWA. As with any process, CLWR-TEF waste stream characteristics will depend on process feedstock and contaminant sources. If irradiated APT tritium-containing materials are to be processed in the CLWR-TEF, this PWA should be revised to reflect the introduction of this contaminant source term.

Hsu, R.H.; Delley, A.O.; Alexander, G.J.; Clark, E.A.; Holder, J.S.; Lutz, R.N.; Malstrom, R.A.; Nobles, B.R. [Westinghouse Savannah River Co., Aiken, SC (United States); Carson, S.D. [Sandia National Laboratories, New Mexico, NM (United States); Peterson, P.K. [Sandia National Laboratories, New Mexico, NM (United States)

1997-11-30T23:59:59.000Z

53

Review of the Savannah River Site, Salt Waste Processing Facility, Construction Quality of Piping and Pipe Supports, September 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

Savannah River Site, Salt Waste Processing Savannah River Site, Salt Waste Processing Facility, Construction Quality of Piping & Pipe Supports September 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose................................................................................................................................................. 1 2.0 Scope.................................................................................................................................................... 1 3.0 Background .......................................................................................................................................... 1

54

Review of the Savannah River Site, Salt Waste Processing Facility, Construction Quality of Piping and Pipe Supports, September 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Site, Salt Waste Processing Savannah River Site, Salt Waste Processing Facility, Construction Quality of Piping & Pipe Supports September 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose................................................................................................................................................. 1 2.0 Scope.................................................................................................................................................... 1 3.0 Background .......................................................................................................................................... 1

55

SEISMIC DESIGN REQUIREMENTS SELECTION METHODOLOGY FOR THE SLUDGE TREATMENT & M-91 SOLID WASTE PROCESSING FACILITIES PROJECTS  

SciTech Connect

In complying with direction from the U.S. Department of Energy (DOE), Richland Operations Office (RL) (07-KBC-0055, 'Direction Associated with Implementation of DOE-STD-1189 for the Sludge Treatment Project,' and 08-SED-0063, 'RL Action on the Safety Design Strategy (SDS) for Obtaining Additional Solid Waste Processing Capabilities (M-91 Project) and Use of Draft DOE-STD-I 189-YR'), it has been determined that the seismic design requirements currently in the Project Hanford Management Contract (PHMC) will be modified by DOE-STD-1189, Integration of Safety into the Design Process (March 2007 draft), for these two key PHMC projects. Seismic design requirements for other PHMC facilities and projects will remain unchanged. Considering the current early Critical Decision (CD) phases of both the Sludge Treatment Project (STP) and the Solid Waste Processing Facilities (M-91) Project and a strong intent to avoid potentially costly re-work of both engineering and nuclear safety analyses, this document describes how Fluor Hanford, Inc. (FH) will maintain compliance with the PHMC by considering both the current seismic standards referenced by DOE 0 420.1 B, Facility Safety, and draft DOE-STD-1189 (i.e., ASCE/SEI 43-05, Seismic Design Criteria for Structures, Systems, and Components in Nuclear Facilities, and ANSI!ANS 2.26-2004, Categorization of Nuclear Facility Structures, Systems and Components for Seismic Design, as modified by draft DOE-STD-1189) to choose the criteria that will result in the most conservative seismic design categorization and engineering design. Following the process described in this document will result in a conservative seismic design categorization and design products. This approach is expected to resolve discrepancies between the existing and new requirements and reduce the risk that project designs and analyses will require revision when the draft DOE-STD-1189 is finalized.

RYAN GW

2008-04-25T23:59:59.000Z

56

Technical evaluation of the waste-to-oil process development facility at Albany, Oregon  

DOE Green Energy (OSTI)

The broad objective of ERDA's solar energy program at Albany, Oregon, is to develop biomass-to-synfuel technology in the Albany process development facility, which is now nearing completion. In the study reported here, the process development plant design was reevaluated, and a number of modifications and additions are recommended to facilitate and accelerate development of biomass conversion processes. Sketches of the recommended modifications and estimates of costs and installation time schedules have been provided. It has been found expedient to implement some of these modifications before construction is completed. Biomass-to-synfuel processes under development or under consideration elsewhere have been reviewed, and some have been identified that are appropriate for further development at Albany. Potential environmental impacts associated with the operation of the Albany, Oregon, facility were reviewed to identify the magnitude of the impacts and the effects of any resultant operational constraints. Two discrete environmental impact categories have been identified with respect to process development operation. These are (1) production, storage, and disposal of product oil and residual solid, liquid, and gaseous waste; and (2) disturbances to the local community. An assessment has been made of unit process waste discharges and mitigation procedures, environmental setting and community considerations, possible operational constraints, and monitoring programs.

Houle, E.H.; Ciriello, S.F.; Ergun, S.; Basuino, D.J.

1976-10-01T23:59:59.000Z

57

Elimination Of Catalytic Hydrogen Generation In Defense Waste Processing Facility Slurries  

Science Conference Proceedings (OSTI)

Based on lab-scale simulations of Defense Waste Processing Facility (DWPF) slurry chemistry, the addition of sodium nitrite and sodium hydroxide to waste slurries at concentrations sufficient to take the aqueous phase into the alkaline region (pH > 7) with approximately 500 mg nitrite ion/kg slurry (assuming essential components to catalytic hydrogen generation) than the two primary process vessels. Rhodium certainly, and ruthenium likely, are present as metal-ligand complexes that are favored under certain concentrations of the surrounding species. Therefore, in the SMECT or RCT, where a small volume of SRAT or SME material would be significantly diluted, conditions would be less optimal for forming or sustaining the catalytic ligand species. Such conditions are likely to adversely impact the ability of the transferred mass to produce hydrogen at the same rate (per unit mass SRAT or SME slurry) as in the SRAT or SME vessels.

Koopman, D. C.

2013-01-22T23:59:59.000Z

58

Assessment of nuclear safety and nuclear criticality potential in the Defense Waste Processing Facility  

SciTech Connect

A panel of experts in the fields of process engineering, process chemistry, and safety analysis met together on January 26, 1993, and February 19, 1993, to discuss nuclear safety and nuclear criticality potential in the Defense Waste Processing Facility (DWPF) processes. Nuclear safety issues and possibilities of nuclear criticality incidents in the DWPF were examined in depth. The discussion started at the receipt of slurry feeds: The Low Point Pump Pit Precipitate Tank (LPPPPT) and the Low Point Pump Pit Sludge Tank (LPPPST), and went into detail the whole DWPF processes. This report provides discussion of each of the areas and processes of the DWPF in terms of potential nuclear safety issues and nuclear criticality concerns.

Ha, B.C.

1993-05-10T23:59:59.000Z

59

IMPACTS OF ANTIFOAM ADDITIONS AND ARGON BUBBLING ON DEFENSE WASTE PROCESSING FACILITY REDUCTION/OXIDATION  

Science Conference Proceedings (OSTI)

During melting of HLW glass, the REDOX of the melt pool cannot be measured. Therefore, the Fe{sup +2}/{Sigma}Fe ratio in the glass poured from the melter must be related to melter feed organic and oxidant concentrations to ensure production of a high quality glass without impacting production rate (e.g., foaming) or melter life (e.g., metal formation and accumulation). A production facility such as the Defense Waste Processing Facility (DWPF) cannot wait until the melt or waste glass has been made to assess its acceptability, since by then no further changes to the glass composition and acceptability are possible. therefore, the acceptability decision is made on the upstream process, rather than on the downstream melt or glass product. That is, it is based on 'feed foward' statistical process control (SPC) rather than statistical quality control (SQC). In SPC, the feed composition to the melter is controlled prior to vitrification. Use of the DWPF REDOX model has controlled the balanjce of feed reductants and oxidants in the Sludge Receipt and Adjustment Tank (SRAT). Once the alkali/alkaline earth salts (both reduced and oxidized) are formed during reflux in the SRAT, the REDOX can only change if (1) additional reductants or oxidants are added to the SRAT, the Slurry Mix Evaporator (SME), or the Melter Feed Tank (MFT) or (2) if the melt pool is bubble dwith an oxidizing gas or sparging gas that imposes a different REDOX target than the chemical balance set during reflux in the SRAT.

Jantzen, C.; Johnson, F.

2012-06-05T23:59:59.000Z

60

Waste Receiving and Processing (WRAP) Facility Public Address System Review Findings  

SciTech Connect

Public address system operation at the Waste Receiving and Processing (WRAP) facility was reviewed. The review was based on an Operational Readiness Review finding that public address performance was not adequate in parts of the WRAP facility. Several improvements were made to the WRAP Public Address (PA) system to correct the deficiencies noted. Speaker gain and position was optimized. A speech processor was installed to boost intelligibility in high noise areas. Additional speakers were added to improve coverage in the work areas. The results of this evaluation indicate that further PA system enhancements are not warranted. Additional speakers cannot compensate for the high background sound and high reverberation levels found in the work areas. Recommendations to improve PA system intelligibility include minor speaker adjustments, enhanced PA announcement techniques, and the use of sound reduction and abatement techniques where economically feasible.

HUMPHRYS, K.L.

1999-11-03T23:59:59.000Z

Note: This page contains sample records for the topic "waste processing facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Large Precipitate Hydrolysis Aqueous (PHA) Heel Process Development for the Defense Waste Processing Facility (DWPF)  

DOE Green Energy (OSTI)

A modification to the Precipitate Hydrolysis flowsheet used in DWPF Waste Qualification Runs has been developed.

Lambert, D.P. [Westinghouse Savannah River Company, AIKEN, SC (United States); Boley, C.S.; Jacobs, R.A.

1998-06-04T23:59:59.000Z

62

Review of Catalytic Hydrogen Generation in the Defense Waste Processing Facility (DWPF) Chemical Processing Cell  

DOE Green Energy (OSTI)

This report was prepared to fulfill the Phase I deliverable for HLW/DWPF/TTR-98-0018, Rev. 2, ''Hydrogen Generation in the DWPF Chemical Processing Cell'', 6/4/2001. The primary objective for the preliminary phase of the hydrogen generation study was to complete a review of past data on hydrogen generation and to prepare a summary of the findings. The understanding was that the focus should be on catalytic hydrogen generation, not on hydrogen generation by radiolysis. The secondary objective was to develop scope for follow-up experimental and analytical work. The majority of this report provides a summary of past hydrogen generation work with radioactive and simulated Savannah River Site (SRS) waste sludges. The report also includes some work done with Hanford waste sludges and simulants. The review extends to idealized systems containing no sludge, such as solutions of sodium formate and formic acid doped with a noble metal catalyst. This includes general information from the literature, as well as the focused study done by the University of Georgia for the SRS. The various studies had a number of points of universal agreement. For example, noble metals, such as Pd, Rh, and Ru, catalyze hydrogen generation from formic acid and formate ions, and more acid leads to more hydrogen generation. There were also some points of disagreement between different sources on a few topics such as the impact of mercury on the noble metal catalysts and the identity of the most active catalyst species. Finally, there were some issues of potential interest to SRS that apparently have not been systematically studied, e.g. the role of nitrite ion in catalyst activation and reactivity. The review includes studies covering the period from about 1924-2002, or from before the discovery of hydrogen generation during simulant sludge processing in 1988 through the Shielded Cells qualification testing for Sludge Batch 2. The review of prior studies is followed by a discussion of proposed experimental work, additional data analysis, and future modeling programs. These proposals have led to recent investigations into the mercury issue and the effect of co-precipitating noble metals which will be documented in two separate reports. SRS hydrogen generation work since 2002 will also be collected and summarized in a future report on the effect of noble metal-sludge matrix interactions on hydrogen generation. Other potential factors for experimental investigation include sludge composition variations related to both the washing process and to the insoluble species with particular attention given to the role of silver and to improving the understanding of the interaction of nitrite ion with the noble metals.

Koopman, D. C.

2004-12-31T23:59:59.000Z

63

Quality Services: Solid Wastes, Part 360: Solid Waste Management Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0: Solid Waste Management 0: Solid Waste Management Facilities (New York) Quality Services: Solid Wastes, Part 360: Solid Waste Management Facilities (New York) < Back Eligibility Agricultural Commercial Fuel Distributor Industrial Institutional Investor-Owned Utility Multi-Family Residential Municipal/Public Utility Rural Electric Cooperative Transportation Utility Program Info State New York Program Type Environmental Regulations Provider NY Department of Environmental Conservation These regulations apply to all solid wastes with the exception of hazardous or radioactive waste. Proposed solid waste processing facilities are required to obtain permits prior to construction, and the regulations provide details about permitting, construction, registration, and operation requirements. The regulations contain specific guidance for land

64

Basic Data Report -- Defense Waste Processing Facility Sludge Plant, Savannah River Plant 200-S Area  

SciTech Connect

This Basic Data Report for the Defense Waste Processing Facility (DWPF)--Sludge Plant was prepared to supplement the Technical Data Summary. Jointly, the two reports were intended to form the basis for the design and construction of the DWPF. To the extent that conflicting information may appear, the Basic Data Report takes precedence over the Technical Data Summary. It describes project objectives and design requirements. Pertinent data on the geology, hydrology, and climate of the site are included. Functions and requirements of the major structures are described to provide guidance in the design of the facilities. Revision 9 of the Basic Data Report was prepared to eliminate inconsistencies between the Technical Data Summary, Basic Data Report and Scopes of Work which were used to prepare the September, 1982 updated CAB. Concurrently, pertinent data (material balance, curie balance, etc.) have also been placed in the Basic Data Report. It is intended that these balances be used as a basis for the continuing design of the DWPF even though minor revisions may be made in these balances in future revisions to the Technical Data Summary.

Amerine, D.B.

1982-09-01T23:59:59.000Z

65

Proposed Use of a Constructed Wetland for the Treatment of Metals in the S-04 Outfall of the Defense Waste Processing Facility at the Savannah River Site  

SciTech Connect

The DWPF is part of an integrated waste treatment system at the SRS to treat wastes containing radioactive contaminants. In the early 1980s the DOE recognized that there would be significant safety and cost advantages associated with immobilizing the radioactive waste in a stable solid form. The Defense Waste Processing Facility was designed and constructed to accomplish this task.

Glover, T.

1999-11-23T23:59:59.000Z

66

Ecological survey for the siting of the Mixed and Low-Level Waste Treatment Facility and the Idaho Waste Processing Facility  

SciTech Connect

This report summarizes the results of field ecological surveys conducted by the Center for Integrated Environmental Technologies (CIET) on the Idaho National Engineering Laboratory (INEL) at four candidate locations for the siting of the Mixed and Low-Level Waste Treatment Facility (MLLWTF) and the Idaho Waste Processing Facility (IWPF). The purpose of these surveys was to comply with all Federal laws and Executive Orders to identify and evaluate any potential environmental impacts because of the project. The boundaries of the candidate location were marked with blaze-orange lath survey marker stakes by the project management. Global Positioning System (GPS) measurements of the marker stakes were made, and input to the Arc/Info{reg_sign} geographic information system (GIS). Field surveys were conducted to assess any potential impact to any important species, important habitats, and to any environmental study areas. The GIS location data was overlayed onto the INEL vegetation map and an analysis of vegetation classes on the locations was done. Results of the field surveys indicate use of Candidate Location {number_sign}1 by pygmy rabbits (Sylvilagus idahoensis) and expected use by them of Candidate Locations {number_sign}3 and {number_sign}9. Pygmy rabbits are categorized as a C2 species by the US Fish and Wildlife Service (USFWS). Two other C2 species, the ferruginous hawk (Buteo regalis) and the loggerhead shrike (Lanius ludovicianus) would also be expected to frequent the candidate locations. Candidate Location {number_sign}5 at the north end of the INEL is in the winter range of a large number of pronghorn antelope (Antilocapra americana).

Hoskinson, R.L.

1994-05-01T23:59:59.000Z

67

SUMMARY OF FY11 SULFATE RETENTION STUDIES FOR DEFENSE WASTE PROCESSING FACILITY GLASS  

Science Conference Proceedings (OSTI)

This report describes the results of studies related to the incorporation of sulfate in high level waste (HLW) borosilicate glass produced at the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF). A group of simulated HLW glasses produced for earlier sulfate retention studies was selected for full chemical composition measurements to determine whether there is any clear link between composition and sulfate retention over the compositional region evaluated. In addition, the viscosity of several glasses was measured to support future efforts in modeling sulfate solubility as a function of predicted viscosity. The intent of these studies was to develop a better understanding of sulfate retention in borosilicate HLW glass to allow for higher loadings of sulfate containing waste. Based on the results of these and other studies, the ability to improve sulfate solubility in DWPF borosilicate glasses lies in reducing the connectivity of the glass network structure. This can be achieved, as an example, by increasing the concentration of alkali species in the glass. However, this must be balanced with other effects of reduced network connectivity, such as reduced viscosity, potentially lower chemical durability, and in the case of higher sodium and aluminum concentrations, the propensity for nepheline crystallization. Future DWPF processing is likely to target higher waste loadings and higher sludge sodium concentrations, meaning that alkali concentrations in the glass will already be relatively high. It is therefore unlikely that there will be the ability to target significantly higher total alkali concentrations in the glass solely to support increased sulfate solubility without the increased alkali concentration causing failure of other Product Composition Control System (PCCS) constraints, such as low viscosity and durability. No individual components were found to provide a significant improvement in sulfate retention (i.e., an increase of the magnitude necessary to have a dramatic impact on blending, washing, or waste loading strategies for DWPF) for the glasses studied here. In general, the concentrations of those species that significantly improve sulfate solubility in a borosilicate glass must be added in relatively large concentrations (e.g., 13 to 38 wt % or more of the frit) in order to have a substantial impact. For DWPF, these concentrations would constitute too large of a portion of the frit to be practical. Therefore, it is unlikely that specific additives may be introduced into the DWPF glass via the frit to significantly improve sulfate solubility. The results presented here continue to show that sulfate solubility or retention is a function of individual glass compositions, rather than a property of a broad glass composition region. It would therefore be inappropriate to set a single sulfate concentration limit for a range of DWPF glass compositions. Sulfate concentration limits should continue to be identified and implemented for each sludge batch. The current PCCS limit is 0.4 wt % SO{sub 4}{sup 2-} in glass, although frit development efforts have led to an increased limit of 0.6 wt % for recent sludge batches. Slightly higher limits (perhaps 0.7-0.8 wt %) may be possible for future sludge batches. An opportunity for allowing a higher sulfate concentration limit at DWPF may lay lie in improving the laboratory experiments used to set this limit. That is, there are several differences between the crucible-scale testing currently used to define a limit for DWPF operation and the actual conditions within the DWPF melter. In particular, no allowance is currently made for sulfur partitioning (volatility versus retention) during melter processing as the sulfate limit is set for a specific sludge batch. A better understanding of the partitioning of sulfur in a bubbled melter operating with a cold cap as well as the impacts of sulfur on the off-gas system may allow a higher sulfate concentration limit to be established for the melter feed. This approach would have to be taken carefully to ensure that a

Fox, K.; Edwards, T.

2012-05-08T23:59:59.000Z

68

Explosive Waste Treatment Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

106 106 Environment a 1 Assessment for th.e Explosive Waste Treatment Facility at Site 300 Lawrence Livermore National Laboratory MASTER November 1995 U.S. Department of Energy Office of Environmental Restoration and Waste Management Washington, DOC. 20585 Portions of this document maly be illegible in electronic image products. Images are produced from the best available original document. Table of Contents 1 . 0 2.0 3 . 0 4.0 5 . 0 6.0 7 . 0 8 . 0 Document Summary .............................................................. 1 Purpose and Need for Agency Action ............................................. 3 Description of the Proposed Action and Alternatives ............................ 4 3.1.1 Location ............................................................. 4

69

Elimination Of Catalytic Hydrogen Generation In Defense Waste Processing Facility Slurries  

SciTech Connect

Based on lab-scale simulations of Defense Waste Processing Facility (DWPF) slurry chemistry, the addition of sodium nitrite and sodium hydroxide to waste slurries at concentrations sufficient to take the aqueous phase into the alkaline region (pH > 7) with approximately 500 mg nitrite ion/kg slurry (assuming <25 wt% total solids, or equivalently 2,000 mg nitrite/kg total solids) is sufficient to effectively deactivate the noble metal catalysts at temperatures between room temperature and boiling. This is a potential strategy for eliminating catalytic hydrogen generation from the list of concerns for sludge carried over into the DWPF Slurry Mix Evaporator Condensate Tank (SMECT) or Recycle Collection Tank (RCT). These conclusions are drawn in large part from the various phases of the DWPF catalytic hydrogen generation program conducted between 2005 and 2009. The findings could apply to various situations, including a solids carry-over from either the Sludge Receipt and Adjustment Tank (SRAT) or Slurry Mix Evaporator (SME) into the SMECT with subsequent transfer to the RCT, as well as a spill of formic acid into the sump system and transfer into an RCT that already contains sludge solids. There are other potential mitigating factors for the SMECT and RCT, since these vessels are typically operated at temperatures close to the minimum temperatures that catalytic hydrogen has been observed to occur in either the SRAT or SME (pure slurry case), and these vessels are also likely to be considerably more dilute in both noble metals and formate ion (the two essential components to catalytic hydrogen generation) than the two primary process vessels. Rhodium certainly, and ruthenium likely, are present as metal-ligand complexes that are favored under certain concentrations of the surrounding species. Therefore, in the SMECT or RCT, where a small volume of SRAT or SME material would be significantly diluted, conditions would be less optimal for forming or sustaining the catalytic ligand species. Such conditions are likely to adversely impact the ability of the transferred mass to produce hydrogen at the same rate (per unit mass SRAT or SME slurry) as in the SRAT or SME vessels.

Koopman, D. C.

2013-01-22T23:59:59.000Z

70

Qualification of the Nippon Instrumentation for use in Measuring Mercury at the Defense Waste Processing Facility  

SciTech Connect

The Nippon Mercury/RA-3000 system installed in 221-S M-14 has been qualified for use. The qualification was a side-by-side comparison of the Nippon Mercury/RA-3000 system with the currently used Bacharach Mercury Analyzer. The side-by-side testing included standards for instrument calibration verifications, spiked samples and unspiked samples. The standards were traceable back to the National Institute of Standards and Technology (NIST). The side-by-side work included the analysis of Sludge Receipt and Adjustment Tank (SRAT) Receipt, SRAT Product, and Slurry Mix Evaporator (SME) samples. With the qualification of the Nippon Mercury/RA-3000 system in M-14, the DWPF lab will be able to perform a head to head comparison of a second Nippon Mercury/RA-3000 system once the system is installed. The Defense Waste Processing Facility (DWPF) analyzes receipt and product samples from the Sludge Receipt and Adjustment Tank (SRAT) to determine the mercury (Hg) concentration in the sludge slurry. The SRAT receipt is typically sampled and analyzed for the first ten SRAT batches of a new sludge batch to obtain an average Hg concentration. This average Hg concentration is then used to determine the amount of steam stripping required during the concentration/reflux step of the SRAT cycle to achieve a less than 0.6 wt% Hg in the SRAT product solids. After processing is complete, the SRAT product is sampled and analyzed for mercury to ensure that the mercury concentration does not exceed the 0.45 wt% limit in the Slurry Mix Evaporator (SME). The DWPF Laboratory utilizes Bacharach Analyzers to support these Hg analyses at this facility. These analyzers are more than 10 years old, and they are no longer supported by the manufacturer. Due to these difficulties, the Bacharach Analyzers are to be replaced by new Nippon Mercury/RA-3000 systems. DWPF issued a Technical Task Request (TTR) for the Savannah River National Laboratory (SRNL) to assist in the qualification of the new systems. SRNL prepared a task technical and quality assurance (TT&QA) plan that outlined the activities that are necessary and sufficient to meet the objectives of the TTR. In addition, TT&QA plan also included a test plan that provided guidance to the DWPF Lab in collecting the data needed to qualify the new Nippon Mercury/RA-3000 systems.

Edwards, T.; Mahannah, R.

2011-07-05T23:59:59.000Z

71

EVALUATION OF A TURBIDITY METER FOR USE AT THE DEFENSE WASTE PROCESSING FACILITY  

SciTech Connect

Savannah River Remediations (SRRs) Defense Waste Processing Facility (DWPF) Laboratory currently tests for sludge carry-over into the Recycle Collection Tank (RCT) by evaluating the iron concentration in the Slurry Mix Evaporator Condensate Tank (SMECT) and relating this iron concentration to the amount of sludge solids present. A new method was proposed for detecting the amount of sludge in the SMECT that involves the use of an Optek turbidity sensor. Waste Services Laboratory (WSL) personnel conducted testing on two of these units following a test plan developed by Waste Solidification Engineering (WSE). Both Optek units (SN64217 and SN65164) use sensor model AF16-N and signal converter model series C4000. The sensor body of each unit was modified to hold a standard DWPF 12 cc sample vial, also known as a peanut vial. The purpose of this testing was to evaluate the use of this model of turbidity sensor, or meter, to provide a measurement of the sludge solids present in the SMECT based upon samples from that tank. During discussions of the results from this study by WSE, WSL, and Savannah River National Laboratory (SRNL) personnel, an upper limit on the acceptable level of solids in SMECT samples was set at 0.14 weight percent (wt%). A go/no-go decision criterion was to be developed for the critical turbidity response, which is expressed in concentration units (CUs), for each Optek unit based upon the 0.14 wt% solids value. An acceptable or a go decision for the SMECT should reflect the situation that there is an identified risk (e.g. 5%) for a CU response from the Optek unit to be less than the critical CU value when the solids content of the SMECT is actually 0.14 wt% or greater, while a no-go determination (i.e., an Optek CU response above the critical CU value, a conservative decision relative to risk) would lead to additional evaluations of the SMECT to better quantify the possible solids content of the tank. Subsequent to the issuance of the initial version of this report but under the scope of the original request for technical assistance, WSE asked for this report to be revised to include the go/no-go CU value corresponding to 0.28 wt% solids. It was this request that led to the preparation of Revision 1 of the report. The results for the 0.28 wt% solids value were developed following the same approach as that utilized for the 0.14 wt% solids value. A sludge simulant was used to develop standards for testing both Optek units and to determine the viability of a go/no-go CU response for each of the units. Statistical methods were used by SRNL to develop the critical CU value for the go/no-go decision for these standards for each Optek unit. Since only one sludge simulant was available for this testing, the sensitivity of these results to other simulants and to actual sludge material is not known. However, limited testing with samples from the actual DWPF process (both SRAT product samples and SMECT samples) demonstrated that the use of the go/no-go criteria developed from the sludge simulant testing was conservative for these samples taken from the sludge batch, Sludge Batch 7b, being processed at the time of this testing. While both of the Optek units performed very reliably during this testing, there were statistically significant differences (although small on a practical scale) between the two units. Thus, testing should be conducted on any new unit of this Optek model to qualify it before it is used to support the DWPF operation.

Mahannah, R.; Edwards, T.

2013-06-04T23:59:59.000Z

72

VERIFICATION OF THE DEFENSE WASTE PROCESSING FACILITY'S (DWPF) PROCESS DIGESTION METHOD FOR THE SLUDGE BATCH 7A QUALIFICATION SAMPLE  

Science Conference Proceedings (OSTI)

For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) performs confirmation of the applicability of the digestion method to be used by the DWPF lab for elemental analysis of Sludge Receipt and Adjustment Tank (SRAT) receipt samples and SRAT product process control samples. DWPF SRAT samples are typically dissolved using a room temperature HF-HNO{sub 3} acid dissolution (i.e., DWPF Cold Chem Method, see DWPF Procedure SW4-15.201) and then analyzed by inductively coupled plasma - atomic emission spectroscopy (ICP-AES). This report contains the results and comparison of data generated from performing the Aqua Regia (AR), Sodium peroxide/Hydroxide Fusion (PF) and DWPF Cold Chem (CC) method digestions of Sludge Batch 7a (SB7a) SRAT Receipt and SB7a SRAT Product samples. The SB7a SRAT Receipt and SB7a SRAT Product samples were prepared in the SRNL Shielded Cells, and the SRAT Receipt material is representative of the sludge that constituates the SB7a Batch or qualification composition. This is the sludge in Tank 51 that is to be transferred into Tank 40, which will contain the heel of Sludge Batch 6 (SB6), to form the Sb7a Blend composition.

Click, D.; Edwards, T.; Jones, M.; Wiedenman, B.

2011-03-14T23:59:59.000Z

73

HWMA/RCRA Closure Plan for the TRA Fluorinel Dissolution Process Mockup and Gamma Facilities Waste System  

Science Conference Proceedings (OSTI)

This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan was developed for the Test Reactor Area Fluorinel Dissolution Process Mockup and Gamma Facilities Waste System, located in Building TRA-641 at the Reactor Technology Complex (RTC), Idaho National Laboratory Site, to meet a further milestone established under the Voluntary Consent Order SITE-TANK-005 Action Plan for Tank System TRA-009. The tank system to be closed is identified as VCO-SITE-TANK-005 Tank System TRA-009. This closure plan presents the closure performance standards and methods for achieving those standards.

K. Winterholler

2007-01-31T23:59:59.000Z

74

Environmental Management Construction Project Review of the Savannah River Site Salt Waste Processing Facility, July 19-22, 210  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Independent Oversight's Office of Environment, Safety and Health Office of Independent Oversight's Office of Environment, Safety and Health Evaluations Activity Report for the Shadowing of the Environmental Management Construction Project Review of the Savannah River Site Salt Waste Processing Facility on July 19-22, 2010 A Department of Energy Construction Project Review (CPR) of the Salt Waste Processing Facility (SWPF) project was conducted on July 19-22, 2010, at the request of the Principal Deputy Secretary, Office of Environmental Management (EM-2). The purpose of the review was to assess the cost, schedule, and technical progress against the approved Performance Baseline. Specific review areas were Engineering; Commissioning; Environment, Safety, Health, and Quality Assurance; Cost, Schedule, and Risk; and Management and Acquisition.

75

Review of the Savannah River Site Salt Waste Processing Facility Safety Basis and Design Development, August 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Site Savannah River Site Salt Waste Processing Facility Safety Basis and Design Development May 2011 August 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose.................................................................................................................................................... 1 2.0 Background ............................................................................................................................................. 1 3.0 Scope and Methodology ......................................................................................................................... 2 4.0 Results .................................................................................................................................................... 3

76

Application of accident progression event tree technology to the Savannah River Site Defense Waste Processing Facility SAR analysis  

SciTech Connect

The Accident Analysis in the Safety Analysis Report (SAR) for the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) has recently undergone an upgrade. Non-reactor SARs at SRS (and other Department of Energy (DOE) sites) use probabilistic techniques to assess the frequency of accidents at their facilities. This paper describes the application of an extension of the Accident Progression Event Tree (APET) approach to accidents at the SRS DWPF. The APET technique allows an integrated model of the facility risk to be developed, where previous probabilistic accident analyses have been limited to the quantification of the frequency and consequences of individual accident scenarios treated independently. Use of an APET allows a more structured approach, incorporating both the treatment of initiators that are common to more than one accident, and of accident progression at the facility.

Brandyberry, M.D.; Baker, W.H.; Wittman, R.S. [Westinghouse Savannah River Co., Aiken, SC (United States); Amos, C.N. [Science Applications International Corp., Albuquerque, NM (United States)

1993-12-31T23:59:59.000Z

77

REMOTE IN-CELL SAMPLING IMPROVEMENTS PROGRAM AT THESAVANNAH RIVER SITE (SRS) DEFENSE WASTE PROCESSING FACILITY (DWPF)  

Science Conference Proceedings (OSTI)

Remote Systems Engineering (RSE) of the Savannah River National Lab (SRNL) in combination with the Defense Waste Processing Facility(DWPF) Engineering and Operations has evaluated the existing equipment and processes used in the facility sample cells for 'pulling' samples from the radioactive waste stream and performing equipment in-cell repairs/replacements. RSE has designed and tested equipment for improving remote in-cell sampling evolutions and reducing the time required for in-cell maintenance of existing equipment. The equipment within the present process tank sampling system has been in constant use since the facility start-up over 17 years ago. At present, the method for taking samples within the sample cells produces excessive maintenance and downtime due to frequent failures relative to the sampling station equipment and manipulator. Location and orientation of many sampling stations within the sample cells is not conducive to manipulator operation. The overextension of manipulators required to perform many in-cell operations is a major cause of manipulator failures. To improve sampling operations and reduce downtime due to equipment maintenance, a Portable Sampling Station (PSS), wireless in-cell cameras, and new commercially available sampling technology has been designed, developed and/or adapted and tested. The uniqueness of the design(s), the results of the scoping tests, and the benefits relative to in-cell operation and reduction of waste are presented.

Marzolf, A

2007-11-26T23:59:59.000Z

78

Salt Waste Processing Initiatives  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Patricia Suggs Patricia Suggs Salt Processing Team Lead Assistant Manager for Waste Disposition Project Office of Environmental Management Savannah River Site Salt Waste Processing Initiatives 2 Overview * Current SRS Liquid Waste System status * Opportunity to accelerate salt processing - transformational technologies - Rotary Microfiltration (RMF) and Small Column Ion Exchange (SCIX) - Actinide Removal Process/Modular Caustic Side Solvent Extraction (ARP/MCU) extension with next generation extractant - Salt Waste Processing Facility (SWPF) performance enhancement - Saltstone enhancements * Life-cycle impacts and benefits 3 SRS Liquid Waste Total Volume >37 Million Gallons (Mgal) Total Curies 183 MCi (51% ) 175 MCi (49% ) >358 Million Curies (MCi) Sludge 34.3 Mgal (92% ) 3.0 Mgal (8%)

79

CONTAMINATED PROCESS EQUIPMENT REMOVAL FOR THE D&D OF THE 232-Z CONTAMINATED WASTE RECOVERY PROCESS FACILITY AT THE PLUTONIUM FINISHING PLANT (PFP)  

SciTech Connect

This paper describes the unique challenges encountered and subsequent resolutions to accomplish the deactivation and decontamination of a plutonium ash contaminated building. The 232-Z Contaminated Waste Recovery Process Facility at the Plutonium Finishing Plant was used to recover plutonium from process wastes such as rags, gloves, containers and other items by incinerating the items and dissolving the resulting ash. The incineration process resulted in a light-weight plutonium ash residue that was highly mobile in air. This light-weight ash coated the incinerator's process equipment, which included gloveboxes, blowers, filters, furnaces, ducts, and filter boxes. Significant airborne contamination (over 1 million derived air concentration hours [DAC]) was found in the scrubber cell of the facility. Over 1300 grams of plutonium held up in the process equipment and attached to the walls had to be removed, packaged and disposed. This ash had to be removed before demolition of the building could take place.

HOPKINS, A.M.; MINETTE, M.J.; KLOS, D.B.

2007-01-25T23:59:59.000Z

80

Tank Waste and Waste Processing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tank Waste and Waste Processing Tank Waste and Waste Processing Tank Waste and Waste Processing Tank Waste and Waste Processing The Defense Waste Processing Facility set a record by producing 267 canisters filled with glassified waste in a year. New bubbler technology and other enhancements will increase canister production in the future. The Defense Waste Processing Facility set a record by producing 267 canisters filled with glassified waste in a year. New bubbler technology and other enhancements will increase canister production in the future. A Savannah River Remediation employee uses a manipulator located inside a shielded enclosure at the Defense Waste Processing Facility where the melter is pouring molten glass inside a canister. A Savannah River Remediation employee uses a manipulator located inside a

Note: This page contains sample records for the topic "waste processing facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Screening study for waste biomass to ethanol production facility using the Amoco process in New York State. Final report  

DOE Green Energy (OSTI)

This report evaluates the economic feasibility of locating biomass-to-ethanol waste conversion facilities in New York State. Part 1 of the study evaluates 74 potential sites in New York City and identifies two preferred sites on Staten, the Proctor Gamble and the Arthur Kill sites, for further consideration. Part 2 evaluates upstate New York and determines that four regions surrounding the urban centers of Albany, Buffalo, Rochester, and Syracuse provide suitable areas from which to select specific sites for further consideration. A separate Appendix provides supplemental material supporting the evaluations. A conceptual design and economic viability evaluation were developed for a minimum-size facility capable of processing 500 tons per day (tpd) of biomass consisting of wood or paper, or a combination of the two for upstate regions. The facility would use Amoco`s biomass conversion technology and produce 49,000 gallons per day of ethanol and approximately 300 tpd of lignin solid by-product. For New York City, a 1,000-tpd processing facility was also evaluated to examine effects of economies of scale. The reports evaluate the feasibility of building a biomass conversion facility in terms of city and state economic, environmental, and community factors. Given the data obtained to date, including changing costs for feedstock and ethanol, the project is marginally attractive. A facility should be as large as possible and located in a New York State Economic Development Zone to take advantage of economic incentives. The facility should have on-site oxidation capabilities, which will make it more financially viable given the high cost of energy. 26 figs., 121 tabs.

NONE

1995-08-01T23:59:59.000Z

82

Tritium Facilities Modernization and Consolidation Project Process Waste Assessment (Project S-7726)  

Science Conference Proceedings (OSTI)

Under the Tritium Facility Modernization {ampersand} Consolidation (TFM{ampersand}C) Project (S-7726) at the Savannah River Site (SS), all tritium processing operations in Building 232-H, with the exception of extraction and obsolete/abandoned systems, will be reestablished in Building 233-H. These operations include hydrogen isotopic separation, loading and unloading of tritium shipping and storage containers, tritium recovery from zeolite beds, and stripping of nitrogen flush gas to remove tritium prior to stack discharge. The scope of the TFM{ampersand}C Project also provides for a new replacement R&D tritium test manifold in 233-H, upgrading of the 233- H Purge Stripper and 233-H/234-H building HVAC, a new 234-H motor control center equipment building and relocating 232-H Materials Test Facility metallurgical laboratories (met labs), flow tester and life storage program environment chambers to 234-H.

Hsu, R.H. [Westinghouse Savannah River Company, AIKEN, SC (United States); Oji, L.N.

1997-11-14T23:59:59.000Z

83

New Waste Calcining Facility (NWCF) Waste Streams  

SciTech Connect

This report addresses the issues of conducting debris treatment in the New Waste Calcine Facility (NWCF) decontamination area and the methods currently being used to decontaminate material at the NWCF.

K. E. Archibald

1999-08-01T23:59:59.000Z

84

Chapter 47 Solid Waste Facilities (Kentucky)  

Energy.gov (U.S. Department of Energy (DOE))

This chapter establishes the permitting standards for solid waste sites or facilities, the standards applicable to all solid waste sites or facilities, and the standards for certification of...

85

Studsvik Processing Facility Update  

SciTech Connect

Studsvik has completed over four years of operation at its Erwin, TN facility. During this time period Studsvik processed over 3.3 million pounds (1.5 million kgs) of radioactive ion exchange bead resin, powdered filter media, and activated carbon, which comprised a cumulative total activity of 18,852.5 Ci (6.98E+08 MBq). To date, the highest radiation level for an incoming resin container has been 395 R/hr (3.95 Sv/h). The Studsvik Processing Facility (SPF) has the capability to safely and efficiently receive and process a wide variety of solid and liquid Low Level Radioactive Waste (LLRW) streams including: Ion Exchange Resins (IER), activated carbon (charcoal), graphite, oils, solvents, and cleaning solutions with contact radiation levels of up to 400 R/hr (4.0 Sv/h). The licensed and heavily shielded SPF can receive and process liquid and solid LLRWs with high water and/or organic content. This paper provides an overview of the last four years of commercial operations processing radioactive LLRW from commercial nuclear power plants. Process improvements and lessons learned will be discussed.

Mason, J. B.; Oliver, T. W.; Hill, G. M.; Davin, P. F.; Ping, M. R.

2003-02-25T23:59:59.000Z

86

SWEAP, Solid Waste Environmental Assessment Plan: Component 3, technology evaluation: Discussion paper No. 3. 5 A,B,C, addendum to documents: Extension of process to identify candidate sites (step 2) and the development of comparative evaluation process for step 3 of the site selection process for a materials recovery facility, compost facility and energy from waste facility  

Science Conference Proceedings (OSTI)

The facility design assumptions for a materials recovery facility, a compost facility and an energy from waste facility were intended to result in a facility with minimal impact on the natural environment. The criteria described in discussion paper 3.5A were based on this assumption. This addendum describes the additional criteria identified for use in Step 2 of the site selection process, the revised criteria to be used in Step 3 and the method that will be used to apply the revised Step 3 criterial. Step 2 addresses the type of technology used to minimize adverse effects on the natural environment. Step 3 addresses the selection of short-listed sites from a longer list and the methods used.

Not Available

1991-01-01T23:59:59.000Z

87

Salt Processing at the Savannah River Site: Results of Technology Down-Selection and Research and Development to Support New Salt Waste Processing Facility  

Science Conference Proceedings (OSTI)

The Department of Energy's (DOE) Savannah River Site (SRS) high-level waste (HLW) program is responsible for storage, treatment, and immobilization of HLW for disposal. The Salt Processing Project (SPP) is the salt waste (water-soluble) treatment portion of this effort. The overall SPP encompasses the selection, design, construction, and operation of technologies to prepare the salt-waste feed material for immobilization at the site's Saltstone Production Facility (SPF) and vitrification facility (Defense Waste Processing Facility [DWPF]). Major constituents that must be removed from the salt waste and sent as feed to DWPF include cesium (Cs), strontium (Sr), and actinides. In April 2000, the DOE Deputy Secretary for Project Completion (EM-40) established the SRS Salt Processing Project Technical Working Group (TWG) to manage technology development of treatment alternatives for SRS high-level salt wastes. The separation alternatives investigated included three candidate Cs-removal processes selected, as well as actinide and Sr removal that are also required as a part of each process. The candidate Cs-removal processes are: crystalline Silicotitanate Non-Elutable Ion Exchange (CST); caustic Side Solvent Extraction (CSSX); and small Tank Tetraphenylborate Precipitation (STTP). The Tanks Focus Area was asked to assist DOE by managing the SPP research and development (R&D), revising roadmaps, and developing down-selection criteria. The down-selection decision process focused its analysis on three levels: (a) identification of goals that the selected technology should achieve, (b) selection criteria that are a measure of performance of the goal, and (c) criteria scoring and weighting for each technology alternative. After identifying the goals and criteria, the TWG analyzed R&D results and engineering data and scored the technology alternatives versus the criteria. Based their analysis and scoring, the TWG recommended CSSX as the preferred alternative. This recommendation was formalized in July 2001 when DOE published the Savannah River Site Salt Processing Alternatives Final Supplemental Environmental Impact Statement (SEIS) and was finalized in the DOE Record of Decision issued in October 2001.

Lang, K.; Gerdes, K.; Picha, K.; Spader, W.; McCullough, J.; Reynolds, J.; Morin, J. P.; Harmon, H. D.

2002-02-26T23:59:59.000Z

88

Addressing mixed waste in plutonium processing  

SciTech Connect

The overall goal is the minimization of all waste generated in actinide processing facilities. Current emphasis is directed toward reducing and managing mixed waste in plutonium processing facilities. More specifically, the focus is on prioritizing plutonium processing technologies for development that will address major problems in mixed waste management. A five step methodological approach to identify, analyze, solve, and initiate corrective action for mixed waste problems in plutonium processing facilities has been developed.

Christensen, D.C.; Sohn, C.L. (Los Alamos National Lab., NM (United States)); Reid, R.A. (New Mexico Univ., Albuquerque, NM (United States). Anderson Schools of Management)

1991-01-01T23:59:59.000Z

89

Certification Plan, low-level waste Hazardous Waste Handling Facility  

SciTech Connect

The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. This plan provides guidance from the HWHF to waste generators, waste handlers, and the Waste Certification Specialist to enable them to conduct their activities and carry out their responsibilities in a manner that complies with the requirements of WHC-WAC. Waste generators have the primary responsibility for the proper characterization of LLW. The Waste Certification Specialist verifies and certifies that LBL LLW is characterized, handled, and shipped in accordance with the requirements of WHC-WAC. Certification is the governing process in which LBL personnel conduct their waste generating and waste handling activities in such a manner that the Waste Certification Specialist can verify that the requirements of WHC-WAC are met.

Albert, R.

1992-06-30T23:59:59.000Z

90

Full-Scale Cross-Flow Filter Testing in Support of the Salt Waste Processing Facility Design  

Science Conference Proceedings (OSTI)

Parsons and its team members General Atomics and Energy Solutions conducted a series of tests to assess the constructability and performance of the Cross-Flow Filter (CFF) system specified for the Department of Energy (DOE) Salt Waste Processing Facility (SWPF). The testing determined the optimum flow rates, operating pressures, filtrate-flow control techniques, and cycle timing for filter back pulse and chemical cleaning. Results have verified the design assumptions made and have confirmed the suitability of cross-flow filtration for use in the SWPF. In conclusion: The CFF Test Program demonstrated that the SWPF CFF system could be successfully fabricated, that the SWPF CFF design assumptions were conservative with respect to filter performance and provided useful information on operational parameters and techniques. The filter system demonstrated performance in excess of expectations. (authors)

Stephens, A.B.; Gallego, R.M. [General Atomics, San Diego, CA (United States); Singer, S.A.; Swanson, B.L. [Energy Solutions, Aiken, SC (United States); Bartling, K. [Parsons, Aiken, SC (United States)

2008-07-01T23:59:59.000Z

91

The Mixed Waste Management Facility. Preliminary design review  

Science Conference Proceedings (OSTI)

This document presents information about the Mixed Waste Management Facility. Topics discussed include: cost and schedule baseline for the completion of the project; evaluation of alternative options; transportation of radioactive wastes to the facility; capital risk associated with incineration; radioactive waste processing; scaling of the pilot-scale system; waste streams to be processed; molten salt oxidation; feed preparation; initial operation to demonstrate selected technologies; floorplans; baseline revisions; preliminary design baseline; cost reduction; and project mission and milestones.

NONE

1995-12-31T23:59:59.000Z

92

Nevada Waste Leaves Idaho Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Media Contacts: Media Contacts: Danielle Miller, 208-526-5709 Brad Bugger, 208-526-0833 For Immediate Release: Date: March 02, 2010 Nevada Waste Leaves Idaho Facility (Note: This is a reissue of a press release originally sent last week to ensure all intended recipients receive a copy after technical glitch may have kept it from reaching some of them) It may have looked like just another shipment of transuranic radioactive waste leaving Idaho, but the shipment heading south on U.S. Interstate 15 the afternoon of January 26 actually contained waste from another DOE site in Nevada. The shipment demonstrated the capacity of the U.S. Department of Energy�s Advanced Mixed Waste Treatment Project to be a hub where the Department�s transuranic radioactive waste can be safely and compliantly

93

Implementing waste minimization at an active plutonium processing facility: Successes and progress at technical area (TA) -55 of the Los Alamos National Laboratory  

SciTech Connect

The Los Alamos National Laboratory has ongoing national security missions that necessitate increased plutonium processing. The bulk of this activity occurs at Technical Area -55 (TA-55), the nations only operable plutonium facility. TA-55 has developed and demonstrated a number of technologies that significantly minimize waste generation in plutonium processing (supercritical CO{sub 2}, Mg(OH){sub 2} precipitation, supercritical H{sub 2}O oxidation, WAND), disposition of excess fissile materials (hydride-dehydride, electrolytic decontamination), disposition of historical waste inventories (salt distillation), and Decontamination & Decommissioning (D&D) of closed nuclear facilities (electrolytic decontamination). Furthermore, TA-55 is in the process of developing additional waste minimization technologies (molten salt oxidation, nitric acid recycle, americium extraction) that will significantly reduce ongoing waste generation rates and allow volume reduction of existing waste streams. Cost savings from reduction in waste volumes to be managed and disposed far exceed development and deployment costs in every case. Waste minimization is also important because it reduces occupational exposure to ionizing radiation, risks of transportation accidents, and transfer of burdens from current nuclear operations to future generations.

Balkey, J.J.; Robinson, M.A.; Boak, J.

1997-12-01T23:59:59.000Z

94

Los Alamos National Laboratory opens new waste repackaging facility  

NLE Websites -- All DOE Office Websites (Extended Search)

LANL opens new waste repackaging facility Los Alamos National Laboratory opens new waste repackaging facility The Laboratory has brought a third waste repackaging facility online...

95

MEASUREMENT AND CALCULATION OF RADIONUCLIDE ACTIVITIES IN SAVANNAH RIVER SITE HIGH LEVEL WASTE SLUDGE FOR ACCEPTANCE OF DEFENSE WASTE PROCESSING FACILITY GLASS IN A FEDERAL REPOSITORY  

SciTech Connect

This paper describes the results of the analyses of High Level Waste (HLW) sludge slurry samples and of the calculations necessary to decay the radionuclides to meet the reporting requirement in the Waste Acceptance Product Specifications (WAPS) [1]. The concentrations of 45 radionuclides were measured. The results of these analyses provide input for radioactive decay calculations used to project the radionuclide inventory at the specified index years, 2015 and 3115. This information is necessary to complete the Production Records at Savannah River Site's Defense Waste Processing Facility (DWPF) so that the final glass product resulting from Macrobatch 5 (MB5) can eventually be submitted to a Federal Repository. Five of the necessary input radionuclides for the decay calculations could not be measured directly due to their low concentrations and/or analytical interferences. These isotopes are Nb-93m, Pd-107, Cd-113m, Cs-135, and Cm-248. Methods for calculating these species from concentrations of appropriate other radionuclides will be discussed. Also the average age of the MB5 HLW had to be calculated from decay of Sr-90 in order to predict the initial concentration of Nb-93m. As a result of the measurements and calculations, thirty-one WAPS reportable radioactive isotopes were identified for MB5. The total activity of MB5 sludge solids will decrease from 1.6E+04 {micro}Ci (1 {micro}Ci = 3.7E+04 Bq) per gram of total solids in 2008 to 2.3E+01 {micro}Ci per gram of total solids in 3115, a decrease of approximately 700 fold. Finally, evidence will be given for the low observed concentrations of the radionuclides Tc-99, I-129, and Sm-151 in the HLW sludges. These radionuclides were reduced in the MB5 sludge slurry to a fraction of their expected production levels due to SRS processing conditions.

Bannochie, C; David Diprete, D; Ned Bibler, N

2008-12-31T23:59:59.000Z

96

DEVELOPMENT OF REMOTE HANFORD CONNECTOR GASKET REPLACEMENT TOOLING FOR THE SAVANNAH RIVER SITE'S DEFENSE WASTE PROCESSING FACILITY  

Science Conference Proceedings (OSTI)

The Savannah River Site's (SRS) Defense Waste Processing Facility (DWPF) requested development of tooling for remote replacement of gaskets in mechanical Hanford connectors. The facility has compressed air supply, two master-slave manipulators (MSM's) and a lightweight robotic arm for operation of the remote tools. The Savannah River National Laboratory (SRNL) developed and tested multiple tools to perform the gasket replacement tasks. Separate pneumatic snap-ring removal tools that use the connector skirt as a reaction surface were developed for removal of the snap ring and spent gasket on both vertical and horizontal Hanford connectors. A pneumatic tool that clamps and centers on the jumper pipe ID was developed to simultaneously install the new gasket and snap ring. A pneumatic snap-ring-loading tool was developed that compresses the snap ring and places it in a groove in the installation tool. All of the tools are located on a custom work table with a pneumatic valve station that directs compressed air to the desired tool and vents the tools as needed. The entire system has been successfully tested using MSM's to manipulate the various tools. Deployment of the entire system is expected during FY08. The Hanford connector gasket replacement tooling has been successfully tested using MSM's to manipulate the various tools. Nitric acid is used in many of the decontamination processes performed in the REDC, where the tooling will be deployed. Although most of the tool components were fabricated/purchased with nitric acid and radioactive service in mind, some of the prototype parts must be replaced with parts that are more compatible with nitric acid/radioactive service. Several modifications to the various tools are needed to facilitate maintenance and replacement of failed components. Development of installation tools for replacement of 1-inch, 2-inch and multi-hole gaskets is being considered. Deployment of the existing system in the DWPF REDC is expected during FY08.

Krementz, D

2007-11-27T23:59:59.000Z

97

BIO-WASTE COMPOSTING FACILITY AT THE WASTE AUTHORITY OF S.O.W., HOORN/  

E-Print Network (OSTI)

BIO-WASTE COMPOSTING FACILITY AT THE WASTE AUTHORITY OF S.O.W., HOORN/ NETHERLANDS ·· ·· T. SCHUTTE, B. GOGGEL, AND U. MAIRE Buhler Inc. Minneapolis, Minnesota INTRODUCfION Wastes Processed Bio-wastes are predominantly those wastes which are disposed of in the kitchen and are collected separately from the rest

Columbia University

98

Oak Ridge National Laboratory TRU Waste Processing Center Tank Waste Processing Supernate Processing System  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TRU Waste Processing Center TRU Waste Processing Center ORNL TRU Waste Processing Center Tank Waste Processing Supernate (SN) Processing System Presented by Don F. Gagel Vice President and Chief Technology Officer EnergX LLC ORNL TRU Waste Processing Center 1/21/09 2 SRS Technology Transfer, ORNL SN Process Overview SN Process Facility ORNL TRU Waste Processing Center 3 Waste Concentration Using Evaporator Evaporator Concentrates Waste Vapor stream superheated and HEPA-filtered Vapor stream exhausted to main ventilation system Supernate Pump and Evaporator Discharge Pump circulate waste between selected tank and evaporator during concentration. Evaporator Discharge Pump Supernate Pump Supernate Tank Evaporator Exhaust Blower ORNL TRU Waste Processing Center 4 Tank Sampling/ Transfer To Dryer Tank

99

Analyses by the Defense Waste Processing Facility Laboratory of Thorium Glasses from the Sludge Batch 6 Variability Study  

Science Conference Proceedings (OSTI)

The Savannah River Remediation (SRR) Defense Waste Processing Facility (DWPF) is currently processing Sludge Batch 6 (SB6) with Frit 418. At times during the processing of this glass system, thorium is expected to be at concentrations in the final wasteform that make it a reportable element for the first time since startup of radioactive operations at the DWPF. The Savannah River National Laboratory (SRNL) supported the qualification of the processing of this glass system at the DWPF. A recommendation from the SRNL studies was the need for the DWPF Laboratory to establish a method to measure thorium by Inductively Coupled Plasma - Atomic Emission Spectroscopy (ICPAES). This recommendation led to the set of thorium-bearing glasses from the SB6 Variability Study (VS) being submitted to the DWPF Laboratory for chemical composition measurement. The measurements were conducted by the DWPF Laboratory using the sodium peroxide fusion preparation method routinely employed for analysis of samples from the Slurry Mix Evaporator (SME). These measurements are presented and reviewed in this report. The review indicates that the measurements provided by the DWPF Laboratory are comparable to those provided by Analytical Development's laboratory at SRNL for these same glasses. As a result, the authors of this report recommend that the DWPF Laboratory begin using its routine peroxide fusion dissolution method for the measurement of thorium in SME samples of SB6. The purpose of this technical report is to present the measurements generated by the DWPF Laboratory for the SB6 VS glasses and to compare the measurements to the targeted compositions for these VS glasses as well as to SRNL's measurements (both sets, targeted and measured, of compositional values were reported by SRNL in [2]). The goal of these comparisons is to provide information that will lead to the qualification of peroxide fusion dissolution as a method for the measurement by the DWPF Laboratory of thorium in SME glass samples.

Edwards, T.; Click, D.; Feller, M.

2011-02-28T23:59:59.000Z

100

Kent County Waste to Energy Facility Biomass Facility | Open Energy  

Open Energy Info (EERE)

Kent County Waste to Energy Facility Biomass Facility Kent County Waste to Energy Facility Biomass Facility Jump to: navigation, search Name Kent County Waste to Energy Facility Biomass Facility Facility Kent County Waste to Energy Facility Sector Biomass Facility Type Municipal Solid Waste Location Kent County, Michigan Coordinates 43.0097027°, -85.520024° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0097027,"lon":-85.520024,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "waste processing facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Solid Waste Regulation No. 8 - Solid Waste Composting Facilities (Rhode  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regulation No. 8 - Solid Waste Composting Facilities Regulation No. 8 - Solid Waste Composting Facilities (Rhode Island) Solid Waste Regulation No. 8 - Solid Waste Composting Facilities (Rhode Island) < Back Eligibility Commercial Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Rhode Island Program Type Environmental Regulations Provider Department of Environmental Management Facilities which compost putrescible waste and/or leaf and yard waste are subject to these regulations. The regulations establish permitting, registration, and operational requirements for composting facilities. Operational requirements for putrescible waste facilities include siting, distance, and buffer requirements, as well as standards for avoiding harm to endangered species and contamination of air and water sources. Specific

102

High level waste facilities -- Continuing operation or orderly shutdown  

SciTech Connect

Two options for Environmental Impact Statement No action alternatives describe operation of the radioactive liquid waste facilities at the Idaho Chemical Processing Plant at the Idaho National Engineering and Environmental Laboratory. The first alternative describes continued operation of all facilities as planned and budgeted through 2020. Institutional control for 100 years would follow shutdown of operational facilities. Alternatively, the facilities would be shut down in an orderly fashion without completing planned activities. The facilities and associated operations are described. Remaining sodium bearing liquid waste will be converted to solid calcine in the New Waste Calcining Facility (NWCF) or will be left in the waste tanks. The calcine solids will be stored in the existing Calcine Solids Storage Facilities (CSSF). Regulatory and cost impacts are discussed.

Decker, L.A.

1998-04-01T23:59:59.000Z

103

Waste minimization plan, T plant facilities  

SciTech Connect

This document contains the waste minimization plan for the T Plant facilities, located in the 200 West Area of the Hanford Site in south central Washington State. A waste minimization plan is one part of a multi-faceted waste management program; this waste minimization plan documents the goals and techniques of the waste minimization program, identifies methods for evaluating the program and ensuring quality assurance, and establishes the current baseline waste generation volume estimates.

Kover, K.K.

1997-01-01T23:59:59.000Z

104

Summary - WTP HLW Waste Vitrification Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

W W HLW W DOE is Immob site's t facilitie Facility to iden the HL to be i norma The as along w Level ( * H * H * H Sy * Pu D The Ele Site: H roject: W Report Date: M ited States Waste T Why DOE Waste Vitrificatio s constructing bilization Plant tank wastes. T es including a H y (HLW). The ntify the critical LW and determ ncorporated in ally requires a T What th ssessment team with each elem (TRL) for the H LW Melter Fee LW Melter Pro LW Melter Offg ystem/Process ulse Jet Mixer isposal System To view the full T http://www.em.doe. objective of a Tech ements (CTEs), usin Hanford/ORP Waste Treatme March 2007 Departmen Treatmen W E-EM Did This n Facility a Waste Treat (WTP) at Hanf The WTP is com High-Level Wa purpose of this technology ele mine if these are to the final WT Technology Re he TRA Team m identified the

105

Environmental Management Waste Management Facility (EMWMF) at...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Skip to main content Energy.gov Office of Environmental Management Search form Search Office of Environmental Management Services Waste Management Site & Facility Restoration...

106

Massachusetts Hazardous Waste Facility Siting Act (Massachusetts) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Massachusetts Hazardous Waste Facility Siting Act (Massachusetts) Massachusetts Hazardous Waste Facility Siting Act (Massachusetts) Massachusetts Hazardous Waste Facility Siting Act (Massachusetts) < Back Eligibility Commercial Fed. Government Fuel Distributor Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Tribal Government Utility Program Info State Massachusetts Program Type Siting and Permitting Provider Department of Environmental Protection This Act establishes the means by which developers of proposed hazardous waste facilities will work with the community in which they wish to construct a facility. When the intent to construct, maintain, and/or operate a hazardous waste facility in a city or town is demonstrated, a local assessment committee will be established by that community. The

107

Municipal waste processing apparatus  

DOE Patents (OSTI)

This invention relates to apparatus for processing municipal waste, and more particularly to vibrating mesh screen conveyor systems for removing grit, glass, and other noncombustible materials from dry municipal waste. Municipal waste must be properly processed and disposed of so that it does not create health risks to the community. Generally, municipal waste, which may be collected in garbage trucks, dumpsters, or the like, is deposited in processing areas such as landfills. Land and environmental controls imposed on landfill operators by governmental bodies have increased in recent years, however, making landfill disposal of solid waste materials more expensive. 6 figs.

Mayberry, J.L.

1988-04-13T23:59:59.000Z

108

Waste Management Facilities Cost Information Report  

Science Conference Proceedings (OSTI)

The Waste Management Facility Cost Information (WMFCI) Report, commissioned by the US Department of Energy (DOE), develops planning life-cycle cost (PLCC) estimates for treatment, storage, and disposal facilities. This report contains PLCC estimates versus capacity for 26 different facility cost modules. A procedure to guide DOE and its contractor personnel in the use of estimating data is also provided. Estimates in the report apply to five distinctive waste streams: low-level waste, low-level mixed waste, alpha contaminated low-level waste, alpha contaminated low-level mixed waste, and transuranic waste. The report addresses five different treatment types: incineration, metal/melting and recovery, shredder/compaction, solidification, and vitrification. Data in this report allows the user to develop PLCC estimates for various waste management options.

Feizollahi, F.; Shropshire, D.

1992-10-01T23:59:59.000Z

109

Method for processing aqueous wastes  

DOE Patents (OSTI)

This invention is comprised of a method for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply.

Pickett, J.B.; Martin, H.L.; Langton, C.A.; Harley, W.W.

1992-12-31T23:59:59.000Z

110

Method for processing aqueous wastes  

DOE Patents (OSTI)

A method is presented for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply. 4 figures.

Pickett, J.B.; Martin, H.L.; Langton, C.A.; Harley, W.W.

1993-12-28T23:59:59.000Z

111

Method for processing aqueous wastes  

DOE Patents (OSTI)

A method for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply.

Pickett, John B. (3922 Wood Valley Dr., Aiken, SC 29803); Martin, Hollis L. (Rt. 1, Box 188KB, McCormick, SC 29835); Langton, Christine A. (455 Sumter St. SE., Aiken, SC 29801); Harley, Willie W. (110 Fairchild St., Batesburg, SC 29006)

1993-01-01T23:59:59.000Z

112

Waste Calcining Facility remote inspection report  

SciTech Connect

The purpose of the Waste Calcining Facility (WCF) remote inspections was to evaluate areas in the facility which are difficult to access due to high radiation fields. The areas inspected were the ventilation exhaust duct, waste hold cell, adsorber manifold cell, off-gas cell, calciner cell and calciner vessel. The WCF solidified acidic, high-level mixed waste generated during nuclear fuel reprocessing. Solidification was accomplished through high temperature oxidation and evaporation. Since its shutdown in 1981, the WCFs vessels, piping systems, pumps, off-gas blowers and process cells have remained contaminated. Access to the below-grade areas is limited due to contamination and high radiation fields. Each inspection technique was tested with a mock-up in a radiologically clean area before the equipment was taken to the WCF for the actual inspection. During the inspections, essential information was obtained regarding the cleanliness, structural integrity, in-leakage of ground water, indications of process leaks, indications of corrosion, radiation levels and the general condition of the cells and equipment. In general, the cells contain a great deal of dust and debris, as well as hand tools, piping and miscellaneous equipment. Although the building appears to be structurally sound, the paint is peeling to some degree in all of the cells. Cracking and spalling of the concrete walls is evident in every cell, although the east wall of the off-gas cell is the worst. The results of the completed inspections and lessons learned will be used to plan future activities for stabilization and deactivation of the facility. Remote clean-up of loose piping, hand tools, and miscellaneous debris can start immediately while information from the inspections is factored into the conceptual design for deactivating the facility.

Patterson, M.W.; Ison, W.M.

1994-08-01T23:59:59.000Z

113

Screening study for waste biomass to ethanol production facility using the Amoco process in New York State. Appendices to the final report  

DOE Green Energy (OSTI)

The final report evaluates the economic feasibility of locating biomass-to-ethanol waste conversion facilities in New York State. Part 1 of the study evaluates 74 potential sites in New York City and identifies two preferred sites on Staten Island, the Proctor and Gamble and the Arthur Kill sites for further consideration. Part 2 evaluates upstate New York and determines that four regions surrounding the urban centers of Albany, Buffalo, Rochester, and Syracuse provide suitable areas from which to select specific sites for further consideration. A conceptual design and economic viability evaluation were developed for a minimum-size facility capable of processing 500 tons per day (tpd) of biomass consisting of wood or paper, or a combination of the two for upstate regions. The facility would use Amoco`s biomass conversion technology and produce 49,000 gallons per day of ethanol and approximately 300 tpd of lignin solid by-product. For New York City, a 1,000-tpd processing facility was also evaluated to examine effects of economies of scale. The reports evaluate the feasibility of building a biomass conversion facility in terms of city and state economic, environmental, and community factors. Given the data obtained to date, including changing costs for feedstock and ethanol, the project is marginally attractive. A facility should be as large as possible and located in a New York State Economic Development Zone to take advantage of economic incentives. The facility should have on-site oxidation capabilities, which will make it more financially viable given the high cost of energy. This appendix to the final report provides supplemental material supporting the evaluations.

NONE

1995-08-01T23:59:59.000Z

114

Environmental assessment operation of the HB-Line facility and frame waste recovery process for production of Pu-238 oxide at the Savannah River Site  

SciTech Connect

The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0948, addressing future operations of the HB-Line facility and the Frame Waste Recovery process at the Savannah River Site (SRS), near Aiken, South Carolina. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, DOE has concluded that, the preparation of an environmental impact statement is not required, and is issuing this Finding of No Significant Impact.

NONE

1995-04-01T23:59:59.000Z

115

Hazardous Waste Facilities Siting (Connecticut) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facilities Siting (Connecticut) Facilities Siting (Connecticut) Hazardous Waste Facilities Siting (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Connecticut Program Type Siting and Permitting Provider Department of Energy and Environmental Protection These regulations describe the siting and permitting process for hazardous waste facilities and reference rules for construction, operation, closure,

116

Final Hanford Offsite Waste Shipment Leaves Idaho Treatment Facility...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Final Hanford Offsite Waste Shipment Leaves Idaho Treatment Facility Final Hanford Offsite Waste Shipment Leaves Idaho Treatment Facility August 18, 2011 - 12:00pm Addthis Idaho...

117

Idaho Waste Treatment Facility Improves Worker Safety and Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment Facility Improves Worker Safety and Efficiency, Saves Taxpayer Dollars Idaho Waste Treatment Facility Improves Worker Safety and Efficiency, Saves Taxpayer Dollars...

118

Liquid waste certification plan 340 waste handling facility  

Science Conference Proceedings (OSTI)

This document addresses the discharges from the 340 Facility to the 300 Area Process Sewer and Retention Process Sewer.

HALGREN, D.L.

1999-04-21T23:59:59.000Z

119

Certification plan transuranic waste: Hazardous Waste Handling Facility  

SciTech Connect

The purpose of this plan is to describe the organization and methodology for the certification of transuranic (TRU) waste handled in the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory (LBL). The plan incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Quality Assurance Implementing Management Plan (QAIMP) for the HWBF; and a list of the current and planned implementing procedures used in waste certification.

1992-06-01T23:59:59.000Z

120

Mixed and Low-Level Waste Treatment Facility project  

SciTech Connect

Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. The engineering studies, initiated in July 1991, identified 37 mixed waste streams, and 55 low-level waste streams. This report documents the waste stream information and potential treatment strategies, as well as the regulatory requirements for the Department of Energy-owned treatment facility option. The total report comprises three volumes and two appendices. This report consists of Volume 1, which explains the overall program mission, the guiding assumptions for the engineering studies, and summarizes the waste stream and regulatory information, and Volume 2, the Waste Stream Technical Summary which, encompasses the studies conducted to identify the INEL's waste streams and their potential treatment strategies.

1992-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste processing facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Advanced Mixed Waste Treatment: Results of Mixed Waste Treatment at the M-4 Facility  

Science Conference Proceedings (OSTI)

Processing alternatives for commercial nuclear plant mixed wastes are limited. In order to expand potential treatment options, EPRI entered a collaborative research agreement to process mixed wastes at an environmental facility. This report documents the success of that effort to date.

1997-12-31T23:59:59.000Z

122

D11 WASTE DISPOSAL FACILITIES FOR TRANSURANIC WASTE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10 CFR Ch. X (1-1-12 Edition) Pt. 1022 D11 WASTE DISPOSAL FACILITIES FOR TRANSURANIC WASTE Siting, construction or expansion, and op- eration of disposal facilities for transuranic (TRU) waste and TRU mixed waste (TRU waste also containing hazardous waste as designated in 40 CFR part 261). D12 INCINERATORS Siting, construction, and operation of in- cinerators, other than research and develop- ment incinerators or incinerators for non- hazardous solid waste (as designated in 40 CFR 261.4(b)). PART 1022-COMPLIANCE WITH FLOODPLAIN AND WETLAND EN- VIRONMENTAL REVIEW REQUIRE- MENTS Subpart A-General Sec. 1022.1 Background. 1022.2 Purpose and scope. 1022.3 Policy. 1022.4 Definitions. 1022.5 Applicability. 1022.6 Public inquiries. Subpart B-Procedures for Floodplain and

123

Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility  

Science Conference Proceedings (OSTI)

The 200 Area Effluent Treatment Facility Dangerous Waste Permit Application documentation consists of both Part A and a Part B permit application documentation. An explanation of the Part A revisions associated with this treatment and storage unit, including the current revision, is provided at the beginning of the Part A section. Once the initial Hanford Facility Dangerous Waste Permit is issued, the following process will be used. As final, certified treatment, storage, and/or disposal unit-specific documents are developed, and completeness notifications are made by the US Environmental Protection Agency and the Washington State Department of Ecology, additional unit-specific permit conditions will be incorporated into the Hanford Facility Dangerous Waste Permit through the permit modification process. All treatment, storage, and/or disposal units that are included in the Hanford Facility Dangerous Waste Permit Application will operate under interim status until final status conditions for these units are incorporated into the Hanford Facility Dangerous Waste Permit. The Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility contains information current as of May 1, 1993.

Not Available

1993-08-01T23:59:59.000Z

124

Waste Treatment Facility Saves Taxpayers Nearly $20 Million | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment Facility Saves Taxpayers Nearly $20 Million Waste Treatment Facility Saves Taxpayers Nearly $20 Million Waste Treatment Facility Saves Taxpayers Nearly $20 Million December 11, 2012 - 1:40pm Addthis A new enclosure for processing radioactive casks has put Oak Ridge on a path to finishing cleanup work two years ahead of schedule, saving nearly $20 million. | Photo courtesy of the Office of Environmental Management. A new enclosure for processing radioactive casks has put Oak Ridge on a path to finishing cleanup work two years ahead of schedule, saving nearly $20 million. | Photo courtesy of the Office of Environmental Management. Erin Szulman Erin Szulman Special Assistant, Office of Environmental Management What Are The Two Types of Waste? One is contact-handled, which has lower radioactivity and can be

125

Waste Treatment Facility Saves Taxpayers Nearly $20 Million | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment Facility Saves Taxpayers Nearly $20 Million Waste Treatment Facility Saves Taxpayers Nearly $20 Million Waste Treatment Facility Saves Taxpayers Nearly $20 Million December 11, 2012 - 1:40pm Addthis A new enclosure for processing radioactive casks has put Oak Ridge on a path to finishing cleanup work two years ahead of schedule, saving nearly $20 million. | Photo courtesy of the Office of Environmental Management. A new enclosure for processing radioactive casks has put Oak Ridge on a path to finishing cleanup work two years ahead of schedule, saving nearly $20 million. | Photo courtesy of the Office of Environmental Management. Erin Szulman Erin Szulman Special Assistant, Office of Environmental Management What Are The Two Types of Waste? One is contact-handled, which has lower radioactivity and can be

126

Certification Plan, Radioactive Mixed Waste Hazardous Waste Handling Facility  

SciTech Connect

The purpose of this plan is to describe the organization and methodology for the certification of radioactive mixed waste (RMW) handled in the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory (LBL). RMW is low-level radioactive waste (LLW) or transuranic (TRU) waste that is co-contaminated with dangerous waste as defined in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and the Washington State Dangerous Waste Regulations, 173-303-040 (18). This waste is to be transferred to the Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington. This plan incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF (Section 4); and a list of the current and planned implementing procedures used in waste certification.

Albert, R.

1992-06-30T23:59:59.000Z

127

Waste Encapsulation Storage Facility, January 2011  

NLE Websites -- All DOE Office Websites (Extended Search)

February 11, 2011 February 11, 2011 Site Visit Report Waste Encapsulation Storage Facility, January 2011 INTRODUCTION This report documents the results of a review conducted by the Office of Health, Safety and Security (HSS) of the Waste Encapsulation Storage Facility (WESF) documented safety analysis (DSA) at the Hanford Site. During discussions with the U.S. Department of Energy Richland Operations Office (DOE- RL), the review of WESF was jointly selected by HSS and DOE-RL based on the high hazards of the facility and the need to periodically evaluate the facility and DSA by independent reviewers. SCOPE The scope of the review was to evaluate the WESF safety and support systems in detecting, preventing and mitigating analyzed events as described in the facility's DSA, PRC-EDC-10-45190, 2010, Executive

128

Waste Encapsulation Storage Facility, January 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 11, 2011 February 11, 2011 Site Visit Report Waste Encapsulation Storage Facility, January 2011 INTRODUCTION This report documents the results of a review conducted by the Office of Health, Safety and Security (HSS) of the Waste Encapsulation Storage Facility (WESF) documented safety analysis (DSA) at the Hanford Site. During discussions with the U.S. Department of Energy Richland Operations Office (DOE- RL), the review of WESF was jointly selected by HSS and DOE-RL based on the high hazards of the facility and the need to periodically evaluate the facility and DSA by independent reviewers. SCOPE The scope of the review was to evaluate the WESF safety and support systems in detecting, preventing and mitigating analyzed events as described in the facility's DSA, PRC-EDC-10-45190, 2010, Executive

129

WIPP Hazardous Waste Facility Permit - 2008 Update  

Science Conference Proceedings (OSTI)

Important new changes to the Hazardous Waste Facility Permit (HWFP) were implemented during 2007. The challenge was to implement these changes without impacting shipping schedules. Many of the changes required advanced preparation and coordination in order to transition to the new waste analysis paradigm, both at the generator sites and at the WIPP without interrupting the flow of waste to the disposal facility. Not only did aspects of waste characterization change, but also a new Permittees' confirmation program was created. Implementing the latter change required that new equipment and facilities be obtained, personnel hired, trained and qualified, and operating procedures written and approved without interruption to the contact-handled (CH) transuranic (TRU) waste shipping schedule. This was all accomplished successfully with no delayed or cancelled shipments. Looking forward to 2008 and beyond, proposed changes that will deal with waste in the DOE TRU waste complex is larger than the TRUPACT-IIs can handle. Size reduction of the waste would lead to unnecessary exposure risk and ultimately create more waste. The WIPP is working to have the Nuclear Regulatory Commission (NRC) certify the TRUPACT-III. The TRUPACT-III will be able to accommodate larger sized TRU mixed waste. Along with this new NRC-certified shipping cask, a new disposal container, the Standard Large Box, must be proposed in a permit modification. Containers for disposal of TRU mixed waste at the WIPP must meet the DOT 7A standards and be filtered. Additionally, as the TRUPACT-III/Standard Large Box loads and unloads from the end of the shipping cask, the proposed modification will add horizontal waste handling techniques to WIPP's vertical CH TRU waste handling operations. Another major focus will be the Hazardous Waste Facility Permit reapplication. The WIPP received its HWFP in October of 1999 for a term of ten years. The regulations and the HWFP require that a new permit application be submitted 180-days before the expiration date of the HWFP. At that time, the WIPP will request only one significant change, the permitting of Panel 8 to receive TRU mixed waste. (author)

Kehrman, R.F.; Most, W.A. [Washington Regulatory and Environmental Services, Carlsbad, New Mexico (United States)

2008-07-01T23:59:59.000Z

130

Waste Treatment and Immobilation Plant HLW Waste Vitrification Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 6 Technology Readiness Assessment for the Waste Treatment and Immobilization Plant (WTP) HLW Waste Vitrification Facility L. Holton D. Alexander C. Babel H. Sutter J. Young August 2007 Prepared by the U.S. Department of Energy Office of River Protection Richland, Washington, 99352 07-DESIGN-046 Technology Readiness Assessment for the Waste Treatment and Immobilization Plant (WTP) HLW Waste Vitrification Facility L. Holton D. Alexander C. Babel H. Sutter J. Young August 2007 Prepared by the U.S. Department of Energy Office of River Protection under Contract DE-AC05-76RL01830 07-DESIGN-046 iii Summary The U.S. Department of Energy (DOE), Office of River Protection (ORP) and the DOE Office of Environmental and Radioactive Waste Management (EM), Office of Project Recovery have completed a

131

Idaho Waste Retrieval Facility Begins New Role | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho Waste Retrieval Facility Begins New Role Idaho Waste Retrieval Facility Begins New Role Idaho Waste Retrieval Facility Begins New Role December 27, 2012 - 12:00pm Addthis Idaho Waste Retrieval Facility Begins New Role A waste retrieval facility constructed over a former buried radioactive waste disposal cell known as Pit 9 at the Idaho site has been repurposed for treating 6,000 drums of sludge waste left over from the Cold War weapons program. A waste retrieval facility constructed over a former buried radioactive waste disposal cell known as Pit 9 at the Idaho site has been repurposed for treating 6,000 drums of sludge waste left over from the Cold War weapons program. Workers review procedure for the sludge repack project. Workers review procedure for the sludge repack project. Idaho Waste Retrieval Facility Begins New Role

132

EVALUATION OF THE IMPACT OF THE DEFENSE WASTE PROCESSING FACILITY (DWPF) LABORATORY GERMANIUM OXIDE USE ON RECYCLE TRANSFERS TO THE H-TANK FARM  

SciTech Connect

When processing High Level Waste (HLW) glass, the Defense Waste Processing Facility (DWPF) cannot wait until the melt or waste glass has been made to assess its acceptability, since by then no further changes to the glass composition and acceptability are possible. Therefore, the acceptability decision is made on the upstream feed stream, rather than on the downstream melt or glass product. This strategy is known as 'feed forward statistical process control.' The DWPF depends on chemical analysis of the feed streams from the Sludge Receipt and Adjustment Tank (SRAT) and the Slurry Mix Evaporator (SME) where the frit plus adjusted sludge from the SRAT are mixed. The SME is the last vessel in which any chemical adjustments or frit additions can be made. Once the analyses of the SME product are deemed acceptable, the SME product is transferred to the Melter Feed Tank (MFT) and onto the melter. The SRAT and SME analyses have been analyzed by the DWPF laboratory using a 'Cold Chemical' method but this dissolution did not adequately dissolve all the elemental components. A new dissolution method which fuses the SRAT or SME product with cesium nitrate (CsNO{sub 3}), germanium (IV) oxide (GeO{sub 2}) and cesium carbonate (Cs{sub 2}CO{sub 3}) into a cesium germanate glass at 1050 C in platinum crucibles has been developed. Once the germanium glass is formed in that fusion, it is readily dissolved by concentrated nitric acid (about 1M) to solubilize all the elements in the SRAT and/or SME product for elemental analysis. When the chemical analyses are completed the acidic cesium-germanate solution is transferred from the DWPF analytic laboratory to the Recycle Collection Tank (RCT) where the pH is increased to {approx}12 M to be released back to the tank farm and the 2H evaporator. Therefore, about 2.5 kg/yr of GeO{sub 2}/year will be diluted into 1.4 million gallons of recycle. This 2.5 kg/yr of GeO{sub 2} may increase to 4 kg/yr when improvements are implemented to attain an annual canister production goal of 400 canisters. Since no Waste Acceptance Criteria (WAC) exists for germanium in the Tank Farm, the Effluent Treatment Project, or the Saltstone Production Facility, DWPF has requested an evaluation of the fate of the germanium in the caustic environment of the RCT, the 2H evaporator, and the tank farm. This report evaluates the effect of the addition of germanium to the tank farm based on: (1) the large dilution of Ge in the RCT and tank farm; (2) the solubility of germanium in caustic solutions (pH 12-13); (3) the potential of germanium to precipitate as germanium sodalites in the 2H Evaporator; and (4) the potential of germanium compounds to precipitate in the evaporator feed tank. This study concludes that the impacts of transferring up to 4 kg/yr germanium to the RCT (and subsequently the 2H evaporator feed tank and the 2H evaporator) results in <2 ppm per year (1.834 mg/L) which is the maximum instantaneous concentration expected from DWPF. This concentration is insignificant as most sodium germanates are soluble at the high pH of the feed tank and evaporator solutions. Even if sodium aluminosilicates form in the 2H evaporator, the Ge will likely substitute for some small amount of the Si in these structures and will be insignificant. It is recommended that the DWPF continue with their strategy to add germanium as a laboratory chemical to Attachment 8.2 of the DWPF Waste Compliance Plan (WCP).

Jantzen, C.; Laurinat, J.

2011-08-15T23:59:59.000Z

133

Idaho Waste Treatment Facility Startup Testing Suspended To Evaluate...  

NLE Websites -- All DOE Office Websites (Extended Search)

Idaho Waste Treatment Facility Startup Testing Suspended To Evaluate System IDAHO FALLS, ID- On Saturday, June 16, startup testing was suspended at the Integrated Waste Treatment...

134

Low-level radioactive waste disposal facility closure  

Science Conference Proceedings (OSTI)

Part I of this report describes and evaluates potential impacts associated with changes in environmental conditions on a low-level radioactive waste disposal site over a long period of time. Ecological processes are discussed and baselines are established consistent with their potential for causing a significant impact to low-level radioactive waste facility. A variety of factors that might disrupt or act on long-term predictions are evaluated including biological, chemical, and physical phenomena of both natural and anthropogenic origin. These factors are then applied to six existing, yet very different, low-level radioactive waste sites. A summary and recommendations for future site characterization and monitoring activities is given for application to potential and existing sites. Part II of this report contains guidance on the design and implementation of a performance monitoring program for low-level radioactive waste disposal facilities. A monitoring programs is described that will assess whether engineered barriers surrounding the waste are effectively isolating the waste and will continue to isolate the waste by remaining structurally stable. Monitoring techniques and instruments are discussed relative to their ability to measure (a) parameters directly related to water movement though engineered barriers, (b) parameters directly related to the structural stability of engineered barriers, and (c) parameters that characterize external or internal conditions that may cause physical changes leading to enhanced water movement or compromises in stability. Data interpretation leading to decisions concerning facility closure is discussed. 120 refs., 12 figs., 17 tabs.

White, G.J.; Ferns, T.W.; Otis, M.D.; Marts, S.T.; DeHaan, M.S.; Schwaller, R.G.; White, G.J. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

1990-11-01T23:59:59.000Z

135

ENVIRONMENTAL ASSESSMENT FOR HAZARDOUS WASTE STAGING FACILITY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HAZARDOUS WASTE STAGING FACILITY HAZARDOUS WASTE STAGING FACILITY Project 39GF71024-GPDI21000000 . PANTEX PLANT AMARILLO, TEXAS DOE/EA-0688 JUNE 1993 MASTER DiSTRiBUTiON OF THIS DOCUMENT IS UNLIMITEI) ffrl TABLE OF CONTENTS Section Page 1.0 Need for Action 1 2.0 Description of Proposed Facility Action 3.0 Location of the Action 8 4.0 Alternatives to Proposed Action 9 4.1 No Action 9 4.2 Redesign and Modify Existing staging Facilities 9 4.3 Use Other Existing Space at Pantex Plant 9 4.4 Use Temporary Structures 9 4.5 Stage Waste at Other Sites 10 4.6 Stage Wastes Separately 10 5.0 Environmental Impacts of Proposed Action 10 5.1 Archeology 10 5.2 FloodplainlW etlands 10 5.3 Threatened and Endangered Species 10 5.4 Surrounding La,nd Use 11 5.5 Construction 11 5.6 Air Emissions 11

136

Mixed and Low-Level Waste Treatment Facility project  

SciTech Connect

Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report, Appendix A, Environmental Regulatory Planning Documentation, identifies the regulatory requirements that would be imposed on the operation or construction of a facility designed to process the INEL's waste streams. These requirements are contained in five reports that discuss the following topics: (1) an environmental compliance plan and schedule, (2) National Environmental Policy Act requirements, (3) preliminary siting requirements, (4) regulatory justification for the project, and (5) health and safety criteria.

1992-04-01T23:59:59.000Z

137

Idaho Waste Retrieval Facility Begins New Role | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Retrieval Facility Begins New Role Retrieval Facility Begins New Role Idaho Waste Retrieval Facility Begins New Role December 27, 2012 - 12:00pm Addthis Idaho Waste Retrieval Facility Begins New Role A waste retrieval facility constructed over a former buried radioactive waste disposal cell known as Pit 9 at the Idaho site has been repurposed for treating 6,000 drums of sludge waste left over from the Cold War weapons program. A waste retrieval facility constructed over a former buried radioactive waste disposal cell known as Pit 9 at the Idaho site has been repurposed for treating 6,000 drums of sludge waste left over from the Cold War weapons program. Workers review procedure for the sludge repack project. Workers review procedure for the sludge repack project. Idaho Waste Retrieval Facility Begins New Role

138

The necessity for permanence : making a nuclear waste storage facility  

E-Print Network (OSTI)

The United States Department of Energy is proposing to build a nuclear waste storage facility in southern Nevada. This facility will be designed to last 10,000 years. It must prevent the waste from contaminating the ...

Stupay, Robert Irving

1991-01-01T23:59:59.000Z

139

WIPP Facility Work Plan for Solid Waste Management Units  

Science Conference Proceedings (OSTI)

This 2001 Facility Work Plan (FWP) has been prepared as required by Module VII, Section VII.M.1 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit, NM4890139088-TSDF (the Permit); (NMED, 1999a), and incorporates comments from the New Mexico Environment Department (NMED) received on December 6, 2000 (NMED, 2000a). This February 2001 FWP describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) specified in the Permit. The permittees are evaluating data from previous investigations of the SWMUs and AOCs against the newest guidance proposed by the NMED. Based on these data, the permittees expect that no further sampling will be required and that a request for No Further Action (NFA) at the SWMUs and AOCs will be submitted to the NMED. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a Facility to exit the schedule of compliance contained in the Facilitys Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can be entered either before or after an RFI Work Plan. According to the NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit.

Washington TRU Solutions LLC

2001-02-25T23:59:59.000Z

140

Maintenance Guide for DOE Low-Level Waste Disposal Facility  

Energy.gov (U.S. Department of Energy (DOE))

Maintenance Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Performance Assessments and Composite Analyses

Note: This page contains sample records for the topic "waste processing facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Advanced Polymer Processing Facility  

Science Conference Proceedings (OSTI)

Some conclusions of this presentation are: (1) Radiation-assisted nanotechnology applications will continue to grow; (2) The APPF will provide a unique focus for radiolytic processing of nanomaterials in support of DOE-DP, other DOE and advanced manufacturing initiatives; (3) {gamma}, X-ray, e-beam and ion beam processing will increasingly be applied for 'green' manufacturing of nanomaterials and nanocomposites; and (4) Biomedical science and engineering may ultimately be the biggest application area for radiation-assisted nanotechnology development.

Muenchausen, Ross E. [Los Alamos National Laboratory

2012-07-25T23:59:59.000Z

142

PROCESSING OF RADIOACTIVE WASTE  

DOE Patents (OSTI)

A process for treating radioactive waste solutions prior to disposal is described. A water-soluble phosphate, borate, and/or silicate is added. The solution is sprayed with steam into a space heated from 325 to 400 deg C whereby a powder is formed. The powder is melted and calcined at from 800 to 1000 deg C. Water vapor and gaseous products are separated from the glass formed. (AEC)

Johnson, B.M. Jr.; Barton, G.B.

1961-11-14T23:59:59.000Z

143

Site-specific waste management instruction - radiological screening facility  

DOE Green Energy (OSTI)

This Site-Specific Waste Management Instruction provides guidance for managing waste generated from radiological sample screening operations conducted to support the Environmental Restoration Contractor`s activities. This document applies only to waste generated within the radiological screening facilities.

G. G. Hopkins

1997-12-31T23:59:59.000Z

144

The mixed waste management facility: Cost-benefit for the Mixed Waste Management Facility at Lawrence Livermore National Laboratory  

SciTech Connect

The Mixed Waste Management Facility, or MWMF, has been proposed as a national testbed facility for the demonstration and evaluation of technologies that are alternatives to incineration for the treatment of mixed low-level waste. The facility design will enable evaluation of technologies at pilot scale, including all aspects of the processes, from receiving and feed preparation to the preparation of final forms for disposal. The MWMF will reduce the risk of deploying such technologies by addressing the following: (1) Engineering development and scale-up. (2) Process integration and activation of the treatment systems. (3) Permitting and stakeholder issues. In light of the severe financial constraints imposed on the DOE and federal programs, DOE/HQ requested a study to assess the cost benefit for the MWMF given other potential alternatives to meet waste treatment needs. The MVVMF Project was asked to consider alternatives specifically associated with commercialization and privatization of the DOE site waste treatment operations and the acceptability (or lack of acceptability) of incineration as a waste treatment process. The result of this study will be one of the key elements for a DOE decision on proceeding with the MWMF into Final Design (KD-2) vs. proceeding with other options.

Brinker, S.D.; Streit, R.D.

1996-04-01T23:59:59.000Z

145

Idaho Site Launches Startup of Waste Treatment Facility Following Federal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Launches Startup of Waste Treatment Facility Following Launches Startup of Waste Treatment Facility Following Federal Inspection, DOE Milestone Idaho Site Launches Startup of Waste Treatment Facility Following Federal Inspection, DOE Milestone April 23, 2012 - 12:00pm Addthis A controlled, phased startup of the Integrated Waste Treatment Unit began today after the facility passed a federal inspection. A controlled, phased startup of the Integrated Waste Treatment Unit began today after the facility passed a federal inspection. A view of the interior of the Integrated Waste Treatment Unit. A view of the interior of the Integrated Waste Treatment Unit. A controlled, phased startup of the Integrated Waste Treatment Unit began today after the facility passed a federal inspection. A view of the interior of the Integrated Waste

146

Idaho Site Launches Startup of Waste Treatment Facility Following Federal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho Site Launches Startup of Waste Treatment Facility Following Idaho Site Launches Startup of Waste Treatment Facility Following Federal Inspection, DOE Milestone Idaho Site Launches Startup of Waste Treatment Facility Following Federal Inspection, DOE Milestone April 23, 2012 - 12:00pm Addthis A controlled, phased startup of the Integrated Waste Treatment Unit began today after the facility passed a federal inspection. A controlled, phased startup of the Integrated Waste Treatment Unit began today after the facility passed a federal inspection. A view of the interior of the Integrated Waste Treatment Unit. A view of the interior of the Integrated Waste Treatment Unit. A controlled, phased startup of the Integrated Waste Treatment Unit began today after the facility passed a federal inspection. A view of the interior of the Integrated Waste

147

Newly Generated Liquid Waste Processing Alternatives Study, Volume 1  

SciTech Connect

This report identifies and evaluates three options for treating newly generated liquid waste at the Idaho Nuclear Technology and Engineering Center of the Idaho National Engineering and Environmental Laboratory. The three options are: (a) treat the waste using processing facilities designed for treating sodium-bearing waste, (b) treat the waste using subcontractor-supplied mobile systems, or (c) treat the waste using a special facility designed and constructed for that purpose. In studying these options, engineers concluded that the best approach is to store the newly generated liquid waste until a sodium-bearing waste treatment facility is available and then to co-process the stored inventory of the newly generated waste with the sodium-bearing waste. After the sodium-bearing waste facility completes its mission, two paths are available. The newly generated liquid waste could be treated using the subcontractor-supplied system or the sodium-bearing waste facility or a portion of it. The final decision depends on the design of the sodium-bearing waste treatment facility, which will be completed in coming years.

Landman, William Henry; Bates, Steven Odum; Bonnema, Bruce Edward; Palmer, Stanley Leland; Podgorney, Anna Kristine; Walsh, Stephanie

2002-09-01T23:59:59.000Z

148

Waste Treatment and Immobilation Plant Pretreatment Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 7 Technology Readiness Assessment for the Waste Treatment and Immobilization Plant (WTP) Pretreatment Facility L. Holton D. Alexander M. Johnson H. Sutter August 2007 Prepared by the U.S. Department of Energy Office of River Protection Richland, Washington, 99352 07-DESIGN-047 Technology Readiness Assessment for the Waste Treatment and Immobilization Plant (WTP) Pretreatment Facilities L. Holton D. Alexander M. Johnson H. Sutter August 2007 Prepared by the U.S. Department of Energy Office of River Protection under Contract DE-AC05-76RL01830 07-DESIGN-047 iii Summary The U.S. Department of Energy (DOE), Office of River Protection (ORP) and the DOE Office of Environmental Management (EM), Office of Project Recovery has completed a Technology Readiness

149

Chapter 47 Solid Waste Facilities (Kentucky) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chapter 47 Solid Waste Facilities (Kentucky) Chapter 47 Solid Waste Facilities (Kentucky) Chapter 47 Solid Waste Facilities (Kentucky) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Kentucky Program Type Environmental Regulations Fees Siting and Permitting Provider Kentucky Division of Waste Management This chapter establishes the permitting standards for solid waste sites or facilities, the standards applicable to all solid waste sites or

150

Hanford Facility Annual Dangerous Waste Report Calendar Year 2002  

Science Conference Proceedings (OSTI)

Hanford CY 2002 dangerous waste generation and management forms. The Hanford Facility Annual Dangerous Waste Report (ADWR) is prepared to meet the requirements of Washington Administrative Code Sections 173-303-220, Generator Reporting, and 173-303-390, Facility Reporting. In addition, the ADWR is required to meet Hanford Facility RCRA Permit Condition I.E.22, Annual Reporting. The ADWR provides summary information on dangerous waste generation and management activities for the Calendar Year for the Hanford Facility EPA ID number assigned to the Department of Energy for RCRA regulated waste, as well as Washington State only designated waste and radioactive mixed waste. The Solid Waste Information and Tracking System (SWITS) database is utilized to collect and compile the large array of data needed for preparation of this report. Information includes details of waste generated on the Hanford Facility, waste generated offsite and sent to Hanford for management, and other waste management activities conducted at Hanford, including treatment, storage, and disposal. Report details consist of waste descriptions and weights, waste codes and designations, and waste handling codes. In addition, for waste shipped to Hanford for treatment and/or disposal, information on manifest numbers, the waste transporter, the waste receiving facility, and the original waste generators are included. In addition to paper copies, electronic copies of the report are also transmitted to the regulatory agency.

FREEMAN, D.A.

2003-02-01T23:59:59.000Z

151

WIPP Remote Handled Waste Facility: Performance Dry Run Operations  

SciTech Connect

The Remote Handled (RH) TRU Waste Handling Facility at the Waste Isolation Pilot Plant (WIPP) was recently upgraded and modified in preparation for handling and disposal of RH Transuranic (TRU) waste. This modification will allow processing of RH-TRU waste arriving at the WIPP site in two different types of shielded road casks, the RH-TRU 72B and the CNS 10-160B. Washington TRU Solutions (WTS), the WIPP Management and Operation Contractor (MOC), conducted a performance dry run (PDR), beginning August 19, 2002 and successfully completed it on August 24, 2002. The PDR demonstrated that the RHTRU waste handling system works as designed and demonstrated the handling process for each cask, including underground disposal. The purpose of the PDR was to develop and implement a plan that would define in general terms how the WIPP RH-TRU waste handling process would be conducted and evaluated. The PDR demonstrated WIPP operations and support activities required to dispose of RH-TRU waste in the WIPP underground.

Burrington, T. P.; Britain, R. M.; Cassingham, S. T.

2003-02-24T23:59:59.000Z

152

Criticality safety considerations for low-level-waste facilities  

SciTech Connect

The nuclear criticality safety for handling and burial of certain special nuclear materials (SNM) at low-level-waste (LLW) facilities is licensed by the US Nuclear Regulatory Commission (NRC). Recently, Oak Ridge National Laboratory (ORNL) staff assisted the NRC Office of Nuclear Material Safety and Safeguards, Low-Level-Waste and Decommissioning Projects Branch, in developing technical specifications for the nuclear criticality safety of {sup 235}U and {sup 235}Pu in LLW facilities. This assistance resulted in a set of nuclear criticality safety criteria that can be uniformly applied to the review of LLW package burial facility license applications. These criteria were developed through the coupling of the historic surface-density criterion with current computational technique to establish safety criteria considering SNM material form and reflector influences. This paper presents a summary of the approach used to establish and to apply the criteria to the licensing review process.

Hopper, C.M.

1995-04-01T23:59:59.000Z

153

Radioactive waste processing apparatus  

DOE Patents (OSTI)

Apparatus for use in processing radioactive waste materials for shipment and storage in solid form in a container is disclosed. The container includes a top, and an opening in the top which is smaller than the outer circumference of the container. The apparatus includes an enclosure into which the container is placed, solution feed apparatus for adding a solution containing radioactive waste materials into the container through the container opening, and at least one rotatable blade for blending the solution with a fixing agent such as cement or the like as the solution is added into the container. The blade is constructed so that it can pass through the opening in the top of the container. The rotational axis of the blade is displaced from the center of the blade so that after the blade passes through the opening, the blade and container can be adjusted so that one edge of the blade is adjacent the cylindrical wall of the container, to insure thorough mixing. When the blade is inside the container, a substantially sealed chamber is formed to contain vapors created by the chemical action of the waste solution and fixant, and vapors emanating through the opening in the container.

Nelson, Robert E. (Lombard, IL); Ziegler, Anton A. (Darien, IL); Serino, David F. (Maplewood, MN); Basnar, Paul J. (Western Springs, IL)

1987-01-01T23:59:59.000Z

154

Process Waste Assessment for the Diana Laser Laboratory  

SciTech Connect

This Process Waste Assessment was conducted to evaluate the Diana Laser Laboratory, located in the Combustion Research Facility. It documents the hazardous chemical waste streams generated by the laser process and establishes a baseline for future waste minimization efforts. This Process Waste Assessment will be reevaluated in approximately 18 to 24 months, after enough time has passed to implement recommendations and to compare results with the baseline established in this assessment.

Phillips, N.M.

1993-12-01T23:59:59.000Z

155

EA-0688: Hazardous Waste Staging Facility, Pantex Plant, Amarillo, Texas |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

688: Hazardous Waste Staging Facility, Pantex Plant, Amarillo, 688: Hazardous Waste Staging Facility, Pantex Plant, Amarillo, Texas EA-0688: Hazardous Waste Staging Facility, Pantex Plant, Amarillo, Texas SUMMARY This EA evaluates the environmental impacts of a proposal to construct the Hazardous Waste Staging Facility that would help to alleviate capacity problems as well as provide a single compliant facility to stage wastes at the U.S. Department of Energy's Pantex Plant in Amarillo, Texas. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD January 29, 1993 EA-0688: Finding of No Significant Impact Hazardous Waste Staging Facility, Pantex Plant, Amarillo, Texas January 29, 1993 EA-0688: Final Environmental Assessment Hazardous Waste Staging Facility, Pantex Plant, Amarillo, Texas

156

EM Opens New Waste Repackaging Facility at Laboratory | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Opens New Waste Repackaging Facility at Laboratory Opens New Waste Repackaging Facility at Laboratory EM Opens New Waste Repackaging Facility at Laboratory March 7, 2013 - 12:00pm Addthis A view of the new facility where transuranic waste will be repackaged at Los Alamos National Laboratory. A view of the new facility where transuranic waste will be repackaged at Los Alamos National Laboratory. EM Deputy Assistant Secretary for Waste Management Frank Marcinowski, left, talks with LANL’s Oversized Container Disposition Project Manager Mike Romero while on a tour of the 375 box line facility in late February. EM Deputy Assistant Secretary for Waste Management Frank Marcinowski, left, talks with LANL's Oversized Container Disposition Project Manager Mike Romero while on a tour of the 375 box line facility in late February.

157

PROCESSING OF RADIOACTIVE WASTE  

DOE Patents (OSTI)

A process for concentrating fission-product-containing waste solutions from fuel element processing is described. The process comprises the addition of sugar to the solution, preferably after it is made alkaline; spraying the solution into a heated space whereby a dry powder is formed; heating the powder to at least 220 deg C in the presence of oxygen whereby the powder ignites, the sugar is converted to carbon, and the salts are decomposed by the carbon; melting the powder at between 800 and 900 deg C; and cooling the melt. (AEC) antidiuretic hormone from the blood by the liver. Data are summarized from the following: tracer studies on cardiovascular functions; the determination of serum protein-bound iodine; urinary estrogen excretion in patients with arvanced metastatic mammary carcinoma; the relationship between alheroclerosis aad lipoproteins; the physical chemistry of lipoproteins; and factors that modify the effects of densely ionizing radia

Allemann, R.T.; Johnson, B.M. Jr.

1961-10-31T23:59:59.000Z

158

Municipal waste processing apparatus  

DOE Patents (OSTI)

Municipal waste materials are processed by crushing the materials so that pieces of noncombustible material are smaller than a selected size and pieces of combustible material are larger than the selected size. The crushed materials are placed on a vibrating mesh screen conveyor belt having openings which pass the smaller, noncombustible pieces of material, but do not pass the larger, combustible pieces of material. Pieces of material which become lodged in the openings of the conveyor belt may be removed by cylindrical deraggers or pressurized air. The crushed materials may be fed onto the conveyor belt by a vibrating feed plate which shakes the materials so that they tend to lie flat.

Mayberry, J.L.

1987-01-15T23:59:59.000Z

159

Municipal waste processing apparatus  

DOE Patents (OSTI)

Municipal waste materials are processed by crushing the materials so that pieces of noncombustible material are smaller than a selected size and pieces of combustible material are larger than the selected size. The crushed materials are placed on a vibrating mesh screen conveyor belt having openings which pass the smaller, noncombustible pieces of material, but do not pass the larger, combustible pieces of material. Pieces of material which become lodged in the openings of the conveyor belt may be removed by cylindrical deraggers or pressurized air. The crushed materials may be fed onto the conveyor belt by a vibrating feed plate which shakes the materials so that they tend to lie flat.

Mayberry, John L. (Idaho Falls, ID)

1988-01-01T23:59:59.000Z

160

Municipal waste processing apparatus  

DOE Patents (OSTI)

Municipal waste materials are processed by crushing the materials so that pieces of noncombustible material are smaller than a selected size and pieces of combustible material are larger than the selected size. The crushed materials are placed on a vibrating mesh screen conveyor belt having openings which pass the smaller, noncombustible pieces of material, but do not pass the larger, combustible pieces of material. Consecutive conveyors may be connected by an intermediate vibratory plate. An air knife can be used to further separate materials based on weight.

Mayberry, John L. (Idaho Falls, ID)

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste processing facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Savannah River Site Marks Waste Processing Milestone with Melter's  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marks Waste Processing Milestone with Marks Waste Processing Milestone with Melter's 2,000th Waste Canister Savannah River Site Marks Waste Processing Milestone with Melter's 2,000th Waste Canister February 1, 2012 - 12:00pm Addthis A Savannah River Remediation employee uses a manipulator located inside a shielded enclosure at the Defense Waste Processing Facility, where a melter pours molten glass into a canister. A Savannah River Remediation employee uses a manipulator located inside a shielded enclosure at the Defense Waste Processing Facility, where a melter pours molten glass into a canister. AIKEN, S.C. - The second melter to operate in the 16-year history of the nation's largest radioactive waste glassification plant shows no signs of slowing after recently pouring its 2,000 canister of glass-formed hazardous

162

Savannah River Site Marks Waste Processing Milestone with Melter's  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Site Marks Waste Processing Milestone with Savannah River Site Marks Waste Processing Milestone with Melter's 2,000th Waste Canister Savannah River Site Marks Waste Processing Milestone with Melter's 2,000th Waste Canister February 1, 2012 - 12:00pm Addthis A Savannah River Remediation employee uses a manipulator located inside a shielded enclosure at the Defense Waste Processing Facility, where a melter pours molten glass into a canister. A Savannah River Remediation employee uses a manipulator located inside a shielded enclosure at the Defense Waste Processing Facility, where a melter pours molten glass into a canister. AIKEN, S.C. - The second melter to operate in the 16-year history of the nation's largest radioactive waste glassification plant shows no signs of slowing after recently pouring its 2,000 canister of glass-formed hazardous

163

Texas facility treats, recycles refinery, petrochemical wastes  

Science Conference Proceedings (OSTI)

A US Gulf Coast environmental services company is treating refinery and petrochemical plant wastes to universal treatment standards (UTS). DuraTherm Inc.`s recycling center uses thermal desorption to treat a variety of refinery wastes and other hazardous materials. The plant is located in San Leon, Tex., near the major Houston/Texas City refining and petrochemical center. DuraTherm`s customers include major US refining companies, plus petrochemical, terminal, pipeline, transportation, and remediation companies. Examples of typical contaminant concentrations and treatment levels for refinery wastes are shown. The paper discusses thermal desorption, the process description and testing.

NONE

1996-09-16T23:59:59.000Z

164

Waste immobilization demonstration program for the Hanford Site`s Mixed Waste Facility  

Science Conference Proceedings (OSTI)

This paper presents an overview of the Waste Receiving and Processing facility, Module 2A> waste immobilization demonstration program, focusing on the cooperation between Hanford Site, commercial, and international participants. Important highlights of the development and demonstration activities is discussed from the standpoint of findings that have had significant from the standpoint of findings that have had significant impact on the evolution of the facility design. A brief description of the future direction of the program is presented, with emphasis on the key aspects of the technologies that call for further detailed investigation.

Burbank, D.A.; Weingardt, K.M.

1994-05-01T23:59:59.000Z

165

Mixed and Low-Level Waste Treatment Facility Project  

SciTech Connect

Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report documents those studies so the project can continue with an evaluation of programmatic options, system tradeoff studies, and the conceptual design phase of the project. This report, appendix B, comprises the engineering design files for this project study. The engineering design files document each waste steam, its characteristics, and identified treatment strategies.

1992-04-01T23:59:59.000Z

166

HANFORD FACILITY ANNUAL DANGEROUS WASTE REPORT CY2005  

Science Conference Proceedings (OSTI)

The Hanford Facility Annual Dangerous Waste Report (ADWR) is prepared to meet the requirements of Washington Administrative Code Sections 173-303-220, Generator Reporting, and 173-303-390, Facility Reporting. In addition, the ADWR is required to meet Hanford Facility RCR4 Permit Condition I.E.22, Annual Reporting. The ADWR provides summary information on dangerous waste generation and management activities for the Calendar Year for the Hanford Facility EPA ID number assigned to the Department of Energy for RCRA regulated waste, as well as Washington State only designated waste and radioactive mixed waste. An electronic database is utilized to collect and compile the large array of data needed for preparation of this report. Information includes details of waste generated on the Hanford Facility, waste generated offsite and sent to Hanford for management, and other waste management activities conducted at Hanford, including treatment, storage, and disposal. Report details consist of waste descriptions and weights, waste codes and designations, and waste handling codes, In addition, for waste shipped to Hanford for treatment and/or disposal, information on manifest numbers, the waste transporter, the waste receiving facility, and the original waste generators are included. In addition to paper copies, the report is also transmitted electronically to a web site maintained by the Washington State Department of Ecology.

SKOLRUD, J.O.

2006-02-15T23:59:59.000Z

167

Solid Waste Facilities Regulations (Massachusetts) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solid Waste Facilities Regulations (Massachusetts) Solid Waste Facilities Regulations (Massachusetts) Solid Waste Facilities Regulations (Massachusetts) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Massachusetts Program Type Environmental Regulations Provider Department of Environmental Protection This chapter of the Massachusetts General Laws governs the operation of solid waste facilities. It seeks to encourage sustainable waste management

168

Preliminary Safety Design Report for Remote Handled Low-Level Waste Disposal Facility  

SciTech Connect

A new onsite, remote-handled low-level waste disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled low-level waste disposal for remote-handled low-level waste from the Idaho National Laboratory and for nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled low-level waste in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This preliminary safety design report supports the design of a proposed onsite remote-handled low-level waste disposal facility by providing an initial nuclear facility hazard categorization, by discussing site characteristics that impact accident analysis, by providing the facility and process information necessary to support the hazard analysis, by identifying and evaluating potential hazards for processes associated with onsite handling and disposal of remote-handled low-level waste, and by discussing the need for safety features that will become part of the facility design.

Timothy Solack; Carol Mason

2012-03-01T23:59:59.000Z

169

Hight-Level Waste & Facilities Disposition  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Level Waste (HLW) and Facilities Disposition Final High-Level Waste (HLW) and Facilities Disposition Final Environmental Impact Statement You are here: DOE-ID Home > Environmental Management > Idaho High-Level Waste (HLW) Table of Contents Documents are in the Adobe® PDF format and require the Adobe® Reader to access them. If you do not currently have the Acrobat Reader, you can download the Free Adobe Reader at http://get.adobe.com/reader/ Icon link to Free Adobe Acrobat Reader software * Large chapters broken down into sections Summary* Cover [ Adobe Acrobat File Size 1.48 MB] Section, 1.0 [ Adobe Acrobat File Size 612 KB] Section, 2.0 [ Adobe Acrobat File Size 251 KB] Sections, 3.0 - 3.2.1a [ Adobe Acrobat File Size 1.4 MB] Section, 3.2.1b [ Adobe Acrobat File Size 2.0 MB] Sections, 3.2.2 - 4.0 [ Adobe Acrobat File Size 1.4 MB]

170

Radioactive waste processing apparatus  

DOE Patents (OSTI)

Apparatus for use in processing radioactive waste materials for shipment and storage in solid form in a container is disclosed. The container includes a top, and an opening in the top which is smaller than the outer circumference of the container. The apparatus includes an enclosure into which the container is placed, solution feed apparatus for adding a solution containing radioactive waste materials into the container through the container opening, and at least one rotatable blade for blending the solution with a fixing agent such as cement or the like as the solution is added into the container. The blade is constructed so that it can pass through the opening in the top of the container. The rotational axis of the blade is displaced from the center of the blade so that after the blade passes through the opening, the blade and container can be adjusted so that one edge of the blade is adjacent the cylindrical wall of the container, to insure thorough mixing. When the blade is inside the container, a substantially sealed chamber is formed to contain vapors created by the chemical action of the waste solution and fixant, and vapors emanating through the opening in the container. The chamber may be formed by placing a removable extension over the top of the container. The extension communicates with the apparatus so that such vapors are contained within the container, extension and solution feed apparatus. A portion of the chamber includes coolant which condenses the vapors. The resulting condensate is returned to the container by the force of gravity.

Nelson, R.E.; Ziegler, A.A.; Serino, D.F.; Basnar, P.J.

1985-08-30T23:59:59.000Z

171

Independent Oversight Review, Savannah River Site Salt Waste Processing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Site Salt Waste Savannah River Site Salt Waste Processing Facility - August 2013 Independent Oversight Review, Savannah River Site Salt Waste Processing Facility - August 2013 August 2013 Review of the Savannah River Site Salt Waste Processing Facility Safety Basis and Design Development. This report documents the results of an independent oversight review of the safety basis and design development for the Salt Waste Processing Facility (SWPF) at the U.S. Department of Energy (DOE) Savannah River Site. The review was performed February 12-14, 2013 by DOE's Office of Safety and Emergency Management Evaluations, which is within the DOE Office of Health, Safety and Security. The purpose of the review was to evaluate the safety basis, design, and the associated technical documents developed for

172

Independent Oversight Review, Savannah River Site Salt Waste Processing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Site Salt Waste Savannah River Site Salt Waste Processing Facility - August 2013 Independent Oversight Review, Savannah River Site Salt Waste Processing Facility - August 2013 August 2013 Review of the Savannah River Site Salt Waste Processing Facility Safety Basis and Design Development. This report documents the results of an independent oversight review of the safety basis and design development for the Salt Waste Processing Facility (SWPF) at the U.S. Department of Energy (DOE) Savannah River Site. The review was performed February 12-14, 2013 by DOE's Office of Safety and Emergency Management Evaluations, which is within the DOE Office of Health, Safety and Security. The purpose of the review was to evaluate the safety basis, design, and the associated technical documents developed for

173

MacArthur Waste to Energy Facility Biomass Facility | Open Energy  

Open Energy Info (EERE)

MacArthur Waste to Energy Facility Biomass Facility MacArthur Waste to Energy Facility Biomass Facility Jump to: navigation, search Name MacArthur Waste to Energy Facility Biomass Facility Facility MacArthur Waste to Energy Facility Sector Biomass Facility Type Municipal Solid Waste Location Suffolk County, New York Coordinates 40.9848784°, -72.6151169° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.9848784,"lon":-72.6151169,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

174

Documented Safety Analysis for the Waste Storage Facilities March 2010  

SciTech Connect

This Documented Safety Analysis (DSA) for the Waste Storage Facilities was developed in accordance with 10 CFR 830, Subpart B, 'Safety Basis Requirements,' and utilizes the methodology outlined in DOE-STD-3009-94, Change Notice 3. The Waste Storage Facilities consist of Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area portion of the DWTF complex. These two areas are combined into a single DSA, as their functions as storage for radioactive and hazardous waste are essentially identical. The B695 Segment of DWTF is addressed under a separate DSA. This DSA provides a description of the Waste Storage Facilities and the operations conducted therein; identification of hazards; analyses of the hazards, including inventories, bounding releases, consequences, and conclusions; and programmatic elements that describe the current capacity for safe operations. The mission of the Waste Storage Facilities is to safely handle, store, and treat hazardous waste, transuranic (TRU) waste, low-level waste (LLW), mixed waste, combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL (as well as small amounts from other DOE facilities).

Laycak, D T

2010-03-05T23:59:59.000Z

175

Documented Safety Analysis for the Waste Storage Facilities  

Science Conference Proceedings (OSTI)

This documented safety analysis (DSA) for the Waste Storage Facilities was developed in accordance with 10 CFR 830, Subpart B, 'Safety Basis Requirements', and utilizes the methodology outlined in DOE-STD-3009-94, Change Notice 3. The Waste Storage Facilities consist of Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area portion of the DWTF complex. These two areas are combined into a single DSA, as their functions as storage for radioactive and hazardous waste are essentially identical. The B695 Segment of DWTF is addressed under a separate DSA. This DSA provides a description of the Waste Storage Facilities and the operations conducted therein; identification of hazards; analyses of the hazards, including inventories, bounding releases, consequences, and conclusions; and programmatic elements that describe the current capacity for safe operations. The mission of the Waste Storage Facilities is to safely handle, store, and treat hazardous waste, transuranic (TRU) waste, low-level waste (LLW), mixed waste, combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL (as well as small amounts from other DOE facilities).

Laycak, D

2008-06-16T23:59:59.000Z

176

Impacts of Secondary Waste on Near-Surface Disposal Facility ...  

Impacts of Secondary Waste on Near-Surface Disposal Facility at Hanford ... DOE low-level and mixed low-level waste. 1E-06 1E-05 1E-04 1E-03 1E-02 ...

177

Low-Level Waste Disposal Facility Federal Review Group Manual  

Energy.gov (U.S. Department of Energy (DOE))

This Revision 3 of the Low-Level Waste Disposal Facility Federal Review Group (LFRG) Manual was prepared primarily to include review criteria for the review of transuranic (TRU) waste disposal...

178

Hazardous Waste Facility Siting Program (Maryland) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facility Siting Program (Maryland) Facility Siting Program (Maryland) Hazardous Waste Facility Siting Program (Maryland) < Back Eligibility Commercial Construction Industrial Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Transportation Utility Program Info State Maryland Program Type Siting and Permitting Provider Maryland Department of the Environment The Hazardous Waste Facilities Siting Board is responsible for overseeing the siting of hazardous waste facilities in Maryland, and will treat hazardous waste facilities separately from low-level nuclear waste facilities. This legislation describes the factors considered by the Board in making siting decisions. The Board is authorized to enact rules and regulations pertaining to the siting of hazardous and low-level nuclear

179

Solid Waste Disposal Facilities (Massachusetts) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solid Waste Disposal Facilities (Massachusetts) Solid Waste Disposal Facilities (Massachusetts) Solid Waste Disposal Facilities (Massachusetts) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Transportation Tribal Government Utility Program Info State Massachusetts Program Type Siting and Permitting Provider Department of Environmental Protection These sections articulate rules for the maintenance and operation of solid waste disposal facilities, as well as site assignment procedures. Applications for site assignment will be reviewed by the Massachusetts Department of Environmental Protection as well as the Department of Public

180

EA-0820: Construction of Mixed Waste Storage RCRA Facilities...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

waste storage facilities (Buildings 7668 and 7669) in accordance with Resource Conservation and Recovery Act requirements. Site preparation and construction activities would...

Note: This page contains sample records for the topic "waste processing facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Mixed and low-level waste treatment facility project  

SciTech Connect

The technology information provided in this report is only the first step toward the identification and selection of process systems that may be recommended for a proposed mixed and low-level waste treatment facility. More specific information on each technology will be required to conduct the system and equipment tradeoff studies that will follow these preengineering studies. For example, capacity, maintainability, reliability, cost, applicability to specific waste streams, and technology availability must be further defined. This report does not currently contain all needed information; however, all major technologies considered to be potentially applicable to the treatment of mixed and low-level waste are identified and described herein. Future reports will seek to improve the depth of information on technologies.

Not Available

1992-04-01T23:59:59.000Z

182

Hazards assessment for the Waste Experimental Reduction Facility  

Science Conference Proceedings (OSTI)

This report documents the hazards assessment for the Waste Experimental Reduction Facility (WERF) located at the Idaho National Engineering Laboratory, which is operated by EG&G Idaho, Inc., for the US Department of Energy (DOE). The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. DOE Order 5500.3A requires that a facility-specific hazards assessment be performed to provide the technical basis for facility emergency planning efforts. This hazards assessment was conducted in accordance with DOE Headquarters and DOE Idaho Operations Office (DOE-ID) guidance to comply with DOE Order 5500.3A. The hazards assessment identifies and analyzes hazards that are significant enough to warrant consideration in a facility`s operational emergency management program. This hazards assessment describes the WERF, the area surrounding WERF, associated buildings and structures at WERF, and the processes performed at WERF. All radiological and nonradiological hazardous materials stored, used, or produced at WERF were identified and screened. Even though the screening process indicated that the hazardous materials could be screened from further analysis because the inventory of radiological and nonradiological hazardous materials were below the screening thresholds specified by DOE and DOE-ID guidance for DOE Order 5500.3A, the nonradiological hazardous materials were analyzed further because it was felt that the nonradiological hazardous material screening thresholds were too high.

Calley, M.B.; Jones, J.L. Jr.

1994-09-19T23:59:59.000Z

183

Technical Safety Requirements for the Waste Storage Facilities  

SciTech Connect

This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 612 (A612) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analysis for the Waste Storage Facilities (DSA) (LLNL 2006). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., drum crushing, size reduction, and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A612 is located in the southeast quadrant of LLNL. The A612 fenceline is approximately 220 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A612 and the DWTF Storage Area are subdivided into various facilities and storage areas, consisting of buildings, tents, other structures, and open areas as described in Chapter 2 of the DSA. Section 2.4 of the DSA provides an overview of the buildings, structures, and areas in the WASTE STORAGE FACILITIES, including construction details such as basic floor plans, equipment layout, construction materials, controlling dimensions, and dimensions significant to the hazard and accident analysis. Chapter 5 of the DSA documents the derivation of the TSRs and develops the operational limits that protect the safety envelope defined for the WASTE STORAGE FACILITIES. This TSR document is applicable to the handling, storage, and treatment of hazardous waste, TRU WASTE, LLW, mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste received or generated in the WASTE STORAGE FACILITIES. Section 5, Administrative Controls, contains those Administrative Controls necessary to ensure safe operation of the WASTE STORAGE FACILITIES. Programmatic Administrative Controls are in Section 5.6. This Introduction to the WASTE STORAGE FACILITIES TSRs is not part of the TSR limits or conditions and contains no requirements related to WASTE STORAGE FACILITIES operations or to the safety analyses of the DSA.

Larson, H L

2007-09-07T23:59:59.000Z

184

Heterogeneous waste processing  

DOE Patents (OSTI)

A combination of treatment methods are provided for treatment of heterogeneous waste including: (1) treatment for any organic compounds present; (2) removal of metals from the waste; and, (3) bulk volume reduction, with at least two of the three treatment methods employed and all three treatment methods emplyed where suitable.

Vanderberg, Laura A. (Los Alamos, NM); Sauer, Nancy N. (Los Alamos, NM); Brainard, James R. (Los Alamos, NM); Foreman, Trudi M. (Los Alamos, NM); Hanners, John L. (Los Alamos, NM)

2000-01-01T23:59:59.000Z

185

WIPP Facility Work Plan for Solid Waste Management Units  

Science Conference Proceedings (OSTI)

This Facility Work Plan (FWP) has been prepared as required by Module VII,Section VII.M.1 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Permit, NM4890139088-TSDF (the Permit); (NMED, 1999a). This work plan describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) specified in the Permit. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current New Mexico Environment Department (NMED) guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a Facility to exit the schedule of compliance contained in the Facilitys Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can be entered either before or after an RFI Work Plan. According to NMEDs guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit. The scope of work for the RFI Work Plan or SAP is being developed by the Permittees. The final content of the RFI Work Plan or SAP will be coordinated with the NMED for submittal on May 24, 2000. Specific project-related planning information will be included in the RFI Work Plan or SAP. The SWMU program at WIPP began in 1994 under U.S. Environmental Protection Agency (EPA) regulatory authority. NMED subsequently received regulatory authority from EPA. A Phase I RFI was completed at WIPP as part of a Voluntary Release Assessment (VRA). The risk-based decision criteria recommended by EPA for the VRA were contained in a proposed Corrective Action rule for SWMUs (EPA, 1990). EPA Region VI has issued new risk-based screening criteria applicable to the WIPP SWMUs and AOCs.

Washington TRU Solutions LLC

2000-02-25T23:59:59.000Z

186

Waste Management Process Improvement Project  

SciTech Connect

The Bechtel Hanford-led Environmental Restoration Contractor team's Waste Management Process Improvement Project is working diligently with the U.S. Department of Energy's (DOE) Richland Operations Office to improve the waste management process to meet DOE's need for an efficient, cost-effective program for the management of dangerous, low-level and mixed-low-level waste. Additionally the program must meet all applicable regulatory requirements. The need for improvement was highlighted when a change in the Groundwater/Vadose Zone Integration Project's waste management practices resulted in a larger amount of waste being generated than the waste management organization had been set up to handle.

Atwood, J.; Borden, G.; Rangel, G. R.

2002-02-25T23:59:59.000Z

187

Independent Oversight Review, Oak Ridge Transuranic Waste Processing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oak Ridge Transuranic Waste Oak Ridge Transuranic Waste Processing Facility - December 2013 Independent Oversight Review, Oak Ridge Transuranic Waste Processing Facility - December 2013 December 2013 Review of the Fire Protection Program and Fire Protection Systems at the Transuranic Waste Processing Center This report documents the results of an independent oversight review of the fire protection programs and systems at the Oak Ridge Transuranic Waste Processing Center. The review was performed during May 20-23, 2013, and July 15-19, 2013, by the U.S. Department of Energy's (DOE) Office of Safety and Emergency Management Evaluations, which is within the DOE Office of Health, Safety and Security. The review was one part of a targeted assessment of fire protection at nuclear facilities across the DOE complex.

188

Low-Level Radioactive Waste Disposal Regional Facility Act (Pennsylvania) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-Level Radioactive Waste Disposal Regional Facility Act Low-Level Radioactive Waste Disposal Regional Facility Act (Pennsylvania) Low-Level Radioactive Waste Disposal Regional Facility Act (Pennsylvania) < Back Eligibility Utility Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Program Info State Pennsylvania Program Type Environmental Regulations Fees This act establishes a low-level radioactive waste disposal regional facility siting fund that requires nuclear power reactor constructors and operators to pay to the Department of Environmental Resources funds to be utilized for disposal facilities. This act ensures that nuclear facilities and the Department comply with the Low-Level Radioactive Disposal Act. The regional facility siting fund is used for reimbursement of expenses

189

International low level waste disposal practices and facilities  

SciTech Connect

The safe management of nuclear waste arising from nuclear activities is an issue of great importance for the protection of human health and the environment now and in the future. The primary goal of this report is to identify the current situation and practices being utilized across the globe to manage and store low and intermediate level radioactive waste. The countries included in this report were selected based on their nuclear power capabilities and involvement in the nuclear fuel cycle. This report highlights the nuclear waste management laws and regulations, current disposal practices, and future plans for facilities of the selected international nuclear countries. For each country presented, background information and the history of nuclear facilities are also summarized to frame the country's nuclear activities and set stage for the management practices employed. The production of nuclear energy, including all the steps in the nuclear fuel cycle, results in the generation of radioactive waste. However, radioactive waste may also be generated by other activities such as medical, laboratory, research institution, or industrial use of radioisotopes and sealed radiation sources, defense and weapons programs, and processing (mostly large scale) of mineral ores or other materials containing naturally occurring radionuclides. Radioactive waste also arises from intervention activities, which are necessary after accidents or to remediate areas affected by past practices. The radioactive waste generated arises in a wide range of physical, chemical, and radiological forms. It may be solid, liquid, or gaseous. Levels of activity concentration can vary from extremely high, such as levels associated with spent fuel and residues from fuel reprocessing, to very low, for instance those associated with radioisotope applications. Equally broad is the spectrum of half-lives of the radionuclides contained in the waste. These differences result in an equally wide variety of options for the management of radioactive waste. There is a variety of alternatives for processing waste and for short term or long term storage prior to disposal. Likewise, there are various alternatives currently in use across the globe for the safe disposal of waste, ranging from near surface to geological disposal, depending on the specific classification of the waste. At present, there appears to be a clear and unequivocal understanding that each country is ethically and legally responsible for its own wastes, in accordance with the provisions of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management. Therefore the default position is that all nuclear wastes will be disposed of in each of the 40 or so countries concerned with nuclear power generation or part of the fuel cycle. To illustrate the global distribution of radioactive waste now and in the near future, Table 1 provides the regional breakdown, based on the UN classification of the world in regions illustrated in Figure 1, of nuclear power reactors in operation and under construction worldwide. In summary, 31 countries operate 433 plants, with a total capacity of more than 365 gigawatts of electrical energy (GW[e]). A further 65 units, totaling nearly 63 GW(e), are under construction across 15 of these nations. In addition, 65 countries are expressing new interest in, considering, or actively planning for nuclear power to help address growing energy demands to fuel economic growth and development, climate change concerns, and volatile fossil fuel prices. Of these 65 new countries, 21 are in Asia and the Pacific region, 21 are from the Africa region, 12 are in Europe (mostly Eastern Europe), and 11 in Central and South America. However, 31 of these 65 are not currently planning to build reactors, and 17 of those 31 have grids of less than 5 GW, which is said to be too small to accommodate most of the reactor designs available. For the remaining 34 countries actively planning reactors, as of September 2010: 14 indicate a strong intention to precede w

Nutt, W.M. (Nuclear Engineering Division)

2011-12-19T23:59:59.000Z

190

Demonstration of the TRUEX process for partitioning of actinides from actual ICPP tank waste using centrifugal contactors in a shielded cell facility  

Science Conference Proceedings (OSTI)

TRUEX is being evaluated at Idaho Chemical Processing Plant (ICPP) for separating actinides from acidic radioactive waste stored at ICPP; efforts have culminated in a recent demonstration with actual tank waste. A continuous countercurrent flowsheet test was successfully completed at ICPP using waste from tank WM-183. This demonstration was performed using 24 states of 2-cm dia centrifugal contactors in the shielded hot cell at the ICPP Remote Analytical Laboratory. The flowsheet had 8 extraction stages, 5 scrub stages, 6 strip stages, 3 solvent wash stages, and 2 acid rinse stages. A centrifugal contactor stage in the scrub section was not working during testing, and the scrub feed (aqueous) solution followed the solvent into the strip section, eliminating the scrub section in the flowsheet. An overall removal efficiency of 99.97% was obtained for the actinides, reducing the activity from 457 nCi/g in the feed to 0.12 nCi/g in the aqueous raffinate, well below the NRC Class A LLW requirement of 10 nCi/g for non-TRU waste.The 0.04 M HEDPA strip section back-extracted 99.9998% of the actinide from the TRUEX solvent. Removal efficiencies of >99. 90, 99.96, 99.98, >98.89, 93.3, and 89% were obtained for {sup 241}Am, {sup 238}Pu, {sup 239}Pu, {sup 235}U, {sup 238}U, and {sup 99}Tc. Fe was partially extracted by the TRUEX solvent, resulting in 23% of the Fe exiting in the strip product. Hg was also extracted by the TRUEX solvent (73%) and stripped from the solvent in the 0.25 M Na2CO3 wash section. Only 1.4% of the Hg exited with the high activity waste strip product.

Law, J.D.; Brewer, K.N.; Herbst, R.S.; Todd, T.A.

1996-09-01T23:59:59.000Z

191

Central Facilities Area Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables  

SciTech Connect

Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Central Facilities Area facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facilityspecific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

Lisa Harvego; Brion Bennett

2011-11-01T23:59:59.000Z

192

WIPP Facility Work Plan for Solid Waste Management Units  

Science Conference Proceedings (OSTI)

This 2002 Facility Work Plan (FWP) has been prepared as required by Module VII, Permit Condition VII.U.3 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit, NM4890139088-TSDF (the Permit) (New Mexico Environment Department [NMED], 1999a), and incorporates comments from the NMED received on December 6, 2000 (NMED, 2000a). This February 2002 FWP describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMU) and Areas of Concern (AOC) specified in the Permit. The Permittees are evaluating data from previous investigations of the SWMUs and AOCs against the most recent guidance proposed by the NMED. Based on these data, and completion of the August 2001 sampling requested by the NMED, the Permittees expect that no further sampling will be required and that a request for No Further Action (NFA) at the SWMUs and AOCs will be submitted to the NMED. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a facility to exit the schedule of compliance contained in the facility's Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA processcan be entered either before or after an RFI Work Plan. According to the NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit. The NMED accepted that the Permittees are using the ACAA in a letter dated April 20, 2000.

Washington TRU Solutions LLC

2002-02-14T23:59:59.000Z

193

Technical Safety Requirements for the Waste Storage Facilities  

SciTech Connect

This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analysis for the Waste Storage Facilities (DSA) (LLNL 2009). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A625 is located in the southeast quadrant of LLNL. The A625 fenceline is approximately 225 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A625 and the DWTF Storage Area are subdivided into various facilities and storage areas, consisting of buildings, tents, other structures, and open areas as described in Chapter 2 of the DSA. Section 2.4 of the DSA provides an overview of the buildings, structures, and areas in the WASTE STORAGE FACILITIES, including construction details such as basic floor plans, equipment layout, construction materials, controlling dimensions, and dimensions significant to the hazard and accident analysis. Chapter 5 of the DSA documents the derivation of the TSRs and develops the operational limits that protect the safety envelope defined for the WASTE STORAGE FACILITIES. This TSR document is applicable to the handling, storage, and treatment of hazardous waste, TRU WASTE, LLW, mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste received or generated in the WASTE STORAGE FACILITIES. Section 5, Administrative Controls, contains those Administrative Controls necessary to ensure safe operation of the WASTE STORAGE FACILITIES. Programmatic Administrative Controls are in Section 5.4.

Laycak, D T

2010-03-05T23:59:59.000Z

194

Technical Safety Requirements for the Waste Storage Facilities  

SciTech Connect

This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the 'Documented Safety Analysis for the Waste Storage Facilities' (DSA) (LLNL 2008). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A625 is located in the southeast quadrant of LLNL. The A625 fenceline is approximately 225 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A625 and the DWTF Storage Area are subdivided into various facilities and storage areas, consisting of buildings, tents, other structures, and open areas as described in Chapter 2 of the DSA. Section 2.4 of the DSA provides an overview of the buildings, structures, and areas in the WASTE STORAGE FACILITIES, including construction details such as basic floor plans, equipment layout, construction materials, controlling dimensions, and dimensions significant to the hazard and accident analysis. Chapter 5 of the DSA documents the derivation of the TSRs and develops the operational limits that protect the safety envelope defined for the WASTE STORAGE FACILITIES. This TSR document is applicable to the handling, storage, and treatment of hazardous waste, TRU WASTE, LLW, mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste received or generated in the WASTE STORAGE FACILITIES. Section 5, Administrative Controls, contains those Administrative Controls necessary to ensure safe operation of the WASTE STORAGE FACILITIES. Programmatic Administrative Controls are in Section 5.6.

Laycak, D T

2008-06-16T23:59:59.000Z

195

Upgrades to meet LANL SF, 121-2011, hazardous waste facility permit requirements  

Science Conference Proceedings (OSTI)

Members of San IIdefonso have requested information from LANL regarding implementation of the revision to LANL's Hazardous Waste Facility Permit (the RCRA Permit). On January 26, 2011, LANL staff from the Waste Disposition Project and the Environmental Protection Division will provide a status update to Pueblo members at the offices of the San IIdefonso Department of Environmental and Cultural Preservation. The Waste Disposition Project presentation will focus on upgrades and improvements to LANL waste management facilities at TA-50 and TA-54. The New Mexico Environment Department issued LANL's revised Hazardous Waste Facility permit on November 30, 2010 with a 30-day implementation period. The Waste Disposition Project manages and operates four of LANL's permitted facilities; the Waste Characterization, Reduction and Repackaging Facility (WCRRF) at TA-SO, and Area G, Area L and the Radioassay and Nondestructive Testing facility (RANT) at TA-54. By implementing a combination of permanent corrective action activities and shorter-term compensatory measures, WDP was able to achieve functional compliance on December 30, 2010 with new Permit requirements at each of our facilities. One component of WOP's mission at LANL is centralized management and disposition of the Laboratory's hazardous and mixed waste. To support this mission objective, WOP has undertaken a project to upgrade our facilities and equipment to achieve fully compliant and efficient waste management operations. Upgrades to processes, equipment and facilities are being designed to provide defense-in-depth beyond the minimum, regulatory requirements where worker safety and protection of the public and the environment are concerned. Upgrades and improvements to enduring waste management facilities and operations are being designed so as not to conflict with future closure activities at Material Disposal Area G and Material Disposal Area L.

French, Sean B [Los Alamos National Laboratory; Johns - Hughes, Kathryn W [Los Alamos National Laboratory

2011-01-21T23:59:59.000Z

196

Industrial Solid Waste Landfill Facilities (Ohio) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Solid Waste Landfill Facilities (Ohio) Industrial Solid Waste Landfill Facilities (Ohio) Industrial Solid Waste Landfill Facilities (Ohio) < Back Eligibility Agricultural Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Utility Program Info State Ohio Program Type Environmental Regulations Provider Ohio Environmental Protection Agency This chapter of the law establishes that the Ohio Environmental Protection Agency provides rules and guidelines for landfills, including those that treat waste to generate electricity. The law provides information for permitting, installing, maintaining, monitoring, and closing landfills. There are no special provisions or exemptions for landfills used to generate electricity. However, the law does apply to landfills that do

197

Incentives and the siting of radioactive waste facilities  

SciTech Connect

The importance of social and institutional issues in the siting of nuclear waste facilities has been recognized in recent years. Limited evidence from a survey of rural Wisconsin residents in 1980 indicates that incentives may help achieve the twin goals of increasing local support and decreasing local opposition to hosting nuclear waste facilities. Incentives are classified according to functional categories (i.e., mitigation, compensation, and reward) and the conditions which may be prerequisites to the use of incentives are outlined (i.e., guarantee of public health and safety, some measure of local control, and a legitimation of negotiations during siting). Criteria for evaluating the utility of incentives in nuclear waste repository siting are developed. Incentive packages may be more useful than single incentives, and nonmonetary incentives, such as independent monitoring and access to credible information, may be as important in eliciting support as monetary incentives. Without careful attention to prerequisites in the siting process it is not likely that incentives will facilitate the siting process.

Carnes, S.A.; Copenhaver, E.D.; Reed, J.H.; Soderstrom, E.J.; Sorensen, J.H.; Peelle, E.; Bjornstad, D.J.

1982-08-01T23:59:59.000Z

198

New facility boosts Lab's ability to ship transuranic waste  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab's ability to ship transuranic waste Lab's ability to ship transuranic waste New facility boosts Lab's ability to ship transuranic waste Construction has begun on a new facility that will help Los Alamos accelerate the shipment of transuranic waste stored in large boxes at Technical Area 54. February 9, 2012 Aerial view of Los Alamos National Laboratory Aerial view of Los Alamos National Laboratory. Contact Colleen Curran Communications Office (505) 664-0344 Email "375 Box Line" facility to allow workers to repackage radioactive items stored in large boxes LOS ALAMOS, New Mexico, February 9, 2012-Construction has begun on a new facility that will help Los Alamos National Laboratory accelerate the shipment of transuranic (TRU) waste stored in large boxes at Technical Area 54, Area G. The new "375 Box Line" facility will allow the Laboratory to repackage

199

Idaho waste treatment facility startup testing suspended to evaluate system  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

waste treatment facility startup testing suspended to waste treatment facility startup testing suspended to evaluate system response Idaho waste treatment facility startup testing suspended to evaluate system response June 20, 2012 - 12:00pm Addthis Media Contacts Brad Bugger 208-526-0833 Danielle Miller 208-526-5709 IDAHO FALLS, ID- On Saturday, June 16, startup testing was suspended at the Integrated Waste Treatment Unit (IWTU) located at the U.S. Department of Energy's Idaho Site. Testing and plant heat-up was suspended to allow detailed evaluation of a system pressure event observed during testing on Saturday. Facility startup testing has been ongoing for the past month, evaluating system and component operation and response during operating conditions. No radioactive or hazardous waste has been introduced into the facility,

200

Waste Treatment Facility Passes Federal Inspection, Completes Final  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment Facility Passes Federal Inspection, Completes Final Waste Treatment Facility Passes Federal Inspection, Completes Final Milestone, Begins Startup Waste Treatment Facility Passes Federal Inspection, Completes Final Milestone, Begins Startup April 23, 2012 - 12:00pm Addthis Media Contact Erik Simpson, 208-390-9464 Danielle Miller, 208-526-5709 The Idaho site today initiated the controlled, phased startup of a new waste treatment facility scheduled to begin treating 900,000 gallons of radioactive liquid waste stored in underground tanks at a former Cold War spent nuclear fuel reprocessing facility next month. A U.S. Department of Energy (DOE) operational readiness review team (made up of Subject Matter Experts across the country) in early April identified a dozen issues for the cleanup contractor CH2M-WG Idaho, LLC (CWI) to

Note: This page contains sample records for the topic "waste processing facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Lessons Learned from Radioactive Waste Storage and Disposal Facilities  

Science Conference Proceedings (OSTI)

The safety of radioactive waste disposal facilities and the decommissioning of complex sites may be predicated on the performance of engineered and natural barriers. For assessing the safety of a waste disposal facility or a decommissioned site, a performance assessment or similar analysis is often completed. The analysis is typically based on a site conceptual model that is developed from site characterization information, observations, and, in many cases, expert judgment. Because waste disposal facilities are sited, constructed, monitored, and maintained, a fair amount of data has been generated at a variety of sites in a variety of natural systems. This paper provides select examples of lessons learned from the observations developed from the monitoring of various radioactive waste facilities (storage and disposal), and discusses the implications for modeling of future waste disposal facilities that are yet to be constructed or for the development of dose assessments for the release of decommissioning sites. Monitoring has been and continues to be performed at a variety of different facilities for the disposal of radioactive waste. These include facilities for the disposal of commercial low-level waste (LLW), reprocessing wastes, and uranium mill tailings. Many of the lessons learned and problems encountered provide a unique opportunity to improve future designs of waste disposal facilities, to improve dose modeling for decommissioning sites, and to be proactive in identifying future problems. Typically, an initial conceptual model was developed and the siting and design of the disposal facility was based on the conceptual model. After facility construction and operation, monitoring data was collected and evaluated. In many cases the monitoring data did not comport with the original site conceptual model, leading to additional investigation and changes to the site conceptual model and modifications to the design of the facility. The following cases are discussed: commercial LLW disposal facilities; uranium mill tailings disposal facilities; and reprocessing waste storage and disposal facilities. The observations developed from the monitoring and maintenance of waste disposal and storage facilities provide valuable lessons learned for the design and modeling of future waste disposal facilities and the decommissioning of complex sites.

Esh, David W.; Bradford, Anna H. [U.S. Nuclear Regulatory Commission, Two White Flint North, MS T7J8, 11545 Rockville Pike, Rockville, MD 20852 (United States)

2008-01-15T23:59:59.000Z

202

Safety analysis report for the Waste Storage Facility. Revision 2  

SciTech Connect

This safety analysis report outlines the safety concerns associated with the Waste Storage Facility located in the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The three main objectives of the report are: define and document a safety basis for the Waste Storage Facility activities; demonstrate how the activities will be carried out to adequately protect the workers, public, and environment; and provide a basis for review and acceptance of the identified risk that the managers, operators, and owners will assume.

Bengston, S.J.

1994-05-01T23:59:59.000Z

203

Benchmarking the Remote-Handled Waste Facility at the West Valley Demonstration Project  

Science Conference Proceedings (OSTI)

ABSTRACT Facility decontamination activities at the West Valley Demonstration Project (WVDP), the site of a former commercial nuclear spent fuel reprocessing facility near Buffalo, New York, have resulted in the removal of radioactive waste. Due to high dose and/or high contamination levels of this waste, it needs to be handled remotely for processing and repackaging into transport/disposal-ready containers. An initial conceptual design for a Remote-Handled Waste Facility (RHWF), completed in June 1998, was estimated to cost $55 million and take 11 years to process the waste. Benchmarking the RHWF with other facilities around the world, completed in November 1998, identified unique facility design features and innovative waste pro-cessing methods. Incorporation of the benchmarking effort has led to a smaller yet fully functional, $31 million facility. To distinguish it from the June 1998 version, the revised design is called the Rescoped Remote-Handled Waste Facility (RRHWF) in this topical report. The conceptual design for the RRHWF was completed in June 1999. A design-build contract was approved by the Department of Energy in September 1999.

O. P. Mendiratta; D. K. Ploetz

2000-02-29T23:59:59.000Z

204

WIPP Documents - Hazardous Waste Facility Permit (RCRA)  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy to manage, store, and dispose of contact-handled and remote-handled transuranic mixed waste at the Waste Isolation Pilot Plant. Mixed waste contains radioactive and...

205

Hanford Site waste tank farm facilities design reconstitution program plan  

SciTech Connect

Throughout the commercial nuclear industry the lack of design reconstitution programs prior to the mid 1980`s has resulted in inadequate documentation to support operating facilities configuration changes or safety evaluations. As a result, many utilities have completed or have ongoing design reconstitution programs and have discovered that without sufficient pre-planning their program can be potentially very expensive and may result in end-products inconsistent with the facility needs or expectations. A design reconstitution program plan is developed here for the Hanford waste tank farms facility as a consequence of the DOE Standard on operational configuration management. This design reconstitution plan provides for the recovery or regeneration of design requirements and basis, the compilation of Design Information Summaries, and a methodology to disposition items open for regeneration that were discovered during the development of Design Information Summaries. Implementation of this plan will culminate in an end-product of about 30 Design Information Summary documents. These documents will be developed to identify tank farms facility design requirements and design bases and thereby capture the technical baselines of the facility. This plan identifies the methodology necessary to systematically recover documents that are sources of design input information, and to evaluate and disposition open items or regeneration items discovered during the development of the Design Information Summaries or during the verification and validation processes. These development activities will be governed and implemented by three procedures and a guide that are to be developed as an outgrowth of this plan.

Vollert, F.R.

1994-09-06T23:59:59.000Z

206

MODELING THE IMPACT OF ELEVATED MERCURY IN DEFENSE WASTE PROCESSING FACILITY MELTER FEED ON THE MELTER OFF-GAS SYSTEM - PRELIMINARY REPORT  

SciTech Connect

The Defense Waste Processing Facility (DWPF) is currently evaluating an alternative Chemical Process Cell (CPC) flowsheet to increase throughput. It includes removal of the steam-stripping step, which would significantly reduce the CPC processing time and lessen the sampling needs. However, its downside would be to send 100% of the mercury that come in with the sludge straight to the melter. For example, the new mercury content in the Sludge Batch 5 (SB5) melter feed is projected to be 25 times higher than that in the SB4 with nominal steam stripping of mercury. This task was initiated to study the impact of the worst-case scenario of zero-mercury-removal in the CPC on the DWPF melter off-gas system. It is stressed that this study is intended to be scoping in nature, so the results presented in this report are preliminary. In order to study the impact of elevated mercury levels in the feed, it is necessary to be able to predict how mercury would speciate in the melter exhaust under varying melter operating conditions. A homogeneous gas-phase oxidation model of mercury by chloride was developed to do just that. The model contains two critical parameters pertaining to the partitioning of chloride among HCl, Cl, Cl{sub 2}, and chloride salts in the melter vapor space. The values for these parameters were determined at two different melter vapor space temperatures by matching the calculated molar ratio of HgCl (or Hg{sub 2}Cl{sub 2}) to HgCl{sub 2} with those measured during the Experimental-Scale Ceramic Melter (ESCM) tests run at the Pacific Northwest National Laboratory (PNNL). The calibrated model was then applied to the SB5 simulant used in the earlier flowsheet study with an assumed mercury stripping efficiency of zero; the molar ratio of Cl-to-Hg in the resulting melter feed was only 0.4, compared to 12 for the ESCM feeds. The results of the model run at the indicated melter vapor space temperature of 650 C (TI4085D) showed that due to excessive shortage of chloride, only 6% of the mercury fed is expected to get oxidized, mostly as HgCl, while the remaining mercury would exist either as elemental mercury vapor (90%) or HgO (4%). Noting that the measured chloride level in the SB5 qualification sample was an order of magnitude lower than that used in the SB5 simulant, the degree of chloride shortage will be even greater. As a result, the projected level of HgCl in the actual SB5 melter exhaust will be even lower than 6% of the total mercury fed, while that of elemental mercury is likely to be greater than 90%. The homogeneous oxidation of mercury in the off-gas was deemed to be of primary importance based on the postulation that mercury and other volatile salts form submicron sized aerosols upon condensation and thus remain largely in the gas stream downstream of the quencher where they can deposit in the off-gas lines, Steam-Atomized Scrubbers (SAS), and High-Efficiency Mist Eliminator (HEME). Formation of these submicron semi-volatile salts in the condensate liquid is considered to be unlikely, so the liquid phase reactions were considered to be less important. However, subsequent oxidation of mercury in the liquid phase in the off-gas system was examined in a simplified model of the off-gas condensate. It was found that the condensate chemistry was consistent with further oxidation of elemental mercury to Hg{sub 2}Cl{sub 2} and conversion of HgO to chlorides. The results were consistent with the available experimental data. It should also be noted that the model predictions presented in this report do not include any physically entrained solids, which typically account for much of the off-gas carryover on a mass basis. The high elemental mercury vapor content predicted at the DWPF Quencher inlet means that physically entrained solids could provide the necessary surface onto which elemental mercury vapor could condense, thereby coating the solids as well as the internal surfaces of the off-gas system with mercury. Clearly, there are many process benefits to be gained by removing the steam-stripping step from the CPC c

Zamecnik, J.; Choi, A.

2009-03-25T23:59:59.000Z

207

MODELING THE IMPACT OF ELEVATED MERCURY IN DEFENSE WASTE PROCESSING FACILITY MELTER FEED ON THE MELTER OFF-GAS SYSTEM-PRELIMINARY REPORT  

SciTech Connect

The Defense Waste Processing Facility (DWPF) is currently evaluating an alternative Chemical Process Cell (CPC) flowsheet to increase throughput. It includes removal of the steam-stripping step, which would significantly reduce the CPC processing time and lessen the sampling needs. However, its downside would be to send 100% of the mercury that comes in with the sludge straight to the melter. For example, the new mercury content in the Sludge Batch 5 (SB5) melter feed is projected to be 25 times higher than that in the SB4 with nominal steam stripping of mercury. This task was initiated to study the impact of the worst-case scenario of zero-mercury-removal in the CPC on the DWPF melter offgas system. It is stressed that this study is intended to be scoping in nature, so the results presented in this report are preliminary. In order to study the impact of elevated mercury levels in the feed, it is necessary to be able to predict how mercury would speciate in the melter exhaust under varying melter operating conditions. A homogeneous gas-phase oxidation model of mercury by chloride was developed to do just that. The model contains two critical parameters pertaining to the partitioning of chloride among HCl, Cl, Cl{sub 2}, and chloride salts in the melter vapor space. The values for these parameters were determined at two different melter vapor space temperatures by matching the calculated molar ratio of HgCl (or Hg{sub 2}Cl{sub 2}) to HgCl{sub 2} with those measured during the Experimental-Scale Ceramic Melter (ESCM) tests run at the Pacific Northwest National Laboratory (PNNL). The calibrated model was then applied to the SB5 simulant used in the earlier flowsheet study with an assumed mercury stripping efficiency of zero; the molar ratio of Cl-to-Hg in the resulting melter feed was only 0.4, compared to 12 for the ESCM feeds. The results of the model run at the indicated melter vapor space temperature of 650 C (TI4085D) showed that due to excessive shortage of chloride, only 6% of the mercury fed is expected to get oxidized, mostly as HgCl, while the remaining mercury would exist either as elemental mercury vapor (90%) or HgO (4%). Noting that the measured chloride level in the SB5 qualification sample was an order of magnitude lower than that used in the SB5 simulant, the degree of chloride shortage will be even greater. As a result, the projected level of HgCl in the actual SB5 melter exhaust will be even lower than 6% of the total mercury fed, while that of elemental mercury is likely to be greater than 90%. The homogeneous oxidation of mercury in the off-gas was deemed to be of primary importance based on the postulation that mercury and other volatile salts form submicron sized aerosols upon condensation and thus remain largely in the gas stream downstream of the quencher where they can deposit in the off-gas lines, Steam-Atomized Scrubbers (SAS), and High-Efficiency Mist Eliminator (HEME). Formation of these submicron semi-volatile salts in the condensate liquid is considered to be unlikely, so the liquid phase reactions were considered to be less important. However, subsequent oxidation of mercury in the liquid phase in the off-gas system was examined in a simplified model of the off-gas condensate. It was found that the condensate chemistry was consistent with further oxidation of elemental mercury to Hg{sub 2}Cl{sub 2} and conversion of HgO to chlorides. The results were consistent with the available experimental data. It should also be noted that the model predictions presented in this report do not include any physically entrained solids, which typically account for much of the off-gas carryover on a mass basis. The high elemental mercury vapor content predicted at the DWPF Quencher inlet means that physically entrained solids could provide the necessary surface onto which elemental mercury vapor could condense, thereby coating the solids as well as the internal surfaces of the off-gas system with mercury. Clearly, there are many process benefits to be gained by removing the steam-stripping step from the CPC c

Zamecnik, J.; Choi, A.

2010-08-18T23:59:59.000Z

208

{open_quotes}Radon{close_quotes} - the system of Soviet designed regional waste management facilities  

Science Conference Proceedings (OSTI)

The Soviet Union established a system of specialized regional facilities to dispose of radioactive waste generated by sources other than the nuclear fuel cycle. The system had 16 facilities in Russia, 5 in Ukraine, one in each of the other CIS states, and one in each of the Baltic Republics. These facilities are still being used. The major generators of radioactive waste they process these are research and industrial organizations, medical and agricultural institution and other activities not related to nuclear power. Waste handled by these facilities is mainly beta- and gamma-emitting nuclides with half lives of less than 30 years. The long-lived and alpha-emitting isotopic content is insignificant. Most of the radwaste has low and medium radioactivity levels. The facilities also handle spent radiation sources, which are highly radioactive and contain 95-98 percent of the activity of all the radwaste buried at these facilities.

Horak, W.C.; Reisman, A.; Purvis, E.E. III

1997-07-01T23:59:59.000Z

209

EIS-0287: Idaho High-Level Waste and Facilities Disposition Final...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement, EIS-0287 (September 2002) EIS-0287: Idaho High-Level Waste and Facilities Disposition Final...

210

Advanced conceptual design report solid waste retrieval facility, phase I, project W-113  

SciTech Connect

Project W-113 will provide the equipment and facilities necessary to retrieve suspect transuranic (TRU) waste from Trench 04 of the 218W-4C burial ground. As part of the retrieval process, waste drums will be assayed, overpacked, vented, head-gas sampled, and x-rayed prior to shipment to the Phase V storage facility in preparation for receipt at the Waste Receiving and Processing Facility (WRAP). Advanced Conceptual Design (ACD) studies focused on project items warranting further definition prior to Title I design and areas where the potential for cost savings existed. This ACD Report documents the studies performed during FY93 to optimize the equipment and facilities provided in relation to other SWOC facilities and to provide additional design information for Definitive Design.

Smith, K.E.

1994-03-21T23:59:59.000Z

211

Defense Waste Processing Facility Process Enhancements  

Remote Operations Flushing Requirements Reliable Separation Efficiency ... Eliminate/minimize storage and handling hazards of formic acid 2.

212

Mixed and low-level waste treatment facility project. Volume 3, Waste treatment technologies (Draft)  

SciTech Connect

The technology information provided in this report is only the first step toward the identification and selection of process systems that may be recommended for a proposed mixed and low-level waste treatment facility. More specific information on each technology will be required to conduct the system and equipment tradeoff studies that will follow these preengineering studies. For example, capacity, maintainability, reliability, cost, applicability to specific waste streams, and technology availability must be further defined. This report does not currently contain all needed information; however, all major technologies considered to be potentially applicable to the treatment of mixed and low-level waste are identified and described herein. Future reports will seek to improve the depth of information on technologies.

1992-04-01T23:59:59.000Z

213

Environmental assessment for the construction, operation, and decommissioning of the Waste Segregation Facility at the Savannah River Site  

Science Conference Proceedings (OSTI)

This Environmental Assessment (EA) has been prepared by the Department of Energy (DOE) to assess the potential environmental impacts associated with the construction, operation and decontamination and decommissioning (D&D) of the Waste Segregation Facility (WSF) for the sorting, shredding, and compaction of low-level radioactive waste (LLW) at the Savannah River Site (SRS) located near Aiken, South Carolina. The LLW to be processed consists of two waste streams: legacy waste which is currently stored in E-Area Vaults of SRS and new waste generated from continuing operations. The proposed action is to construct, operate, and D&D a facility to process low-activity job-control and equipment waste for volume reduction. The LLW would be processed to make more efficient use of low-level waste disposal capacity (E-Area Vaults) or to meet the waste acceptance criteria for treatment at the Consolidated Incineration Facility (CIF) at SRS.

NONE

1998-01-01T23:59:59.000Z

214

Final Hanford Offsite Waste Shipment Leaves Idaho Treatment Facility |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Final Hanford Offsite Waste Shipment Leaves Idaho Treatment Final Hanford Offsite Waste Shipment Leaves Idaho Treatment Facility Final Hanford Offsite Waste Shipment Leaves Idaho Treatment Facility August 18, 2011 - 12:00pm Addthis Idaho State Patrol Troopers Rick Stouse and Tony Anderson inspected the TRUPACTS, containers which contain TRU waste, and trailer containing the final shipment of Hanford offsite waste. The Idaho State Patrol officers have played an important role in AMWTP's success by inspecting every one of AMWTP's nearly 3,900 shipments. Idaho State Patrol Troopers Rick Stouse and Tony Anderson inspected the TRUPACTS, containers which contain TRU waste, and trailer containing the final shipment of Hanford offsite waste. The Idaho State Patrol officers have played an important role in AMWTP's success by inspecting every one of

215

Waste Heat Recovery in Industrial Facilities  

Science Conference Proceedings (OSTI)

Low-temperature waste heat streams account for the majority of the industrial waste heat inventory. With a reference temperature of 60F (16C), 65% of the waste heat is below 450F (232C) and 99% is below 1,200F (649C). With a reference temperature of 300F (149C), 14% of the waste heat is below 450F, and 96% is below 1,200F. Waste heat is concentrated in a few industrial manufacturing sectors. Based on a review of 21 manufacturing sectors, the top two sectors that produce waste heat are petroleu...

2010-12-20T23:59:59.000Z

216

Microsoft PowerPoint - 1-07 Mason DOE EM Waste Processing Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

plants: Studsvik Processing Facility: Ion exchange resins (45" diameter FBSR) DOE Idaho Integrated Waste Treatment Unit: SBW treatment (48" diameter FBSR) DOE...

217

Hazards assessment for the Hazardous Waste Storage Facility  

SciTech Connect

This report documents the hazards assessment for the Hazardous Waste Storage Facility (HWSF) located at the Idaho National Engineering Laboratory. The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. The hazards assessment identifies and analyzes hazards that are significant enough to warrant consideration in a facility`s operational emergency management program. The area surrounding HWSF, the buildings and structures at HWSF, and the processes used at HWSF are described in this report. All nonradiological hazardous materials at the HWSF were identified (radiological hazardous materials are not stored at HWSF) and screened against threshold quantities according to DOE Order 5500.3A guidance. Two of the identified hazardous materials exceeded their specified threshold quantity. This report discusses the potential release scenarios and consequences associated with an accidental release for each of the two identified hazardous materials, lead and mercury. Emergency considerations, such as emergency planning zones, emergency classes, protective actions, and emergency action levels, are also discussed based on the analysis of potential consequences. Evaluation of the potential consequences indicated that the highest emergency class for operational emergencies at the HWSF would be a Site Area Emergency.

Knudsen, J.K.; Calley, M.B.

1994-04-01T23:59:59.000Z

218

TA-55: LANL Plutonium-Processing Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

TA-55: LANL Plutonium-Processing Facilities TA-55: LANL Plutonium-Processing Facilities TA-55: LANL Plutonium-Processing Facilities TA-55 supports a wide range of national security programs that involve stockpile stewardship, plutonium processing, nuclear materials stabilization, materials disposition, nuclear forensics, nuclear counter-terrorism, and nuclear energy. ...the only fully operational, full capability plutonium facility in the nation. National Security At the Los Alamos National Laboratory (LANL), virtually all plutonium operations occur within the Plutonium Facility at Technical Area 55 (TA-55). TA-55 is the nation's most modern plutonium science and manufacturing facility, and it is the only fully operational, full capability plutonium facility in the nation. Thus, TA-55 supports a wide

219

EA-0820: Construction of Mixed Waste Storage RCRA Facilities, Buildings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0: Construction of Mixed Waste Storage RCRA Facilities, 0: Construction of Mixed Waste Storage RCRA Facilities, Buildings 7668 and 7669, Oak Ridge, Tennessee EA-0820: Construction of Mixed Waste Storage RCRA Facilities, Buildings 7668 and 7669, Oak Ridge, Tennessee SUMMARY This EA evaluates the environmental impacts of a proposal to construct and operate two mixed (both radioactive and hazardous) waste storage facilities (Buildings 7668 and 7669) in accordance with Resource Conservation and Recovery Act requirements. Site preparation and construction activities would take place at the U.S. Department of Energy's Oak Ridge National Laboratory in Oak Ridge, Tennessee. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 16, 1994 EA-0820: Finding of No Significant Impact

220

Waste treatment facility passes federal inspection, completes final  

NLE Websites -- All DOE Office Websites (Extended Search)

23, 2012 23, 2012 Media Contact: Danielle Miller, 208-526-5709 Erik Simpson, 208-390-9464 Waste treatment facility passes federal inspection, completes final milestone, begins startup The Idaho site today initiated the controlled, phased startup of a new waste treatment facility scheduled to begin treating 900,000 gallons of radioactive liquid waste stored in underground tanks at a former Cold War spent nuclear fuel reprocessing facility next month. An exterior view of the Integrated Waste Treatment Unit A U.S. Department of Energy (DOE) operational readiness review team (made up of Subject Matter Experts across the country) in early April identified a dozen issues for the cleanup contractor CH2M-WG Idaho, LLC (CWI) to resolve before the 53,000-square-foot Integrated Waste Treatment Unit

Note: This page contains sample records for the topic "waste processing facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Conceptual Design Report for Remote-Handled Low-Level Waste Disposal Facility  

SciTech Connect

This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

Lisa Harvego; David Duncan; Joan Connolly; Margaret Hinman; Charles Marcinkiewicz; Gary Mecham

2010-10-01T23:59:59.000Z

222

Regional Waste Systems Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Biomass Facility Biomass Facility Jump to: navigation, search Name Regional Waste Systems Biomass Facility Facility Regional Waste Systems Sector Biomass Facility Type Municipal Solid Waste Location Cumberland County, Maine Coordinates 43.8132979°, -70.3870587° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.8132979,"lon":-70.3870587,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

223

Pollution prevention/waste minimization guidelines for facility design  

SciTech Connect

The mission of the 560 square mile (1450 sq Km) Hanford site, located in south eastern Washington, was changed from defense production to environmental restoration and waste management in 1989. The Tri-Party Agreement (TPA) signed in 1989 between DOE, EPA and Washington State, agreed to clean up most of the Hanford site within 30 years. To accomplish the clean-up and comply with the schedule established in the TPA, a number of treatment and support facilities will have to be built. While these facilities are designed to treat wastes that have already been generated, the routine operation and maintenance of these facilities will generate their own wastes. With careful planning, new facilities or modifications to existing facilities can be designed in a manor such that little pollution or waste is generated through normal operation and maintenance. The project the author is working on is concerned with avoiding or reducing the generation of new waste by assuring that pollution prevention and waste minimization are considered in the design phase of these facilities.

Encke, D.B.

1993-04-01T23:59:59.000Z

224

Thirty-year solid waste generation forecast for facilities at SRS  

SciTech Connect

The information supplied by this 30-year solid waste forecast has been compiled as a source document to the Waste Management Environmental Impact Statement (WMEIS). The WMEIS will help to select a sitewide strategic approach to managing present and future Savannah River Site (SRS) waste generated from ongoing operations, environmental restoration (ER) activities, transition from nuclear production to other missions, and decontamination and decommissioning (D&D) programs. The EIS will support project-level decisions on the operation of specific treatment, storage, and disposal facilities within the near term (10 years or less). In addition, the EIS will provide a baseline for analysis of future waste management activities and a basis for the evaluation of the specific waste management alternatives. This 30-year solid waste forecast will be used as the initial basis for the EIS decision-making process. The Site generates and manages many types and categories of waste. With a few exceptions, waste types are divided into two broad groups-high-level waste and solid waste. High-level waste consists primarily of liquid radioactive waste, which is addressed in a separate forecast and is not discussed further in this document. The waste types discussed in this solid waste forecast are sanitary waste, hazardous waste, low-level mixed waste, low-level radioactive waste, and transuranic waste. As activities at SRS change from primarily production to primarily decontamination and decommissioning and environmental restoration, the volume of each waste s being managed will change significantly. This report acknowledges the changes in Site Missions when developing the 30-year solid waste forecast.

Not Available

1994-07-01T23:59:59.000Z

225

Experience base for Radioactive Waste Thermal Processing Systems: A preliminary survey  

SciTech Connect

In the process of considering thermal technologies for potential treatment of the Idaho National Engineering Laboratory mixed transuranic contaminated wastes, a preliminary survey of the experience base available from Radioactive Waste Thermal Processing Systems is reported. A list of known commercial radioactive waste facilities in the United States and some international thermal treatment facilities are provided. Survey focus is upon the US Department of Energy thermal treatment facilities. A brief facility description and a preliminary summary of facility status, and problems experienced is provided for a selected subset of the DOE facilities.

Mayberry, J.; Geimer, R.; Gillins, R.; Steverson, E.M.; Dalton, D. (Science Applications International Corp., Idaho Falls, ID (United States)); Anderson, G.L. (EG and G Idaho, Inc., Idaho Falls, ID (United States))

1992-04-01T23:59:59.000Z

226

Nuclear criticality safety evaluation -- DWPF Late Wash Facility, Salt Process Cell and Chemical Process Cell  

SciTech Connect

The Savannah River Site (SRS) High Level Nuclear Waste will be vitrified in the Defense Waste Processing Facility (DWPF) for long term storage and disposal. This is a nuclear criticality safety evaluation for the Late Wash Facility (LWF), the Salt Processing Cell (SPC) and the Chemical Processing Cell (CPC). of the DWPF. Waste salt solution is processed in the Tank Farm In-Tank Precipitation (ITP) process and is then further washed in the DWPF Late Wash Facility (LWF) before it is fed to the DWPF Salt Processing Cell. In the Salt Processing Cell the precipitate slurry is processed in the Precipitate Reactor (PR) and the resultant Precipitate Hydrolysis Aqueous (PHA) produce is combined with the sludge feed and frit in the DWPF Chemical Process Cell to produce a melter feed. The waste is finally immobilized in the Melt Cell. Material in the Tank Farm and the ITP and Extended Sludge processes have been shown to be safe against a nuclear criticality by others. The precipitate slurry feed from ITP and the first six batches of sludge feed are safe against a nuclear criticality and this evaluation demonstrates that the processes in the LWF, the SPC and the CPC do not alter the characteristics of the materials to compromise safety.

Williamson, T.G.

1994-10-17T23:59:59.000Z

227

Transuranic (Tru) waste volume reduction operations at a plutonium facility  

SciTech Connect

Programmatic operations at the Los Alamos National Laboratory Plutonium Facility (TA 55) involve working with various amounts of plutonium and other highly toxic, alpha-emitting materials. The spread of radiological contamination on surfaces, airborne contamination, and excursions of contaminants into the operator's breathing zone are prevented through use of a variety of gloveboxes (the glovebox, coupled with an adequate negative pressure gradient, provides primary confinement). Size-reduction operations on glovebox equipment are a common activity when a process has been discontinued and the room is being modified to support a new customer. The Actin ide Processing Group at TA-55 uses one-meter-long glass columns to process plutonium. Disposal of used columns is a challenge, since they must be size-reduced to get them out of the glovebox. The task is a high-risk operation because the glass shards that are generated can puncture the bag-out bags, leather protectors, glovebox gloves, and the worker's skin when completing the task. One of the Lessons Learned from these operations is that Laboratory management should critically evaluate each hazard and provide more effective measures to prevent personnel injury. A bag made of puncture-resistant material was one of these enhanced controls. We have investigated the effectiveness of these bags and have found that they safely and effectively permit glass objects to be reduced to small pieces with a plastic or rubber mallet; the waste can then be easily poured into a container for removal from the glove box as non-compactable transuranic (TRU) waste. This size-reduction operation reduces solid TRU waste generation by almost 2% times. Replacing one-time-use bag-out bags with multiple-use glass crushing bags also contributes to reducing generated waste. In addition, significant costs from contamination, cleanup, and preparation of incident documentation are avoided. This effort contributes to the Los Alamos National Laboratory Continuous Improvement Program by improving the efficiency, cost-effectiveness, and formality of glovebox operations. In this report, the technical issues, associated with implementing this process improvement are addressed, the results discussed, effectiveness of Lessons Learned evaluated, and waste savings presented.

Cournoyer, Michael E [Los Alamos National Laboratory; Nixon, Archie E [Los Alamos National Laboratory; Dodge, Robert L [Los Alamos National Laboratory; Fife, Keith W [Los Alamos National Laboratory; Sandoval, Arnold M [Los Alamos National Laboratory; Garcia, Vincent E [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

228

Transuranic (Tru) waste volume reduction operations at a plutonium facility  

SciTech Connect

Programmatic operations at the Los Alamos National Laboratory Plutonium Facility (TA 55) involve working with various amounts of plutonium and other highly toxic, alpha-emitting materials. The spread of radiological contamination on surfaces, airborne contamination, and excursions of contaminants into the operator's breathing zone are prevented through use of a variety of gloveboxes (the glovebox, coupled with an adequate negative pressure gradient, provides primary confinement). Size-reduction operations on glovebox equipment are a common activity when a process has been discontinued and the room is being modified to support a new customer. The Actin ide Processing Group at TA-55 uses one-meter-long glass columns to process plutonium. Disposal of used columns is a challenge, since they must be size-reduced to get them out of the glovebox. The task is a high-risk operation because the glass shards that are generated can puncture the bag-out bags, leather protectors, glovebox gloves, and the worker's skin when completing the task. One of the Lessons Learned from these operations is that Laboratory management should critically evaluate each hazard and provide more effective measures to prevent personnel injury. A bag made of puncture-resistant material was one of these enhanced controls. We have investigated the effectiveness of these bags and have found that they safely and effectively permit glass objects to be reduced to small pieces with a plastic or rubber mallet; the waste can then be easily poured into a container for removal from the glove box as non-compactable transuranic (TRU) waste. This size-reduction operation reduces solid TRU waste generation by almost 2% times. Replacing one-time-use bag-out bags with multiple-use glass crushing bags also contributes to reducing generated waste. In addition, significant costs from contamination, cleanup, and preparation of incident documentation are avoided. This effort contributes to the Los Alamos National Laboratory Continuous Improvement Program by improving the efficiency, cost-effectiveness, and formality of glovebox operations. In this report, the technical issues, associated with implementing this process improvement are addressed, the results discussed, effectiveness of Lessons Learned evaluated, and waste savings presented.

Cournoyer, Michael E [Los Alamos National Laboratory; Nixon, Archie E [Los Alamos National Laboratory; Dodge, Robert L [Los Alamos National Laboratory; Fife, Keith W [Los Alamos National Laboratory; Sandoval, Arnold M [Los Alamos National Laboratory; Garcia, Vincent E [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

229

Radioactive and mixed waste management plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility  

SciTech Connect

This Radioactive and Mixed Waste Management Plan for the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory is written to meet the requirements for an annual report of radioactive and mixed waste management activities outlined in DOE Order 5820.2A. Radioactive and mixed waste management activities during FY 1994 listed here include principal regulatory and environmental issues and the degree to which planned activities were accomplished.

NONE

1995-01-01T23:59:59.000Z

230

Purex waste facility scope design -- 241-AX  

SciTech Connect

It is planned for the Purex plant to be the base load plant and therefore it will not be effected by small changes in production schedules. It is of utmost importance to have adequate waste storage capacities at Purex to handle all conceivable production demands and to permit flexibility in semi-permanent storage of self-boiling wastes without jeopardizing production schedules, and diminishing safety regulations, or reducing operability. The purpose of this report is to present the design scope and the fundamental requirements for a new Purex waste storage tank farm to be designated as 241-AX.

Stivers, H.W.

1956-06-20T23:59:59.000Z

231

Pilot studies to achieve waste minimization and enhance radioactive liquid waste treatment at the Los Alamos National Laboratory Radioactive Liquid Waste Treatment Facility  

SciTech Connect

The Radioactive and Industrial Wastewater Science Group manages and operates the Radioactive Liquid Waste Treatment Facility (RLWTF) at the Los Alamos National Laboratory (LANL). The RLWTF treats low-level radioactive liquid waste generated by research and analytical facilities at approximately 35 technical areas throughout the 43-square-mile site. The RLWTF treats an average of 5.8 million gallons (21.8-million liters) of liquid waste annually. Clarifloculation and filtration is the primary treatment technology used by the RLWTF. This technology has been used since the RLWTF became operable in 1963. Last year the RLWTF achieved an average of 99.7% removal of gross alpha activity in the waste stream. The treatment process requires the addition of chemicals for the flocculation and subsequent precipitation of radionuclides. The resultant sludge generated during this process is solidified in drums and stored or disposed of at LANL.

Freer, J.; Freer, E.; Bond, A. [and others

1996-07-01T23:59:59.000Z

232

Solid Waste Disposal Resource Recovery Facilities Act (South Carolina)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation authorizes local governing bodies to form joint agencies to advance the collection, transfer, processing of solid waste, recovery of resources, and sales of recovered resources in...

233

Hanford facility dangerous waste permit application, 616 Nonradioactive dangerous waste storage facility  

Science Conference Proceedings (OSTI)

This chapter provides information on the physical, chemical, and biological characteristics of the waste stored at the 616 NRDWSF. A waste analysis plan is included that describes the methodology used for determining waste types.

Price, S.M.

1997-04-30T23:59:59.000Z

234

Performance assessment for a hypothetical low-level waste disposal facility  

Science Conference Proceedings (OSTI)

Disposing of low-level waste (LLW) is a concern for many states throughout the United States. A common disposal method is below-grade concrete vaults. Performance assessment analyses make predictions of contaminant release, transport, ingestion, inhalation, or other routes of exposure, and the resulting doses for various disposal methods such as the below-grade concrete vaults. Numerous assumptions are required to simplify the processes associated with the disposal facility to make predictions feasible. In general, these assumptions are made conservatively so as to underestimate the performance of the facility. The objective of this report is to describe the methodology used in conducting a performance assessment for a hypothetical waste facility located in the northeastern United States using real data as much as possible. This report consists of the following: (a) a description of the disposal facility and site, (b) methods used to analyze performance of the facility, (c) the results of the analysis, and (d) the conclusions of this study.

Smith, C.S.; Rohe, M.J.; Ritter, P.D. [and others

1997-01-01T23:59:59.000Z

235

Waste management facilities cost information for transuranic waste  

SciTech Connect

This report contains preconceptual designs and planning level life-cycle cost estimates for managing transuranic waste. The report`s information on treatment and storage modules can be integrated to develop total life-cycle costs for various waste management options. A procedure to guide the U.S. Department of Energy and its contractor personnel in the use of cost estimation data is also summarized in this report.

Shropshire, D.; Sherick, M.; Biagi, C.

1995-06-01T23:59:59.000Z

236

Low-Level Waste Disposal Facility Federal Review Group Manual  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LEVEL WASTE DISPOSAL FACILITY FEDERAL REVIEW GROUP MANUAL REVISION 3 JUNE 2008 (This page intentionally left blank) Low-Level JVllsfe Disposal Fllcili~l' Federal Review Group il1allUlli Revision 3, June 200S Concurrence The Low-Level Waste Disposal Facility Federal Review Group Manual, Revision 3, is approved for use as of the most recent date below. Date Chair, Low-Level Waste Disposal Federal Review Group Andrew WalJo, 1II Deputy Director, Otlice of Nuclear Safety, Quality Assurance, and Environment Department of Energy OHlce of Health, Safety, and Security e C. WilJiams Associate Administrator for Infrastructure and Environment National Nuclear Security Administration Low-Level 'Vaste Disposal Facility Federal Review Group J1aJll/ai

237

Idaho Waste Treatment Facility Improves Worker Safety and Efficiency, Saves  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment Facility Improves Worker Safety and Waste Treatment Facility Improves Worker Safety and Efficiency, Saves Taxpayer Dollars Idaho Waste Treatment Facility Improves Worker Safety and Efficiency, Saves Taxpayer Dollars August 27, 2013 - 12:00pm Addthis The box retrieval forklift carriage is used to lift a degraded box as retrieval personnel monitor progress. The box retrieval forklift carriage is used to lift a degraded box as retrieval personnel monitor progress. The new soft-sided overpack is placed for shipment for treatment and repackaging. The new soft-sided overpack is placed for shipment for treatment and repackaging. The box retrieval forklift carriage is used to lift a degraded box as retrieval personnel monitor progress. The new soft-sided overpack is placed for shipment for treatment and repackaging.

238

Maintenance Guide for DOE Low-Level Waste Disposal Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 4 G Approved: XX-XX-XX IMPLEMENTATION GUIDE for use with DOE M 435.1-1 Maintenance Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Performance Assessments and Composite Analyses U.S. DEPARTMENT OF ENERGY DOE G 435.1-4 i (and ii) DRAFT XX-XX-XX LLW Maintenance Guide Revision 0, XX-XX-XX Maintenance Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Performance Assessments and Composite Analyses CONTENTS 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . .

239

The Mixed Waste Management Facility. Design basis integrated operations plan (Title I design)  

SciTech Connect

The Mixed Waste Management Facility (MWMF) will be a fully integrated, pilotscale facility for the demonstration of low-level, organic-matrix mixed waste treatment technologies. It will provide the bridge from bench-scale demonstrated technologies to the deployment and operation of full-scale treatment facilities. The MWMF is a key element in reducing the risk in deployment of effective and environmentally acceptable treatment processes for organic mixed-waste streams. The MWMF will provide the engineering test data, formal evaluation, and operating experience that will be required for these demonstration systems to become accepted by EPA and deployable in waste treatment facilities. The deployment will also demonstrate how to approach the permitting process with the regulatory agencies and how to operate and maintain the processes in a safe manner. This document describes, at a high level, how the facility will be designed and operated to achieve this mission. It frequently refers the reader to additional documentation that provides more detail in specific areas. Effective evaluation of a technology consists of a variety of informal and formal demonstrations involving individual technology systems or subsystems, integrated technology system combinations, or complete integrated treatment trains. Informal demonstrations will typically be used to gather general operating information and to establish a basis for development of formal demonstration plans. Formal demonstrations consist of a specific series of tests that are used to rigorously demonstrate the operation or performance of a specific system configuration.

NONE

1994-12-01T23:59:59.000Z

240

Advanced Electrochemical Waste Forms  

Science Conference Proceedings (OSTI)

... of Fluidized Bed Steam Reforming (FBSR) with Hanford Low Activity Wastes ... Level Waste at the Defense Waste Processing Facility through Sludge Batch 7b.

Note: This page contains sample records for the topic "waste processing facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Mixed waste certification plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility. Revision 1  

SciTech Connect

The purpose of this plan is to describe the organization and methodology for the certification of mixed waste handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan is composed to meet the requirements found in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and follows the suggested outline provided by WHC in the letter of April 26, 1990, to Dr. R.H. Thomas, Occupational Health Division, LBL. Mixed waste is to be transferred to the WHC Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington.

1995-01-01T23:59:59.000Z

242

Idaho CERCLA Disposal Facility Complex Waste Acceptance Criteria  

SciTech Connect

The Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility (ICDF) has been designed to accept CERCLA waste generated within the Idaho National Laboratory. Hazardous, mixed, low-level, and Toxic Substance Control Act waste will be accepted for disposal at the ICDF. The purpose of this document is to provide criteria for the quantities of radioactive and/or hazardous constituents allowable in waste streams designated for disposal at ICDF. This ICDF Complex Waste Acceptance Criteria is divided into four section: (1) ICDF Complex; (2) Landfill; (3) Evaporation Pond: and (4) Staging, Storage, Sizing, and Treatment Facility (SSSTF). The ICDF Complex section contains the compliance details, which are the same for all areas of the ICDF. Corresponding sections contain details specific to the landfill, evaporation pond, and the SSSTF. This document specifies chemical and radiological constituent acceptance criteria for waste that will be disposed of at ICDF. Compliance with the requirements of this document ensures protection of human health and the environment, including the Snake River Plain Aquifer. Waste placed in the ICDF landfill and evaporation pond must not cause groundwater in the Snake River Plain Aquifer to exceed maximum contaminant levels, a hazard index of 1, or 10-4 cumulative risk levels. The defined waste acceptance criteria concentrations are compared to the design inventory concentrations. The purpose of this comparison is to show that there is an acceptable uncertainty margin based on the actual constituent concentrations anticipated for disposal at the ICDF. Implementation of this Waste Acceptance Criteria document will ensure compliance with the Final Report of Decision for the Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13. For waste to be received, it must meet the waste acceptance criteria for the specific disposal/treatment unit (on-Site or off-Site) for which it is destined.

W. Mahlon Heileson

2006-10-01T23:59:59.000Z

243

EA-437; Environmental Assessment Process Equipment Waste and Process Waste Liquid Collection Systems Idaho Chemical Processing Plant Idaho National Engineering Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

437; Environmental Assessment Process Equipment Waste and 437; Environmental Assessment Process Equipment Waste and Process Waste Liquid Collection Systems Idaho Chemical Processing Plant Idaho National Engineering Laboratory TABLE OF CONTENTS Environmental Assessment Process Equipment Waste and Process Waste Liquid Collection Systems Idaho Chemical Processing Plant Idaho National Engineering Laboratory 1. INTRODUCTION 2. DESCRIPTION OF THE PROPOSED ACTION AND ALTERNATIVES 2.1 Purpose and Need of the Proposed Action 2.2 Description of the Affected Facilities 2.3 Description of Proposed Action 2.4 Alternatives to the Proposed Action 2.5 Separate But Related Actions 3. AFFECTED ENVIRONMENT 3.1 Introduction 3.2 Physical Environment 3.3 Biological Resources 3.4 Cultural Resources 3.5 Environmental Quality and Monitoring Programs

244

Hanford Site annual dangerous waste report: Volume 4, Waste Management Facility report, Radioactive mixed waste  

SciTech Connect

This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation and amount of waste.

NONE

1994-12-31T23:59:59.000Z

245

Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Facility  

Science Conference Proceedings (OSTI)

The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

Lisa Harvego; Mike Lehto

2010-05-01T23:59:59.000Z

246

Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Facility  

Science Conference Proceedings (OSTI)

The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

Lisa Harvego; Mike Lehto

2010-02-01T23:59:59.000Z

247

MANAGEMENT, OPERATION, AND MAINTENANCE SYSTEMS FOR WASTE FACILITIES  

E-Print Network (OSTI)

MANAGEMENT, OPERATION, AND MAINTENANCE SYSTEMS FOR WASTE FACILITIES DONALD H. GRAHAM Operations. The discussion will focus on the management, operation, and maintenance systems nec essary to support long maintenance management pro gram (j) cost accounting and a record keeping system to provide timely, accurate

Columbia University

248

The mixed waste management facility, FY95 plan  

SciTech Connect

This document contains the Fiscal Year 1995 Plan for the Mixed Waste Management Facility (MWMF) at Lawrence Livermore National Laboratory. Major objectives to be completed during FY 1995 for the MWMF project are listed and described. This report also contains a budget plan, project task summaries, a milestone control log, and a responsibility assignment matrix for the MWMF project.

Streit, R.

1994-12-01T23:59:59.000Z

249

Hanford facility dangerous waste permit application, general information portion  

SciTech Connect

The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the content of the Part B permit application guidance prepared by the Washington State Department of Ecology (Ecology 1996) and the U.S. Environmental Protection Agency (40 Code of Federal Regulations 270), with additional information needed by the Hazardous and Solid Waste Amendments and revisions of Washington Administrative Code 173-303. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in this report).

Hays, C.B.

1998-05-19T23:59:59.000Z

250

Solid Waste Processing Center Primary Opening Cells Systems, Equipment and Tools  

SciTech Connect

This document addresses the remote systems and design integration aspects of the development of the Solid Waste Processing Center (SWPC), a facility to remotely open, sort, size reduce, and repackage mixed low-level waste (MLLW) and transuranic (TRU)/TRU mixed waste that is either contact-handled (CH) waste in large containers or remote-handled (RH) waste in various-sized packages.

Bailey, Sharon A.; Baker, Carl P.; Mullen, O Dennis; Valdez, Patrick LJ

2006-04-17T23:59:59.000Z

251

Radioactive Liquid Waste Treatment Facility: Environmental Information Document  

Science Conference Proceedings (OSTI)

At Los Alamos National Laboratory (LANL), the treatment of radioactive liquid waste is an integral function of the LANL mission: to assure U.S. military deterrence capability through nuclear weapons technology. As part of this mission, LANL conducts nuclear materials research and development (R&D) activities. These activities generate radioactive liquid waste that must be handled in a manner to ensure protection of workers, the public, and the environment. Radioactive liquid waste currently generated at LANL is treated at the Radioactive Liquid Waste Treatment Facility (RLWTF), located at Technical Area (TA)-50. The RLWTF is 30 years old and nearing the end of its useful design life. The facility was designed at a time when environmental requirements, as well as more effective treatment technologies, were not inherent in engineering design criteria. The evolution of engineering design criteria has resulted in the older technology becoming less effective in treating radioactive liquid wastestreams in accordance with current National Pollutant Discharge Elimination System (NPDES) and Department of Energy (DOE) regulatory requirements. Therefore, to support ongoing R&D programs pertinent to its mission, LANL is in need of capabilities to efficiently treat radioactive liquid waste onsite or to transport the waste off site for treatment and/or disposal. The purpose of the EID is to provide the technical baseline information for subsequent preparation of an Environmental Impact Statement (EIS) for the RLWTF. This EID addresses the proposed action and alternatives for meeting the purpose and need for agency action.

Haagenstad, H.T.; Gonzales, G.; Suazo, I.L. [Los Alamos National Lab., NM (United States)

1993-11-01T23:59:59.000Z

252

Conceptual Safety Design Report for the Remote Handled Low-Level Waste Disposal Facility  

SciTech Connect

A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal for remote-handled LLW from the Idaho National Laboratory and for spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This conceptual safety design report supports the design of a proposed onsite remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization, by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW, by evaluating consequences of postulated accidents, and by discussing the need for safety features that will become part of the facility design.

Boyd D. Christensen

2010-05-01T23:59:59.000Z

253

Conceptual Safety Design Report for the Remote Handled Low-Level Waste Disposal Facility  

Science Conference Proceedings (OSTI)

A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal for remote-handled LLW from the Idaho National Laboratory and for spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This conceptual safety design report supports the design of a proposed onsite remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization, by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW, by evaluating consequences of postulated accidents, and by discussing the need for safety features that will become part of the facility design.

Boyd D. Christensen

2010-02-01T23:59:59.000Z

254

Process for remediation of plastic waste  

DOE Patents (OSTI)

A single step process for degrading plastic waste by converting the plastic waste into carbonaceous products via thermal decomposition of the plastic waste by placing the plastic waste into a reactor, heating the plastic waste under an inert or air atmosphere until the temperature of 700.degree. C. is achieved, allowing the reactor to cool down, and recovering the resulting decomposition products therefrom. The decomposition products that this process yields are carbonaceous materials, and more specifically egg-shaped and spherical-shaped solid carbons. Additionally, in the presence of a transition metal compound, this thermal decomposition process produces multi-walled carbon nanotubes.

Pol, Vilas G. (Westmont, IL); Thiyagarajan, Pappannan (Germantown, MD)

2012-04-10T23:59:59.000Z

255

Process for remediation of plastic waste  

SciTech Connect

A single step process for degrading plastic waste by converting the plastic waste into carbonaceous products via thermal decomposition of the plastic waste by placing the plastic waste into a reactor, heating the plastic waste under an inert or air atmosphere until the temperature of about 700.degree. C. is achieved, allowing the reactor to cool down, and recovering the resulting decomposition products therefrom. The decomposition products that this process yields are carbonaceous materials, and more specifically carbon nanotubes having a partially filled core (encapsulated) adjacent to one end of the nanotube. Additionally, in the presence of a transition metal compound, this thermal decomposition process produces multi-walled carbon nanotubes.

Pol, Vilas G; Thiyagarajan, Pappannan

2013-11-12T23:59:59.000Z

256

Waste Encapsulation Storage Facility, January 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

safety question (USQ) evaluation and an Occurrence Reporting and Processing System (ORPS) report were also promptly initiated. Subsequent analyses resulting from the USQ...

257

Summary - WTP Analytical Lab, BOF and LAW Waste Vitrification Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wa Wa Schem DOE is Immob site's t facilitie Balanc Activity of this techno facilitie are su WTP d Readin The as along w Level ( * Tw 1. 2. The Ele Site: H roject: W Report Date: M ited States aste Trea Labo Why DOE matic of Laser Ab s constructing bilization Plant tank wastes. T es including an ces of Facilities y Waste (LAW assessment w ology elements es (LAB, BOF, fficiently matur design, which n ness Level of 6 What th ssessment team with each elem (TRL) for the L wo LAB system . Autosamplin Laser ablati AES/LA-ICP To view the full T http://www.em.doe. objective of a Tech ements (CTEs), usin Hanford/ORP Waste Treatme March 2007 Departmen atment a oratory, B E-EM Did This blation Analytical a Waste Treat (WTP) at Hanf The WTP is com n Analytical Lab s (BOF) operat ) Vitrification F was to identify t s (CTEs) in the

258

Format and Content Guide for DOE Low-Level Waste Disposal Facility Closure Plans  

Energy.gov (U.S. Department of Energy (DOE))

Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans

259

Mixed and Low-Level Waste Treatment Facility project. Executive summary: Volume 1, Program summary information; Volume 2, Waste stream technical summary: Draft  

SciTech Connect

Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. The engineering studies, initiated in July 1991, identified 37 mixed waste streams, and 55 low-level waste streams. This report documents the waste stream information and potential treatment strategies, as well as the regulatory requirements for the Department of Energy-owned treatment facility option. The total report comprises three volumes and two appendices. This report consists of Volume 1, which explains the overall program mission, the guiding assumptions for the engineering studies, and summarizes the waste stream and regulatory information, and Volume 2, the Waste Stream Technical Summary which, encompasses the studies conducted to identify the INEL`s waste streams and their potential treatment strategies.

1992-04-01T23:59:59.000Z

260

Preliminary siting activities for new waste handling facilities at the Idaho National Engineering Laboratory  

SciTech Connect

The Idaho Waste Processing Facility, the Mixed and Low-Level Waste Treatment Facility, and the Mixed and Low-Level Waste Disposal Facility are new waste treatment, storage, and disposal facilities that have been proposed at the Idaho National Engineering Laboratory (INEL). A prime consideration in planning for such facilities is the selection of a site. Since spring of 1992, waste management personnel at the INEL have been involved in activities directed to this end. These activities have resulted in the (a) identification of generic siting criteria, considered applicable to either treatment or disposal facilities for the purpose of preliminary site evaluations and comparisons, (b) selection of six candidate locations for siting,and (c) site-specific characterization of candidate sites relative to selected siting criteria. This report describes the information gathered in the above three categories for the six candidate sites. However, a single, preferred site has not yet been identified. Such a determination requires an overall, composite ranking of the candidate sites, which accounts for the fact that the sites under consideration have different advantages and disadvantages, that no single site is superior to all the others in all the siting criteria, and that the criteria should be assigned different weighing factors depending on whether a site is to host a treatment or a disposal facility. Stakeholder input should now be solicited to help guide the final selection. This input will include (a) siting issues not already identified in the siting, work to date, and (b) relative importances of the individual siting criteria. Final site selection will not be completed until stakeholder input (from the State of Idaho, regulatory agencies, the public, etc.) in the above areas has been obtained and a strategy has been developed to make a composite ranking of all candidate sites that accounts for all the siting criteria.

Taylor, D.D.; Hoskinson, R.L.; Kingsford, C.O.; Ball, L.W.

1994-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste processing facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

DOE Office of Waste Processing Technical Exchange - Agenda  

NLE Websites -- All DOE Office Websites (Extended Search)

June 1, 2009 June 1, 2009 Agenda Hotel Information Registration Presentation Guidelines Poster Guidelines Webcast Waiver Contacts Home Waste Processing Technical Exchange Agenda (Version 1.1) Pre-Registration: Monday, May 18, 5:00p - 7:00p Organizer/Session Chair: Blocker (early registration & speaker check-in) Day 1: Tuesday, May 19 Registration - 7:00a - 8:00a Session One - Opening Session Two - Waste Retrieval and Closure 1 Session Three - Waste Form Development Day 2: Wednesday, May 20 Session Four - Pretreatment 1 Session Five - Facility Readiness and Start-up Session Six - Pretreatment 2 Session Seven - Waste Retrieval and Closure 2 Session Eight - Poster Presentations Day 3: Thursday, May 21 Session Nine - Regulatory Activity and Performance Assessment Session Ten - Waste Storage and Tank Farm Operational Improvements

262

Process for treating fission waste  

DOE Patents (OSTI)

A method is described for the treatment of fission waste. A glass forming agent, a metal oxide, and a reducing agent are mixed with the fission waste and the mixture is heated. After melting, the mixture separates into a glass phase and a metal phase. The glass phase may be used to safely store the fission waste, while the metal phase contains noble metals recovered from the fission waste.

Rohrmann, Charles A. (Kennewick, WA); Wick, Oswald J. (Richland, WA)

1983-01-01T23:59:59.000Z

263

Office of Waste Processing Technical Exchange  

NLE Websites -- All DOE Office Websites (Extended Search)

Contact Information: For more EM Waste Processing Technical Exchange 2010 information, please contact one of the folowing (click name to email): Bill Wilmarth Rosalind Blocker...

264

Office of Waste Processing Technical Exchange  

... Savannah River/Hanford/Idaho along with others receiving funding from the Environmental Management Office of Waste Processing have met to exchange ...

265

Office of Waste Processing Technical Exchange  

... Savannah River/Hanford/Idaho along with others receiving funding from the Environmental Management Office of Waste Processing have met to exchange recent ...

266

HWMA closure plan for the Waste Calcining Facility at the Idaho National Engineering Laboratory  

SciTech Connect

The Waste Calcining Facility (WCF) calcined and evaporated aqueous wastes generated from the reprocessing of spent nuclear fuel. The calciner operated from 1963 to 1981, primarily processing high level waste from the first cycle of spent fuel extraction. Following the calciner shutdown the evaporator system concentrated high activity aqueous waste from 1983 until 1987. In 1988, US Department of Energy Idaho Operations Office (DOE-ID) requested interim status for the evaporator system, in anticipation of future use of the evaporator system. The evaporator system has not been operated since it received interim status. At the present time, DOE-ID is completing construction on a new evaporator at the New Waste Calcining Facility (NWCF) and the evaporator at the WCF is not needed. The decision to not use the WCF evaporator requires Lockheed Idaho Technologies Company (LITCO) and DOE-ID to close these units. After a detailed evaluation of closure options, LITCO and DOE-ID have determined the safest option is to fill the voids (grout the vessels, cells and waste pile) and close the WCF to meet the requirements applicable to landfills. The WCF will be covered with a concrete cap that will meet the closure standards. In addition, it was decided to apply these closure standards to the calcining system since it is contained within the WCF building. The paper describes the site, waste inventory, closure activities, and post-closure care plans.

1996-05-01T23:59:59.000Z

267

Polymer Solidification and Stabilization: Adaptable Processes for Atypical Wastes  

Science Conference Proceedings (OSTI)

Vinyl Ester Styrene (VES) and Advanced Polymer Solidification (APS{sup TM}) processes are used to solidify, stabilize, and immobilize radioactive, pyrophoric and hazardous wastes at US Department of Energy (DOE) and Department of Defense (DOD) sites, and commercial nuclear facilities. A wide range of projects have been accomplished, including in situ immobilization of ion exchange resin and carbon filter media in decommissioned submarines; underwater solidification of zirconium and hafnium machining swarf; solidification of uranium chips; impregnation of depth filters; immobilization of mercury, lead and other hazardous wastes (including paint chips and blasting media); and in situ solidification of submerged demineralizers. Discussion of the adaptability of the VES and APS{sup TM} processes is timely, given the decommissioning work at government sites, and efforts by commercial nuclear plants to reduce inventories of one-of-a-kind wastes. The VES and APS{sup TM} media and processes are highly adaptable to a wide range of waste forms, including liquids, slurries, bead and granular media; as well as metal fines, particles and larger pieces. With the ability to solidify/stabilize liquid wastes using high-speed mixing; wet sludges and solids by low-speed mixing; or bead and granular materials through in situ processing, these polymer will produce a stable, rock-hard product that has the ability to sequester many hazardous waste components and create Class B and C stabilized waste forms for disposal. Technical assessment and approval of these solidification processes and final waste forms have been greatly simplified by exhaustive waste form testing, as well as multiple NRC and CRCPD waste form approvals. (authors)

Jensen, C. [Diversified Technologies Services, Inc., Knoxville, TN (United States)

2007-07-01T23:59:59.000Z

268

Preparation of Safety Basis Documents for Transuranic (TRU) Waste Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5506-2007 5506-2007 April 2007 DOE STANDARD Preparation of Safety Basis Documents for Transuranic (TRU) Waste Facilities U.S. Department of Energy Washington, D.C. 20585 AREA-SAFT DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-5506-2007 ii Available on the Department of Energy Technical Standards Program Web Site at Http://tis.eh.doe.gov/techstds/ DOE-STD-5506-2007 iii Foreword This Standard provides analytical assumptions and methods, as well as hazard controls to be used when developing Safety Basis (SB) documents for transuranic (TRU) waste facilities in the U.S. Department of Energy (DOE) Complex. It also provides supplemental technical

269

Environmental Management Waste Management Facility (EMWMF) at Oak Ridge  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independent Technical Review Report: Oak Ridge Reservation Independent Technical Review Report: Oak Ridge Reservation Review of the Environmental Management Waste Management Facility (EMWMF) at Oak Ridge By Craig H. Benson, PhD, PE; William H. Albright, PhD; David P. Ray, PE; and John Smegal Sponsored by: The Office of Engineering and Technology (EM-20) 1 February 2008 (v3.0) i TABLE OF CONTENTS 1. INTRODUCTION 1 2. OBJECTIVE AND SCOPE 2 3. LINE OF INQUIRY NO. 1 2 4. LINE OF INQUIRY NO. 2 4 4.1 Compaction Testing of Soil and Debris Mixtures 5 4.2 Final Cover Settlement 6 5. LINE OF INQUIRY NO. 3 7 6. SUMMARY OF RECOMMENDATIONS 8 7. ACKNOWLEDGEMENT 10 8. REFERENCES 10 FIGURES 12 1 1. INTRODUCTION The Environmental Management Waste Management Facility (EMWMF) is a land disposal

270

Fuel Conditioning Facility Electrorefiner Process Model  

SciTech Connect

The Fuel Conditioning Facility at the Idaho National Laboratory processes spent nuclear fuel from the Experimental Breeder Reactor II using electro-metallurgical treatment. To process fuel without waiting for periodic sample analyses to assess process conditions, an electrorefiner process model predicts the composition of the electrorefiner inventory and effluent streams. For the chemical equilibrium portion of the model, the two common methods for solving chemical equilibrium problems, stoichiometric and non stoichiometric, were investigated. In conclusion, the stoichiometric method produced equilibrium compositions close to the measured results whereas the non stoichiometric method did not.

DeeEarl Vaden

2005-10-01T23:59:59.000Z

271

Implementing change in the facilities planning process  

SciTech Connect

In the post-Cold War climate of reduced budgets at the national laboratories, the Sites Planning Department at Sandia National Laboratories was faced with the problem of securing funding for capital construction projects in a very competitive environment. The Department of Energy (DOE), felt that requests for new facilities were not always well coordinated with its mission needs. The Sites Planning Department needed to revolutionize the way they were doing business. To be successful in obtaining approval and funding for future facilities, they recognized the need to concentrate their efforts on project proposals that tap strategic programs at DOE. The authors developed a series of new processes to identify, evaluate, prioritize, and develop line item project proposals to request approval and obtain funding. A matrixed group of sites and facilities directors was formed to establish criteria and make preliminary recommendations to upper management. Matrixed working groups were also established at the staff level to develop and prepare projects for the prioritization process. Ultimately, similar processes will be applied to all project types, and a prioritized plan generated for each. These plans will become the blueprint for an overarching strategic site plan. What started as a means of increasing success in obtaining approval and funding of capital projects has launched a whole new approach to project development that permits incorporation of facilities planning into overall corporate strategic planning.

Williams, J.L. [Sandia National Labs., Albuquerque, NM (United States). Sites Planning Dept.

1995-08-01T23:59:59.000Z

272

Maximization of revenues for power sales from a solid waste resources recovery facility  

Science Conference Proceedings (OSTI)

The report discusses the actual implementation of the best alternative in selling electrical power generated by an existing waste-to-energy facility, the Metro-Dade County Resources Recovery Plant. After the plant processes and extracts various products out of the municipal solid waste, it burns it to produce electrical power. The price for buying power to satisfy the internal needs of our Resources Recovery Facility (RRF) is substantially higher than the power price for selling electricity to any other entity. Therefore, without any further analysis, it was decided to first satisfy those internal needs and then export the excess power. Various alternatives were thoroughly explored as to what to do with the excess power. Selling power to the power utilities or utilizing the power in other facilities were the primary options.

Not Available

1991-12-01T23:59:59.000Z

273

Idaho National Engineering and Environmental Laboratory, Old Waste Calcining Facility, Scoville vicinity, Butte County, Idaho -- Photographs, written historical and descriptive data. Historical American engineering record  

SciTech Connect

This report describes the history of the Old Waste Calcining Facility. It begins with introductory material on the Idaho National Engineering and Environmental Laboratory, the Materials Testing Reactor fuel cycle, and the Idaho Chemical Processing Plant. The report then describes management of the wastes from the processing plant in the following chapters: Converting liquid to solid wastes; Fluidized bed waste calcining process and the Waste Calcining Facility; Waste calcining campaigns; WCF gets a new source of heat; New Waste Calcining Facility; Last campaign; Deactivation and the RCRA cap; Significance/context of the old WCF. Appendices contain a photo key map for HAER photos, a vicinity map and neighborhood of the WCF, detailed description of the calcining process, and chronology of WCF campaigns.

1997-12-31T23:59:59.000Z

274

GRR/Section 18-CO-b - Hazardous Waste Permit Process | Open Energy  

Open Energy Info (EERE)

GRR/Section 18-CO-b - Hazardous Waste Permit Process GRR/Section 18-CO-b - Hazardous Waste Permit Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-CO-b - Hazardous Waste Permit Process 18COBHazardousWastePermitProcess.pdf Click to View Fullscreen Contact Agencies Colorado Department of Public Health and Environment Regulations & Policies Colorado Hazardous Waste Regulations Part 260 Triggers None specified Click "Edit With Form" above to add content 18COBHazardousWastePermitProcess.pdf 18COBHazardousWastePermitProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Hazardous waste is a regulated substance and facilities that treat, store

275

Process for remediation of plastic waste - Energy Innovation ...  

A single step process for degrading plastic waste by converting the plastic waste into carbonaceous products via thermal decomposition of the plastic waste by placing ...

276

GRR/Elements/18-CA-c.1 - What Level of Hazardous Waste Facility Permit Does  

Open Energy Info (EERE)

GRR/Elements/18-CA-c.1 - What Level of Hazardous Waste Facility Permit Does GRR/Elements/18-CA-c.1 - What Level of Hazardous Waste Facility Permit Does the Facility Require < GRR‎ | Elements Jump to: navigation, search Edit 18-CA-b.1 - What Level of Hazardous Waste Facility Permit Does the Facility Require California employs a five-tier permitting program which imposes regulatory requirements matching the degree of risk posed by the level of hazardous waste: * The Full Permit Tier includes all facilities requiring a RCRA permit as well as selected non-RCRA activities under Title 22 California Code of Regulations. * The Standardized Permit Tier includes facilities that manage waste not regulated by RCRA, but regulated as hazardous waste in California. * Onsite Treatment Permits (3-Tiered) includes onsite treatment of non-RCRA waste regulated in California.

277

Waste Processing Annual Technology Development Report 2007  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Processing Processing Annual Technology Development Report 2007 SRNS-STI-2008-00040 United States Department of Energy Waste Processing Annual Technology Development Report 2007 Prepared and edited by S. R. Bush EM Technical Integration Office Savannah River National Laboratory Reviewed by Dr. W. R. Wilmarth, Manager EM Technical Integration Office Savannah River National Laboratory Approved by Dr. S. L. Krahn, Director EM-21 Office of Waste Processing U. S. Department of Energy APPROVED for Release for Unlimited (Release to Public) (Signed 08/13/2008) (Signed 08/13/2008) (Signed 08/13/2008) EM-21 Waste Processing Annual Report for Calendar Year 2007 2/74

278

Using Waste Heat for External Processes  

Science Conference Proceedings (OSTI)

This DOE Industrial Technologies Program tip sheet describes the savings resulting from using waste heat from high-temperature industrial processes for lower temperature processes, like oven-drying.

Not Available

2006-01-01T23:59:59.000Z

279

Environmental assessment: Closure of the Waste Calcining Facility (CPP-633), Idaho National Engineering Laboratory  

SciTech Connect

The U.S. Department of Energy (DOE) proposes to close the Waste Calcining Facility (WCF). The WCF is a surplus DOE facility located at the Idaho Chemical Processing Plant (ICPP) on the Idaho National Engineering Laboratory (INEL). Six facility components in the WCF have been identified as Resource Conservation and Recovery Ace (RCRA)-units in the INEL RCRA Part A application. The WCF is an interim status facility. Consequently, the proposed WCF closure must comply with Idaho Rules and Standards for Hazardous Waste contained in the Idaho Administrative Procedures Act (IDAPA) Section 16.01.05. These state regulations, in addition to prescribing other requirements, incorporate by reference the federal regulations, found at 40 CFR Part 265, that prescribe the requirements for facilities granted interim status pursuant to the RCRA. The purpose of the proposed action is to reduce the risk of radioactive exposure and release of hazardous constituents and eliminate the need for extensive long-term surveillance and maintenance. DOE has determined that the closure is needed to reduce potential risks to human health and the environment, and to comply with the Idaho Hazardous Waste Management Act (HWMA) requirements.

1996-07-01T23:59:59.000Z

280

HANFORD FACILITY ANNUAL DANGEROUS WASTE REPORT CY2003 [SEC 1 & 2  

Science Conference Proceedings (OSTI)

The Hanford Facility Annual Dangerous Waste Report (ADWR) is prepared to meet the requirements of Washington Administrative Code Sections 173-303-220, Generator Reporting, and 173-303-390, Facility Reporting. In addition, the ADWR is required to meet Hanford Facility RCRA Permit Condition I.E.22, Annual Reporting. The ADWR provides summary information on dangerous waste generation and management activities for the Calendar Year for the Hanford Facility EPA ID number assigned to the Department of Energy for RCRA regulated waste, as well as Washington State only designated waste and radioactive mixed waste. The Solid Waste Information and Tracking System (SWITS) database is utilized to collect and compile the large array of data needed for preparation of this report. Information includes details of waste generated on the Hanford Facility, waste generated offsite and sent to Hanford for management, and other waste management activities conducted at Hanford, including treatment, storage, and disposal. Report details consist of waste descriptions and weights, waste codes and designations, and waste handling codes. In addition, for waste shipped to Hanford for treatment and or disposal, information on manifest numbers, the waste transporter, the waste receiving facility, and the original waste generators are included. In addition to paper copies, the report is also transmitted electronically to a web site maintained by the Washington State Department of Ecology.

FREEMAN, D.A.

2004-02-17T23:59:59.000Z

Note: This page contains sample records for the topic "waste processing facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Tag: uranium processing facility | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility project has received approval to begin field work. More... Category: News From aging infrastructure to the unaparalleled UPF The proposed Uranium Processing Facility...

282

Mixed and Low-Level Waste Treatment Facility Project. Appendix B, Waste stream engineering files: Part 2, Low-level waste streams  

SciTech Connect

Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report documents those studies so the project can continue with an evaluation of programmatic options, system tradeoff studies, and the conceptual design phase of the project. This report, appendix B, comprises the engineering design files for this project study. The engineering design files document each waste steam, its characteristics, and identified treatment strategies.

1992-04-01T23:59:59.000Z

283

Analysis of accident sequences and source terms at treatment and storage facilities for waste generated by US Department of Energy waste management operations  

SciTech Connect

This report documents the methodology, computational framework, and results of facility accident analyses performed for the US Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies assessed, and the resultant radiological and chemical source terms evaluated. A personal-computer-based computational framework and database have been developed that provide these results as input to the WM PEIS for the calculation of human health risk impacts. The WM PEIS addresses management of five waste streams in the DOE complex: low-level waste (LLW), hazardous waste (HW), high-level waste (HLW), low-level mixed waste (LLMW), and transuranic waste (TRUW). Currently projected waste generation rates, storage inventories, and treatment process throughputs have been calculated for each of the waste streams. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated, and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. Key assumptions in the development of the source terms are identified. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also discuss specific accident analysis data and guidance used or consulted in this report.

Mueller, C.; Nabelssi, B.; Roglans-Ribas, J.; Folga, S.; Policastro, A.; Freeman, W.; Jackson, R.; Mishima, J.; Turner, S.

1996-12-01T23:59:59.000Z

284

An Economic Assessment of Market-Based Approaches to Regulating the Municipal Solid Waste Stream  

E-Print Network (OSTI)

in id. ). The number of mixed waste processing facilitiesWaste separation occurs at mixed waste processing facilitiesban disposal of yard waste in mixed refuse. Variable Rate

Menell, Peter S.

2004-01-01T23:59:59.000Z

285

EIS-0287: Idaho High-Level Waste & Facilities Disposition | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7: Idaho High-Level Waste & Facilities Disposition 7: Idaho High-Level Waste & Facilities Disposition EIS-0287: Idaho High-Level Waste & Facilities Disposition SUMMARY This EIS analyzes the potential environmental consequences of alternatives for managing high-level waste (HLW) calcine, mixed transuranic waste/sodium bearing waste (SBW) and newly generated liquid waste at the Idaho National Engineering and Environmental Laboratory (INEEL) in liquid and solid forms. This EIS also analyzes alternatives for the final disposition of HLW management facilities at the INEEL after their missions are completed. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD January 12, 2010 EIS-0287: Amended Record of Decision Idaho High-Level Waste and Facilities Disposition January 4, 2010

286

EIS-0287: Idaho High-Level Waste and Facilities Disposition Final  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho High-Level Waste and Facilities Disposition Final Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement, EIS-0287 (September 2002) EIS-0287: Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement, EIS-0287 (September 2002) This EIS analyzes the potential environmental consequences of alternatives for managing high-level waste (HLW) calcine, mixed transuranic waste/sodium bearing waste (SBW) and newly generated liquid waste at the Idaho National Engineering and Environmental Laboratory (INEEL) in liquid and solid forms. This EIS also analyzes alternatives for the final disposition of HLW management facilities at the INEEL after their missions are completed. Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement, DOE/EIS-0287 (September 2002)

287

Systematics of Reconstructed Process Facility Criticality Accidents  

SciTech Connect

The systematics of the characteristics of twenty-one criticality accidents occurring in nuclear processing facilities of the Russian Federation, the United States, and the United Kingdom are examined. By systematics the authors mean the degree of consistency or agreement between the factual parameters reported for the accidents and the experimentally known conditions for criticality. The twenty-one reported process criticality accidents are not sufficiently well described to justify attempting detailed neutronic modeling. However, results of classic hand calculations confirm the credibility of the reported accident conditions.

Pruvost, N.L.; McLaughlin, T.P.; Monahan, S.P.

1999-09-19T23:59:59.000Z

288

Research and Education Campus Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables  

Science Conference Proceedings (OSTI)

U.S. Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory Research and Education Campus facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool to develop the radioactive waste management basis.

L. Harvego; Brion Bennett

2011-11-01T23:59:59.000Z

289

Materials and Security Consolidation Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables  

Science Conference Proceedings (OSTI)

Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Security Consolidation Center facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

Not Listed

2011-09-01T23:59:59.000Z

290

Materials and Fuels Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables  

SciTech Connect

Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Fuels Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

Lisa Harvego; Brion Bennett

2011-09-01T23:59:59.000Z

291

Characterization of the Old Hydrofracture Facility (OHF) waste tanks located at ORNL  

SciTech Connect

The Old Hydrofracture Facility (OHF) is located in Melton Valley within Waste Area Grouping (WAG) 5 and includes five underground storage tanks (T1, T2, T3, T4, and T9) ranging from 13,000 to 25,000 gal. capacity. During the period of 1996--97 there was a major effort to re-sample and characterize the contents of these inactive waste tanks. The characterization data summarized in this report was needed to address waste processing options, examine concerns dealing with the performance assessment (PA) data for the Waste Isolation Pilot Plant (WIPP), evaluate the waste characteristics with respect to the waste acceptance criteria (WAC) for WIPP and Nevada Test Site (NTS), address criticality concerns, and to provide the data needed to meet DOT requirements for transporting the waste. This report discusses the analytical characterization data collected on both the supernatant and sludge samples taken from three different locations in each of the OHF tanks. The isotopic data presented in this report supports the position that fissile isotopes of uranium ({sup 233}U and {sup 235}U) do not satisfy the denature ratios required by the administrative controls stated in the ORNL LLLW waste acceptance criteria (WAC). The fissile isotope of plutonium ({sup 239}Pu and {sup 241}Pu) are diluted with thorium far above the WAC requirements. In general, the OHF sludge was found to be hazardous (RCRA) based on total metal content and the transuranic alpha activity was well above the 100 nCi/g limit for TRU waste. The characteristics of the OHF sludge relative to the WIPP WAC limits for fissile gram equivalent, plutonium equivalent activity, and thermal power from decay heat were estimated from the data in this report and found to be far below the upper boundary for any of the remote-handled transuranic waste (RH-TRU) requirements for disposal of the waste in WIPP.

Keller, J.M.; Giaquinto, J.M.; Meeks, A.M.

1997-04-01T23:59:59.000Z

292

THE USE OF POLYMERS IN RADIOACTIVE WASTE PROCESSING SYSTEMS  

SciTech Connect

The Savannah River Site (SRS), one of the largest U.S. Department of Energy (DOE) sites, has operated since the early 1950s. The early mission of the site was to produce critical nuclear materials for national defense. Many facilities have been constructed at the SRS over the years to process, stabilize and/or store radioactive waste and related materials. The primary materials of construction used in such facilities are inorganic (metals, concrete), but polymeric materials are inevitably used in various applications. The effects of aging, radiation, chemicals, heat and other environmental variables must therefore be understood to maximize service life of polymeric components. In particular, the potential for dose rate effects and synergistic effects on polymeric materials in multivariable environments can complicate compatibility reviews and life predictions. The selection and performance of polymeric materials in radioactive waste processing systems at the SRS are discussed.

Skidmore, E.; Fondeur, F.

2013-04-15T23:59:59.000Z

293

New Facility Aids in Lab's Capability to Ship TRU Waste to WIPP |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facility Aids in Lab's Capability to Ship TRU Waste to WIPP Facility Aids in Lab's Capability to Ship TRU Waste to WIPP New Facility Aids in Lab's Capability to Ship TRU Waste to WIPP December 1, 2011 - 12:00pm Addthis Workers move standard waste boxes to the High-Energy Real Time Radiography facility. Workers move standard waste boxes to the High-Energy Real Time Radiography facility. A standard waste box enters the HE-RTR at Los Alamos National Laboratory. The facility x-rays waste drums that contain high-density items such as motors and pumps and larger containers known as standard waste boxes. A standard waste box enters the HE-RTR at Los Alamos National Laboratory. The facility x-rays waste drums that contain high-density items such as motors and pumps and larger containers known as standard waste boxes. Workers move standard waste boxes to the High-Energy Real Time Radiography facility.

294

WASTE TREATMENT TECHNOLOGY PROCESS DEVELOPMENT PLAN FOR HANFORD WASTE TREATMENT PLANT LOW ACTIVITY WASTE RECYCLE  

SciTech Connect

The purpose of this Process Development Plan is to summarize the objectives and plans for the technology development activities for an alternative path for disposition of the recycle stream that will be generated in the Hanford Waste Treatment Plant Low Activity Waste (LAW) vitrification facility (LAW Recycle). This plan covers the first phase of the development activities. The baseline plan for disposition of this stream is to recycle it to the WTP Pretreatment Facility, where it will be concentrated by evaporation and returned to the LAW vitrification facility. Because this stream contains components that are volatile at melter temperatures and are also problematic for the glass waste form, they accumulate in the Recycle stream, exacerbating their impact on the number of LAW glass containers. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and reducing the halides in the Recycle is a key component of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, this stream does not have a proven disposition path, and resolving this gap becomes vitally important. This task seeks to examine the impact of potential future disposition of this stream in the Hanford tank farms, and to develop a process that will remove radionuclides from this stream and allow its diversion to another disposition path, greatly decreasing the LAW vitrification mission duration and quantity of glass waste. The origin of this LAW Recycle stream will be from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover or precipitates of scrubbed components (e.g. carbonates). The soluble components are mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet, and will not be available until the WTP begins operation, causing uncertainty in its composition, particularly the radionuclide content. This plan will provide an estimate of the likely composition and the basis for it, assess likely treatment technologies, identify potential disposition paths, establish target treatment limits, and recommend the testing needed to show feasibility. Two primary disposition options are proposed for investigation, one is concentration for storage in the tank farms, and the other is treatment prior to disposition in the Effluent Treatment Facility. One of the radionuclides that is volatile and expected to be in high concentration in this LAW Recycle stream is Technetium-99 ({sup 99}Tc), a long-lived radionuclide with a half-life of 210,000 years. Technetium will not be removed from the aqueous waste in the Hanford Waste Treatment and Immobilization Plant (WTP), and will primarily end up immobilized in the LAW glass, which will be disposed in the Integrated Disposal Facility (IDF). Because {sup 99}Tc has a very long half-life and is highly mobile, it is the largest dose contributor to the Performance Assessment (PA) of the IDF. Other radionuclides that are also expected to be in appreciable concentration in the LAW Recycle are {sup 129}I, {sup 90}Sr, {sup 137}Cs, and {sup 241}Am. The concentrations of these radionuclides in this stream will be much lower than in the LAW, but they will still be higher than limits for some of the other disposition pathways currently available. Although the baseline process will recycle this stream to the Pretreatment Facility, if the LAW facility begins operation first, this stream will not have a disposition path internal to WTP. One potential solution is to return the stream to the tank farms where it can be evaporated in the 242- A evaporator, or perhaps deploy an auxiliary evaporator to concentrate it prior to return to the tank farms. In either case, testing is needed to evalua

McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.

2013-08-29T23:59:59.000Z

295

Management plan -- Multi-Function Waste Tank Facility. Revision 1  

SciTech Connect

This Westinghouse Hanford Company (WHC) Multi-Function Waste Tank Facility (MWTF) Management Plan provides guidance for execution WHC MWTF Project activities related to design, procurement, construction, testing, and turnover. This Management Plan provides a discussion of organizational responsibilities, work planning, project management systems, quality assurance (QA), regulatory compliance, personnel qualifications and training, and testing and evaluations. Classified by the US Department of Energy (DOE) as a major systems acquisition (MSA), the MWTF mission is to provide a safe, cost-effective, and environmentally sound method for interim storage of Hanford Site high-level wastes. This Management Plan provides policy guidance and direction to the Project Office for execution of the project activities.

Fritz, R.L.

1995-01-11T23:59:59.000Z

296

CONTAINMENT OF LOW-LEVEL RADIOACTIVE WASTE AT THE DOE SALTSTONE DISPOSAL FACILITY  

SciTech Connect

As facilities look for permanent storage of toxic materials, they are forced to address the long-term impacts to the environment as well as any individuals living in affected area. As these materials are stored underground, modeling of the contaminant transport through the ground is an essential part of the evaluation. The contaminant transport model must address the long-term degradation of the containment system as well as any movement of the contaminant through the soil and into the groundwater. In order for disposal facilities to meet their performance objectives, engineered and natural barriers are relied upon. Engineered barriers include things like the design of the disposal unit, while natural barriers include things like the depth of soil between the disposal unit and the water table. The Saltstone Disposal Facility (SDF) at the Savannah River Site (SRS) in South Carolina is an example of a waste disposal unit that must be evaluated over a timeframe of thousands of years. The engineered and natural barriers for the SDF allow it to meet its performance objective over the long time frame. Some waste disposal facilities are required to meet certain standards to ensure public safety. These type of facilities require an engineered containment system to ensure that these requirements are met. The Saltstone Disposal Facility (SDF) at the Savannah River Site (SRS) is an example of this type of facility. The facility is evaluated based on a groundwater pathway analysis which considers long-term changes to material properties due to physical and chemical degradation processes. The facility is able to meet these performance objectives due to the multiple engineered and natural barriers to contaminant migration.

Jordan, J.; Flach, G.

2012-03-29T23:59:59.000Z

297

Independent Oversight Review, Savannah River Site Salt Waste...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Site Salt Waste Processing Facility - August 2013 Independent Oversight Review, Savannah River Site Salt Waste Processing Facility - August 2013 August 2013 Review...

298

The Effect of Congress' Mandate to Create Greater Efficiencies in the Characterization of Transuranic Waste through the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit  

Science Conference Proceedings (OSTI)

Effective December 1, 2003, the U.S. Congress directed the Department of Energy (DOE) to file a permit modification request with the New Mexico Environment Department (NMED) to amend the Hazardous Waste Facility Permit (hereinafter 'the Permit') at the Waste Isolation Pilot Plant (WIPP). This legislation, Section 311 of the 2004 Energy and Water Development Appropriations Act, was designed to increase efficiencies in Transuranic (TRU) waste characterization processes by focusing on only those activities necessary to characterize waste streams, while continuing to protect human health and the environment. Congressionally prescribed changes would impact DOE generator site waste characterization programs and waste disposal operations at WIPP. With this legislative impetus, in early 2004 the DOE and Washington TRU Solutions (WTS), co-permittee under the Permit, submitted a permit modification request to the NMED pursuant to Section 311. After a lengthy process, including extensive public and other stakeholder input, the NMED granted the Permittees' request in October 2006, as part of a modification authorizing disposal of Remote-Handled (RH) TRU waste at WIPP. In conclusion: Implementation of the Permit under the revised Section 311 provisions is still in its early stages. Data are limited, as noted above. In view of these limited data and fluctuations in waste feed due to varying factors, at the current time it is difficult to determine with accuracy the impacts of Section 311 on the costs of characterizing TRU waste. It is safe to say, however, that the there have been many positive impacts flowing from Section 311. The generator sites now have more flexibility in characterizing waste. Also, RH TRU waste is now being disposed at WIPP - which was not possible before the 2006 Permit modification. As previously noted, the RH modification was approved at the same time as the Section 311 modification. Had the Section 311 changes not been implemented, RH TRU waste may not have been successfully permitted for disposal at WIPP. Changes made pursuant to Section 311 helped to facilitate approval of the proposed RH TRU modifications. For example, the three scenarios for use in AK Sufficiency Determination Requests, described herein, are essential to securing approval of some RH TRU waste streams for eventual disposal at WIPP. Thus, even if characterization rates do not increase significantly, options for disposal of RH TRU waste, which may not have been possible without Section 311, are now available and the TRU waste disposal mission is being accomplished as mandated by Congress in the LWA. Also, with the Section 311 modification, the Permittees commenced room-based VOC monitoring in the WIPP repository, which is also a positive impact of Section 311. Permit changes pursuant to Section 311 were a good beginning, but much more is need to encourage more efficient methodologies in waste characterization activities for TRU mixed waste destined for WIPP. Although the Permittees now have more flexibility in characterizing waste for disposal at WIPP, the processes are still lengthy, cumbersome, and paper-intensive. As the generator sites continue to characterize waste under Section 311, more data will likely be compiled and evaluated to assess the longer term cost and technical impacts of Section 311. Also, further refinements in TRU waste characterization requirements through Permit modifications are likely in future years to eliminate, improve, and clarify remaining unnecessary and redundant Permit provisions. Continuous improvements to the TRU waste characterization program are bound to occur, resulting in even greater efficiencies in the characterization and ultimate disposal of TRU waste. (authors)

Johnson, G.J. [Washington TRU Solutions, LLC, Waste Isolation Pilot Plant, Carlsbad, New Mexico (United States); Kehrman, R.F. [Washington Regulatory and Environmental Services, Waste Isolation Pilot Plant, Carlsbad, New Mexico (United States)

2008-07-01T23:59:59.000Z

299

An evaluation of neutralization for processing sodium-bearing liquid waste  

SciTech Connect

This report addresses an alternative concept for potentially managing the sodium-bearing liquid waste generated at the Idaho Chemical Processing Plant from the current method of calcining a blend of sodium waste and high-level liquid waste. The concept is based on removing the radioactive components from sodium-bearing waste by neutralization and grouting the resulting low-level waste for on-site near-surface disposal. Solidifying the sodium waste as a remote-handled transuranic waste is not considered to be practical because of excessive costs and inability to dispose of the waste in a timely fashion. Although neutralization can remove most radioactive components to provide feed for a solidified low-level waste, and can reduce liquid inventories four to nine years more rapidly than the current practice of blending sodium-bearing liquid waste with first-cycle raffinite, the alternative will require major new facilities and will generate large volumes of low-level waste. Additional facility and operating costs are estimated to be at least $500 million above the current practice of blending and calcining. On-site, low-level waste disposal may be technically difficult and conflict which national and state policies. Therefore, it is recommended that the current practice of calcining a blend of sodium-bearing liquid waste and high-level liquid waste be continued to minimize overall cost and process complexities. 17 refs., 4 figs., 16 tabs.

Chipman, N.A.; Engelgau, G.O.; Berreth, J.R.

1989-01-01T23:59:59.000Z

300

Office of Waste Processing Technical Exchange  

NLE Websites -- All DOE Office Websites (Extended Search)

this hotel at the government per diem rate of 132.00 per night. Please reference the "DOE EM Waste Processing Technical Exchange 2010" when making your reservation to the get...

Note: This page contains sample records for the topic "waste processing facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Independent Oversight Review, Oak Ridge Transuranic Waste Processing...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oak Ridge Transuranic Waste Processing Center, September 2013 September 2013 Review of Management of Safety Systems at the Oak Ridge Transuranic Waste Processing Center and...

302

GRR/Section 18-ID-d - Solid Waste Management Facilities | Open Energy  

Open Energy Info (EERE)

8-ID-d - Solid Waste Management Facilities 8-ID-d - Solid Waste Management Facilities < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-ID-d - Solid Waste Management Facilities 18IDDSolidWasteManagementFacilities (2).pdf Click to View Fullscreen Contact Agencies Idaho Department of Environmental Quality Regulations & Policies IDAPA 58.01.06 Triggers None specified Click "Edit With Form" above to add content 18IDDSolidWasteManagementFacilities (2).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Idaho considers transfer stations, composting operations, incinerators and landfills solid waste management facilities. The state does not require a

303

GRR/Section 18-MT-b - Hazardous Waste Facility Permit | Open Energy  

Open Energy Info (EERE)

GRR/Section 18-MT-b - Hazardous Waste Facility Permit GRR/Section 18-MT-b - Hazardous Waste Facility Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-MT-b - Hazardous Waste Facility Permit 18MTBHazardousWasteFacilityPermit.pdf Click to View Fullscreen Contact Agencies Montana Department of Environmental Quality Regulations & Policies Montana Code Annotated Title 75, Chapter 10, Part 4 Administrative Rules of Montana Title 17, Chapter 53 40 CFR 260 through 40 CFR 270 40 CFR 124 Triggers None specified Click "Edit With Form" above to add content 18MTBHazardousWasteFacilityPermit.pdf 18MTBHazardousWasteFacilityPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

304

Safeguards Approaches for Black Box Processes or Facilities  

Science Conference Proceedings (OSTI)

The objective of this study is to determine whether a safeguards approach can be developed for black box processes or facilities. These are facilities where a State or operator may limit IAEA access to specific processes or portions of a facility; in other cases, the IAEA may be prohibited access to the entire facility. The determination of whether a black box process or facility is safeguardable is dependent upon the details of the process type, design, and layout; the specific limitations on inspector access; and the restrictions placed upon the design information that can be provided to the IAEA. This analysis identified the necessary conditions for safeguardability of black box processes and facilities.

Diaz-Marcano, Helly; Gitau, Ernest TN; Hockert, John; Miller, Erin; Wylie, Joann

2013-09-25T23:59:59.000Z

305

FINAL DETERMINATION, CLASS 2 MODIFICATION REQUEST WIPP HAZARDOUS WASTE FACILITY PERMIT  

E-Print Network (OSTI)

Dear Dr. Moody and Mr. Sharif: The New Mexico Environment Department (NMED) hereby approves with changes the permit modification request (PMR) to the WIPP Hazardous Waste Facility Permit as submitted to the Hazardous Waste Bureau in the following document:

Bill Richardson; Diane Denish; Ron Curry; Sarah Cottrell; David Moody Manager; Farok Sharif

2010-01-01T23:59:59.000Z

306

Assessment of Facilities, Materials, and Wastes Proposed for Transfer to EM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facilities, Materials, and Wastes Proposed for Facilities, Materials, and Wastes Proposed for Transfer to EM Assessment of Facilities, Materials, and Wastes Proposed for Transfer to EM In December 2007 the Assistant Secretary for Environmental Management (EM-1) invited the DOE Program Secretarial Offices (PSOs) of Nuclear Energy (NE), Science (SC), and the National Nuclear Security Administration (NNSA) to propose facilities and legacy waste for transfer to Environmental Management (EM) for final disposition or deactivation and decommissioning (D&D). Assessment of Facilities, Materials, and Wastes Proposed for Transfer to EM More Documents & Publications Assessment of the Integrated Facility Disposition Project at Oak Ridge National Laboratory & Y-12 for Transfer of Facilities & Materials to EM

307

Appendix D: Facility Process Data and Appendix E: Equipment Calibratio...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

D: Facility Process Data and Appendix E: Equipment Calibration Data Sheets Appendix D: Facility Process Data and Appendix E: Equipment Calibration Data Sheets Docket No. EO-05-01:...

308

Tank Waste Remediation System tank waste pretreatment and vitrification process development testing requirements assessment  

Science Conference Proceedings (OSTI)

A multi-faceted study was initiated in November 1993 to provide assurance that needed testing capabilities, facilities, and support infrastructure (sampling systems, casks, transportation systems, permits, etc.) would be available when needed for process and equipment development to support pretreatment and vitrification facility design and construction schedules. This first major report provides a snapshot of the known testing needs for pretreatment, low-level waste (LLW) and high-level waste (HLW) vitrification, and documents the results of a series of preliminary studies and workshops to define the issues needing resolution by cold or hot testing. Identified in this report are more than 140 Hanford Site tank waste pretreatment and LLW/HLW vitrification technology issues that can only be resolved by testing. The report also broadly characterizes the level of testing needed to resolve each issue. A second report will provide a strategy(ies) for ensuring timely test capability. Later reports will assess the capabilities of existing facilities to support needed testing and will recommend siting of the tests together with needed facility and infrastructure upgrades or additions.

Howden, G.F.

1994-10-24T23:59:59.000Z

309

Format and Content Guide for DOE Low-Level Waste Disposal Facility  

Energy.gov (U.S. Department of Energy (DOE))

Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Performance Assessments and Composite Analyses

310

Proposed On-Site Waste Disposal Facility (OSWDF) at the Portsmouth...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2008 ETR-12 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Proposed On-Site Waste Disposal Facility (OSWDF)...

311

GRR/Elements/18-CA-a.12 - Does the Facility Discharge Waste Water...  

Open Energy Info (EERE)

2 - Does the Facility Discharge Waste Water to Wells by Injection < GRR | Elements Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap...

312

Facility accident analysis for low-level waste management alternatives in the US Department of Energy Waste Management Program  

Science Conference Proceedings (OSTI)

The risk to human health of potential radiological releases resulting from facility accidents constitutes an important consideration in the US Department of Energy (DOE) waste management program. The DOE Office of Environmental Management (EM) is currently preparing a Programmatic Environmental Impact Statement (PEIS) that evaluates the risks associated with managing five types of radiological and chemical wastes in the DOE complex. Several alternatives for managing each of the five waste types are defined and compared in the EM PEIS. The alternatives cover a variety of options for storing, treating, and disposing of the wastes. Several treatment methods and operation locations are evaluated as part of the alternatives. The risk induced by potential facility accidents is evaluated for storage operations (current and projected waste storage and post-treatment storage) and for waste treatment facilities. For some of the five waste types considered, facility accidents cover both radiological and chemical releases. This paper summarizes the facility accident analysis that was performed for low-level (radioactive) waste (LLW). As defined in the EM PEIS, LLW includes all radioactive waste not classified as high-level, transuranic, or spent nuclear fuel. LLW that is also contaminated with chemically hazardous components is treated separately as low-level mixed waste (LLMW).

Roglans-Ribas, J.; Mueller, C.; Nabelssi, B.; Folga, S.; Tompkins, M.

1995-06-01T23:59:59.000Z

313

Hanford facility dangerous waste permit application, PUREX storage tunnels  

SciTech Connect

The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, operating treatment, storage, and/or disposal units, such as the PUREX Storage Tunnels (this document, DOE/RL-90-24). Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the content of the Part B permit application guidance prepared by the Washington State Department of Ecology (Ecology 1996) and the US Environmental Protection Agency (40 Code of Federal Regulations 270), with additional information needs defined by the Hazardous and Solid Waste Amendments and revisions of Washington Administrative Code 173-303. For ease of reference, the Washington State Department of Ecology alpha-numeric section identifiers from the permit application guidance documentation (Ecology 1996) follow, in brackets, the chapter headings and subheadings. A checklist indicating where information is contained in the PUREX Storage Tunnels permit application documentation, in relation to the Washington State Department of Ecology guidance, is located in the Contents Section. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Wherever appropriate, the PUREX Storage Tunnels permit application documentation makes cross-reference to the General Information Portion, rather than duplicating text. Information provided in this PUREX Storage Tunnels permit application documentation is current as of April 1997.

Price, S.M.

1997-09-08T23:59:59.000Z

314

Major Risk Factors Integrated Facility Disposition Project -...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(Treatment Alternatives For Process Wastewater at ORNL, ORNLCF-0603-R1, November 2007; HFIR and REDC Process Waste Drains and Waste Treatment Plant, ORNL Facilities Development...

315

Microsoft Word - FINAL 7-12-10 Site Visit Report - LANL Radioactive Liquid Waste Facility FCA.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site Visit Report Facility Centered Assessment of the Los Alamos National Laboratory Radioactive Liquid Waste Treatment Facility - June 2010 This site visit report documents the results of the Office of Health, Safety and Security's (HSS) review of the Facility Centered Assessment (FCA) of the Los Alamos National Laboratory (LANL) Radioactive Liquid Waste Treatment Facility (RLW). This review, conducted June 9-25, 2010, was sponsored by the U.S. Department of Energy (DOE) Los Alamos Site Office (LASO) and LANL, and conducted jointly by HSS, LASO, and LANL staff. The Office of Environment, Safety and Health Evaluations was the overall lead organization for evaluation of the FCA process with the participation of the LASO Facility Representative assigned to RLW.

316

Closure End States for Facilities, Waste Sites, and Subsurface Contamination  

Science Conference Proceedings (OSTI)

The United States (U.S.) Department of Energy (DOE) manages the largest groundwater and soil cleanup effort in the world. DOEs Office of Environmental Management (EM) has made significant progress in its restoration efforts at sites such as Fernald and Rocky Flats. However, remaining sites, such as Savannah River Site, Oak Ridge Site, Hanford Site, Los Alamos, Paducah Gaseous Diffusion Plant, Portsmouth Gaseous Diffusion Plant, and West Valley Demonstration Project possess the most complex challenges ever encountered by the technical community and represent a challenge that will face DOE for the next decade. Closure of the remaining 18 sites in the DOE EM Program requires remediation of 75 million cubic yards of contaminated soil and 1.7 trillion gallons of contaminated groundwater, deactivation & decommissioning (D&D) of over 3000 contaminated facilities and thousands of miles of contaminated piping, removal and disposition of millions of cubic yards of legacy materials, treatment of millions of gallons of high level tank waste and disposition of hundreds of contaminated tanks. The financial obligation required to remediate this volume of contaminated environment is estimated to cost more than 7% of the to-go life-cycle cost. Critical in meeting this goal within the current life-cycle cost projections is defining technically achievable end states that formally acknowledge that remedial goals will not be achieved for a long time and that residual contamination will be managed in the interim in ways that are protective of human health and environment. Formally acknowledging the long timeframe needed for remediation can be a basis for establishing common expectations for remedy performance, thereby minimizing the risk of re-evaluating the selected remedy at a later time. Once the expectations for long-term management are in place, remedial efforts can be directed towards near-term objectives (e.g., reducing the risk of exposure to residual contamination) instead of focusing on long-term cleanup requirements. An acknowledgement of the long timeframe for complete restoration and the need for long-term management can also help a site transition from the process of pilot testing different remedial strategies to selecting a final remedy and establishing a long-term management and monitoring approach. This approach has led to cost savings and the more efficient use of resources across the Department of Defense complex and at numerous industrial sites across the U.S. Defensible end states provide numerous benefits for the DOE environmental remediation programs including cost-effective, sustainable long-term monitoring strategies, remediation and site transition decision support, and long-term management of closure sites.

Gerdes, Kurt D.; Chamberlain, Grover S.; Wellman, Dawn M.; Deeb, Rula A.; Hawley, Elizabeth L.; Whitehurst, Latrincy; Marble, Justin

2012-11-21T23:59:59.000Z

317

Waste Encapsulation and Storage Facility mission analysis report  

Science Conference Proceedings (OSTI)

This report defines the mission for the Waste Encapsulation and Storage Facility (WESF). It contains summary information regarding the mission analysis which was performed by holding workshops attended by relevant persons involved in the WESF operations. The scope of the WESF mission is to provide storage of Cesium (Cs) and Strontium (Sr) capsules, previously produced at WESF, until every capsule has been removed from the facility either to another storage location, for disposal or for beneficial use by public or private enterprises. Since the disposition of the capsules has not yet been determined, they may be stored at WESF for many years, even decades. The current condition of the WESF facility must be upgraded and maintained to provide for storage which is safe, cost effective, and fully compliant with DOE direction as well as federal, state, and local laws and regulations. The Cs capsules produced at WESF were originally released to private enterprises for uses such as the sterilization of medical equipment; but because of the leakage of one capsule, all are being returned. The systems, subsystems, and equipment not required for the storage mission will be available for use by other projects or private enterprises. Beyond the storage of the Cs and Sr capsules, no future mission for the WESF has been identified.

Lund, D.P.

1995-05-24T23:59:59.000Z

318

Plutonium production story at the Hanford site: processes and facilities history  

SciTech Connect

This document tells the history of the actual plutonium production process at the Hanford Site. It contains five major sections: Fuel Fabrication Processes, Irradiation of Nuclear Fuel, Spent Fuel Handling, Radiochemical Reprocessing of Irradiated Fuel, and Plutonium Finishing Operations. Within each section the story of the earliest operations is told, along with changes over time until the end of operations. Chemical and physical processes are described, along with the facilities where these processes were carried out. This document is a processes and facilities history. It does not deal with the waste products of plutonium production.

Gerber, M.S., Westinghouse Hanford

1996-06-20T23:59:59.000Z

319

Process for treating alkaline wastes for vitrification  

DOE Patents (OSTI)

According to its major aspects and broadly stated, the present invention is a process for treating alkaline waste materials, including high level radioactive wastes, for vitrification. The process involves adjusting the pH of the wastes with nitric acid, adding formic acid (or a process stream containing formic acid) to reduce mercury compounds to elemental mercury and MnO{sub 2} to the Mn(II) ion, and mixing with class formers to produce a melter feed. The process minimizes production of hydrogen due to noble metal-catalyzed formic acid decomposition during, treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product. An important feature of the present invention is the use of different acidifying and reducing, agents to treat the wastes. The nitric acid acidifies the wastes to improve yield stress and supplies acid for various reactions; then the formic acid reduces mercury compounds to elemental mercury and MnO{sub 2}) to the Mn(II) ion. When the pH of the waste is lower, reduction of mercury compounds and MnO{sub 2}) is faster and less formic acid is needed, and the production of hydrogen caused by catalytically-active noble metals is decreased.

Hsu, Chia-lin W.

1994-01-01T23:59:59.000Z

320

EA-1106: Explosive Waste Treatment Facility at Site 300, Lawrence Livermore  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

106: Explosive Waste Treatment Facility at Site 300, Lawrence 106: Explosive Waste Treatment Facility at Site 300, Lawrence Livermore National Laboratory, San Joaquin County, California EA-1106: Explosive Waste Treatment Facility at Site 300, Lawrence Livermore National Laboratory, San Joaquin County, California SUMMARY This EA evaluates the environmental impacts of the proposal to build, permit, and operate the Explosive Waste Treatment Facility to treat explosive waste at the U.S. Department of Energy's Lawrence Livermore National Laboratory Experimental Test Site, Site 300. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD April 16, 1996 EA-1106: Finding of No Significant Impact Explosive Waste Treatment Facility at Site 300, Lawrence Livermore National Laboratory April 16, 1996

Note: This page contains sample records for the topic "waste processing facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-2000 Status Report  

SciTech Connect

The Low-Activity Waste Process Technology Program anticipated that grouting will be used for disposal of low-level and transuranic wastes generated at the Idaho Nuclear Technology Engineering Center (INTEC). During fiscal year 2000, grout formulations were studied for transuranic waste derived from INTEC liquid sodium-bearing waste and for projected newly generated low-level liquid waste. Additional studies were completed using silica gel and other absorbents to solidify sodium-bearing wastes. A feasibility study and conceptual design were completed for the construction of a grout pilot plant for simulated wastes and demonstration facility for actual wastes.

Herbst, A.K.; McCray, J.A.; Kirkham, R.J.; Pao, J.; Argyle, M.D.; Lauerhass, L.; Bendixsen, C.L.; Hinckley, S.H.

2000-10-31T23:59:59.000Z

322

Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-2000 Status Report  

SciTech Connect

The Low-Activity Waste Process Technology Program anticipated that grouting will be used for disposal of low-level and transuranic wastes generated at the Idaho Nuclear Technology Engineering Center (INTEC). During fiscal year 2000, grout formulations were studied for transuranic waste derived from INTEC liquid sodium-bearing waste and for projected newly generated low-level liquid waste. Additional studies were completed using silica gel and other absorbents to solidify sodium-bearing wastes. A feasibility study and conceptual design were completed for the construction of a grout pilot plant for simulated wastes and demonstration facility for actual wastes.

Herbst, Alan Keith; Mc Cray, John Alan; Kirkham, Robert John; Pao, Jenn Hai; Argyle, Mark Don; Lauerhass, Lance; Bendixsen, Carl Lee; Hinckley, Steve Harold

2000-11-01T23:59:59.000Z

323

Summary - Environmental Management Waste Management Facility (EMWMF) at Oak Ridge, TN  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oak Ridge, TN Oak Ridge, TN EM Project: EM Waste Management Facility ETR Report Date: February 2008 ETR-11 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of Environmental Management Waste Management Facility (EMWMF) at Oak Ridge, TN Why DOE-EM Did This Review The Environmental Management Waste Management Facility (EMWMF) is a land disposal facility for wastes generated by environmental restoration activities being conducted at the US Department of Energy's (DOE) Oak Ridge Reservation. Low-level radioactive wastes, hazardous wastes (Subtitle C of the Resource Conservation and Recovery Act), and wastes defined by the Toxic Substances Control Act are approved for disposal in the EMWMF. All of the cells are lined with a

324

WIPP Facility Work Plan for Solid Waste Management Units and Areas of Concern  

Science Conference Proceedings (OSTI)

his 2002 Facility Work Plan (FWP) has been prepared as required by Module VII,Permit Condition VII.U.3 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit, NM4890139088-TSDF (the Permit) (New Mexico Environment Department [NMED], 1999a), and incorporates comments from the NMED received onDecember 6, 2000 (NMED, 2000a). This February 2002 FWP describes the program-matic facility-wide approach to future investigations at Solid Waste Management Units (SWMU) and Areas of Concern (AOC) specified in the Permit. The Permittees are evaluating data from previous investigations of the SWMUs and AOCs against the mostrecent guidance proposed by the NMED. Based on these data, and completion of the August 2001 sampling requested by the NMED, the Permittees expect that no further sampling will be required and that a request for No Further Action (NFA) at the SWMUs and AOCs will be submitted to the NMED. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA)Facility Investigation (RFI) specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may beused for any SWMU or AOC (NMED, 1998). This accelerated approach is used toreplace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a facility to exit the schedule of compliance contained in the facility's Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can be entered either before or after an RFI Work Plan. According to the NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit. The NMED accepted that the Permittees are using the ACAA in a letter dated April 20, 2000.

Washington TRU Solutions LLC

2002-03-05T23:59:59.000Z

325

Decontamination processes for waste glass canisters  

SciTech Connect

The process which will be used to decontaminate waste glass canisters at the Savannah River Plant consists of: decontamination (slurry blasting); rinse (high-pressure water); and spot decontamination (high-pressure water plus slurry). No additional waste will be produced by this process because glass frit used in decontamination will be mixed with the radioactive waste and fed into the glass melter. Decontamination of waste glass canisters with chemical and abrasive blasting techniques was investigated. The ability of a chemical technique with HNO/sub 3/-HF and H/sub 2/C/sub 2/O/sub 4/ to remove baked-on contamination was demonstrated. A correlation between oxide removal and decontamination was observed. Oxide removal and, thus, decontamination by abrasive blasting techniques with glass frit as the abrasive was proposed and demonstrated.

Rankin, W.N.

1981-06-01T23:59:59.000Z

326

Exploratory study of complexant concentrate waste processing  

SciTech Connect

The purpose of this exploratory study, conducted by Pacific Northwest Laboratory for Westinghouse Hanford Company, was to determine the effect of applying advanced chemical separations technologies to the processing and disposal of high-level wastes (HLW) stored in underground tanks. The major goals of this study were to determine (1) if the wastes can be partitioned into a small volume of HLW plus a large volume of low-level waste (LLW), and (2) if the activity in the LLW can be lowered enough to meet NRC Class LLW criteria. This report presents the results obtained in a brief scouting study of various processes for separating radionuclides from Hanford complexant concentrate (CC) waste.

Lumetta, G.J.; Bray, L.A.; Kurath, D.E.; Morrey, J.R.; Swanson, J.L.; Wester, D.W.

1993-02-01T23:59:59.000Z

327

Preliminary evaluation of alternative waste form solidification processes. Volume I. Identification of the processes.  

SciTech Connect

This document contains preconceptual design data on 11 processes for the solidification and isolation of nuclear high-level liquid wastes (HLLW). The processes are: in-can glass melting (ICGM) process, joule-heated glass melting (JHGM) process, glass-ceramic (GC) process, marbles-in-lead (MIL) matrix process, supercalcine pellets-in-metal (SCPIM) matrix process, pyrolytic-carbon coated pellets-in-metal (PCCPIM) matrix process, supercalcine hot-isostatic-pressing (SCHIP) process, SYNROC hot-isostatic-pressing (SYNROC HIP) process, titanate process, concrete process, and cermet process. For the purposes of this study, it was assumed that each of the solidification processes is capable of handling similar amounts of HLLW generated in a production-sized fuel reprocessing plant. It was also assumed that each of the processes would be enclosed in a shielded canyon or cells within a waste facility located at the fuel reprocessing plant. Finally, it was assumed that all of the processes would be subject to the same set of regulations, codes and standards. Each of the solidification processes converts waste into forms that may be acceptable for geological disposal. Each process begins with the receipt of HLLW from the fuel reprocessing plant. In this study, it was assumed that the original composition of the HLLW would be the same for each process. The process ends when the different waste forms are enclosed in canisters or containers that are acceptable for interim storage. Overviews of each of the 11 processes and the bases used for their identification are presented in the first part of this report. Each process, including its equipment and its requirements, is covered in more detail in Appendices A through K. Pertinent information on the current state of the art and the research and development required for the implementation of each process are also noted in the appendices.

Treat, R.L.; Nesbitt, J.F.; Blair, H.T.; Carter, J.G.; Gorton, P.S.; Partain, W.L.; Timmerman, C.L.

1980-04-01T23:59:59.000Z

328

Gas purification facilities at Purex: Process study  

SciTech Connect

This report provides a summary of the results of a process study, requested by the Atomic Energy Commission an the recovery of krypton and xenon from irradiated uranium at the Hanford Purex Plant. This request was prompted by original Commission forecasts of the expanded requirements for Krypton-85 for commercial phosphorescent signal lights and markers and for xenon isotopes of low neutron cross-section for use in liquid xenon scintillation counters, in connection with D.M.A., government and university-sponsored work. It was requested that both Hanford and Savannah River submit order of magnitude cost estimates for recovery facilities at the respective sites for three separate design cases. The cost information developed, along with market survey information obtained-through the A. D. Little Company and Department of Defense market surveys, would serve as the basis for scheduling of the Hanford and Savannah River participation in the Commission`s overall fission rare gas recovery program.

Michels, L.R.; Gerhart, J.M.

1958-12-31T23:59:59.000Z

329

GRR/Section 18-OR-b - Hazardous Waste Permit Process | Open Energy  

Open Energy Info (EERE)

OR-b - Hazardous Waste Permit Process OR-b - Hazardous Waste Permit Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-OR-b - Hazardous Waste Permit Process 18ORBHazardousWastePermitProcess (1).pdf Click to View Fullscreen Contact Agencies United States Environmental Protection Agency Oregon Department of Environmental Quality Oregon Public Health Division Oregon Public Utility Commission Oregon Department of Fish and Wildlife Oregon Water Resources Department Regulations & Policies OAR 340-105: Management Facility Permits OAR 340-120: Hazardous Waste Management ORS 466: Storage, Treatment, and Disposal Triggers None specified Click "Edit With Form" above to add content 18ORBHazardousWastePermitProcess (1).pdf

330

Break Throughs in High-Level Waste Vitrification for the Hanford ...  

Science Conference Proceedings (OSTI)

... Throughs in High-Level Waste Vitrification for the Hanford Waste Vitrification Plant ... Waste at the Defense Waste Processing Facility through Sludge Batch 7b .

331

Decontamination and decommissioning assessment for the Waste Incineration Facility (Building 232-Z) Hanford Site, [Hanford], WA  

SciTech Connect

Building 232-Z is an element of the Plutonium Finishing Plant (PFP) located in the 200 West Area of the Hanford Site. From 1961 until 1972, plutonium-bearing combustible materials were incinerated in the building. Between 1972 and 1983, following shutdown of the incinerator, the facility was used for waste segregation activities. The facility was placed in retired inactive status in 1984 and classified as a Limited Control Facility pursuant to DOE Order 5480.5, Safety of Nuclear Facilities, and 6430.1A, General Design Criteria. The current plutonium inventory within the building is estimated to be approximately 848 grams, the majority of which is retained within the process hood ventilation system. As a contaminated retired facility, Building 232-Z is included in the DOE Surplus Facility Management Program. The objective of this Decontamination and Decommissioning (D&D) assessment is to remove Building 232-Z, thereby elmininating the radiological and environmental hazards associated with the plutonium inventory within the structure. The steps to accomplish the plan objectives are: (1) identifying the locations of the most significant amounts of plutonium, (2) removing residual plutonium, (3) removing and decontaminating remaining building equipment, (4) dismantling the remaining structure, and (5) closing out the project.

Dean, L.N. [Advanced Sciences, Inc., (United States)

1994-02-01T23:59:59.000Z

332

WIPP Facility Work Plan for Solid Waste Management Units and Areas of Concern  

Science Conference Proceedings (OSTI)

This 2002 Facility Work Plan (FWP) has been prepared as required by Module VII, Permit Condition VII.U.3 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit, NM4890139088-TSDF (the Permit) (New Mexico Environment Department [NMED], 1999a), and incorporates comments from the NMED received on December 6, 2000 (NMED, 2000a). This February 2002 FWP describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMU) and Areas of Concern (AOC) specified in the Permit. The Permittees are evaluating data from previous investigations of the SWMUs and AOCs against the most recent guidance proposed by the NMED. Based on these data, and completion of the August 2001 sampling requested by the NMED, the Permittees expect that no further sampling will be required and that a request for No Further Action (NFA) at the SWMUs and AOCs will be submitted to the NMED. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a facility to exit the schedule of compliance contained in the facility's Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA processcan be entered either before or after an RFI Work Plan. According to the NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit. The NMED accepted that the Permittees are using the ACAA in a letter dated April 20, 2000.

Washington TRU Solutions LLC

2002-03-05T23:59:59.000Z

333

Idaho High-Level Waste & Facilities Disposition, Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Appendix A Appendix A Site Evaluation Process A-iii DOE/EIS-0287 Idaho HLW & FD EIS TABLE OF CONTENTS Section Page Appendix A Site Evaluation Process A-1 A.1 Introduction A-1 A.2 Methodology A-1 A.3 High-Level Waste Treatment and Interim Storage Site Selection A-3 A.3.1 Identification of "Must" Criteria A-3 A.3.2 Identification of "Want" Criteria A-3 A.3.3 Identification of Candidate Sites A-3 A.3.4 Evaluation Process A-4 A.3.5 Results of Evaluation Process A-6 A.4 Low-Activity Waste Disposal Site Selection A-6 A.4.1 Identification of "Must" Criteria A-7 A.4.2 Identification of "Want" Criteria A-8 A.4.3 Identification of Candidate Sites A-8 A.4.4 Evaluation Process A-8 A.4.5 Results of Evaluation Process A-9 A.4.6 Final Selection of a Low-Activity Waste Disposal Facility

334

SECONDARY WASTE/ETF (EFFLUENT TREATMENT FACILITY) PRELIMINARY PRE-CONCEPTUAL ENGINEERING STUDY  

Science Conference Proceedings (OSTI)

This pre-conceptual engineering study is intended to assist in supporting the critical decision (CD) 0 milestone by providing a basis for the justification of mission need (JMN) for the handling and disposal of liquid effluents. The ETF baseline strategy, to accommodate (WTP) requirements, calls for a solidification treatment unit (STU) to be added to the ETF to provide the needed additional processing capability. This STU is to process the ETF evaporator concentrate into a cement-based waste form. The cementitious waste will be cast into blocks for curing, storage, and disposal. Tis pre-conceptual engineering study explores this baseline strategy, in addition to other potential alternatives, for meeting the ETF future mission needs. Within each reviewed case study, a technical and facility description is outlined, along with a preliminary cost analysis and the associated risks and benefits.

MAY TH; GEHNER PD; STEGEN GARY; HYMAS JAY; PAJUNEN AL; SEXTON RICH; RAMSEY AMY

2009-12-28T23:59:59.000Z

335

Mixed and Low-Level Waste Treatment Facility project. Appendix A, Environmental and regulatory planning and documentation: Draft  

SciTech Connect

Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report, Appendix A, Environmental & Regulatory Planning & Documentation, identifies the regulatory requirements that would be imposed on the operation or construction of a facility designed to process the INEL`s waste streams. These requirements are contained in five reports that discuss the following topics: (1) an environmental compliance plan and schedule, (2) National Environmental Policy Act requirements, (3) preliminary siting requirements, (4) regulatory justification for the project, and (5) health and safety criteria.

1992-04-01T23:59:59.000Z

336

ENVIRONMENTALLY SOUND DISPOSAL OF RADIOACTIVE MATERIALS AT A RCRA HAZARDOUS WASTE DISPOSAL FACILITY  

SciTech Connect

The use of hazardous waste disposal facilities permitted under the Resource Conservation and Recovery Act (''RCRA'') to dispose of low concentration and exempt radioactive materials is a cost-effective option for government and industry waste generators. The hazardous and PCB waste disposal facility operated by US Ecology Idaho, Inc. near Grand View, Idaho provides environmentally sound disposal services to both government and private industry waste generators. The Idaho facility is a major recipient of U.S. Army Corps of Engineers FUSRAP program waste and received permit approval to receive an expanded range of radioactive materials in 2001. The site has disposed of more than 300,000 tons of radioactive materials from the federal government during the past five years. This paper presents the capabilities of the Grand View, Idaho hazardous waste facility to accept radioactive materials, site-specific acceptance criteria and performance assessment, radiological safety and environmental monitoring program information.

Romano, Stephen; Welling, Steven; Bell, Simon

2003-02-27T23:59:59.000Z

337

Waste Encapsulation and Storage Facility (WESF) Basis for Interim Operation (BIO)  

SciTech Connect

The Waste Encapsulation and Storage Facility (WESF) is located in the 200 East Area adjacent to B Plant on the Hanford Site north of Richland, Washington. The current WESF mission is to receive and store the cesium and strontium capsules that were manufactured at WESF in a safe manner and in compliance with all applicable rules and regulations. The scope of WESF operations is currently limited to receipt, inspection, decontamination, storage, and surveillance of capsules in addition to facility maintenance activities. The capsules are expected to be stored at WESF until the year 2017, at which time they will have been transferred for ultimate disposition. The WESF facility was designed and constructed to process, encapsulate, and store the extracted long-lived radionuclides, {sup 90}Sr and {sup 137}Cs, from wastes generated during the chemical processing of defense fuel on the Hanford Site thus ensuring isolation of hazardous radioisotopes from the environment. The construction of WESF started in 1971 and was completed in 1973. Some of the {sup 137}Cs capsules were leased by private irradiators or transferred to other programs. All leased capsules have been returned to WESF. Capsules transferred to other programs will not be returned except for the seven powder and pellet Type W overpacks already stored at WESF.

COVEY, L.I.

2000-11-28T23:59:59.000Z

338

Glovebox design requirements for molten salt oxidation processing of transuranic waste  

SciTech Connect

This paper presents an overview of potential technologies for stabilization of {sup 238}Pu-contaminated combustible waste. Molten salt oxidation (MSO) provides a method for removing greater than 99.999% of the organic matrix from combustible waste. Implementation of MSO processing at the Los Alamos National Laboratory (LANL) Plutonium Facility will eliminate the combustible matrix from {sup 238}Pu-contaminated waste and consequently reduce the cost of TRU waste disposal operations at LANL. The glovebox design requirements for unit operations including size reduction and MSO processing will be presented.

Ramsey, K.B.; Acosta, S.V. [Los Alamos National Lab., NM (United States); Wernly, K.D. [Molten Salt Oxidation Corp., Bensalem, PA (United States)

1998-12-31T23:59:59.000Z

339

Cogeneration Waste Heat Recovery at a Coke Calcining Facility  

E-Print Network (OSTI)

PSE Inc. recently completed the design, construction and start-up of a cogeneration plant in which waste heat in the high temperature flue gases of three existing coke calcining kilns is recovered to produce process steam and electrical energy. The heat previously exhausted to the atmosphere is now converted to steam by waste heat recovery boilers. Eighty percent of the steam produced is metered for sale to a major oil refinery, while the remainder passes through a steam turbine generator and is used for deaeration and feedwater heating. The electricity produced is used for the plant auxiliaries and sold to the local utility. Many design concepts were incorporated into the plant which provided for high plant availability, reliability and energy efficiency. This paper will show how these concepts were implemented and incorporated into the detailed design of the plant while making cogeneration a cost effective way to save conventional fuels. Operating data since plant start-up will also be presented.

Coles, R. L.

1986-06-01T23:59:59.000Z

340

Hazardous waste cleanup at federal facilities: Need for an integrated policy  

SciTech Connect

The U.S. Department of Energy (DOE) has generated and disposed of large volumes of hazardous and radioactive waste as a result of 50 years of nuclear weapons production. DOE is now faced with the problem of remediating its more than 13,000 hazardous waste sites. To be effective for the good of the environment and public health, our nation`s hazardous waste policy must first address several questions: What is the level of risk at federal facilities? (Is remediation really necessary?) Can and should institutional controls be incorporated into the cleanup process? How effective are cleanup technologies? What cleanup standards should be used? What will be done with waste generated during remediation? How do we obtain appropriate stakeholder involvement? Once these questions are answered and a more reliable, predictable policy has been developed, the waste management and environmental restoration program may not be an unwanted drain on America`s pocketbook, and we may have a cleaner country as well.

Travis, C.C. [Oak Ridge National Lab., TN (United States); Ladd, B. [Univ. of Tennessee, Knoxville, TN (United States)

1993-09-22T23:59:59.000Z

Note: This page contains sample records for the topic "waste processing facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Uranium Processing Facility | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

About / Transforming Y-12 / Uranium Processing Facility About / Transforming Y-12 / Uranium Processing Facility Uranium Processing Facility UPF will be a state-of-the-art, consolidated facility for enriched uranium operations including assembly, disassembly, dismantlement, quality evaluation, and product certification. An integral part of Y-12's transformation efforts and a key component of the National Nuclear Security Administration's Uranium Center of Excellence, the Uranium Processing Facility is one of two facilities at Y-12 whose joint mission will be to accomplish the storage and processing of all enriched uranium in one much smaller, centralized area. Safety, security and flexibility are key design attributes of the facility, which is in the preliminary design phase of work. UPF will be built to modern standards and engage new technologies through a responsive and agile

342

Mixed and Low-Level Treatment Facility Project. Appendix B, Waste stream engineering files, Part 1, Mixed waste streams  

SciTech Connect

This appendix contains the mixed and low-level waste engineering design files (EDFS) documenting each low-level and mixed waste stream investigated during preengineering studies for Mixed and Low-Level Waste Treatment Facility Project. The EDFs provide background information on mixed and low-level waste generated at the Idaho National Engineering Laboratory. They identify, characterize, and provide treatment strategies for the waste streams. Mixed waste is waste containing both radioactive and hazardous components as defined by the Atomic Energy Act and the Resource Conservation and Recovery Act, respectively. Low-level waste is waste that contains radioactivity and is not classified as high-level waste, transuranic waste, spent nuclear fuel, or 11e(2) byproduct material as defined by DOE 5820.2A. Test specimens of fissionable material irradiated for research and development only, and not for the production of power or plutonium, may be classified as low-level waste, provided the concentration of transuranic is less than 100 nCi/g. This appendix is a tool that clarifies presentation format for the EDFS. The EDFs contain waste stream characterization data and potential treatment strategies that will facilitate system tradeoff studies and conceptual design development. A total of 43 mixed waste and 55 low-level waste EDFs are provided.

1992-04-01T23:59:59.000Z

343

Life-Cycle Cost Study for a Low-Level Radioactive Waste Disposal Facility in Texas  

SciTech Connect

This report documents the life-cycle cost estimates for a proposed low-level radioactive waste disposal facility near Sierra Blanca, Texas. The work was requested by the Texas Low-Level Radioactive Waste Disposal Authority and performed by the National Low-Level Waste Management Program with the assistance of Rogers and Associates Engineering Corporation.

B. C. Rogers; P. L. Walter (Rogers and Associates Engineering Corporation); R. D. Baird

1999-08-01T23:59:59.000Z

344

RPP-PLAN-47325 Revision 0 Radioactive Waste Determination Process Plan for Waste Management Area C Tank  

E-Print Network (OSTI)

This plan describes the radioactive waste determination process that the U.S. Department of Energy (DOE) will use for Hanford Site Waste Management Area C (WMA C) tank waste residuals subject to DOE authority under DOE Order 435.1, Radioactive Waste Management. Preparation of this plan is a required component of actions the DOE-Office of River Protection (ORP) must take to fulfill proposed Hanford Federal Facility Agreement and Consent Order Milestone M-045-80. Waste Management Area C is comprised of various single-shell tanks, encased and direct-buried pipes, diversion boxes, pump pits, and unplanned release sites (sites contaminated as a result of spills of tank waste to the environment). Since operations began in the late 1940s, the tanks in WMA C have continuously stored waste managed as high-level waste (HLW) that was derived from defense-related nuclear research, development, and weapons production activities. Planning for the final closure of WMA C is underway. This radioactive waste determination process plan assumes that tank closure will follow retrieval of as much tank waste as technically and economically practical. It is also assumed for the purposes of this plan that after completion

Waste Residuals; J. R. Robertson

2010-01-01T23:59:59.000Z

345

Office of Waste Processing Technical Exchange  

NLE Websites -- All DOE Office Websites (Extended Search)

Event Media Links Event Media Links Session 1: Technical Exchange Opening Topic Speaker PDF Podcast S01-01 Welcome T. Michalske, SRNL N/A Podcast S01-03 Introductions G. Flowers, SRNS N/A Podcast S01-04 Opening Remarks I. Triay, DOE-EM Presentation PDF Podcast S01-05 Status of Waste Processing Technology Development S. Schneider, DOE-EM Presentation PDF Podcast S01-06 Hanford/SRS Tank Waste Path Forward K. Subramanian/ T. Sams, SRR/WRPS Presentation PDF Podcast S01-07 Fluidized Bed Steam Reformer Overview B. Mason, TTT Presentation PDF Podcast S01-08 Next Generation Cesium Solvent B.Moyer/S. Fink/M. Geeting, ORNL/SRNL/SRR Presentation PDF Podcast S01-09 Rotary Microfilter Development/Small Column Ion Exchange D. Herman/ R. Edwards, SRNL/SRR Presentation PDF Podcast Session 2: Increased Waste Loading - Improved Current Processing

346

Improved Consolidation Process for Producing Ceramic Waste forms  

DOE Patents (OSTI)

A process for the consolidation and containment of solid or semisolid hazardous waste, which process comprises closing an end of a circular hollow cylinder, filling the cylinder with the hazardous waste, and then cold working the cylinder to reduce its diameter while simultaneously compacting the waste. The open end of the cylinder can be sealed prior to or after the cold working process. The preferred method of cold working is to draw the sealed cylinder containing the hazardous waste through a plurality of dies to simultaneously reduce the diameter of the tube while compacting the waste. This process provides a quick continuous process for consolidating hazardous waste, including radioactive waste.

Hash, Harry C.; Hash, Mark C.

1998-07-24T23:59:59.000Z

347

The mixed waste management facility. Project baseline revision 1.2  

Science Conference Proceedings (OSTI)

Revision 1.2 to the Project Baseline (PB) for the Mixed Waste Management Facility (MWMF) is in response to DOE directives and verbal guidance to (1) Collocate the Decontamination and Waste Treatment Facility (DWTF) and MWMF into a single complex, integrate certain and overlapping functions as a cost-saving measure; (2) Meet certain fiscal year (FY) new-BA funding objectives ($15.3M in FY95) with lower and roughly balanced funding for out years; (3) Reduce Total Project Cost (TPC) for the MWMF Project; (4) Include costs for all appropriate permitting activities in the project TPC. This baseline revision also incorporates revisions in the technical baseline design for Molten Salt Oxidation (MSO) and Mediated Electrochemical Oxidation (MEO). Changes in the WBS dictionary that are necessary as a result of this rebaseline, as well as minor title changes, at WBS Level 3 or above (DOE control level) are approved as a separate document. For completeness, the WBS dictionary that reflects these changes is contained in Appendix B. The PB, with revisions as described in this document, were also the basis for the FY97 Validation Process, presented to DOE and their reviewers on March 21-22, 1995. Appendix C lists information related to prior revisions to the PB. Several key changes relate to the integration of functions and sharing of facilities between the portion of the DWTF that will house the MWMF and those portions that are used by the Hazardous Waste Management (HWM) Division at LLNL. This collocation has been directed by DOE as a cost-saving measure and has been implemented in a manner that maintains separate operational elements from a safety and permitting viewpoint. Appendix D provides background information on the decision and implications of collocating the two facilities.

Streit, R.D.; Throop, A.L.

1995-04-01T23:59:59.000Z

348

Pinellas Plant facts. [Products, processes, laboratory facilities  

SciTech Connect

This plant was built in 1956 in response to a need for the manufacture of neutron generators, a principal component in nuclear weapons. The neutron generators consist of a miniaturized linear ion accelerator assembled with the pulsed electrical power supplies required for its operation. The ion accelerator, or neutron tube, requires ultra clean, high vacuum technology: hermetic seals between glass, ceramic, glass-ceramic, and metal materials: plus high voltage generation and measurement technology. The existence of these capabilities at the Pinellas Plant has led directly to the assignment of the lightning arrester connector, specialty capacitor, vacuum switch, and crystal resonator. Active and reserve batteries and the radioisotopically-powered thermoelectric generator draw on the materials measurement and controls technologies which are required to ensure neutron generator life. A product development and production capability in alumina ceramics, cermet (electrical) feedthroughs, and glass ceramics has become a specialty of the plant; the laboratories monitor the materials and processes used by the plant's commercial suppliers of ferroelectric ceramics. In addition to the manufacturing facility, a production development capability is maintained at the Pinellas Plant.

1986-09-01T23:59:59.000Z

349

Office of Waste Processing Technical Exchange  

NLE Websites -- All DOE Office Websites (Extended Search)

EM Waste Processing Technical Exchange 2010 Agenda EM Waste Processing Technical Exchange 2010 Agenda (Sponsored by EM Office of Waste Processing) November 16 - 18, 2010; Loews Hotel, Atlanta, GA 11/2/2010 Monday, November 15, 2010 5:00 - 7:00 pm Early Registration and Speaker Check-in *Light Refreshments Tuesday Morning, November 16, 2010 Session 1: Technical Exchange Opening (Chair: W. Wilmarth); Salon D Live Webcast Click the video icon to view Session 1 Live Webcast Submit Question Click the Question icon to submit a question. Time Topic Speaker 7:00 am Registration and Check-in 8:00 am S01-01 Welcome T. Michalske, SRNL 8:05 am S01-02 Opening Comments Y. Collazo, DOE-EM 8:15 am S01-03 Introductions G. Flowers, SRNS 8:20 am S01-04 Opening Remarks I. Triay, DOE-EM 8:45 am S01-05 Status of Waste Processing Technology Development

350

The Design and Construction of the Advanced Mixed Waste Treatment Facility  

SciTech Connect

The Advanced Mixed Treatment Project (AMWTP) privatized contract was awarded to BNFL Inc. in December 1996 and construction of the main facility commenced in August 2000. The purpose of the advanced mixed waste treatment facility is to safely treat plutonium contaminated waste, currently stored in drums and boxes, for final disposal at the Waste Isolation Pilot Plant (WIPP). The plant is being built at the Idaho National Engineering and Environmental Laboratory. Construction was completed in 28 months, to satisfy the Settlement Agreement milestone of December 2002. Commissioning of the related retrieval and characterization facilities is currently underway. The first shipment of pre-characterized waste is scheduled for March 2003, with AMWTP characterized and certified waste shipments from June 2003. To accommodate these challenging delivery targets BNFL adopted a systematic and focused construction program that included the use of a temporary structure to allow winter working, proven design and engineering principles and international procurement policies to help achieve quality and schedule. The technology involved in achieving the AMWTP functional requirements is primarily based upon a BNFL established pedigree of plant and equipment; applied in a manner that suits the process and waste. This technology includes the use of remotely controlled floor mounted and overhead power manipulators, a high power shredder and a 2000-ton force supercompactor with the attendant glove box suite, interconnections and automated material handling. The characterization equipment includes real-time radiography (RTR) units, drum and box assay measurement systems, drum head space gas sampling / analysis and drum venting, drum coring and sampling capabilities. The project adopted a particularly stringent and intensive pre-installation testing philosophy to ensure that equipment would work safely and reliably at the required throughput. This testing included the complete off site integration of functional components or glove boxes, with the attendant integrated control system and undertaking continuous, non-stop, operational effectiveness proof tests. This paper describes the process, plant and technology used within the AMWTP and provides an outline of the associated design, procurement, fabrication, testing and construction.

Harrop, G.

2003-02-27T23:59:59.000Z

351

Improved FGD dewatering process cuts solid wastes  

Science Conference Proceedings (OSTI)

In 2007, Duke Energy's W.H. Zimmer Station set out to advance the overall performance of its flue gas desulfurization (FGD) dewatering process. The plant implemented a variety of measures, including upgrading water-solids separation, improving polymer program effectiveness and reliability, optimizing treatment costs, reducing solid waste sent to the landfill, decreasing labor requirements, and maintaining septic-free conditions in clarifiers. The changes succeeded in greatly reducing solid waste generation and achieving total annual savings of over half a million dollars per year. 8 figs., 1 tab.

Moer, C.; Fernandez, J.; Carraro, B. [Duke Energy (United States)

2009-08-15T23:59:59.000Z

352

Sales and Use Tax Exemption for Gas Processing Facilities  

Energy.gov (U.S. Department of Energy (DOE))

In North Dakota, materials purchased for building or expending gas processing facilities are exempt from sales and use taxes. Building materials, equipment, and other tangible property are eligible...

353

A survey of decontamination processes applicable to DOE nuclear facilities  

Science Conference Proceedings (OSTI)

The objective of this survey was to select an appropriate technology for in situ decontamination of equipment interiors as part of the decommissioning of U.S. Department of Energy nuclear facilities. This selection depends on knowledge of existing chemical decontamination methods. This report provides an up-to-date review of chemical decontamination methods. According to available information, aqueous systems are probably the most universally used method for decontaminating and cleaning metal surfaces. We have subdivided the technologies, on the basis of the types of chemical solvents, into acid, alkaline permanganate, highly oxidizing, peroxide, and miscellaneous systems. Two miscellaneous chemical decontamination methods (electrochemical processes and foam and gel systems) are also described. A concise technical description of various processes is given, and the report also outlines technical considerations in the choice of technologies, including decontamination effectiveness, waste handing, fields of application, and the advantages and limitations in application. On the basis of this survey, six processes were identified for further evaluation. 144 refs., 2 tabs.

Chen, L.; Chamberlain, D.B.; Conner, C.; Vandegrift, G.F.

1997-05-01T23:59:59.000Z

354

Capturing Process Knowledge for Facility Deactivation and Decommissioning |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Capturing Process Knowledge for Facility Deactivation and Capturing Process Knowledge for Facility Deactivation and Decommissioning Capturing Process Knowledge for Facility Deactivation and Decommissioning The Office of Environmental Management (EM) is responsible for the disposition of a vast number of facilities at numerous sites around the country which have been declared excess to current mission needs. Capturing Process Knowledge for Facility Deactivation and Decommissioning More Documents & Publications Capturing Process Knowledge for Facility Deactivation and Decommissioning Deactivation & Decommissioning Knowledge Management Information Tool (D&D KM-IT) Above on the left is K-25, at Oak Ridge before and after the 844,000 sq-ft demolition. In addition, on the right: K Cooling Tower at Savannah River Site demolition.

355

Process for treating alkaline wastes for vitrification  

DOE Patents (OSTI)

A process for treating alkaline wastes for vitrification. The process involves acidifying the wastes with an oxidizing agent such as nitric acid, then adding formic acid as a reducing agent, and then mixing with glass formers to produce a melter feed. The nitric acid contributes nitrates that act as an oxidant to balance the redox of the melter feed, prevent reduction of certain species to produce conducting metals, and lower the pH of the wastes to a suitable level for melter operation. The formic acid reduces mercury compounds to elemental mercury for removal by steam stripping, and MnO.sub.2 to the Mn(II) ion to prevent foaming of the glass melt. The optimum amounts of nitric acid and formic acid are determined in relation to the composition of the wastes, including the concentrations of mercury (II) and MnO.sub.2, noble metal compounds, nitrates, formates and so forth. The process minimizes the amount of hydrogen generated during treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product.

Hsu, Chia-lin W. (Augusta, GA)

1995-01-01T23:59:59.000Z

356

Biological Information Document, Radioactive Liquid Waste Treatment Facility  

SciTech Connect

This document is intended to act as a baseline source material for risk assessments which can be used in Environmental Assessments and Environmental Impact Statements. The current Radioactive Liquid Waste Treatment Facility (RLWTF) does not meet current General Design Criteria for Non-reactor Nuclear Facilities and could be shut down affecting several DOE programs. This Biological Information Document summarizes various biological studies that have been conducted in the vicinity of new Proposed RLWTF site and an Alternative site. The Proposed site is located on Mesita del Buey, a mess top, and the Alternative site is located in Mortandad Canyon. The Proposed Site is devoid of overstory species due to previous disturbance and is dominated by a mixture of grasses, forbs, and scattered low-growing shrubs. Vegetation immediately adjacent to the site is a pinyon-juniper woodland. The Mortandad canyon bottom overstory is dominated by ponderosa pine, willow, and rush. The south-facing slope was dominated by ponderosa pine, mountain mahogany, oak, and muhly. The north-facing slope is dominated by Douglas fir, ponderosa pine, and oak. Studies on wildlife species are limited in the vicinity of the proposed project and further studies will be necessary to accurately identify wildlife populations and to what extent they utilize the project area. Some information is provided on invertebrates, amphibians and reptiles, and small mammals. Additional species information from other nearby locations is discussed in detail. Habitat requirements exist in the project area for one federally threatened wildlife species, the peregrine falcon, and one federal candidate species, the spotted bat. However, based on surveys outside of the project area but in similar habitats, these species are not expected to occur in either the Proposed or Alternative RLWTF sites. Habitat Evaluation Procedures were used to evaluate ecological functioning in the project area.

Biggs, J.

1995-12-31T23:59:59.000Z

357

Process and system for treating waste water  

DOE Patents (OSTI)

A process of treating raw or primary waste water using a powdered, activated carbon/aerated biological treatment system is disclosed. Effluent turbidities less than 2 JTU (Jackson turbidity units), zero TOC (total organic carbon) and in the range of 10 mg/l COD (chemical oxygen demand) can be obtained. An influent stream of raw or primary waste water is contacted with an acidified, powdered, activated carbon/alum mixture. Lime is then added to the slurry to raise the pH to about 7.0. A polyelectrolyte flocculant is added to the slurry followed by a flocculation period -- then sedimentation and filtration. The separated solids (sludge) are aerated in a stabilization sludge basin and a portion thereof recycled to an aerated contact basin for mixing with the influent waste water stream prior to or after contact of the influent stream with the powdered, activated carbon/alum mixture.

Olesen, Douglas E. (Kennewick, WA); Shuckrow, Alan J. (Pasco, WA)

1978-01-01T23:59:59.000Z

358

Environmental Management Waste Management Facility Waste Lot Profile 155.5 for K-1015-A Laundry Pit, East Tennessee Technology Park Oak Ridge, Tennessee  

DOE Green Energy (OSTI)

In 1989, the Oak Ridge Reservation (ORR), which includes the East Tennessee Technology Park (ETTP), was placed on the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) National Priorities List. The Federal Facility Agreement (FFA) (DOE 1992), effective January 1, 1992, now governs environmental restoration activities conducted under CERCLA at the ORR. Following signing of the FFA, U.S. Department of Energy (DOE), U.S. Environmental Protection Agency (EPA), and the state of Tennessee signed the Oak Ridge Accelerated Cleanup Plan Agreement on June 18, 2003. The purpose of this agreement is to define a streamlined decision-making process to facilitate the accelerated implementation of cleanup, to resolve ORR milestone issues, and to establish future actions necessary to complete the accelerated cleanup plan by the end of fiscal year 2008. While the FFA continues to serve as the overall regulatory framework for remediation, the Accelerated Cleanup Plan Agreement supplements existing requirements to streamline the decision-making process. The disposal of the K-1015 Laundry Pit waste will be executed in accordance with the 'Record of Decision for Soil, Buried Waste, and Subsurface Structure Actions in Zone, 2, East Tennessee Technology Park, Oak Ridge, Tennessee' (DOB/ORAH-2161&D2) and the 'Waste Handling Plan for the Consolidated Soil and Waste Sites with Zone 2, East Tennessee Technology Park, Oak Ridge, Tennessee' (DOE/OR/01-2328&D1). This waste lot consists of a total of approximately 50 cubic yards of waste that will be disposed at the Environmental Management Waste Management Facility (EMWMF) as non-containerized waste. This material will be sent to the EMWMF in dump trucks. This profile is for the K-1015-A Laundry Pit and includes debris (e.g., concrete, metal rebar, pipe), incidental soil, plastic and wood, and secondary waste (such as plastic sheeting, hay bales and other erosion control materials, wooden pallets, contaminated equipment, decontamination materials, etc.).

Bechtel Jacobs, Raymer J.E.

2008-06-12T23:59:59.000Z

359

Contested environmental policy infrastructure: Socio-political acceptance of renewable energy, water, and waste facilities  

Science Conference Proceedings (OSTI)

The construction of new infrastructure is hotly contested. This paper presents a comparative study on three environmental policy domains in the Netherlands that all deal with legitimising building and locating infrastructure facilities. Such infrastructure is usually declared essential to environmental policy and claimed to serve sustainability goals. They are considered to serve (proclaimed) public interests, while the adverse impact or risk that mainly concerns environmental values as well is concentrated at a smaller scale, for example in local communities. The social acceptance of environmental policy infrastructure is institutionally determined. The institutional capacity for learning in infrastructure decision-making processes in the following three domains is compared: 1.The implementation of wind power as a renewable energy innovation; 2.The policy on space-water adaptation, with its claim to implement a new style of management replacing the current practice of focusing on control and 'hard' infrastructure; 3.Waste policy with a focus on sound waste management and disposal, claiming a preference for waste minimization (the 'waste management hierarchy'). All three cases show a large variety of social acceptance issues, where the appraisal of the impact of siting the facilities is confronted with the desirability of the policies. In dealing with environmental conflict, the environmental capacity of the Netherlands appears to be low. The policies are frequently hotly contested within the process of infrastructure decision-making. Decision-making on infrastructure is often framed as if consensus about the objectives of environmental policies exists. These claims are not justified, and therefore stimulating the emergence of environmental conflicts that discourage social acceptance of the policies. Authorities are frequently involved in planning infrastructure that conflicts with their officially proclaimed policy objectives. In these circumstances, they are often confronted with local actors who support alternatives that are in fact better in tune with the new policy paradigm.

Wolsink, Maarten, E-mail: M.P.Wolsink@uva.n [Department of Geography, Planning and International Development Studies, University of Amsterdam, Nieuwe Prinsengracht 130, 1018 VZ Amsterdam (Netherlands)

2010-09-15T23:59:59.000Z

360

DEMOLITION OF HANFORDS 232-Z WASTE INCINERATION FACILITY  

SciTech Connect

The 232-Z Plutonium Incinerator Facility was a small, highly alpha-contaminated, building situated between three active buildings located in an operating nuclear complex. Approximately 500 personnel worked within 250 meters (800 ft) of the structure and expectations were that the project would neither impact plant operations nor result in any restrictions when demolition was complete. Precision demolition and tight controls best describe the project. The team used standard open-air demolition techniques to take the facility to slab-on-grade. Several techniques were key to controlling contamination and confining it to the demolition area: spraying fixatives before demolition began; using misting systems, frequently applying fixatives, and using a methodical demolition sequence and debris load-out process. Detailed air modeling was done before demolition to determine necessary facility source-term levels, establish radiological boundaries, and confirm the adequacy of the proposed demolition approach. By only removing the major source term in equipment, HEPA filters, gloveboxes, and the like, and leaving fixed contamination on the walls, ceilings and floors, the project showed considerable savings and reduced worker hazards and exposure. The ability to perform this demolition safely and without the spread of contamination provides confidence that similar operations can be performed successfully. By removing the major source terms, fixing the remaining contamination in the building, and using controlled demolition and contamination control techniques, similar structures can be demolished cost effectively and safely.

LLOYD, E.R.

2006-11-21T23:59:59.000Z

Note: This page contains sample records for the topic "waste processing facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

INADVERTENT INTRUDER ANALYSIS FOR THE PORTSMOUTH ON-SITE WASTE DISPOSAL FACILITY  

SciTech Connect

An On-Site Alternative is being evaluated as part of the Remedial Investigation and Feasibility Study (RI/FS) process for evaluation of alternatives for the disposal of waste generated from decontamination and decommissioning (D&D) at Portsmouth. The On-Site Alternative involves construction of an On-Site Waste Disposal Facility (OSWDF). An inadvertent intruder analysis must be conducted for the OSWDF. The inadvertent intruder analysis considers the radiological impacts to hypothetical persons who are assumed to inadvertently intrude on the Portsmouth OSWDF site after institutional control ceases 100 years after site closure. The focus in development of exposure scenarios for inadvertent intruders was on selecting reasonable events that may occur, giving consideration to regional customs and construction practices. An important assumption in all scenarios is that an intruder has no prior knowledge of the existence of a waste disposal facility at the site. Therefore, after active institutional control ceases, certain exposure scenarios are assumed to be precluded only by the physical state of the disposal facility, i.e., the integrity of the engineered barriers used in facility construction or the thickness of clean material above the waste. Passive institutional controls, such as permanent marker systems at the disposal site and public records of prior land use, also could prevent inadvertent intrusion after active institutional control ceases, but the efficacy of passive institutional controls is not assumed in this analysis. Results of the analysis show that a hypothetical inadvertent intruder at the OSWDF who, in the worst case scenario, resides on the site and consumes vegetables from a garden established on the site using contaminated soil (chronic agriculture scenario) would receive a maximum chronic dose of approximately 7.0 mrem/yr during the 1000 year period of assessment. This dose falls well below the DOE chronic dose limit of 100 mrem/yr. Results of the analysis also showed that a hypothetical inadvertent intruder at the OSWDF who, in the worst case scenario, excavates a basement in the soil that reaches the waste (acute basement construction scenario) would receive a maximum acute dose of approximately 0.25 mrem/yr during the 1000 year period of assessment. This dose falls well below the DOE acute dose limit of 500 mrem/yr.

Smith, F.; Phifer, M.

2013-09-30T23:59:59.000Z

362

TRUEX process - a process for the extraction of the transuranic elements from nitric acid wastes utilizing modified PUREX solvent  

SciTech Connect

A generic transuranic (TRU) element extraction/recovery process was developed based on the use of octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide, O phi D(iB)CMPO, dissolved in PUREX process solvent (tributyl phosphate, TBP, in normal paraffinic hydrocarbon, NPH). The process (called TRUEX) is capable of reducing the TRU concentration by many orders of magnitude in waste solutions containing a wide range of nitric acid, salt, and fission product concentrations. A major feature of the process is that it is readily adaptable for waste processing in existing fuel reprocessing facilities.

Horwitz, E.P.; Kalina, D.G.; Diamond, H.; Vandegrift, G.F.; Schulz, W.W.

1985-01-01T23:59:59.000Z

363

Sanitary Waste Water Treatment System for the Hanford Decontamination Laundry Facility  

SciTech Connect

This is an engineering report for the Decontamination Laundry Facility (DLF) which will be located in the 200 East Area of the Hanford Site. The proposed Sanitary Waste Treatment System is new and does not involve interfacing with existing sanitary waste treatment systems. It will utilize a subsurface soil absorption system (SSAS), which are frequently used to dispose of sanitary waste water from facilities at the Hanford Site, since a majority of its` facilities are located in remote areas. Construction of the DLF is scheduled to start in 1992 and startup of the DLF is planned during the summer of 1994.

Yanochko, R.M.

1992-09-01T23:59:59.000Z

364

Sanitary Waste Water Treatment System for the Hanford Decontamination Laundry Facility  

SciTech Connect

This is an engineering report for the Decontamination Laundry Facility (DLF) which will be located in the 200 East Area of the Hanford Site. The proposed Sanitary Waste Treatment System is new and does not involve interfacing with existing sanitary waste treatment systems. It will utilize a subsurface soil absorption system (SSAS), which are frequently used to dispose of sanitary waste water from facilities at the Hanford Site, since a majority of its' facilities are located in remote areas. Construction of the DLF is scheduled to start in 1992 and startup of the DLF is planned during the summer of 1994.

Yanochko, R.M.

1992-09-01T23:59:59.000Z

365

Radioactive Liquid Waste Treatment Facility Discharges in 2011  

Science Conference Proceedings (OSTI)

This report documents radioactive discharges from the TA50 Radioactive Liquid Waste Treatment Facilities (RLWTF) during calendar 2011. During 2011, three pathways were available for the discharge of treated water to the environment: discharge as water through NPDES Outfall 051 into Mortandad Canyon, evaporation via the TA50 cooling towers, and evaporation using the newly-installed natural-gas effluent evaporator at TA50. Only one of these pathways was used; all treated water (3,352,890 liters) was fed to the effluent evaporator. The quality of treated water was established by collecting a weekly grab sample of water being fed to the effluent evaporator. Forty weekly samples were collected; each was analyzed for gross alpha, gross beta, and tritium. Weekly samples were also composited at the end of each month. These flow-weighted composite samples were then analyzed for 37 radioisotopes: nine alpha-emitting isotopes, 27 beta emitters, and tritium. These monthly analyses were used to estimate the radioactive content of treated water fed to the effluent evaporator. Table 1 summarizes this information. The concentrations and quantities of radioactivity in Table 1 are for treated water fed to the evaporator. Amounts of radioactivity discharged to the environment through the evaporator stack were likely smaller since only entrained materials would exit via the evaporator stack.

Del Signore, John C. [Los Alamos National Laboratory

2012-05-16T23:59:59.000Z

366

Waste Form Release Data Package for the 2005 Integrated Disposal Facility Performance Assessment  

SciTech Connect

This data package documents the experimentally derived input data on the representative waste glasses; LAWA44, LAWB45, and LAWC22. This data will be used for Subsurface Transport Over Reactive Multi-phases (STORM) simulations of the Integrated Disposal Facility (IDF) for immobilized low-activity waste (ILAW). The STORM code will be used to provide the near-field radionuclide release source term for a performance assessment to be issued in July 2005. Documented in this data package are data related to 1) kinetic rate law parameters for glass dissolution, 2) alkali (Na+)-hydrogen (H+) ion exchange rate, 3) chemical reaction network of secondary phases that form in accelerated weathering tests, and 4) thermodynamic equilibrium constants assigned to these secondary phases. The kinetic rate law and Na+-H+ ion exchange rate were determined from single-pass flow-through experiments. Pressurized unsaturated flow (PUF) and product consistency (PCT) tests where used for accelerated weathering or aging of the glasses in order to determine a chemical reaction network of secondary phases that form. The majority of the thermodynamic data used in this data package were extracted from the thermody-namic database package shipped with the geochemical code EQ3/6, version 8.0. Because of the expected importance of 129I release from secondary waste streams being sent to IDF from various thermal treatment processes, parameter estimates for diffusional release and solubility-controlled release from cementitious waste forms were estimated from the available literature.

Pierce, Eric M.; McGrail, B. Peter; Rodriguez, Elsa A.; Schaef, Herbert T.; Saripalli, Prasad; Serne, R. Jeffrey; Krupka, Kenneth M.; Martin, P. F.; Baum, Steven R.; Geiszler, Keith N.; Reed, Lunde R.; Shaw, Wendy J.

2004-09-01T23:59:59.000Z

367

DOE SEEKS CONTRACTOR TO DISPOSITION WASTE AT THE ADVANCED MIXED...  

NLE Websites -- All DOE Office Websites (Extended Search)

The waste includes DOE laboratory and processing wastes from the now closed Rocky Flats in Colorado, and various DOE facilities. The waste is stored in drums, boxes, and...

368

Liquidus Temperature Studies for High Level Nuclear Waste Glasses  

Science Conference Proceedings (OSTI)

... of Fluidized Bed Steam Reforming (FBSR) with Hanford Low Activity Wastes ... Level Waste at the Defense Waste Processing Facility through Sludge Batch 7b.

369

Sodalite-Based Forms for Wastes Containing Actinides and Halides  

Science Conference Proceedings (OSTI)

... of Fluidized Bed Steam Reforming (FBSR) with Hanford Low Activity Wastes ... Level Waste at the Defense Waste Processing Facility through Sludge Batch 7b.

370

(FBSR) with Hanford Low Activity Wastes - Programmaster.org  

Science Conference Proceedings (OSTI)

... of Fluidized Bed Steam Reforming (FBSR) with Hanford Low Activity Wastes ... Level Waste at the Defense Waste Processing Facility through Sludge Batch 7b.

371

Advanced Ceramic Waste Forms for the Immobilisation of ...  

Science Conference Proceedings (OSTI)

... of Fluidized Bed Steam Reforming (FBSR) with Hanford Low Activity Wastes ... Level Waste at the Defense Waste Processing Facility through Sludge Batch 7b.

372

Standard Guide for Preparing Waste Management Plans for Decommissioning Nuclear Facilities  

E-Print Network (OSTI)

1.1 This guide addresses the development of waste management plans for potential waste streams resulting from decommissioning activities at nuclear facilities, including identifying, categorizing, and handling the waste from generation to final disposal. 1.2 This guide is applicable to potential waste streams anticipated from decommissioning activities of nuclear facilities whose operations were governed by the Nuclear Regulatory Commission (NRC) or Agreement State license, under Department of Energy (DOE) Orders, or Department of Defense (DoD) regulations. 1.3 This guide provides a description of the key elements of waste management plans that if followed will successfully allow for the characterization, packaging, transportation, and off-site treatment or disposal, or both, of conventional, hazardous, and radioactive waste streams. 1.4 This guide does not address the on-site treatment, long term storage, or on-site disposal of these potential waste streams. 1.5 This standard does not purport to address ...

American Society for Testing and Materials. Philadelphia

2010-01-01T23:59:59.000Z

373

Lessons learned in TRU waste process improvement at LANL  

SciTech Connect

Typical papers that discuss lessons learned or quality improvement focus on the challenge for a production facility reaching six sigma (3.4 Defects Per Million Opportunities) from five sigma. This paper discusses lessons learned when the Los Alamos National Laboratory's (LANL) transuranic (TRU) waste management project was challenged to establish a production system to meet the customer's expectations. The target for FY 2003 was set as two shipments of TRU waste per week leaving the site. The average for the four previous years (FY99-02) was about one shipment every two months. LANL recognized that, despite its success in 1999 as the first site to ship TRU waste to open the Waste Isolation Pilot Plant (WIPP), significant changes to the way business was being done were required to move to a production mode. Process improvements began in earnest in April 2002. This paper discusses several of the initiatives LANL took to achieve forty-five shipments in FY03. The paper is organized by topic into five major areas that LANL worked to get the job done.

Del Signore, J. C.; Huchton, J. (Judith); Martin, B. (Beverly); Lindahl, P. (Peter); Miller, S. (Scott); Hartwell, W. B. (Ware B.)

2004-01-01T23:59:59.000Z

374

PLUTONIUM FINISHING PLANT (PFP) 241-Z LIQUID WASTE TREATMENT FACILITY DEACTIVATION AND DEMOLITION  

Science Conference Proceedings (OSTI)

Fluor Hanford, Inc. (FH) is proud to submit the Plutonium Finishing Plant (PFP) 241-Z liquid Waste Treatment Facility Deactivation and Demolition (D&D) Project for consideration by the Project Management Institute as Project of the Year for 2008. The decommissioning of the 241-Z Facility presented numerous challenges, many of which were unique with in the Department of Energy (DOE) Complex. The majority of the project budget and schedule was allocated for cleaning out five below-grade tank vaults. These highly contaminated, confined spaces also presented significant industrial safety hazards that presented some of the most hazardous work environments on the Hanford Site. The 241-Z D&D Project encompassed diverse tasks: cleaning out and stabilizing five below-grade tank vaults (also called cells), manually size-reducing and removing over three tons of process piping from the vaults, permanently isolating service utilities, removing a large contaminated chemical supply tank, stabilizing and removing plutonium-contaminated ventilation ducts, demolishing three structures to grade, and installing an environmental barrier on the demolition site . All of this work was performed safely, on schedule, and under budget. During the deactivation phase of the project between November 2005 and February 2007, workers entered the highly contaminated confined-space tank vaults 428 times. Each entry (or 'dive') involved an average of three workers, thus equaling approximately 1,300 individual confined -space entries. Over the course of the entire deactivation and demolition period, there were no recordable injuries and only one minor reportable skin contamination. The 241-Z D&D Project was decommissioned under the provisions of the 'Hanford Federal Facility Agreement and Consent Order' (the Tri-Party Agreement or TPA), the 'Resource Conservation and Recovery Act of 1976' (RCRA), and the 'Comprehensive Environmental Response, Compensation, and Liability Act of 1980' (CERCLA). The project completed TPA Milestone M-083-032 to 'Complete those activities required by the 241-Z Treatment and Storage Unit's RCRA Closure Plan' four years and seven months ahead of this legally enforceable milestone. In addition, the project completed TPA Milestone M-083-042 to 'Complete transition and dismantlement of the 241-2 Waste Treatment Facility' four years and four months ahead of schedule. The project used an innovative approach in developing the project-specific RCRA closure plan to assure clear integration between the 241-Z RCRA closure activities and ongoing and future CERCLA actions at PFP. This approach provided a regulatory mechanism within the RCRA closure plan to place segments of the closure that were not practical to address at this time into future actions under CERCLA. Lessons learned from th is approach can be applied to other closure projects within the DOE Complex to control scope creep and mitigate risk. A paper on this topic, entitled 'Integration of the 241-Z Building D and D Under CERCLA with RCRA Closure at the PFP', was presented at the 2007 Waste Management Conference in Tucson, Arizona. In addition, techniques developed by the 241-Z D&D Project to control airborne contamination, clean the interior of the waste tanks, don and doff protective equipment, size-reduce plutonium-contaminated process piping, and mitigate thermal stress for the workers can be applied to other cleanup activities. The project-management team developed a strategy utilizing early characterization, targeted cleanup, and close coordination with PFP Criticality Engineering to significantly streamline the waste- handling costs associated with the project . The project schedule was structured to support an early transition to a criticality 'incredible' status for the 241-Z Facility. The cleanup work was sequenced and coordinated with project-specific criticality analysis to allow the fissile material waste being generated to be managed in a bulk fashion, instead of individual waste packages. This approach negated the need for real-time assay of individ

JOHNSTON GA

2008-01-15T23:59:59.000Z

375

Waste Form Features, Events, and Processes  

Science Conference Proceedings (OSTI)

The purpose of this report is to evaluate and document the inclusion or exclusion of the waste form features, events and processes (FEPs) with respect to modeling used to support the Total System Performance Assessment for License Application (TSPA-LA). A screening decision, either Included or Excluded, is given for each FEP along with the technical bases for screening decisions. This information is required by the Nuclear Regulatory Commission (NRC) in 10 CFR 63.114 (d, e, and f) [DIRS 156605]. The FEPs addressed in this report deal with the issues related to the degradation and potential failure of the waste form and the migration of the waste form colloids. For included FEPs, this analysis summarizes the implementation of the FEP in TSPA-LA, (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical bases for exclusion from TSPA-LA (i.e., why the FEP is excluded). This revision addresses the TSPA-LA FEP list (DTN: MO0407SEPFEPLA.000 [DIRS 170760]). The primary purpose of this report is to identify and document the analyses and resolution of the features, events, and processes (FEPs) associated with the waste form performance in the repository. Forty FEPs were identified that are associated with the waste form performance. This report has been prepared to document the screening methodology used in the process of FEP inclusion and exclusion. The analyses documented in this report are for the license application (LA) base case design (BSC 2004 [DIRS 168489]). In this design, a drip shield is placed over the waste package and no backfill is placed over the drip shield (BSC 2004 [DIRS 168489]). Each FEP may include one or more specific issues that are collectively described by a FEP name and a FEP description. The FEP description may encompass a single feature, process or event, or a few closely related or coupled processes if the entire FEP can be addressed by a single specific screening argument or TSPA-LA disposition. The FEPs are addressed in associated analysis or model reports. The assignments were based on the nature of the FEPs so that the analysis and resolution of screening decisions reside with the subject-matter experts in the relevant disciplines.

R. Schreiner

2004-10-27T23:59:59.000Z

376

Low-level waste certification plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility. Revision 1  

SciTech Connect

The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan is composed to meet the requirements found in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and follows the suggested outline provided by WHC in the letter of April 26, 1990, to Dr. R.H. Thomas, Occupational Health Division, LBL. LLW is to be transferred to the WHC Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington.

1995-01-10T23:59:59.000Z

377

Office of Waste Processing Technical Exchange  

NLE Websites -- All DOE Office Websites (Extended Search)

Agenda Hotel Register Contacts Event Media Speaker Information Home Agenda Hotel Register Contacts Event Media Speaker Information Home Environmental Management Waste Processing Technical Exchange 2010 in Atlanta, GA, November 16 - 18. Over the past eight years, personnel from the three sites, Savannah River/Hanford/Idaho along with others receiving funding from the Environmental Management Office of Waste Processing have met to exchange recent results of on-going field operations and technology development. The purpose of this exchange is to provide a forum for discussion of each Site's efforts to accelerate cleanup operations. Keys to success and lessons learned are openly exchanged in a manner to allow for open discussion between operations, engineering and scientists to accelerate transition of technologies from concepts to field implementation.

378

Appendix D: Facility Process Data and Appendix E: Equipment Calibration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

D: Facility Process Data and Appendix E: Equipment D: Facility Process Data and Appendix E: Equipment Calibration Data Sheets Appendix D: Facility Process Data and Appendix E: Equipment Calibration Data Sheets Docket No. EO-05-01: Appendix D: Facility Process Data and Appendix E: Equipment Calibration Data Sheets from Final Report: Particulate Emissions Testing, Unit 1, Potomac River Generating Station, Alexandria, Virginia Appendix D: Facility Process Data and Appendix E: Equipment Calibration Data Sheets More Documents & Publications Comments on Department of Energy's Emergency Order To Resume Limited Operation at Mirant's Potomac River Generating Station and Proposed Mirant Compliance Plan Answer of Potomac Electric Power Company and PJM lnterconnection, L.L.C. to the October 6, 2005 motion filed by the Virginia Department of

379

Modified Bayer Process for Alumina Removal from Hanford Waste  

AREVA NC Inc. Modified Bayer Process for Alumina Removal from Hanford Waste January 24, 2007 Don Geniesse AREVA NC Inc.

380

Accepting Mixed Waste as Alternate Feed Material for Processing and Disposal at a Licensed Uranium Mill  

SciTech Connect

Certain categories of mixed wastes that contain recoverable amounts of natural uranium can be processed for the recovery of valuable uranium, alone or together with other metals, at licensed uranium mills, and the resulting tailings permanently disposed of as 11e.(2) byproduct material in the mill's tailings impoundment, as an alternative to treatment and/or direct disposal at a mixed waste disposal facility. This paper discusses the regulatory background applicable to hazardous wastes, mixed wastes and uranium mills and, in particular, NRC's Alternate Feed Guidance under which alternate feed materials that contain certain types of mixed wastes may be processed and disposed of at uranium mills. The paper discusses the way in which the Alternate Feed Guidance has been interpreted in the past with respect to processing mixed wastes and the significance of recent changes in NRC's interpretation of the Alternate Feed Guidance that sets the stage for a broader range of mixed waste materials to be processed as alternate feed materials. The paper also reviews the le gal rationale and policy reasons why materials that would otherwise have to be treated and/or disposed of as mixed waste, at a mixed waste disposal facility, are exempt from RCRA when reprocessed as alternate feed material at a uranium mill and become subject to the sole jurisdiction of NRC, and some of the reasons why processing mixed wastes as alternate feed materials at uranium mills is preferable to direct disposal. Finally, the paper concludes with a discussion of the specific acceptance, characterization and certification requirements applicable to alternate feed materials and mixed wastes at International Uranium (USA) Corporation's White Mesa Mill, which has been the most active uranium mill in the processing of alternate feed materials under the Alternate Feed Guidance.

Frydenland, D. C.; Hochstein, R. F.; Thompson, A. J.

2002-02-26T23:59:59.000Z

Note: This page contains sample records for the topic "waste processing facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Materials and Fuels Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables  

SciTech Connect

Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Fuels Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

Lisa Harvego; Brion Bennett

2011-09-01T23:59:59.000Z

382

Advanced Test Reactor Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables  

SciTech Connect

U.S. Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Advanced Test Reactor Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. U.S. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool to develop the radioactive waste management basis.

Lisa Harvego; Brion Bennett

2011-11-01T23:59:59.000Z

383

Immobilized low-activity waste interim storage facility, Project W-465 conceptual design report  

SciTech Connect

This report outlines the design and Total Estimated Cost to modify the four unused grout vaults for the remote handling and interim storage of immobilized low-activity waste (ILAW). The grout vault facilities in the 200 East Area of the Hanford Site were constructed in the 1980s to support Tank Waste disposal activities. The facilities were to serve project B-714 which was intended to store grouted low-activity waste. The existing 4 unused grout vaults, with modifications for remote handling capability, will provide sufficient capacity for approximately three years of immobilized low activity waste (ILAW) production from the Tank Waste Remediation System-Privatization Vendors (TWRS-PV). These retrofit modifications to the grout vaults will result in an ILAW interim storage facility (Project W465) that will comply with applicable DOE directives, and state and federal regulations.

Pickett, W.W.

1997-12-30T23:59:59.000Z

384

Low-Level Waste Disposal Facility Federal Review Group (LFRG) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Management » Compliance » Low-Level Waste Program Management » Compliance » Low-Level Waste Disposal Facility Federal Review Group (LFRG) Low-Level Waste Disposal Facility Federal Review Group (LFRG) The Office of Environmental Management (EM) Low-Level Waste Disposal Facility Federal Review Group (LFRG) was established to fulfill the requirements contained in Section I.2.E(1)(a) of the Department of Energy (DOE) Order 435.1, Radioactive Waste Management, and exercised by the senior managers of EM. The LFRG assists EM senior managers in the review of documentation that supports the approval of performance assessments and composite analyses or appropriate Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA)documents as described in Section II of the LFRG Charter. Through its efforts, the LFRG supports the issuance

385

Construction and operation of replacement hazardous waste handling facility at Lawrence Berkeley Laboratory. Environmental Assessment  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0423, for the construction and operation of a replacement hazardous waste handling facility (HWHF) and decontamination of the existing HWHF at Lawrence Berkeley Laboratory (LBL), Berkeley, California. The proposed facility would replace several older buildings and cargo containers currently being used for waste handling activities and consolidate the LBL`s existing waste handling activities in one location. The nature of the waste handling activities and the waste volume and characteristics would not change as a result of construction of the new facility. Based on the analysis in the EA, DOE has determined that the proposed action would not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969, 42 USC. 4321 et seq. Therefore, an environmental impact statement is not required.

Not Available

1992-09-01T23:59:59.000Z

386

Precipitate hydrolysis process for the removal of organic compounds from nuclear waste slurries  

DOE Patents (OSTI)

A process for removing organic compounds from a nuclear waste slurry comprising reacting a mixture of radioactive waste precipitate slurry and an acid in the presence of a catalytically effective amount of a copper(II) catalyst whereby the organic compounds in the precipitate slurry are hydrolyzed to form volatile organic compounds which are separated from the reacting mixture. The resulting waste slurry, containing less than 10 percent of the original organic compounds, is subsequently blended with high level radioactive sludge land transferred to a vitrification facility for processing into borosilicate glass for long-term storage. 2 figs., 3 tabs.

Doherty, J.P.; Marek, J.C.

1987-02-25T23:59:59.000Z

387

Assessment of Facilities, Materials, and Wastes Proposed for Transfer to EM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Non-Integrated Facilities Disposition Non-Integrated Facilities Disposition Project Technical Assistance Page 1 of 2 Complex-Wide Multi-State Assessment of Facilities, Materials, and Wastes Proposed for Transfer to EM Challenge In December 2007 the Assistant Secretary for Environmental Management (EM-1) invited the DOE Program Secretarial Offices (PSOs) of Nuclear Energy (NE), Science (SC), and the National Nuclear Security Administration (NNSA) to propose facilities and legacy waste for transfer to Environmental Management (EM) for final disposition or deactivation and decommissioning (D&D). Transfers of facilities, materials, and waste to EM will generate liabilities that are currently unfunded. For purposes of overall planning, it is important to understand the impacts of proposed transfers with regard to technical

388

Groundwater impact assessment report for the 1325-N Liquid Waste Disposal Facility  

Science Conference Proceedings (OSTI)

In 1943 the Hanford Site was chosen as a location for the Manhattan Project to produce plutonium for use in nuclear weapons. The 100-N Area at Hanford was used from 1963 to 1987 for a dual-purpose, plutonium production and steam generation reactor and related operational support facilities (Diediker and Hall 1987). In November 1989, the reactor was put into dry layup status. During operations, chemical and radioactive wastes were released into the area soil, air, and groundwater. The 1325-N LWDF was constructed in 1983 to replace the 1301-N Liquid Waste Disposal Facility (1301-N LWDF). The two facilities operated simultaneously from 1983 to 1985. The 1301-N LWDF was retired from use in 1985 and the 1325-N LWDF continued operation until April 1991, when active discharges to the facility ceased. Effluent discharge to the piping system has been controlled by administrative means. This report discusses ground water contamination resulting from the 1325-N Liquid Waste Disposal facility.

Alexander, D.J.; Johnson, V.G.

1993-09-01T23:59:59.000Z

389

Waste management facilities cost information: System cost model product description. Revision 2  

SciTech Connect

In May of 1994, Lockheed Idaho Technologies Company (LITCO) in Idaho Falls, Idaho and subcontractors developed the System Cost Model (SCM) application. The SCM estimates life-cycle costs of the entire US Department of Energy (DOE) complex for designing; constructing; operating; and decommissioning treatment, storage, and disposal (TSD) facilities for mixed low-level, low-level, transuranic, and mixed transuranic waste. The SCM uses parametric cost functions to estimate life-cycle costs for various treatment, storage, and disposal modules which reflect planned and existing facilities at DOE installations. In addition, SCM can model new facilities based on capacity needs over the program life cycle. The SCM also provides transportation costs for DOE wastes. Transportation costs are provided for truck and rail and include transport of contact-handled, remote-handled, and alpha (transuranic) wastes. The user can provide input data (default data is included in the SCM) including the volume and nature of waste to be managed, the time period over which the waste is to be managed, and the configuration of the waste management complex (i.e., where each installation`s generated waste will be treated, stored, and disposed). Then the SCM uses parametric cost equations to estimate the costs of pre-operations (designing), construction costs, operation management, and decommissioning these waste management facilities.

Lundeen, A.S.; Hsu, K.M.; Shropshire, D.E.

1996-02-01T23:59:59.000Z

390

340 Waste handling Facility Hazard Categorization and Safety Analysis  

DOE Green Energy (OSTI)

The analysis presented in this document provides the basis for categorizing the facility as less than Hazard Category 3.

T. J. Rodovsky

2010-10-25T23:59:59.000Z