Sample records for waste processing center

  1. Transuranic (TRU) Waste Processing Center- Overview

    Broader source: Energy.gov [DOE]

    DOE established the TRU Waste Processing Center (TWPC) as a regional center for the management, treatment, packaging and shipment of DOE TRU waste legacy inventory. TWPC is also responsible for managing and treating Low Level and Mixed Low Level Waste generated at ORNL. TWPC is operated by Wastren Advantage, Inc. (WAI) under contract to the DOE's Oak Ridge Office.

  2. Transuranic Waste Processing Center Oak Ridge Site Specific...

    Office of Environmental Management (EM)

    Transuranic Waste Processing Update Oak Ridge Site Specific Advisory Board May 14, 2014 Laura Wilkerson, Portfolio Federal Project Director Karen Deacon, Deputy Federal Project...

  3. Transuranic (TRU) Waste Processing Center - Cask Processing Enclosure |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSS A-Z Site Map Organization Chart EHSS

  4. Voluntary Protection Program Onsite Review, Transuranic Waste Processing Center- May 2009

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether Transuranic Waste Processing Center is continuing to perform at a level deserving DOE-VPP Star recognition.

  5. Oak Ridge National Laboratory TRU Waste Processing Center Tank Waste Processing Supernate Processing System

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR - T en Y earEnergy T H E D I R E CSafety andSite |MakesORNL

  6. Solid Waste Processing Center Primary Opening Cells Systems, Equipment and Tools

    SciTech Connect (OSTI)

    Bailey, Sharon A.; Baker, Carl P.; Mullen, O Dennis; Valdez, Patrick LJ

    2006-04-17T23:59:59.000Z

    This document addresses the remote systems and design integration aspects of the development of the Solid Waste Processing Center (SWPC), a facility to remotely open, sort, size reduce, and repackage mixed low-level waste (MLLW) and transuranic (TRU)/TRU mixed waste that is either contact-handled (CH) waste in large containers or remote-handled (RH) waste in various-sized packages.

  7. Repackaging of High Fissile TRU Waste at the Transuranic Waste Processing Center - 13240

    SciTech Connect (OSTI)

    Oakley, Brian; Heacker, Fred [WAI, TRU Waste Processing Center, 100 WIPP Road Lenoir City, TN 37771 (United States)] [WAI, TRU Waste Processing Center, 100 WIPP Road Lenoir City, TN 37771 (United States); McMillan, Bill [DOE, Oak Ridge Operations, Bldg. 2714, Oak Ridge, TN 37830 (United States)] [DOE, Oak Ridge Operations, Bldg. 2714, Oak Ridge, TN 37830 (United States)

    2013-07-01T23:59:59.000Z

    Twenty-six drums of high fissile transuranic (TRU) waste from Oak Ridge National Laboratory (ORNL) operations were declared waste in the mid-1980's and placed in storage with the legacy TRU waste inventory for future treatment and disposal at the Waste Isolation Pilot Plant (WIPP). Repackaging and treatment of the waste at the TRU Waste Packaging Center (TWPC) will require the installation of additional equipment and capabilities to address the hazards for handling and repackaging the waste compared to typical Contact Handled (CH) TRU waste that is processed at the TWPC, including potential hydrogen accumulation in legacy 6M/2R packaging configurations, potential presence of reactive plutonium hydrides, and significant low energy gamma radiation dose rates. All of the waste is anticipated to be repackaged at the TWPC and certified for disposal at WIPP. The waste is currently packaged in multiple layers of containers which presents additional challenges for repackaging activities due to the potential for the accumulation of hydrogen gas in the container headspace in quantities than could exceed the Lower Flammability Limit (LFL). The outer container for each waste package is a stainless steel 0.21 m{sup 3} (55-gal) drum which contains either a 0.04 m{sup 3} or 0.06 m{sup 3} (10-gal or 15-gal) 6M drum. The inner 2R container in each 6M drum is ?12 cm (5 in) outside diameter x 30-36 cm (12-14 in) long and is considered to be a > 4 liter sealed container relative to TRU waste packaging criteria. Inside the 2R containers are multiple configurations of food pack cans, pipe nipples, and welded capsules. The waste contains significant quantities of high burn-up plutonium oxides and metals with a heavy weight percentage of higher atomic mass isotopes and the subsequent in-growth of significant quantities of americium. Significant low energy gamma radiation is expected to be present due to the americium in-growth. Radiation dose rates on inner containers are estimated to be 1-3 mSv/hr (100-300 mrem/hr) with an unshielded dose rate on the waste itself of over 10 mSv/hr (1 rem/hr). Additional equipment to be installed at the TWPC will include a new perma-con enclosure and a shielded/inert glovebox in the process building to repackage and stabilize the waste. All of the waste will be repackaged into Standard Pipe Overpacks. Most of the waste (21 of the 26 drums) is expected to be repackaged at the food-pack can level (i.e. the food-pack cans will not be opened). Five of the incoming waste containers are expected to be repackaged at the primary waste level. Three of the containers exceed the 200 gram Pu-239 Fissile Gram Equivalent (FGE) limit for the Standard Pipe Overpack. These three containers will be repackaged down to the primary waste level and divided into eight Standard Pipe Overpacks for shipment to WIPP. Two containers must be stabilized to eliminate any reactive plutonium hydrides that may be present. These containers will be opened in the inert, shielded glovebox, and the remaining corroded plutonium metal converted to a stable oxide form by using a 600 deg. C tube furnace with controlled oxygen feed in a helium carrier gas. The stabilized waste will then be packaged into two Standard Pipe Overpacks. Design and build out activities for the additional repackaging capabilities at the TWPC are scheduled to begin in Fiscal Year 2013 with repackaging, stabilization, and certification activities scheduled to begin in Fiscal Year 2014. Following repackaging and stabilization activities, the Standard Pipe Overpacks will be certified for disposal at WIPP utilizing Non-Destructive Examination (NDE) to verify the absence of prohibited items and Non-Destructive Assay (NDA) to verify the isotopic content under the TWPC WIPP certification program implemented by the Central Characterization Project (CCP). (authors)

  8. DOE Awards Contract for Oak Ridge Transuranic Waste Processing Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014Contributing DataDepartmentGuideandandBest

  9. DOE's Transuranic Waste Processing Center Surpasses 3 Million Safe Work

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractionsMaterialsDevelopEnergyof Energy DOE's TopHours

  10. WAI Assumes Responsibility for DOE'S Transuranic Waste Processing Center

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3EDepartmentDepartment(GATE)Action PlanNovember 2010-0-18381|

  11. Transuranic Waste Processing Center Contract Awarded to Wastren Advantage,

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23,EnergyChicopeeTechnologyfact sheetTransferringInc. | Department of Energy

  12. Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-2000 Status Report

    SciTech Connect (OSTI)

    Herbst, Alan Keith; Mc Cray, John Alan; Kirkham, Robert John; Pao, Jenn Hai; Argyle, Mark Don; Lauerhass, Lance; Bendixsen, Carl Lee; Hinckley, Steve Harold

    2000-11-01T23:59:59.000Z

    The Low-Activity Waste Process Technology Program anticipated that grouting will be used for disposal of low-level and transuranic wastes generated at the Idaho Nuclear Technology Engineering Center (INTEC). During fiscal year 2000, grout formulations were studied for transuranic waste derived from INTEC liquid sodium-bearing waste and for projected newly generated low-level liquid waste. Additional studies were completed using silica gel and other absorbents to solidify sodium-bearing wastes. A feasibility study and conceptual design were completed for the construction of a grout pilot plant for simulated wastes and demonstration facility for actual wastes.

  13. Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-2000 Status Report

    SciTech Connect (OSTI)

    Herbst, A.K.; McCray, J.A.; Kirkham, R.J.; Pao, J.; Argyle, M.D.; Lauerhass, L.; Bendixsen, C.L.; Hinckley, S.H.

    2000-10-31T23:59:59.000Z

    The Low-Activity Waste Process Technology Program anticipated that grouting will be used for disposal of low-level and transuranic wastes generated at the Idaho Nuclear Technology Engineering Center (INTEC). During fiscal year 2000, grout formulations were studied for transuranic waste derived from INTEC liquid sodium-bearing waste and for projected newly generated low-level liquid waste. Additional studies were completed using silica gel and other absorbents to solidify sodium-bearing wastes. A feasibility study and conceptual design were completed for the construction of a grout pilot plant for simulated wastes and demonstration facility for actual wastes.

  14. Transuranic Waste Processing Center (TWPC) Legacy Tank RH-TRU Sludge Processing and Compliance Strategy - 13255

    SciTech Connect (OSTI)

    Rogers, Ben C.; Heacker, Fred K.; Shannon, Christopher [Wastren Advantage, Inc., Transuranic Waste Processing Center, 100 WIPP Road, Lenoir City, Tennessee 37771 (United States)] [Wastren Advantage, Inc., Transuranic Waste Processing Center, 100 WIPP Road, Lenoir City, Tennessee 37771 (United States); and others

    2013-07-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) needs to safely and efficiently treat its 'legacy' transuranic (TRU) waste and mixed low-level waste (LLW) from past research and defense activities at the Oak Ridge National Laboratory (ORNL) so that the waste is prepared for safe and secure disposal. The TWPC operates an Environmental Management (EM) waste processing facility on the Oak Ridge Reservation (ORR). The TWPC is classified as a Hazard Category 2, non-reactor nuclear facility. This facility receives, treats, and packages low-level waste and TRU waste stored at various facilities on the ORR for eventual off-site disposal at various DOE sites and commercial facilities. The Remote Handled TRU Waste Sludge held in the Melton Valley Storage Tanks (MVSTs) was produced as a result of the collection, treatment, and storage of liquid radioactive waste originating from the ORNL radiochemical processing and radioisotope production programs. The MVSTs contain most of the associated waste from the Gunite and Associated Tanks (GAAT) in the ORNL's Tank Farms in Bethel Valley and the sludge (SL) and associated waste from the Old Hydro-fracture Facility tanks and other Federal Facility Agreement (FFA) tanks. The SL Processing Facility Build-outs (SL-PFB) Project is integral to the EM cleanup mission at ORNL and is being accelerated by DOE to meet updated regulatory commitments in the Site Treatment Plan. To meet these commitments a Baseline (BL) Change Proposal (BCP) is being submitted to provide continued spending authority as the project re-initiation extends across fiscal year 2012 (FY2012) into fiscal year 2013. Future waste from the ORNL Building 3019 U-233 Disposition project, in the form of U-233 dissolved in nitric acid and water, down-blended with depleted uranyl nitrate solution is also expected to be transferred to the 7856 MVST Annex Facility (formally the Capacity Increase Project (CIP) Tanks) for co-processing with the SL. The SL-PFB project will construct and install the necessary integrated systems to process the accumulated MVST Facilities SL inventory at the TWPC thus enabling safe and effective disposal of the waste. This BCP does not include work to support current MVST Facility Surveillance and Maintenance programs or the ORNL Building 3019 U-233 Disposition project, since they are not currently part of the TWPC prime contract. The purpose of the environmental compliance strategy is to identify the environmental permits and other required regulatory documents necessary for the construction and operation of the SL- PFB at the TWPC, Oak Ridge, TN. The permits and other regulatory documents identified are necessary to comply with the environmental laws and regulations of DOE Orders, and other requirements documented in the SL-PFB, Safety Design Strategy (SDS), SL-A-AD-002, R0 draft, and the Systems, Function and Requirements Document (SFRD), SL-X-AD-002, R1 draft. This compliance strategy is considered a 'living strategy' and it is anticipated that it will be revised as design progresses and more detail is known. The design basis on which this environmental permitting and compliance strategy is based is the Wastren Advantage, Inc., (WAI), TWPC, SL-PFB (WAI-BL-B.01.06) baseline. (authors)

  15. Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-99 Status Report

    SciTech Connect (OSTI)

    Herbst, Alan Keith; Mc Cray, John Alan; Kirkham, Robert John; Pao, Jenn Hai; Hinckley, Steve Harold

    1999-10-01T23:59:59.000Z

    The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1999, grout formulations were studied for transuranic waste derived from INTEC liquid sodium-bearing waste and for projected newly generated low-level liquid waste. Additional studies were completed on radionuclide leaching, microbial degradation, waste neutralization, and a small mockup for grouting the INTEC underground storage tank residual heels.

  16. Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-99 Status Report

    SciTech Connect (OSTI)

    A. K. Herbst; J. A. McCray; R. J. Kirkham; J. Pao; S. H. Hinckley

    1999-09-30T23:59:59.000Z

    The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1999, grout formulations were studied for transuranic waste derived from INTEC liquid sodium-bearing waste and for projected newly generated low-level liquid waste. Additional studies were completed on radionuclide leaching, microbial degradation, waste neutralization, and a small mockup for grouting the INTEC underground storage tank residual heels.

  17. DWPF (Defense Waste Processing Facility) canister impact testing and analyses for the Transportation Technology Center

    SciTech Connect (OSTI)

    Farnsworth, R.K.; Mishima, J.

    1988-12-01T23:59:59.000Z

    A legal weight truck cask design has been developed for the US Department of Energy by GA Technologies, Inc. The cask will be used to transport defense high-level waste canisters produced by the Defense Waste Processing Facility (DWPF) at the Savannah River Plant. The development of the cask required the collection of impact data for the DWPF canisters. The Materials Characterization Center (MCC) performed this work under the guidance of the Transportation Technology Center (TTC) at Sandia National Laboratories. Two full-scale DWPF canisters filled with nonradioactive borosilicate glass were impacted under ''normal'' and ''hypothetical'' accident conditions. Two canisters, supplied by the DWPF, were tested. Each canister was vertically dropped on the bottom end from a height of either 0.3 m or 9.1 m (for normal or hypothetical accident conditions, respectively). The structural integrity of each canister was then examined using helium leak and dye penetrant testing. The canisters' diameters and heights, which had been previously measured, were then remeasured to determine how the canister dimensions had changed. Following structural integrity testing, the canisters were flaw leak tested. For transportation flaw leak testing, four holes were fabricated into the shell of canister A-27 (0.3 m drop height). The canister was then transported a total distance of 2069 miles. During transport, the waste form material that fell from each flaw was collected to determine the amount of size distribution of each flaw release. 2 refs., 8 figs., 12 tabs.

  18. Voluntary Protection Program Onsite Review, Transuranic Waste Processing Center- March 2008

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether EnergX, LLC Transuranic Waste Processing Centeris continuing to perform at a level deserving DOE-VPP Star recognition.

  19. Sorbent Testing For Solidification of Process Waste streams from the Radiochemical Engineering Development Center at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Bickford, J. [MSE Technology Applications, Inc., MT (United States); Taylor, P. [Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2007-07-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) tasked MSE Technology Applications, Inc. (MSE) to evaluate sorbents identified by Oak Ridge National Laboratory (ORNL) to solidify the radioactive liquid organic waste from the Radiochemical Engineering Development Center (REDC) at ORNL. REDC recovers and purifies heavy elements (berkelium, californium, einsteinium, and fermium) from irradiated targets for research and industrial applications. Both organic and aqueous waste streams are discharged from REDC. The organic waste is generated from the plutonium/uranium extraction (Purex), Cleanex, and Pubex processes. The Purex waste derives from an organic-aqueous isotope separation process for plutonium and uranium fission products, the Cleanex waste derives from the removal of fission products and other impurities from the americium/curium product, and the Pubex waste is derived from the separation process of plutonium from dissolved targets. MSE had also been tasked to test a grouting formula for the aqueous waste stream that includes radioactive shielding material. The aqueous waste is a mixture of the raffinate streams from the various extraction processes plus the caustic solution that is used to dissolve the aluminum cladding from the irradiated targets. (authors)

  20. Waste processing air cleaning

    SciTech Connect (OSTI)

    Kriskovich, J.R.

    1998-07-27T23:59:59.000Z

    Waste processing and preparing waste to support waste processing relies heavily on ventilation. Ventilation is used at the Hanford Site on the waste storage tanks to provide confinement, cooling, and removal of flammable gases.

  1. Salt Waste Processing Initiatives

    Office of Environmental Management (EM)

    1 Patricia Suggs Salt Processing Team Lead Assistant Manager for Waste Disposition Project Office of Environmental Management Savannah River Site Salt Waste Processing Initiatives...

  2. Transuranic Waste Processing Center Oak Ridge Site Specific Advisory Board May 14, 2014

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergyTransportation Work Package Reports |Atlanta,Transuranic

  3. Municipal waste processing apparatus

    DOE Patents [OSTI]

    Mayberry, J.L.

    1988-04-13T23:59:59.000Z

    This invention relates to apparatus for processing municipal waste, and more particularly to vibrating mesh screen conveyor systems for removing grit, glass, and other noncombustible materials from dry municipal waste. Municipal waste must be properly processed and disposed of so that it does not create health risks to the community. Generally, municipal waste, which may be collected in garbage trucks, dumpsters, or the like, is deposited in processing areas such as landfills. Land and environmental controls imposed on landfill operators by governmental bodies have increased in recent years, however, making landfill disposal of solid waste materials more expensive. 6 figs.

  4. Unreviewed Safety Question Determination - Processing Waste in...

    Office of Environmental Management (EM)

    Unreviewed Safety Question Determination - Processing Waste in the Waste Characterization Glovebox Unreviewed Safety Question Determination - Processing Waste in the Waste...

  5. Radioactive waste processing apparatus

    DOE Patents [OSTI]

    Nelson, Robert E. (Lombard, IL); Ziegler, Anton A. (Darien, IL); Serino, David F. (Maplewood, MN); Basnar, Paul J. (Western Springs, IL)

    1987-01-01T23:59:59.000Z

    Apparatus for use in processing radioactive waste materials for shipment and storage in solid form in a container is disclosed. The container includes a top, and an opening in the top which is smaller than the outer circumference of the container. The apparatus includes an enclosure into which the container is placed, solution feed apparatus for adding a solution containing radioactive waste materials into the container through the container opening, and at least one rotatable blade for blending the solution with a fixing agent such as cement or the like as the solution is added into the container. The blade is constructed so that it can pass through the opening in the top of the container. The rotational axis of the blade is displaced from the center of the blade so that after the blade passes through the opening, the blade and container can be adjusted so that one edge of the blade is adjacent the cylindrical wall of the container, to insure thorough mixing. When the blade is inside the container, a substantially sealed chamber is formed to contain vapors created by the chemical action of the waste solution and fixant, and vapors emanating through the opening in the container.

  6. Sorbent Testing for the Solidification of Organic Process Waste streams from the Radiochemical Engineering Development Center at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Bickford, J.; Foote, M. [MSE Technology Applications, Inc., Montana (United States); Taylor, P. [Oak Ridge National Laboratory, Oak Ridge, Tennessee (United States)

    2008-07-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) has tasked MSE Technology Applications, Inc. (MSE) with evaluating various sorbents to solidify the radioactive liquid organic waste from the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory (ORNL). REDC recovers and purifies heavy elements (berkelium, californium, einsteinium, and fermium) from irradiated targets for research and industrial applications. Both aqueous and organic waste streams are discharged from REDC. Organic waste is generated from the plutonium/uranium extraction (PUREX), Cleanex, and Pubex processes.1 The PUREX waste derives from an organic-aqueous isotope separation process for plutonium and uranium fission products, the Cleanex waste derives from the removal of fission products and other impurities from the americium/curium product, and the Pubex waste is derived from the separation process of plutonium from dissolved targets. An aqueous waste stream is also produced from these separation processes. MSE has been tasked to test a grouting formula for the aqueous waste stream that includes specially formulated radioactive shielding materials developed by Science and Technology Applications, LLC. This paper will focus on the sorbent testing work. Based on work performed at Savannah River Site (SRS) (Refs. 1, 2), ORNL tested and evaluated three sorbents capable of solidifying the PUREX, Pubex, and Cleanex waste streams and a composite of the three organic waste streams: Imbiber Beads{sup R} IMB230301 (Imbiber Beads), Nochar A610 Petro Bond, and Petroset II Granular{sup TM} (Petroset II-G). Surrogates of the PUREX, Pubex, Cleanex, and a composite organic waste were used for the bench-scale testing. Recommendations resulting from the ORNL testing included follow-on testing by MSE for two of the three sorbents: Nochar Petro Bond and Petroset II-G. MSE recommended that another clay sorbent, Organoclay BM-QT-199, be added to the test sequence. The sorbent/surrogate combinations were tested at bench scale, 19-liter (L) [5-gallon (gal)] bucket scale, and 208-L (55-gal) drum scale. The testing performed by MSE will help ORNL select the right solidification materials and wasteform generation methods for the design of a new treatment facility. The results could also be used to help demonstrate that ORNL could meet the waste acceptance criteria for the ultimate disposal site for the waste-forms. The organics will be solidified as transuranic waste for disposal at the Waste Isolation Pilot Plant, and the aqueous waste stream will be grouted and disposed of at the Nevada Test Site as low-level waste if real waste testing indicates similar results to the surrogate testing. The objective of this work was to identify a sorbent capable of solidifying PUREX, Pubex, and Cleanex organic wastes individually and a composite of the three organic waste streams. The sorbent and surrogate combinations must also be compatible with processing equipment and maintain stability under a variety of conditions that could occur during storage/shipment of the solidified wastes. (authors)

  7. Radioactive waste processing apparatus

    DOE Patents [OSTI]

    Nelson, R.E.; Ziegler, A.A.; Serino, D.F.; Basnar, P.J.

    1985-08-30T23:59:59.000Z

    Apparatus for use in processing radioactive waste materials for shipment and storage in solid form in a container is disclosed. The container includes a top, and an opening in the top which is smaller than the outer circumference of the container. The apparatus includes an enclosure into which the container is placed, solution feed apparatus for adding a solution containing radioactive waste materials into the container through the container opening, and at least one rotatable blade for blending the solution with a fixing agent such as cement or the like as the solution is added into the container. The blade is constructed so that it can pass through the opening in the top of the container. The rotational axis of the blade is displaced from the center of the blade so that after the blade passes through the opening, the blade and container can be adjusted so that one edge of the blade is adjacent the cylindrical wall of the container, to insure thorough mixing. When the blade is inside the container, a substantially sealed chamber is formed to contain vapors created by the chemical action of the waste solution and fixant, and vapors emanating through the opening in the container. The chamber may be formed by placing a removable extension over the top of the container. The extension communicates with the apparatus so that such vapors are contained within the container, extension and solution feed apparatus. A portion of the chamber includes coolant which condenses the vapors. The resulting condensate is returned to the container by the force of gravity.

  8. Independent Oversight Review, Oak Ridge Transuranic Waste Processing...

    Office of Environmental Management (EM)

    of Safety Systems at the Oak Ridge Transuranic Waste Processing Center and Associated Feedback and Improvement Processes. This report documents the results of an independent...

  9. Hydrothermal Processing of Wet Wastes

    Broader source: Energy.gov [DOE]

    Breakout Session 3A—Conversion Technologies III: Energy from Our Waste—Will we Be Rich in Fuel or Knee Deep in Trash by 2025? Hydrothermal Processing of Wet Wastes James R. Oyler, President, Genifuel Corporation

  10. Process for preparing liquid wastes

    DOE Patents [OSTI]

    Oden, Laurance L. (Albany, OR); Turner, Paul C. (Albany, OR); O'Connor, William K. (Lebanon, OR); Hansen, Jeffrey S. (Corvallis, OR)

    1997-01-01T23:59:59.000Z

    A process for preparing radioactive and other hazardous liquid wastes for treatment by the method of vitrification or melting is provided for.

  11. Heterogeneous waste processing

    DOE Patents [OSTI]

    Vanderberg, Laura A. (Los Alamos, NM); Sauer, Nancy N. (Los Alamos, NM); Brainard, James R. (Los Alamos, NM); Foreman, Trudi M. (Los Alamos, NM); Hanners, John L. (Los Alamos, NM)

    2000-01-01T23:59:59.000Z

    A combination of treatment methods are provided for treatment of heterogeneous waste including: (1) treatment for any organic compounds present; (2) removal of metals from the waste; and, (3) bulk volume reduction, with at least two of the three treatment methods employed and all three treatment methods emplyed where suitable.

  12. Method for processing aqueous wastes

    DOE Patents [OSTI]

    Pickett, J.B.; Martin, H.L.; Langton, C.A.; Harley, W.W.

    1993-12-28T23:59:59.000Z

    A method is presented for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply. 4 figures.

  13. Method for processing aqueous wastes

    DOE Patents [OSTI]

    Pickett, John B. (3922 Wood Valley Dr., Aiken, SC 29803); Martin, Hollis L. (Rt. 1, Box 188KB, McCormick, SC 29835); Langton, Christine A. (455 Sumter St. SE., Aiken, SC 29801); Harley, Willie W. (110 Fairchild St., Batesburg, SC 29006)

    1993-01-01T23:59:59.000Z

    A method for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply.

  14. Independent Oversight Assessment, Salt Waste Processing Facility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Salt Waste Processing Facility Project - January 2013 January 2013 Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project The U.S. Department...

  15. Salt Waste Processing Initiatives

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSARDevelopmental AssignmentAprilANDSafetySafety,Flip Switch1

  16. Consolidation process for producing ceramic waste forms

    DOE Patents [OSTI]

    Hash, Harry C. (Joliet, IL); Hash, Mark C. (Shorewood, IL)

    2000-01-01T23:59:59.000Z

    A process for the consolidation and containment of solid or semisolid hazardous waste, which process comprises closing an end of a circular hollow cylinder, filling the cylinder with the hazardous waste, and then cold working the cylinder to reduce its diameter while simultaneously compacting the waste. The open end of the cylinder can be sealed prior to or after the cold working process. The preferred method of cold working is to draw the sealed cylinder containing the hazardous waste through a plurality of dies to simultaneously reduce the diameter of the tube while compacting the waste. This process provides a quick continuous process for consolidating hazardous waste, including radioactive waste.

  17. Bubblers Speed Nuclear Waste Processing at SRS

    SciTech Connect (OSTI)

    None

    2010-11-14T23:59:59.000Z

    At the Department of Energy's Savannah River Site, American Recovery and Reinvestment Act funding has supported installation of bubbler technology and related enhancements in the Defense Waste Processing Facility (DWPF). The improvements will accelerate the processing of radioactive waste into a safe, stable form for storage and permit expedited closure of underground waste tanks holding 37 million gallons of liquid nuclear waste.

  18. Bubblers Speed Nuclear Waste Processing at SRS

    ScienceCinema (OSTI)

    None

    2014-08-06T23:59:59.000Z

    At the Department of Energy's Savannah River Site, American Recovery and Reinvestment Act funding has supported installation of bubbler technology and related enhancements in the Defense Waste Processing Facility (DWPF). The improvements will accelerate the processing of radioactive waste into a safe, stable form for storage and permit expedited closure of underground waste tanks holding 37 million gallons of liquid nuclear waste.

  19. EM-21 Retrieval Knowledge Center: Waste Retrieval Challenges

    SciTech Connect (OSTI)

    Fellinger, Andrew P.; Rinker, Michael W.; Berglin, Eric J.; Minichan, Richard L.; Poirier, Micheal R.; Gauglitz, Phillip A.; Martin, Bruce A.; Hatchell, Brian K.; Saldivar, Eloy; Mullen, O Dennis; Chapman, Noel F.; Wells, Beric E.; Gibbons, Peter W.

    2009-04-10T23:59:59.000Z

    EM-21 is the Waste Processing Division of the Office of Engineering and Technology, within the U.S. Department of Energy’s (DOE) Office of Environmental Management (EM). In August of 2008, EM-21 began an initiative to develop a Retrieval Knowledge Center (RKC) to provide the DOE, high level waste retrieval operators, and technology developers with centralized and focused location to share knowledge and expertise that will be used to address retrieval challenges across the DOE complex. The RKC is also designed to facilitate information sharing across the DOE Waste Site Complex through workshops, and a searchable database of waste retrieval technology information. The database may be used to research effective technology approaches for specific retrieval tasks and to take advantage of the lessons learned from previous operations. It is also expected to be effective for remaining current with state-of-the-art of retrieval technologies and ongoing development within the DOE Complex. To encourage collaboration of DOE sites with waste retrieval issues, the RKC team is co-led by the Savannah River National Laboratory (SRNL) and the Pacific Northwest National Laboratory (PNNL). Two RKC workshops were held in the Fall of 2008. The purpose of these workshops was to define top level waste retrieval functional areas, exchange lessons learned, and develop a path forward to support a strategic business plan focused on technology needs for retrieval. The primary participants involved in these workshops included retrieval personnel and laboratory staff that are associated with Hanford and Savannah River Sites since the majority of remaining DOE waste tanks are located at these sites. This report summarizes and documents the results of the initial RKC workshops. Technology challenges identified from these workshops and presented here are expected to be a key component to defining future RKC-directed tasks designed to facilitate tank waste retrieval solutions.

  20. Newly Generated Liquid Waste Processing Alternatives Study, Volume 1

    SciTech Connect (OSTI)

    Landman, William Henry; Bates, Steven Odum; Bonnema, Bruce Edward; Palmer, Stanley Leland; Podgorney, Anna Kristine; Walsh, Stephanie

    2002-09-01T23:59:59.000Z

    This report identifies and evaluates three options for treating newly generated liquid waste at the Idaho Nuclear Technology and Engineering Center of the Idaho National Engineering and Environmental Laboratory. The three options are: (a) treat the waste using processing facilities designed for treating sodium-bearing waste, (b) treat the waste using subcontractor-supplied mobile systems, or (c) treat the waste using a special facility designed and constructed for that purpose. In studying these options, engineers concluded that the best approach is to store the newly generated liquid waste until a sodium-bearing waste treatment facility is available and then to co-process the stored inventory of the newly generated waste with the sodium-bearing waste. After the sodium-bearing waste facility completes its mission, two paths are available. The newly generated liquid waste could be treated using the subcontractor-supplied system or the sodium-bearing waste facility or a portion of it. The final decision depends on the design of the sodium-bearing waste treatment facility, which will be completed in coming years.

  1. Process for remediation of plastic waste

    DOE Patents [OSTI]

    Pol, Vilas G; Thiyagarajan, Pappannan

    2013-11-12T23:59:59.000Z

    A single step process for degrading plastic waste by converting the plastic waste into carbonaceous products via thermal decomposition of the plastic waste by placing the plastic waste into a reactor, heating the plastic waste under an inert or air atmosphere until the temperature of about 700.degree. C. is achieved, allowing the reactor to cool down, and recovering the resulting decomposition products therefrom. The decomposition products that this process yields are carbonaceous materials, and more specifically carbon nanotubes having a partially filled core (encapsulated) adjacent to one end of the nanotube. Additionally, in the presence of a transition metal compound, this thermal decomposition process produces multi-walled carbon nanotubes.

  2. Process for remediation of plastic waste

    DOE Patents [OSTI]

    Pol, Vilas G. (Westmont, IL); Thiyagarajan, Pappannan (Germantown, MD)

    2012-04-10T23:59:59.000Z

    A single step process for degrading plastic waste by converting the plastic waste into carbonaceous products via thermal decomposition of the plastic waste by placing the plastic waste into a reactor, heating the plastic waste under an inert or air atmosphere until the temperature of 700.degree. C. is achieved, allowing the reactor to cool down, and recovering the resulting decomposition products therefrom. The decomposition products that this process yields are carbonaceous materials, and more specifically egg-shaped and spherical-shaped solid carbons. Additionally, in the presence of a transition metal compound, this thermal decomposition process produces multi-walled carbon nanotubes.

  3. Idaho Nuclear Technology and Engineering Center (INTEC) Sodium Bearing Waste - Waste Incidental to Reprocessing Determination

    SciTech Connect (OSTI)

    Jacobson, Victor Levon

    2002-08-01T23:59:59.000Z

    U.S. Department of Energy Manual 435.1-1, Radioactive Waste Management, Section I.1.C, requires that all radioactive waste subject to Department of Energy Order 435.1 be managed as high-level radioactive waste, transuranic waste, or low-level radioactive waste. Determining the radiological classification of the sodium-bearing waste currently in the Idaho Nuclear Technology and Engineering Center Tank Farm Facility inventory is important to its proper treatment and disposition. This report presents the technical basis for making the determination that the sodium-bearing waste is waste incidental to spent fuel reprocessing and should be managed as mixed transuranic waste. This report focuses on the radiological characteristics of the sodiumbearing waste. The report does not address characterization of the nonradiological, hazardous constituents of the waste in accordance with Resource Conservation and Recovery Act requirements.

  4. Electrochemical/Pyrometallurgical Waste Stream Processing and Waste Form Fabrication

    SciTech Connect (OSTI)

    Steven Frank; Hwan Seo Park; Yung Zun Cho; William Ebert; Brian Riley

    2014-12-01T23:59:59.000Z

    This report summarizes treatment and waste form options being evaluated for waste streams resulting from the electrochemical/pyrometallurgical (pyro ) processing of used oxide nuclear fuel. The technologies that are described are South Korean (Republic of Korea – ROK) and United States of America (US) ‘centric’ in the approach to treating pyroprocessing wastes and are based on the decade long collaborations between US and ROK researchers. Some of the general and advanced technologies described in this report will be demonstrated during the Integrated Recycle Test (IRT) to be conducted as a part of the Joint Fuel Cycle Study (JFCS) collaboration between US Department of Energy (DOE) and ROK national laboratories. The JFCS means to specifically address and evaluated the technological, economic, and safe guard issues associated with the treatment of used nuclear fuel by pyroprocessing. The IRT will involve the processing of commercial, used oxide fuel to recover uranium and transuranics. The recovered transuranics will then be fabricated into metallic fuel and irradiated to transmutate, or burn the transuranic elements to shorter lived radionuclides. In addition, the various process streams will be evaluated and tested for fission product removal, electrolytic salt recycle, minimization of actinide loss to waste streams and waste form fabrication and characterization. This report specifically addresses the production and testing of those waste forms to demonstrate their compatibility with treatment options and suitability for disposal.

  5. Center for Lightweighting Automotive Materials and Processing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    D.C. ti06mallick.pdf More Documents & Publications Center for Lightweighting Automotive Materials and Processing Center for Lightweighting Automotive Materials and...

  6. Center for Lightweighting Automotive Materials and Processing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ti010mallick2011o.pdf More Documents & Publications Center for Lightweighting Automotive Materials and Processing Center for Lightweighting Automotive Materials and...

  7. Voluntary Protection Program Onsite Review, Salt Waste Processing...

    Broader source: Energy.gov (indexed) [DOE]

    Salt Waste Processing Facility Construction Project - February 2013 Voluntary Protection Program Onsite Review, Salt Waste Processing Facility Construction Project - February 2013...

  8. RECENT PROCESS AND EQUIPMENT IMPROVEMENTS TO INCREASE HIGH LEVEL WASTE THROUGHPUT AT THE DEFENSE WASTE PROCESSING FACILITY

    SciTech Connect (OSTI)

    Odriscoll, R; Allan Barnes, A; Jim Coleman, J; Timothy Glover, T; Robert Hopkins, R; Dan Iverson, D; Jeff Leita, J

    2008-01-15T23:59:59.000Z

    The Savannah River Site's (SRS) Defense Waste Processing Facility (DWPF) began stabilizing high level waste (HLW) in a glass matrix in 1996. Over the past few years, there have been several process and equipment improvements at the DWPF to increase the rate at which the high level waste can be stabilized. These improvements have either directly increased waste processing rates or have desensitized the process to upsets, thereby minimizing downtime and increasing production. Improvements due to optimization of waste throughput with increased HLW loading of the glass resulted in a 6% waste throughput increase based upon operational efficiencies. Improvements in canister production include the pour spout heated bellows liner (5%), glass surge (siphon) protection software (2%), melter feed pump software logic change to prevent spurious interlocks of the feed pump with subsequent dilution of feed stock (2%) and optimization of the steam atomized scrubber (SAS) operation to minimize downtime (3%) for a total increase in canister production of 12%. A number of process recovery efforts have allowed continued operation. These include the off gas system pluggage and restoration, slurry mix evaporator (SME) tank repair and replacement, remote cleaning of melter top head center nozzle, remote melter internal inspection, SAS pump J-Tube recovery, inadvertent pour scenario resolutions, dome heater transformer bus bar cooling water leak repair and new Infra-red camera for determination of glass height in the canister are discussed.

  9. Used powdex resin for liquid waste processing

    SciTech Connect (OSTI)

    Pearson, C.J.; Bramblett, J.W.

    1995-05-01T23:59:59.000Z

    Powdex resin has traditionally been used on the Secondary side for condensate polishing. The resins on these polishers are backwashed periodically based on chemical breakthrough or high differential pressure. Upon the backwash, the ion exchange capacity on the powdex resin is not completely exhausted. In the past, this partially used powdex resin was sluiced to a liner and treated as waste for disposal. In an effort to reduce radioactivity being released from segregated, high chemical concentration wastes, the idea of trying used powdex resin was initiated. In 1992, Duke Power Company began processing problem liquid waste streams with used Secondary powdex and subsequent decanting of the waste water for release. the results have shown significant reductions in the activity of this water. This paper will detail the history, method, and the results of using Secondary powdex for liquid radwaste processing. It will also describe the benefits, such as: (1) Processing waste streams not suitable for bead resin demineralizers. (2) Ability to process large volumes of waste water in a short period of time. (3) Recycling media thought to be useless. (4) > 80% Reduction in activity of water processed. (5) Overall curies reduction. (6) Improved bead demineralizer performance.

  10. Wilders Grove Solid Waste Services Center

    Broader source: Energy.gov [DOE]

    Project objective: Provide demonstration of Geothermal Heat Pumps viability on energy usage for future Service Centers planned by the City of Raleigh and other similar facilities in the southeast.

  11. Process waste assessment for solid low-level radioactive waste and solid TRU waste

    SciTech Connect (OSTI)

    Haney, L. [Westinghouse Savannah River Co., Aiken, SC (United States); Gamble, G.S. [Law Environmental, Inc., Kennesaw, GA (United States)

    1994-04-01T23:59:59.000Z

    Process Waste Assessments (PWAs) are a necessary and important part of a comprehensive waste management plan. PWAs are required by Federal RCRA regulations, certain state regulations and Department of Energy Orders. This paper describes the assessment process and provides examples used by Law Environmental, Inc., in performing numerous PWAs at the Savannah River Site in Aiken, SC.

  12. Process for treating alkaline wastes for vitrification

    DOE Patents [OSTI]

    Hsu, Chia-lin W.

    1994-01-01T23:59:59.000Z

    According to its major aspects and broadly stated, the present invention is a process for treating alkaline waste materials, including high level radioactive wastes, for vitrification. The process involves adjusting the pH of the wastes with nitric acid, adding formic acid (or a process stream containing formic acid) to reduce mercury compounds to elemental mercury and MnO{sub 2} to the Mn(II) ion, and mixing with class formers to produce a melter feed. The process minimizes production of hydrogen due to noble metal-catalyzed formic acid decomposition during, treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product. An important feature of the present invention is the use of different acidifying and reducing, agents to treat the wastes. The nitric acid acidifies the wastes to improve yield stress and supplies acid for various reactions; then the formic acid reduces mercury compounds to elemental mercury and MnO{sub 2}) to the Mn(II) ion. When the pH of the waste is lower, reduction of mercury compounds and MnO{sub 2}) is faster and less formic acid is needed, and the production of hydrogen caused by catalytically-active noble metals is decreased.

  13. Waste Processing | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCOSystems AnalysisVOLUME I A HISTORY OF8, 2010Local Economy,Reports

  14. Radioactive waste shipments to Hanford Retrievable Storage from the General Electric Vallecitos Nuclear Center, Pleasanton, California

    SciTech Connect (OSTI)

    Vejvoda, E.J.; Pottmeyer, J.A.; DeLorenzo, D.S.; Weyns-Rollosson, M.I. [Los Alamos Technical Associates, Inc., NM (United States); Duncan, D.R. [Westinghouse Hanford Co., Richland, WA (United States)

    1993-10-01T23:59:59.000Z

    During the next two decades the transuranic (TRU) wastes now stored in the burial trenches and storage facilities at the Hanford Site are to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant near Carlsbad, New Mexico for final disposal. Approximately 3.8% of the TRU waste to be retrieved for shipment to WIPP was generated at the General Electric (GE) Vallecitos Nuclear Center (VNC) in Pleasanton, California and shipped to the Hanford Site for storage. The purpose of this report is to characterize these radioactive solid wastes using process knowledge, existing records, and oral history interviews. The waste was generated almost exclusively from the activities, of the Plutonium Fuels Development Laboratory and the Plutonium Analytical Laboratory. Section 2.0 provides further details of the VNC physical plant, facility operations, facility history, and current status. The solid radioactive wastes were associated with two US Atomic Energy Commission/US Department of Energy reactor programs -- the Fast Ceramic Reactor (FCR) program, and the Fast Flux Test Reactor (FFTR) program. These programs involved the fabrication and testing of fuel assemblies that utilized plutonium in an oxide form. The types and estimated quantities of waste resulting from these programs are discussed in detail in Section 3.0. A detailed discussion of the packaging and handling procedures used for the VNC radioactive wastes shipped to the Hanford Site is provided in Section 4.0. Section 5.0 provides an in-depth look at this waste including the following: weight and volume of the waste, container types and numbers, physical description of the waste, radiological components, hazardous constituents, and current storage/disposal locations.

  15. Exploratory study of complexant concentrate waste processing

    SciTech Connect (OSTI)

    Lumetta, G.J.; Bray, L.A.; Kurath, D.E.; Morrey, J.R.; Swanson, J.L.; Wester, D.W.

    1993-02-01T23:59:59.000Z

    The purpose of this exploratory study, conducted by Pacific Northwest Laboratory for Westinghouse Hanford Company, was to determine the effect of applying advanced chemical separations technologies to the processing and disposal of high-level wastes (HLW) stored in underground tanks. The major goals of this study were to determine (1) if the wastes can be partitioned into a small volume of HLW plus a large volume of low-level waste (LLW), and (2) if the activity in the LLW can be lowered enough to meet NRC Class LLW criteria. This report presents the results obtained in a brief scouting study of various processes for separating radionuclides from Hanford complexant concentrate (CC) waste.

  16. Examples of Process Modifications that Reduce Waste

    E-Print Network [OSTI]

    Nelson, K. E.

    : Vented to the air Discharged to the water Sent to landfill Sent to an incinerator Sent to a tlare Sent to a biological treatment facility The two most common waste reduction techniques are to make less waste initially and to recycle waste products... Industrial Energy Technology Conference, Houston, TX, June 19-20, 1990 2. Use off-spec material Occasionally. a process can use off-spec material (that would otherwise be burned or landfilled) because the particular quality that makes the material off...

  17. Comparative assessment of TRU waste forms and processes. Volume I. Waste form and process evaluations

    SciTech Connect (OSTI)

    Ross, W.A.; Lokken, R.O.; May, R.P.; Roberts, F.P.; Timmerman, C.L.; Treat, R.L.; Westsik, J.H. Jr.

    1982-09-01T23:59:59.000Z

    This study provides an assesses seven waste forms and eight processes for immobilizing transuranic (TRU) wastes. The waste forms considered are cast cement, cold-pressed cement, FUETAP (formed under elevated temperature and pressure) cement, borosilicate glass, aluminosilicate glass, basalt glass-ceramic, and cold-pressed and sintered silicate ceramic. The waste-immobilization processes considered are in-can glass melting, joule-heated glass melting, glass marble forming, cement casting, cement cold-pressing, FUETAP cement processing, ceramic cold-pressing and sintering, basalt glass-ceramic processing. Properties considered included gas generation, chemical durability, mechanical strength, thermal stability, and radiation stability. The ceramic products demonstrated the best properties, except for plutonium release during leaching. The glass and ceramic products had similar properties. The cement products generally had poorer properties than the other forms, except for plutonium release during leaching. Calculations of the Pu release indicated that the waste forms met the proposed NRC release rate limit of 1 part in 10/sup 5/ per year in most test conditions. The cast-cement process had the lowest processing cost, followed closely by the cold-pressed and FUETAP cement processes. Joule-heated glass melting had the lower cost of the glass processes. In-can melting in a high-quality canister had the highest cost, and cold-pressed and sintered ceramic the second highest. Labor and canister costs for in-can melting were identified. The major contributor to costs of disposing of TRU wastes in a defense waste repository is waste processing costs. Repository costs could become the dominant cost for disposing of TRU wastes in a commercial repository. It is recommended that cast and FUETAP cement and borosilicate glass waste-form systems be considered. 13 figures, 16 tables.

  18. Waste Minimization Study on Pyrochemical Reprocessing Processes

    SciTech Connect (OSTI)

    Boussier, H.; Conocar, O.; Lacquement, J. [CEA/DEN Valrho Marcoule/DRCP/SCPS/Pyrochemical Processes Laboratory, BP 17171 30207 Bagnols-sur-Ceze (France)

    2006-07-01T23:59:59.000Z

    Ideally a new pyro-process should not generate more waste, and should be at least as safe and cost effective as the hydrometallurgical processes currently implemented at industrial scale. This paper describes the thought process, the methodology and some results obtained by process integration studies to devise potential pyro-processes and to assess their capability of achieving this challenging objective. As example the assessment of a process based on salt/metal reductive extraction, designed for the reprocessing of Generation IV carbide spent fuels, is developed. Salt/metal reductive extraction uses the capability of some metals, aluminum in this case, to selectively reduce actinide fluorides previously dissolved in a fluoride salt bath. The reduced actinides enter the metal phase from which they are subsequently recovered; the fission products remain in the salt phase. In fact, the process is not so simple, as it requires upstream and downstream subsidiary steps. All these process steps generate secondary waste flows representing sources of actinide leakage and/or FP discharge. In aqueous processes the main solvent (nitric acid solution) has a low boiling point and evaporate easily or can be removed by distillation, thereby leaving limited flow containing the dissolved substance behind to be incorporated in a confinement matrix. From the point of view of waste generation, one main handicap of molten salt processes, is that the saline phase (fluoride in our case) used as solvent is of same nature than the solutes (radionuclides fluorides) and has a quite high boiling point. So it is not so easy, than it is with aqueous solutions, to separate solvent and solutes in order to confine only radioactive material and limit the final waste flows. Starting from the initial block diagram devised two years ago, the paper shows how process integration studies were able to propose process fittings which lead to a reduction of the waste variety and flows leading at an 'ideal' new block diagram allowing internal solvent recycling, and self eliminating reactants. This new flowsheet minimizes the quantity of inactive inlet flows that would have inevitably to be incorporated in a final waste form. The study identifies all knowledge gaps to be filled and suggest some possible R and D issues to confirm or infirm the feasibility of the proposed process fittings. (authors)

  19. Selection of melter systems for the DOE/Industrial Center for Waste Vitrification Research

    SciTech Connect (OSTI)

    Bickford, D.F.

    1993-12-31T23:59:59.000Z

    The EPA has designated vitrification as the best developed available technology for immobilization of High-Level Nuclear Waste. In a recent federal facilities compliance agreement between the EPA, the State of Washington, and the DOE, the DOE agreed to vitrify all of the Low Level Radioactive Waste resulting from processing of High Level Radioactive Waste stored at the Hanford Site. This is expected to result in the requirement of 100 ton per day Low Level Radioactive Waste melters. Thus, there is increased need for the rapid adaptation of commercial melter equipment to DOE`s needs. DOE has needed a facility where commercial pilot scale equipment could be operated on surrogate (non-radioactive) simulations of typical DOE waste streams. The DOE/Industry Center for Vitrification Research (Center) was established in 1992 at the Clemson University Department of Environmental Systems Engineering, Clemson, SC, to address that need. This report discusses some of the characteristics of the melter types selected for installation of the Center. An overall objective of the Center has been to provide the broadest possible treatment capability with the minimum number of melter units. Thus, units have been sought which have broad potential application, and which had construction characteristics which would allow their adaptation to various waste compositions, and various operating conditions, including extreme variations in throughput, and widely differing radiological control requirements. The report discusses waste types suitable for vitrification; technical requirements for the application of vitrification to low level mixed wastes; available melters and systems; and selection of melter systems. An annotated bibliography is included.

  20. West Valley demonstration project: alternative processes for solidifying the high-level wastes

    SciTech Connect (OSTI)

    Holton, L.K.; Larson, D.E.; Partain, W.L.; Treat, R.L.

    1981-10-01T23:59:59.000Z

    In 1980, the US Department of Energy (DOE) established the West Valley Solidification Project as the result of legislation passed by the US Congress. The purpose of this project was to carry out a high level nuclear waste management demonstration project at the Western New York Nuclear Service Center in West Valley, New York. The DOE authorized the Pacific Northwest Laboratory (PNL), which is operated by Battelle Memorial Institute, to assess alternative processes for treatment and solidification of the WNYNSC high-level wastes. The Process Alternatives Study is the suject of this report. Two pretreatment approaches and several waste form processes were selected for evaluation in this study. The two waste treatment approaches were the salt/sludge separation process and the combined waste process. Both terminal and interim waste form processes were studied.

  1. Improved FGD dewatering process cuts solid wastes

    SciTech Connect (OSTI)

    Moer, C.; Fernandez, J.; Carraro, B. [Duke Energy (United States)

    2009-08-15T23:59:59.000Z

    In 2007, Duke Energy's W.H. Zimmer Station set out to advance the overall performance of its flue gas desulfurization (FGD) dewatering process. The plant implemented a variety of measures, including upgrading water-solids separation, improving polymer program effectiveness and reliability, optimizing treatment costs, reducing solid waste sent to the landfill, decreasing labor requirements, and maintaining septic-free conditions in clarifiers. The changes succeeded in greatly reducing solid waste generation and achieving total annual savings of over half a million dollars per year. 8 figs., 1 tab.

  2. Waste minimization by process modification

    SciTech Connect (OSTI)

    Hopper, J.R.; Yaws, C.L.; Ho, T.C.; Vichailak, M. (Lamar Univ., Beaumont, TX (United States))

    1993-01-01T23:59:59.000Z

    A simulation of the Sohio process for the production of acrylonitrile from the catalytic ammoxidation of propylene has been performed, using published kinetic and thermodynamic data to illustrate the concepts of pollution prevention by process modification. The study has determined the reaction parameters which will minimize the production of by-products while maintaining the conversion of propylene above 80%. The reaction parameters studied were reactor type (plug flow reactor [PFR], continuous stirred tank reactor [CSTR], and fluidized bed reactor [FBC]), reaction temperature, residence time, and entering feed temperature. The minimum by-products were produced in an FBR operating at 450 C at a residence time of 7 seconds for a conversion of 81%.

  3. Process for treating alkaline wastes for vitrification

    DOE Patents [OSTI]

    Hsu, C.L.W.

    1995-07-25T23:59:59.000Z

    A process is described for treating alkaline wastes for vitrification. The process involves acidifying the wastes with an oxidizing agent such as nitric acid, then adding formic acid as a reducing agent, and then mixing with glass formers to produce a melter feed. The nitric acid contributes nitrates that act as an oxidant to balance the redox of the melter feed, prevent reduction of certain species to produce conducting metals, and lower the pH of the wastes to a suitable level for melter operation. The formic acid reduces mercury compounds to elemental mercury for removal by steam stripping, and MnO{sub 2} to the Mn(II) ion to prevent foaming of the glass melt. The optimum amounts of nitric acid and formic acid are determined in relation to the composition of the wastes, including the concentrations of mercury (II) and MnO{sub 2}, noble metal compounds, nitrates, formates and so forth. The process minimizes the amount of hydrogen generated during treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product. 4 figs.

  4. Process for treating alkaline wastes for vitrification

    DOE Patents [OSTI]

    Hsu, Chia-lin W. (Augusta, GA)

    1995-01-01T23:59:59.000Z

    A process for treating alkaline wastes for vitrification. The process involves acidifying the wastes with an oxidizing agent such as nitric acid, then adding formic acid as a reducing agent, and then mixing with glass formers to produce a melter feed. The nitric acid contributes nitrates that act as an oxidant to balance the redox of the melter feed, prevent reduction of certain species to produce conducting metals, and lower the pH of the wastes to a suitable level for melter operation. The formic acid reduces mercury compounds to elemental mercury for removal by steam stripping, and MnO.sub.2 to the Mn(II) ion to prevent foaming of the glass melt. The optimum amounts of nitric acid and formic acid are determined in relation to the composition of the wastes, including the concentrations of mercury (II) and MnO.sub.2, noble metal compounds, nitrates, formates and so forth. The process minimizes the amount of hydrogen generated during treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product.

  5. Field study of disposed solid wastes from advanced coal processes

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    Radian Corporation and the North Dakota Energy and Environmental Research Center (EERC) are funded to develop information to be used by private industry and government agencies for managing solid wastes produced by advanced coal combustion processes. This information will be developed by conducting several field studies on disposed wastes from these processes. Data will be collected to characterize these wastes and their interactions with the environments in which they are disposed. Three sites were selected for the field studies: Colorado Ute's fluidized bed combustion (FBC) unit in Nucla, Colorado; Ohio Edison's limestone injection multistage burner (LIMB) retrofit in Lorain, Ohio; and Freeman United's mine site in central Illinois with wastes supplied by the nearby Midwest Grain FBC unit. During the past year, field monitoring and sampling of the four landfill test cases constructed in 1989 and 1991 has continued. Option 1 of the contract was approved last year to add financing for the fifth test case at the Freeman United site. The construction of the Test Case 5 cells is scheduled to begin in November, 1992. Work during this past year has focused on obtaining data on the physical and chemical properties of the landfilled wastes, and on developing a conceptual framework for interpreting this information. Results to date indicate that hydration reactions within the landfilled wastes have had a major impact on the physical and chemical properties of the materials but these reactions largely ceased after the first year, and physical properties have changed little since then. Conditions in Colorado remained dry and no porewater samples were collected. In Ohio, hydration reactions and increases in the moisture content of the waste tied up much of the water initially infiltrating the test cells.

  6. Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    Staiger, M. Daniel, Swenson, Michael C.

    2011-09-01T23:59:59.000Z

    This comprehensive report provides definitive volume, mass, and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. Calcine composition data are required for regulatory compliance (such as permitting and waste disposal), future treatment of the caline, and shipping the calcine to an off-Site-facility (such as a geologic repository). This report also contains a description of the calcine storage bins. The Calcined Solids Storage Facilities (CSSFs) were designed by different architectural engineering firms and built at different times. Each CSSF has a unique design, reflecting varying design criteria and lessons learned from historical CSSF operation. The varying CSSF design will affect future calcine retrieval processes and equipment. Revision 4 of this report presents refinements and enhancements of calculations concerning the composition, volume, mass, chemical content, and radioactivity of calcined waste produced and stored within the CSSFs. The historical calcine samples are insufficient in number and scope of analysis to fully characterize the entire inventory of calcine in the CSSFs. Sample data exist for all the liquid wastes that were calcined. This report provides calcine composition data based on liquid waste sample analyses, volume of liquid waste calcined, calciner operating data, and CSSF operating data using several large Microsoft Excel (Microsoft 2003) databases and spreadsheets that are collectively called the Historical Processing Model. The calcine composition determined by this method compares favorably with historical calcine sample data.

  7. Crystallization during processing of nuclear waste glass

    SciTech Connect (OSTI)

    Hrma, Pavel R.

    2010-12-01T23:59:59.000Z

    In glass processing situations involving glass crystallization, various crystalline forms nucleate, grow, and dissolve, typically in a nonuniform temperature field of molten glass subjected to convection. Nuclear waste glasses are remarkable examples of multicomponent vitrified mixtures involving partial crystallization. In the glass melter, crystals form and dissolve during batch-to-glass conversion, melter processing, and product cooling. Crystals often agglomerate and sink, and they may settle at the melter bottom. Within the body of cooling glass, multiple phases crystallize in a non-uniform time-dependent temperature field. Self-organizing periodic distribution (the Liesegnang effect) is common. Various crystallization phenomena that occur in glassmaking are reviewed.

  8. Waste Heat Management Options for Improving Industrial Process...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Management Options for Improving Industrial Process Heating Systems Waste Heat Management Options for Improving Industrial Process Heating Systems This presentation covers...

  9. Double Shell Tank (DST) Process Waste Sampling Subsystem Specification

    SciTech Connect (OSTI)

    RASMUSSEN, J.H.

    2000-05-03T23:59:59.000Z

    This specification establishes the performance requirements and provides references to the requisite codes and standards to be applied to the Double-Shell Tank (DST) Process Waste Sampling Subsystem which supports the first phase of Waste Feed Delivery.

  10. GEOTECHNICAL/GEOCHEMICAL CHARACTERIZATION OF ADVANCED COAL PROCESS WASTE STREAMS

    SciTech Connect (OSTI)

    Edwin S. Olson; Charles J. Moretti

    1999-11-01T23:59:59.000Z

    Thirteen solid wastes, six coals and one unreacted sorbent produced from seven advanced coal utilization processes were characterized for task three of this project. The advanced processes from which samples were obtained included a gas-reburning sorbent injection process, a pressurized fluidized-bed coal combustion process, a coal-reburning process, a SO{sub x}, NO{sub x}, RO{sub x}, BOX process, an advanced flue desulfurization process, and an advanced coal cleaning process. The waste samples ranged from coarse materials, such as bottom ashes and spent bed materials, to fine materials such as fly ashes and cyclone ashes. Based on the results of the waste characterizations, an analysis of appropriate waste management practices for the advanced process wastes was done. The analysis indicated that using conventional waste management technology should be possible for disposal of all the advanced process wastes studied for task three. However, some wastes did possess properties that could present special problems for conventional waste management systems. Several task three wastes were self-hardening materials and one was self-heating. Self-hardening is caused by cementitious and pozzolanic reactions that occur when water is added to the waste. All of the self-hardening wastes setup slowly (in a matter of hours or days rather than minutes). Thus these wastes can still be handled with conventional management systems if care is taken not to allow them to setup in storage bins or transport vehicles. Waste self-heating is caused by the exothermic hydration of lime when the waste is mixed with conditioning water. If enough lime is present, the temperature of the waste will rise until steam is produced. It is recommended that self-heating wastes be conditioned in a controlled manner so that the heat will be safely dissipated before the material is transported to an ultimate disposal site. Waste utilization is important because an advanced process waste will not require ultimate disposal when it is put to use. Each task three waste was evaluated for utilization potential based on its physical properties, bulk chemical composition, and mineral composition. Only one of the thirteen materials studied might be suitable for use as a pozzolanic concrete additive. However, many wastes appeared to be suitable for other high-volume uses such as blasting grit, fine aggregate for asphalt concrete, road deicer, structural fill material, soil stabilization additives, waste stabilization additives, landfill cover material, and pavement base course construction.

  11. Buried waste integrated demonstration technology integration process

    SciTech Connect (OSTI)

    Ferguson, J.S.; Ferguson, J.E.

    1992-04-01T23:59:59.000Z

    A Technology integration Process was developed for the Idaho National Energy Laboratories (INEL) Buried Waste Integrated Demonstration (BWID) Program to facilitate the transfer of technology and knowledge from industry, universities, and other Federal agencies into the BWID; to successfully transfer demonstrated technology and knowledge from the BWID to industry, universities, and other Federal agencies; and to share demonstrated technologies and knowledge between Integrated Demonstrations and other Department of Energy (DOE) spread throughout the DOE Complex. This document also details specific methods and tools for integrating and transferring technologies into or out of the BWID program. The document provides background on the BWID program and technology development needs, demonstrates the direction of technology transfer, illustrates current processes for this transfer, and lists points of contact for prospective participants in the BWID technology transfer efforts. The Technology Integration Process was prepared to ensure compliance with the requirements of DOE's Office of Technology Development (OTD).

  12. Buried waste integrated demonstration technology integration process

    SciTech Connect (OSTI)

    Ferguson, J.S.; Ferguson, J.E.

    1992-04-01T23:59:59.000Z

    A Technology integration Process was developed for the Idaho National Energy Laboratories (INEL) Buried Waste Integrated Demonstration (BWID) Program to facilitate the transfer of technology and knowledge from industry, universities, and other Federal agencies into the BWID; to successfully transfer demonstrated technology and knowledge from the BWID to industry, universities, and other Federal agencies; and to share demonstrated technologies and knowledge between Integrated Demonstrations and other Department of Energy (DOE) spread throughout the DOE Complex. This document also details specific methods and tools for integrating and transferring technologies into or out of the BWID program. The document provides background on the BWID program and technology development needs, demonstrates the direction of technology transfer, illustrates current processes for this transfer, and lists points of contact for prospective participants in the BWID technology transfer efforts. The Technology Integration Process was prepared to ensure compliance with the requirements of DOE`s Office of Technology Development (OTD).

  13. Processing constraints on high-level nuclear waste glasses for Hanford Waste Vitrification Plant

    SciTech Connect (OSTI)

    Hrma, P. [Pacific Northwest Lab., Richland, WA (United States)

    1993-12-31T23:59:59.000Z

    The work presented in this paper is a part of a major technology program supported by the US Department of Energy (DOE) in preparation for the planned operation of the Hanford Waste Vitrification Plant (HWVP). Because composition of Hanford waste varies greatly, processability is a major concern for successful vitrification. This paper briefly surveys general aspects of waste glass processability and then discusses their ramifications for specific examples of Hanford waste streams.

  14. Studien-und Prfungsordnung der Universitt Stuttgart fr den auslandsorientierten Studiengang Air Quality Control, Solid Waste and Waste Water Process Engineering

    E-Print Network [OSTI]

    Reyle, Uwe

    Air Quality Control, Solid Waste and Waste Water Process Engineering (WASTE) mit Abschluss Master Quality Control, Solid Waste and Waste Water Process Engineering" (WASTE) beschlossen. Der Rektor hat Control, Solid Waste and Waste Water Process Engineering" (WASTE) überblickt werden, die Fähigkeit

  15. Industrial waste reduction: The process problem

    SciTech Connect (OSTI)

    Valentino, F.W.; Walmet, G.E.

    1986-09-01T23:59:59.000Z

    Industrial waste problems, especially those involving hazardous waste, seem to be pervasive. The national media report newly discovered waste problems and sites with alarming regularity. Examples that immediately come to mind are Love Canal, New York; Times Beach, Missouri; and Seveso, Italy. Public perceptions of the industrial waste problem, reflecting the media's focus, appear to be that: large corporations are solely responsible for creating waste dumps, and the only role of government is to prevent illegal dumping and to regulate, fine, and require corporations to rectify the problem; all efforts should be directed toward preventing illegal dumping and treatment of the existing waste dumps; all industrial wastes can be classified as hazardous in nature. This general impression is both inaccurate and incomplete. All industrial waste is not hazardous (although most of it is not benign). All waste producers are not large corporations: nearly all industries produce some wastes. And, while existing waste sites must be effectively treated, additional efforts are needed at other points in the industrial waste cycle. Most people would agree both that waste dumping must be carefully regulated because of its negative impacts on the environment and that the less waste the better, even with carefully regulated disposal. Since nearly all industry now produces some waste and no one expects industry to shut down to resolve the waste problem, other strategies need to be available to deal with the problem at the front end. This paper discusses alternative strategies.

  16. High-Level waste process and product data annotated bibliography

    SciTech Connect (OSTI)

    Stegen, G.E.

    1996-02-13T23:59:59.000Z

    The objective of this document is to provide information on available issued documents that will assist interested parties in finding available data on high-level waste and transuranic waste feed compositions, properties, behavior in candidate processing operations, and behavior on candidate product glasses made from those wastes. This initial compilation is only a partial list of available references.

  17. EIS-0082: Defense Waste Processing Facility, Savannah River Plant

    Broader source: Energy.gov [DOE]

    The Office of Defense Waste and Byproducts Management developed this EIS to provide environmental input into both the selection of an appropriate strategy for the permanent disposal of the high-level radioactive waste currently stored at the Savannah River Plant (SRP) and the subsequent decision to construct and operate a Defense Waste Processing Facility at the SRP site.

  18. Characterization of industrial process waste heat and input heat streams

    SciTech Connect (OSTI)

    Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

    1984-05-01T23:59:59.000Z

    The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

  19. Waste receiving and processing facility module 1 auditable safetyanalysis

    SciTech Connect (OSTI)

    Bottenus, R.J.

    1997-02-01T23:59:59.000Z

    The Waste Receiving and Processing Facility Module 1 Auditable Safety Analysis analyzes postulated accidents and determines controls to prevent the accidents or mitigate the consequences.

  20. Process for treating fission waste. [Patent application

    DOE Patents [OSTI]

    Rohrmann, C.A.; Wick, O.J.

    1981-11-17T23:59:59.000Z

    A method is described for the treatment of fission waste. A glass forming agent, a metal oxide, and a reducing agent are mixed with the fission waste and the mixture is heated. After melting, the mixture separates into a glass phase and a metal phase. The glass phase may be used to safely store the fission waste, while the metal phase contains noble metals recovered from the fission waste.

  1. Waste Analysis Plan for the Waste Receiving and Processing (WRAP) Facility

    SciTech Connect (OSTI)

    TRINER, G.C.

    1999-11-01T23:59:59.000Z

    The purpose of this waste analysis plan (WAP) is to document the waste acceptance process, sampling methodologies, analytical techniques, and overall processes that are undertaken for dangerous, mixed, and radioactive waste accepted for confirmation, nondestructive examination (NDE) and nondestructive assay (NDA), repackaging, certification, and/or storage at the Waste Receiving and Processing Facility (WRAP). Mixed and/or radioactive waste is treated at WRAP. WRAP is located in the 200 West Area of the Hanford Facility, Richland, Washington. Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge.

  2. EM-31 RETRIEVAL KNOWLEDGE CENTER MEETING REPORT: MOBILIZE AND DISLODGE TANK WASTE HEELS

    SciTech Connect (OSTI)

    Fellinger, A.

    2010-02-16T23:59:59.000Z

    The Retrieval Knowledge Center sponsored a meeting in June 2009 to review challenges and gaps to retrieval of tank waste heels. The facilitated meeting was held at the Savannah River Research Campus with personnel broadly representing tank waste retrieval knowledge at Hanford, Savannah River, Idaho, and Oak Ridge. This document captures the results of this meeting. In summary, it was agreed that the challenges to retrieval of tank waste heels fell into two broad categories: (1) mechanical heel waste retrieval methodologies and equipment and (2) understanding and manipulating the heel waste (physical, radiological, and chemical characteristics) to support retrieval options and subsequent processing. Recent successes and lessons from deployments of the Sand and Salt Mantis vehicles as well as retrieval of C-Area tanks at Hanford were reviewed. Suggestions to address existing retrieval approaches that utilize a limited set of tools and techniques are included in this report. The meeting found that there had been very little effort to improve or integrate the multiple proven or new techniques and tools available into a menu of available methods for rapid insertion into baselines. It is recommended that focused developmental efforts continue in the two areas underway (low-level mixing evaluation and pumping slurries with large solid materials) and that projects to demonstrate new/improved tools be launched to outfit tank farm operators with the needed tools to complete tank heel retrievals effectively and efficiently. This document describes the results of a meeting held on June 3, 2009 at the Savannah River Site in South Carolina to identify technology gaps and potential technology solutions to retrieving high-level waste (HLW) heels from waste tanks within the complex of sites run by the U. S. Department of Energy (DOE). The meeting brought together personnel with extensive tank waste retrieval knowledge from DOE's four major waste sites - Hanford, Savannah River, Idaho, and Oak Ridge. The meeting was arranged by the Retrieval Knowledge Center (RKC), which is a technology development project sponsored by the Office of Technology Innovation & Development - formerly the Office of Engineering and Technology - within the DOE Office of Environmental Management (EM).

  3. Hydrothermal processing of Hanford tank wastes: Process modeling and control

    SciTech Connect (OSTI)

    Currier, R.P. [comp.

    1994-10-01T23:59:59.000Z

    In the Los Alamos National Laboratory (LANL) hydrothermal process, waste streams are first pressurized and heated as they pass through a continuous flow tubular reactor vessel. The waste is maintained at reaction temperature of 300--550 C where organic destruction and sludge reformation occur. This report documents LANL activities in process modeling and control undertaken in FY94 to support hydrothermal process development. Key issues discussed include non-ideal flow patterns (e.g. axial dispersion) and their effect on reactor performance, the use and interpretation of inert tracer experiments, and the use of computational fluid mechanics to evaluate novel hydrothermal reactor designs. In addition, the effects of axial dispersion (and simplifications to rate expressions) on the estimated kinetic parameters are explored by non-linear regression to experimental data. Safety-related calculations are reported which estimate the explosion limits of effluent gases and the fate of hydrogen as it passes through the reactor. Development and numerical solution of a generalized one-dimensional mathematical model is also summarized. The difficulties encountered in using commercially available software to correlate the behavior of high temperature, high pressure aqueous electrolyte mixtures are summarized. Finally, details of the control system and experiments conducted to empirically determine the system response are reported.

  4. Thermal processing system concepts and considerations for RWMC buried waste

    SciTech Connect (OSTI)

    Eddy, T.L.; Kong, P.C.; Raivo, B.D.; Anderson, G.L.

    1992-02-01T23:59:59.000Z

    This report presents a preliminary determination of ex situ thermal processing system concepts and related processing considerations for application to remediation of transuranic (TRU)-contaminated buried wastes (TRUW) at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Beginning with top-level thermal treatment concepts and requirements identified in a previous Preliminary Systems Design Study (SDS), a more detailed consideration of the waste materials thermal processing problem is provided. Anticipated waste stream elements and problem characteristics are identified and considered. Final waste form performance criteria, requirements, and options are examined within the context of providing a high-integrity, low-leachability glass/ceramic, final waste form material. Thermal processing conditions required and capability of key systems components (equipment) to provide these material process conditions are considered. Information from closely related companion study reports on melter technology development needs assessment and INEL Iron-Enriched Basalt (IEB) research are considered. Five potentially practicable thermal process system design configuration concepts are defined and compared. A scenario for thermal processing of a mixed waste and soils stream with essentially no complex presorting and using a series process of incineration and high temperature melting is recommended. Recommendations for applied research and development necessary to further detail and demonstrate the final waste form, required thermal processes, and melter process equipment are provided.

  5. Tank waste remediation system phase I high-level waste feed processability assessment report

    SciTech Connect (OSTI)

    Lambert, S.L.; Stegen, G.E., Westinghouse Hanford

    1996-08-01T23:59:59.000Z

    This report evaluates the effects of feed composition on the Phase I high-level waste immobilization process and interim storage facility requirements for the high-level waste glass.Several different Phase I staging (retrieval, blending, and pretreatment) scenarios were used to generate example feed compositions for glass formulations, testing, and glass sensitivity analysis. Glass models and data form laboratory glass studies were used to estimate achievable waste loading and corresponding glass volumes for various Phase I feeds. Key issues related to feed process ability, feed composition, uncertainty, and immobilization process technology are identified for future consideration in other tank waste disposal program activities.

  6. Foaming and Antifoaming in Radioactive Waste Pretreatment and Immobilization Processes

    SciTech Connect (OSTI)

    Darsh T. Wasan; Alex D. Nikolov; D.P. Lamber; T. Bond Calloway; M.E. Stone

    2005-03-12T23:59:59.000Z

    Savannah River National Laboratory (SRNL) has reported severe foaminess in the bench scale evaporation of the Hanford River Protection - Waste Treatment Plant (RPP-WPT) envelope C waste. Excessive foaming in waste evaporators can cause carryover of radionuclides and non-radioactive waste to the condensate system. The antifoams used at Hanford and tested by SRNL are believed to degrade and become inactive in high pH solutions. Hanford wastes have been known to foam during evaporation causing excessive down time and processing delays.

  7. Waste Management Recommendations in the Texas A&M University Industrial Assessment Center Program

    E-Print Network [OSTI]

    Eggebrecht, J. A.; Heffington, W. M.

    The Texas A&M University Industrial Assessment Center (IAC) was one of the four Energy Analysis & Diagnostic Centers (EADC) that began providing waste management, in addition to energy and demand conservation, assessments in January, 1994. Over 30...

  8. Progress of the High Level Waste Program at the Defense Waste Processing Facility - 13178

    SciTech Connect (OSTI)

    Bricker, Jonathan M.; Fellinger, Terri L.; Staub, Aaron V.; Ray, Jeff W.; Iaukea, John F. [Savannah River Remediation, Aiken, South Carolina, 29808 (United States)] [Savannah River Remediation, Aiken, South Carolina, 29808 (United States)

    2013-07-01T23:59:59.000Z

    The Defense Waste Processing Facility at the Savannah River Site treats and immobilizes High Level Waste into a durable borosilicate glass for safe, permanent storage. The High Level Waste program significantly reduces environmental risks associated with the storage of radioactive waste from legacy efforts to separate fissionable nuclear material from irradiated targets and fuels. In an effort to support the disposition of radioactive waste and accelerate tank closure at the Savannah River Site, the Defense Waste Processing Facility recently implemented facility and flowsheet modifications to improve production by 25%. These improvements, while low in cost, translated to record facility production in fiscal years 2011 and 2012. In addition, significant progress has been accomplished on longer term projects aimed at simplifying and expanding the flexibility of the existing flowsheet in order to accommodate future processing needs and goals. (authors)

  9. Chapter 38 Hazardous Waste Permitting Process (Kentucky)

    Broader source: Energy.gov [DOE]

    This administrative regulation establishes the general provisions for storage, treatment, recycling, or disposal of hazardous waste. It provides information about permits and specific requirements...

  10. Tank Waste and Waste Processing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment ofEnergy State7/109T.M.TRUPACT-III Quickon ScaryServices

  11. Technical evaluation of proposed Ukrainian Central Radioactive Waste Processing Facility

    SciTech Connect (OSTI)

    Gates, R.; Glukhov, A.; Markowski, F.

    1996-06-01T23:59:59.000Z

    This technical report is a comprehensive evaluation of the proposal by the Ukrainian State Committee on Nuclear Power Utilization to create a central facility for radioactive waste (not spent fuel) processing. The central facility is intended to process liquid and solid radioactive wastes generated from all of the Ukrainian nuclear power plants and the waste generated as a result of Chernobyl 1, 2 and 3 decommissioning efforts. In addition, this report provides general information on the quantity and total activity of radioactive waste in the 30-km Zone and the Sarcophagus from the Chernobyl accident. Processing options are described that may ultimately be used in the long-term disposal of selected 30-km Zone and Sarcophagus wastes. A detailed report on the issues concerning the construction of a Ukrainian Central Radioactive Waste Processing Facility (CRWPF) from the Ukrainian Scientific Research and Design institute for Industrial Technology was obtained and incorporated into this report. This report outlines various processing options, their associated costs and construction schedules, which can be applied to solving the operating and decommissioning radioactive waste management problems in Ukraine. The costs and schedules are best estimates based upon the most current US industry practice and vendor information. This report focuses primarily on the handling and processing of what is defined in the US as low-level radioactive wastes.

  12. Proposed Changes to EPA's Transuranic Waste Characterization Approval Process

    SciTech Connect (OSTI)

    Joglekar. R. D.; Feltcorn, E. M.; Ortiz, A. M.

    2003-02-25T23:59:59.000Z

    This paper describes the changes to the waste characterization (WC) approval process proposed in August 2002 by the U.S. Environmental Protection Agency (EPA or the Agency or we). EPA regulates the disposal of transuranic (TRU) waste at the Waste Isolation Pilot Plant (WIPP) repository in Carlsbad, New Mexico. EPA regulations require that waste generator/storage sites seek EPA approval of WC processes used to characterize TRU waste destined for disposal at WIPP. The regulations also require that EPA verify, through site inspections, characterization of each waste stream or group of waste streams proposed for disposal at the WIPP. As part of verification, the Agency inspects equipment, procedures, and interviews personnel to determine if the processes used by a site can adequately characterize the waste in order to meet the waste acceptance criteria for WIPP. The paper discusses EPA's mandate, current regulations, inspection experience, and proposed changes. We expect that th e proposed changes will provide equivalent or improved oversight. Also, they would give EPA greater flexibility in scheduling and conducting inspections, and should clarify the regulatory process of inspections for both Department of Energy (DOE) and the public.

  13. Process for removing sulfate anions from waste water

    DOE Patents [OSTI]

    Nilsen, David N. (Lebanon, OR); Galvan, Gloria J. (Albany, OR); Hundley, Gary L. (Corvallis, OR); Wright, John B. (Albany, OR)

    1997-01-01T23:59:59.000Z

    A liquid emulsion membrane process for removing sulfate anions from waste water is disclosed. The liquid emulsion membrane process includes the steps of: (a) providing a liquid emulsion formed from an aqueous strip solution and an organic phase that contains an extractant capable of removing sulfate anions from waste water; (b) dispersing the liquid emulsion in globule form into a quantity of waste water containing sulfate anions to allow the organic phase in each globule of the emulsion to extract and absorb sulfate anions from the waste water and (c) separating the emulsion including its organic phase and absorbed sulfate anions from the waste water to provide waste water containing substantially no sulfate anions.

  14. Process to separate transuranic elements from nuclear waste

    DOE Patents [OSTI]

    Johnson, Terry R. (Wheaton, IL); Ackerman, John P. (Downers Grove, IL); Tomczuk, Zygmunt (Orland Park, IL); Fischer, Donald F. (Glen Ellyn, IL)

    1989-01-01T23:59:59.000Z

    A process for removing transuranic elements from a waste chloride electrolytic salt containing transuranic elements in addition to rare earth and other fission product elements so the salt waste may be disposed of more easily and the valuable transuranic elements may be recovered for reuse. The salt is contacted with a cadmium-uranium alloy which selectively extracts the transuranic elements from the salt. The waste salt is generated during the reprocessing of nuclear fuel associated with the Integral Fast Reactor (IFR).

  15. Double Shell Tank (DST) Process Waste Sampling Subsystem Definition Report

    SciTech Connect (OSTI)

    RASMUSSEN, J.H.

    2000-04-25T23:59:59.000Z

    This report defines the Double-Shell Tank (DST) Process Waste Sampling Subsystem (PWSS). This subsystem definition report fully describes and identifies the system boundaries of the PWSS. This definition provides a basis for developing functional, performance, and test requirements (i.e., subsystem specification), as necessary, for the PWSS. The resultant PWSS specification will include the sampling requirements to support the transfer of waste from the DSTs to the Privatization Contractor during Phase 1 of Waste Feed Delivery.

  16. Tank Waste and Waste Processing | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy:Whether you're a home builder or remodeling professional, aYourTank

  17. Unreviewed Safety Question Determination - Processing Waste in the Waste

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium TransferonUS-India EnergyUnlocking Customer Value: The VirtualSTEM

  18. Description of processes for the immobilization of selected transuranic wastes

    SciTech Connect (OSTI)

    Timmerman, C.L.

    1980-12-01T23:59:59.000Z

    Processed sludge and incinerator-ash wastes contaminated with transuranic (TRU) elements may require immobilization to prevent the release of these elements to the environment. As part of the TRU Waste Immobilization Program sponsored by the Department of Energy (DOE), the Pacific Northwest Laboratory is developing applicable waste-form and processing technology that may meet this need. This report defines and describes processes that are capable of immobilizing a selected TRU waste-stream consisting of a blend of three parts process sludge and one part incinerator ash. These selected waste streams are based on the compositions and generation rates of the waste processing and incineration facility at the Rocky Flats Plant. The specific waste forms that could be produced by the described processes include: in-can melted borosilicate-glass monolith; joule-heated melter borosilicate-glass monolith or marble; joule-heated melter aluminosilicate-glass monolith or marble; joule-heated melter basaltic-glass monolith or marble; joule-heated melter glass-ceramic monolith; cast-cement monolith; pressed-cement pellet; and cold-pressed sintered-ceramic pellet.

  19. Hanford's Simulated Low Activity Waste Cast Stone Processing

    SciTech Connect (OSTI)

    Kim, Young

    2013-08-20T23:59:59.000Z

    Cast Stone is undergoing evaluation as the supplemental treatment technology for Hanford’s (Washington) high activity waste (HAW) and low activity waste (LAW). This report will only cover the LAW Cast Stone. The programs used for this simulated Cast Stone were gradient density change, compressive strength, and salt waste form phase identification. Gradient density changes show a favorable outcome by showing uniformity even though it was hypothesized differently. Compressive strength exceeded the minimum strength required by Hanford and greater compressive strength increase seen between the uses of different salt solution The salt waste form phase is still an ongoing process as this time and could not be concluded.

  20. Retrieval process development and enhancements waste simulant compositions and defensibility

    SciTech Connect (OSTI)

    Powell, M.R.; Golcar, G.R.; Geeting, J.G.H.

    1997-09-01T23:59:59.000Z

    The purpose of this report is to document the physical waste simulant development efforts of the EM-50 Tanks Focus Area at the Hanford Site. Waste simulants are used in the testing and development of waste treatment and handling processes because performing such tests using actual tank waste is hazardous and prohibitively expensive. This document addresses the simulant development work that supports the testing of waste retrieval processes using simulants that mimic certain key physical properties of the tank waste. Development and testing of chemical simulants are described elsewhere. This work was funded through the EM-50 Tanks Focus Area as part of the Retrieval Process Development and Enhancements (RPD&E) Project at the Pacific Northwest National Laboratory (PNNL). The mission of RPD&E is to understand retrieval processes, including emerging and existing processes, gather performance data on those processes, and relate the data to specific tank problems to provide end users with the requisite technical bases to make retrieval and closure decisions. Physical simulants are prepared using relatively nonhazardous and inexpensive materials rather than the chemicals known to be in tank waste. Consequently, only some of the waste properties are matched by the simulant. Deciding which properties need to be matched and which do not requires a detailed knowledge of the physics of the process to be tested using the simulant. Developing this knowledge requires reviews of available literature, consultation with experts, and parametric tests. Once the relevant properties are identified, waste characterization data are reviewed to establish the target ranges for each property. Simulants are then developed that possess the desired ranges of properties.

  1. Technical resource document for assured thermal processing of wastes

    SciTech Connect (OSTI)

    Farrow, R.L.; Fisk, G.A.; Hartwig, C.M.; Hurt, R.H.; Ringland, J.T.; Swansiger, W.A.

    1994-06-01T23:59:59.000Z

    This document is a concise compendium of resource material covering assured thermal processing of wastes (ATPW), an area in which Sandia aims to develop a large program. The ATPW program at Sandia is examining a wide variety of waste streams and thermal processes. Waste streams under consideration include municipal, chemical, medical, and mixed wastes. Thermal processes under consideration range from various incineration technologies to non-incineration processes such as supercritical water oxidation or molten metal technologies. Each of the chapters describes the element covered, discusses issues associated with its further development and/or utilization, presents Sandia capabilities that address these issues, and indicates important connections to other ATPW elements. The division of the field into elements was driven by the team`s desire to emphasize areas where Sandia`s capabilities can lead to major advances and is therefore somewhat unconventional. The report will be valuable to Sandians involved in further ATPW program development.

  2. Comparative assessment of TRU waste forms and processes. Volume II. Waste form data, process descriptions, and costs.

    SciTech Connect (OSTI)

    Ross, W.A.; Lokken, R.O.; May, R.P.; Roberts, F.P.; Thornhill, R.E.; Timmerman, C.L.; Treat, R.L.; Westsik, J.H. Jr.

    1982-09-01T23:59:59.000Z

    This volume contains supporting information for the comparative assessment of the transuranic waste forms and processes summarized in Volume I. Detailed data on the characterization of the waste forms selected for the assessment, process descriptions, and cost information are provided. The purpose of this volume is to provide additional information that may be useful when using the data in Volume I and to provide greater detail on particular waste forms and processes. Volume II is divided into two sections and two appendixes. The first section provides information on the preparation of the waste form specimens used in this study and additional characterization data in support of that in Volume I. The second section includes detailed process descriptions for the eight processes evaluated. Appendix A lists the results of MCC-1 leach test and Appendix B lists additional cost data. 56 figures, 12 tables.

  3. High-Level Waste System Process Interface Description

    SciTech Connect (OSTI)

    d'Entremont, P.D.

    1999-01-14T23:59:59.000Z

    The High-Level Waste System is a set of six different processes interconnected by pipelines. These processes function as one large treatment plant that receives, stores, and treats high-level wastes from various generators at SRS and converts them into forms suitable for final disposal. The three major forms are borosilicate glass, which will be eventually disposed of in a Federal Repository, Saltstone to be buried on site, and treated water effluent that is released to the environment.

  4. Waste heat driven absorption refrigeration process and system

    DOE Patents [OSTI]

    Wilkinson, William H. (Columbus, OH)

    1982-01-01T23:59:59.000Z

    Absorption cycle refrigeration processes and systems are provided which are driven by the sensible waste heat available from industrial processes and other sources. Systems are disclosed which provide a chilled water output which can be used for comfort conditioning or the like which utilize heat from sensible waste heat sources at temperatures of less than 170.degree. F. Countercurrent flow equipment is also provided to increase the efficiency of the systems and increase the utilization of available heat.

  5. Accelerator Production of Tritium project process waste assessment

    SciTech Connect (OSTI)

    Carson, S.D.; Peterson, P.K.

    1995-09-01T23:59:59.000Z

    DOE has made a commitment to compliance with all applicable environmental regulatory requirements. In this respect, it is important to consider and design all tritium supply alternatives so that they can comply with these requirements. The management of waste is an integral part of this activity and it is therefore necessary to estimate the quantities and specific wastes that will be generated by all tritium supply alternatives. A thorough assessment of waste streams includes waste characterization, quantification, and the identification of treatment and disposal options. The waste assessment for APT has been covered in two reports. The first report was a process waste assessment (PWA) that identified and quantified waste streams associated with both target designs and fulfilled the requirements of APT Work Breakdown Structure (WBS) Item 5.5.2.1. This second report is an expanded version of the first that includes all of the data of the first report, plus an assessment of treatment and disposal options for each waste stream identified in the initial report. The latter information was initially planned to be issued as a separate Waste Treatment and Disposal Options Assessment Report (WBS Item 5.5.2.2).

  6. Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    M. D. Staiger

    2007-06-01T23:59:59.000Z

    This report provides a quantitative inventory and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. From December 1963 through May 2000, liquid radioactive wastes generated by spent nuclear fuel reprocessing were converted into a solid, granular form called calcine. This report also contains a description of the calcine storage bins.

  7. Electromagnetic mixed waste processing system for asbestos decontamination

    SciTech Connect (OSTI)

    Kasevich, R.S.; Vaux, W. [KAI Technologies, Inc., Portsmouth, NH (United States); Ulerich, N. [Westinghouse Electric Corp., Pittsburgh, PA (United States). Science and Technology Center; Nocito, T. [Ohio DSI Corporation, New York (New York)

    1996-12-31T23:59:59.000Z

    The overall objective of this three-phase program is to develop an integrated process for treating asbestos-containing material that is contaminated with radioactive and hazardous constituents. The integrated process will attempt to minimize processing and disposal costs. The objectives of Phase 1 were to establish the technical feasibility of asbestos decomposition, inorganic radionuclide nd heavy metal removal, and organic volatilization. Phase 1 resulted in the successful bench-scale demonstration of the elements required to develop a mixed waste treatment process for asbestos-containing material (ACM) contaminated with radioactive metals, heavy metals, and organics. Using the Phase 1 data, a conceptual process was developed. The Phase 2 program, currently in progress, is developing an integrated system design for ACM waste processing. The Phase 3 program will target demonstration of the mixed waste processing system at a DOE facility. The electromagnetic mixed waste processing system employs patented technologies to convert DOE asbestos to a non-hazardous, radionuclide-free, stable waste. The dry, contaminated asbestos is initially heated with radiofrequency energy to remove organic volatiles. Second,the radionuclides are removed by solvent extraction coupled with ion exchange solution treatment. Third, the ABCOV method converts the asbestos to an amorphous silica suspension at low temperature (100{degrees}C). Finally the amorphous silica is solidified for disposal.

  8. Center for Lightweighting Automotive Materials and Processing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof EnergyAdministration-Desert SouthwestofDepartmentCellulosicCement

  9. Waste Treatment Technology Process Development Plan For Hanford Waste Treatment Plant Low Activity Waste Recycle

    SciTech Connect (OSTI)

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.

    2013-08-29T23:59:59.000Z

    The purpose of this Process Development Plan is to summarize the objectives and plans for the technology development activities for an alternative path for disposition of the recycle stream that will be generated in the Hanford Waste Treatment Plant Low Activity Waste (LAW) vitrification facility (LAW Recycle). This plan covers the first phase of the development activities. The baseline plan for disposition of this stream is to recycle it to the WTP Pretreatment Facility, where it will be concentrated by evaporation and returned to the LAW vitrification facility. Because this stream contains components that are volatile at melter temperatures and are also problematic for the glass waste form, they accumulate in the Recycle stream, exacerbating their impact on the number of LAW glass containers. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and reducing the halides in the Recycle is a key component of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, this stream does not have a proven disposition path, and resolving this gap becomes vitally important. This task seeks to examine the impact of potential future disposition of this stream in the Hanford tank farms, and to develop a process that will remove radionuclides from this stream and allow its diversion to another disposition path, greatly decreasing the LAW vitrification mission duration and quantity of glass waste. The origin of this LAW Recycle stream will be from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover or precipitates of scrubbed components (e.g. carbonates). The soluble components are mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet, and will not be available until the WTP begins operation, causing uncertainty in its composition, particularly the radionuclide content. This plan will provide an estimate of the likely composition and the basis for it, assess likely treatment technologies, identify potential disposition paths, establish target treatment limits, and recommend the testing needed to show feasibility. Two primary disposition options are proposed for investigation, one is concentration for storage in the tank farms, and the other is treatment prior to disposition in the Effluent Treatment Facility. One of the radionuclides that is volatile and expected to be in high concentration in this LAW Recycle stream is Technetium-99 ({sup 99}Tc), a long-lived radionuclide with a half-life of 210,000 years. Technetium will not be removed from the aqueous waste in the Hanford Waste Treatment and Immobilization Plant (WTP), and will primarily end up immobilized in the LAW glass, which will be disposed in the Integrated Disposal Facility (IDF). Because {sup 99}Tc has a very long half-life and is highly mobile, it is the largest dose contributor to the Performance Assessment (PA) of the IDF. Other radionuclides that are also expected to be in appreciable concentration in the LAW Recycle are {sup 129}I, {sup 90}Sr, {sup 137}Cs, and {sup 241}Am. The concentrations of these radionuclides in this stream will be much lower than in the LAW, but they will still be higher than limits for some of the other disposition pathways currently available. Although the baseline process will recycle this stream to the Pretreatment Facility, if the LAW facility begins operation first, this stream will not have a disposition path internal to WTP. One potential solution is to return the stream to the tank farms where it can be evaporated in the 242-A evaporator, or perhaps deploy an auxiliary evaporator to concentrate it prior to return to the tank farms. In either case, testing is needed to evaluat

  10. IMPACT OF THE SMALL COLUMN ION EXCHANGE PROCESS ON THE DEFENSE WASTE PROCESSING FACILITY - 12112

    SciTech Connect (OSTI)

    Koopman, D.; Lambert, D.; Fox, K.; Stone, M.

    2011-11-07T23:59:59.000Z

    The Savannah River Site (SRS) is investigating the deployment of a parallel technology to the Salt Waste Processing Facility (SWPF, presently under construction) to accelerate high activity salt waste processing. The proposed technology combines large waste tank strikes of monosodium titanate (MST) to sorb strontium and actinides with two ion exchange columns packed with crystalline silicotitanate (CST) resin to sorb cesium. The new process was designated Small Column Ion Exchange (SCIX), since the ion exchange columns were sized to fit within a waste storage tank riser. Loaded resins are to be combined with high activity sludge waste and fed to the Defense Waste Processing Facility (DWPF) for incorporation into the current glass waste form. Decontaminated salt solution produced by SCIX will be fed to the SRS Saltstone Facility for on-site immobilization as a grout waste form. Determining the potential impact of SCIX resins on DWPF processing was the basis for this study. Accelerated salt waste treatment is projected to produce a significant savings in the overall life cycle cost of waste treatment at SRS.

  11. Salt Waste Processing Facility Fact Sheet | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCO OverviewRepository | DepartmentSEA-04:Department of¿QUÉFuture |Waste

  12. Materials evaluation programs at the Defense Waste Processing Facility

    SciTech Connect (OSTI)

    Gee, J.T.; Iverson, D.C.; Bickford, D.F.

    1992-12-31T23:59:59.000Z

    The Savannah River Site (SRS) has been operating a nuclear fuel cycle since the 1950s to produce nuclear materials in support of the national defense effort. About 83 million gallons of high-level waste produced since operations began has been consolidated by evaporation into 33 million gallons at the waste tank farm. The Department of Energy authorized the construction of the Defense Waste Processing Facility (DWPF), the function of which is to immobilize the waste as a durable borosilicate glass contained in stainless steel canisters prior to the placement of the canisters in a federal repository. The DWPF is now mechanically complete and is undergoing commissioning and run-in activities. A brief description of the DWPF process is provided.

  13. Materials evaluation programs at the Defense Waste Processing Facility

    SciTech Connect (OSTI)

    Gee, J.T.; Iverson, D.C.; Bickford, D.F.

    1992-01-01T23:59:59.000Z

    The Savannah River Site (SRS) has been operating a nuclear fuel cycle since the 1950s to produce nuclear materials in support of the national defense effort. About 83 million gallons of high-level waste produced since operations began has been consolidated by evaporation into 33 million gallons at the waste tank farm. The Department of Energy authorized the construction of the Defense Waste Processing Facility (DWPF), the function of which is to immobilize the waste as a durable borosilicate glass contained in stainless steel canisters prior to the placement of the canisters in a federal repository. The DWPF is now mechanically complete and is undergoing commissioning and run-in activities. A brief description of the DWPF process is provided.

  14. Proceedings of waste stream minimization and utilization innovative concepts: An experimental technology exchange. Volume 2, Industrial liquid waste processing, industrial gaseous waste processing

    SciTech Connect (OSTI)

    Lee, V.E. [ed.; Watts, R.L.

    1993-04-01T23:59:59.000Z

    This two-volume proceedings summarize the results of fifteen innovations that were funded through the US Department of Energy`s Innovative Concept Program. The fifteen innovations were presented at the sixth Innovative Concepts Fair, held in Austin, Texas, on April 22--23, 1993. The concepts in this year`s fair address innovations that can substantially reduce or use waste streams. Each paper describes the need for the proposed concept, the concept being proposed, and the concept`s economics and market potential, key experimental results, and future development needs. The papers are divided into two volumes: Volume 1 addresses innovations for industrial solid waste processing and municipal waste reduction/recycling, and Volume 2 addresses industrial liquid waste processing and industrial gaseous waste processing. Individual reports are indexed separately.

  15. Process to separate transuranic elements from nuclear waste

    DOE Patents [OSTI]

    Johnson, T.R.; Ackerman, J.P.; Tomczuk, Z.; Fischer, D.F.

    1988-07-12T23:59:59.000Z

    A process for removing transuranic elements from a waste chloride electrolytic salt containing transuranic elements in addition to rare earth and other fission product elements so the salt waste may be disposed of more easily and the valuable transuranic elements may be recovered for reuse. The salt is contacted with a cadmium-uranium alloy which selectively extracts the transuranic elements from the salt. The waste salt is generated during the reprocessing of nuclear fuel associated with the Integral Fast Reactor (IFR). 2 figs.

  16. Process to separate transuranic elements from nuclear waste

    DOE Patents [OSTI]

    Johnson, T.R.; Ackerman, J.P.; Tomczuk, Z.; Fischer, D.F.

    1989-03-21T23:59:59.000Z

    A process is described for removing transuranic elements from a waste chloride electrolytic salt containing transuranic elements in addition to rare earth and other fission product elements so the salt waste may be disposed of more easily and the valuable transuranic elements may be recovered for reuse. The salt is contacted with a cadmium-uranium alloy which selectively extracts the transuranic elements from the salt. The waste salt is generated during the reprocessing of nuclear fuel associated with the Integral Fast Reactor (IFR). 2 figs.

  17. Waste Processing Annual Technology Development Report 2007

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium TransferonUS-IndiaVALUE STUDY4,Department ofDepartment

  18. Waste Receiving and Processing Facility - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulenceUtilizeRural PublicRates >-PlansRequestProjects

  19. Summary - SRS Salt Waste Processing Facility

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium Transferon the Passing of AdmiraltheOil and LessOak Ridge,SRS Co DOE S

  20. Crystallization process to reduce NORM-containing waste

    SciTech Connect (OSTI)

    Hayden, C.G. [Inst. of Gas Technology, Chicago, IL (United States); Kraemer, T.F.

    1995-11-01T23:59:59.000Z

    This paper describes a process of Naturally Occurring Radioactive Material (NORM) waste reduction for scales, sludges, and soils. The process involves dissolution and fractional crystallization steps that concentrate the radioactive material into a small mass of barite. The concentration of radium in the product, barite, can be increased or decreased. The NORM-containing barite product is suitable for slurry injection into sandstone formations.

  1. TECHNOLOGY SUMMARY ADVANCING TANK WASTE RETRIEVAL AND PROCESSING

    SciTech Connect (OSTI)

    SAMS TL; MENDOZA RE

    2010-08-11T23:59:59.000Z

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

  2. TECHNOLOGY SUMMARY ADVANCING TANK WASTE RETREIVAL AND PROCESSING

    SciTech Connect (OSTI)

    SAMS TL

    2010-07-07T23:59:59.000Z

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

  3. Tank waste remediation system high-level waste feed processability assessment report

    SciTech Connect (OSTI)

    Lambert, S.L. [Westinghouse Hanford Co., Richland, WA (United States); Kim, D.S. [Pacific Northwest Lab., Richland, WA (United States)

    1994-12-01T23:59:59.000Z

    This study evaluates the effect of feed composition on the performance of the high-level vitrification process. It is assumed in this study that the tank wastes are retrieved and blended by tank farms, producing 12 different blends from the single-shell tank farms, two blends of double-shell tank waste, and a separately defined all-tank blend. This blending scenario was chosen only for evaluating the impact of composition on the volume of high- level waste glass produced. Special glass compositions were formulated for each waste blend based on glass property models and the properties of similar glasses. These glasses were formulated to meet the applicable viscosity, electrical conductivity, and liquidus temperature constraints for the identified candidate melters. Candidate melters in this study include the low-temperature stirred melter, which operates at 1050{degrees}C; the reference Hanford Waste Vitrification Plant liquid-fed ceramic melter, which operates at 1150{degrees}C; and the high-temperature, joule-heated melter and the cold-crucible melter, which operate over a temperature range of 1150{degrees}C to 1400{degrees}C. In the most conservative case, it is estimated that 61,000 MT of glass will be produced if the Site`s high-level wastes are retrieved by tank farms and processed in the reference joule-heated melter. If an all-tank blend was processed under the same conditions, the reference melter would produce 21,250 MT of glass. If cross-tank blending were used, it is anticipated that $2.0 billion could be saved in repository disposal costs (based on an average disposal cost of $217,000 per canister) by blending the S, SX, B, and T Tank Farm wastes with other wastes prior to vitrification. General blending among all the tank farms is expected to produce great potential benefit.

  4. Savannah River Site - Salt Waste Processing Facility Independent Technical Review

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSARDevelopmentalEfficiency | Department ofEnergySaraKSALT WASTE

  5. Polyethylene encapsulatin of nitrate salt wastes: Waste form stability, process scale-up, and economics

    SciTech Connect (OSTI)

    Kalb, P.D.; Heiser, J.H. III; Colombo, P.

    1991-07-01T23:59:59.000Z

    A polyethylene encapsulation system for treatment of low-level radioactive, hazardous, and mixed wastes has been developed at Brookhaven National Laboratory. Polyethylene has several advantages compared with conventional solidification/stabilization materials such as hydraulic cements. Waste can be encapsulated with greater efficiency and with better waste form performance than is possible with hydraulic cement. The properties of polyethylene relevant to its long-term durability in storage and disposal environments are reviewed. Response to specific potential failure mechanisms including biodegradation, radiation, chemical attack, flammability, environmental stress cracking, and photodegradation are examined. These data are supported by results from extensive waste form performance testing including compressive yield strength, water immersion, thermal cycling, leachability of radioactive and hazardous species, irradiation, biodegradation, and flammability. The bench-scale process has been successfully tested for application with a number of specific problem'' waste streams. Quality assurance and performance testing of the resulting waste form confirmed scale-up feasibility. Use of this system at Rocky Flats Plant can result in over 70% fewer drums processed and shipped for disposal, compared with optimal cement formulations. Based on the current Rocky Flats production of nitrate salt per year, polyethylene encapsulation can yield an estimated annual savings between $1.5 million and $2.7 million, compared with conventional hydraulic cement systems. 72 refs., 23 figs., 16 tabs.

  6. Alternative Fuels Data Center: Seattle's Waste Haulers are Going Green

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative FuelsSanta Fe Metro Fleet Runs on Natural

  7. Savannah River Site - Salt Waste Processing Facility: Briefing on the Salt Waste Processing Facility Independent Technical Review

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSARDevelopmentalEfficiency | Department ofEnergySaraKSALT WASTE

  8. International Best Practices for Pre-Processing and Co-Processing Municipal Solid Waste and Sewage Sludge in the Cement Industry

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2013-01-01T23:59:59.000Z

    Co-processing Municipal Solid Waste and Sewage Sludge in theno date. “Integrated Solid Waste Management. ” Presentationincineration of Municipal Solid Waste in Cement Industry. :

  9. The Waste Isolation Pilot Plant - An International Center of Excellence for ''Training in and Demonstration of Waste Disposal Technologies''

    SciTech Connect (OSTI)

    Matthews, Mark L.; Eriksson, Leif G.

    2003-02-25T23:59:59.000Z

    The Waste Isolation Pilot Plant (WIPP) site, which is managed and operated by the United States (U.S.) Department of Energy (USDOE) Carlsbad Field Office (CBFO) and located in the State of New Mexico, presently hosts an underground research laboratory (URL) and the world's first certified and operating deep geological repository for safe disposition of long-lived radioactive materials (LLRMs). Both the URL and the repository are situated approximately 650 meters (m) below the ground surface in a 250-million-year-old, 600-m-thick, undisturbed, bedded salt formation, and they have been in operation since 1982 and 1999, respectively. Founded on long-standing CBFO collaborations with international and national radioactive waste management organizations, since 2001, WIPP serves as the Center of Excellence in Rock Salt for the International Atomic Energy Agency's (IAEA's) International Network of Centers on ''Training in and Demonstration of Waste Disposal Technologies in Underground Research Facilities'' (the IAEA Network). The primary objective for the IAEA Network is to foster collaborative projects among IAEA Member States that: supplement national efforts and promote public confidence in waste disposal schemes; contribute to the resolution of key technical issues; and encourage the transfer and preservation of knowledge and technologies.

  10. Direction of CRT waste glass processing: Electronics recycling industry communication

    SciTech Connect (OSTI)

    Mueller, Julia R., E-mail: mueller.143@osu.edu [Ohio State University, William G. Lowrie Department of Chemical and Biomolecular Engineering, OH (United States) and University of Queensland, School of Chemical Engineering (Australia) and Ohio State University, Materials Science and Engineering, OH (United States); Boehm, Michael W. [University of Queensland, School of Chemical Engineering (Australia); Drummond, Charles [Ohio State University, Materials Science and Engineering, OH (United States)

    2012-08-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Given a large flow rate of CRT glass {approx}10% of the panel glass stream will be leaded. Black-Right-Pointing-Pointer The supply of CRT waste glass exceeded demand in 2009. Black-Right-Pointing-Pointer Recyclers should use UV-light to detect lead oxide during the separation process. Black-Right-Pointing-Pointer Recycling market analysis techniques and results are given for CRT glass. Black-Right-Pointing-Pointer Academic initiatives and the necessary expansion of novel product markets are discussed. - Abstract: Cathode Ray Tube, CRT, waste glass recycling has plagued glass manufacturers, electronics recyclers and electronics waste policy makers for decades because the total supply of waste glass exceeds demand, and the formulations of CRT glass are ill suited for most reuse options. The solutions are to separate the undesirable components (e.g. lead oxide) in the waste and create demand for new products. Achieving this is no simple feat, however, as there are many obstacles: limited knowledge of waste glass composition; limited automation in the recycling process; transportation of recycled material; and a weak and underdeveloped market. Thus one of the main goals of this paper is to advise electronic glass recyclers on how to best manage a diverse supply of glass waste and successfully market to end users. Further, this paper offers future directions for academic and industry research. To develop the recommendations offered here, a combination of approaches were used: (1) a thorough study of historic trends in CRT glass chemistry; (2) bulk glass collection and analysis of cullet from a large-scale glass recycler; (3) conversations with industry members and a review of potential applications; and (4) evaluation of the economic viability of specific uses for recycled CRT glass. If academia and industry can solve these problems (for example by creating a database of composition organized by manufacturer and glass source) then the reuse of CRT glass can be increased.

  11. Waste Energy Analysis Recovery for a Typical Food Processing Plant

    E-Print Network [OSTI]

    Miller, P. H.; Mann, L., Jr.

    1980-01-01T23:59:59.000Z

    An energy analysis made for the Joan of Arc Food Processing Plant in St. Francisville, Louisiana indicated that a significant quantity of waste heat energy was being released to the atmosphere in the forms of low quality steam and hot flue gases...

  12. Waste Heat Recovery from Refrigeration in a Meat Processing Facility

    E-Print Network [OSTI]

    Murphy, W. T.; Woods, B. E.; Gerdes, J. E.

    1980-01-01T23:59:59.000Z

    A case study is reviewed on a heat recovery system installed in a meat processing facility to preheat water for the plant hot water supply. The system utilizes waste superheat from the facility's 1,350-ton ammonia refrigeration system. The heat...

  13. Study on a regeneration process of LiCl-KCl eutectic based waste salt generated from the pyrochemical process

    SciTech Connect (OSTI)

    Eun, H.C.; Cho, Y.Z.; Choi, J.H.; Kim, J.H.; Lee, T.K.; Park, H.S.; Kim, I.T.; Park, G.I. [Nuclear Fuel Cycle Waste Treatment Research Division, Korea Atomic Energy Research Institute, 989-111 Daedeok-Daero, Yuseong-Gu, Daejeon 3054-353 (Korea, Republic of)

    2013-07-01T23:59:59.000Z

    A regeneration process of LiCl-KCl eutectic waste salt generated from the pyrochemical process of spent nuclear fuel has been studied. This regeneration process is composed of a chemical conversion process and a vacuum distillation process. Through the regeneration process, a high efficiency of renewable salt recovery can be obtained from the waste salt and rare earth nuclides in the waste salt can be separated as oxide or phosphate forms. Thus, the regeneration process can contribute greatly to a reduction of the waste volume and a creation of durable final waste forms. (authors)

  14. Mercury Reduction and Removal from High Level Waste at the Defense Waste Processing Facility - 12511

    SciTech Connect (OSTI)

    Behrouzi, Aria [Savannah River Remediation, LLC (United States); Zamecnik, Jack [Savannah River National Laboratory, Aiken, South Carolina, 29808 (United States)

    2012-07-01T23:59:59.000Z

    The Defense Waste Processing Facility processes legacy nuclear waste generated at the Savannah River Site during production of enriched uranium and plutonium required by the Cold War. The nuclear waste is first treated via a complex sequence of controlled chemical reactions and then vitrified into a borosilicate glass form and poured into stainless steel canisters. Converting the nuclear waste into borosilicate glass is a safe, effective way to reduce the volume of the waste and stabilize the radionuclides. One of the constituents in the nuclear waste is mercury, which is present because it served as a catalyst in the dissolution of uranium-aluminum alloy fuel rods. At high temperatures mercury is corrosive to off-gas equipment, this poses a major challenge to the overall vitrification process in separating mercury from the waste stream prior to feeding the high temperature melter. Mercury is currently removed during the chemical process via formic acid reduction followed by steam stripping, which allows elemental mercury to be evaporated with the water vapor generated during boiling. The vapors are then condensed and sent to a hold tank where mercury coalesces and is recovered in the tank's sump via gravity settling. Next, mercury is transferred from the tank sump to a purification cell where it is washed with water and nitric acid and removed from the facility. Throughout the chemical processing cell, compounds of mercury exist in the sludge, condensate, and off-gas; all of which present unique challenges. Mercury removal from sludge waste being fed to the DWPF melter is required to avoid exhausting it to the environment or any negative impacts to the Melter Off-Gas system. The mercury concentration must be reduced to a level of 0.8 wt% or less before being introduced to the melter. Even though this is being successfully accomplished, the material balances accounting for incoming and collected mercury are not equal. In addition, mercury has not been effectively purified and collected in the Mercury Purification Cell (MPC) since 2008. A significant cleaning campaign aims to bring the MPC back up to facility housekeeping standards. Two significant investigations are being undertaken to restore mercury collection. The SMECT mercury pump has been removed from the tank and will be functionally tested. Also, research is being conducted by the Savannah River National Laboratory to determine the effects of antifoam addition on the behavior of mercury. These path forward items will help us better understand what is occurring in the mercury collection system and ultimately lead to an improved DWPF production rate and mercury recovery rate. (authors)

  15. Process for recovery of palladium from nuclear fuel reprocessing wastes

    DOE Patents [OSTI]

    Campbell, D.O.; Buxton, S.R.

    1980-06-16T23:59:59.000Z

    Palladium is selectively removed from spent nuclear fuel reprocessing waste by adding sugar to a strong nitric acid solution of the waste to partially denitrate the solution and cause formation of an insoluble palladium compound. The process includes the steps of: (a) adjusting the nitric acid content of the starting solution to about 10 M; (b) adding 50% sucrose solution in an amount sufficient to effect the precipitation of the palladium compound; (c) heating the solution at reflux temperature until precipitation is complete; and (d) centrifuging the solution to separate the precipitated palladium compound from the supernatant liquid.

  16. Use of tangential filtration unit for processing liquid waste from nuclear laundries

    SciTech Connect (OSTI)

    Augustin, X.; Buzonniere, A. de [Technicatome, Gif-sur-Yvette (France); Barnier, H. [CEA Cadarache, St. Paul-lez-Durance (France)

    1993-12-31T23:59:59.000Z

    Nuclear facilities produce large quantities of weakly contaminated effluents charged with insoluble and soluble products. In collaboration with CEA, TECHNICATOME has developed an ultrafiltration process for liquid waste from nuclear facilities associated with prior insolubilization of radiochemical activity. This process, seeded ultrafiltration, is based on the use of a decloggable mineral filter media and combines very high separation efficiency with long membrane life. The efficiency of the tangential filtration unit which has been processing effluents from the Cadarache Nuclear Research Center (CEA-France) nuclear facility since mid-1988, has been confirmed on several sites.

  17. Processing of solid mixed waste containing radioactive and hazardous materials

    DOE Patents [OSTI]

    Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

    1998-05-12T23:59:59.000Z

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

  18. Processing of solid mixed waste containing radioactive and hazardous materials

    DOE Patents [OSTI]

    Gotovchikov, Vitaly T. (Moscow, RU); Ivanov, Alexander V. (Moscow, RU); Filippov, Eugene A. (Moscow, RU)

    1998-05-12T23:59:59.000Z

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

  19. Preliminary evaluation of alternative waste form solidification processes. Volume I. Identification of the processes.

    SciTech Connect (OSTI)

    Treat, R.L.; Nesbitt, J.F.; Blair, H.T.; Carter, J.G.; Gorton, P.S.; Partain, W.L.; Timmerman, C.L.

    1980-04-01T23:59:59.000Z

    This document contains preconceptual design data on 11 processes for the solidification and isolation of nuclear high-level liquid wastes (HLLW). The processes are: in-can glass melting (ICGM) process, joule-heated glass melting (JHGM) process, glass-ceramic (GC) process, marbles-in-lead (MIL) matrix process, supercalcine pellets-in-metal (SCPIM) matrix process, pyrolytic-carbon coated pellets-in-metal (PCCPIM) matrix process, supercalcine hot-isostatic-pressing (SCHIP) process, SYNROC hot-isostatic-pressing (SYNROC HIP) process, titanate process, concrete process, and cermet process. For the purposes of this study, it was assumed that each of the solidification processes is capable of handling similar amounts of HLLW generated in a production-sized fuel reprocessing plant. It was also assumed that each of the processes would be enclosed in a shielded canyon or cells within a waste facility located at the fuel reprocessing plant. Finally, it was assumed that all of the processes would be subject to the same set of regulations, codes and standards. Each of the solidification processes converts waste into forms that may be acceptable for geological disposal. Each process begins with the receipt of HLLW from the fuel reprocessing plant. In this study, it was assumed that the original composition of the HLLW would be the same for each process. The process ends when the different waste forms are enclosed in canisters or containers that are acceptable for interim storage. Overviews of each of the 11 processes and the bases used for their identification are presented in the first part of this report. Each process, including its equipment and its requirements, is covered in more detail in Appendices A through K. Pertinent information on the current state of the art and the research and development required for the implementation of each process are also noted in the appendices.

  20. Calcine Waste Storage at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    M. D. Staiger

    1999-06-01T23:59:59.000Z

    A potential option in the program for long-term management of high-level wastes at the Idaho Nuclear Technology and Engineering Center (INTEC), at the Idaho National Engineering and Environmental Laboratory, calls for retrieving calcine waste and converting it to a more stable and less dispersible form. An inventory of calcine produced during the period December 1963 to May 1999 has been prepared based on calciner run, solids storage facilities operating, and miscellaneous operational information, which gives the range of chemical compositions of calcine waste stored at INTEC. Information researched includes calciner startup data, waste solution analyses and volumes calcined, calciner operating schedules, solids storage bin capacities, calcine storage bin distributor systems, and solids storage bin design and temperature monitoring records. Unique information on calcine solids storage facilities design of potential interest to remote retrieval operators is given.

  1. Testing and Disposal Strategy for Secondary Wastes from Vitrification of Sodium-Bearing Waste at Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    Herbst, Alan K.

    2002-01-02T23:59:59.000Z

    The Idaho National Engineering and Environmental Laboratory (INEEL) is considering vitrification to process liquid sodium-bearing waste. Preliminary studies were completed to evaluate the potential secondary wastes comprise acidic and caustic scrubber solutions, HEPA filters, activated carbon, and ion exchange media. Possible treatment methods, waste forms, and disposal sites are evaluated from radiological and mercury contamination estimates.

  2. Testing and Disposal Strategy for Secondary Wastes from Vitrification of Sodium-Bearing Waste at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    Herbst, Alan Keith

    2002-01-01T23:59:59.000Z

    The Idaho National Engineering and Environmental Laboratory (INEEL) is considering vitrification to process liquid sodium-bearing waste. Preliminary studies were completed to evaluate the potential secondary wastes comprise acidic and caustic scrubber solutions, HEPA filters, activated carbon, and ion exchange media. Possible treatment methods, waste forms, and disposal sites are evaluated from radiological and mercury contamination estimates.

  3. The Hybrid Treatment Process for mixed radioactive and hazardous waste treatment

    SciTech Connect (OSTI)

    Ross, W.A.; Kindle, C.H.

    1992-06-01T23:59:59.000Z

    This paper describes a new process for treating mixed hazardous and radioactive waste, commonly called mixed waste. The process is called the Hybrid Treatment Process (HTP), so named because it is built on the 20 years of experience with vitrification of wastes in melters, and the 12 years of experience with treatment of wastes by the in situ vitrification (ISV) process. It also uses techniques from several additional technologies. Mixed wastes are being generated by both the US Department of Energy (DOE) and by commercial sources. The wastes are those that contain both a hazardous waste regulated under the US Environmental Protection Agency's (EPA) Resource, Conservation, and Recovery Act (RCRA) regulations and a radioactive waste with source, special nuclear, or byproduct materials. The dual regulation of the wastes increases the complexity of the treatment, handling, and storage of the waste. The DOE is the largest holder and generator of mixed waste. Its mixed wastes are classified as either high-level, transuranic (TRU), or low-level waste (LLW). High-level mixed wastes will be treated in vitrification plants. Transuranic wastes may be disposed of without treatment by obtaining a no-migration variance from the EPA. Lowlevel wastes, however, will require treatment, but treatment systems with sufficient capacity are not yet available to DOE. Various facilities are being proposed for the treatment of low-level waste. The concept described in this paper represents one option for establishing that treatment capacity.

  4. The Hybrid Treatment Process for mixed radioactive and hazardous waste treatment

    SciTech Connect (OSTI)

    Ross, W.A.; Kindle, C.H.

    1992-06-01T23:59:59.000Z

    This paper describes a new process for treating mixed hazardous and radioactive waste, commonly called mixed waste. The process is called the Hybrid Treatment Process (HTP), so named because it is built on the 20 years of experience with vitrification of wastes in melters, and the 12 years of experience with treatment of wastes by the in situ vitrification (ISV) process. It also uses techniques from several additional technologies. Mixed wastes are being generated by both the US Department of Energy (DOE) and by commercial sources. The wastes are those that contain both a hazardous waste regulated under the US Environmental Protection Agency`s (EPA) Resource, Conservation, and Recovery Act (RCRA) regulations and a radioactive waste with source, special nuclear, or byproduct materials. The dual regulation of the wastes increases the complexity of the treatment, handling, and storage of the waste. The DOE is the largest holder and generator of mixed waste. Its mixed wastes are classified as either high-level, transuranic (TRU), or low-level waste (LLW). High-level mixed wastes will be treated in vitrification plants. Transuranic wastes may be disposed of without treatment by obtaining a no-migration variance from the EPA. Lowlevel wastes, however, will require treatment, but treatment systems with sufficient capacity are not yet available to DOE. Various facilities are being proposed for the treatment of low-level waste. The concept described in this paper represents one option for establishing that treatment capacity.

  5. Process modeling of hydrogen production from municipal solid waste

    SciTech Connect (OSTI)

    Thorsness, C.B.

    1995-01-01T23:59:59.000Z

    The ASPEN PLUS commercial simulation software has been used to develop a process model for a conceptual process to convert municipal solid waste (MSW) to hydrogen. The process consists of hydrothermal treatment of the MSW in water to create a slurry suitable as feedstock for an oxygen blown Texaco gasifier. A method of reducing the complicated MSW feed material to a manageable set of components is outlined along with a framework for modeling the stoichiometric changes associated with the hydrothermal treatment process. Model results indicate that 0.672 kmol/s of hydrogen can be produced from the processing of 30 kg/s (2600 tonne/day) of raw MSW. A number of variations on the basic processing parameters are explored and indicate that there is a clear incentive to reduce the inert fraction in the processed slurry feed and that cofeeding a low value heavy oil may be economically attractive.

  6. RCRA Waste Minimization and Recycling Initiatives at the Health Center (Rev. 12/09)

    E-Print Network [OSTI]

    Kim, Duck O.

    RCRA Waste Minimization and Recycling Initiatives at the Health Center 1/11/08 (Rev. 12/09) PURPOSE, with environmentally-sound recycling as a second and higher priority over treatment and disposal. Section 3002(b feasible; pollution that cannot be prevented should be recycled in an environmentally safe manner, whenever

  7. Integrated DWPF Melter System (IDMS) campaign report: Hanford Waste Vitrification Plan (HWVP) process demonstration

    SciTech Connect (OSTI)

    Hutson, N.D.

    1992-08-10T23:59:59.000Z

    Vitrification facilities are being developed worldwide to convert high-level nuclear waste to a durable glass form for permanent disposal. Facilities in the United States include the Department of Energy`s Defense Waste Processing Facility (DWPF) at the Savannah River Site, the Hanford Waste Vitrification Plant (HWVP) at the Hanford Site and the West Valley Demonstration Project (WVDP) at West Valley, NY. At each of these sites, highly radioactive defense waste will be vitrified to a stable borosilicate glass. The DWPF and WVDP are near physical completion while the HWVP is in the design phase. The Integrated DWPF Melter System (IDMS) is a vitrification test facility at the Savannah River Technology Center (SRTC). It was designed and constructed to provide an engineering-scale representation of the DWPF melter and its associated feed preparation and off-gas treatment systems. Because of the similarities of the DWPF and HWVP processes, the IDMS facility has also been used to characterize the processing behavior of a reference NCAW simulant. The demonstration was undertaken specifically to determine material balances, to characterize the evolution of offgas products (especially hydrogen), to determine the effects of noble metals, and to obtain general HWVP design data. The campaign was conducted from November, 1991 to February, 1992.

  8. Defense Waste Processing Facility (DWPF), Modular CSSX Unit (CSSX), and Waste Transfer Line System of Salt Processing Program (U)

    SciTech Connect (OSTI)

    CHANG, ROBERT

    2006-02-02T23:59:59.000Z

    All of the waste streams from ARP, MCU, and SWPF processes will be sent to DWPF for vitrification. The impact these new waste streams will have on DWPF's ability to meet its canister production goal and its ability to support the Salt Processing Program (ARP, MCU, and SWPF) throughput needed to be evaluated. DWPF Engineering and Operations requested OBU Systems Engineering to evaluate DWPF operations and determine how the process could be optimized. The ultimate goal will be to evaluate all of the Liquid Radioactive Waste (LRW) System by developing process modules to cover all facilities/projects which are relevant to the LRW Program and to link the modules together to: (1) study the interfaces issues, (2) identify bottlenecks, and (3) determine the most cost effective way to eliminate them. The results from the evaluation can be used to assist DWPF in identifying improvement opportunities, to assist CBU in LRW strategic planning/tank space management, and to determine the project completion date for the Salt Processing Program.

  9. THE USE OF POLYMERS IN RADIOACTIVE WASTE PROCESSING SYSTEMS

    SciTech Connect (OSTI)

    Skidmore, E.; Fondeur, F.

    2013-04-15T23:59:59.000Z

    The Savannah River Site (SRS), one of the largest U.S. Department of Energy (DOE) sites, has operated since the early 1950s. The early mission of the site was to produce critical nuclear materials for national defense. Many facilities have been constructed at the SRS over the years to process, stabilize and/or store radioactive waste and related materials. The primary materials of construction used in such facilities are inorganic (metals, concrete), but polymeric materials are inevitably used in various applications. The effects of aging, radiation, chemicals, heat and other environmental variables must therefore be understood to maximize service life of polymeric components. In particular, the potential for dose rate effects and synergistic effects on polymeric materials in multivariable environments can complicate compatibility reviews and life predictions. The selection and performance of polymeric materials in radioactive waste processing systems at the SRS are discussed.

  10. Process Improvement Center of Excellence Service Proposal Recommendation

    E-Print Network [OSTI]

    Process Improvement Center of Excellence Service Proposal Recommendation Operational Oversight.docx Template Rev. Date: 3/17/2011 File name: 4 0 Service Proposal Recommendation Process Reengineering regarding a possible addition to a service. This process is being initiated as the proposal likely

  11. Multi-discipline Waste Acceptance Process at the Nevada National Security Site - 13573

    SciTech Connect (OSTI)

    Carilli, Jhon T. [US Department Of Energy, Nevada Site Office, P. O. Box 98518, Las Vegas, Nevada 89193-8518 (United States)] [US Department Of Energy, Nevada Site Office, P. O. Box 98518, Las Vegas, Nevada 89193-8518 (United States); Krenzien, Susan K. [Navarro-Intera, LLC, P. O. Box 98952, Las Vegas, Nevada 89193-8952 (United States)] [Navarro-Intera, LLC, P. O. Box 98952, Las Vegas, Nevada 89193-8952 (United States)

    2013-07-01T23:59:59.000Z

    The Nevada National Security Site low-level radioactive waste disposal facility acceptance process requires multiple disciplines to ensure the protection of workers, the public, and the environment. These disciplines, which include waste acceptance, nuclear criticality, safety, permitting, operations, and performance assessment, combine into the overall waste acceptance process to assess low-level radioactive waste streams for disposal at the Area 5 Radioactive Waste Management Site. Four waste streams recently highlighted the integration of these disciplines: the Oak Ridge Radioisotope Thermoelectric Generators and Consolidated Edison Uranium Solidification Project material, West Valley Melter, and classified waste. (authors)

  12. Crystalline Ceramic Waste Forms: Comparison Of Reference Process For Ceramic Waste Form Fabrication

    SciTech Connect (OSTI)

    Brinkman, K. S. [Savannah River National Laboratory; Marra, J. C. [Savannah River National Laboratory; Amoroso, J. [Savannah River National Laboratory; Tang, M. [Los Alamos National Laboratory

    2013-08-22T23:59:59.000Z

    The research conducted in this work package is aimed at taking advantage of the long term thermodynamic stability of crystalline ceramics to create more durable waste forms (as compared to high level waste glass) in order to reduce the reliance on engineered and natural barrier systems. Durable ceramic waste forms that incorporate a wide range of radionuclides have the potential to broaden the available disposal options and to lower the storage and disposal costs associated with advanced fuel cycles. Assemblages of several titanate phases have been successfully demonstrated to incorporate radioactive waste elements, and the multiphase nature of these materials allows them to accommodate variation in the waste composition. Recent work has shown that they can be produced from a melting and crystallization process. The objective of this report is to explore the phase formation and microstructural differences between lab scale melt processing in varying gas environments with alternative densification processes such as Hot Pressing (HP) and Spark Plasma Sintering (SPS). The waste stream used as the basis for the development and testing is a simulant derived from a combination of the projected Cs/Sr separated stream, the Trivalent Actinide - Lanthanide Separation by Phosphorous reagent Extraction from Aqueous Komplexes (TALSPEAK) waste stream consisting of lanthanide fission products, the transition metal fission product waste stream resulting from the transuranic extraction (TRUEX) process, and a high molybdenum concentration with relatively low noble metal concentrations. Melt processing as well as solid state sintering routes SPS and HP demonstrated the formation of the targeted phases; however differences in microstructure and elemental partitioning were observed. In SPS and HP samples, hollandite, pervoskite/pyrochlore, zirconolite, metallic alloy and TiO{sub 2} and Al{sub 2}O{sub 3} were observed distributed in a network of fine grains with small residual pores. The titanate phases that incorporate M{sup +3} rare earth elements were observed to be distinct phases (ex. Nd{sub 2}Ti{sub 2}O{sub 7}) with less degree of substitution as compared to the more homogeneous melt processed samples where a high degree of substitution and variation of composition within grains was observed. Liquid phase sintering was enhanced in reducing gas environments and resulted in large (10-200 microns) irregular shaped grains along with large voids associated with the melt process; SPS and HP samples exhibited finer grain size with smaller voids. Metallic alloys were observed in the bulk of the sample for SPS and HP samples, but were found at the bottom of the crucible in melt processed trials. These results indicate that for a first melter trial, the targeted phases can be formed in air by utilizing Ti/TiO{sub 2} additives which aid phase formation and improve the electrical conductivity. Ultimately, a melter run in reducing gas environments would be beneficial to study differences in phase formation and elemental partitioning.

  13. Evaluation of prospective hazardous waste treatment technologies for use in processing low-level mixed wastes at Rocky Flats

    SciTech Connect (OSTI)

    McGlochlin, S.C.; Harder, R.V.; Jensen, R.T.; Pettis, S.A.; Roggenthen, D.K.

    1990-09-18T23:59:59.000Z

    Several technologies for destroying or decontaminating hazardous wastes were evaluated (during early 1988) as potential processes for treating low-level mixed wastes destined for destruction in the Fluidized Bed Incinerator. The processes that showed promise were retained for further consideration and placed into one (or more) of three categories based on projected availability: short, intermediate, and long-term. Three potential short-term options were identified for managing low-level mixed wastes generated or stored at the Rocky Flats Plant (operated by Rockwell International in 1988). These options are: (1) Continue storing at Rocky Flats, (2) Ship to Nevada Test Site for landfill disposal, or (3) Ship to the Idaho National Engineering Laboratory for incineration in the Waste Experimental Reduction Facility. The third option is preferable because the wastes will be destroyed. Idaho National Engineering Laboratory has received interim status for processing solid and liquid low-level mixed wastes. However, low-level mixed wastes will continue to be stored at Rocky Flats until the Department of Energy approval is received to ship to the Nevada Test Site or Idaho National Engineering Laboratory. Potential intermediate and long-term processes were identified; however, these processes should be combined into complete waste treatment systems'' that may serve as alternatives to the Fluidized Bed Incinerator. Waste treatment systems will be the subject of later work. 59 refs., 2 figs.

  14. Development of Polymeric Waste Forms for the Encapsulation of Toxic Wastes Using an Emulsion-Encapsulation Based Process

    SciTech Connect (OSTI)

    Evans, R.; Quach, A.; Birnie, D. P.; Saez, A. E.; Ela, W. P.; Zeliniski, B. J. J.; Xia, G.; Smith, H.

    2003-01-01T23:59:59.000Z

    Developed technologies in vitrification, cement, and polymeric materials manufactured using flammable organic solvents have been used to encapsulate solid wastes, including low-level radioactive materials, but are impractical for high salt-content waste streams (Maio, 1998). In this work, we investigate an emulsification process for producing an aqueous-based polymeric waste form as a preliminary step towards fabricating hybrid organic/inorganic polyceram matrices. The material developed incorporates epoxy resin and polystyrene-butadiene (PSB) latex to produce a waste form that is non-flammable, light weight, of relatively low cost, and that can be loaded to a relatively high weight content of waste materials. Sodium nitrate was used as a model for the salt waste. Small-scale samples were manufactured and analyzed using leach tests designed to measure the diffusion coefficient and leachability index for the fastest diffusing species in the waste form, the salt ions. The microstructure and composition of the samples were probed using SEM/EDS techniques. The results show that some portion of the salt migrates towards the exterior surfaces of the waste forms during the curing process. A portion of the salt in the interior of the sample is contained in polymer corpuscles or sacs. These sacs are embedded in a polymer matrix phase that contains fine, well-dispersed salt crystals. The diffusion behavior observed in sections of the waste forms indicates that samples prepared using this emulsion process meet or exceed the leachability criteria suggested for low level radioactivity waste forms.

  15. Reevaluation of Vitrified High-Level Waste Form Criteria for Potential Cost Savings at the Defense Waste Processing Facility - 13598

    SciTech Connect (OSTI)

    Ray, J.W. [Savannah River Remediation (United States)] [Savannah River Remediation (United States); Marra, S.L.; Herman, C.C. [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States)] [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States)

    2013-07-01T23:59:59.000Z

    At the Savannah River Site (SRS) the Defense Waste Processing Facility (DWPF) has been immobilizing SRS's radioactive high level waste (HLW) sludge into a durable borosilicate glass since 1996. Currently the DWPF has poured over 3,500 canisters, all of which are compliant with the U. S. Department of Energy's (DOE) Waste Acceptance Product Specifications for Vitrified High-Level Waste Forms (WAPS) and therefore ready to be shipped to a federal geologic repository for permanent disposal. Due to DOE petitioning to withdraw the Yucca Mountain License Application (LA) from the Nuclear Regulatory Commission (NRC) in 2010 and thus no clear disposal path for SRS canistered waste forms, there are opportunities for cost savings with future canister production at DWPF and other DOE producer sites by reevaluating high-level waste form requirements and compliance strategies and reducing/eliminating those that will not negatively impact the quality of the canistered waste form. (authors)

  16. Technology Evaluations Related to Mercury, Technetium, and Chloride in Treatment of Wastes at the Idaho Nuclear Technology and Engineering Center of the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    C. M. Barnes; D. D. Taylor; S. C. Ashworth; J. B. Bosley; D. R. Haefner

    1999-10-01T23:59:59.000Z

    The Idaho High-Level Waste and Facility Disposition Environmental Impact Statement defines alternative for treating and disposing of wastes stored at the Idaho Nuclear Technology and Engineering Center. Development is required for several technologies under consideration for treatment of these wastes. This report contains evaluations of whether specific treatment is needed and if so, by what methods, to remove mercury, technetium, and chlorides in proposed Environmental Impact Statement treatment processes. The evaluations of mercury include a review of regulatory requirements that would apply to mercury wastes in separations processes, an evaluation of the sensitivity of mercury flowrates and concentrations to changes in separations processing schemes and conditions, test results from laboratory-scale experiments of precipitation of mercury by sulfide precipitation agents from the TRUEX carbonate wash effluent, and evaluations of methods to remove mercury from New Waste Calcining Facility liquid and gaseous streams. The evaluation of technetium relates to the need for technetium removal and alternative methods to remove technetium from streams in separations processes. The need for removal of chlorides from New Waste Calcining Facility scrub solution is also evaluated.

  17. Overview of Fiscal Year 2002 Research and Development for Savannah River Site's Salt Waste Processing Facility

    SciTech Connect (OSTI)

    H. D. Harmon, R. Leugemors, PNNL; S. Fink, M. Thompson, D. Walker, WSRC; P. Suggs, W. D. Clark, Jr

    2003-02-26T23:59:59.000Z

    The Department of Energy's (DOE) Savannah River Site (SRS) high-level waste program is responsible for storage, treatment, and immobilization of high-level waste for disposal. The Salt Processing Program (SPP) is the salt (soluble) waste treatment portion of the SRS high-level waste effort. The overall SPP encompasses the selection, design, construction and operation of treatment technologies to prepare the salt waste feed material for the site's grout facility (Saltstone) and vitrification facility (Defense Waste Processing Facility). Major constituents that must be removed from the salt waste and sent as feed to Defense Waste Processing Facility include actinides, strontium, cesium, and entrained sludge. In fiscal year 2002 (FY02), research and development (R&D) on the actinide and strontium removal and Caustic-Side Solvent Extraction (CSSX) processes transitioned from technology development for baseline process selection to providing input for conceptual design of the Salt Waste Processing Facility. The SPP R&D focused on advancing the technical maturity, risk reduction, engineering development, and design support for DOE's engineering, procurement, and construction (EPC) contractors for the Salt Waste Processing Facility. Thus, R&D in FY02 addressed the areas of actual waste performance, process chemistry, engineering tests of equipment, and chemical and physical properties relevant to safety. All of the testing, studies, and reports were summarized and provided to the DOE to support the Salt Waste Processing Facility, which began conceptual design in September 2002.

  18. Audit Report on "Waste Processing and Recovery Act Acceleration Efforts for Contact-Handled Transuranic Waste at the Hanford Site"

    SciTech Connect (OSTI)

    None

    2010-05-01T23:59:59.000Z

    The Department of Energy's Office of Environmental Management's (EM), Richland Operations Office (Richland), is responsible for disposing of the Hanford Site's (Hanford) transuranic (TRU) waste, including nearly 12,000 cubic meters of radioactive contact-handled TRU wastes. Prior to disposing of this waste at the Department's Waste Isolation Pilot Plant (WIPP), Richland must certify that it meets WIPP's waste acceptance criteria. To be certified, the waste must be characterized, screened for prohibited items, treated (if necessary) and placed into a satisfactory disposal container. In a February 2008 amendment to an existing Record of Decision (Decision), the Department announced its plan to ship up to 8,764 cubic meters of contact-handled TRU waste from Hanford and other waste generator sites to the Advanced Mixed Waste Treatment Project (AMWTP) at Idaho's National Laboratory (INL) for processing and certification prior to disposal at WIPP. The Department decided to maximize the use of the AMWTP's automated waste processing capabilities to compact and, thereby, reduce the volume of contact-handled TRU waste. Compaction reduces the number of shipments and permits WIPP to more efficiently use its limited TRU waste disposal capacity. The Decision noted that the use of AMWTP would avoid the time and expense of establishing a processing capability at other sites. In May 2009, EM allocated $229 million of American Recovery and Reinvestment Act of 2009 (Recovery Act) funds to support Hanford's Solid Waste Program, including Hanford's contact-handled TRU waste. Besides providing jobs, these funds were intended to accelerate cleanup in the short term. We initiated this audit to determine whether the Department was effectively using Recovery Act funds to accelerate processing of Hanford's contact-handled TRU waste. Relying on the availability of Recovery Act funds, the Department changed course and approved an alternative plan that could increase costs by about $25 million by processing Hanford TRU-waste on-site rather than at AMWTP. Further, under the newly adopted alternative approach, the Department would fail to achieve the previously anticipated reductions in volume associated with the use of existing AMWTP waste compaction capabilities.

  19. Towards model-based control of a steam Rankine process for engine waste heat recovery

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Towards model-based control of a steam Rankine process for engine waste heat recovery Johan Peralez a critical role in enabling good per- formance of Rankine processes for waste heat recovery from prime movers. INTRODUCTION In the last few years, engine waste heat recovery (WHR) systems based on the Rankine thermodynamic

  20. Addendum to the Calcined Waste Storage at the Idaho Nuclear Technology Center

    SciTech Connect (OSTI)

    M. D. Staiger; Michael Swenson; T. R. Thomas

    2004-05-01T23:59:59.000Z

    This report is an addendum to the report Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center, INEEL/EXT-98-00455 Rev. 1, June 2003. The original report provided a summary description of the Calcined Solids Storage Facilities (CSSFs). It also contained dozens of pages of detailed data tables documenting the volume and composition (chemical content and radionuclide activity) of the calcine stored in the CSSFs and the liquid waste from which the calcine was derived. This addendum report compiles the calcine composition data from the original report. It presents the compiled data in a graphical format with units (weight percent, curies per cubic meter, and nanocuries per gram) that are commonly used in regulatory and waste acceptance criteria documents. The compiled data are easier to use and understand when comparing the composition of the calcine with potential regulatory or waste acceptance criteria. This addendum report also provides detailed explanations for the large variability in the calcine composition among the CSSFs. The calcine composition varies as a result of reprocessing different types of fuel that had different cladding materials. Different chemicals were used to dissolve the various types of fuel, extract the uranium, and calcine the resulting waste. This resulted in calcine with variable compositions. This addendum report also identifies a few trace chemicals and radionuclides for which the accuracy of the amounts estimated to be in the calcine could be improved by making adjustments to the assumptions and methods used in making the estimates.

  1. Modeling Coupled Processes in Clay Formations for Radioactive Waste Disposal

    E-Print Network [OSTI]

    Liu, Hui-Hai

    2010-01-01T23:59:59.000Z

    sorption including waste heat, hyperalkaline solutions frome.g. , heat production from the decay of the waste, re-waste packages along the tunnels, to achieve a distributed heat

  2. Tank 42 sludge-only process development for the Defense Waste Processing Facility (DWPF)

    SciTech Connect (OSTI)

    Lambert, D.P.

    2000-03-22T23:59:59.000Z

    Defense Waste Processing Facility (DWPF) requested the development of a sludge-only process for Tank 42 sludge since at the current processing rate, the Tank 51 sludge has been projected to be depleted as early as August 1998. Testing was completed using a non-radioactive Tank 42 sludge simulant. The testing was completed under a range of operating conditions, including worst case conditions, to develop the processing conditions for radioactive Tank 42 sludge. The existing Tank 51 sludge-only process is adequate with the exception that 10 percent additional acid is recommended during sludge receipt and adjustment tank (SRAT) processing to ensure adequate destruction of nitrite during the SRAT cycle.

  3. Process for treating waste water having low concentrations of metallic contaminants

    DOE Patents [OSTI]

    Looney, Brian B; Millings, Margaret R; Nichols, Ralph L; Payne, William L

    2014-12-16T23:59:59.000Z

    A process for treating waste water having a low level of metallic contaminants by reducing the toxicity level of metallic contaminants to an acceptable level and subsequently discharging the treated waste water into the environment without removing the treated contaminants.

  4. A plan for teaching waste management education at an outdoor education center

    E-Print Network [OSTI]

    Armstrong, Joe Don

    1994-01-01T23:59:59.000Z

    management has become a top environmental concern. Effective environmental education can help reduce the demands currently placed on our landfills. Outdoor education centers are playing a key role in environmental education. This paper proposes a plan... REFERENCES APPENDICES 93 100 103 105 PLASTIC CONTAINER CODE SYSTEM DATA SHEET 108 TABLE OF CONTENTS (continued) Vi APPENDICES CLASS-Y-TRASH DATA SHEET Page 109 LANDFILL DIAGRAM 110 IT'S HAPPENING AT THE DUMP DATA SHEET 111 WASTE ESTIMATE DATA...

  5. Waste processing cost recovery at Los Alamos National Laboratory--analysis and recommendations

    SciTech Connect (OSTI)

    Booth, Steven Richard [Los Alamos National Laboratory

    2008-01-01T23:59:59.000Z

    Los Alamos National Laboratory is implementing full cost recovery for waste processing in fiscal year 2009 (FY2009), after a transition year in FY2008. Waste processing cost recovery has been implemented in various forms across the nuclear weapons complex and in corporate America. The fundamental reasoning of sending accurate price signals to waste generators is economically sound, and leads to waste minimization and reduced waste expense over time. However, Los Alamos faces significant implementation challenges because of its status as a government-owned, contractor-operated national scientific institution with a diverse suite of experimental and environmental cleanup activities, and the fact that this represents a fundamental change in how waste processing is viewed by the institution. This paper describes the issues involved during the transition to cost recovery and the ultimate selection of the business model. Of the six alternative cost recovery models evaluated, the business model chosen to be implemented in FY2009 is Recharge Plus Generators Pay Distributed Direct. Under this model, all generators who produce waste must pay a distributed direct share associated with their specific waste type to use a waste processing capability. This cost share is calculated using the distributed direct method on the fixed cost only, i.e., the fixed cost share is based on each program's forecast proportion of the total Los Alamos volume forecast of each waste type. (Fixed activities are those required to establish the waste processing capability, i.e., to make the process ready, permitted, certified, and prepared to handle the first unit ofwaste. Therefore, the fixed cost ends at the point just before waste begins 'to be processed. The activities to actually process the waste are considered variable.) The volume of waste actually sent for processing is charged a unit cost based solely on the variable cost of disposing of that waste. The total cost recovered each year is the total distributed direct shares from generators plus the unit cost times actual volumes processed.

  6. Method for co-processing waste rubber and carbonaceous material

    DOE Patents [OSTI]

    Farcasiu, Malvina (Pittsburgh, PA); Smith, Charlene M. (Pittsburgh, PA)

    1991-01-01T23:59:59.000Z

    In a process for the co-processing of waste rubber and carbonaceous material to form a useful liquid product, the rubber and the carbonaceous material are combined and heated to the depolymerization temperature of the rubber in the presence of a source of hydrogen. The depolymerized rubber acts as a liquefying solvent for the carbonaceous material while a beneficial catalytic effect is obtained from the carbon black released on depolymerization the reinforced rubber. The reaction is carried out at liquefaction conditions of 380.degree.-600.degree. C. and 70-280 atmospheres hydrogen pressure. The resulting liquid is separated from residual solids and further processed such as by distillation or solvent extraction to provide a carbonaceous liquid useful for fuels and other purposes.

  7. Method for co-processing waste rubber and carbonaceous material

    SciTech Connect (OSTI)

    Farcasiu, M.; Smith, C.M.

    1990-10-09T23:59:59.000Z

    In a process for the co-processing of waste rubber and carbonaceous material to form a useful liquid product, the rubber and the carbonaceous material are combined and heated to the depolymerization temperature of the rubber in the presence of a source of hydrogen. The deploymerized rubber acts as a liquefying solvent for the carbonaceous material while a beneficial catalytic effect is obtained from the carbon black released on deploymerization the reinforced rubber. The reaction is carried out at liquefaction conditions of 380--600{degrees}C and 70--280 atmospheres hydrogen pressure. The resulting liquid is separated from residual solids and further processed such as by distillation or solvent extraction to provide a carbonaceous liquid useful for fuels and other purposes.

  8. Tank Waste Remediation System tank waste pretreatment and vitrification process development testing requirements assessment

    SciTech Connect (OSTI)

    Howden, G.F.

    1994-10-24T23:59:59.000Z

    A multi-faceted study was initiated in November 1993 to provide assurance that needed testing capabilities, facilities, and support infrastructure (sampling systems, casks, transportation systems, permits, etc.) would be available when needed for process and equipment development to support pretreatment and vitrification facility design and construction schedules. This first major report provides a snapshot of the known testing needs for pretreatment, low-level waste (LLW) and high-level waste (HLW) vitrification, and documents the results of a series of preliminary studies and workshops to define the issues needing resolution by cold or hot testing. Identified in this report are more than 140 Hanford Site tank waste pretreatment and LLW/HLW vitrification technology issues that can only be resolved by testing. The report also broadly characterizes the level of testing needed to resolve each issue. A second report will provide a strategy(ies) for ensuring timely test capability. Later reports will assess the capabilities of existing facilities to support needed testing and will recommend siting of the tests together with needed facility and infrastructure upgrades or additions.

  9. Feed Composition for Sodium-Bearing Waste Treatment Process, Rev. 3

    SciTech Connect (OSTI)

    Barnes, Charles Marshall

    2003-09-01T23:59:59.000Z

    Treatment of sodium-bearing waste (SBW) at the Idaho Nuclear Technology and Engineering Center (INTEC) within the Idaho National Engineering and Environmental Laboratory is mandated by a Settlement Agreement between the Department of Energy and the State of Idaho. One of the requirements of the Settlement Agreement is to complete treatment of SBW by December 31, 2012. To support both design and development studies for the SBW treatment process, detailed feed compositions are needed. This report contains the expected compositions of these feed streams and the sources and methods used in obtaining these compositions.

  10. Process Knowledge Summary Report for Materials and Fuels Complex Contact-Handled Transuranic Debris Waste

    SciTech Connect (OSTI)

    R. P. Grant; P. J. Crane; S. Butler; M. A. Henry

    2010-02-01T23:59:59.000Z

    This Process Knowledge Summary Report summarizes the information collected to satisfy the transportation and waste acceptance requirements for the transfer of transuranic (TRU) waste between the Materials and Fuels Complex (MFC) and the Advanced Mixed Waste Treatment Project (AMWTP). The information collected includes documentation that addresses the requirements for AMWTP and the applicable portion of their Resource Conservation and Recovery Act permits for receipt and treatment of TRU debris waste in AMWTP. This report has been prepared for contact-handled TRU debris waste generated by the Idaho National Laboratory at MFC. The TRU debris waste will be shipped to AMWTP for purposes of supercompaction. This Process Knowledge Summary Report includes information regarding, but not limited to, the generation process, the physical form, radiological characteristics, and chemical contaminants of the TRU debris waste, prohibited items, and packaging configuration. This report, along with the referenced supporting documents, will create a defensible and auditable record for waste originating from MFC.

  11. Process Knowledge Characterization of Radioactive Waste at the Classified Waste Landfill Remediation Project Sandia National Laboratories, Albuquerque, New Mexico

    SciTech Connect (OSTI)

    DOTSON,PATRICK WELLS; GALLOWAY,ROBERT B.; JOHNSON JR,CARL EDWARD

    1999-11-03T23:59:59.000Z

    This paper discusses the development and application of process knowledge (PK) to the characterization of radioactive wastes generated during the excavation of buried materials at the Sandia National Laboratories/New Mexico (SNL/NM) Classified Waste Landfill (CWLF). The CWLF, located in SNL/NM Technical Area II, is a 1.5-acre site that received nuclear weapon components and related materials from about 1950 through 1987. These materials were used in the development and testing of nuclear weapon designs. The CWLF is being remediated by the SNL/NM Environmental Restoration (ER) Project pursuant to regulations of the New Mexico Environment Department. A goal of the CWLF project is to maximize the amount of excavated materials that can be demilitarized and recycled. However, some of these materials are radioactively contaminated and, if they cannot be decontaminated, are destined to require disposal as radioactive waste. Five major radioactive waste streams have been designated on the CWLF project, including: unclassified soft radioactive waste--consists of soft, compatible trash such as paper, plastic, and plywood; unclassified solid radioactive waste--includes scrap metal, other unclassified hardware items, and soil; unclassified mixed waste--contains the same materials as unclassified soft or solid radioactive waste, but also contains one or more Resource Conservation and Recovery Act (RCRA) constituents; classified radioactive waste--consists of classified artifacts, usually weapons components, that contain only radioactive contaminants; and classified mixed waste--comprises radioactive classified material that also contains RCRA constituents. These waste streams contain a variety of radionuclides that exist both as surface contamination and as sealed sources. To characterize these wastes, the CWLF project's waste management team is relying on data obtained from direct measurement of radionuclide activity content to the maximum extent possible and, in cases where direct measurement is not technically feasible, from accumulated PK of the excavated materials.

  12. OVERVIEW OF TESTING TO SUPPORT PROCESSING OF SLUDGE BATCH 4 IN THE DEFENSE WASTE PROCESSING FACILITY

    SciTech Connect (OSTI)

    Herman, C

    2006-09-20T23:59:59.000Z

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site began processing of its third sludge batch in March 2004. To avoid a feed outage in the facility, the next sludge batch will have to be prepared and ready for transfer to the DWPF by the end of 2006. The next sludge batch, Sludge Batch 4 (SB4), will consist of a significant volume of HM-type sludge. HM-type sludge is very high in aluminum compared to the mostly Purex-type sludges that have been processed to date. The Savannah River National Laboratory (SRNL) has been working with Liquid Waste Operations to define the sludge preparation plans and to perform testing to support qualification and processing of SB4. Significant challenges have arisen during SB4 preparation and testing to include poor sludge settling behavior and lower than desired projected melt rates. An overview of the testing activities is provided.

  13. Electromagnetic mixed-waste processing system for asbestos decontamination

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    The first phase of a program to develop and demonstrate a cost-effective, integrated process for remediation of asbestos-containing material that is contaminated with organics, heavy metals, and radioactive compounds was successfully completed. Laboratory scale tests were performed to demonstrate initial process viability for asbestos conversion, organics removal, and radionuclide and heavy metal removal. All success criteria for the laboratory tests were met. (1) Ohio DSI demonstrated greater than 99% asbestos conversion to amorphous solids using their commercial process. (2) KAI demonstrated 90% removal of organics from the asbestos suspension. (3) Westinghouse STC achieved the required metals removal criteria on a laboratory scale (e.g., 92% removal of uranium from solution, resin loadings of 0.6 equivalents per liter, and greater than 50% regeneration of resin in a batch test.) Using the information gained in the laboratory tests, the process was reconfigured to provide the basis for the mixed waste remediation system. An integrated process is conceptually developed, and a Phase 2 program plan is proposed to provide the bench-scale development needed in order to refine the design basis for a pilot processing system.

  14. Tank waste remediation system process engineering instruction manual

    SciTech Connect (OSTI)

    ADAMS, M.R.

    1998-11-04T23:59:59.000Z

    The purpose of the Tank Waste Remediation System (TWRS) Process Engineering Instruction Manual is to provide guidance and direction to TWRS Process Engineering staff regarding conduct of business. The objective is to establish a disciplined and consistent approach to business such that the work processes within TWRS Process Engineering are safe, high quality, disciplined, efficient, and consistent with Lockheed Martin Hanford Corporation Policies and Procedures. The sections within this manual are of two types: for compliance and for guidance. For compliance sections are intended to be followed per-the-letter until such time as they are formally changed per Section 2.0 of this manual. For guidance sections are intended to be used by the staff for guidance in the conduct of work where technical judgment and discernment are required. The guidance sections shall also be changed per Section 2.0 of this manual. The required header for each manual section is illustrated in Section 2.0, Manual Change Control procedure. It is intended that this manual be used as a training and indoctrination resource for employees of the TWRS Process Engineering organization. The manual shall be required reading for all TWRS Process Engineering staff, matrixed, and subcontracted employees.

  15. An evaluation of neutralization for processing sodium-bearing liquid waste

    SciTech Connect (OSTI)

    Chipman, N.A.; Engelgau, G.O.; Berreth, J.R.

    1989-01-01T23:59:59.000Z

    This report addresses an alternative concept for potentially managing the sodium-bearing liquid waste generated at the Idaho Chemical Processing Plant from the current method of calcining a blend of sodium waste and high-level liquid waste. The concept is based on removing the radioactive components from sodium-bearing waste by neutralization and grouting the resulting low-level waste for on-site near-surface disposal. Solidifying the sodium waste as a remote-handled transuranic waste is not considered to be practical because of excessive costs and inability to dispose of the waste in a timely fashion. Although neutralization can remove most radioactive components to provide feed for a solidified low-level waste, and can reduce liquid inventories four to nine years more rapidly than the current practice of blending sodium-bearing liquid waste with first-cycle raffinite, the alternative will require major new facilities and will generate large volumes of low-level waste. Additional facility and operating costs are estimated to be at least $500 million above the current practice of blending and calcining. On-site, low-level waste disposal may be technically difficult and conflict which national and state policies. Therefore, it is recommended that the current practice of calcining a blend of sodium-bearing liquid waste and high-level liquid waste be continued to minimize overall cost and process complexities. 17 refs., 4 figs., 16 tabs.

  16. Modeling Coupled Processes in Clay Formations for Radioactive Waste Disposal

    SciTech Connect (OSTI)

    Liu, Hui-Hai; Rutqvist, Jonny; Zheng, Liange; Sonnenthal, Eric; Houseworth, Jim; Birkholzer, Jens

    2010-08-31T23:59:59.000Z

    As a result of the termination of the Yucca Mountain Project, the United States Department of Energy (DOE) has started to explore various alternative avenues for the disposition of used nuclear fuel and nuclear waste. The overall scope of the investigation includes temporary storage, transportation issues, permanent disposal, various nuclear fuel types, processing alternatives, and resulting waste streams. Although geologic disposal is not the only alternative, it is still the leading candidate for permanent disposal. The realm of geologic disposal also offers a range of geologic environments that may be considered, among those clay shale formations. Figure 1-1 presents the distribution of clay/shale formations within the USA. Clay rock/shale has been considered as potential host rock for geological disposal of high-level nuclear waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures induced by tunnel excavation. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at Mol site, Belgium (Barnichon et al., 2005) have all been under intensive scientific investigations (at both field and laboratory scales) for understanding a variety of rock properties and their relations with flow and transport processes associated with geological disposal of nuclear waste. Clay/shale formations may be generally classified as indurated and plastic clays (Tsang et al., 2005). The latter (including Boom clay) is a softer material without high cohesion; its deformation is dominantly plastic. For both clay rocks, coupled thermal, hydrological, mechanical and chemical (THMC) processes are expected to have a significant impact on the long-term safety of a clay repository. For example, the excavation-damaged zone (EDZ) near repository tunnels can modify local permeability (resulting from induced fractures), potentially leading to less confinement capability (Tsang et al., 2005). Because of clay's swelling and shrinkage behavior (depending on whether the clay is in imbibition or drainage processes), fracture properties in the EDZ are quite dynamic and evolve over time as hydromechanical conditions change. To understand and model the coupled processes and their impact on repository performance is critical for the defensible performance assessment of a clay repository. Within the Natural Barrier System (NBS) group of the Used Fuel Disposition (UFD) Campaign at DOE's Office of Nuclear Energy, LBNL's research activities have focused on understanding and modeling such coupled processes. LBNL provided a report in this April on literature survey of studies on coupled processes in clay repositories and identification of technical issues and knowledge gaps (Tsang et al., 2010). This report will document other LBNL research activities within the natural system work package, including the development of constitutive relationships for elastic deformation of clay rock (Section 2), a THM modeling study (Section 3) and a THC modeling study (Section 4). The purpose of the THM and THC modeling studies is to demonstrate the current modeling capabilities in dealing with coupled processes in a potential clay repository. In Section 5, we discuss potential future R&D work based on the identified knowledge gaps. The linkage between these activities and related FEPs is presented in Section 6.

  17. Design and construction of the defense waste processing facility project at the Savannah River Plant

    SciTech Connect (OSTI)

    Baxter, R G

    1986-01-01T23:59:59.000Z

    The Du Pont Company is building for the Department of Energy a facility to vitrify high-level radioactive waste at the Savannah River Plant (SRP) near Aiken, South Carolina. The Defense Waste Processing Facility (DWPF) will solidify existing and future radioactive wastes by immobilizing the waste in Processing Facility (DWPF) will solidify existing and future radioactives wastes by immobilizing the waste in borosilicate glass contained in stainless steel canisters. The canisters will be sealed, decontaminated and stored, prior to emplacement in a federal repository. At the present time, engineering and design is 90% complete, construction is 25% complete, and radioactive processing in the $870 million facility is expected to begin by late 1989. This paper describes the SRP waste characteristics, the DWPF processing, building and equipment features, and construction progress of the facility.

  18. Defense Waste Processing Facility wasteform and canister description: Revision 2

    SciTech Connect (OSTI)

    Baxter, R.G.

    1988-12-01T23:59:59.000Z

    This document describes the reference wasteform and canister for the Defense Waste Processing Facility (DWPF). The principal changes include revised feed and glass product compositions, an estimate of glass product characteristics as a function of time after the start of vitrification, and additional data on glass leaching performance. The feed and glass product composition data are identical to that described in the DWPF Basic Data Report, Revision 90/91. The DWPF facility is located at the Savannah River Plant in Aiken, SC, and it is scheduled for construction completion during December 1989. The wasteform is borosilicate glass containing approximately 28 wt % sludge oxides, with the balance consisting of glass-forming chemicals, primarily glass frit. Borosilicate glass was chosen because of its stability toward reaction with potential repository groundwaters, its relatively high ability to incorporate nuclides found in the sludge into the solid matrix, and its reasonably low melting temperature. The glass frit contains approximately 71% SiO/sub 2/, 12% B/sub 2/O/sub 3/, and 10% Na/sub 2/O. Tests to quantify the stability of DWPF waste glass have been performed under a wide variety of conditions, including simulations of potential repository environments. Based on these tests, DWPF waste glass should easily meet repository criteria. The canister is filled with about 3700 lb of glass which occupies 85% of the free canister volume. The filled canister will generate approximately 690 watts when filled with oxides from 5-year-old sludge and precipitate from 15-year-old supernate. The radionuclide activity of the canister is about 233,000 curies, with an estimated radiation level of 5600 rad/hour at the canister surface. 14 figs., 28 tabs.

  19. The Mochovce final treatment center for liquid radioactive waste introduced to active trial operation

    SciTech Connect (OSTI)

    Krajc, T.; Stubna, M.; Kravarik, K.; Zatkulak, M. [VUJE Trnava, Inc. (Slovakia); Slezak, M.; Remias, V. [Javys - Jadrova a vyradovacia spolocnost, a.s. - Nuclear and Decommissioning Company, plc., Tomasikova 22, 821 02 Bratislava (Slovakia)

    2007-07-01T23:59:59.000Z

    The Final Treatment Centre (FTC) for Mochovce Nuclear Power Plant (NPP) have been designed for treatment and final conditioning of radioactive liquid and wet waste produced by named NPP equipped with Russian VVER-440 type of reactors. Treated wastes comprise radioactive concentrates, spent resin and sludge. VUJE Inc. as an experienced company in field of treatment of radioactive waste in Slovakia has been chosen as main contractor for technological part of FTC. During the realisation of project the future operator of Centre required the contractor to solve the treatment of wastes produced in the process of NPP A-1 decommissioning. On the basis of this requirement the project was modified in order to enable manipulations with waste products from A-1 NPP transported to Centre in steel drums. The initial project was prepared in 2003. The design and manufacture of main components were performed in 2004 and 2005. FTC civil works started in August 2004. Initial nonradioactive testing of the system parts were carried out from April to September 2006, then the tests of systems started with model concentrates and non-radioactive resins. After the processes evaluation the radioactive test performed from February 2007. A one-year trial operation of facility is planned for completion during 2007 and 2008. The company JAVYS, Inc. is responsible for radioactive waste and spent fuel treatment in the Slovak republic and will operate the FTC during trial operation and after its completion. This Company has also significant experience with operation of Jaslovske Bohunice Treatment Centre. The overall capacity of the FTC is 820 m{sup 3}/year of concentrates and 40 m{sup 3}/year of spent resin and sludge. Bituminization and cementation were provided as main technologies for treatment of these wastes. Treatment of concentrate is performed by bituminization on Thin Film Evaporator with rotating wiping blades. Spent resin and sludge are decanted, dried and mixed with bitumen in blade homogeniser. The bitumen product is discharged into 200 dm{sup 3} steel drums. Drums with bitumen product or drums originated from A-1 NPP are loaded into Fibre Reinforced Concrete containers (FRC) and grouted with cement. Cement grout is prepared from the mixture of cement, additive and radioactive over-concentrate. By formulating the cement grout with evaporator concentrates the maximum radioactivity is fixed in cement matrix and volume of final waste product is minimized. A batch mixer with rotating blades is used to produce the cement grout. The grouted FRC containers are stored in the expedition hall and after 28 days of curing are transported to final disposal. After the start of routine operation, the FTC provides treatment for all liquid and wet LLW produced from the operation of the Mochovce NPP. The final product of the FTC is a FRC loaded with bitumen product in drums and filled with radioactive cement product. This container meets all limits for final disposal in the National Radioactive Waste Repository at Mochovce. This paper introducing the main parts of FTC and describes the technological procedures including the basic technological parameters for both used technologies, their working capacity and the overall waste flow. The evaluation of experience gained in the phases of Centre construction and commissioning and partially trial operation as well is a part of this paper (Evaluation of completion works process and time schedule, the process of individual system parts testing, testing of systems using model media, radioactive testing and trial operation). (authors)

  20. Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes

    DOE Patents [OSTI]

    Kalb, P.D.; Colombo, P.

    1999-07-20T23:59:59.000Z

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogeneous molten matrix. The molten matrix may be directed in a clean'' polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment. 2 figs.

  1. Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes

    DOE Patents [OSTI]

    Kalb, P.D.; Colombo, P.

    1998-03-24T23:59:59.000Z

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogeneous molten matrix. The molten matrix may be directed in a ``clean`` polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment. 2 figs.

  2. Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes

    DOE Patents [OSTI]

    Kalb, Paul D. (Wading River, NY); Colombo, Peter (Patchogue, NY)

    1998-03-24T23:59:59.000Z

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogenous molten matrix. The molten matrix may be directed in a "clean" polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment.

  3. Composition and process for the encapsulation and stabilization of radioactive hazardous and mixed wastes

    DOE Patents [OSTI]

    Kalb, P.D.; Colombo, P.

    1997-07-15T23:59:59.000Z

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogeneous molten matrix. The molten matrix may be directed in a ``clean`` polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment. 2 figs.

  4. Composition and process for the encapsulation and stabilization of radioactive hazardous and mixed wastes

    DOE Patents [OSTI]

    Kalb, Paul D. (21 Barnes Road, Wading River, NY 11792); Colombo, Peter (44 N. Pinelake Dr., Patchogue, NY 11772)

    1997-01-01T23:59:59.000Z

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogenous molten matrix. The molten matrix may be directed in a "clean" polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment.

  5. Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes

    DOE Patents [OSTI]

    Kalb, Paul D. (Wading River, NY); Colombo, Peter (Patchogue, NY)

    1999-07-20T23:59:59.000Z

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogenous molten matrix. The molten matrix may be directed in a "clean" polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment.

  6. WASTE PROCESSING ANNUAL NUCLEAR SAFETY RELATED R AND D REPORT FOR CY2008

    SciTech Connect (OSTI)

    Fellinger, A.

    2009-10-15T23:59:59.000Z

    The Engineering and Technology Office of Waste Processing identifies and reduces engineering and technical risks associated with key waste processing project decisions. The risks, and actions taken to mitigate those risks, are determined through technology readiness assessments, program reviews, technology information exchanges, external technical reviews, technical assistance, and targeted technology development and deployment (TDD). The Office of Waste Processing TDD program prioritizes and approves research and development scopes of work that address nuclear safety related to processing of highly radioactive nuclear wastes. Thirteen of the thirty-five R&D approved work scopes in FY2009 relate directly to nuclear safety, and are presented in this report.

  7. Sodium Cooled Fast Reactors and the Pyro-Process: Conversion of Nuclear Waste into a Fuel Source

    E-Print Network [OSTI]

    Belanger, David P.

    1 Sodium Cooled Fast Reactors and the Pyro-Process: Conversion of Nuclear Waste into a Fuel Source renewed interest amongst the nuclear science community as the debate over nuclear waste has increased .................................................................................27 2.1.2 Waste Minimization

  8. A Study on Optimized Management Options for the Wolsong Low- and Intermediate - Level Waste Disposal Center in Korea - 13479

    SciTech Connect (OSTI)

    Park, JooWan; Kim, DongSun; Choi, DongEun [Korea Radioactive Waste Management Corporation, Korea 89, Bukseongno, Gyeongju, 780-050 (Korea, Republic of)] [Korea Radioactive Waste Management Corporation, Korea 89, Bukseongno, Gyeongju, 780-050 (Korea, Republic of)

    2013-07-01T23:59:59.000Z

    The safe and effective management of radioactive waste is a national task required for sustainable generation of nuclear power and for energy self-reliance in Korea. Currently, for permanent disposal of low- and intermediate-level waste (LILW), the Wolsong LILW Disposal Center (WLDC) is under construction. It will accommodate a total of 800,000 drums at the final stage after stepwise expansion. As an implementing strategy for cost-effective development of the WLDC, various disposal options suitable for waste classification schemes would be considered. It is also needed an optimized management of the WLDC by taking a countermeasure of volume reduction treatment. In this study, various management options to be applied to each waste class are analyzed in terms of its inventory and disposal cost. For the volume reduction and stabilization of waste, the vitrification and plasma melting methods are considered for combustible and incombustible waste, respectively. (authors)

  9. FRIT OPTIMIZATION FOR SLUDGE BATCH PROCESSING AT THE DEFENSE WASTE PROCESSING FACILITY

    SciTech Connect (OSTI)

    Fox, K.

    2009-01-28T23:59:59.000Z

    The Savannah River National Laboratory (SRNL) Frit Development Team recommends that the Defense Waste Processing Facility (DWPF) utilize Frit 418 for initial processing of high level waste (HLW) Sludge Batch 5 (SB5). The extended SB5 preparation time and need for DWPF feed have necessitated the use of a frit that is already included on the DWPF procurement specification. Frit 418 has been used previously in vitrification of Sludge Batches 3 and 4. Paper study assessments predict that Frit 418 will form an acceptable glass when combined with SB5 over a range of waste loadings (WLs), typically 30-41% based on nominal projected SB5 compositions. Frit 418 has a relatively high degree of robustness with regard to variation in the projected SB5 composition, particularly when the Na{sub 2}O concentration is varied. The acceptability (chemical durability) and model applicability of the Frit 418-SB5 system will be verified experimentally through a variability study, to be documented separately. Frit 418 has not been designed to provide an optimal melt rate with SB5, but is recommended for initial processing of SB5 until experimental testing to optimize a frit composition for melt rate can be completed. Melt rate performance can not be predicted at this time and must be determined experimentally. Note that melt rate testing may either identify an improved frit for SB5 processing (one which produces an acceptable glass at a faster rate than Frit 418) or confirm that Frit 418 is the best option.

  10. RECOMMENDED FRIT COMPOSITION FOR INITIAL SLUDGE BATCH 5 PROCESSING AT THE DEFENSE WASTE PROCESSING FACILITY

    SciTech Connect (OSTI)

    Fox, K; Tommy Edwards, T; David Peeler, D

    2008-06-25T23:59:59.000Z

    The Savannah River National Laboratory (SRNL) Frit Development Team recommends that the Defense Waste Processing Facility (DWPF) utilize Frit 418 for initial processing of high level waste (HLW) Sludge Batch 5 (SB5). The extended SB5 preparation time and need for DWPF feed have necessitated the use of a frit that is already included on the DWPF procurement specification. Frit 418 has been used previously in vitrification of Sludge Batches 3 and 4. Paper study assessments predict that Frit 418 will form an acceptable glass when combined with SB5 over a range of waste loadings (WLs), typically 30-41% based on nominal projected SB5 compositions. Frit 418 has a relatively high degree of robustness with regard to variation in the projected SB5 composition, particularly when the Na{sub 2}O concentration is varied. The acceptability (chemical durability) and model applicability of the Frit 418-SB5 system will be verified experimentally through a variability study, to be documented separately. Frit 418 has not been designed to provide an optimal melt rate with SB5, but is recommended for initial processing of SB5 until experimental testing to optimize a frit composition for melt rate can be completed. Melt rate performance can not be predicted at this time and must be determined experimentally. Note that melt rate testing may either identify an improved frit for SB5 processing (one which produces an acceptable glass at a faster rate than Frit 418) or confirm that Frit 418 is the best option.

  11. Waste receiving and processing plant control system; system design description

    SciTech Connect (OSTI)

    LANE, M.P.

    1999-02-24T23:59:59.000Z

    The Plant Control System (PCS) is a heterogeneous computer system composed of numerous sub-systems. The PCS represents every major computer system that is used to support operation of the Waste Receiving and Processing (WRAP) facility. This document, the System Design Description (PCS SDD), includes several chapters and appendices. Each chapter is devoted to a separate PCS sub-system. Typically, each chapter includes an overview description of the system, a list of associated documents related to operation of that system, and a detailed description of relevant system features. Each appendice provides configuration information for selected PCS sub-systems. The appendices are designed as separate sections to assist in maintaining this document due to frequent changes in system configurations. This document is intended to serve as the primary reference for configuration of PCS computer systems. The use of this document is further described in the WRAP System Configuration Management Plan, WMH-350, Section 4.1.

  12. Zone Freezing Study for Pyrochemical Process Waste Minimization

    SciTech Connect (OSTI)

    Ammon Williams

    2012-05-01T23:59:59.000Z

    Pyroprocessing technology is a non-aqueous separation process for treatment of used nuclear fuel. At the heart of pyroprocessing lies the electrorefiner, which electrochemically dissolves uranium from the used fuel at the anode and deposits it onto a cathode. During this operation, sodium, transuranics, and fission product chlorides accumulate in the electrolyte salt (LiCl-KCl). These contaminates change the characteristics of the salt overtime and as a result, large volumes of contaminated salt are being removed, reprocessed and stored as radioactive waste. To reduce the storage volumes and improve recycling process for cost minimization, a salt purification method called zone freezing has been proposed at Korea Atomic Energy Research Institute (KAERI). Zone freezing is melt crystallization process similar to the vertical Bridgeman method. In this process, the eutectic salt is slowly cooled axially from top to bottom. As solidification occurs, the fission products are rejected from the solid interface and forced into the liquid phase. The resulting product is a grown crystal with the bulk of the fission products near the bottom of the salt ingot, where they can be easily be sectioned and removed. Despite successful feasibility report from KAERI on this process, there were many unexplored parameters to help understanding and improving its operational routines. Thus, this becomes the main motivation of this proposed study. The majority of this work has been focused on the CsCl-LiCl-KCl ternary salt. CeCl3-LiCl-KCl was also investigated to check whether or not this process is feasible for the trivalent species—surrogate for rare-earths and transuranics. For the main part of the work, several parameters were varied, they are: (1) the retort advancement rate—1.8, 3.2, and 5.0 mm/hr, (2) the crucible lid configurations—lid versus no-lid, (3) the amount or size of mixture—50 and 400 g, (4) the composition of CsCl in the salt—1, 3, and 5 wt%, and (5) the temperature differences between the high and low furnace zones—200 and 300 ?C. During each experiment, the temperatures at selected locations around the crucible were measured and recorded to provide temperature profiles. Following each experiment, samples were collected and elemental analysis was done to determine the composition of iii the salt. Several models—non-mixed, well-mixed, Favier, and hybrid—were explored to describe the zone freezing process. For CsCl-LiCl-KCl system, experimental results indicate that through this process up to 90% of the used salt can be recycled, effectively reducing waste volume by a factor of ten. The optimal configuration was found to be a 5.0 mm/hr rate with a lid configuration and a ?T of 200°C. The larger 400 g mixtures had recycle percentages similar to the 50 g mixtures; however, the throughput per time was greater for the 400 g case. As a result, the 400 g case is recommended. For the CeCl3-LiCl-KCl system, the result implies that it is possible to use this process to separate the rare-earth and transuranics chlorides. Different models were applied to only CsCl ternary system. The best fit model was the hybrid model as a result of a solute transport transition from non- mixed to well-mixed throughout the growing process.

  13. RESULTS OF THE EXTRACTION-SCRUB-STRIP TESTING USING AN IMPROVED SOLVENT FORMULATION AND SALT WASTE PROCESSING FACILITY SIMULATED WASTE

    SciTech Connect (OSTI)

    Peters, T.; Washington, A.; Fink, S.

    2012-01-09T23:59:59.000Z

    The Office of Waste Processing, within the Office of Technology Innovation and Development, is funding the development of an enhanced solvent - also known as the next generation solvent (NGS) - for deployment at the Savannah River Site to remove cesium from High Level Waste. The technical effort is a collaborative effort between Oak Ridge National Laboratory (ORNL) and Savannah River National Laboratory (SRNL). As part of the program, the Savannah River National Laboratory (SRNL) has performed a number of Extraction-Scrub-Strip (ESS) tests. These batch contact tests serve as first indicators of the cesium mass transfer solvent performance with actual or simulated waste. The test detailed in this report used simulated Tank 49H material, with the addition of extra potassium. The potassium was added at 1677 mg/L, the maximum projected (i.e., a worst case feed scenario) value for the Salt Waste Processing Facility (SWPF). The results of the test gave favorable results given that the potassium concentration was elevated (1677 mg/L compared to the current 513 mg/L). The cesium distribution value, DCs, for extraction was 57.1. As a comparison, a typical D{sub Cs} in an ESS test, using the baseline solvent formulation and the typical waste feed, is {approx}15. The Modular Caustic Side Solvent Extraction Unit (MCU) uses the Caustic-Side Solvent Extraction (CSSX) process to remove cesium (Cs) from alkaline waste. This process involves the use of an organic extractant, BoBCalixC6, in an organic matrix to selectively remove cesium from the caustic waste. The organic solvent mixture flows counter-current to the caustic aqueous waste stream within centrifugal contactors. After extracting the cesium, the loaded solvent is stripped of cesium by contact with dilute nitric acid and the cesium concentrate is transferred to the Defense Waste Processing Facility (DWPF), while the organic solvent is cleaned and recycled for further use. The Salt Waste Processing Facility (SWPF), under construction, will use the same process chemistry. The Office of Waste Processing (EM-31) expressed an interest in investigating the further optimization of the organic solvent by replacing the BoBCalixC6 extractant with a more efficient extractant. This replacement should yield dividends in improving cesium removal from the caustic waste stream, and in the rate at which the caustic waste can be processed. To that end, EM-31 provided funding for both the Savannah River National Laboratory (SRNL) and the Oak Ridge National Laboratory (ORNL). SRNL wrote a Task Technical Quality and Assurance Plan for this work. As part of the envisioned testing regime, it was decided to perform an ESS test using a simulated waste that simulated a typical envisioned SWPF feed, but with added potassium to make the waste more challenging. Potassium interferes in the cesium removal, and its concentration is limited in the feed to <1950 mg/L. The feed to MCU has typically contained <500 mg/L of potassium.

  14. Final Treatment Center Project for Liquid and Wet Radioactive Waste in Slovakia

    SciTech Connect (OSTI)

    Kravarik, K.; Stubna, M.; Pekar, A.; Krajc, T.; Zatkulak, M.; Holicka, Z. [VUJE, Inc., Okruzna 5, 918 64 Trnava (Slovakia); Slezak, M. [SE - VYZ, 919 31 Jaslovske Bohunice (Slovakia)

    2006-07-01T23:59:59.000Z

    The Final Treatment Center (FTC) for Mochovce nuclear power plant (NPP) is designed for treatment and final conditioning of radioactive liquid and wet waste produced from plant operation. Mochovce NNP uses a Russian VVER-440 type reactor. Treated wastes comprise radioactive concentrates, spent resin and sludge. VUJE Inc. as an experienced company in field of treatment of radioactive waste in Slovakia has been chosen as main contractor for technological part of FTC. This paper describes the capacity, flow chart, overall waste flow and parameters of the main components in the FTC. The initial project was submitted for approval to the Slovak Electric plc. in 2003. The design and manufacture of main components were performed in 2004 and 2005. FTC construction work started early in 2004. Initial non-radioactive testing of the system is planned for summer 2006 and then radioactive tests are to be followed. A one-year trial operation of facility is planned for completion in 2007. SE - VYZ will be operates the FTC during trial operation and after its completion. SE - VYZ is subsidiary company of Slovak Electric plc. and it is responsible for treatment with radioactive waste and spent fuel in the Slovak republic. SE - VYZ has, besides of other significant experience with operation of Jaslovske Bohunice Treatment Centre. The overall capacity of the FTC is 870 m{sup 3}/year of concentrates and 40 m{sup 3}/year of spent resin and sludge. Bituminization and cementation were provided as main technologies for treatment of these wastes. Treatment of concentrate is performed by bituminization. Concentrate and bitumen are metered into a thin film evaporator with rotating wiping blades. Surplus water is evaporated and concentrate salts are embedded in bitumen. Bitumen product is discharged into 200 l steel drums. Spent resin and sludge are decanted, dried and mixed with bitumen. These mixtures are also discharged into 200 l steel drums. Drums are moved along bituminization line on a roller conveyor. After the drums cool, they are capped and removed from the conveyor and placed in a storage hall. Drums with bitumen product are loaded into Fiber Reinforced Concrete containers (FRC) and grouted with cement. Cement grout is prepared from mixture of cement, additive and radioactive concentrates. By formulating the cement grout with evaporator concentrates the maximum radioactivity is fixed in cement matrix and volume of final waste product is minimized. A batch mixer with rotating blades is used produce the cement grout. FRCs loaded with bitumen drums are placed on roller conveyor and moved along the cementation line. Grouted FRCs are stored in the expedition hall for 28 days of curing and then transported to final disposal. After placed in operation the FTC provides treatment for all liquid and wet LLW produced from the operation of the Mochovce NPP. The final product of the FTC is a FRC loaded with 7 drums of waste fixed in bitumen and the space between the drums is grouted with cement. This container meets all limits for final disposal in the National Radioactive Waste Repository at Mochovce. (authors)

  15. Cold End Inserts for Process Gas Waste Heat Boilers Air Products, operates hydrogen production plants, which utilize large waste heat boilers (WHB)

    E-Print Network [OSTI]

    Demirel, Melik C.

    Cold End Inserts for Process Gas Waste Heat Boilers Overview Air Products, operates hydrogen production plants, which utilize large waste heat boilers (WHB) to cool process syngas. The gas enters satisfies all 3 design criteria. · Correlations relating our experimental results to a waste heat boiler

  16. Process Description for the Retrieval of Earth Covered Transuranic (TRU) Waste Containers at the Hanford Site

    SciTech Connect (OSTI)

    DEROSA, D.C.

    2000-01-13T23:59:59.000Z

    This document describes process and operational options for retrieval of the contact-handled suspect transuranic waste drums currently stored below grade in earth-covered trenches at the Hanford Site. Retrieval processes and options discussed include excavation, container retrieval, venting, non-destructive assay, criticality avoidance, incidental waste handling, site preparation, equipment, and shipping.

  17. Processing and waste disposal representative for fusion breeder blanket systems

    SciTech Connect (OSTI)

    Finn, P.A.; Vogler, S.

    1987-01-01T23:59:59.000Z

    This study is an evaluation of the waste handling concepts applicable to fusion breeder systems. Its goal is to determine if breeder blanket waste can be disposed of in shallow land burial, the least restrictive method under US Nuclear Regulatory regulations. The radionuclides expected in the materials used in fusion reactor blankets are described, as are plans for reprocessing and disposal of the components of different breeder blankets. An estimate of the operating costs involved in waste disposal is made.

  18. Using Waste Heat for External Processes (English/Chinese) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    Chinese translation of the Using Waste Heat for External Processes fact sheet. Provides suggestions on how to use waste heat in industrial applications. The temperature of exhaust gases from fuel-fired industrial processes depends mainly on the process temperature and the waste heat recovery method. Figure 1 shows the heat lost in exhaust gases at various exhaust gas temperatures and percentages of excess air. Energy from gases exhausted from higher temperature processes (primary processes) can be recovered and used for lower temperature processes (secondary processes). One example is to generate steam using waste heat boilers for the fluid heaters used in petroleum crude processing. In addition, many companies install heat exchangers on the exhaust stacks of furnaces and ovens to produce hot water or to generate hot air for space heating.

  19. agriculture process waste: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (more) Radhika M 2014-01-01 117 Waste to Energy (WTE): Conventional and Plasma-assisted Gasification - Experimental and Modeling Studies. Open Access Theses and Dissertations...

  20. Hanford Waste Vitrification Plant full-scale feed preparation testing with water and process simulant slurries

    SciTech Connect (OSTI)

    Gaskill, J.R.; Larson, D.E.; Abrigo, G.P. [and others] [and others

    1996-03-01T23:59:59.000Z

    The Hanford Waste Vitrification Plant was intended to convert selected, pretreated defense high-level waste and transuranic waste from the Hanford Site into a borosilicate glass. A full-scale testing program was conducted with nonradioactive waste simulants to develop information for process and equipment design of the feed-preparation system. The equipment systems tested included the Slurry Receipt and Adjustment Tank, Slurry Mix Evaporator, and Melter-Feed Tank. The areas of data generation included heat transfer (boiling, heating, and cooling), slurry mixing, slurry pumping and transport, slurry sampling, and process chemistry. 13 refs., 129 figs., 68 tabs.

  1. Los Alamos Waste Management Cost Estimation Model; Final report: Documentation of waste management process, development of Cost Estimation Model, and model reference manual

    SciTech Connect (OSTI)

    Matysiak, L.M.; Burns, M.L.

    1994-03-01T23:59:59.000Z

    This final report completes the Los Alamos Waste Management Cost Estimation Project, and includes the documentation of the waste management processes at Los Alamos National Laboratory (LANL) for hazardous, mixed, low-level radioactive solid and transuranic waste, development of the cost estimation model and a user reference manual. The ultimate goal of this effort was to develop an estimate of the life cycle costs for the aforementioned waste types. The Cost Estimation Model is a tool that can be used to calculate the costs of waste management at LANL for the aforementioned waste types, under several different scenarios. Each waste category at LANL is managed in a separate fashion, according to Department of Energy requirements and state and federal regulations. The cost of the waste management process for each waste category has not previously been well documented. In particular, the costs associated with the handling, treatment and storage of the waste have not been well understood. It is anticipated that greater knowledge of these costs will encourage waste generators at the Laboratory to apply waste minimization techniques to current operations. Expected benefits of waste minimization are a reduction in waste volume, decrease in liability and lower waste management costs.

  2. Management of Low-Level Radioactive Waste from Research, Hospitals and Nuclear Medical Centers in Egypt - 13469

    SciTech Connect (OSTI)

    Hasan, M.A.; Selim, Y.T.; Lasheen, Y.F. [Hot Labs and Waste Management Center, Atomic Energy Authority, 3 Ahmed El-Zomor St., El-Zohour District, Naser City, 11787, Cairo (Egypt)] [Hot Labs and Waste Management Center, Atomic Energy Authority, 3 Ahmed El-Zomor St., El-Zohour District, Naser City, 11787, Cairo (Egypt)

    2013-07-01T23:59:59.000Z

    The application of radioisotopes and radiation sources in medical diagnosis and therapy is an important issue. Physicians can use radioisotopes to diagnose and treat diseases. Methods of treatment, conditioning and management of low level radioactive wastes from the use of radiation sources and radioisotopes in hospitals and nuclear medicine application, are described. Solid Radioactive waste with low-level activity after accumulation, minimization, segregation and measurement, are burned or compressed in a compactor according to the international standards. Conditioned drums are transported to the interim storage site at the Egyptian Atomic Energy Authority (EAEA) represented in Hot Labs and Waste Management Center (HLWMC) for storage and monitoring. (authors)

  3. Solvent extraction and recovery of the transuranic elements from waste solutions using the TRUEX process

    SciTech Connect (OSTI)

    Horwitz, E.P.; Schulz, W.W.

    1985-01-01T23:59:59.000Z

    High-level liquid waste is produced during the processing of irradiated nuclear fuel by the PUREX process. In some cases the treatment of metallurgical scrap to recover the plutonium values also generates a nitric acid waste solution. Both waste solutions contain sufficient concentrations of transuranic elements (mostly /sup 241/Am) to require handling and disposal as a TRU waste. This paper describes a recently developed solvent extraction/recovery process called TRUEX (transuranium extraction) which is designed to reduce the TRU concentration in nitric waste solutions to <100 nCi/g of disposed form (1,2). (In the USA, non-TRU waste is defined as <100 nCi of TRU/g of disposed form.) The process utilizes PUREX process solvent (TBP in a normal paraffinic hydrocarbon or carbon tetrachloride) modified by a small concentration of octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (abbrev. CMPO). The presence of CMPO enables the modified PUREX process solvent to extract trivalent actinides as well as tetra- and hexavalent actinides. A major feature of the TRUEX process is that is is applicable to waste solutions containing a wide range of nitric acid, salt, and fission product concentrations and at the same time is very compatible with existing liquid-liquid extraction technology as usually practiced in a fuel reprocessing plant. To date the process has been tested on two different types of synthetic waste solutions. The first solution is a typical high-level nitric acid waste and the second a typical waste solution generated in metallurgical scrap processing. Results are discussed. 4 refs., 1 fig., 4 tabs.

  4. Process and material that encapsulates solid hazardous waste

    DOE Patents [OSTI]

    O'Brien, Michael H. (Idaho Falls, ID); Erickson, Arnold W. (Idaho Falls, ID)

    1999-01-01T23:59:59.000Z

    A method of encapsulating mixed waste in which a thermoplastic polymer having a melting temperature less than about 150.degree. C. and sulfur and mixed waste are mixed at an elevated temperature not greater than about 200.degree. C. and mixed for a time sufficient to intimately mix the constituents, and then cooled to a solid. The resulting solid is also disclosed.

  5. Field study of disposed solid wastes from advanced coal processes. Annual technical progress report, October 1991--September 1992

    SciTech Connect (OSTI)

    Not Available

    1992-12-31T23:59:59.000Z

    Radian Corporation and the North Dakota Energy and Environmental Research Center (EERC) are funded to develop information to be used by private industry and government agencies for managing solid wastes produced by advanced coal combustion processes. This information will be developed by conducting several field studies on disposed wastes from these processes. Data will be collected to characterize these wastes and their interactions with the environments in which they are disposed. Three sites were selected for the field studies: Colorado Ute`s fluidized bed combustion (FBC) unit in Nucla, Colorado; Ohio Edison`s limestone injection multistage burner (LIMB) retrofit in Lorain, Ohio; and Freeman United`s mine site in central Illinois with wastes supplied by the nearby Midwest Grain FBC unit. During the past year, field monitoring and sampling of the four landfill test cases constructed in 1989 and 1991 has continued. Option 1 of the contract was approved last year to add financing for the fifth test case at the Freeman United site. The construction of the Test Case 5 cells is scheduled to begin in November, 1992. Work during this past year has focused on obtaining data on the physical and chemical properties of the landfilled wastes, and on developing a conceptual framework for interpreting this information. Results to date indicate that hydration reactions within the landfilled wastes have had a major impact on the physical and chemical properties of the materials but these reactions largely ceased after the first year, and physical properties have changed little since then. Conditions in Colorado remained dry and no porewater samples were collected. In Ohio, hydration reactions and increases in the moisture content of the waste tied up much of the water initially infiltrating the test cells.

  6. Joint Assessment of Renewable Energy and Water Desalination Research Center (REWDC) Program Capabilities and Facilities In Radioactive Waste Management

    SciTech Connect (OSTI)

    Bissani, M; Fischer, R; Kidd, S; Merrigan, J

    2006-04-03T23:59:59.000Z

    The primary goal of this visit was to perform a joint assessment of the Renewable Energy and Water Desalination Center's (REWDC) program in radioactive waste management. The visit represented the fourth technical and scientific interaction with Libya under the DOE/NNSA Sister Laboratory Arrangement. Specific topics addressed during the visit focused on Action Sheet P-05-5, ''Radioactive Waste Management''. The Team, comprised of Mo Bissani (Team Lead), Robert Fischer, Scott Kidd, and Jim Merrigan, consulted with REWDC management and staff. The team collected information, discussed particulars of the technical collaboration and toured the Tajura facility. The tour included the waste treatment facility, waste storage/disposal facility, research reactor facility, hot cells and analytical labs. The assessment team conducted the first phase of Task A for Action Sheet 5, which involved a joint assessment of the Radioactive Waste Management Program. The assessment included review of the facilities dedicated to the management of radioactive waste at the Tourja site, the waste management practices, proposed projects for the facility and potential impacts on waste generation and management.

  7. Accepting Mixed Waste as Alternate Feed Material for Processing and Disposal at a Licensed Uranium Mill

    SciTech Connect (OSTI)

    Frydenland, D. C.; Hochstein, R. F.; Thompson, A. J.

    2002-02-26T23:59:59.000Z

    Certain categories of mixed wastes that contain recoverable amounts of natural uranium can be processed for the recovery of valuable uranium, alone or together with other metals, at licensed uranium mills, and the resulting tailings permanently disposed of as 11e.(2) byproduct material in the mill's tailings impoundment, as an alternative to treatment and/or direct disposal at a mixed waste disposal facility. This paper discusses the regulatory background applicable to hazardous wastes, mixed wastes and uranium mills and, in particular, NRC's Alternate Feed Guidance under which alternate feed materials that contain certain types of mixed wastes may be processed and disposed of at uranium mills. The paper discusses the way in which the Alternate Feed Guidance has been interpreted in the past with respect to processing mixed wastes and the significance of recent changes in NRC's interpretation of the Alternate Feed Guidance that sets the stage for a broader range of mixed waste materials to be processed as alternate feed materials. The paper also reviews the le gal rationale and policy reasons why materials that would otherwise have to be treated and/or disposed of as mixed waste, at a mixed waste disposal facility, are exempt from RCRA when reprocessed as alternate feed material at a uranium mill and become subject to the sole jurisdiction of NRC, and some of the reasons why processing mixed wastes as alternate feed materials at uranium mills is preferable to direct disposal. Finally, the paper concludes with a discussion of the specific acceptance, characterization and certification requirements applicable to alternate feed materials and mixed wastes at International Uranium (USA) Corporation's White Mesa Mill, which has been the most active uranium mill in the processing of alternate feed materials under the Alternate Feed Guidance.

  8. 2004 research briefs :Materials and Process Sciences Center.

    SciTech Connect (OSTI)

    Cieslak, Michael J.

    2004-01-01T23:59:59.000Z

    This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

  9. Management of Salt Waste from Electrochemical Processing of Used Nuclear Fuel

    SciTech Connect (OSTI)

    Michael F. Simpson; Michael N. Patterson; Joon Lee; Yifeng Wang; Joshua Versey; Ammon Williams; Supathorn Phongikaroon; James Allensworth; Man-Sung Yim

    2013-10-01T23:59:59.000Z

    Electrochemical processing of used nuclear fuel involves operation of one or more cells containing molten salt electrolyte. Processing of the fuel results in contamination of the salt via accumulation of fission products and transuranic (TRU) actinides. Upon reaching contamination limits, the salt must be removed and either disposed or treated to remove the contaminants and recycled back to the process. During development of the Experimental Breeder Reactor-II spent fuel treatment process, waste salt from the electrorefiner was to be stabilized in a ceramic waste form and disposed of in a high-level waste repository. With the cancellation of the Yucca Mountain high-level waste repository, other options are now being considered. One approach that involves direct disposal of the salt in a geologic salt formation has been evaluated. While waste forms such as the ceramic provide near-term resistance to corrosion, they may not be necessary to ensure adequate performance of the repository. To improve the feasibility of direct disposal, recycling a substantial fraction of the useful salt back to the process equipment could minimize the volume of the waste. Experiments have been run in which a cold finger is used for this purpose to crystallize LiCl from LiCl/CsCl. If it is found to be unsuitable for transportation, the salt waste could also be immobilized in zeolite without conversion to the ceramic waste form.

  10. Management of salt waste from electrochemical processing of used nuclear fuel

    SciTech Connect (OSTI)

    Simpson, M.F.; Patterson, M.N. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, Idaho 83415 (United States); Lee, J.; Wang, Y. [Sandia National Laboratory, Albuquerque, NM (United States); Versey, J.; Phongikaroon, S. [University of Idaho, Idaho Falls, ID (United States)

    2013-07-01T23:59:59.000Z

    Electrochemical processing of used nuclear fuel involves operation of one or more cells containing molten salt electrolyte. Processing of the fuel results in contamination of the salt via accumulation of fission products and transuranic (TRU) actinides. Upon reaching contamination limits, the salt must be removed and either disposed or treated to remove the contaminants and recycled back to the process. During development of the Experimental Breeder Reactor-II spent fuel treatment process, waste salt from the electro-refiner was to be stabilized in a ceramic waste form and disposed of in a high-level waste repository. With the cancellation of the Yucca Mountain high-level waste repository, other options are now being considered. One approach that involves direct disposal of the salt in a geologic salt formation has been evaluated. While waste forms such as the ceramic provide near-term resistance to corrosion, they may not be necessary to ensure adequate performance of the repository. To improve the feasibility of direct disposal, recycling a substantial fraction of the useful salt back to the process equipment could minimize the volume of the waste. Experiments have been run in which a cold finger is used for this purpose to crystallize LiCl from LiCl/CsCl. If it is found to be unsuitable for transportation, the salt waste could also be immobilized in zeolite without conversion to the ceramic waste form. (authors)

  11. Evaluation of alternative chemical additives for high-level waste vitrification feed preparation processing

    SciTech Connect (OSTI)

    Seymour, R.G.

    1995-06-07T23:59:59.000Z

    During the development of the feed processing flowsheet for the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS), research had shown that use of formic acid (HCOOH) could accomplish several processing objectives with one chemical addition. These objectives included the decomposition of tetraphenylborate, chemical reduction of mercury, production of acceptable rheological properties in the feed slurry, and controlling the oxidation state of the glass melt pool. However, the DEPF research had not shown that some vitrification slurry feeds had a tendency to evolve hydrogen (H{sub 2}) and ammonia (NH{sub 3}) as the result of catalytic decomposition of CHOOH with noble metals (rhodium, ruthenium, palladium) in the feed. Testing conducted at Pacific Northwest Laboratory and later at the Savannah River Technical Center showed that the H{sub 2} and NH{sub 3} could evolve at appreciable rates and quantities. The explosive nature of H{sub 2} and NH{sub 3} (as ammonium nitrate) warranted significant mitigation control and redesign of both facilities. At the time the explosive gas evolution was discovered, the DWPF was already under construction and an immediate hardware fix in tandem with flowsheet changes was necessary. However, the Hanford Waste Vitrification Plant (HWVP) was in the design phase and could afford to take time to investigate flowsheet manipulations that could solve the problem, rather than a hardware fix. Thus, the HWVP began to investigate alternatives to using HCOOH in the vitrification process. This document describes the selection, evaluation criteria, and strategy used to evaluate the performance of the alternative chemical additives to CHOOH. The status of the evaluation is also discussed.

  12. Process for immobilizing plutonium into vitreous ceramic waste forms

    DOE Patents [OSTI]

    Feng, X.; Einziger, R.E.

    1997-08-12T23:59:59.000Z

    Disclosed is a method for converting spent nuclear fuel and surplus plutonium into a vitreous ceramic final waste form wherein spent nuclear fuel is bound in a crystalline matrix which is in turn bound within glass.

  13. Process for immobilizing plutonium into vitreous ceramic waste forms

    DOE Patents [OSTI]

    Feng, Xiangdong (Richland, WA); Einziger, Robert E. (Richland, WA)

    1997-01-01T23:59:59.000Z

    Disclosed is a method for converting spent nuclear fuel and surplus plutonium into a vitreous ceramic final waste form wherein spent nuclear fuel is bound in a crystalline matrix which is in turn bound within glass.

  14. Process for immobilizing plutonium into vitreous ceramic waste forms

    DOE Patents [OSTI]

    Feng, X.; Einziger, R.E.

    1997-01-28T23:59:59.000Z

    Disclosed is a method for converting spent nuclear fuel and surplus plutonium into a vitreous ceramic final waste form wherein spent nuclear fuel is bound in a crystalline matrix which is in turn bound within glass.

  15. Identification of existing waste heat recovery and process improvement technologies

    SciTech Connect (OSTI)

    Watts, R.L.; Dodge, R.E.; Smith, S.A.; Ames, K.R.

    1984-03-01T23:59:59.000Z

    General information is provided on waste heat recovery opportunities. The currently available equipment for high- and low-temperature applications are described. Other equipment related to wasteheat recovery equipment such as components, instruments and controls, and cleaning equipment is discussed briefly. A description of the microcomputer data base is included. Suppliers of waste heat equipment are mentioned throughout the report, with specific contacts, addresses, and telephone numbers provided in an Appendix.

  16. Large Precipitate Hydrolysis Aqueous (PHA) Heel Process Development for the Defense Waste Processing Facility (DWPF)

    SciTech Connect (OSTI)

    Lambert, D.P. [Westinghouse Savannah River Company, AIKEN, SC (United States); Boley, C.S.; Jacobs, R.A.

    1998-06-04T23:59:59.000Z

    A modification to the Precipitate Hydrolysis flowsheet used in DWPF Waste Qualification Runs has been developed.

  17. UNITED STATES DEPARTMENT OF ENERGY OFFICE OF ENVIRONMENTAL MANAGEMENT WASTE PROCESSING ANNUAL TECHNOLOGY DEVELOPMENT REPORT 2008

    SciTech Connect (OSTI)

    Bush, S.

    2009-11-05T23:59:59.000Z

    The Office of Waste Processing identifies and reduces engineering and technical risks and uncertainties of the waste processing programs and projects of the Department of Energy's Environmental Management (EM) mission through the timely development of solutions to technical issues. The risks, and actions taken to mitigate those risks, are determined through technology readiness assessments, program reviews, technology information exchanges, external technical reviews, technical assistance, and targeted technology development and deployment. The Office of Waste Processing works with other DOE Headquarters offices and project and field organizations to proactively evaluate technical needs, identify multi-site solutions, and improve the technology and engineering associated with project and contract management. Participants in this program are empowered with the authority, resources, and training to implement their defined priorities, roles, and responsibilities. The Office of Waste Processing Multi-Year Program Plan (MYPP) supports the goals and objectives of the U.S. Department of Energy (DOE) - Office of Environmental Management Engineering and Technology Roadmap by providing direction for technology enhancement, development, and demonstration that will lead to a reduction of technical risks and uncertainties in EM waste processing activities. The MYPP summarizes the program areas and the scope of activities within each program area proposed for the next five years to improve safety and reduce costs and environmental impacts associated with waste processing; authorized budget levels will impact how much of the scope of activities can be executed, on a year-to-year basis. Waste Processing Program activities within the Roadmap and the MYPP are described in these seven program areas: (1) Improved Waste Storage Technology; (2) Reliable and Efficient Waste Retrieval Technologies; (3) Enhanced Tank Closure Processes; (4) Next-Generation Pretreatment Solutions; (5) Enhanced Stabilization Technologies; (6) Spent Nuclear Fuel; and (7) Challenging Materials. This report provides updates on 35 technology development tasks conducted during calendar year 2008 in the Roadmap and MYPP program areas.

  18. Emissions model of waste treatment operations at the Idaho Chemical Processing Plant

    SciTech Connect (OSTI)

    Schindler, R.E.

    1995-03-01T23:59:59.000Z

    An integrated model of the waste treatment systems at the Idaho Chemical Processing Plant (ICPP) was developed using a commercially-available process simulation software (ASPEN Plus) to calculate atmospheric emissions of hazardous chemicals for use in an application for an environmental permit to operate (PTO). The processes covered by the model are the Process Equipment Waste evaporator, High Level Liquid Waste evaporator, New Waste Calcining Facility and Liquid Effluent Treatment and Disposal facility. The processes are described along with the model and its assumptions. The model calculates emissions of NO{sub x}, CO, volatile acids, hazardous metals, and organic chemicals. Some calculated relative emissions are summarized and insights on building simulations are discussed.

  19. The release of technetium from defense waste processing facility glasses

    SciTech Connect (OSTI)

    Ebert, W.L.; Wolf, S.F.; Bates, J.K.

    1995-12-31T23:59:59.000Z

    Laboratory tests are being, conducted using two radionuclide-doped Defense Waste Processing, Facility (DWPF) glasses (referred to as SRL 13IA and SRL 202A) to characterize the effects of the glass surface area/solution volume (SN) ratio on the release and disposition of {Tc} and several actinide elements. Tests are being conducted at 90{degrees}C in a tuff ground water solution at SN ratios of 10, 2000, and 20,000 m{sup {minus}1} and have been completed through 1822 days. The formation of certain alteration phases in tests at 2000 and 20,000 m{sup {minus}1} results in an increase in the dissolution rates of both classes. The release of {Tc} parallels that of B and Na under most test conditions and its release increases when alteration phases form. However, in tests with SRL 202A glass at 20,000 ,{sup {minus}1}, the {Tc} concentration in solution decreases coincidentally with an increase in the nitrite/nitrate ratio that indicates a decrease in the solution Eh. This may have occurred due to radiolysis, glass dissolution, the formation of alteration phases, or vessel interactions. Technetium that was reduced from {Tc}(VII) to {Tc}(IV) may have precipitated, thou-h the amount of {Tc} was too low to detect any {Tc}-bearing phases. These results show the importance of conducting long-term tests with radioactive glasses to characterize the behavior of radionuclides, rather than relying on the observed behavior of nonradioactive surrogates.

  20. Hanford tank waste simulants specification and their applicability for the retrieval, pretreatment, and vitrification processes

    SciTech Connect (OSTI)

    GR Golcar; NG Colton; JG Darab; HD Smith

    2000-04-04T23:59:59.000Z

    A wide variety of waste simulants were developed over the past few years to test various retrieval, pretreatment and waste immobilization technologies and unit operations. Experiments can be performed cost-effectively using non-radioactive waste simulants in open laboratories. This document reviews the composition of many previously used waste simulants for remediation of tank wastes at the Hanford reservation. In this review, the simulants used in testing for the retrieval, pretreatment, and vitrification processes are compiled, and the representative chemical and physical characteristics of each simulant are specified. The retrieval and transport simulants may be useful for testing in-plant fluidic devices and in some cases for filtration technologies. The pretreatment simulants will be useful for filtration, Sr/TRU removal, and ion exchange testing. The vitrification simulants will be useful for testing melter, melter feed preparation technologies, and for waste form evaluations.

  1. Demonstrating Reliable High Level Waste Slurry Sampling Techniques to Support Hanford Waste Processing

    SciTech Connect (OSTI)

    Kelly, Steven E.

    2013-11-11T23:59:59.000Z

    The Hanford Tank Operations Contractor (TOC) and the Hanford Waste Treatment and Immobilization Plant (WTP) contractor are both engaged in demonstrating mixing, sampling, and transfer system capability using simulated Hanford High-Level Waste (HL W) formulations. This work represents one of the remaining technical issues with the high-level waste treatment mission at Hanford. The TOC must demonstrate the ability to adequately mix and sample high-level waste feed to meet the WTP Waste Acceptance Criteria and Data Quality Objectives. The sampling method employed must support both TOC and WTP requirements. To facilitate information transfer between the two facilities the mixing and sampling demonstrations are led by the One System Integrated Project Team. The One System team, Waste Feed Delivery Mixing and Sampling Program, has developed a full scale sampling loop to demonstrate sampler capability. This paper discusses the full scale sampling loops ability to meet precision and accuracy requirements, including lessons learned during testing. Results of the testing showed that the Isolok(R) sampler chosen for implementation provides precise, repeatable results. The Isolok(R) sampler accuracy as tested did not meet test success criteria. Review of test data and the test platform following testing by a sampling expert identified several issues regarding the sampler used to provide reference material used to judge the Isolok's accuracy. Recommendations were made to obtain new data to evaluate the sampler's accuracy utilizing a reference sampler that follows good sampling protocol.

  2. Adsorption/Membrane Filtration as a Contaminant Concentration and Separation Process for Mixed Wastes and Tank Wastes - Final Report

    SciTech Connect (OSTI)

    Benjamin, M.M.

    1999-10-01T23:59:59.000Z

    This project was conducted to evaluate novel approaches for removing radioactive strontium (Sr) and cesium (Cs) from the tank wastes. The bulk of the Sr removal research conducted as part of this project investigated adsorption of Sr onto a novel adsorbent known as iron-oxide-coated sand. The second major focus of the work was on the removal of cesium. Since the chemistries of strontium and cesium have little commonality, different materials (namely, cesium scavengers known as hexacyanoferrates, HCFs) were employed in these tests. This study bridged several scientific areas and yielded valuable knowledge for implementing new technological processes. The applicability of the results extends beyond the highly specialized application niches investigated experimentally to other issues of potential interest for EMSP programs (e.g., separation of chromium from a variety of wastes using IOCS, separation of Cs from neutral and acidic wastes with EC-controlled HCFs).

  3. Leaching characteristics of the metal waste form from the electrometallurgical treatment process: Product consistency testing

    SciTech Connect (OSTI)

    Johnson, S. G.; Keiser, D. D.; Frank, S. M.; DiSanto, T.; Noy, M.

    1999-11-11T23:59:59.000Z

    Argonne National Laboratory is developing an electrometallurgical treatment for spent fuel from the experimental breeder reactor II. A product of this treatment process is a metal waste form that incorporates the stainless steel cladding hulls, zirconium from the fuel and the fission products that are noble to the process, i.e., Tc, Ru, Nb, Pd, Rh, Ag. The nominal composition of this waste form is stainless steel/15 wt% zirconium/1--4 wt% noble metal fission products/1--2 wt % U. Leaching results are presented from several tests and sample types: (1) 2 week monolithic immersion tests on actual metal waste forms produced from irradiated cladding hulls, (2) long term (>2 years) pulsed flow tests on samples containing technetium and uranium and (3) crushed sample immersion tests on cold simulated metal waste form samples. The test results will be compared and their relevance for waste form product consistency testing discussed.

  4. Waste Heat Management Options for Improving Industrial Process Heating

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: SinceDevelopment | Department ofPartnerships Toolkit VoluntaryHURRICANELocalDepartmentSystems |

  5. Waste Heat Management Options: Industrial Process Heating Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: SinceDevelopment | Department ofPartnerships Toolkit VoluntaryHURRICANELocalDepartmentSystems

  6. Final Report - "Foaming and Antifoaming and Gas Entrainment in Radioactive Waste Pretreatment and Immobilization Processes"

    SciTech Connect (OSTI)

    Wasan, Darsh T.

    2007-10-09T23:59:59.000Z

    The Savannah River Site (SRS) and Hanford site are in the process of stabilizing millions of gallons of radioactive waste slurries remaining from production of nuclear materials for the Department of Energy (DOE). The Defense Waste Processing Facility (DWPF) at SRS is currently vitrifying the waste in borosilicate glass, while the facilities at the Hanford site are in the construction phase. Both processes utilize slurry-fed joule-heated melters to vitrify the waste slurries. The DWPF has experienced difficulty during operations. The cause of the operational problems has been attributed to foaming, gas entrainment and the rheological properties of the process slurries. The rheological properties of the waste slurries limit the total solids content that can be processed by the remote equipment during the pretreatment and meter feed processes. Highly viscous material can lead to air entrainment during agitation and difficulties with pump operations. Excessive foaming in waste evaporators can cause carryover of radionuclides and non-radioactive waste to the condensate system. Experimental and theoretical investigations of the surface phenomena, suspension rheology and bubble generation of interactions that lead to foaming and air entrainment problems in the DOE High Level and Low Activity Radioactive Waste separation and immobilization processes were pursued under this project. The first major task accomplished in the grant proposal involved development of a theoretical model of the phenomenon of foaming in a three-phase gas-liquid-solid slurry system. This work was presented in a recently completed Ph.D. thesis (9). The second major task involved the investigation of the inter-particle interaction and microstructure formation in a model slurry by the batch sedimentation method. Both experiments and modeling studies were carried out. The results were presented in a recently completed Ph.D. thesis. The third task involved the use of laser confocal microscopy to study the effectiveness of three slurry rheology modifiers. An effective modifier was identified which resulted in lowering the yield stress of the waste simulant. Therefore, the results of this research have led to the basic understanding of the foaming/antifoaming mechanism in waste slurries as well as identification of a rheology modifier, which enhances the processing throughput, and accelerates the DOE mission. The objectives of this research effort were to develop a fundamental understanding of the physico-chemical mechanisms that produced foaming and air entrainment in the DOE High Level (HLW) and Low Activity (LAW) radioactive waste separation and immobilization processes, and to develop and test advanced antifoam/defoaming/rheology modifier agents. Antifoams/rheology modifiers developed from this research ere tested using non-radioactive simulants of the radioactive wastes obtained from Hanford and the Savannah River Site (SRS).

  7. thermochemical conversion (TCC) process of swine manure as an alternative means of waste

    E-Print Network [OSTI]

    He, Brian

    substantially reduce the waste strength of swine manure slurry but also produce renewable energy. The end was historically linked to hydrogenation and other high-pressure thermal decomposition processes of coal

  8. Evaluation of Seafood Processing Wastes in Prepared Feeds for Red Drum (Sciaenops ocellatus)

    E-Print Network [OSTI]

    Pernu, Benjamin Mark

    2012-07-16T23:59:59.000Z

    High feed costs and increasing demand for fishmeal have intensified the search for alternative protein sources which are needed to allow world aquaculture to continue expanding. A severely underused marine resource is processing wastes of various...

  9. Economic comparison of centralizing or decentralizing processing facilities for defense transuranic waste

    SciTech Connect (OSTI)

    Brown, C M

    1980-07-01T23:59:59.000Z

    This study is part of a set of analyses under direction of the Transuranic Waste Management Program designed to provide comprehensive, systematic methodology and support necessary to better understand options for national long-term management of transuranic (TRU) waste. The report summarizes activities to evaluate the economics of possible alternatives in locating facilities to process DOE-managed transuranic waste. The options considered are: (1) Facilities located at all major DOE TRU waste generating sites. (2) Two or three regional facilities. (3) Central processing facility at only one DOE site. The study concludes that processing at only one facility is the lowest cost option, followed, in order of cost, by regional then individual site processing.

  10. Process Waste Heat Recovery in the Food Industry - A System Analysis

    E-Print Network [OSTI]

    Lundberg, W. L.; Mutone, G. A.

    1983-01-01T23:59:59.000Z

    An analysis of an industrial waste heat recovery system concept is discussed. For example purposes, a food processing plant operating an ammonia refrigeration system for storage and blast freezing is considered. Heat is withdrawn from...

  11. Radioactive Waste Conditioning, Immobilisation, And Encapsulation Processes And Technologies: Overview And Advances (Chapter 7)

    SciTech Connect (OSTI)

    Jantzen, Carol M. [Savannah River National Lab., Aiken SC (United States); Lee, William E. [Imperial College, London (United Kingdom). Dept. of Materials; Ojovan, Michael I. [Univ. of Sheffield (United Kingdom). Dept. of Materials Science and Engineering

    2012-10-19T23:59:59.000Z

    The main immobilization technologies that are available commercially and have been demonstrated to be viable are cementation, bituminization, and vitrification. Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in either alkali borosilicate glass or alkali aluminophosphate glass. The exact compositions of nuclear waste glasses are tailored for easy preparation and melting, avoidance of glass-in-glass phase separation, avoidance of uncontrolled crystallization, and acceptable chemical durability, e.g., leach resistance. Glass has also been used to stabilize a variety of low level wastes (LLW) and mixed (radioactive and hazardous) low level wastes (MLLW) from other sources such as fuel rod cladding/decladding processes, chemical separations, radioactive sources, radioactive mill tailings, contaminated soils, medical research applications, and other commercial processes. The sources of radioactive waste generation are captured in other chapters in this book regarding the individual practices in various countries (legacy wastes, currently generated wastes, and future waste generation). Future waste generation is primarily driven by interest in sources of clean energy and this has led to an increased interest in advanced nuclear power production. The development of advanced wasteforms is a necessary component of the new nuclear power plant (NPP) flowsheets. Therefore, advanced nuclear wasteforms are being designed for robust disposal strategies. A brief summary is given of existing and advanced wasteforms: glass, glass-ceramics, glass composite materials (GCM’s), and crystalline ceramic (mineral) wasteforms that chemically incorporate radionuclides and hazardous species atomically in their structure. Cementitious, geopolymer, bitumen, and other encapsulant wasteforms and composites that atomically bond and encapsulate wastes are also discussed. The various processing technologies are cross-referenced to the various types of wasteforms since often a particular type of wasteform can be made by a variety of different processing technologies.

  12. Electromagnetic mixed waste processing system for asbestos decontamination

    SciTech Connect (OSTI)

    Kasevich, R.S.; Vaux, W.G.; Nocito, T.

    1995-12-01T23:59:59.000Z

    DOE sites contain a broad spectrum of asbestos materials (cloth, pipe lagging, sprayed insulation and other substances) which are contaminated with a combination of hazardous and radioactive wastes due to its use during the development of the U.S. nuclear weapons complex. These wastes consist of cutting oils, lubricants, solvents, PCB`s, heavy metals and radioactive contaminants. The radioactive contaminants are the activation, decay and fission products of DOE operations. The asbestos must be converted by removing and separating the hazardous and radioactive materials to prevent the formation of mixed wastes and to allow for both sanitary disposal and effective decontamination. Currently, no technology exists that can meet these sanitary and other objectives.

  13. Formulation and Characterization of Waste Glasses with Varying Processing Temperature

    SciTech Connect (OSTI)

    Kim, Dong-Sang; Schweiger, M. J.; Rodriguez, Carmen P.; Lepry, William C.; Lang, Jesse B.; Crum, Jarrod V.; Vienna, John D.; Johnson, Fabienne; Marra, James C.; Peeler, David K.

    2011-10-17T23:59:59.000Z

    This report documents the preliminary results of glass formulation and characterization accomplished within the finished scope of the EM-31 technology development tasks for WP-4 and WP-5, including WP-4.1.2: Glass Formulation for Next Generation Melter, WP-5.1.2.3: Systematic Glass Studies, and WP-5.1.2.4: Glass Formulation for Specific Wastes. This report also presents the suggested studies for eventual restart of these tasks. The initial glass formulation efforts for the cold crucible induction melter (CCIM), operating at {approx}1200 C, with selected HLW (AZ-101) and LAW (AN-105) successfully developed glasses with significant increase of waste loading compared to that is likely to be achieved based on expected reference WTP formulations. Three glasses formulated for AZ-101HLW and one glass for AN-105 LAW were selected for the initial CCIM demonstration melter tests. Melter tests were not performed within the finished scope of the WP-4.1.2 task. Glass formulations for CCIM were expanded to cover additional HLWs that have high potential to successfully demonstrate the unique advantages of the CCIM technologies based on projected composition of Hanford wastes. However, only the preliminary scoping tests were completed with selected wastes within the finished scope. Advanced glass formulations for the reference WTP melter, operating at {approx}1200 C, were initiated with selected specific wastes to determine the estimated maximum waste loading. The incomplete results from these initial formulation efforts are summarized. For systematic glass studies, a test matrix of 32 high-aluminum glasses was completed based on a new method developed in this study.

  14. Precipitate hydrolysis process for the removal of organic compounds from nuclear waste slurries

    DOE Patents [OSTI]

    Doherty, J.P.; Marek, J.C.

    1987-02-25T23:59:59.000Z

    A process for removing organic compounds from a nuclear waste slurry comprising reacting a mixture of radioactive waste precipitate slurry and an acid in the presence of a catalytically effective amount of a copper(II) catalyst whereby the organic compounds in the precipitate slurry are hydrolyzed to form volatile organic compounds which are separated from the reacting mixture. The resulting waste slurry, containing less than 10 percent of the original organic compounds, is subsequently blended with high level radioactive sludge land transferred to a vitrification facility for processing into borosilicate glass for long-term storage. 2 figs., 3 tabs.

  15. Technical work plan for the privatization waste characterization data quality objective process

    SciTech Connect (OSTI)

    Kirkbride, R.A.

    1996-04-24T23:59:59.000Z

    This work plan addresses the activities necessary to complete the data quality objectives process for the purpose of providing sufficient characterization information to successfully stage, pretreat, and immobilize low-activity waste per the requirements and specifications identified in the Tank Waste Remediation System Privatization Request for Proposal. The scope of this task is to complete the data quality objectives process, the results of which will provide a technical basis for sampling and characterization needs related to privatization of pretreatment and low-activity waste immobilization.

  16. Precipitate hydrolysis process for the removal of organic compounds from nuclear waste slurries

    DOE Patents [OSTI]

    Doherty, Joseph P. (Elkton, MD); Marek, James C. (Augusta, GA)

    1989-01-01T23:59:59.000Z

    A process for removing organic compounds from a nuclear waste slurry comprising reacting a mixture of radioactive waste precipitate slurry and an acid in the presence of a catalytically effective amount of a copper (II) catalyst whereby the organic compounds in the precipitate slurry are hydrolyzed to form volatile organic compounds which are separated from the reacting mixture. The resulting waste slurry, containing less than 10 percent of the orginal organic compounds, is subsequently blended with high level radioactive sludge and transferred to a virtrification facility for processing into borosilicate glass for long-term storage.

  17. Waste Receiving and Processing Facility Module 2A: Advanced Conceptual Design Report. Volume 2

    SciTech Connect (OSTI)

    Not Available

    1994-03-01T23:59:59.000Z

    This volume presents the Total Estimated Cost (TEC) for the WRAP (Waste Receiving and Processing) 2A facility. The TEC is $81.9 million, including an overall project contingency of 25% and escalation of 13%, based on a 1997 construction midpoint. (The mission of WRAP 2A is to receive, process, package, certify, and ship for permanent burial at the Hanford site disposal facilities the Category 1 and 3 contact handled low-level radioactive mixed wastes that are currently in retrievable storage, and are forecast to be generated over the next 30 years by Hanford, and waste to be shipped to Hanford site from about 20 DOE sites.)

  18. Environmental impacts of unmanaged solid waste at a former base metal mining and ore processing site (Kirki, Greece)

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Environmental impacts of unmanaged solid waste at a former base metal mining and ore processing-00553648,version1-30Jan2014 Author manuscript, published in "Waste Management & Research 28, 11 (2010) p, among the mining waste abandoned at a mine and processing plant, the most critical potential pollution

  19. Process for immobilizing radioactive boric acid liquid wastes

    DOE Patents [OSTI]

    Greenhalgh, Wilbur O. (Richland, WA)

    1986-01-01T23:59:59.000Z

    A method of immobilizing boric acid liquid wastes containing radionuclides by neutralizing the solution and evaporating the resulting precipitate to near dryness. The dry residue is then fused into a reduced volume, insoluble, inert, solid form containing substantially all the radionuclides.

  20. Process for immobilizing radioactive boric acid liquid wastes

    DOE Patents [OSTI]

    Greenhalgh, W.O.

    1984-05-10T23:59:59.000Z

    Disclosed is a method of immobilizing boric acid liquid wastes containing radionuclides by neutralizing the solution and evaporating the resulting precipitate to near dryness. The dry residue is then fused into a reduced volume, insoluble, inert, solid form containing substantially all the radionuclides.

  1. Recovery of Valuable Chlorosilane Intermediates by a Novel Waste Conversion Process

    SciTech Connect (OSTI)

    J. Ashley Brinson

    2002-06-20T23:59:59.000Z

    From 1994 to 2001, Dow Corning studied a waste recycling process to recover direct process residues (DPR) resulting from the production of silicone precursors. Over the course of eight years, Dow Corning constructed and operated a pilot plant, a small scale commercial plant, and a full scale plant. The process reacts DPR with hydrogen and chlorosilane monomers at high temperature and high pressure. The process converted 85% of the DPR to valuable chlorosilane monomers such as dimethyldichlorosilane and methyldichlorosilane. When feeding methyltrichlorosilane, the process converted 30% of the MeSiCl3 to other monomers. Alternate co-feed monomers were tested. By converting waste DPR to valuable intermediates, the technology significantly reduces waste from the basic silicones manufacturing process.

  2. Pervaporation process and use in treating waste stream from glycol dehydrator

    DOE Patents [OSTI]

    Kaschemekat, Jurgen (Campbell, CA); Baker, Richard W. (Palo Alto, CA)

    1994-01-01T23:59:59.000Z

    Pervaporation processes and apparatus with few moving parts. Ideally, only one pump is used to provide essentially all of the motive power and driving force needed. The process is particularly useful for handling small streams with flow rates less than about 700 gpd. Specifically, the process can be used to treat waste streams from glycol dehydrator regeneration units.

  3. Waste Receiving and Processing (WRAP) Facility Final Safety Analysis Report (FSAR)

    SciTech Connect (OSTI)

    TOMASZEWSKI, T.A.

    2000-04-25T23:59:59.000Z

    The Waste Receiving and Processing Facility (WRAP), 2336W Building, on the Hanford Site is designed to receive, confirm, repackage, certify, treat, store, and ship contact-handled transuranic and low-level radioactive waste from past and present U.S. Department of Energy activities. The WRAP facility is comprised of three buildings: 2336W, the main processing facility (also referred to generically as WRAP); 2740W, an administrative support building; and 2620W, a maintenance support building. The support buildings are subject to the normal hazards associated with industrial buildings (no radiological materials are handled) and are not part of this analysis except as they are impacted by operations in the processing building, 2336W. WRAP is designed to provide safer, more efficient methods of handling the waste than currently exist on the Hanford Site and contributes to the achievement of as low as reasonably achievable goals for Hanford Site waste management.

  4. Alternatives for high-level waste forms, containers, and container processing systems

    SciTech Connect (OSTI)

    Crawford, T.W.

    1995-09-22T23:59:59.000Z

    This study evaluates alternatives for high-level waste forms, containers, container processing systems, and onsite interim storage. Glass waste forms considered are cullet, marbles, gems, and monolithic glass. Small and large containers configured with several combinations of overpack confinement and shield casks are evaluated for these waste forms. Onsite interim storage concepts including canister storage building, bore holes, and storage pad were configured with various glass forms and canister alternatives. All favorable options include the monolithic glass production process as the waste form. Of the favorable options the unshielded 4- and 7-canister overpack options have the greatest technical assurance associated with their design concepts due to their process packaging and storage methods. These canisters are 0.68 m and 0.54 m in diameter respectively and 4.57 m tall. Life-cycle costs are not a discriminating factor in most cases, varying typically less than 15 percent.

  5. INSTALLATION OF BUBBLERS IN THE SAVANNAH RIVER SITED DEFENSE WASTE PROCESSING FACILITY MELTER

    SciTech Connect (OSTI)

    Smith, M.; Iverson, D.

    2010-12-08T23:59:59.000Z

    Savannah River Remediation (SRR) LLC assumed the liquid waste contract at the Savannah River Site (SRS) in the summer of 2009. The main contractual agreement was to close 22 High Level Waste (HLW) tanks in eight years. To achieve this aggressive commitment, faster waste processing throughout the SRS liquid waste facilities will be required. Part of the approach to achieve faster waste processing is to increase the canister production rate of the Defense Waste Processing Facility (DWPF) from approximately 200 canisters filled with radioactive waste glass per year to 400 canisters per year. To reach this rate for melter throughput, four bubblers were installed in the DWPF Melter in the late summer of 2010. This effort required collaboration between SRR, SRR critical subcontractor EnergySolutions, and Savannah River Nuclear Solutions, including the Savannah River National Laboratory (SRNL). The tasks included design and fabrication of the bubblers and related equipment, testing of the bubblers for various technical issues, the actual installation of the bubblers and related equipment, and the initial successful operation of the bubblers in the DWPF Melter.

  6. US Department of Energy mixed waste characterization, treatment, and disposal focus area technical baseline development process

    SciTech Connect (OSTI)

    Roach, J.A.; Gombert, D. [Lockheed Martin Idaho Technologies, Idaho Falls, ID (United States)

    1996-12-31T23:59:59.000Z

    The US Department of Energy (DOE) created the Mixed Waste Characterization, Treatment, and Disposal Focus Area (MWFA) to develop and facilitate implementation of technologies required to meet its commitments for treatment of mixed wastes under the Federal Facility Compliance Act (FFCA), and in accordance with the Land Disposal Restrictions (LDR) of the Resource Conservation and Recovery Act (RCRA). Mixed wastes include both mixed low-level waste (MLLW) and mixed transuranic (MTRU) waste. The goal of the MWFA is to develop mixed waste treatment systems to the point of implementation by the Environmental Management (EM) customer. To accomplish this goal, the MWFA is utilizing a three step process. First, the treatment system technology deficiencies were identified and categorized. Second, these identified needs were prioritized. This resulted in a list of technical deficiencies that will be used to develop a technical baseline. The third step, the Technical Baseline Development Process, is currently ongoing. When finalized, the technical baseline will integrate the requirements associated with the identified needs into the planned and ongoing environmental research and technology development activities supported by the MWFA. Completion of this three-step process will result in a comprehensive technology development program that addresses customer identified and prioritized needs. The MWFA technical baseline will be a cost-effective, technically-defensible tool for addressing and resolving DOE`s mixed waste problems.

  7. November 8, 1983: Defense Waste Processing Facility | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEW HAMPSHIREofNewsletterEnergySeptemberTechnologies8,November8,

  8. Independent Oversight Review, Savannah River Site Salt Waste Processing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of BlytheDepartment of EnergyTreatment and Immobilization|Department

  9. Using Waste Heat for External Processes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: SinceDevelopment | Department of Energy $18UnrevisedCool RoofInitiativesUsing

  10. Center for Lightweighting Automotive Materials and Processing | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platformBuilding RemovalCSS LetterStateDepartment ofEqualityCellulosicof

  11. Alcohol-free alkoxide process for containing nuclear waste

    DOE Patents [OSTI]

    Pope, James M. (Monroeville, PA); Lahoda, Edward J. (Edgewood, PA)

    1984-01-01T23:59:59.000Z

    Disclosed is a method of containing nuclear waste. A composition is first prepared of about 25 to about 80%, calculated as SiO.sub.2, of a partially hydrolyzed silicon compound, up to about 30%, calculated as metal oxide, of a partially hydrolyzed aluminum or calcium compound, about 5 to about 20%, calculated as metal oxide, of a partially hydrolyzed boron or calcium compound, about 3 to about 25%, calculated as metal oxide, of a partially hydrolyzed sodium, potassium or lithium compound, an alcohol in a weight ratio to hydrolyzed alkoxide of about 1.5 to about 3% and sufficient water to remove at least 99% of the alcohol as an azeotrope. The azeotrope is boiled off and up to about 40%, based on solids in the product, of the nuclear waste, is mixed into the composition. The mixture is evaporated to about 25 to about 45% solids and is melted and cooled.

  12. New Facility Saves $20 Million, Accelerates Waste Processing | Department

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011R - 445 CU - 2

  13. Savannah River Site - Salt Waste Processing Facility Independent Technical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG -Energy Proposed1-E WholesaleStuderand|Review

  14. Savannah River Site Salt Waste Processing Facility Technology Readiness

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG -Energy Proposed1-EReview |Department

  15. Independent Oversight Review, Savannah River Site Salt Waste Processing

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov.Energy02.pdf7 OPAM Flash2011-37EnergySubmitRoad2007 |Department of

  16. Molecular Monte Carlo Simulations Using Graphics Processing Units: To Waste

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee the Foundry's full equipment

  17. Using Waste Heat for External Processes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02 TUE 08:59 FAXFact SheetConditionsOwnersUsing

  18. EPA Citizens Guide to Hazardous Waste Permitting Process | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale,South, NewDyer County,ECO2LtdLegal

  19. Independent Oversight Review, Oak Ridge Transuranic Waste Processing

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions for DOEthe RankingReform atSolar2014 | Department ofDepartment|Center,

  20. Independent Oversight Assessment, Salt Waste Processing Facility Project -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovement of theResponsesImmobilization2013Wasteof2012

  1. Independent Oversight Review, Oak Ridge Transuranic Waste Processing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovement ofDecember 2001Department|

  2. Independent Oversight Review, Savannah River Site Salt Waste Processing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovement ofDecemberPlateau Remediationof

  3. Independent Oversight Review, Savannah River Site Salt Waste Processing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovement ofDecemberPlateau RemediationofFacility - August

  4. Formic Acid Free Flowsheet Development To Eliminate Catalytic Hydrogen Generation In The Defense Waste Processing

    SciTech Connect (OSTI)

    Lambert, Dan P.; Stone, Michael E.; Newell, J. David; Fellinger, Terri L.; Bricker, Jonathan M.

    2012-09-14T23:59:59.000Z

    The Defense Waste Processing Facility (DWPF) processes legacy nuclear waste generated at the Savannah River Site (SRS) during production of plutonium and tritium demanded by the Cold War. The nuclear waste is first treated via a complex sequence of controlled chemical reactions and then vitrified into a borosilicate glass form and poured into stainless steel canisters. Converting the nuclear waste into borosilicate glass canisters is a safe, effective way to reduce the volume of the waste and stabilize the radionuclides. Testing was initiated to determine whether the elimination of formic acid from the DWPF's chemical processing flowsheet would eliminate catalytic hydrogen generation. Historically, hydrogen is generated in chemical processing of alkaline High Level Waste sludge in DWPF. In current processing, sludge is combined with nitric and formic acid to neutralize the waste, reduce mercury and manganese, destroy nitrite, and modify (thin) the slurry rheology. The noble metal catalyzed formic acid decomposition produces hydrogen and carbon dioxide. Elimination of formic acid by replacement with glycolic acid has the potential to eliminate the production of catalytic hydrogen. Flowsheet testing was performed to develop the nitric-glycolic acid flowsheet as an alternative to the nitric-formic flowsheet currently being processed at the DWPF. This new flowsheet has shown that mercury can be reduced and removed by steam stripping in DWPF with no catalytic hydrogen generation. All processing objectives were also met, including greatly reducing the Slurry Mix Evaporator (SME) product yield stress as compared to the baseline nitric/formic flowsheet. Ten DWPF tests were performed with nonradioactive simulants designed to cover a broad compositional range. No hydrogen was generated in testing without formic acid.

  5. Re-refining of Waste Oil Solvent Is Used in Treatment/Distillation Process

    E-Print Network [OSTI]

    unknown authors

    INDUSTRIAL APPLICATION. A combination solvent treatment/distillation process has been designed for re-refining industrial waste oil (such as equipment lubricants, metal-working oil, and process oil) and used automotive lubricants (engine oil, hydraulic oil, and gear oil) for reuse. WASTE ENERGY RECOVERY. Recycling of waste oil in the United States has the potential to save the energy equivalent of 7-12 million bbl of crude oil annually.1 WASTE OIL RECOVERY. Prior to 1960, a significant portion of the demand for automotive lubricating oil was met by re-relined used oil. At the time, 150 re-refineries produced 300 million gal of motor oil annually. Since 1960, however, the production of re-refined oil has steadily declined. In 1981, for example, out of about 1.2 billion gal of automobile lubricating oil and 1.6 billion gal of industrial lubricating oils purchased, 25 U.S. rerefineries

  6. Processable Cyclic Peptide Nanotubes with Tunable Interiors | Center for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press Releases ArchiveServices » Guidance »Center forGas

  7. Center for Lightweighting Automotive Materials and Processing | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof EnergyAdministration-Desertof Energy Presentation from the U.S. DOE

  8. Center for Lightweighting Automotive Materials and Processing | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof EnergyAdministration-Desertof Energy Presentation from the U.S.

  9. Transfer Lines to Connect Liquid Waste Facilities and Salt Waste...

    Office of Environmental Management (EM)

    Transfer Lines to Connect Liquid Waste Facilities and Salt Waste Processing Facility Transfer Lines to Connect Liquid Waste Facilities and Salt Waste Processing Facility October...

  10. Tank waste remediation system privatization infrastructure program requirements and document management process guide

    SciTech Connect (OSTI)

    ROOT, R.W.

    1999-05-18T23:59:59.000Z

    This guide provides the Tank Waste Remediation System Privatization Infrastructure Program management with processes and requirements to appropriately control information and documents in accordance with the Tank Waste Remediation System Configuration Management Plan (Vann 1998b). This includes documents and information created by the program, as well as non-program generated materials submitted to the project. It provides appropriate approval/control, distribution and filing systems.

  11. Preliminary technical data summary No. 3 for the Defense Waste Processing Facility

    SciTech Connect (OSTI)

    Landon, L.F. (comp.)

    1980-05-01T23:59:59.000Z

    This document presents an update on the best information presently available for the purpose of establishing the basis for the design of a Defense Waste Processing Facility. Objective of this project is to provide a facility to fix the radionuclides present in Savannah River Plant (SRP) high-level liquid waste in a high-integrity form (glass). Flowsheets and material balances reflect the alternate CAB case including the incorporation of low-level supernate in concrete. (DLC)

  12. Review of Catalytic Hydrogen Generation in the Defense Waste Processing Facility (DWPF) Chemical Processing Cell

    SciTech Connect (OSTI)

    Koopman, D. C.

    2004-12-31T23:59:59.000Z

    This report was prepared to fulfill the Phase I deliverable for HLW/DWPF/TTR-98-0018, Rev. 2, ''Hydrogen Generation in the DWPF Chemical Processing Cell'', 6/4/2001. The primary objective for the preliminary phase of the hydrogen generation study was to complete a review of past data on hydrogen generation and to prepare a summary of the findings. The understanding was that the focus should be on catalytic hydrogen generation, not on hydrogen generation by radiolysis. The secondary objective was to develop scope for follow-up experimental and analytical work. The majority of this report provides a summary of past hydrogen generation work with radioactive and simulated Savannah River Site (SRS) waste sludges. The report also includes some work done with Hanford waste sludges and simulants. The review extends to idealized systems containing no sludge, such as solutions of sodium formate and formic acid doped with a noble metal catalyst. This includes general information from the literature, as well as the focused study done by the University of Georgia for the SRS. The various studies had a number of points of universal agreement. For example, noble metals, such as Pd, Rh, and Ru, catalyze hydrogen generation from formic acid and formate ions, and more acid leads to more hydrogen generation. There were also some points of disagreement between different sources on a few topics such as the impact of mercury on the noble metal catalysts and the identity of the most active catalyst species. Finally, there were some issues of potential interest to SRS that apparently have not been systematically studied, e.g. the role of nitrite ion in catalyst activation and reactivity. The review includes studies covering the period from about 1924-2002, or from before the discovery of hydrogen generation during simulant sludge processing in 1988 through the Shielded Cells qualification testing for Sludge Batch 2. The review of prior studies is followed by a discussion of proposed experimental work, additional data analysis, and future modeling programs. These proposals have led to recent investigations into the mercury issue and the effect of co-precipitating noble metals which will be documented in two separate reports. SRS hydrogen generation work since 2002 will also be collected and summarized in a future report on the effect of noble metal-sludge matrix interactions on hydrogen generation. Other potential factors for experimental investigation include sludge composition variations related to both the washing process and to the insoluble species with particular attention given to the role of silver and to improving the understanding of the interaction of nitrite ion with the noble metals.

  13. Environmental Assessment for the construction and operation of the Three Rivers Solid Waste Authority regional waste management center at the Savannah River Site

    SciTech Connect (OSTI)

    NONE

    1995-12-01T23:59:59.000Z

    This Environmental Assessment (EA) has been prepared by the US Department of Energy (DOE) to assess the potential environmental impacts associated with the construction and operation of a landfill and technology center for regionally-generated municipal solid waste at the Savannah River Site (SRS) near Aiken, South Carolina. The facility would serve the municipal solid waste disposal needs for SRS and at least nine of the surrounding counties who currently comprise the Three Rivers Solid Waste Authority (TRSWA). Additional counties could become included in the proposed action at some future date. Current Federal and state requirements do not afford individual counties and municipalities within the region encompassing SRS the ability to efficiently or economically operate modern waste management facilities. In addition, consolidation of regional municipal solid waste at one location would have the benefit of reducing the duplicity of environmental consequences associated with the construction and operation of county-level facilities. The option to seek a combined disposal and technology development facility based on a regionally-cooperative effort was selected as a viable alternative to the existing individual SRS or county disposal activities. This document was prepared in compliance with the National Environmental Policy Act (NEPA) of 1969, as amended, the requirements of the Council on Environmental Quality Regulations for Implementing NEPA (40 CFR Part 1021). NEPA requires the assessment of environmental consequences of Federal actions that may affect the quality of the human environment. Based on the potential for impacts described for impacts described herein, DOE will either publish a Finding of No Significant Impact or prepare an environmental impact statement (EIS).

  14. SCALE UP OF CERAMIC WASTE FORMS FOR THE EBR-II SPENT FUEL TREATMENT PROCESS

    SciTech Connect (OSTI)

    Matthew C. Morrison; Kenneth J. Bateman; Michael F. Simpson

    2010-11-01T23:59:59.000Z

    ABSTRACT SCALE UP OF CERAMIC WASTE FORMS FOR THE EBR-II SPENT FUEL TREATMENT PROCESS Matthew C. Morrison, Kenneth J. Bateman, Michael F. Simpson Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415 The ceramic waste process is the intended method for disposing of waste salt electrolyte, which contains fission products from the fuel-processing electrorefiners (ER) at the INL. When mixed and processed with other materials, the waste salt can be stored in a durable ceramic waste form (CWF). The development of the CWF has recently progressed from small-scale testing and characterization to full-scale implementation and experimentation using surrogate materials in lieu of the ER electrolyte. Two full-scale (378 kg and 383 kg) CWF test runs have been successfully completed with final densities of 2.2 g/cm3 and 2.1 g/cm3, respectively. The purpose of the first CWF was to establish material preparation parameters. The emphasis of the second pre-qualification test run was to evaluate a preliminary multi-section CWF container design. Other considerations were to finalize material preparation parameters, measure the material height as it consolidates in the furnace, and identify when cracking occurs during the CWF cooldown process.

  15. Voluntary Protection Program Onsite Review, Salt Waste Processing Facility

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3EDepartmentDepartment(GATE)Action Plan

  16. Voluntary Protection Program Onsite Review, Transuranic Waste Processing

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3EDepartmentDepartment(GATE)Action PlanNovember 2010 |

  17. Waste Processing Annual Technology Development Report 2007 | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradley Nickell Director ofDepartmentDRAFT -Wastein 2013

  18. Construction Begins on New Waste Processing Facility | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesville EnergyDepartment.AttachmentEnergyGenerating Facility

  19. Occurrence Reporting and Processing System (ORPS) - PISA: TRU Waste Drums

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferAprilOverviewEfficiency Improvements inWeatherization Funding

  20. Savannah River Site Marks Waste Processing Milestone with Melter's

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,Zaleski - Policy Advisor, Energy Department

  1. Treatment of liquid radioactive waste using combination of chemical processes with ultrafiltration

    SciTech Connect (OSTI)

    Zabrodsky, V.N.; Davidov, Y.P.; Toropov, I.G.; Glushko, A.S. [Academy of Sciences of Belarus, Minsk (Belarus). Inst. of Radioecological Problems; Efremenkov, V.M. [State Committee on Supervision of Industrial and Nuclear Safety, Minsk (Belarus)

    1993-12-31T23:59:59.000Z

    A combination of chemical processes and ultrafiltration was used for treatment of liquid radioactive wastes containing Cs, Sr, Pu by using large amounts of surfactants and complexing substances. The nature of carriers and conditions of complete separation of Cs and Sr are reported. The mechanisms of the processes are discussed.

  2. Laboratory Demonstration of the Pretreatment Process with Caustic and Oxidative Leaching Using Actual Hanford Tank Waste

    SciTech Connect (OSTI)

    Fiskum, Sandra K.; Billing, Justin M.; Buck, Edgar C.; Daniel, Richard C.; Draper, Kathryn E.; Edwards, Matthew K.; Jenson, Evan D.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Shimskey, Rick W.; Snow, Lanee A.

    2009-01-01T23:59:59.000Z

    This report describes the bench-scale pretreatment processing of actual tank waste materials through the entire baseline WTP pretreatment flowsheet in an effort to demonstrate the efficacy of the defined leaching processes on actual Hanford tank waste sludge and the potential impacts on downstream pretreatment processing. The test material was a combination of reduction oxidation (REDOX) tank waste composited materials containing aluminum primarily in the form of boehmite and dissolved S saltcake containing Cr(III)-rich entrained solids. The pretreatment processing steps tested included • caustic leaching for Al removal • solids crossflow filtration through the cell unit filter (CUF) • stepwise solids washing using decreasing concentrations of sodium hydroxide with filtration through the CUF • oxidative leaching using sodium permanganate for removing Cr • solids filtration with the CUF • follow-on solids washing and filtration through the CUF • ion exchange processing for Cs removal • evaporation processing of waste stream recycle for volume reduction • combination of the evaporated product with dissolved saltcake. The effectiveness of each process step was evaluated by following the mass balance of key components (such as Al, B, Cd, Cr, Pu, Ni, Mn, and Fe), demonstrating component (Al, Cr, Cs) removal, demonstrating filterability by evaluating filter flux rates under various processing conditions (transmembrane pressure, crossflow velocities, wt% undissolved solids, and PSD) and filter fouling, and identifying potential issues for WTP. The filterability was reported separately (Shimskey et al. 2008) and is not repeated herein.

  3. Transfer Lines to Connect Liquid Waste Facilities and Salt Waste Processing

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23,EnergyChicopeeTechnologyfact sheet

  4. Section 08: Approval Process for Waste Shipment From Waste Generator Sites

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking Over OurSecretary of Energy12,Rod Borupfor

  5. Conditioning matrices from high level waste resulting from pyrochemical processing in fluorine salt

    SciTech Connect (OSTI)

    Grandjean, Agnes; Advocat, Thierry; Bousquet, Nicolas [SCDV - Service de Confinement des Dechets et Vitrification - Laboratoire d'Etudes de Base sur les Verres, CEA Valrho, Centre de Marcoule, 30207 Bagnols sur Ceze (France); Jegou, Christophe [SECM - Service d'Etude du Confinement et Materiaux - Laboratoire des Materiaux et Procedes Actifs - CEA Valrho, Centre de Marcoule, 30207 Bagnols sur Ceze (France)

    2007-07-01T23:59:59.000Z

    Separating the actinides from the fission products through reductive extraction by aluminium in a LiF/AlF{sub 3} medium is a process investigated for pyrometallurgical reprocessing of spent fuel. The process involves separation by reductive salt-metal extraction. After dissolving the fuel or the transmutation target in a salt bath, the noble metal fission products are first extracted by contacting them with a slightly reducing metal. After extracting the metal fission products, then the actinides are selectively separated from the remaining fission products. In this hypothesis, all the unrecoverable fission products would be conditioned as fluorides. Therefore, this process will generate first a metallic waste containing the 'reducible' fission products (Pd, Mo, Ru, Rh, Tc, etc.) and a fluorine waste containing alkali-metal, alkaline-earth and rare earth fission products. Immobilization of these wastes in classical borosilicate glasses is not feasible due to the very low solubility of noble metals, and of fluoride in these hosts. Alternative candidates have therefore been developed including silicate glass/ceramic system for fluoride fission products and metallic ones for noble metal fission products. These waste-forms were evaluated for their confinement properties like homogeneity, waste loading, volatility during the elaboration process, chemical durability, etc. using appropriate techniques. (authors)

  6. CHARACTERIZATION OF INDIVIDUAL CHEMICAL REACTIONS CONSUMING ACID DURING NUCLEAR WASTE PROCESSING AT THE SAVANNAH RIVER SITE - 136B

    SciTech Connect (OSTI)

    Koopman, D.; Pickenheim, B.; Lambert, D.; Newell, J.; Stone, M.

    2009-09-02T23:59:59.000Z

    Conversion of legacy radioactive high-level waste at the Savannah River Site into a stable glass waste form involves a chemical pretreatment process to prepare the waste for vitrification. Waste slurry is treated with nitric and formic acids to achieve certain goals. The total quantity of acid added to a batch of waste slurry is constrained by the catalytic activity of trace noble metal fission products in the waste that can convert formic acid into hydrogen gas at many hundreds of times the radiolytic hydrogen generation rate. A large block of experimental process simulations were performed to characterize the chemical reactions that consume acid prior to hydrogen generation. The analysis led to a new equation for predicting the quantity of acid required to process a given volume of waste slurry.

  7. Development of Vitrification Process and Glass Formulation for Nuclear Waste Conditioning

    SciTech Connect (OSTI)

    Petitjean, V.; Fillet, C.; Boen, R.; Veyer, C.; Flament, T.

    2002-02-26T23:59:59.000Z

    The vitrification of high-level waste is the internationally recognized standard to minimize the impact to the environment resulting from waste disposal as well as to minimize the volume of conditioned waste to be disposed of. COGEMA has been vitrifying high-level waste industrially for over 20 years and is currently operating three commercial vitrification facilities based on a hot metal crucible technology, with outstanding records of safety, reliability and product quality. To further increase the performance of vitrification facilities, CEA and COGEMA have been developing the cold crucible melter technology since the beginning of the 1980s. This type of melter is characterized by a virtually unlimited equipment service life and a great flexibility in dealing with various types of waste and allowing development of high temperature matrices. In complement of and in parallel with the vitrification process, a glass formulation methodology has been developed by the CEA in order to tailor matrices for the wastes to be conditioned while providing the best adaptation to the processing technology. The development of a glass formulation is a trade-off between material properties and qualities, technical feasibility, and disposal safety criteria. It involves non-radioactive and radioactive laboratories in order to achieve a comprehensive matrix qualification. Several glasses and glass ceramics have thus been studied by the CEA to be compliant with industrial needs and waste characteristics: glasses or other matrices for a large spectrum of fission products, or for high contents of specifics elements such as sodium, phosphate, iron, molybdenum, or actinides. New glasses or glass-ceramics designed to minimize the final wasteform volume for solutions produced during the reprocessing of high burnup fuels or to treat legacy wastes are now under development and take benefit from the latest CEA hot-laboratories and technology development. The paper presents the CEA state-of-the-art in developing matrices or glasses and provides several examples.

  8. Review of the Savannah River Site, Salt Waste Processing Facility...

    Energy Savers [EERE]

    Grade Dedication and Material Upgrade Package CMTR Certified Material Test Report CPA Central Process Area COC Certificate of Conformance CR Condition Report CRAD Criteria and...

  9. Initial Evaluation of Processing Methods for an Epsilon Metal Waste Form

    SciTech Connect (OSTI)

    Crum, Jarrod V.; Strachan, Denis M.; Zumhoff, Mac R.

    2012-06-11T23:59:59.000Z

    During irradiation of nuclear fuel in a reactor, the five metals, Mo, Pd, Rh, Ru, and Tc, migrate to the fuel grain boundaries and form small metal particles of an alloy known as epsilon metal ({var_epsilon}-metal). When the fuel is dissolved in a reprocessing plant, these metal particles remain behind with a residue - the undissolved solids (UDS). Some of these same metals that comprise this alloy that have not formed the alloy are dissolved into the aqueous stream. These metals limit the waste loading for a borosilicate glass that is being developed for the reprocessing wastes. Epsilon metal is being developed as a waste form for the noble metals from a number of waste streams in the aqueous reprocessing of used nuclear fuel (UNF) - (1) the {var_epsilon}-metal from the UDS, (2) soluble Tc (ion-exchanged), and (3) soluble noble metals (TRUEX raffinate). Separate immobilization of these metals has benefits other than allowing an increase in the glass waste loading. These materials are quite resistant to dissolution (corrosion) as evidenced by the fact that they survive the chemically aggressive conditions in the fuel dissolver. Remnants of {var_epsilon}-metal particles have survived in the geologically natural reactors found in Gabon, Africa, indicating that they have sufficient durability to survive for {approx} 2.5 billion years in a reducing geologic environment. Additionally, the {var_epsilon}-metal can be made without additives and incorporate sufficient foreign material (oxides) that are also present in the UDS. Although {var_epsilon}-metal is found in fuel and Gabon as small particles ({approx}10 {micro}m in diameter) and has survived intact, an ideal waste form is one in which the surface area is minimized. Therefore, the main effort in developing {var_epsilon}-metal as a waste form is to develop a process to consolidate the particles into a monolith. Individually, these metals have high melting points (2617 C for Mo to 1552 C for Pd) and the alloy is expected to have a high melting point as well, perhaps exceeding 1500 C. The purpose of the work reported here is to find a potential commercial process with which {var_epsilon}-metal plus other components of UDS can be consolidated into a solid with minimum surface area and high strength Here, we report the results from the preliminary evaluation of spark-plasma sintering (SPS), hot-isostatic pressing (HIP), and microwave sintering (MS). Since bulk {var_epsilon}-metal is not available and companies could not handle radioactive materials, we prepared mixtures of the five individual metal powders (Mo, Ru, Rh, Pd, and Re) and baddeleyite (ZrO{sub 2}) to send the vendors of SPS, HIP, and MS. The processed samples were then evaluated at the Pacific Northwest National Laboratory (PNNL) for bulk density and phase assemblage with X-ray diffraction (XRD) and phase composition with scanning electron microscopy (SEM). Physical strength was evaluated qualitatively. Results of these scoping tests showed that fully dense cermet (ceramic-metal composite) materials with up to 35 mass% of ZrO{sub 2} were produced with SPS and HIP. Bulk density of the SPS samples ranged from 87 to 98% of theoretical density, while HIP samples ranged from 96 to 100% of theoretical density. Microwave sintered samples containing ZrO{sub 2} had low densities of 55 to 60% of theoretical density. Structurally, the cermet samples showed that the individual metals alloyed in to {var_epsilon}-phase - hexagonal-close-packed (HCP) alloy (4-95 mass %), the {alpha}-phase - face-centered-cubic (FCC) alloy structure (3-86 mass %), while ZrO{sub 2} remained in the monoclinic structure of baddeleyite. Elementally, the samples appeared to have nearly uniform composition, but with some areas rich in Mo and Re, the two components with the highest melting points. The homogeneity in distribution of the elements in the alloy is significantly improved in the presence of ZrO{sub 2}. However, ZrO{sub 2} does not appear to react with the alloy, nor was Zr found in the alloy.

  10. P. Ulloa, "Overview of Food Waste Composting in the U.S." Internal Report, Earth Engineering Center, Columbia University, July 2008.

    E-Print Network [OSTI]

    Columbia University

    P. Ulloa, "Overview of Food Waste Composting in the U.S." Internal Report, Earth Engineering Center, Columbia University, July 2008. 1 Overview of Food Waste Composting in the U.S. According to the State of Garbage, in 2006, forty-six of the fifty states reported tonnage data for "recycled" (composted or mulched

  11. Bioelectrochemical Integration of Waste Heat Recovery, Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioelectrochemical Integration of Waste Heat Recovery, Waste-to-Energy Conversion, and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes...

  12. Savannah River Technology Center monthly report, January 1994

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    This is the monthly progress report for the Savannah River Technology Center, which covers the following areas of interest, Tritium, Separation processes, Environmental Issues, and Waste Management.

  13. Advanced Thermoelectric Materials for Efficient Waste Heat Recovery in Process Industries

    SciTech Connect (OSTI)

    Adam Polcyn; Moe Khaleel

    2009-01-06T23:59:59.000Z

    The overall objective of the project was to integrate advanced thermoelectric materials into a power generation device that could convert waste heat from an industrial process to electricity with an efficiency approaching 20%. Advanced thermoelectric materials were developed with figure-of-merit ZT of 1.5 at 275 degrees C. These materials were not successfully integrated into a power generation device. However, waste heat recovery was demonstrated from an industrial process (the combustion exhaust gas stream of an oxyfuel-fired flat glass melting furnace) using a commercially available (5% efficiency) thermoelectric generator coupled to a heat pipe. It was concluded that significant improvements both in thermoelectric material figure-of-merit and in cost-effective methods for capturing heat would be required to make thermoelectric waste heat recovery viable for widespread industrial application.

  14. DOE Awards Contract for Oak Ridge Transuranic Waste Processing...

    Energy Savers [EERE]

    Laboratory; and process Nuclear Fuel Services soils. The contract contains Firm-Fixed-Price (FFP) and Cost-Plus-Award-Fee (CPAF) Contract Line Items (CLINs), as well as an...

  15. Radioanalytical Chemistry for Automated Nuclear Waste Process Monitoring

    SciTech Connect (OSTI)

    Jay W. Grate; Timothy A. DeVol

    2006-07-20T23:59:59.000Z

    The objectives of our research were to develop the first automated radiochemical process analyzer including sample pretreatment methodoology, and to initiate work on new detection approaches, especially using modified diode detectors.

  16. Unit operations used to treat process and/or waste streams at nuclear power plants. [R

    SciTech Connect (OSTI)

    Godbee, H.W.; Kibbey, A.H.

    1980-01-01T23:59:59.000Z

    Estimates are given of the annual amounts of each generic type of LLW (i.e., Government and commerical (fuel cycle and non-fuel cycle)) that is generated at LWR plants. Many different chemical engineering unit operations used to treat process and/or waste streams at LWR plants include adsorption, evaporation, calcination, centrifugation, compaction, crystallization, drying, filtration, incineration, reverse osmosis, and solidification of waste residues. The treatment of these various streams and the secondary wet solid wastes thus generated is described. The various treatment options for concentrates or solid wet wastes, and for dry wastes are discussed. Among the dry waste treatment methods are compaction, baling, and incineration, as well as chopping, cutting and shredding. Organic materials (liquids (e.g., oils or solvents) and/or solids), could be incinerated in most cases. The filter sludges, spent resins, and concentrated liquids (e.g., evaporator concentrates) are usually solidified in cement, or urea-formaldehyde or unsaturated polyester resins prior to burial. Incinerator ashes can also be incorporated in these binding agents. Asphalt has not yet been used. This paper presents a brief survey of operational experience at LWRs with various unit operations, including a short discussion of problems and some observations on recent trends.

  17. Integrated process analysis of treatment systems for mixed low level waste

    SciTech Connect (OSTI)

    Cooley, C.R. [Dept. of Energy, Washington, DC (United States); Schwinkendorf, W.E. [Lockheed Martin Idaho Technology Co., Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.]|[Sandia National Labs., Albuquerque, NM (United States); Bechtold, T.E. [Lockheed Martin Idaho Technology Co., Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.

    1997-10-01T23:59:59.000Z

    Selection of technologies to be developed for treatment of DOE`s mixed low level waste (MLLW) requires knowledge and understanding of the expected costs, schedules, risks, performance, and reliability of the total engineered systems that use these technologies. Thus, an integrated process analysis program was undertaken to identify the characteristics and needs of several thermal and nonthermal systems. For purposes of comparison, all systems were conceptually designed for a single facility processing the same amount of waste at the same rate. Thirty treatment systems were evaluated ranging from standard incineration to innovative thermal systems and innovative nonthermal chemical treatment. Treating 236 million pounds of waste in 20 years through a central treatment was found to be the least costly option with total life cycle cost ranging from $2.1 billion for a metal melting system to $3.9 billion for a nonthermal acid digestion system. Little cost difference exists among nonthermal systems or among thermal systems. Significant cost savings could be achieved by working towards maximum on line treatment time per year; vitrifying the final waste residue; decreasing front end characterization segregation and sizing requirements; using contaminated soil as the vitrifying agent; and delisting the final vitrified waste form from Resource Conservation and Recovery Act (RCRA) Land Disposal Restriction (LDR) requirements.

  18. Materials selection for process equipment in the Hanford waste vitrification plant

    SciTech Connect (OSTI)

    Elmore, M R; Jensen, G A

    1991-07-01T23:59:59.000Z

    The Hanford Waste Vitrification Plant (HWVP) is being designed to vitrify defense liquid high-level wastes and transuranic wastes stored at Hanford. The HWVP Functional Design Criteria (FDC) requires that materials used for fabrication of remote process equipment and piping in the facility be compatible with the expected waste stream compositions and process conditions. To satisfy FDC requirements, corrosion-resistant materials have been evaluated under simulated HWVP-specific conditions and recommendations have been made for HWVP applications. The materials recommendations provide to the project architect/engineer the best available corrosion rate information for the materials under the expected HWVP process conditions. Existing data and sound engineering judgement must be used and a solid technical basis must be developed to define an approach to selecting suitable construction materials for the HWVP. This report contains the strategy, approach, criteria, and technical basis developed for selecting materials of construction. Based on materials testing specific to HWVP and on related outside testing, this report recommends for constructing specific process equipment and identifies future testing needs to complete verification of the performance of the selected materials. 30 refs., 7 figs., 11 tabs.

  19. Microwave applicator for in-drum processing of radioactive waste slurry

    DOE Patents [OSTI]

    White, Terry L. (Oak Ridge, TN)

    1994-01-01T23:59:59.000Z

    A microwave applicator for processing of radioactive waste slurry uses a waveguide network which splits an input microwave of TE.sub.10 rectangular mode to TE.sub.01 circular mode. A cylindrical body has four openings, each receiving 1/4 of the power input. The waveguide network includes a plurality of splitters to effect the 1/4 divisions of power.

  20. Project management plan, Waste Receiving and Processing Facility, Module 1, Project W-026

    SciTech Connect (OSTI)

    Starkey, J.G.

    1993-05-01T23:59:59.000Z

    The Hanford Waste Receiving and Processing Facility Module 1 Project (WRAP 1) has been established to support the retrieval and final disposal of approximately 400K grams of plutonium and quantities of hazardous components currently stored in drums at the Hanford Site.

  1. IWater Processing and Waste Management SystemsIntegrated System Health Management 2007 Phase II

    E-Print Network [OSTI]

    and other sources. It may serve as a backup processor for one or more existing water recovery systems unit drying prototype to for the recovery and recycle of water from concentrated waste water recovery system surfaces. The process is suitable for dewatering brine from the vapor compression distillation processor

  2. Chemi-microbial processing of waste tire rubber: A project overview

    SciTech Connect (OSTI)

    Romine, R.A.; Snowden-Swan, L.

    1993-12-01T23:59:59.000Z

    PNL is developing a method to use thiophillic microorganisms to devulcanize (biodesulfurize) the surface of ground rubber particles, which will improve the bonding and adhesion of the ground tire rubber into the virgin tire rubber matrix. The Chemi-microbial processing approach, introduced in this paper, is targeted at alleviating the waste tire problem in an environmentally conscious manner; it may also be applied to improve asphaltic materials and rubber and polymeric wastes to facilite their recycling. This paper outlines the logic and technical methods that will be used.

  3. Bagless transfer process and apparatus for radioactive waste confinement

    DOE Patents [OSTI]

    Maxwell, D.N.; Hones, R.H.; Rogers, M.L.

    1998-04-14T23:59:59.000Z

    A process and apparatus are provided for removing radioactive material from a glovebox, placing the material in a stainless steel storage vessel in communication with the glovebox, and sealing the vessel with a welded plug. The vessel is then severed along the weld, a lower half of the plug forming a closure for the vessel. The remaining welded plug half provides a seal for the remnant portion of the vessel and thereby maintains the sealed integrity of the glovebox. 7 figs.

  4. Bagless transfer process and apparatus for radioactive waste confinement

    DOE Patents [OSTI]

    Maxwell, David N. (Aiken, SC); Hones, Robert H. (Evans, GA); Rogers, M. Lane (Aiken, SC)

    1998-01-01T23:59:59.000Z

    A process and apparatus is provided for removing radioactive material from a glovebox, placing the material in a stainless steel storage vessel in communication with the glovebox, and sealing the vessel with a welded plug. The vessel is then severed along the weld, a lower half of the plug forming a closure for the vessel. The remaining welded plug half provides a seal for the remnant portion of the vessel and thereby maintains the sealed integrity of the glovebox.

  5. Development of the fluidized bed thermal treatment process for treating mixed waste

    SciTech Connect (OSTI)

    Semones, G.B.; Williams, P.M.; Stiefvater, S.P.; Mitchell, D.L.; Roecker, B.D.

    1993-05-01T23:59:59.000Z

    A fluidized bed system is being developed at Rocky Flats for the treatment of mixed waste (a mixture of radioactive and chemically hazardous waste). The current program builds on experience gained in the 1970`s and 1980`s in tests with bench-scale, pilot-scale, and demonstration-scale fluidized bed systems. The system operates at low temperatures ({approx} 525--600{degree}C) which eliminates many of the disadvantages associated with high temperature thermal treatment processes. The process has shown the ability to destroy polychlorinated biphenyls (PCB`s) with 99.9999% (``six-nines``) destruction efficiency in tests monitored by the Environmental Protection Agency (EPA). The bed makes use of in situ neutralization of acidic off-gases by incorporating sodium carbonate (Na{sub 2}CO{sub 3}) in the bed media. This eliminates using wet scrubbers to treat the off-gas; these produce a high volume of secondary waste. Once in operation, it is expected that the fluidized bed process will yield up to a 40:1 reduction in the volume of the waste.

  6. Modelling of post-fragmentation waste stream processing within UK shredder facilities

    SciTech Connect (OSTI)

    Coates, Gareth [Centre for Sustainable Manufacturing and Reuse/Recycling Technologies (SMART), Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU (United Kingdom)], E-mail: G.Coates@lboro.ac.uk; Rahimifard, Shahin [Centre for Sustainable Manufacturing and Reuse/Recycling Technologies (SMART), Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU (United Kingdom)

    2009-01-15T23:59:59.000Z

    With the introduction of producer responsibility legislation within the UK (i.e., waste electrical and electronic equipment directive and end-of-life vehicles directive), specific recycling and recovery targets have been imposed to improve the sustainability of end-of-life products. With the introduction of these targets, and the increased investment in post-fragmentation facilities, automated material separation technologies are playing an integral role within the UK's end-of-life waste management strategy. Post-fragmentation facilities utilise a range of purification technologies that target certain material attributes (e.g., density, magnetism, volume) to isolate materials from the shredded waste stream. High ferrous prices have historically meant that UK facilities have been primarily interested in recovering iron and steel, establishing processing routes that are very effective at removing these material types, but as a consequence are extremely rigid and inflexible. With the proliferation of more exotic materials within end-of-life products, combined with more stringent recycling targets, there is therefore a need to optimise the current waste reclamation processes to better realise effort-to-value returns. This paper provides a background as to the current post-fragmentation processing adopted within the UK, and describes the development of a post-fragmentation modelling approach, capable of simulating the value-added processing that a piece of automated separation equipment can have on a fragmented waste stream. These include the modelling of the inefficiencies of the technology, the effects of material entanglement on separation, determination of typical material sizing and an appreciation for compositional value. The implementation of this approach within a software decision-support system is described, before the limitations, calibration and further validation of the approach are discussed.

  7. New Waste Calcining Facility Non-Radioactive Process Decontamination

    SciTech Connect (OSTI)

    Swenson, Michael C.

    2001-09-30T23:59:59.000Z

    This report documents the results of a test of the New Calcining Facility (NWCF) process decontamination system. The decontamination system test occurred in December 1981, during non-radioactive testing of the NWCF. The purpose of the decontamination system test was to identify equipment whose design prevented effective calcine removal and decontamination. Effective equipment decontamination was essential to reduce radiation fields for in-cell work after radioactive processing began. The decontamination system test began with a pre-decontamination inspection of the equipment. The pre- decontamination inspection documented the initial condition and cleanliness of the equipment. It provided a basis for judging the effectiveness of the decontamination. The decontamination consisted of a series of equipment flushes using nitric acid and water. A post-decontamination equipment inspection determined the effectiveness of the decontamination. The pre-decontamination and post-decontamination equipment inspections were documented with photographs. The decontamination system was effective in removing calcine from most of the NWCF equipment as evidenced by little visible calcine residue in the equipment after decontamination. The decontamination test identified four areas where the decontamination system required improvement. These included the Calciner off-gas line, Cyclone off-gas line, fluidizing air line, and the Calciner baffle plates. Physical modifications to enhance decontamination were made to those areas, resulting in an effective NWCF decontamination system.

  8. New Waste Calcining Facility Non-radioactive Process Decontamination

    SciTech Connect (OSTI)

    Swenson, Michael Clair

    2001-09-01T23:59:59.000Z

    This report documents the results of a test of the New Calcining Facility (NWCF) process decontamination system. The decontamination system test occurred in December 1981, during non-radioactive testing of the NWCF. The purpose of the decontamination system test was to identify equipment whose design prevented effective calcine removal and decontamination. Effective equipment decontamination was essential to reduce radiation fields for in-cell work after radioactive processing began. The decontamination system test began with a pre-decontamination inspection of the equipment. The pre-decontamination inspection documented the initial condition and cleanliness of the equipment. It provided a basis for judging the effectiveness of the decontamination. The decontamination consisted of a series of equipment flushes using nitric acid and water. A post-decontamination equipment inspection determined the effectiveness of the decontamination. The pre-decontamination and post-decontamination equipment inspections were documented with hotographs. The decontamination system was effective in removing calcine from most of the NWCF equipment as evidenced by little visible calcine residue in the equipment after decontamination. The decontamination test identified four areas where the decontamination system required improvement. These included the Calciner off-gas line, Cyclone off-gas line, fluidizing air line, and the Calciner baffle plates. Physical modifications to enhance decontamination were made to those areas, resulting in an effective NWCF decontamination system.

  9. Process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes

    DOE Patents [OSTI]

    Colombo, Peter (Patchogue, NY); Kalb, Paul D. (Wading River, NY); Heiser, III, John H. (Bayport, NY)

    1997-11-14T23:59:59.000Z

    The present invention provides a method for encapsulating and stabilizing radioactive, hazardous and mixed wastes in a modified sulfur cement composition. The waste may be incinerator fly ash or bottom ash including radioactive contaminants, toxic metal salts and other wastes commonly found in refuse. The process may use glass fibers mixed into the composition to improve the tensile strength and a low concentration of anhydrous sodium sulfide to reduce toxic metal solubility. The present invention preferably includes a method for encapsulating radioactive, hazardous and mixed wastes by combining substantially anhydrous wastes, molten modified sulfur cement, preferably glass fibers, as well as anhydrous sodium sulfide or calcium hydroxide or sodium hydroxide in a heated double-planetary orbital mixer. The modified sulfur cement is preheated to about 135.degree..+-.5.degree. C., then the remaining substantially dry components are added and mixed to homogeneity. The homogeneous molten mixture is poured or extruded into a suitable mold. The mold is allowed to cool, while the mixture hardens, thereby immobilizing and encapsulating the contaminants present in the ash.

  10. Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials

    DOE Patents [OSTI]

    Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

    1999-03-16T23:59:59.000Z

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

  11. Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials

    DOE Patents [OSTI]

    Gotovchikov, Vitaly T. (Moscow, RU); Ivanov, Alexander V. (Moscow, RU); Filippov, Eugene A. (Moscow, RU)

    1999-03-16T23:59:59.000Z

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination oaf plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

  12. The production of chemicals from food processing wastes using a novel fermenter separator. Annual progress report, January 1993--March 1994

    SciTech Connect (OSTI)

    Dale, M.C.; Venkatesh, K.V.; Choi, H.; Salicetti-Piazza, L.; Borgos-Rubio, N.; Okos, M.R.; Wankat, P.C.

    1994-03-15T23:59:59.000Z

    The basic objective of this project is to convert waste streams from the food processing industry to usable fuels and chemicals using novel bioreactors. These bioreactors should allow economical utilization of waste (whey, waste sugars, waste starch, bottling wastes, candy wastes, molasses, and cellulosic wastes) by the production of ethanol, acetone/butanol, organic acids (acetic, lactic, and gluconic), yeast diacetyl flavor, and antifungal compounds. Continuous processes incorporating various processing improvements such as simultaneous product separation and immobilized cells are being developed to allow commercial scale utilization of waste stream. The production of ethanol by a continuous reactor-separator is the process closest to commercialization with a 7,500 liter pilot plant presently sited at an Iowa site to convert whey lactose to ethanol. Accomplishments during 1993 include installation and start-up of a 7,500 liter ICRS for ethanol production at an industry site in Iowa; Donation and installation of a 200 liter yeast pilot Plant to the project from Kenyon Enterprises; Modeling and testing of a low energy system for recovery of ethanol from vapor is using a solvent absorption/extractive distillation system; Simultaneous saccharification/fermentation of raw corn grits and starch in a stirred reactor/separator; Testing of the ability of `koji` process to ferment raw corn grits in a `no-cook` process.

  13. Modeling of batch operations in the Defense Waste Processing Facility at the Savannah River Site

    SciTech Connect (OSTI)

    Smith, F.G.

    1995-02-01T23:59:59.000Z

    A computer model is in development to provide a dynamic simulation of batch operations within the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). The DWPF will chemically treat high level waste materials from the site tank farm and vitrify the resulting slurry into a borosilicate glass for permanent disposal. The DWPF consists of three major processing areas: Salt Processing Cell (SPC), Chemical Processing Cell (CPC) and the Melt Cell. Separate models have been developed for each of these process units using the SPEEDUP{trademark} software from Aspen Technology. Except for glass production in the Melt Cell, all of the chemical operations within DWPF are batch processes. Since the SPEEDUP software is designed for dynamic modeling of continuous processes, considerable effort was required to devise batch process algorithms. This effort was successful and the models are able to simulate batch operations and the dynamic behavior of the process. In this paper, we will describe the SPC model in some detail and present preliminary results from a few simulation studies.

  14. Idaho Waste Vitrification Facilities Project Vitrified Waste Interim Storage Facility

    SciTech Connect (OSTI)

    Bonnema, Bruce Edward

    2001-09-01T23:59:59.000Z

    This feasibility study report presents a draft design of the Vitrified Waste Interim Storage Facility (VWISF), which is one of three subprojects of the Idaho Waste Vitrification Facilities (IWVF) project. The primary goal of the IWVF project is to design and construct a treatment process system that will vitrify the sodium-bearing waste (SBW) to a final waste form. The project will consist of three subprojects that include the Waste Collection Tanks Facility, the Waste Vitrification Facility (WVF), and the VWISF. The Waste Collection Tanks Facility will provide for waste collection, feed mixing, and surge storage for SBW and newly generated liquid waste from ongoing operations at the Idaho Nuclear Technology and Engineering Center. The WVF will contain the vitrification process that will mix the waste with glass-forming chemicals or frit and turn the waste into glass. The VWISF will provide a shielded storage facility for the glass until the waste can be disposed at either the Waste Isolation Pilot Plant as mixed transuranic waste or at the future national geological repository as high-level waste glass, pending the outcome of a Waste Incidental to Reprocessing determination, which is currently in progress. A secondary goal is to provide a facility that can be easily modified later to accommodate storage of the vitrified high-level waste calcine. The objective of this study was to determine the feasibility of the VWISF, which would be constructed in compliance with applicable federal, state, and local laws. This project supports the Department of Energy’s Environmental Management missions of safely storing and treating radioactive wastes as well as meeting Federal Facility Compliance commitments made to the State of Idaho.

  15. Waste receiving and processing facility module 1, detailed design report

    SciTech Connect (OSTI)

    Not Available

    1993-10-01T23:59:59.000Z

    WRAP 1 baseline documents which guided the technical development of the Title design included: (a) A/E Statement of Work (SOW) Revision 4C: This DOE-RL contractual document specified the workscope, deliverables, schedule, method of performance and reference criteria for the Title design preparation. (b) Functional Design Criteria (FDC) Revision 1: This DOE-RL technical criteria document specified the overall operational criteria for the facility. The document was a Revision 0 at the beginning of the design and advanced to Revision 1 during the tenure of the Title design. (c) Supplemental Design Requirements Document (SDRD) Revision 3: This baseline criteria document prepared by WHC for DOE-RL augments the FDC by providing further definition of the process, operational safety, and facility requirements to the A/E for guidance in preparing the design. The document was at a very preliminary stage at the onset of Title design and was revised in concert with the results of the engineering studies that were performed to resolve the numerous technical issues that the project faced when Title I was initiated, as well as, by requirements established during the course of the Title II design.

  16. Chemistry of proposed calcination/dissolution processing of Hanford Site tank wastes

    SciTech Connect (OSTI)

    Delegard, C.H.

    1995-01-01T23:59:59.000Z

    Plans exist to separate radioactive waste stored in underground tanks at the US Department of Energy`s Hanford Site in south central Washington State into low-level and high-level fractions, and to immobilize the separate fractions in high-integrity vitrified forms for long-term disposal. Calcination with water dissolution has been proposed as a possible treatment for achieving low/high-level separation. Chemistry development activities conducted since 1992 with simulated and genuine tank waste show that calcination/dissolution destroys organic carbon and converts nitrate and nitrite to hydroxide and benign offgases. The process also dissolves significant quantities of bulk chemicals (aluminum, chromium, and phosphate), allowing their redistribution from the high-level to the low-level fraction. Present studies of the chemistry of calcination/dissolution processing of genuine wastes, conducted in the period October 1993 to September 1994, show the importance of sodium fluoride phosphate double salt in controlling phosphate dissolution. Peptization of waste solids is of concern if extensive washing occurs. Strongly oxidizing conditions imposed by calcination reactions were found to convert transition metals to soluble anions in the order chromate > manganate > > ferrate. In analogy with manganese behavior, plutonium dissolution, presumably by oxidation to more soluble anionic species, also occurs by calcination/dissolution. Methods to remove plutonium from the product low-level solution stream must be developed.

  17. UNITED STATES DEPARTMENT OF ENERGY WASTE PROCESSING ANNUAL TECHNOLOGY DEVELOPMENT REPORT 2007

    SciTech Connect (OSTI)

    Bush, S

    2008-08-12T23:59:59.000Z

    The Office of Environmental Management's (EM) Roadmap, U.S. Department of Energy--Office of Environmental Management Engineering & Technology Roadmap (Roadmap), defines the Department's intent to reduce the technical risk and uncertainty in its cleanup programs. The unique nature of many of the remaining facilities will require a strong and responsive engineering and technology program to improve worker and public safety, and reduce costs and environmental impacts while completing the cleanup program. The technical risks and uncertainties associated with cleanup program were identified through: (1) project risk assessments, (2) programmatic external technical reviews and technology readiness assessments, and (3) direct site input. In order to address these needs, the technical risks and uncertainties were compiled and divided into the program areas of: Waste Processing, Groundwater and Soil Remediation, and Deactivation and Decommissioning (D&D). Strategic initiatives were then developed within each program area to address the technical risks and uncertainties in that program area. These strategic initiatives were subsequently incorporated into the Roadmap, where they form the strategic framework of the EM Engineering & Technology Program. The EM-21 Multi-Year Program Plan (MYPP) supports the goals and objectives of the Roadmap by providing direction for technology enhancement, development, and demonstrations that will lead to a reduction of technical uncertainties in EM waste processing activities. The current MYPP summarizes the strategic initiatives and the scope of the activities within each initiative that are proposed for the next five years (FY2008-2012) to improve safety and reduce costs and environmental impacts associated with waste processing; authorized budget levels will impact how much of the scope of activities can be executed, on a year-to-year basis. As a result of the importance of reducing technical risk and uncertainty in the EM Waste Processing programs, EM-21 has focused considerable effort on identifying the key areas of risk in the Waste Processing programs. The resulting summary of technical risks and needs was captured in the Roadmap. The Roadmap identifies key Waste Processing initiative areas where technology development work should be focused. These areas are listed below, along with the Work Breakdown Structure (WBS) designation given to each initiative area. The WBS designations will be used throughout this document.

  18. Multi-step process for concentrating magnetic particles in waste sludges

    DOE Patents [OSTI]

    Watson, John L. (Rolla, MO)

    1990-01-01T23:59:59.000Z

    This invention involves a multi-step, multi-force process for dewatering sludges which have high concentrations of magnetic particles, such as waste sludges generated during steelmaking. This series of processing steps involves (1) mixing a chemical flocculating agent with the sludge; (2) allowing the particles to aggregate under non-turbulent conditions; (3) subjecting the mixture to a magnetic field which will pull the magnetic aggregates in a selected direction, causing them to form a compacted sludge; (4) preferably, decanting the clarified liquid from the compacted sludge; and (5) using filtration to convert the compacted sludge into a cake having a very high solids content. Steps 2 and 3 should be performed simultaneously. This reduces the treatment time and increases the extent of flocculation and the effectiveness of the process. As partially formed aggregates with active flocculating groups are pulled through the mixture by the magnetic field, they will contact other particles and form larger aggregates. This process can increase the solids concentration of steelmaking sludges in an efficient and economic manner, thereby accomplishing either of two goals: (a) it can convert hazardous wastes into economic resources for recycling as furnace feed material, or (b) it can dramatically reduce the volume of waste material which must be disposed.

  19. Multi-step process for concentrating magnetic particles in waste sludges

    DOE Patents [OSTI]

    Watson, J.L.

    1990-07-10T23:59:59.000Z

    This invention involves a multi-step, multi-force process for dewatering sludges which have high concentrations of magnetic particles, such as waste sludges generated during steelmaking. This series of processing steps involves (1) mixing a chemical flocculating agent with the sludge; (2) allowing the particles to aggregate under non-turbulent conditions; (3) subjecting the mixture to a magnetic field which will pull the magnetic aggregates in a selected direction, causing them to form a compacted sludge; (4) preferably, decanting the clarified liquid from the compacted sludge; and (5) using filtration to convert the compacted sludge into a cake having a very high solids content. Steps 2 and 3 should be performed simultaneously. This reduces the treatment time and increases the extent of flocculation and the effectiveness of the process. As partially formed aggregates with active flocculating groups are pulled through the mixture by the magnetic field, they will contact other particles and form larger aggregates. This process can increase the solids concentration of steelmaking sludges in an efficient and economic manner, thereby accomplishing either of two goals: (a) it can convert hazardous wastes into economic resources for recycling as furnace feed material, or (b) it can dramatically reduce the volume of waste material which must be disposed. 7 figs.

  20. The DOE Center of Excellence for the Synthesis and Processing of Advanced Materials: Research briefs

    SciTech Connect (OSTI)

    NONE

    1996-01-01T23:59:59.000Z

    This publication is designed to inform present and potential customers and partners of the DOE Center of Excellence for the Synthesis and Processing of Advanced Materials about significant advances resulting from Center-coordinated research. The format is an easy-to-read, not highly technical, concise presentation of the accomplishments. Selected accomplishments from each of the Center`s seven initial focused projects are presented. The seven projects are: (1) conventional and superplastic forming; (2) materials joining; (3) nanoscale materials for energy applications; (4) microstructural engineering with polymers; (5) tailored microstructures in hard magnets; (6) processing for surface hardness; and (7) mechanically reliable surface oxides for high-temperature corrosion resistance.

  1. The physical separation and recovery of metals from wastes. Process engineering for the chemical, metals and minerals industries, Volume 1

    SciTech Connect (OSTI)

    Veasey, T.J.; Wilson, R.J. (eds.) (Univ. of Birmingham (United Kingdom). School of Chemical Engineering); Squires, D.M. (ed.) (Newell Engineering Ltd., Redditch (United Kingdom))

    1993-01-01T23:59:59.000Z

    This book deals with the physical processes used for the separation of secondary metals from waste sources. The introduction briefly considers the history of the secondary metals industries, defines the terms used in materials recycling and discusses the potential for resource recovery and improved processing. A comprehensive survey is given of the unit operations employed for metals recovery and reclamation, and this is followed by detailed descriptions of processes used to treat fragmentized metal wastes and granulated metal wastes. The final chapter reviews the processing of urban wastes for metals recovery, and gives details of modern plant and practices. The volume aims to bring together technical information on metals recovery from a wide range of sources in order to give a unified review of an important engineering and environmental topic. Topics include: general definitions used in materials recycling; the potential for resource recovery; secondary metals; ranking of scrap; the potential for improved processing; comminution; physical separation methods; the scrap industry; automobile composition; shredders; non-magnetic processing; metal reclamation processes; waste tire processing; battery processing; thermal processing systems; composition of urban waste; and material recovery.

  2. Alternative Fuels Data Center: Republic Services Reduces Waste with 87 CNG

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative Fuels CleanReduceNewPropane PrintableToolsVehicles

  3. Process Options Description for Vitrification Flowsheet Model of INEEL Sodium Bearing Waste

    SciTech Connect (OSTI)

    Nichols, Todd Travis; Taylor, Dean Dalton; Lauerhass, Lance; Barnes, Charles Marshall

    2001-02-01T23:59:59.000Z

    The purpose of this document is to provide the technical information to Savannah River Site (SRS) personnel that is required for the development of a basic steady-state process simulation of the vitrification treatment train of sodium bearing waste (SBW) at Idaho National Engineering and nvironmental Laboratory (INEEL). INEEL considers simulation to have an important role in the integration/optimization of treatment process trains for the High Level Waste (HLW) Program. This project involves a joint Technical Task Plan (TTP ID77WT31, Subtask C) between SRS and INEEL. The work scope of simulation is different at the two sites. This document addresses only the treatment of SBW at INEEL. The simulation model(s) is to be built by SRS for INEEL in FY-2001.

  4. Microwave applicator for in-drum processing of radioactive waste slurry

    DOE Patents [OSTI]

    White, T.L.

    1994-06-28T23:59:59.000Z

    A microwave applicator for processing of radioactive waste slurry uses a waveguide network which splits an input microwave of TE[sub 10] rectangular mode to TE[sub 01] circular mode. A cylindrical body has four openings, each receiving 1/4 of the power input. The waveguide network includes a plurality of splitters to effect the 1/4 divisions of power. 4 figures.

  5. Electrodialysis-based separation process for salt recovery and recycling from waste water

    DOE Patents [OSTI]

    Tsai, S.P.

    1997-07-08T23:59:59.000Z

    A method for recovering salt from a process stream containing organic contaminants is provided, comprising directing the waste stream to a desalting electrodialysis unit so as to create a concentrated and purified salt permeate and an organic contaminants-containing stream, and contacting said concentrated salt permeate to a water-splitting electrodialysis unit so as to convert the salt to its corresponding base and acid. 6 figs.

  6. Electrodialysis-based separation process for salt recovery and recycling from waste water

    DOE Patents [OSTI]

    Tsai, Shih-Perng (Naperville, IL)

    1997-01-01T23:59:59.000Z

    A method for recovering salt from a process stream containing organic contaminants is provided, comprising directing the waste stream to a desalting electrodialysis unit so as to create a concentrated and purified salt permeate and an organic contaminants containing stream, and contacting said concentrated salt permeate to a water-splitting electrodialysis unit so as to convert the salt to its corresponding base and acid.

  7. Proposed Use of a Constructed Wetland for the Treatment of Metals in the S-04 Outfall of the Defense Waste Processing Facility at the Savannah River Site

    SciTech Connect (OSTI)

    Glover, T.

    1999-11-23T23:59:59.000Z

    The DWPF is part of an integrated waste treatment system at the SRS to treat wastes containing radioactive contaminants. In the early 1980s the DOE recognized that there would be significant safety and cost advantages associated with immobilizing the radioactive waste in a stable solid form. The Defense Waste Processing Facility was designed and constructed to accomplish this task.

  8. EXPLORING ENGINEERING CONTROL THROUGH PROCESS MANIPULATION OF RADIOACTIVE LIQUID WASTE TANK CHEMICAL CLEANING

    SciTech Connect (OSTI)

    Brown, A.

    2014-04-27T23:59:59.000Z

    One method of remediating legacy liquid radioactive waste produced during the cold war, is aggressive in-tank chemical cleaning. Chemical cleaning has successfully reduced the curie content of residual waste heels in large underground storage tanks; however this process generates significant chemical hazards. Mercury is often the bounding hazard due to its extensive use in the separations process that produced the waste. This paper explores how variations in controllable process factors, tank level and temperature, may be manipulated to reduce the hazard potential related to mercury vapor generation. When compared using a multivariate regression analysis, findings indicated that there was a significant relationship between both tank level (p value of 1.65x10{sup -23}) and temperature (p value of 6.39x10{sup -6}) to the mercury vapor concentration in the tank ventilation system. Tank temperature showed the most promise as a controllable parameter for future tank cleaning endeavors. Despite statistically significant relationships, there may not be confidence in the ability to control accident scenarios to below mercury’s IDLH or PAC-III levels for future cleaning initiatives.

  9. Waste treatment process for removal of contaminants from aqueous, mixed-waste solutions using sequential chemical treatment and crossflow microfiltration, followed by dewatering

    DOE Patents [OSTI]

    Vijayan, Sivaraman (Deep River, CA); Wong, Chi F. (Pembroke, CA); Buckley, Leo P. (Deep River, CA)

    1994-01-01T23:59:59.000Z

    In processes of this invention aqueous waste solutions containing a variety of mixed waste contaminants are treated to remove the contaminants by a sequential addition of chemicals and adsorption/ion exchange powdered materials to remove the contaminants including lead, cadmium, uranium, cesium-137, strontium-85/90, trichloroethylene and benzene, and impurities including iron and calcium. Staged conditioning of the waste solution produces a polydisperse system of size enlarged complexes of the contaminants in three distinct configurations: water-soluble metal complexes, insoluble metal precipitation complexes, and contaminant-bearing particles of ion exchange and adsorbent materials. The volume of the waste is reduced by separation of the polydisperse system by cross-flow microfiltration, followed by low-temperature evaporation and/or filter pressing. The water produced as filtrate is discharged if it meets a specified target water quality, or else the filtrate is recycled until the target is achieved.

  10. Waste treatment process for removal of contaminants from aqueous, mixed-waste solutions using sequential chemical treatment and crossflow microfiltration, followed by dewatering

    DOE Patents [OSTI]

    Vijayan, S.; Wong, C.F.; Buckley, L.P.

    1994-11-22T23:59:59.000Z

    In processes of this invention aqueous waste solutions containing a variety of mixed waste contaminants are treated to remove the contaminants by a sequential addition of chemicals and adsorption/ion exchange powdered materials to remove the contaminants including lead, cadmium, uranium, cesium-137, strontium-85/90, trichloroethylene and benzene, and impurities including iron and calcium. Staged conditioning of the waste solution produces a polydisperse system of size enlarged complexes of the contaminants in three distinct configurations: water-soluble metal complexes, insoluble metal precipitation complexes, and contaminant-bearing particles of ion exchange and adsorbent materials. The volume of the waste is reduced by separation of the polydisperse system by cross-flow microfiltration, followed by low-temperature evaporation and/or filter pressing. The water produced as filtrate is discharged if it meets a specified target water quality, or else the filtrate is recycled until the target is achieved. 1 fig.

  11. Scientific Data Management Integrated Software Infrastructure Center (SDM/ISIC): Scientific Process Automation (SPA), FINAL REPORT

    SciTech Connect (OSTI)

    Bertram Ludaescher; Ilkay Altintas

    2012-07-03T23:59:59.000Z

    This is the final report from SDSC and UC Davis on DE-FC02-01ER25486, Scientific Data Management Integrated Software Infrastructure Center (SDM/ISIC): Scientific Process Automation (SPA).

  12. Recovery of Valuable Chlorosilane Intermediates by a Novel Waste Conversion Process, Phase IIIB (Progress)

    SciTech Connect (OSTI)

    Kurt E. Anderson

    2000-03-31T23:59:59.000Z

    From June 1998 through September 1999, direct process residue (DPR, a waste byproduct) hydrogenolysis has been studied at a large pilot plant within Dow Corning's Carrollton, KY, facility. The system reacts filtered DPR with chlorosilane monomers at high temperature and pressure. The process routinely demonstrates DPR conversions from 59% to 89% on a monthly basis. The reaction product contains high concentrations of valuable monomers such as dimethyldichlorosilane and methyldichlorosilane. An expansion of the current unit's capacity is planned to be on-line by the end of CY2000. Furthermore, a larger DPR hydrogenolysis reactor based on these results is being designed for operation in Europe at Dow Corning's Barry, Wales, site.

  13. Status of development of actinide blanket processing flowsheets for accelerator transmutation of nuclear waste

    SciTech Connect (OSTI)

    Dewey, H.J.; Jarvinen, G.D.; Marsh, S.F.; Schroeder, N.C.; Smith, B.F.; Villarreal, R.; Walker, R.B.; Yarbro, S.L.; Yates, M.A.

    1993-09-01T23:59:59.000Z

    An accelerator-driven subcritical nuclear system is briefly described that transmutes actinides and selected long-lived fission products. An application of this accelerator transmutation of nuclear waste (ATW) concept to spent fuel from a commercial nuclear power plant is presented as an example. The emphasis here is on a possible aqueous processing flowsheet to separate the actinides and selected long-lived fission products from the remaining fission products within the transmutation system. In the proposed system the actinides circulate through the thermal neutron flux as a slurry of oxide particles in heavy water in two loops with different average residence times: one loop for neptunium and plutonium and one for americium and curium. Material from the Np/Pu loop is processed with a short cooling time (5-10 days) because of the need to keep the total actinide inventory, low for this particular ATW application. The high radiation and thermal load from the irradiated material places severe constraints on the separation processes that can be used. The oxide particles are dissolved in nitric acid and a quarternary, ammonium anion exchanger is used to extract neptunium, plutonium, technetium, and palladium. After further cooling (about 90 days), the Am, Cm and higher actinides are extracted using a TALSPEAK-type process. The proposed operations were chosen because they have been successfully tested for processing high-level radioactive fuels or wastes in gram to kilogram quantities.

  14. Waste Processing To Support {sup 99}Mo Production at Sandia National Laboratories

    SciTech Connect (OSTI)

    Longley, Susan; Carson, Susan; McDonald, Marion

    1997-06-01T23:59:59.000Z

    As part of the Isotope Production Program at Sandia National Laboratories New Mexico (SNL/NM), procedures are being finalized for the production of {sup 99}Mo from the irradiation of {sup 235}U-coated stainless steel targets at the Technical Area (TA) V reactor and hot cell facilities. Methods have been identified and tested for the management of the non-product (waste) material as the final step in the production process. These methods were developed utilizing the waste material from a series of cold and hot tests, beginning with depleted uranium powder and culminating with a test involving an irradiated {sup 235}U target with an initial fission product inventory of approximately 18,000 Ci at the end of the irradiation cycle.

  15. The National Nuclear Laboratory's Approach to Processing Mixed Wastes and Residues - 13080

    SciTech Connect (OSTI)

    Greenwood, Howard; Docrat, Tahera; Allinson, Sarah J.; Coppersthwaite, Duncan P.; Sultan, Ruqayyah; May, Sarah [National Nuclear Laboratory, Springfields, Preston, UK, PR4 0XJ (United Kingdom)] [National Nuclear Laboratory, Springfields, Preston, UK, PR4 0XJ (United Kingdom)

    2013-07-01T23:59:59.000Z

    The National Nuclear Laboratory (NNL) treats a wide variety of materials produced as by-products of the nuclear fuel cycle, mostly from uranium purification and fuel manufacture but also including materials from uranium enrichment and from the decommissioning of obsolete plants. In the context of this paper, treatment is defined as recovery of uranium or other activity from residues, the recycle of uranium to the fuel cycle or preparation for long term storage and the final disposal or discharge to the environment of the remainder of the material. NNL's systematic but flexible approach to residue assessment and treatment is described in this paper. The approach typically comprises up to five main phases. The benefits of a systematic approach to waste and residue assessments and processing are described in this paper with examples used to illustrate each phase of work. Benefits include early identification of processing routes or processing issues and the avoidance of investment in inappropriate and costly plant or processes. (authors)

  16. Ekaterina Tkatchouk and William A. Goddard III Materials and Process Simulation Center,

    E-Print Network [OSTI]

    Goddard III, William A.

    Ekaterina Tkatchouk and William A. Goddard III Materials and Process Simulation Center, Division designed quantum mechanical simulation tools that have been shown to accurately predict dynamic processes. We also performed calculations on Cu phenatroline with a bidentate stator. DFT is able to accurately

  17. DOWNSTREAM IMPACTS OF SLUDGE MASS REDUCTION VIA ALUMINUM DISSOLUTION ON DWPF PROCESSING OF SAVANNAH RIVER SITE HIGH LEVEL WASTE - 9382

    SciTech Connect (OSTI)

    Pareizs, J; Cj Bannochie, C; Michael Hay, M; Daniel McCabe, D

    2009-01-14T23:59:59.000Z

    The SRS sludge that was to become a major fraction of Sludge Batch 5 (SB5) for the Defense Waste Processing Facility (DWPF) contained a large fraction of H-Modified PUREX (HM) sludge, containing a large fraction of aluminum compounds that could adversely impact the processing and increase the vitrified waste volume. It is beneficial to reduce the non-radioactive fraction of the sludge to minimize the number of glass waste canisters that must be sent to a Federal Repository. Removal of aluminum compounds, such as boehmite and gibbsite, from sludge can be performed with the addition of NaOH solution and heating the sludge for several days. Preparation of SB5 involved adding sodium hydroxide directly to the waste tank and heating the contents to a moderate temperature through slurry pump operation to remove a fraction of this aluminum. The Savannah River National Laboratory (SRNL) was tasked with demonstrating this process on actual tank waste sludge in our Shielded Cells Facility. This paper evaluates some of the impacts of aluminum dissolution on sludge washing and DWPF processing by comparing sludge processing with and without aluminum dissolution. It was necessary to demonstrate these steps to ensure that the aluminum removal process would not adversely impact the chemical and physical properties of the sludge which could result in slower processing or process upsets in the DWPF.

  18. Process Knowledge Summary Report for Advanced Test Reactor Complex Contact-Handled Transuranic Waste Drum TRA010029

    SciTech Connect (OSTI)

    B. R. Adams; R. P. Grant; P. R. Smith; J. L. Weisgerber

    2013-09-01T23:59:59.000Z

    This Process Knowledge Summary Report summarizes information collected to satisfy the transportation and waste acceptance requirements for the transfer of one drum containing contact-handled transuranic (TRU) actinide standards generated by the Idaho National Laboratory at the Advanced Test Reactor (ATR) Complex to the Advanced Mixed Waste Treatment Project (AMWTP) for storage and subsequent shipment to the Waste Isolation Pilot Plant for final disposal. The drum (i.e., Integrated Waste Tracking System Bar Code Number TRA010029) is currently stored at the Materials and Fuels Complex. The information collected includes documentation that addresses the requirements for AMWTP and applicable sections of their Resource Conservation and Recovery Act permits for receipt and disposal of this TRU waste generated from ATR. This Process Knowledge Summary Report includes information regarding, but not limited to, the generation process, the physical form, radiological characteristics, and chemical contaminants of the TRU waste, prohibited items, and packaging configuration. This report, along with the referenced supporting documents, will create a defensible and auditable record for this TRU waste originating from ATR.

  19. MODELING OF PLUTONIUM RECOVERY AND DISCARD PROCESSES FOR THE PURPOSE OF SELECTING OPTIMUM (MINIMUM WASTE, COST AND DOSE) RESIDUE DISPOSITIONS

    SciTech Connect (OSTI)

    M. A. ROBINSON; M. B. KINKER; ET AL

    2001-04-01T23:59:59.000Z

    Researchers have developed a quantitative basis for disposition of actinide-bearing process residues. Research included the development of a technical rationale for determining when residues could be considered unattractive for proliferation purposes, and establishing plutonium-concentration-based discard ceilings of unimmobilized residues and richer discard ceilings for immobilized monolithic waste forms. Further quantitative analysis (process modeling) identifies the plutonium (Pu) concentration at which residues should be discarded to immobilization in order to minimize the quantifiable negative consequences of residue processing (cost, waste, dose). Results indicate that optimum disposition paths can be identified by process modeling, and that across-the-board discard decisions maximize negative consequences.

  20. Characterization of decontamination and decommissioning wastes expected from the major processing facilities in the 200 Areas

    SciTech Connect (OSTI)

    Amato, L.C.; Franklin, J.D.; Hyre, R.A.; Lowy, R.M.; Millar, J.S.; Pottmeyer, J.A. [Los Alamos Technical Associates, Kennewick, WA (United States); Duncan, D.R. [Westinghouse Hanford Co., Richland, WA (United States)

    1994-08-01T23:59:59.000Z

    This study was intended to characterize and estimate the amounts of equipment and other materials that are candidates for removal and subsequent processing in a solid waste facility when the major processing and handling facilities in the 200 Areas of the Hanford Site are decontaminated and decommissioned. The facilities in this study were selected based on processing history and on the magnitude of the estimated decommissioning cost cited in the Surplus Facilities Program Plan; Fiscal Year 1993 (Winship and Hughes 1992). The facilities chosen for this study include B Plant (221-B), T Plant (221-T), U Plant (221-U), the Uranium Trioxide (UO{sub 3}) Plant (224-U and 224-UA), the Reduction Oxidation (REDOX) or S Plant (202-S), the Plutonium Concentration Facility for B Plant (224-B), and the Concentration Facility for the Plutonium Finishing Plant (PFP) and REDOX (233-S). This information is required to support planning activities for current and future solid waste treatment, storage, and disposal operations and facilities.

  1. IMPACTS OF ANTIFOAM ADDITIONS AND ARGON BUBBLING ON DEFENSE WASTE PROCESSING FACILITY REDUCTION/OXIDATION

    SciTech Connect (OSTI)

    Jantzen, C.; Johnson, F.

    2012-06-05T23:59:59.000Z

    During melting of HLW glass, the REDOX of the melt pool cannot be measured. Therefore, the Fe{sup +2}/{Sigma}Fe ratio in the glass poured from the melter must be related to melter feed organic and oxidant concentrations to ensure production of a high quality glass without impacting production rate (e.g., foaming) or melter life (e.g., metal formation and accumulation). A production facility such as the Defense Waste Processing Facility (DWPF) cannot wait until the melt or waste glass has been made to assess its acceptability, since by then no further changes to the glass composition and acceptability are possible. therefore, the acceptability decision is made on the upstream process, rather than on the downstream melt or glass product. That is, it is based on 'feed foward' statistical process control (SPC) rather than statistical quality control (SQC). In SPC, the feed composition to the melter is controlled prior to vitrification. Use of the DWPF REDOX model has controlled the balanjce of feed reductants and oxidants in the Sludge Receipt and Adjustment Tank (SRAT). Once the alkali/alkaline earth salts (both reduced and oxidized) are formed during reflux in the SRAT, the REDOX can only change if (1) additional reductants or oxidants are added to the SRAT, the Slurry Mix Evaporator (SME), or the Melter Feed Tank (MFT) or (2) if the melt pool is bubble dwith an oxidizing gas or sparging gas that imposes a different REDOX target than the chemical balance set during reflux in the SRAT.

  2. Fluid bed gasification – Plasma converter process generating energy from solid waste: Experimental assessment of sulphur species

    SciTech Connect (OSTI)

    Morrin, Shane, E-mail: shane.morrin@ucl.ac.uk [Department of Chemical Engineering, University College London, London WC1E 7JE (United Kingdom); Advanced Plasma Power, Swindon, Wiltshire SN3 4DE (United Kingdom); Lettieri, Paola, E-mail: p.lettieri@ucl.ac.uk [Department of Chemical Engineering, University College London, London WC1E 7JE (United Kingdom); Chapman, Chris, E-mail: chris.chapman@app-uk.com [Advanced Plasma Power, Swindon, Wiltshire SN3 4DE (United Kingdom); Taylor, Richard, E-mail: richard.taylor@app-uk.com [Advanced Plasma Power, Swindon, Wiltshire SN3 4DE (United Kingdom)

    2014-01-15T23:59:59.000Z

    Highlights: • We investigate gaseous sulphur species whilst gasifying sulphur-enriched wood pellets. • Experiments performed using a two stage fluid bed gasifier – plasma converter process. • Notable SO{sub 2} and relatively low COS levels were identified. • Oxygen-rich regions of the bed are believed to facilitate SO{sub 2}, with a delayed release. • Gas phase reducing regions above the bed would facilitate more prompt COS generation. - Abstract: Often perceived as a Cinderella material, there is growing appreciation for solid waste as a renewable content thermal process feed. Nonetheless, research on solid waste gasification and sulphur mechanisms in particular is lacking. This paper presents results from two related experiments on a novel two stage gasification process, at demonstration scale, using a sulphur-enriched wood pellet feed. Notable SO{sub 2} and relatively low COS levels (before gas cleaning) were interesting features of the trials, and not normally expected under reducing gasification conditions. Analysis suggests that localised oxygen rich regions within the fluid bed played a role in SO{sub 2}’s generation. The response of COS to sulphur in the feed was quite prompt, whereas SO{sub 2} was more delayed. It is proposed that the bed material sequestered sulphur from the feed, later aiding SO{sub 2} generation. The more reducing gas phase regions above the bed would have facilitated COS – hence its faster response. These results provide a useful insight, with further analysis on a suite of performed experiments underway, along with thermodynamic modelling.

  3. Selection of Steady-State Process Simulation Software to Optimize Treatment of Radioactive and Hazardous Waste

    SciTech Connect (OSTI)

    Nichols, T. T.; Barnes, C. M.; Lauerhass, L.; Taylor, D. D.

    2001-06-01T23:59:59.000Z

    The process used for selecting a steady-state process simulator under conditions of high uncertainty and limited time is described. Multiple waste forms, treatment ambiguity, and the uniqueness of both the waste chemistries and alternative treatment technologies result in a large set of potential technical requirements that no commercial simulator can totally satisfy. The aim of the selection process was two-fold. First, determine the steady-state simulation software that best, albeit not completely, satisfies the requirements envelope. And second, determine if the best is good enough to justify the cost. Twelve simulators were investigated with varying degrees of scrutiny. The candidate list was narrowed to three final contenders: ASPEN Plus 10.2, PRO/II 5.11, and CHEMCAD 5.1.0. It was concluded from ''road tests'' that ASPEN Plus appears to satisfy the project's technical requirements the best and is worth acquiring. The final software decisions provide flexibility: they involve annual rather than multi-year licensing, and they include periodic re-assessment.

  4. Processing liquid radioactive waste by centrifuge and indrum dehydration facility at NPP Philippsburg

    SciTech Connect (OSTI)

    Grundke, E.; Blaser, W. [NPP Philippsburg (Germany)

    1993-12-31T23:59:59.000Z

    Until 1989 the evaporator and filter concentrates have been treated by concreting. The centrifuge facility is used for the liquid waste from laundry, showers and also for processing filter concentrates and evaporator feedwater. The hot high pressure compacting of filter concentrates gives a volume reduction by a factor of 6. The evaporator concentrate is drained in a 200 l drum and this drum is heated by an external heating device. The indrum-dehydration facility reduces the treated volume by a factor of 12 compared with the former cementation.

  5. HIGH LEVEL WASTE (HLW) VITRIFICATION EXPERIENCE IN THE US: APPLICATION OF GLASS PRODUCT/PROCESS CONTROL TO OTHERHLW AND HAZARDOUS WASTES

    SciTech Connect (OSTI)

    Jantzen, C; James Marra, J

    2007-09-17T23:59:59.000Z

    Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. At the Savannah River Site (SRS) actual HLW tank waste has successfully been processed to stringent product and process constraints without any rework into a stable borosilicate glass waste since 1996. A unique 'feed forward' statistical process control (SPC) has been used rather than statistical quality control (SQC). In SPC, the feed composition to the melter is controlled prior to vitrification. In SQC, the glass product is sampled after it is vitrified. Individual glass property models form the basis for the 'feed forward' SPC. The property models transform constraints on the melt and glass properties into constraints on the feed composition. The property models are mechanistic and depend on glass bonding/structure, thermodynamics, quasicrystalline melt species, and/or electron transfers. The mechanistic models have been validated over composition regions well outside of the regions for which they were developed because they are mechanistic. Mechanistic models allow accurate extension to radioactive and hazardous waste melts well outside the composition boundaries for which they were developed.

  6. Review of the Savannah River Site Salt Waste Processing Facility Safety Basis and Design Development, August 2013

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy usingofRetrofitting DoorsReview ofIndependent Oversight

  7. Review of the Savannah River Site, Salt Waste Processing Facility, Construction Quality of Piping and Pipe Supports, September 2012

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy usingofRetrofitting DoorsReview ofIndependent

  8. Microwave-assisted chemical process for treatment of hazardous waste: Annual report

    SciTech Connect (OSTI)

    Varma, R.; Nandi, S.P.; Cleaveland, D.C.

    1987-10-01T23:59:59.000Z

    Microwave energy provides rapid in situ uniform heating and can be used to initiate chemical processes at moderate temperatures. We investigate the technical feasibility of microwave-assisted chemical processes for detoxification of liquid hazardous waste. Trichloroethylene, a major constituent of waste streams, was selected for this detoxification study. Experiments were performed to investigate the oxidative degradation of trichloroethylene over active carbons (with and without catalysts) in air streams with microwave in situ heating, and to examine the feasibility of regenerating the used carbons. This study established that trichloroethylene in a vapor stream can be adsorbed at room temperature on active carbon beds that are loaded with Cu and Cr catalysts. When the bed is heated by a microwave radiation to moderate temperatures (<400/sup 0/C) while a moist air stream is passed through it, the trichloroethylene is readily converted into less-noxious products such as HCl, CO, CO/sub 2/ and C/sub 2/H/sub 2/Cl/sub 2/. Conversion higher than 80% was observed. Furthermore, the used carbon bed can be conveniently regenerated by microwave heating while a moist-N/sub 2/ or moist-air stream is passed through the bed. 4 refs., 5 figs., 10 tabs.

  9. The Mixed Waste Management Facility: Technology selection and implementation plan, Part 2, Support processes

    SciTech Connect (OSTI)

    Streit, R.D.; Couture, S.A.

    1995-03-01T23:59:59.000Z

    The purpose of this document is to establish the foundation for the selection and implementation of technologies to be demonstrated in the Mixed Waste Management Facility, and to select the technologies for initial pilot-scale demonstration. Criteria are defined for judging demonstration technologies, and the framework for future technology selection is established. On the basis of these criteria, an initial suite of technologies was chosen, and the demonstration implementation scheme was developed. Part 1, previously released, addresses the selection of the primary processes. Part II addresses process support systems that are considered ``demonstration technologies.`` Other support technologies, e.g., facility off-gas, receiving and shipping, and water treatment, while part of the integrated demonstration, use best available commercial equipment and are not selected against the demonstration technology criteria.

  10. Evaluation of gasification and novel thermal processes for the treatment of municipal solid waste

    SciTech Connect (OSTI)

    Niessen, W.R.; Marks, C.H.; Sommerlad, R.E. [Camp Dresser and McKee, Inc., Cambridge, MA (United States)] [Camp Dresser and McKee, Inc., Cambridge, MA (United States)

    1996-08-01T23:59:59.000Z

    This report identifies seven developers whose gasification technologies can be used to treat the organic constituents of municipal solid waste: Energy Products of Idaho; TPS Termiska Processor AB; Proler International Corporation; Thermoselect Inc.; Battelle; Pedco Incorporated; and ThermoChem, Incorporated. Their processes recover heat directly, produce a fuel product, or produce a feedstock for chemical processes. The technologies are on the brink of commercial availability. This report evaluates, for each technology, several kinds of issues. Technical considerations were material balance, energy balance, plant thermal efficiency, and effect of feedstock contaminants. Environmental considerations were the regulatory context, and such things as composition, mass rate, and treatability of pollutants. Business issues were related to likelihood of commercialization. Finally, cost and economic issues such as capital and operating costs, and the refuse-derived fuel preparation and energy conversion costs, were considered. The final section of the report reviews and summarizes the information gathered during the study.

  11. Study on LiCl waste salt treatment process by layer melt crystallization

    SciTech Connect (OSTI)

    Cho, Yung-Zun; Lee, Tae-Kyo; Choi, Jung-Hoon; Eun, Hee-Chul; Park, Hwan-Seo; Kim, In-Tae; Park, Geun-Il [Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of)

    2013-07-01T23:59:59.000Z

    Layer melt crystallization operated in a static mode has been applied to separate Group I and II chlorides from surrogate LiCl waste salt. The effects of operating conditions such as crystal growing rate(or flux) and initial impurity concentration on separation (or concentration) of cesium, strontium and barium involved in a LiCl melts were analyzed. In a layer crystallization process, separation was impaired by occlusion of impurities and by residual melt adhering to LiCl crystal after at the end of the process. The crystal growth rate strongly affects the crystal structure, therefore the separation efficiency, while the effect of the initial Cs and Sr concentration in LiCl molten salt was nearly negligible. (authors)

  12. Structural Integrity Program for the 300,000-Gallon Radioactive Liquid Waste Storage Tanks at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    Bryant, J.W.; Nenni, J.A.; Yoder, T.S.

    2003-04-22T23:59:59.000Z

    This report provides a record of the Structural Integrity Program for the 300,000-gal liquid waste storage tanks and associated equipment at the Idaho Nuclear Technology and Engineering Center, as required by U.S. Department of Energy M 435.1-1, ''Radioactive Waste Management Manual.'' This equipment is known collectively as the Tank Farm Facility. The conclusion of this report is that the Tank Farm Facility tanks, vaults, and transfer systems that remain in service for storage are structurally adequate, and are expected to remain structurally adequate over the remainder of their planned service life through 2012. Recommendations are provided for continued monitoring of the Tank Farm Facility.

  13. Structural Integrity Program for the 300,000-Gallon Radioactive Liquid Waste Tanks at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    Bryant, Jeffrey Whealdon; Nenni, Joseph A; Timothy S. Yoder

    2003-04-01T23:59:59.000Z

    This report provides a record of the Structural Integrity Program for the 300,000-gal liquid waste storage tanks and associated equipment at the Idaho Nuclear Technology and Engineering Center, as required by U.S. Department of Energy M 435.1-1, “Radioactive Waste Management Manual.” This equipment is known collectively as the Tank Farm Facility. The conclusion of this report is that the Tank Farm Facility tanks, vaults, and transfer systems that remain in service for storage are structurally adequate, and are expected to remain structurally adequate over the remainder of their planned service life through 2012. Recommendations are provided for continued monitoring of the Tank Farm Facility.

  14. TECHNICAL ASSESSMENT OF BULK VITRIFICATION PROCESS & PRODUCT FOR TANK WASTE TREATMENT AT THE DEPARTMENT OF ENERGY HANFORD SITE

    SciTech Connect (OSTI)

    SCHAUS, P.S.

    2006-07-21T23:59:59.000Z

    At the U.S. Department of Energy (DOE) Hanford Site, the Waste Treatment Plant (WTP) is being constructed to immobilize both high-level waste (IUW) for disposal in a national repository and low-activity waste (LAW) for onsite, near-surface disposal. The schedule-controlling step for the WTP Project is vitrification of the large volume of LAW, current capacity of the WTP (as planned) would require 50 years to treat the Hanford tank waste, if the entire LAW volume were to be processed through the WTP. To reduce the time and cost for treatment of Hanford Tank Waste, and as required by the Tank Waste Remediation System Environmental Impact Statement Record of Decision and the Hanford Federal Facility Consent Agreement (Tn-Party Agreement), DOE plans to supplement the LAW treatment capacity of the WTP. Since 2002, DOE, in cooperation with the Environmental Protection Agency and State of Washington Department of Ecology has been evaluating technologies that could provide safe and effective supplemental treatment of LAW. Current efforts at Hanford are intended to provide additional information to aid a joint agency decision on which technology will be used to supplement the WTP. A Research, Development and Demonstration permit has been issued by the State of Washington to build and (for a limited time) operate a Demonstration Bulk Vitrification System (DBVS) facility to provide information for the decision on a supplemental treatment technology for up to 50% of the LAW. In the Bulk Vitrification (BV) process, LAW, soil, and glass-forming chemicals are mixed, dried, and placed in a refractory-lined box, Electric current, supplied through two graphite electrodes in the box, melts the waste feed, producing a durable glass waste-form. Although recent modifications to the process have resulted in significant improvements, there are continuing technical concerns.

  15. VERIFICATION OF THE DEFENSE WASTE PROCESSING FACILITY'S (DWPF) PROCESS DIGESTION METHOD FOR THE SLUDGE BATCH 7A QUALIFICATION SAMPLE

    SciTech Connect (OSTI)

    Click, D.; Edwards, T.; Jones, M.; Wiedenman, B.

    2011-03-14T23:59:59.000Z

    For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) performs confirmation of the applicability of the digestion method to be used by the DWPF lab for elemental analysis of Sludge Receipt and Adjustment Tank (SRAT) receipt samples and SRAT product process control samples. DWPF SRAT samples are typically dissolved using a room temperature HF-HNO{sub 3} acid dissolution (i.e., DWPF Cold Chem Method, see DWPF Procedure SW4-15.201) and then analyzed by inductively coupled plasma - atomic emission spectroscopy (ICP-AES). This report contains the results and comparison of data generated from performing the Aqua Regia (AR), Sodium peroxide/Hydroxide Fusion (PF) and DWPF Cold Chem (CC) method digestions of Sludge Batch 7a (SB7a) SRAT Receipt and SB7a SRAT Product samples. The SB7a SRAT Receipt and SB7a SRAT Product samples were prepared in the SRNL Shielded Cells, and the SRAT Receipt material is representative of the sludge that constituates the SB7a Batch or qualification composition. This is the sludge in Tank 51 that is to be transferred into Tank 40, which will contain the heel of Sludge Batch 6 (SB6), to form the Sb7a Blend composition.

  16. SRNL CRP progress report [Development of Melt Processed Ceramics for Nuclear Waste Immobilization

    SciTech Connect (OSTI)

    Amoroso, J. [Savannah River National Laboratory, Aiken, SC (United States); Marra, J. [Savannah River National Laboratory, Aiken, SC (United States)

    2014-10-02T23:59:59.000Z

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multiphase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing.

  17. Thermal treatment of organic radioactive waste

    SciTech Connect (OSTI)

    Chrubasik, A.; Stich, W. [NUKEM GmbH, Alzenau (Germany)

    1993-12-31T23:59:59.000Z

    The organic radioactive waste which is generated in nuclear and isotope facilities (power plants, research centers and other) must be treated in order to achieve a waste form suitable for long term storage and disposal. Therefore the resulting waste treatment products should be stable under influence of temperature, time, radioactivity, chemical and biological activity. Another reason for the treatment of organic waste is the volume reduction with respect to the storage costs. For different kinds of waste, different treatment technologies have been developed and some are now used in industrial scale. The paper gives process descriptions for the treatment of solid organic radioactive waste of low beta/gamma activity and alpha-contaminated solid organic radioactive waste, and the pyrolysis of organic radioactive waste.

  18. The production of fuels and chemicals from food processing wastes using a novel fermenter separator

    SciTech Connect (OSTI)

    Dale, M.C.; Venkatesh, K.V.; Choi, Hojoon; Moelhman, M.; Saliceti, L.; Okos, M.R.; Wankat, P.C.

    1991-12-01T23:59:59.000Z

    During 1991, considerable progress was made on the waste utilization project. Two small Wisconsin companies have expressed an interest in promoting and developing the ICRS technology. Pilot plant sites at (1) Hopkinton, IA, for a sweet whey plant, and Beaver Dam WI, for an acid whey site have been under development siting ICRS operations. The Hopkinton, IA site is owned and operated by Permeate Refining Inc., who have built a batch ethanol plant across the street from Swiss Valley Farms cheddar cheese operations. Permeate from Swiss Valley is piped across to PRI. PRI has signed a contract to site a 300--500,000 gallon/yr to ICRS pilot plant. They feel that the lower labor, lower energy, continuous process offered by the ICRS will substantially improve their profitability. Catalytics, Inc, is involved with converting whey from a Kraft cream cheese operation to ethanol and yeast. A complete project including whey concentration, sterilization, and yeast growth has been designed for this site. Process design improvements with the ICRS focussed on ethanol recovery techniques during this year's project. A solvent absorption/extractive distillation (SAED) process has been developed which offers the capability of obtaining an anhydrous ethanol product from vapors off 3 to 9% ethanol solutions using very little energy for distillation. Work on products from waste streams was also performed. a. Diacetyl as a high value flavor compound was very successfully produced in a Stirred Tank Reactor w/Separation. b. Yeast production from secondary carbohydrates in the whey, lactic acid, and glycerol was studied. c. Lactic acid production from cellulose and lactose studies continued. d. Production of anti-fungal reagents by immobilized plant cells; Gossypol has antifungal properties and is produced by G. arboretum.

  19. SUMMARY OF FY11 SULFATE RETENTION STUDIES FOR DEFENSE WASTE PROCESSING FACILITY GLASS

    SciTech Connect (OSTI)

    Fox, K.; Edwards, T.

    2012-05-08T23:59:59.000Z

    This report describes the results of studies related to the incorporation of sulfate in high level waste (HLW) borosilicate glass produced at the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF). A group of simulated HLW glasses produced for earlier sulfate retention studies was selected for full chemical composition measurements to determine whether there is any clear link between composition and sulfate retention over the compositional region evaluated. In addition, the viscosity of several glasses was measured to support future efforts in modeling sulfate solubility as a function of predicted viscosity. The intent of these studies was to develop a better understanding of sulfate retention in borosilicate HLW glass to allow for higher loadings of sulfate containing waste. Based on the results of these and other studies, the ability to improve sulfate solubility in DWPF borosilicate glasses lies in reducing the connectivity of the glass network structure. This can be achieved, as an example, by increasing the concentration of alkali species in the glass. However, this must be balanced with other effects of reduced network connectivity, such as reduced viscosity, potentially lower chemical durability, and in the case of higher sodium and aluminum concentrations, the propensity for nepheline crystallization. Future DWPF processing is likely to target higher waste loadings and higher sludge sodium concentrations, meaning that alkali concentrations in the glass will already be relatively high. It is therefore unlikely that there will be the ability to target significantly higher total alkali concentrations in the glass solely to support increased sulfate solubility without the increased alkali concentration causing failure of other Product Composition Control System (PCCS) constraints, such as low viscosity and durability. No individual components were found to provide a significant improvement in sulfate retention (i.e., an increase of the magnitude necessary to have a dramatic impact on blending, washing, or waste loading strategies for DWPF) for the glasses studied here. In general, the concentrations of those species that significantly improve sulfate solubility in a borosilicate glass must be added in relatively large concentrations (e.g., 13 to 38 wt % or more of the frit) in order to have a substantial impact. For DWPF, these concentrations would constitute too large of a portion of the frit to be practical. Therefore, it is unlikely that specific additives may be introduced into the DWPF glass via the frit to significantly improve sulfate solubility. The results presented here continue to show that sulfate solubility or retention is a function of individual glass compositions, rather than a property of a broad glass composition region. It would therefore be inappropriate to set a single sulfate concentration limit for a range of DWPF glass compositions. Sulfate concentration limits should continue to be identified and implemented for each sludge batch. The current PCCS limit is 0.4 wt % SO{sub 4}{sup 2-} in glass, although frit development efforts have led to an increased limit of 0.6 wt % for recent sludge batches. Slightly higher limits (perhaps 0.7-0.8 wt %) may be possible for future sludge batches. An opportunity for allowing a higher sulfate concentration limit at DWPF may lay lie in improving the laboratory experiments used to set this limit. That is, there are several differences between the crucible-scale testing currently used to define a limit for DWPF operation and the actual conditions within the DWPF melter. In particular, no allowance is currently made for sulfur partitioning (volatility versus retention) during melter processing as the sulfate limit is set for a specific sludge batch. A better understanding of the partitioning of sulfur in a bubbled melter operating with a cold cap as well as the impacts of sulfur on the off-gas system may allow a higher sulfate concentration limit to be established for the melter feed. This approach would have to be taken carefully to ensure that a

  20. Lessons learned from the EG&G consolidated hazardous waste subcontract and ESH&Q liability assessment process

    SciTech Connect (OSTI)

    Fix, N.J.

    1995-03-01T23:59:59.000Z

    Hazardous waste transportation, treatment, recycling, and disposal contracts were first consolidated at the Idaho National Engineering Laboratory in 1992 by EG&G Idaho, Inc. At that time, disposition of Resource, Conservation and Recovery Act hazardous waste, Toxic Substance Control Act waste, Comprehensive Environmental Response, Compensation, and Liability Act hazardous substances and contaminated media, and recyclable hazardous materials was consolidated under five subcontracts. The wastes were generated by five different INEL M&O contractors, under the direction of three different Department of Energy field offices. The consolidated contract reduced the number of facilities handling INEL waste from 27 to 8 qualified treatment, storage, and disposal facilities, with brokers specifically prohibited. This reduced associated transportation costs, amount and cost of contractual paperwork, and environmental liability exposure. EG&G reviewed this approach and proposed a consolidated hazardous waste subcontract be formed for the major EG&G managed DOE sites: INEL, Mound, Rocky Flats, Nevada Test Site, and 10 satellite facilities. After obtaining concurrence from DOE Headquarters, this effort began in March 1992 and was completed with the award of two master task subcontracts in October and November 1993. In addition, the effort included a team to evaluate the apparent awardee`s facilities for environment, safety, health, and quality (ESH&Q) and financial liability status. This report documents the evaluation of the process used to prepare, bid, and award the EG&G consolidated hazardous waste transportation, treatment, recycling, and/or disposal subcontracts and associated ESH&Q and financial liability assessments; document the strengths and weaknesses of the process; and propose improvements that would expedite and enhance the process for other DOE installations that used the process and for the re-bid of the consolidated subcontract, scheduled for 1997.

  1. Quasicrystalline Approach to Prediting the Spinel-Nepheline Liquidus: Application to Nuclear Waste Glass Processing

    SciTech Connect (OSTI)

    Jantzen, Carol

    2005-10-10T23:59:59.000Z

    The crystal-melt equilibria in complex fifteen component melts are modeled based on quasicrystalline concepts. A pseudobinary phase diagram between acmite (which melts incongruently to a transition metal ferrite spinel) and nepheline is defined. The pseudobinary lies within the Al{sub 2}O{sub 3}-Fe{sub 2}O{sub 3}-Na{sub 2}O-SiO{sub 2} quaternary system that defines the crystallization of basalt glass melts. The pseudobinary provides the partitioning of species between the melt and the primary liquidus phases. The medium range order of the melt and the melt-crystal exchange equilibria are defined based on a constrained mathematical treatment that considers the crystallochemical coordination of the elemental species in acmite and nepheline. The liquidus phases that form are shown to be governed by the melt polymerization and the octahedral site preference energies. This quasicrystalline liquidus model has been used to prevent unwanted crystallization in the world's largest high level waste (HLW) melter for the past three years while allowing >10 wt% higher waste loadings to be processed.

  2. Process for removing thorium and recovering vanadium from titanium chlorinator waste

    DOE Patents [OSTI]

    Olsen, Richard S. (Albany, OR); Banks, John T. (Corvallis, OR)

    1996-01-01T23:59:59.000Z

    A process for removal of thorium from titanium chlorinator waste comprising: (a) leaching an anhydrous titanium chlorinator waste in water or dilute hydrochloric acid solution and filtering to separate insoluble minerals and coke fractions from soluble metal chlorides; (b) beneficiating the insoluble fractions from step (a) on shaking tables to recover recyclable or otherwise useful TiO.sub.2 minerals and coke; and (c) treating filtrate from step (a) with reagents to precipitate and remove thorium by filtration along with acid metals of Ti, Zr, Nb, and Ta by the addition of the filtrate (a), a base and a precipitant to a boiling slurry of reaction products (d); treating filtrate from step (c) with reagents to precipitate and recover an iron vanadate product by the addition of the filtrate (c), a base and an oxidizing agent to a boiling slurry of reaction products; and (e) treating filtrate from step (d) to remove any remaining cations except Na by addition of Na.sub.2 CO.sub.3 and boiling.

  3. Technical assessment of processes to enable recycling of low-level contaminated metal waste

    SciTech Connect (OSTI)

    Reimann, G.A.

    1991-10-01T23:59:59.000Z

    Accumulations of metal waste exhibiting low levels of radioactivity (LLCMW) have become a national burden, both financially and environmentally. Much of this metal could be considered as a resource. The Department of Energy was assigned the task of inventorying and classifying LLCMW, identifying potential applications, and applying and/or developing the technology necessary to enable recycling. One application for recycled LLCMW is high-quality canisters for permanent repository storage of high-level waste (HLW). As many as 80,000 canisters will be needed by 2035. Much of the technology needed to decontaminate LLCMW has already been developed, but no integrated process has been described, even on a pilot scale, for recycling LLCMW into HLW canisters. This report reviews practices for removal of radionuclides and for producing low carbon stainless steel. Contaminants that readily form oxides may be reduced to below de minimis levels and combined with a slag. Most of the radioactivity remaining in the ingot is concentrated in the inclusions. Radionuclides that chemically resemble the elements that comprise stainless steel can not be removed effectively. Slag compositions, current melting practices, and canister fabrication techniques were reviewed.

  4. Nuclear waste management. Quarterly progress report, April-June 1981

    SciTech Connect (OSTI)

    Chikalla, T.D.; Powell, J.A.

    1981-09-01T23:59:59.000Z

    Reports and summaries are presented for the following: high-level waste process development; alternative waste forms; TMI zeolite vitrification demonstration program; nuclear waste materials characterization center; TRU waste immobilization; TRU waste decontamination; krypton implantation; thermal outgassing; iodine-129 fixation; NWVP off-gas analysis; monitoring and physical characterization of unsaturated zone transport; well-logging instrumentation development; verification instrument development; mobility of organic complexes of radionuclides in soils; handbook of methods to decrease the generation of low-level waste; waste management system studies; waste management safety studies; assessment of effectiveness of geologic isolation systems; waste/rock interactions technology program; high-level waste form preparation; development of backfill materials; development of structural engineered barriers; disposal charge analysis; and analysis of spent fuel policy implementation.

  5. Nuclear waste management. Semiannual progress report, October 1983-March 1984

    SciTech Connect (OSTI)

    McElroy, J.L.; Powell, J.A.

    1984-06-01T23:59:59.000Z

    Progress in the following studies on radioactive waste management is reported: defense waste technology; Nuclear Waste Materials Characterization Center; waste isolation; and supporting studies. 58 figures, 22 tables.

  6. Test plan, the Czechowice Oil Refinery bioremediation demonstration of a process waste lagoon. Revision 1

    SciTech Connect (OSTI)

    Altman, D.J.; Hazen, T.C.; Tien, A.J. [Westinghouse Savannah River Co., Aiken, SC (United States). Savannah River Technology Center; Worsztynowicz, A.; Ulfig, K. [Inst. for Ecology of Industrial Areas, Katowice (Poland)

    1997-05-10T23:59:59.000Z

    The overall objective of the bioremediation project is to provide a cost effective bioremediation demonstration of petroleum contaminated soil at the Czechowice Oil Refinery. Additional objectives include training of personnel, and transfer of this technology by example to Poland, and the Risk Abatement Center for Central and Eastern Europe (RACE). The goal of the remediation is to reduce the risk of PAH compounds in soil and provide a green zone (grassy area) adjacent to the site boundary. Initial project discussions with the Czechowice Oil Refinery resulted in helping the refinery find an immediate cost effective solution for the dense organic sludge in the lagoons. They found that when mixed with other waste materials, the sludge could be sold as a fuel source to local cement kilns. Thus the waste was incinerated and provided a revenue stream for the refinery to cleanup the lagoon. This allowed the bioremediation project to focus on remediation of contaminated soil that unusable as fuel, less recalcitrant and easier to handle and remediate. The assessment identified 19 compounds at the refinery that represented significant risk and would require remediation. These compounds consisted of metals, PAH`s, and BTEX. The contaminated soil to be remediated in the bioremediation demonstration contains only PAH (BTEX and metals are not significantly above background concentrations). The final biopile design consists of (1) dewatering and clearing lagoon A to clean clay, (2) adding a 20 cm layer of dolomite with pipes for drainage, leachate collection, air injection, and pH adjustment, (3) adding a 1.1 m layer of contaminated soil mixed with wood chips to improve permeability, and (4) completing the surface with 20 cm of top soil planted with grass.

  7. Precipitation-adsorption process for the decontamination of nuclear waste supernates

    DOE Patents [OSTI]

    Lee, Lien-Mow (North Augusta, SC); Kilpatrick, Lester L. (Aiken, SC)

    1984-01-01T23:59:59.000Z

    High-level nuclear waste supernate is decontaminated of cesium by precipitation of the cesium and potassium with sodium tetraphenyl boron. Simultaneously, strontium-90 is removed from the waste supernate sorption of insoluble sodium titanate. The waste solution is then filtered to separate the solution decontaminated of cesium and strontium.

  8. Precipitation-adsorption process for the decontamination of nuclear waste supernates

    DOE Patents [OSTI]

    Lee, L.M.; Kilpatrick, L.L.

    1982-05-19T23:59:59.000Z

    High-level nuclear waste supernate is decontaminated of cesium by precipitation of the cesium and potassium with sodium tetraphenyl boron. Simultaneously, strontium-90 is removed from the waste supernate sorption of insoluble sodium titanate. The waste solution is then filtered to separate the solution decontaminated of cesium and strontium.

  9. How to Put the Dollar Value on Waste Heat Recovery in the Process Industry 

    E-Print Network [OSTI]

    Campagne, W. V. L.

    1982-01-01T23:59:59.000Z

    Waste heat recovery projects should be evaluated on their actual fuel savings and not on Btu recovery. By equating waste heat recovery with potential steam savings, the fuel (or dollar) values of the waste heat as function of its temperature can...

  10. How to Put the Dollar Value on Waste Heat Recovery in the Process Industry

    E-Print Network [OSTI]

    Campagne, W. V. L.

    1982-01-01T23:59:59.000Z

    Waste heat recovery projects should be evaluated on their actual fuel savings and not on Btu recovery. By equating waste heat recovery with potential steam savings, the fuel (or dollar) values of the waste heat as function of its temperature can...

  11. Waste Receiving and Processing (WRAP) Facility Public Address System Review Findings

    SciTech Connect (OSTI)

    HUMPHRYS, K.L.

    1999-11-03T23:59:59.000Z

    Public address system operation at the Waste Receiving and Processing (WRAP) facility was reviewed. The review was based on an Operational Readiness Review finding that public address performance was not adequate in parts of the WRAP facility. Several improvements were made to the WRAP Public Address (PA) system to correct the deficiencies noted. Speaker gain and position was optimized. A speech processor was installed to boost intelligibility in high noise areas. Additional speakers were added to improve coverage in the work areas. The results of this evaluation indicate that further PA system enhancements are not warranted. Additional speakers cannot compensate for the high background sound and high reverberation levels found in the work areas. Recommendations to improve PA system intelligibility include minor speaker adjustments, enhanced PA announcement techniques, and the use of sound reduction and abatement techniques where economically feasible.

  12. Verification of the Accountability Method as a Means to Classify Radioactive Wastes Processed Using THOR Fluidized Bed Steam Reforming at the Studsvik Processing Facility in Erwin, Tennessee, USA - 13087

    SciTech Connect (OSTI)

    Olander, Jonathan [Studsvik Processing Facility Erwin, 151 T.C. Runnion Rd., Erwin, TN 37650 (United States)] [Studsvik Processing Facility Erwin, 151 T.C. Runnion Rd., Erwin, TN 37650 (United States); Myers, Corey [Studsvik, Inc., 5605 Glenridge Drive, Suite 705, Atlanta, GA 30342 (United States)] [Studsvik, Inc., 5605 Glenridge Drive, Suite 705, Atlanta, GA 30342 (United States)

    2013-07-01T23:59:59.000Z

    Studsviks' Processing Facility Erwin (SPFE) has been treating Low-Level Radioactive Waste using its patented THOR process for over 13 years. Studsvik has been mixing and processing wastes of the same waste classification but different chemical and isotopic characteristics for the full extent of this period as a general matter of operations. Studsvik utilizes the accountability method to track the movement of radionuclides from acceptance of waste, through processing, and finally in the classification of waste for disposal. Recently the NRC has proposed to revise the 1995 Branch Technical Position on Concentration Averaging and Encapsulation (1995 BTP on CA) with additional clarification (draft BTP on CA). The draft BTP on CA has paved the way for large scale blending of higher activity and lower activity waste to produce a single waste for the purpose of classification. With the onset of blending in the waste treatment industry, there is concern from the public and state regulators as to the robustness of the accountability method and the ability of processors to prevent the inclusion of hot spots in waste. To address these concerns and verify the accountability method as applied by the SPFE, as well as the SPFE's ability to control waste package classification, testing of actual waste packages was performed. Testing consisted of a comprehensive dose rate survey of a container of processed waste. Separately, the waste package was modeled chemically and radiologically. Comparing the observed and theoretical data demonstrated that actual dose rates were lower than, but consistent with, modeled dose rates. Moreover, the distribution of radioactivity confirms that the SPFE can produce a radiologically homogeneous waste form. The results of the study demonstrate: 1) the accountability method as applied by the SPFE is valid and produces expected results; 2) the SPFE can produce a radiologically homogeneous waste; and 3) the SPFE can effectively control the waste package classification. (authors)

  13. STATUS OF THE DEVELOPMENT OF IN-TANK/AT-TANK SEPARATIONS TECHNOLOGIES FOR FOR HIGH-LEVEL WASTE PROCESSING FOR THE U.S. DEPARTMENT OF ENERGY

    SciTech Connect (OSTI)

    Aaron, G.; Wilmarth, B.

    2011-09-19T23:59:59.000Z

    Within the U.S. Department of Energy's (DOE) Office of Technology Innovation and Development, the Office of Waste Processing manages a research and development program related to the treatment and disposition of radioactive waste. At the Savannah River (South Carolina) and Hanford (Washington) Sites, approximately 90 million gallons of waste are distributed among 226 storage tanks (grouped or collocated in 'tank farms'). This waste may be considered to contain mixed and stratified high activity and low activity constituent waste liquids, salts and sludges that are collectively managed as high level waste (HLW). A large majority of these wastes and associated facilities are unique to the DOE, meaning many of the programs to treat these materials are 'first-of-a-kind' and unprecedented in scope and complexity. As a result, the technologies required to disposition these wastes must be developed from basic principles, or require significant re-engineering to adapt to DOE's specific applications. Of particular interest recently, the development of In-tank or At-Tank separation processes have the potential to treat waste with high returns on financial investment. The primary objective associated with In-Tank or At-Tank separation processes is to accelerate waste processing. Insertion of the technologies will (1) maximize available tank space to efficiently support permanent waste disposition including vitrification; (2) treat problematic waste prior to transfer to the primary processing facilities at either site (i.e., Hanford's Waste Treatment and Immobilization Plant (WTP) or Savannah River's Salt Waste Processing Facility (SWPF)); and (3) create a parallel treatment process to shorten the overall treatment duration. This paper will review the status of several of the R&D projects being developed by the U.S. DOE including insertion of the ion exchange (IX) technologies, such as Small Column Ion Exchange (SCIX) at Savannah River. This has the potential to align the salt and sludge processing life cycle, thereby reducing the Defense Waste Processing Facility (DWPF) mission by 7 years. Additionally at the Hanford site, problematic waste streams, such as high boehmite and phosphate wastes, could be treated prior to receipt by WTP and thus dramatically improve the capacity of the facility to process HLW. Treatment of boehmite by continuous sludge leaching (CSL) before receipt by WTP will dramatically reduce the process cycle time for the WTP pretreatment facility, while treatment of phosphate will significantly reduce the number of HLW borosilicate glass canisters produced at the WTP. These and other promising technologies will be discussed.

  14. CONTAMINATED PROCESS EQUIPMENT REMOVAL FOR THE D&D OF THE 232-Z CONTAMINATED WASTE RECOVERY PROCESS FACILITY AT THE PLUTONIUM FINISHING PLANT (PFP)

    SciTech Connect (OSTI)

    HOPKINS, A.M.; MINETTE, M.J.; KLOS, D.B.

    2007-01-25T23:59:59.000Z

    This paper describes the unique challenges encountered and subsequent resolutions to accomplish the deactivation and decontamination of a plutonium ash contaminated building. The 232-Z Contaminated Waste Recovery Process Facility at the Plutonium Finishing Plant was used to recover plutonium from process wastes such as rags, gloves, containers and other items by incinerating the items and dissolving the resulting ash. The incineration process resulted in a light-weight plutonium ash residue that was highly mobile in air. This light-weight ash coated the incinerator's process equipment, which included gloveboxes, blowers, filters, furnaces, ducts, and filter boxes. Significant airborne contamination (over 1 million derived air concentration hours [DAC]) was found in the scrubber cell of the facility. Over 1300 grams of plutonium held up in the process equipment and attached to the walls had to be removed, packaged and disposed. This ash had to be removed before demolition of the building could take place.

  15. Process for removing and detoxifying cadmium from scrap metal including mixed waste

    SciTech Connect (OSTI)

    Kronberg, J.W.

    1994-07-01T23:59:59.000Z

    Cadmium-bearing scrap from nuclear applications, such as neutron shielding and reactor control and safety rods, must usually be handled as mixed waste since it is radioactive and the cadmium in it is both leachable and highly toxic. Removing the cadmium from this scrap, and converting it to a nonleachable and minimally radioactive form, would greatly simplify disposal or recycling. A process now under development will do this by shredding the scrap; leaching it with reagents which selectively dissolve out the cadmium; reprecipitating the cadmium as its highly insoluble sulfide; then fusing the sulfide into a glassy matrix to bring its leachability below EPA limits before disposal. Alternatively, the cadmium may be recovered for reuse. A particular advantage of the process is that all reagents (except the glass frit) can easily be recovered and reused in a nearly closed cycle, minimizing the risk of radioactive release. The process does not harm common metals such as aluminum, iron and stainless steel, and is also applicable to non-nuclear cadmium-bearing scrap such as nickel-cadmium batteries.

  16. Physical Properties Models for Simulation of Processes to Treat INEEL Tank Farm Waste: Thermodynamic Equilibrium

    SciTech Connect (OSTI)

    Nichols, Todd Travis; Taylor, Dean Dalton

    2002-07-01T23:59:59.000Z

    A status is presented of the development during FY2002 of a database for physical properties models for the simulation of the treatment of Sodium-Bearing Waste (SBW) at the Idaho National Engineering and Environmental Laboratory. An activity coefficient model is needed for concentrated, aqueous, multi-electrolyte solutions that can be used by process design practitioners. Reasonable first-order estimates of activity coefficients in the relevant media are needed rather than an incremental improvement in theoretical approaches which are not usable by practitioners. A comparison of the Electrolyte Non-Random Two-Liquid (ENRTL) and Pitzer ion-interaction models for the thermodynamic representation of SBW is presented. It is concluded that Pitzer's model is superior to ENRTL in modeling treatment processes for SBW. The applicability of the Pitzer treatment to high concentrations of pertinent species and to the determination of solubilities and chemical equilibria is addressed. Alternate values of Pitzer parameters for HCl, H2SO4, and HNO3 are proposed, applicable up to 16m, and 12m, respectively. Partial validation of the implementation of Pitzer's treatment within the commercial process simulator ASPEN Plus was performed.

  17. Physical Properties Models for Simulation of Processes to Treat INEEL Tank Farm Waste: Thermodynamic Equilibrium

    SciTech Connect (OSTI)

    Nichols, T.T.; Taylor, D.D.

    2002-07-18T23:59:59.000Z

    A status is presented of the development during FY2002 of a database for physical properties models for the simulation of the treatment of Sodium-Bearing Waste (SBW) at the Idaho National Engineering and Environmental Laboratory. An activity coefficient model is needed for concentrated, aqueous, multi-electrolyte solutions that can be used by process design practitioners. Reasonable first-order estimates of activity coefficients in the relevant media are needed rather than an incremental improvement in theoretical approaches which are not usable by practitioners. A comparison of the Electrolyte Non-Random Two-Liquid (ENRTL) and Pitzer ion-interaction models for the thermodynamic representation of SBW is presented. It is concluded that Pitzer's model is superior to ENRTL in modeling treatment processes for SBW. The applicability of the Pitzer treatment to high concentrations of pertinent species and to the determination of solubilities and chemical equilibria is addressed. Alternate values of Pitzer parameters for HCl, H2SO4, and HNO3 are proposed, applicable up to 16m, and 12m, respectively. Partial validation of the implementation of Pitzer's treatment within the commercial process simulator ASPEN Plus was performed.

  18. A low-temperature process for the denitration of Hanford single-shell tank, nitrate-based waste utilizing the nitrate to ammonia and ceramic (NAC) process

    SciTech Connect (OSTI)

    Mattus, A.J.; Lee, D.D.; Dillow, T.A.; Farr, L.L.; Loghry, S.L.; Pitt, W.W.; Gibson, M.R.

    1994-12-01T23:59:59.000Z

    Bench-top feasibility studies with Hanford single-shell tank (SST) simulants, using a new, low-temperature (50 to 60C) process for converting nitrate to ammonia and ceramic (NAC), have conclusively shown that between 85 to 99% of the nitrate can be readily converted. In this process, aluminum powders or shot can be used to convert alkaline, nitrate-based supernate to ammonia and an aluminum oxide-sodium aluminate-based solid which might function as its own waste form. The process may actually be able to utilize already contaminated aluminum scrap metal from various DOE sites to effect the conversion. The final, nearly nitrate-free ceramic-like product can be pressed and sintered like other ceramics. Based upon the starting volumes of 6.2 and 3.1 M sodium nitrate solution, volume reductions of 50 to 55% were obtained for the waste form produced, compared to an expected 35 to 50% volume increase if the Hanford supernate were grouted. Engineering data extracted from bench-top studies indicate that the process will be very economical to operate, and data were used to cost a batch, 1,200-kg NO{sub 3}/h plant for working off Hanford SST waste over 20 years. Their total process cost analysis presented in the appendix, indicates that between $2.01 to 2.66 per kilogram of nitrate converted will be required. Additionally, data on the fate of select radioelements present in solution are presented in this report as well as kinetic, operational, and control data for a number of experiments. Additionally, if the ceramic product functions as its own waste form, it too will offer other cost savings associated with having a smaller volume of waste form as well as eliminating other process steps such as grouting.

  19. Waste Heat Recovery and Recycling in Thermal Separation Processes: Distillation, Multi-Effect Evaporation (MEE) and Crystallization Processes

    SciTech Connect (OSTI)

    Emmanuel A. Dada; Chandrakant B. Panchal; Luke K. Achenie; Aaron Reichl; Chris C. Thomas

    2012-12-03T23:59:59.000Z

    Evaporation and crystallization are key thermal separation processes for concentrating and purifying inorganic and organic products with energy consumption over 1,000 trillion Btu/yr. This project focused on a challenging task of recovering low-temperature latent heat that can have a paradigm shift in the way thermal process units will be designed and operated to achieve high-energy efficiency and significantly reduce the carbon footprint as well as water footprint. Moreover, this project has evaluated the technical merits of waste-heat powered thermal heat pumps for recovery of latent heat from distillation, multi-effect evaporation (MEE), and crystallization processes and recycling into the process. The Project Team has estimated the potential energy, economics and environmental benefits with the focus on reduction in CO2 emissions that can be realized by 2020, assuming successful development and commercialization of the technology being developed. Specifically, with aggressive industry-wide applications of heat recovery and recycling with absorption heat pumps, energy savings of about 26.7 trillion Btu/yr have been estimated for distillation process. The direct environmental benefits of this project are the reduced emissions of combustible products. The estimated major reduction in environmental pollutants in the distillation processes is in CO2 emission equivalent to 3.5 billion lbs/year. Energy consumption associated with water supply and treatments can vary between 1,900 kWh and 23,700 kWh per million-gallon water depending on sources of natural waters [US DOE, 2006]. Successful implementation of this technology would significantly reduce the demand for cooling-tower waters, and thereby the use and discharge of water treatment chemicals. The Project Team has also identified and characterized working fluid pairs for the moderate-temperature heat pump. For an MEE process, the two promising fluids are LiNO3+KNO3+NANO3 (53:28:19 ) and LiNO3+KNO3+NANO2(53:35:12). And for an H2O2 distillation process, the two promising fluids are Trifluoroethanol (TFE) + Triethylene Glycol Dimethyl ether (DMETEG) and Ammonia+ Water. Thermo-physical properties calculated by Aspen+ are reasonably accurate. Documentation of the installation of pilot-plants or full commercial units were not found in the literature for validating thermo-physical properties in an operating unit. Therefore, it is essential to install a pilot-scale unit to verify thermo-physical properties of working fluid pairs and validate the overall efficiency of the thermal heat pump at temperatures typical of distillation processes. For an HO2 process, the ammonia-water heat pump system is more compact and preferable than the TFE-DMETEG heat pump. The ammonia-water heat pump is therefore recommended for the H2O2 process. Based on the complex nature of the heat recovery system, we anticipated that capital costs could make investments financially unattractive where steam costs are low, especially where co-generation is involved. We believe that the enhanced heat transfer equipment has the potential to significantly improve the performance of TEE crystallizers, independent of the absorption heat-pump recovery system. Where steam costs are high, more detailed design/cost engineering will be required to verify the economic viability of the technology. Due to the long payback period estimated for the TEE open system, further studies on the TEE system are not warranted unless there are significant future improvements to heat pump technology. For the H2O2 distillation cycle heat pump waste heat recovery system, there were no significant process constraints and the estimated 5 years payback period is encouraging. We therefore recommend further developments of application of the thermal heat pump in the H2O2 distillation process with the focus on the technical and economic viability of heat exchangers equipped with the state-of-the-art enhancements. This will require additional funding for a prototype unit to validate enhanced thermal performances of heat transfer equipment, evaluat

  20. Surrogate formulations for thermal treatment of low-level mixed waste. Part 3: Plasma hearth process testing

    SciTech Connect (OSTI)

    Chiang, J.M.; Bostick, W.D.; Hoffman, D.P.; Hermes, W.H.; Gibson, L.V. Jr.; Richmond, A.A. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States)

    1994-01-01T23:59:59.000Z

    The plasma hearth process (PHP) presented in this report has been tested at a facility at Ukiah, California, in a cooperative effort between the Department of Energy (DOE), Science Applications International Corporation, Inc., and ReTech, Inc. The electrically heated plasma gas is used to destroy organic materials and bind radionuclides and Resource Conservation and Recovery Act (RCRA) metals in the glassy slag. Proof-of-principle tests were conducted successfully using nonhazardous and non-radioactive materials placed in 30-gal steel drums. On-line analyses of the gaseous effluents indicated complete combustion; emissions of CO, NO{sub x}, and particulates were low. The process also produced highly stable solid waste forms. The experiments for the next phase have been planned employing surrogates for the hazardous and radioactive components of the simulated waste streams. Natural cerium oxide is selected to simulate the behavior of radioactive actinide and transuranium elements, while natural cesium chloride is simulated for the study of relatively volatile radioactive fission products. For RCRA organics, naphthalene and 1,2-dichlorobenzene are semivolatile compounds selected to represent significant challenges to thermal destruction, whereas chlorobenzene is selected for the study of relatively volatile organics. Salts of chromium, nickel, lead, and cadmium are chosen to represent the twelve regulated toxic metals for emission and partitioning studies. The simulated waste packages presented in the text do not necessarily represent an individual waste stream within the DOE complex; rather, they were formulated to represent the most probable components in generic waste stream categories.

  1. Screening study for waste biomass to ethanol production facility using the Amoco process in New York State. Final report

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    This report evaluates the economic feasibility of locating biomass-to-ethanol waste conversion facilities in New York State. Part 1 of the study evaluates 74 potential sites in New York City and identifies two preferred sites on Staten, the Proctor Gamble and the Arthur Kill sites, for further consideration. Part 2 evaluates upstate New York and determines that four regions surrounding the urban centers of Albany, Buffalo, Rochester, and Syracuse provide suitable areas from which to select specific sites for further consideration. A separate Appendix provides supplemental material supporting the evaluations. A conceptual design and economic viability evaluation were developed for a minimum-size facility capable of processing 500 tons per day (tpd) of biomass consisting of wood or paper, or a combination of the two for upstate regions. The facility would use Amoco`s biomass conversion technology and produce 49,000 gallons per day of ethanol and approximately 300 tpd of lignin solid by-product. For New York City, a 1,000-tpd processing facility was also evaluated to examine effects of economies of scale. The reports evaluate the feasibility of building a biomass conversion facility in terms of city and state economic, environmental, and community factors. Given the data obtained to date, including changing costs for feedstock and ethanol, the project is marginally attractive. A facility should be as large as possible and located in a New York State Economic Development Zone to take advantage of economic incentives. The facility should have on-site oxidation capabilities, which will make it more financially viable given the high cost of energy. 26 figs., 121 tabs.

  2. Bioelectrochemical Integration of Waste Heat Recovery, Waste-to-Energy Conversion, and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyand SustainedBio-Oil DeploymentCombustion |

  3. Use of the TRUEX process for the pretreatment of neutralized cladding removal waste (NCRW) sludge -- Results of FY 1990 studies

    SciTech Connect (OSTI)

    Swanson, J.L.

    1991-09-01T23:59:59.000Z

    The goal of this process is to separate the transuranic elements from the bulk components so that the bulk components can be disposed of as low-level waste with only a small transuranic-containing fraction requiring geologic disposal. The pretreatment process examined here is the one indicated to be most promising in the initial studies. It involves dissolving the unwashed sludge in nitric acid and then using the TRUEX solvent extraction process to remove the transuranic elements from the bulk components of the waste. The areas identified in this work that need additional information are gradual precipitate formation as dissolved sludge solutions age, and formation of solid material when the dissolved sludge solution is contacted with the solvent used in the TRUEX process. 5 refs., 71 figs., 10 tabs.

  4. Quantification of greenhouse gas emissions from waste management processes for municipalities - A comparative review focusing on Africa

    SciTech Connect (OSTI)

    Friedrich, Elena, E-mail: Friedriche@ukzn.ac.za [CRECHE Centre for Research in Environmental, Coastal and Hydrological Engineering, School of Civil Engineering, Surveying and Construction, University of KwaZulu-Natal, Howard College Campus, Durban (South Africa); Trois, Cristina [CRECHE Centre for Research in Environmental, Coastal and Hydrological Engineering, School of Civil Engineering, Surveying and Construction, University of KwaZulu-Natal, Howard College Campus, Durban (South Africa)

    2011-07-15T23:59:59.000Z

    The amount of greenhouse gases (GHG) emitted due to waste management in the cities of developing countries is predicted to rise considerably in the near future; however, these countries have a series of problems in accounting and reporting these gases. Some of these problems are related to the status quo of waste management in the developing world and some to the lack of a coherent framework for accounting and reporting of greenhouse gases from waste at municipal level. This review summarizes and compares GHG emissions from individual waste management processes which make up a municipal waste management system, with an emphasis on developing countries and, in particular, Africa. It should be seen as a first step towards developing a more holistic GHG accounting model for municipalities. The comparison between these emissions from developed and developing countries at process level, reveals that there is agreement on the magnitude of the emissions expected from each process (generation of waste, collection and transport, disposal and recycling). The highest GHG savings are achieved through recycling, and these savings would be even higher in developing countries which rely on coal for energy production (e.g. South Africa, India and China) and where non-motorized collection and transport is used. The highest emissions are due to the methane released by dumpsites and landfills, and these emissions are predicted to increase significantly, unless more of the methane is captured and either flared or used for energy generation. The clean development mechanism (CDM) projects implemented in the developing world have made some progress in this field; however, African countries lag behind.

  5. The use of carbon aerogel electrodes for deionizing water and treating aqueous process wastes

    SciTech Connect (OSTI)

    Farmer, J.C.; Mack, G.V.; Fix, D.V.

    1996-07-01T23:59:59.000Z

    A wide variety of ionic contaminants can be removed from aqueous solutions by electrosorption on carbon aerogel electrodes. Carbon aerogel is an ideal electrode material because of its low electrical resistivity (< 40 m{Omega}-cm), high specific surface area (400 to 1100 m{sup 2}/g), and controllable pore size distribution (< 50 nm). This approach may avoid the generation of a substantial amount of secondary waste associated with ion exchange processing. Ion exchange resins require concentrated solutions of acid, base, or salt for regeneration, whereas carbon aerogel electrodes require only electrical discharge or reverse polarization. Aqueous solutions of NaCl, NaNO{sub 3}, NH{sub 4}ClO{sub 4}, Na{sub 2}CO{sub 3}, Na{sub 2}SO{sub 4} and Na{sub 3}PO{sub 4} have been separated into concentrate and high-purity product streams. The deionization of a 100 {mu}S/cm NaCl solution with two parallel stacks of carbon aerogel electrodes in a potential-swing mode is discussed in detail. The selective removal of Cu, Zn, Cd, Pb, Cr, Mn, Co and U from a variety of process solutions and natural waters has also been demonstrated. Feasibility tests indicate that the remediation of Cr(VI)-contaminated ground water may be possible.

  6. DOE final report, phase one startup, Waste Receiving and Processing Facility (WRAP)

    SciTech Connect (OSTI)

    Jasen, W.G.

    1998-01-07T23:59:59.000Z

    This document is to validate that the WRAP facility is physically ready to start up phase 1, and that the managers and operators are prepared to safely manage and operate the facility when all pre-start findings have been satisfactorily corrected. The DOE Readiness Assessment (RA) team spent a week on-site at Waste Receiving and Processing Module 1 (WRAP-1) to validate the readiness for phase 1 start up of facility. The Contractor and DOE staff were exceptionally cooperative and contributed significantly to the overall success of the RA. The procedures and Conduct of Operations areas had significant discrepancies, many of which should have been found by the contractor review team. In addition the findings of the contractor review team should have led the WRAP-1 management team to correcting the root causes of the findings prior to the DOE RA team review. The findings and observations include many issues that the team believes should have been found by the contractor review and corrective actions taken. A significantly improved Operational Readiness Review (ORR) process and corrective actions of root causes must be fully implemented by the contractor prior to the performance of the contractor ORR for phase 2 operations. The pre-start findings as a result of this independent DOE Readiness Assessment are presented.

  7. ANION ANALYSES BY ION CHROMATOGRAPHY FOR THE ALTERNATE REDUCTANT DEMONSTRATION FOR THE DEFENSE WASTE PROCESSING FACILITY

    SciTech Connect (OSTI)

    Best, D.

    2010-08-04T23:59:59.000Z

    The Process Science Analytical Laboratory (PSAL) at the Savannah River National Laboratory was requested by the Defense Waste Processing Facility (DWPF) to develop and demonstrate an Ion Chromatography (IC) method for the analysis of glycolate, in addition to eight other anions (fluoride, formate, chloride, nitrite, nitrate, sulfate, oxalate and phosphate) in Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) samples. The method will be used to analyze anions for samples generated from the Alternate Reductant Demonstrations to be performed for the DWPF at the Aiken County Technology Laboratory (ACTL). The method is specific to the characterization of anions in the simulant flowsheet work. Additional work will be needed for the analyses of anions in radiological samples by Analytical Development (AD) and DWPF. The documentation of the development and demonstration of the method fulfills the third requirement in the TTQAP, SRNL-RP-2010-00105, 'Task Technical and Quality Assurance Plan for Glycolic-Formic Acid Flowsheet Development, Definition and Demonstrations Tasks 1-3'.

  8. Process Options Description for Vitrification Flowsheet Model of INEEL Sodium Bearing Waste

    SciTech Connect (OSTI)

    Nichols, T.T.; Taylor, D.D.; Lauerhass, L.; Barnes, C.M.

    2002-02-21T23:59:59.000Z

    The technical information required for the development of a basic steady-state process simulation of the vitrification treatment train of sodium bearing waste (SBW) at Idaho National Engineering and Environmental Laboratory (INEEL) is presented. The objective of the modeling effort is to provide the predictive capability required to optimize an entire treatment train and assess system-wide impacts of local changes at individual unit operations, with the aim of reducing the schedule and cost of future process/facility design efforts. All the information required a priori for engineers to construct and link unit operation modules in a commercial software simulator to represent the alternative treatment trains is presented. The information is of a mid- to high-level nature and consists of the following: (1) a description of twenty-four specific unit operations--their operating conditions and constraints, primary species and key outputs, and the initial modeling approaches that will be used in the first year of the simulation's development; (2) three potential configurations of the unit operations (trains) and their interdependencies via stream connections; and (3) representative stream compositional makeups.

  9. HWMA/RCRA Closure Plan for the TRA Fluorinel Dissolution Process Mockup and Gamma Facilities Waste System

    SciTech Connect (OSTI)

    K. Winterholler

    2007-01-31T23:59:59.000Z

    This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan was developed for the Test Reactor Area Fluorinel Dissolution Process Mockup and Gamma Facilities Waste System, located in Building TRA-641 at the Reactor Technology Complex (RTC), Idaho National Laboratory Site, to meet a further milestone established under the Voluntary Consent Order SITE-TANK-005 Action Plan for Tank System TRA-009. The tank system to be closed is identified as VCO-SITE-TANK-005 Tank System TRA-009. This closure plan presents the closure performance standards and methods for achieving those standards.

  10. Catalysis Center for Energy Innovation for Biomass Processing: Research Strategies and Goals

    SciTech Connect (OSTI)

    Vlachos, Dion G.; Chen, Jingguang; Gorte, R. J.; Huber, George W.; Tsapatsis, Michael

    2010-01-01T23:59:59.000Z

    Production of energy and chemicals from biomass is of critical importance in meeting some of the challenges associated with decreasing availability of fossil fuels and addressing global climate change. In the current article, we outline a perspective on key challenges of biomass processing. We also introduce the Catalysis Center for Energy Innovation (CCEI), one of the 46 Energy Frontier Research Centers established by the Department of Energy in the spring of 2009, and CCEI’s overall research strategies and goals along with its cross-cutting research thrusts that can enable potential technological breakthroughs in the utilization of biomass and its derivatives. The center focuses on developing innovative heterogeneous catalysts and processing schemes that can lead to viable biorefineries for the conversion of biomass to chemicals, fuels, and electricity. In order to achieve this goal, a group of over twenty faculty members from nine institutions has been assembled to bring together complementary expertise covering novel materials synthesis, advanced characterization, multiscale modeling, surface science, catalytic kinetics, and microreactors.

  11. EVALUATION OF A TURBIDITY METER FOR USE AT THE DEFENSE WASTE PROCESSING FACILITY

    SciTech Connect (OSTI)

    Mahannah, R.; Edwards, T.

    2013-06-04T23:59:59.000Z

    Savannah River Remediation’s (SRR’s) Defense Waste Processing Facility (DWPF) Laboratory currently tests for sludge carry-over into the Recycle Collection Tank (RCT) by evaluating the iron concentration in the Slurry Mix Evaporator Condensate Tank (SMECT) and relating this iron concentration to the amount of sludge solids present. A new method was proposed for detecting the amount of sludge in the SMECT that involves the use of an Optek turbidity sensor. Waste Services Laboratory (WSL) personnel conducted testing on two of these units following a test plan developed by Waste Solidification Engineering (WSE). Both Optek units (SN64217 and SN65164) use sensor model AF16-N and signal converter model series C4000. The sensor body of each unit was modified to hold a standard DWPF 12 cc sample vial, also known as a “peanut” vial. The purpose of this testing was to evaluate the use of this model of turbidity sensor, or meter, to provide a measurement of the sludge solids present in the SMECT based upon samples from that tank. During discussions of the results from this study by WSE, WSL, and Savannah River National Laboratory (SRNL) personnel, an upper limit on the acceptable level of solids in SMECT samples was set at 0.14 weight percent (wt%). A “go/no-go” decision criterion was to be developed for the critical turbidity response, which is expressed in concentration units (CUs), for each Optek unit based upon the 0.14 wt% solids value. An acceptable or a “go” decision for the SMECT should reflect the situation that there is an identified risk (e.g. 5%) for a CU response from the Optek unit to be less than the critical CU value when the solids content of the SMECT is actually 0.14 wt% or greater, while a “no-go” determination (i.e., an Optek CU response above the critical CU value, a conservative decision relative to risk) would lead to additional evaluations of the SMECT to better quantify the possible solids content of the tank. Subsequent to the issuance of the initial version of this report but under the scope of the original request for technical assistance, WSE asked for this report to be revised to include the “go/no-go” CU value corresponding to 0.28 wt% solids. It was this request that led to the preparation of Revision 1 of the report. The results for the 0.28 wt% solids value were developed following the same approach as that utilized for the 0.14 wt% solids value. A sludge simulant was used to develop standards for testing both Optek units and to determine the viability of a “go/no-go” CU response for each of the units. Statistical methods were used by SRNL to develop the critical CU value for the “go/no-go” decision for these standards for each Optek unit. Since only one sludge simulant was available for this testing, the sensitivity of these results to other simulants and to actual sludge material is not known. However, limited testing with samples from the actual DWPF process (both SRAT product samples and SMECT samples) demonstrated that the use of the “go/no-go” criteria developed from the sludge simulant testing was conservative for these samples taken from the sludge batch, Sludge Batch 7b, being processed at the time of this testing. While both of the Optek units performed very reliably during this testing, there were statistically significant differences (although small on a practical scale) between the two units. Thus, testing should be conducted on any new unit of this Optek model to qualify it before it is used to support the DWPF operation.

  12. Evaluation Of A Turbidity Meter For Use At The Defense Waste Processing Facility

    SciTech Connect (OSTI)

    Mahannah, R. N.; Edwards, T. B.

    2013-01-15T23:59:59.000Z

    Savannah River Remediation's (SRR's) Defense Waste Processing Facility (DWPF) Laboratory currently tests for sludge carry-over into the Recycle Collection Tank (RCT) by evaluating the iron concentration in the Slurry Mix Evaporator Condensate Tank (SMECT) and relating this iron concentration to the amount of sludge solids present. A new method was proposed for detecting the amount of sludge in the SMECT that involves the use of an Optek turbidity sensor. Waste Services Laboratory (WSL) personnel conducted testing on two of these units following a test plan developed by Waste Solidification Engineering (WSE). Both Optek units (SN64217 and SN65164) use sensor model AF16-N and signal converter model series C4000. The sensor body of each unit was modified to hold a standard DWPF 12 cc sample vial, also known as a ''peanut'' vial. The purpose of this testing was to evaluate the use of this model of turbidity sensor, or meter, to provide a measurement of the sludge solids present in the SMECT based upon samples from that tank. During discussions of the results from this study by WSE, WSL, and Savannah River National Laboratory (SRNL) personnel, an upper limit on the acceptable level of solids in SMECT samples was set at 0.14 wt%. A ''go/no-go'' decision criterion was to be developed for the critical turbidity response, which is expressed in concentration units (CUs), for each Optek unit based upon the 0.14 wt% solids value. An acceptable or a ''go'' decision for the SMECT should reflect the situation that there is an identified risk (e.g. 5%) for a CU response from the Optek unit to be less than the critical CU value when the solids content of the SMECT is actually 0.14 wt% or greater, while a ''no-go'' determination (i.e., an Optek CU response above the critical CU value, a conservative decision relative to risk) would lead to additional evaluations of the SMECT to better quantify the possible solids content of the tank. A sludge simulant was used to develop standards for testing both Optek units and to determine the viability of a ''go/no-go'' CU response for each of the units. Statistical methods were used by SRNL to develop the critical CU value for the ''go/no-go'' decision for these standards for each Optek unit. Since only one sludge simulant was available for this testing, the sensitivity of these results to other simulants and to actual sludge material is not known. However, limited testing with samples from the actual DWPF process (both SRAT product samples and SMECT samples) demonstrated that the use of the ''go/no-go'' criteria developed from the sludge simulant testing was conservative for these samples taken from Sludge Batch 7b (SB7b), the sludge batch currently being processed. While both of the Optek units performed very reliably during this testing, there were statistically significant differences (although small on a practical scale) between the two units. Thus, testing should be conducted on any new unit of this Optek model to qualify it before it is used to support the DWPF operation.

  13. Bentonite alteration due to thermal-hydro-chemical processes during the early thermal period in a nuclear waste repository

    SciTech Connect (OSTI)

    Xu, T.; Senger, R.; Finsterle, S.

    2011-02-01T23:59:59.000Z

    After closure of an underground nuclear waste repository, the decay of radionuclides will raise temperature in the repository, and the bentonite buffer will resaturate by water inflow from the surrounding host rock. The perturbations from these thermal and hydrological processes are expected to dissipate within hundreds to a few thousand years. Here, we investigate coupled thermal-hydro-chemical processes and their effects on the short-term performance of a potential nuclear waste repository located in a clay formation. Using a simplified geometric configuration and abstracted hydraulic parameters of the clayey formation, we examine geochemical processes, coupled with thermo-hydrologic phenomena, and potential changes in porosity near the waste container during the early thermal period. The developed models were used for evaluating the mineral alterations and potential changes in porosity of the buffer, which can affect the repository performance. The results indicate that mineral alteration and associated changes in porosity induced by early thermal and hydrological processes are relatively small and are expected to not significantly affect flow and transport properties. Chlorite precipitation was obtained in all simulation cases. A maximum of one percent volume fraction of chlorite could be formed, whose process may reduce swelling and sorption capacity of bentonite clay, affecting the performance of the repository. llitisation process was not obtained from the present simulations.

  14. Nuclear waste management. Quarterly progress report, October through December 1980

    SciTech Connect (OSTI)

    Chikalla, T.D.; Powell, J.A. (comps.)

    1981-03-01T23:59:59.000Z

    Progress reports and summaries are presented under the following headings: high-level waste process development; alternative waste forms; nuclear waste materials characterization center; TRU waste immobilization; TRU waste decontamination; krypton solidification; thermal outgassing; iodine-129 fixation; monitoring and physical characterization of unsaturated zone transport; well-logging instrumentation development; mobility of organic complexes of radionuclides in soils; waste management system studies; waste management safety studies; assessment of effectiveness of geologic isolation systems; waste/rock interactions technology; high level waste form preparation; development of backfill material; development of structural engineered barriers; ONWI disposal charge analysis; spent fuel and fuel component integrity program; analysis of spent fuel policy implementation; analysis of postulated criticality events in a storage array of spent LWR fuel; asphalt emulsion sealing of uranium tailings; liner evaluation for uranium mill tailings; multilayer barriers for sealing of uranium tailings; application of long-term chemical biobarriers for uranium tailings; revegetation of inactive uranium tailing sites; verification instrument development.

  15. Subsolidus sintering of SYNROC: II. Materials selections, process improvements, waste form evaluations

    SciTech Connect (OSTI)

    Palmour, H. III.; Hare, T.M.; Russ, J.C.; Boss, C.B.; Solomah, A.G.; Batchelor, A.D.

    1981-07-01T23:59:59.000Z

    The principal areas of research were related to materials selections and characterization, process optimizations, crystalline phase development, sinterability, resultant microstructures and evaluations of leaching behavior. With and without simulated radwaste doping, the Modified SYNROC-B formulation was found to be sinterable to technical density (D > 0.95 in the CTS mode) at temperatures in the range 1195/sup 0/C to 1285/sup 0/C, depending upon TiO/sub 2/ and CaCO/sub 3/ materials selections, and upon powder processing methods employed prior to firing. Of the 16 TiO/sub 2/ raw materials evaluated in air-fired, undoped batches, 15 yielded technically dense compacts (D > 0.95). Three fine pigmentary grades of TiO/sub 2/ were selected for further study in doped and undoped versions fired in Ar, 4% H/sub 2/. When intensively milled with other well chosen matrix constituents and 10% spray-calcined simulated waste, each of them yielded sintered densities of greater than or equal to 4.2 g/cm/sup 3/ (D greater than or equal to 0.96) at 1260/sup 0/C, 2h in Ar, 4% H/sub 2/ atmosphere. Leachability studies have been carried out in triple distilled H/sub 2/O according to MCC-1 and MCC-2 procedures at 25/sup 0/ and 150/sup 0/C, respectively, and under ..gamma..-irradiation for dose rates of 2-5 x 10/sup 5/ rad/h at approx. 25/sup 0/C. The results obtained showed that freshly exposed interions of sintered Modified SYNROC-B ceramics were highly stable in the leaching environment, and were very retentive of simulated waste ions, including the most leachable species, Cs. Depending on leaching conditions, the highest Cs leach rates (after 3 days) were on the order of 10/sup -1/ g.m/sup -2/.day/sup -1/, but diminished sharply for longer times (up to 92 days) to the range 10/sup -2/ - 10/sup -4/ g.m/sup -2/.day/sup -1/.

  16. Elimination Of Catalytic Hydrogen Generation In Defense Waste Processing Facility Slurries

    SciTech Connect (OSTI)

    Koopman, D. C.

    2013-01-22T23:59:59.000Z

    Based on lab-scale simulations of Defense Waste Processing Facility (DWPF) slurry chemistry, the addition of sodium nitrite and sodium hydroxide to waste slurries at concentrations sufficient to take the aqueous phase into the alkaline region (pH > 7) with approximately 500 mg nitrite ion/kg slurry (assuming <25 wt% total solids, or equivalently 2,000 mg nitrite/kg total solids) is sufficient to effectively deactivate the noble metal catalysts at temperatures between room temperature and boiling. This is a potential strategy for eliminating catalytic hydrogen generation from the list of concerns for sludge carried over into the DWPF Slurry Mix Evaporator Condensate Tank (SMECT) or Recycle Collection Tank (RCT). These conclusions are drawn in large part from the various phases of the DWPF catalytic hydrogen generation program conducted between 2005 and 2009. The findings could apply to various situations, including a solids carry-over from either the Sludge Receipt and Adjustment Tank (SRAT) or Slurry Mix Evaporator (SME) into the SMECT with subsequent transfer to the RCT, as well as a spill of formic acid into the sump system and transfer into an RCT that already contains sludge solids. There are other potential mitigating factors for the SMECT and RCT, since these vessels are typically operated at temperatures close to the minimum temperatures that catalytic hydrogen has been observed to occur in either the SRAT or SME (pure slurry case), and these vessels are also likely to be considerably more dilute in both noble metals and formate ion (the two essential components to catalytic hydrogen generation) than the two primary process vessels. Rhodium certainly, and ruthenium likely, are present as metal-ligand complexes that are favored under certain concentrations of the surrounding species. Therefore, in the SMECT or RCT, where a small volume of SRAT or SME material would be significantly diluted, conditions would be less optimal for forming or sustaining the catalytic ligand species. Such conditions are likely to adversely impact the ability of the transferred mass to produce hydrogen at the same rate (per unit mass SRAT or SME slurry) as in the SRAT or SME vessels.

  17. Summary of Waste Calcination at INTEC

    SciTech Connect (OSTI)

    O'Brien, Barry Henry; Newby, Bill Joe

    2000-10-01T23:59:59.000Z

    Fluidized-bed calcination at the Idaho Nuclear Technologies and Engineering Center (INTEC, formally called the Idaho Chemical Processing Plant) has been used to solidify acidic metal nitrate fuel reprocessing and incidental wastes wastes since 1961. A summary of waste calcination in full-scale and pilot plant calciners has been compiled for future reference. It contains feed compositions and operating conditions for all the processing campaigns for the original Waste Calcining Facility (WCF), the New Waste Calcining Facility (NWCF) started up in 1982, and numerous small scale pilot plant tests for various feed types. This summary provides a historical record of calcination at INTEC, and will be useful for evaluating calcinability of future wastes.

  18. Bioelectrochemical Integration of Waste Heat Recovery, Waste-to-Energy Conversion, and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The Big Green Bus rolled intoShannon Brescher SheaJohn

  19. The PERC{trademark} process: Existing and potential applications for induction coupled plasma technology in hazardous and radioactive waste treatment

    SciTech Connect (OSTI)

    Blutke, A.S.; Vavruska, J.S.; Serino, J.F. [Plasma Technology, Inc., Santa Fe, NM (United States)

    1996-12-31T23:59:59.000Z

    Plasma Technology, Inc. (PTI), a Santa Fe, New Mexico corporation has developed the Plasma Energy Recycle and Conversion (PERC){trademark} treatment process as a safe and environmentally clean alternative to conventional thermal destruction technologies. The PERC{trademark} treatment process uses as its heat source an advanced Induction Coupled Plasma (ICP) torch connected to a reaction chamber system with an additional emission control system. For example, organic-based gas, liquid, slurry, and/or solid waste streams can be converted into usable or even salable products while residual emissions are reduced to an absolute minimum. In applications for treatment of hazardous and radioactive waste streams, the PERC system could be used for destruction of the hazardous organic constituents and/or significant waste volume reduction while capturing the radioactive fraction in a non-leachable form. Like Direct Current (DC) and Alternating Current (AC) arc plasma systems, ICP torches offer sufficient energy to decompose, melt and/or vitrify any waste stream. The decision for an arc plasma or an IC plasma system has to be made on a case by case evaluation and is highly dependent on the specific waste stream`s form and composition. Induction coupled plasma technology offers one simple, but significant difference compared to DC or AC arc plasma systems: the ICP torch is electrodeless. To date, enormous research effort has been spent to improve the lifetime of electrodes and the effectiveness of related cooling systems. Arc plasma systems are established in research laboratories worldwide and are approaching a broad use in commercial applications. ICP technology has been improved relatively recently, but nowadays offers complete new and beneficial approaches in the field of waste conversion and treatment.

  20. International Best Practices for Pre-Processing and Co-Processing Municipal Solid Waste and Sewage Sludge in the Cement Industry

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2013-01-01T23:59:59.000Z

    no date. “Integrated Solid Waste Management. ” Presentationincineration of Municipal Solid Waste in Cement Industry. :Conference on Sustainable Solid Waste Management, Chennai,

  1. International Best Practices for Pre-Processing and Co-Processing Municipal Solid Waste and Sewage Sludge in the Cement Industry

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2013-01-01T23:59:59.000Z

    linking municipal solid waste treatment facilities as wellReview of Municipal Solid Waste Thermal Treatment Practices.Biological Treatment of Municipal Solid Waste. Available at

  2. Structural Integrity Program for the 300,000-Gallon Radioactive Liquid Waste Storage Tanks at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    Bryant, Jeffrey W.

    2010-08-12T23:59:59.000Z

    This report provides a record of the Structural Integrity Program for the 300,000-gal liquid waste storage tanks and associated equipment at the Idaho Nuclear Technology and Engineering Center, as required by U.S. Department of Energy M 435.1-1, “Radioactive Waste Management Manual.” This equipment is known collectively as the Tank Farm Facility. This report is an update, and replaces the previous report by the same title issued April 2003. The conclusion of this report is that the Tank Farm Facility tanks, vaults, and transfer systems that remain in service for storage are structurally adequate, and are expected to remain structurally adequate over the remainder of their planned service life through 2012. Recommendations are provided for continued monitoring of the Tank Farm Facility.

  3. A comparative simulation study of coupled THM processes and their effect on fractured rock permeability around nuclear waste repositories

    E-Print Network [OSTI]

    Rutqvist, Jonny

    2008-01-01T23:59:59.000Z

    hydrothermomechanical design of nuclear waste repositories.Associated with Nuclear Waste Repositories, Academic Press,rock permeability around nuclear waste repositories Jonny

  4. Establishment of a Cost-Effective and Robust Planning Basis for the Processing of M-91 Waste at the Hanford Site

    SciTech Connect (OSTI)

    Johnson, Wayne L.; Parker, Brian M.

    2004-07-30T23:59:59.000Z

    This report identifies and evaluates viable alternatives for the accelerated processing of Hanford Site transuranic (TRU) and mixed low-level wastes (MLLW) that cannot be processed using existing site capabilities. Accelerated processing of these waste streams will lead to earlier reduction of risk and considerable life-cycle cost savings. The processing need is to handle both oversized MLLW and TRU containers as well as containers with surface contact dose rates greater than 200 mrem/hr. This capability is known as the ''M-91'' processing capability required by the Tri-Party Agreement milestone M-91--01. The new, phased approach proposed in this evaluation would use a combination of existing and planned processing capabilities to treat and more easily manage contact-handled waste streams first and would provide for earlier processing of these wastes.

  5. Precipitation process for the removal of technetium values from nuclear waste solutions

    DOE Patents [OSTI]

    Walker, D.D.; Ebra, M.A.

    1985-11-21T23:59:59.000Z

    High efficiency removal of techetium values from a nuclear waste stream is achieved by addition to the waste stream of a precipitant contributing tetraphenylphosphonium cation, such that a substantial portion of the technetium values are precipitated as an insoluble pertechnetate salt.

  6. Waste Description Pounds Reduced,

    E-Print Network [OSTI]

    -labeled oligonucleotides Waste minimization 3,144 Radiological waste (396 ft3 ); Mixed waste (35 gallons); Hazardous Waste of radioactivity, thus avoiding radiological waste generation. This process won a 2008 DOE P2 Star Award environmentally friendly manor. BNL pays shipping fees to the recycling facility. Building demolition recycling

  7. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions

    SciTech Connect (OSTI)

    Reeves, T.L.; Turner, J.P.; Hasfurther, V.R.; Skinner, Q.D.

    1992-06-01T23:59:59.000Z

    The scope of this program is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 {times} 3.0 {times} 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by RBOSC to carry out this study. Research objectives were designed to evaluate hydrologic, geotechnical, and chemical properties and conditions which would affect the design and performance of large-scale embankments. The objectives of this research are: assess the unsaturated movement and redistribution of water and the development of potential saturated zones and drainage in disposed processed oil shale under natural and simulated climatic conditions; assess the unsaturated movement of solubles and major chemical constituents in disposed processed oil shale under natural and simulated climatic conditions; assess the physical and constitutive properties of the processed oil shale and determine potential changes in these properties caused by disposal and weathering by natural and simulated climatic conditions; assess the use of previously developed computer model(s) to describe the infiltration, unsaturated movement, redistribution, and drainage of water in disposed processed oil shale; evaluate the stability of field scale processed oil shale solid waste embankments using computer models.

  8. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions

    SciTech Connect (OSTI)

    Reeves, T.L.; Turner, J.P.; Hasfurther, V.R.; Skinner, Q.D.

    1992-06-01T23:59:59.000Z

    The scope of this program is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 [times] 3.0 [times] 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by RBOSC to carry out this study. Research objectives were designed to evaluate hydrologic, geotechnical, and chemical properties and conditions which would affect the design and performance of large-scale embankments. The objectives of this research are: assess the unsaturated movement and redistribution of water and the development of potential saturated zones and drainage in disposed processed oil shale under natural and simulated climatic conditions; assess the unsaturated movement of solubles and major chemical constituents in disposed processed oil shale under natural and simulated climatic conditions; assess the physical and constitutive properties of the processed oil shale and determine potential changes in these properties caused by disposal and weathering by natural and simulated climatic conditions; assess the use of previously developed computer model(s) to describe the infiltration, unsaturated movement, redistribution, and drainage of water in disposed processed oil shale; evaluate the stability of field scale processed oil shale solid waste embankments using computer models.

  9. Basic Data Report -- Defense Waste Processing Facility Sludge Plant, Savannah River Plant 200-S Area

    SciTech Connect (OSTI)

    Amerine, D.B.

    1982-09-01T23:59:59.000Z

    This Basic Data Report for the Defense Waste Processing Facility (DWPF)--Sludge Plant was prepared to supplement the Technical Data Summary. Jointly, the two reports were intended to form the basis for the design and construction of the DWPF. To the extent that conflicting information may appear, the Basic Data Report takes precedence over the Technical Data Summary. It describes project objectives and design requirements. Pertinent data on the geology, hydrology, and climate of the site are included. Functions and requirements of the major structures are described to provide guidance in the design of the facilities. Revision 9 of the Basic Data Report was prepared to eliminate inconsistencies between the Technical Data Summary, Basic Data Report and Scopes of Work which were used to prepare the September, 1982 updated CAB. Concurrently, pertinent data (material balance, curie balance, etc.) have also been placed in the Basic Data Report. It is intended that these balances be used as a basis for the continuing design of the DWPF even though minor revisions may be made in these balances in future revisions to the Technical Data Summary.

  10. MEASUREMENT AND CALCULATION OF RADIONUCLIDE ACTIVITIES IN SAVANNAH RIVER SITE HIGH LEVEL WASTE SLUDGE FOR ACCEPTANCE OF DEFENSE WASTE PROCESSING FACILITY GLASS IN A FEDERAL REPOSITORY

    SciTech Connect (OSTI)

    Bannochie, C; David Diprete, D; Ned Bibler, N

    2008-12-31T23:59:59.000Z

    This paper describes the results of the analyses of High Level Waste (HLW) sludge slurry samples and of the calculations necessary to decay the radionuclides to meet the reporting requirement in the Waste Acceptance Product Specifications (WAPS) [1]. The concentrations of 45 radionuclides were measured. The results of these analyses provide input for radioactive decay calculations used to project the radionuclide inventory at the specified index years, 2015 and 3115. This information is necessary to complete the Production Records at Savannah River Site's Defense Waste Processing Facility (DWPF) so that the final glass product resulting from Macrobatch 5 (MB5) can eventually be submitted to a Federal Repository. Five of the necessary input radionuclides for the decay calculations could not be measured directly due to their low concentrations and/or analytical interferences. These isotopes are Nb-93m, Pd-107, Cd-113m, Cs-135, and Cm-248. Methods for calculating these species from concentrations of appropriate other radionuclides will be discussed. Also the average age of the MB5 HLW had to be calculated from decay of Sr-90 in order to predict the initial concentration of Nb-93m. As a result of the measurements and calculations, thirty-one WAPS reportable radioactive isotopes were identified for MB5. The total activity of MB5 sludge solids will decrease from 1.6E+04 {micro}Ci (1 {micro}Ci = 3.7E+04 Bq) per gram of total solids in 2008 to 2.3E+01 {micro}Ci per gram of total solids in 3115, a decrease of approximately 700 fold. Finally, evidence will be given for the low observed concentrations of the radionuclides Tc-99, I-129, and Sm-151 in the HLW sludges. These radionuclides were reduced in the MB5 sludge slurry to a fraction of their expected production levels due to SRS processing conditions.

  11. Qualification of the First ICS-3000 ION Chromatograph for use at the Defense Waste Processing Facility

    SciTech Connect (OSTI)

    Edwards, T; Mahannah, R.

    2011-07-05T23:59:59.000Z

    The ICS-3000 Ion Chromatography (IC) system installed in 221-S M-13 has been qualified for use. The qualification was a head to head comparison of the ICS-3000 with the currently used DX-500 IC system. The crosscheck work included standards for instrument calibration and calibration verifications and standards for individual anion analysis, where the standards were traceable back to the National Institute of Standards and Technology (NIST). In addition the crosscheck work included the analysis of simulated Sludge Receipt Adjustment Tank (SRAT) Receipt, SRAT Product, and Slurry Mix Evaporator (SME) samples, along with radioactive Sludge Batch 5 material from the SRAT and SME tanks. Based upon the successful qualification of the ICS-3000 in M-13, it is recommended that this task proceed in developing the data to qualify, by a head to head comparison of the two ICS-3000 instruments, a second ICS-3000 to be installed in M-14. The Defense Waste Processing Facility (DWPF) requires the analysis of specific anions at various stages of its processing of high level waste (HLW). The anions of interest to the DWPF are fluoride, formate, chloride, nitrite, nitrate, sulfate, oxalate, and phosphate. The anion analysis is used to evaluate process chemistry including formic acid/nitric acid additions to establish optimum conditions for mercury stripping, reduction-oxidation (REDOX) chemistry for the melter, nitrite destruction, organic acid constituents, etc. The DWPF Laboratory (Lab) has been using Dionex DX-500 ion chromatography (IC) systems since 1998. The vendor informed DWPF in 2006 that the instruments would no longer be supported by service contracts after 2008. DWPF purchased three new ICS-3000 systems in September of 2006. The ICS-3000 instruments are (a) designed to be more stable using an eluent generator to make eluent, (b) require virtually no daily chemical handling by the analysts, (c) require less line breaks in the hood, and (d) generally require less maintenance due to the pump configuration only using water versus the current system where the pump uses various hydroxide concentrations. The ICS-3000 instruments also allow the DWPF to maintain current service contracts, which support routine preventive maintenance and emergency support for larger problems such as component failure. One of the three new systems was set up in the DWPF Lab trailers in January of 2007 to be used for the development of methods and procedures. This system will continue to be used for training, new method development and potential improvements to current methods. The qualification of the other two ICS-3000 instruments is to be a phased effort. This effort is to be supported by the Applied Computational Engineering and Statistical (ACES) group of the Savannah River National Laboratory (SRNL) as authorized by the Technical Task Request (TTR) and as directed by the corresponding Task Technical and Quality Assurance (TT&QA) plan. The installation of the first 'rad' system into the M-13 Lab module required modifications to both the Lab module and to the radiohood. The installation was completed in July 2008. The testing of this system was conducted as directed by the TT&QA plan. The purpose of this technical report is to provide a review of the data generated by these tests that will lead to the recommendation for the qualification of the M-13 ICS-3000 instrument. With the successful qualification of this first ICS-3000, plans will be developed for the installation of the second 'rad' system in the M-14 Lab module later in fiscal year 2009. When the second 'rad' ICS-3000 system is installed, the DX-500 systems will be removed and retired from service.

  12. Preliminary flowsheet: Ion exchange process for the separation of cesium from Hanford tank waste using Duolite{trademark} CS-100 resin

    SciTech Connect (OSTI)

    Eager, K.M.; Penwell, D.L.; Knutson, B.J.

    1994-12-01T23:59:59.000Z

    This preliminary flowsheet document describes an ion exchange process which uses Duolite{trademark} CS-100 resin to remove cesium from Hanford Tank waste. The flowsheet describes one possible equipment configuration, and contains mass balances based on that configuration with feeds of Neutralized Current Acid Waste, and Double Shell Slurry Feed. Process alternatives, unresolved issues, and development needs are discussed which relate to the process.

  13. Electro-Mechanical Manipulator for Use in the Remote Equipment Decontamination Cell at the Defense Waste Processing Facility, Savannah River Site - 12454

    SciTech Connect (OSTI)

    Lambrecht, Bill; Dixon, Joe [Par Systems, Shoreview, Minnesota, 55126 (United States); Neuville, John R. [Savannah River Remediation, Savannah River Site, Aiken, South Carolina, 29808 (United States)

    2012-07-01T23:59:59.000Z

    One of the legacies of the cold war is millions of liters of radioactive waste. One of the locations where this waste is stored is at the Savannah River Site (SRS) in South Carolina. A major effort to clean up this waste is on-going at the defense waste processing facility (DWPF) at SRS. A piece of this effort is decontamination of the equipment used in the DWPF to process the waste. The remote equipment decontamination cell (REDC) in the DWPF uses electro-mechanical manipulators (EMM) arms manufactured and supplied by PaR Systems to decontaminate DWPF process equipment. The decontamination fluid creates a highly corrosive environment. After 25 years of operational use the original EMM arms are aging and need replacement. To support continued operation of the DWPF, two direct replacement EMM arms were delivered to the REDC in the summer of 2011. (authors)

  14. Use of the TRUEX process for the pretreatment of neutralized cladding removal waste (NCRW) sludge: Results of a design basis experiment

    SciTech Connect (OSTI)

    Swanson, J L

    1991-07-01T23:59:59.000Z

    This report presents the results of an experiment designed to demonstrate the feasibility of a sludge dissolution/solvent extraction process to separate transuranic elements from the bulk components of Hanford neutralized cladding removal waste (NCRW) sludge. Such a separation would allow the bulk of the waste to be disposed of as low-level waste, which is much less costly than geologic disposal as would be required for the waste in its current form. The results indicate that the proposed process is well suited to meet the desired objectives. A composite sample of NCRW sludge taken from Tank 103-AW in 1986 was dissolved in nitric acid at room temperature. Dissolution of bulk components and all radionuclides was {ge}95% complete; thus, {le}5% of the bulk components will require geologic disposal. The TRUEX (TRansUranium EXtraction) solvent extraction process gave very good separation of the transuranic from the bulk components of the waste.

  15. Geologic processes in the RWMC area, Idaho National Engineering Laboratory: Implications for long term stability and soil erosion at the radioactive waste management complex

    SciTech Connect (OSTI)

    Hackett, W.R.; Tullis, J.A.; Smith, R.P. [and others

    1995-09-01T23:59:59.000Z

    The Radioactive Waste Management Complex (RWMC) is the disposal and storage facility for low-level radioactive waste at the Idaho National Engineering Laboratory (INEL). Transuranic waste and mixed wastes were also disposed at the RWMC until 1970. It is located in the southwestern part of the INEL about 80 km west of Idaho Falls, Idaho. The INEL occupies a portion of the Eastern Snake River Plain (ESRP), a low-relief, basalt, and sediment-floored basin within the northern Rocky Mountains and northeastern Basin and Range Province. It is a cool and semiarid, sagebrush steppe desert characterized by irregular, rolling terrain. The RWMC began disposal of INEL-generated wastes in 1952, and since 1954, wastes have been accepted from other Federal facilities. Much of the waste is buried in shallow trenches, pits, and soil vaults. Until about 1970, trenches and pits were excavated to the basalt surface, leaving no sediments between the waste and the top of the basalt. Since 1970, a layer of sediment (about 1 m) has been left between the waste and the basalt. The United States Department of Energy (DOE) has developed regulations specific to radioactive-waste disposal, including environmental standards and performance objectives. The regulation applicable to all DOE facilities is DOE Order 5820.2A (Radioactive Waste Management). An important consideration for the performance assessment of the RWMC is the long-term geomorphic stability of the site. Several investigators have identified geologic processes and events that could disrupt a radioactive waste disposal facility. Examples of these {open_quotes}geomorphic hazards{close_quotes} include changes in stream discharge, sediment load, and base level, which may result from climate change, tectonic processes, or magmatic processes. In the performance assessment, these hazards are incorporated into scenarios that may affect the future performance of the RWMC.

  16. Hazardous Waste Management: The Role of Journalists in Decision Making Process

    SciTech Connect (OSTI)

    Eerskov-Klika, M.; Lokner, V.; Subasiae, D.; Schaller, A.

    2002-02-28T23:59:59.000Z

    The journalists are crucial for informing and education of general public about facts related to hazardous and radioactive waste management. Radio programs, TV and newspapers are daily reporting on relevant facts and news. In general, it is true that the majority of journalists are interested more in so called daily politics than in educating general public on certain technical or scientific topics. Therefore, hazardous and radioactive waste management was introduced to Croatian general public in last ten years mainly through various news on site selection of radioactive waste disposal facilities and some problems related to hazardous waste management. This paper presents APO's experience with journalists in last ten years includes program and activities referring informing and educating of journalists from all media.

  17. EA-0843: Idaho National Engineering Laboratory Low-Level and Mixed Waste Processing, Idaho Falls, Idaho

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to (1) reduce the volume of the U.S. Department of Energy's Idaho National Engineering Laboratory's (INEL) generated low-level waste (LLW)...

  18. Demonstration of Small Tank Tetraphenylborate Precipitation Process Using Savannah River Site High Level Waste

    SciTech Connect (OSTI)

    Peters, T.B.

    2001-09-10T23:59:59.000Z

    This report details the experimental effort to demonstrate the continuous precipitation of cesium from Savannah River Site High Level Waste using sodium tetraphenylborate. In addition, the experiments examined the removal of strontium and various actinides through addition of monosodium titanate.

  19. Upgrading the Center for Lightweighting Automotive Materials and Processing - a GATE Center of Excellence at the University of Michigan-Dearborn

    SciTech Connect (OSTI)

    Mallick, P. K.

    2012-08-30T23:59:59.000Z

    The Center for Lightweighting Materials and Processing (CLAMP) was established in September 1998 with a grant from the Department of Energy’s Graduate Automotive Technology Education (GATE) program. The center received the second round of GATE grant in 2005 under the title “Upgrading the Center for Lightweighting Automotive Materials and Processing”. Using the two grants, the Center has successfully created 10 graduate level courses on lightweight automotive materials, integrated them into master’s and PhD programs in Automotive Systems Engineering, and offered them regularly to the graduate students in the program. In addition, the Center has created a web-based lightweight automotive materials database, conducted research on lightweight automotive materials and organized seminars/symposia on lightweight automotive materials for both academia and industry. The faculty involved with the Center has conducted research on a variety of topics related to design, testing, characterization and processing of lightweight materials for automotive applications and have received numerous research grants from automotive companies and government agencies to support their research. The materials considered included advanced steels, light alloys (aluminum, magnesium and titanium) and fiber reinforced polymer composites. In some of these research projects, CLAMP faculty have collaborated with industry partners and students have used the research facilities at industry locations. The specific objectives of the project during the current funding period (2005 – 2012) were as follows: (1) develop new graduate courses and incorporate them in the automotive systems engineering curriculum (2) improve and update two existing courses on automotive materials and processing (3) upgrade the laboratory facilities used by graduate students to conduct research (4) expand the Lightweight Automotive Materials Database to include additional materials, design case studies and make it more accessible to outside users (5) provide support to graduate students for conducting research on lightweight automotive materials and structures (6) provide industry/university interaction through a graduate certificate program on automotive materials and technology idea exchange through focused seminars and symposia on automotive materials.

  20. Comparison of simulants to actual neutralized current acid waste: process and product testing of three NCAW core samples from Tanks 101-AZ and 102-AZ

    SciTech Connect (OSTI)

    Morrey, E.V.; Tingey, J.M.; Elliott, M.L.

    1996-10-01T23:59:59.000Z

    A vitrification plant is planned to process the high-level waste (HLW) solids from Hanford Site tanks into canistered glass logs for disposal in a national repository. Programs were established within the Pacific Northwest Laboratory Vitrification Technology Development (PVTD) Project to test and model simulated waste to support design, feed processability, operations, permitting, safety, and waste-form qualification. Parallel testing with actual radioactive waste was performed on a laboratory-scale to confirm the validity of using simulants and glass property models developed from simulants. Laboratory-scale testing has been completed on three radioactive core samples from tanks 101-AZ and 102-AZ containing neutralized current acid waste (NCAW), which is one of the first waste types to be processed in the high-level waste vitrification plant under a privatization scenario. Properties of the radioactive waste measured during process and product testing were compared to simulant properties and model predictions to confirm the validity of simulant and glass property ,models work. This report includes results from the three NCAW core samples, comparable results from slurry and glass simulants, and comparisons to glass property model predictions.

  1. Comparison of simulants to actual neutralized current acid waste: Process and product testing of three NCAW core samples from Tanks 101-AZ and 102-AZ

    SciTech Connect (OSTI)

    Morrey, E.V.; Tingey, J.M.

    1996-04-01T23:59:59.000Z

    A vitrification plant is planned to process the high-level waste (HLW) solids from Hanford Site tanks into canistered glass logs for disposal in a national repository. Programs have been established within the Pacific Northwest Laboratory Vitrification Technology Development (PVTD) Project to test and model simulated waste to support design, feed processability, operations, permitting, safety, and waste-form qualification. Parallel testing with actual radioactive waste is being performed on a laboratory-scale to confirm the validity of using simulants and glass property models developed from simulants. Laboratory-scale testing has been completed on three radioactive core samples from tanks 101-AZ and 102-AZ containing neutralized current acid waste (NCAW), which is one of the first waste types to be processed in the high-level waste vitrification plant under a privatization scenario. Properties of the radioactive waste measured during process and product testing were compared to simulant properties and model predictions to confirm the validity of simulant and glass property models work. This report includes results from the three NCAW core samples, comparable results from slurry and glass simulants, and comparisons to glass property model predictions.

  2. Tritium Facilities Modernization and Consolidation Project Process Waste Assessment (Project S-7726)

    SciTech Connect (OSTI)

    Hsu, R.H. [Westinghouse Savannah River Company, AIKEN, SC (United States); Oji, L.N.

    1997-11-14T23:59:59.000Z

    Under the Tritium Facility Modernization {ampersand} Consolidation (TFM{ampersand}C) Project (S-7726) at the Savannah River Site (SS), all tritium processing operations in Building 232-H, with the exception of extraction and obsolete/abandoned systems, will be reestablished in Building 233-H. These operations include hydrogen isotopic separation, loading and unloading of tritium shipping and storage containers, tritium recovery from zeolite beds, and stripping of nitrogen flush gas to remove tritium prior to stack discharge. The scope of the TFM{ampersand}C Project also provides for a new replacement R&D tritium test manifold in 233-H, upgrading of the 233- H Purge Stripper and 233-H/234-H building HVAC, a new 234-H motor control center equipment building and relocating 232-H Materials Test Facility metallurgical laboratories (met labs), flow tester and life storage program environment chambers to 234-H.

  3. Exergy analysis of the Chartherm process for energy valorization and material recuperation of chromated copper arsenate (CCA) treated wood waste

    SciTech Connect (OSTI)

    Bosmans, A., E-mail: anouk.bosmans@mech.kuleuven.be [Department of Mechanical Engineering, Katholieke Universiteit Leuven, Celestijnenlaan 300A, 3001 Heverlee (Belgium); Auweele, M. Vanden; Govaerts, J.; Helsen, L. [Department of Mechanical Engineering, Katholieke Universiteit Leuven, Celestijnenlaan 300A, 3001 Heverlee (Belgium)

    2011-04-15T23:59:59.000Z

    The Chartherm process (Thermya, Bordeaux, France) is a thermochemical conversion process to treat chromated copper arsenate (CCA) impregnated wood waste. The process aims at maximum energy valorization and material recuperation by combining the principles of low-temperature slow pyrolysis and distillation in a smart way. The main objective of the exergy analysis presented in this paper is to find the critical points in the Chartherm process where it is necessary to apply some measures in order to reduce exergy consumption and to make energy use more economic and efficient. It is found that the process efficiency can be increased with 2.3-4.2% by using the heat lost by the reactor, implementing a combined heat and power (CHP) system, or recuperating the waste heat from the exhaust gases to preheat the product gas. Furthermore, a comparison between the exergetic performances of a 'chartherisation' reactor and an idealized gasification reactor shows that both reactors destroy about the same amount of exergy (i.e. 3500 kW kg{sub wood}{sup -1}) during thermochemical conversion of CCA-treated wood. However, the Chartherm process possesses additional capabilities with respect to arsenic and tar treatment, as well as the extra benefit of recuperating materials.

  4. Qualification of the Nippon Instrumentation for use in Measuring Mercury at the Defense Waste Processing Facility

    SciTech Connect (OSTI)

    Edwards, T.; Mahannah, R.

    2011-07-05T23:59:59.000Z

    The Nippon Mercury/RA-3000 system installed in 221-S M-14 has been qualified for use. The qualification was a side-by-side comparison of the Nippon Mercury/RA-3000 system with the currently used Bacharach Mercury Analyzer. The side-by-side testing included standards for instrument calibration verifications, spiked samples and unspiked samples. The standards were traceable back to the National Institute of Standards and Technology (NIST). The side-by-side work included the analysis of Sludge Receipt and Adjustment Tank (SRAT) Receipt, SRAT Product, and Slurry Mix Evaporator (SME) samples. With the qualification of the Nippon Mercury/RA-3000 system in M-14, the DWPF lab will be able to perform a head to head comparison of a second Nippon Mercury/RA-3000 system once the system is installed. The Defense Waste Processing Facility (DWPF) analyzes receipt and product samples from the Sludge Receipt and Adjustment Tank (SRAT) to determine the mercury (Hg) concentration in the sludge slurry. The SRAT receipt is typically sampled and analyzed for the first ten SRAT batches of a new sludge batch to obtain an average Hg concentration. This average Hg concentration is then used to determine the amount of steam stripping required during the concentration/reflux step of the SRAT cycle to achieve a less than 0.6 wt% Hg in the SRAT product solids. After processing is complete, the SRAT product is sampled and analyzed for mercury to ensure that the mercury concentration does not exceed the 0.45 wt% limit in the Slurry Mix Evaporator (SME). The DWPF Laboratory utilizes Bacharach Analyzers to support these Hg analyses at this facility. These analyzers are more than 10 years old, and they are no longer supported by the manufacturer. Due to these difficulties, the Bacharach Analyzers are to be replaced by new Nippon Mercury/RA-3000 systems. DWPF issued a Technical Task Request (TTR) for the Savannah River National Laboratory (SRNL) to assist in the qualification of the new systems. SRNL prepared a task technical and quality assurance (TT&QA) plan that outlined the activities that are necessary and sufficient to meet the objectives of the TTR. In addition, TT&QA plan also included a test plan that provided guidance to the DWPF Lab in collecting the data needed to qualify the new Nippon Mercury/RA-3000 systems.

  5. Interrelation of technologies for RW preparation and sites for final isolation of the wastes from pyrochemical processing of SNF

    SciTech Connect (OSTI)

    Gupalo, V.S.; Chistyakov, V.N. [JSC - Design-Prospecting and Scientific-Research Institute of Industrial Technology -, Kashirskoye Highway, 33, Moscow 115409 (Russian Federation); Kormilitsyn, M.V.; Kormilitsyna, L.A. [JSC - State Scientific Center - Research Institute of Atomic Reactors -, Ulyanovsk region, Dimitrovgrad - 10, 433510 (Russian Federation)

    2013-07-01T23:59:59.000Z

    For the justification of engineering solutions and practical testing of the radiochemical component of the perspective nuclear power complex with on-site variant of nuclear fuel cycle (NFC), it is planned to establish a multi-functional research-development complex (MFCRC) for radiochemical processing of spent nuclear fuels (SNF) from fast reactors. MFCRC is being established at the NIIAR site, it comprises technological process lines, where innovation pyro-electrochemical and hydrometallurgical technologies are realized, with an option for closing the inter-chain material flows for testing the combined radiochemically converted materials. The technological flowchart for processing at the MFCRC is subdivided into 3 segments: -) complex of the lead operations for dismantling the fuel elements (FE) and fuel assemblies (FA), -) pyrochemical extraction flowchart for processing SNF, and -) hydrometallurgical flowchart for processing SNF. The engineered solutions for the management and disposition of the radioactive wastes from MFCRC are reviewed.

  6. RADIOLOGICAL CONTROLS FOR PLUTONIUM CONTAMINATED PROCESS EQUIPMENT REMOVAL FROM 232-Z CONTAMINATED WASTE RECOVERY PROCESS FACILITY AT THE PLUTONIUM FINSHING PLANT (PFP)

    SciTech Connect (OSTI)

    MINETTE, M.J.

    2007-05-30T23:59:59.000Z

    The 232-Z facility at Hanford's Plutonium Finishing Plant operated as a plutonium scrap incinerator for 11 years. Its mission was to recover residual plutonium through incinerating and/or leaching contaminated wastes and scrap material. Equipment failures, as well as spills, resulted in the release of radionuclides and other contamination to the building, along with small amounts to external soil. Based on the potential threat posed by the residual plutonium, the U.S. Department of Energy (DOE) issued an Action Memorandum to demolish Building 232-2, Comprehensive Environmental Response Compensation, and Liability Act (CERC1.A) Non-Time Critical Removal Action Memorandum for Removal of the 232-2 Waste Recovery Process Facility at the Plutonium Finishing Plant (04-AMCP-0486).

  7. MODELING AN ION EXCHANGE PROCESS FOR CESIUM REMOVAL FROM ALKALINE RADIOACTIVE WASTE SOLUTIONS

    SciTech Connect (OSTI)

    Smith, F; Luther Hamm, L; Sebastian Aleman, S; Johnston Michael, J

    2008-08-26T23:59:59.000Z

    The performance of spherical Resorcinol-Formaldehyde ion-exchange resin for the removal of cesium from alkaline radioactive waste solutions has been investigated through computer modeling. Cesium adsorption isotherms were obtained by fitting experimental data using a thermodynamic framework. Results show that ion-exchange is an efficient method for cesium removal from highly alkaline radioactive waste solutions. On average, two 1300 liter columns operating in series are able to treat 690,000 liters of waste with an initial cesium concentration of 0.09 mM in 11 days achieving a decontamination factor of over 50,000. The study also tested the sensitivity of ion-exchange column performance to variations in flow rate, temperature and column dimensions. Modeling results can be used to optimize design of the ion exchange system.

  8. Review of the Facility Centered Assessment of the Los Alamos National Laboratory Waste Disposition Project, September 2011

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, anEnergy nepdg_5251_5500.pdfAnalysis of Downwash from

  9. Using Waste Heat for External Processes; Industrial Technologies Program (ITP) Energy Tips - Process Heating Tip Sheet #10 (Fact Sheet).

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02 TUE 08:59 FAXFact SheetConditionsOwnersUsing10 *

  10. Increased CPC batch size study for Tank 42 sludge in the Defense Waste Processing Facility

    SciTech Connect (OSTI)

    Daniel, W.E.

    2000-01-06T23:59:59.000Z

    A series of experiments have been completed at TNX for the sludge-only REDOX adjusted flowsheet using Tank 42 sludge simulant in response to the Technical Task Request HLW/DWPT/TTR-980013 to increase CPC batch sizes. By increasing the initial SRAT batch size, a melter feed batch at greater waste solids concentration can be prepared and thus increase melter output per batch by about one canister. The increased throughput would allow DWPF to dispose of more waste in a given time period thus shortening the overall campaign.

  11. Materials Characterization Center workshop on leaching mechanisms of nuclear waste forms, May 19-21, 1982, Gaithersburg, Maryland. Summary report

    SciTech Connect (OSTI)

    Mendel, J.E. (comp.)

    1982-08-01T23:59:59.000Z

    This is a report of the second workshop on the leaching mechanism of nuclear waste forms, which was held at Geithersburg, Maryland, May 19-21, 1982. The first session of the workshop was devoted to progress reports by participants in the leaching mechanisms program. These progress reports, as prepared by the participants, are given in Section 3.0. The goal of the remainder of the workshop was to exchange information on the development of repository-relevant leach testing techniques, often called interactions testing. To this end, a wide spectrum of investigators, many of whose work is sponsored by DOE's Nuclear Waste Terminal Storage (NWTS) project, made presentations at the workshop. These presentations were a significant and beneficial part of the workshop and are summarized in Sections 4.0, 5.0 and 6.0 according to the workshop agenda topics. In many cases, the presenters provided a written version of their presentation which has been included verbatim; in the other cases, the workshop chairman has supplied a brief synopsis. Twenty-one papers have been abstracted and indexed for inclusion in the data base.

  12. Radioactive and chemotoxic wastes: Only radioactive wastes?

    SciTech Connect (OSTI)

    Eletti, G.F.; Tocci, M. [ENEA DISP, Rome (Italy)

    1993-12-31T23:59:59.000Z

    Radioactive waste arising from Italian Nuclear Power Plants and Research Centers, classified as 1st and 2nd Category wastes, are managed only as radioactive wastes following the Technical Guide No. 26 issued by the Italian Regulatory Body: ENEA DISP on 1987. A very important Regulatory Regime revision for Italian Nuclear Activities started at the end of 1991. This paper considers the need to develop a new strategy dedicated to mixed waste in line with current international trends.

  13. Production of nitrogen rich ingredients from fish waste by a biotechnological process

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    silage in different diets (Raa and Gildberg, 1982, Crit Rev Food Sci Nutr, 16, 383-419 ; Espe et al, 1992 and/or farmers despite the severe lack of animal feed ingredients. Biotransformation of fish waste matter (DM), ash, fat, reducing sugars (RS), total nitrogen (TN), non protein nitrogen (NPN), total

  14. Central Waste Complex (CWC) Waste Analysis Plan

    SciTech Connect (OSTI)

    ELLEFSON, M.D.

    1999-12-01T23:59:59.000Z

    The purpose of this waste analysis plan (WAP) is to document the waste acceptance process, sampling methodologies, analytical techniques, and overall processes that are undertaken for waste accepted for storage at the Central Waste Complex (CWC), which is located in the 200 West Area of the Hanford Facility, Richland, Washington. Because dangerous waste does not include the source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge.

  15. Results from an International Simulation Study on Coupled Thermal, Hydrological, and Mechanical (THM) Processes near Geological Nuclear Waste Repositories

    E-Print Network [OSTI]

    Rutqvist, J.

    2008-01-01T23:59:59.000Z

    safety of a hypothetical nuclear waste repository – BMT1 ofAssociated with Nuclear Waste Repositories, Academic Press,safety of a hypothetical nuclear waste repository – BMT1 of

  16. Nuclear Waste Management. Semiannual progress report, October 1984-March 1985

    SciTech Connect (OSTI)

    McElroy, J.L.; Powell, J.A. (comps.)

    1985-06-01T23:59:59.000Z

    Progress reports are presented for the following studies on radioactive waste management: defense waste technology; nuclear waste materials characterization center; and supporting studies. 19 figs., 29 tabs.

  17. National Bioenergy Center Biochemical Platform Process Integration Project: Quarterly Update #18, January-March 2008

    SciTech Connect (OSTI)

    Schell, D.

    2008-04-01T23:59:59.000Z

    January-March, 2008 edition of the quarterly update for the National Bioenergy Center's Biochemical Platform Integration Project.

  18. PROCESS SCIENCE & TECHNOLOGY CENTER TEXAS A&M UNIVERSITY THE UNIVERSITY OF TEXAS

    E-Print Network [OSTI]

    Texas at Austin, University of

    , control, and safety Energy and environmental research Funding Mechanism Level A - A minimum contractual periodically to cover increased center operating costs. Center Administration The central PSTC administration. Individual PM activities are conducted at their host institutions. Center administration costs are obtained

  19. Implementing waste minimization at an active plutonium processing facility: Successes and progress at technical area (TA) -55 of the Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Balkey, J.J.; Robinson, M.A.; Boak, J.

    1997-12-01T23:59:59.000Z

    The Los Alamos National Laboratory has ongoing national security missions that necessitate increased plutonium processing. The bulk of this activity occurs at Technical Area -55 (TA-55), the nations only operable plutonium facility. TA-55 has developed and demonstrated a number of technologies that significantly minimize waste generation in plutonium processing (supercritical CO{sub 2}, Mg(OH){sub 2} precipitation, supercritical H{sub 2}O oxidation, WAND), disposition of excess fissile materials (hydride-dehydride, electrolytic decontamination), disposition of historical waste inventories (salt distillation), and Decontamination & Decommissioning (D&D) of closed nuclear facilities (electrolytic decontamination). Furthermore, TA-55 is in the process of developing additional waste minimization technologies (molten salt oxidation, nitric acid recycle, americium extraction) that will significantly reduce ongoing waste generation rates and allow volume reduction of existing waste streams. Cost savings from reduction in waste volumes to be managed and disposed far exceed development and deployment costs in every case. Waste minimization is also important because it reduces occupational exposure to ionizing radiation, risks of transportation accidents, and transfer of burdens from current nuclear operations to future generations.

  20. International Best Practices for Pre-Processing and Co-Processing Municipal Solid Waste and Sewage Sludge in the Cement Industry

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2013-01-01T23:59:59.000Z

    Uncollected Waste Controlled landfill with basic sanitaryIncineration Uncontrolled landfill Figure 2. MSW disposalCommission (EC). 2012b. “Landfill of Waste. ” Available at:

  1. IMPACT OF PARTICLE SIZE AND AGGLOMERATION ON SETTLING OF SOLIDS IN CONTINUOUS MELTERS PROCESSING RADIOACTIVE WASTE GLASS

    SciTech Connect (OSTI)

    HRMA PR

    2008-12-18T23:59:59.000Z

    The major factor limiting waste loading for many waste compositions in continuous waste glass melters is the settling of crystalline materials. The currently used constraints, i.e., the minimum liquidus temperature or the maximum fraction of equilibrium crystallinity at a given temperature, are based on thennodynamic equilibria. Because of the rapid circular convection in the melter, these constraints are probably irrelevant and cannot prevent large crystals from settling. The main factor that detennines the rate of settling ofindividual crystals, such as those ofspinel, is their size. The tiny crystals of RU02 are too small to settle, but they readily fonn large agglomerates that accelerate their rate ofsettling by severalorders ofmagnitude. The RU02 agglomerates originate early in the melting process and then grow by the shear-flocculation mechanism. It is estimated that these agglomerates must either be ofhundreds micrometers in size or have an elongated shape to match the observed rates ofthe sludge-layer fonnation. PACS: 47.57.ef, 81.05.Kj, 81.10.Fg

  2. Tank vapor sampling and analysis data package for tank 241-C-106 waste retrieval sluicing system process test phase III

    SciTech Connect (OSTI)

    LOCKREM, L.L.

    1999-08-13T23:59:59.000Z

    This data package presents sampling data and analytical results from the March 28, 1999, vapor sampling of Hanford Site single-shell tank 241-C-106 during active sluicing. Samples were obtained from the 296-C-006 ventilation system stack and ambient air at several locations. Characterization Project Operations (CPO) was responsible for the collection of all SUMMATM canister samples. The Special Analytical Support (SAS) vapor team was responsible for the collection of all triple sorbent trap (TST), sorbent tube train (STT), polyurethane foam (PUF), and particulate filter samples collected at the 296-C-006 stack. The SAS vapor team used the non-electrical vapor sampling (NEVS) system to collect samples of the air, gases, and vapors from the 296-C-006 stack. The SAS vapor team collected and analyzed these samples for Lockheed Martin Hanford Corporation (LMHC) and Tank Waste Remediation System (TWRS) in accordance with the sampling and analytical requirements specified in the Waste Retrieval Sluicing System Vapor Sampling and Analysis Plan (SAP) for Evaluation of Organic Emissions, Process Test Phase III, HNF-4212, Rev. 0-A, (LMHC, 1999). All samples were stored in a secured Radioactive Materials Area (RMA) until the samples were radiologically released and received by SAS for analysis. The Waste Sampling and Characterization Facility (WSCF) performed the radiological analyses. The samples were received on April 5, 1999.

  3. Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania)

    Broader source: Energy.gov [DOE]

    This act provides for planning for the processing and disposal of municipal waste; requires counties to submit plans for municipal waste management systems within their boundaries; authorizes...

  4. Hanford Waste Vitrification Program process development: Melt testing subtask, pilot-scale ceramic melter experiment, run summary

    SciTech Connect (OSTI)

    Nakaoka, R.K.; Bates, S.O.; Elmore, M.R.; Goles, R.W.; Perez, J.M.; Scott, P.A.; Westsik, J.H.

    1996-03-01T23:59:59.000Z

    Hanford Waste Vitrification Program (HWVP) activities for FY 1985 have included engineering and pilot-scale melter experiments HWVP-11/HBCM-85-1 and HWVP-12/PSCM-22. Major objectives designated by HWVP fo these tests were to evaluate the processing characteristics of the current HWVP melter feed during actual melter operation and establish the product quality of HW-39 borosilicate glass. The current melter feed, defined during FY 85, consists of reference feed (HWVP-RF) and glass-forming chemicals added as frit.

  5. Development And Initial Testing Of Off-Gas Recycle Liquid From The WTP Low Activity Waste Vitrification Process - 14333

    SciTech Connect (OSTI)

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.; Taylor-Pashow, Kathryn M.; Adamson, Duane J.; Crawford, Charles L.; Morse, Megan M.

    2014-01-07T23:59:59.000Z

    The Waste Treatment and Immobilization Plant (WTP) process flow was designed to pre-treat feed from the Hanford tank farms, separate it into a High Level Waste (HLW) and Low Activity Waste (LAW) fraction and vitrify each fraction in separate facilities. Vitrification of the waste generates an aqueous condensate stream from the off-gas processes. This stream originates from two off-gas treatment unit operations, the Submerged Bed Scrubber (SBS) and the Wet Electrospray Precipitator (WESP). Currently, the baseline plan for disposition of the stream from the LAW melter is to recycle it to the Pretreatment facility where it gets evaporated and processed into the LAW melter again. If the Pretreatment facility is not available, the baseline disposition pathway is not viable. Additionally, some components in the stream are volatile at melter temperatures, thereby accumulating to high concentrations in the scrubbed stream. It would be highly beneficial to divert this stream to an alternate disposition path to alleviate the close-coupled operation of the LAW vitrification and Pretreatment facilities, and to improve long-term throughput and efficiency of the WTP system. In order to determine an alternate disposition path for the LAW SBS/WESP Recycle stream, a range of options are being studied. A simulant of the LAW Off-Gas Condensate was developed, based on the projected composition of this stream, and comparison with pilot-scale testing. The primary radionuclide that vaporizes and accumulates in the stream is Tc-99, but small amounts of several other radionuclides are also projected to be present in this stream. The processes being investigated for managing this stream includes evaporation and radionuclide removal via precipitation and adsorption. During evaporation, it is of interest to investigate the formation of insoluble solids to avoid scaling and plugging of equipment. Key parameters for radionuclide removal include identifying effective precipitation or ion adsorption chemicals, solid-liquid separation methods, and achievable decontamination factors. Results of the radionuclide removal testing indicate that the radionuclides, including Tc-99, can be removed with inorganic sorbents and precipitating agents. Evaporation test results indicate that the simulant can be evaporated to fairly high concentration prior to formation of appreciable solids, but corrosion has not yet been examined.

  6. Quality Services: Solid Wastes, Part 360: Solid Waste Management Facilities (New York)

    Broader source: Energy.gov [DOE]

    These regulations apply to all solid wastes with the exception of hazardous or radioactive waste. Proposed solid waste processing facilities are required to obtain permits prior to construction,...

  7. CHARACTERIZATION OF A PRECIPITATE REACTOR FEED TANK (PRFT) SAMPLE FROM THE DEFENSE WASTE PROCESSING FACILITY (DWPF)

    SciTech Connect (OSTI)

    Crawford, C.; Bannochie, C.

    2014-05-12T23:59:59.000Z

    A sample of from the Defense Waste Processing Facility (DWPF) Precipitate Reactor Feed Tank (PRFT) was pulled and sent to the Savannah River National Laboratory (SRNL) in June of 2013. The PRFT in DWPF receives Actinide Removal Process (ARP)/ Monosodium Titanate (MST) material from the 512-S Facility via the 511-S Facility. This 2.2 L sample was to be used in small-scale DWPF chemical process cell testing in the Shielded Cells Facility of SRNL. A 1L sub-sample portion was characterized to determine the physical properties such as weight percent solids, density, particle size distribution and crystalline phase identification. Further chemical analysis of the PRFT filtrate and dissolved slurry included metals and anions as well as carbon and base analysis. This technical report describes the characterization and analysis of the PRFT sample from DWPF. At SRNL, the 2.2 L PRFT sample was composited from eleven separate samples received from DWPF. The visible solids were observed to be relatively quick settling which allowed for the rinsing of the original shipping vials with PRFT supernate on the same day as compositing. Most analyses were performed in triplicate except for particle size distribution (PSD), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and thermogravimetric analysis (TGA). PRFT slurry samples were dissolved using a mixed HNO3/HF acid for subsequent Inductively Coupled Plasma Atomic Emission Spectroscopy (ICPAES) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) analyses performed by SRNL Analytical Development (AD). Per the task request for this work, analysis of the PRFT slurry and filtrate for metals, anions, carbon and base were primarily performed to support the planned chemical process cell testing and to provide additional component concentrations in addition to the limited data available from DWPF. Analysis of the insoluble solids portion of the PRFT slurry was aimed at detailed characterization of these solids (TGA, PSD, XRD and SEM) in support of the Salt IPT chemistry team. The overall conclusions from analyses performed in this study are that the PRFT slurry consists of 0.61 Wt.% insoluble MST solids suspended in a 0.77 M [Na+] caustic solution containing various anions such as nitrate, nitrite, sulfate, carbonate and oxalate. The corresponding measured sulfur level in the PRFT slurry, a critical element for determining how much of the PRFT slurry gets blended into the SRAT, is 0.437 Wt.% TS. The PRFT slurry does not contain insoluble oxalates nor significant quantities of high activity sludge solids. The lack of sludge solids has been alluded to by the Salt IPT chemistry team in citing that the mixing pump has been removed from Tank 49H, the feed tank to ARP-MCU, thus allowing the sludge solids to settle out. ? The PRFT aqueous slurry from DWPF was found to contain 5.96 Wt.% total dried solids. Of these total dried solids, relatively low levels of insoluble solids (0.61 Wt.%) were measured. The densities of both the filtrate and slurry were 1.05 g/mL. ? Particle size distribution of the PRFT solids in filtered caustic simulant and XRD analysis of washed/dried PRFT solids indicate that the PRFT slurry contains a bimodal distribution of particles in the range of 1 and 6 ?m and that the particles contain sodium titanium oxide hydroxide Na2Ti2O4(OH)2 crystalline material as determined by XRD. These data are in excellent agreement with similar data obtained from laboratory sampling of vendor supplied MST. Scanning Electron Microscopy (SEM) combined with Energy Dispersive X-ray Spectroscopy (EDS) analysis of washed/dried PRFT solids shows the particles to be like previous MST analyses consisting of irregular shaped micron-sized solids consisting primarily of Na and Ti. ? Thermogravimetric analysis of the washed and unwashed PRFT solids shows that the washed solids are very similar to MST solids. The TGA mass loss signal for the unwashed solids shows similar features to TGA performed on cellulose nitrate filter paper indicating significant presence of the deteriorated filter

  8. Waste Receiving and Processing Facility Module 2A: Advanced Conceptual Design Report. Volume 3A

    SciTech Connect (OSTI)

    Not Available

    1994-03-01T23:59:59.000Z

    Objective of this document is to provide descriptions of all WRAP 2A feed streams, including physical and chemical attributes, and describe the pathway that was used to select data for volume estimates. WRAP 2A is being designed for nonthermal treatment of contact-handled mixed low-level waste Category 1 and 3. It is based on immobilization and encapsulation treatment using grout or polymer.

  9. Solid Waste Rules (New Hampshire)

    Broader source: Energy.gov [DOE]

    The solid waste statute applies to construction and demolition debris, appliances, recyclables, and the facilities that collect, process, and dispose of solid waste. DES oversees the management of...

  10. Assessment of microbial processes on gas production at radioactive low-level waste disposal sites

    SciTech Connect (OSTI)

    Weiss, A.J.; Tate, R.L. III; Colombo, P.

    1982-05-01T23:59:59.000Z

    Factors controlling gaseous emanations from low level radioactive waste disposal sites are assessed. Importance of gaseous fluxes of methane, carbon dioxide, and possible hydrogen from the site, stems from the inclusion of tritium and/or carbon-14 into the elemental composition of these compounds. In that the primary source of these gases is the biodegradation of organic components of the waste material, primary emphasis of the study involved an examination of the biochemical pathways producing methane, carbon dioxide, and hydrogen, and the environmental parameters controlling the activity of the microbial community involved. Initial examination of the data indicates that the ecosystem is anaerobic. As the result of the complexity of the pathway leading to methane production, factors such as substrate availability, which limit the initial reaction in the sequence, greatly affect the overall rate of methane evolution. Biochemical transformations of methane, hydrogen and carbon dioxide as they pass through the soil profile above the trench are discussed. Results of gas studies performed at three commercial low level radioactive waste disposal sites are reviewed. Methods used to obtain trench and soil gas samples are discussed. Estimates of rates of gas production and amounts released into the atmosphere (by the GASFLOW model) are evaluated. Tritium and carbon-14 gaseous compounds have been measured in these studies; tritiated methane is the major radionuclide species in all disposal trenches studied. The concentration of methane in a typical trench increases with the age of the trench, whereas the concentration of carbon dioxide is similar in all trenches.

  11. Using Biosurfactants Produced from Agriculture Process Waste Streams to Improve Oil Recovery in Fractured Carbonate Reservoirs

    SciTech Connect (OSTI)

    Stephen Johnson; Mehdi Salehi; Karl Eisert; Sandra Fox

    2009-01-07T23:59:59.000Z

    This report describes the progress of our research during the first 30 months (10/01/2004 to 03/31/2007) of the original three-year project cycle. The project was terminated early due to DOE budget cuts. This was a joint project between the Tertiary Oil Recovery Project (TORP) at the University of Kansas and the Idaho National Laboratory (INL). The objective was to evaluate the use of low-cost biosurfactants produced from agriculture process waste streams to improve oil recovery in fractured carbonate reservoirs through wettability mediation. Biosurfactant for this project was produced using Bacillus subtilis 21332 and purified potato starch as the growth medium. The INL team produced the biosurfactant and characterized it as surfactin. INL supplied surfactin as required for the tests at KU as well as providing other microbiological services. Interfacial tension (IFT) between Soltrol 130 and both potential benchmark chemical surfactants and crude surfactin was measured over a range of concentrations. The performance of the crude surfactin preparation in reducing IFT was greater than any of the synthetic compounds throughout the concentration range studied but at low concentrations, sodium laureth sulfate (SLS) was closest to the surfactin, and was used as the benchmark in subsequent studies. Core characterization was carried out using both traditional flooding techniques to find porosity and permeability; and NMR/MRI to image cores and identify pore architecture and degree of heterogeneity. A cleaning regime was identified and developed to remove organic materials from cores and crushed carbonate rock. This allowed cores to be fully characterized and returned to a reproducible wettability state when coupled with a crude-oil aging regime. Rapid wettability assessments for crushed matrix material were developed, and used to inform slower Amott wettability tests. Initial static absorption experiments exposed limitations in the use of HPLC and TOC to determine surfactant concentrations. To reliably quantify both benchmark surfactants and surfactin, a surfactant ion-selective electrode was used as an indicator in the potentiometric titration of the anionic surfactants with Hyamine 1622. The wettability change mediated by dilute solutions of a commercial preparation of SLS (STEOL CS-330) and surfactin was assessed using two-phase separation, and water flotation techniques; and surfactant loss due to retention and adsorption on the rock was determined. Qualitative tests indicated that on a molar basis, surfactin is more effective than STEOL CS-330 in altering wettability of crushed Lansing-Kansas City carbonates from oil-wet to water-wet state. Adsorption isotherms of STEOL CS-330 and surfactin on crushed Lansing-Kansas City outcrop and reservoir material showed that surfactin has higher specific adsorption on these oomoldic carbonates. Amott wettability studies confirmed that cleaned cores are mixed-wet, and that the aging procedure renders them oil-wet. Tests of aged cores with no initial water saturation resulted in very little spontaneous oil production, suggesting that water-wet pathways into the matrix are required for wettability change to occur. Further investigation of spontaneous imbibition and forced imbibition of water and surfactant solutions into LKC cores under a variety of conditions--cleaned vs. crude oil-aged; oil saturated vs. initial water saturation; flooded with surfactant vs. not flooded--indicated that in water-wet or intermediate wet cores, sodium laureth sulfate is more effective at enhancing spontaneous imbibition through wettability change. However, in more oil-wet systems, surfactin at the same concentration performs significantly better.

  12. Stabilize ash using Clemson`s sintering process (Part 1 -- Phase 1 results): Mixed waste fly ash stabilization. Innovative technology summary report

    SciTech Connect (OSTI)

    Not Available

    1998-12-01T23:59:59.000Z

    Incineration of applicable Department of Energy (DOE) mixed wastes has produced a secondary waste stream of radioactive and Resource Conservation and Recovery Act (RCRA) hazardous fly ash that also requires treatment before land disposal. Unlike bottom ash, fly ash usually contains constituents making efficient stabilization difficult. For example, fly ash from the DOE Waste Experimental Reduction Facility (WERF) incinerator at the Idaho National Engineering and Environmental Laboratory (INEEL) contains volatile metals, metal salts, high concentrations of zinc, and unburned organic residues. All of these constituents can effect the stabilization process. The Department of Energy, and in particular the Mixed Waste Focus Area (MWFA) of EM-50, has stated the need for improved stabilization methods would accept a higher ash waste loading while meeting waste form disposal criteria. These alternative stabilization technologies should include delivery systems to minimize worker exposure and minimize secondary waste generation, while maximizing operational flexibility and radionuclide containment. Currently, the standard practice for stabilizing ash is mixing with Portland cement at room temperature. This standard practice produces a significant increase of waste material volume or has difficulty in adequately stabilizing the components in the fly ash to ensure regulatory requirements are consistently satisfied. To address these fly ash stabilization shortcomings, the MWFA, a DOE/EM-50 program, invested in the development of several fly ash stabilization alternatives, including the Clemson University sintering method.

  13. Product consistency test and toxicity characteristic leaching procedure results of the ceramic waste form from the electrometallurgical treatment process for spent fuel

    SciTech Connect (OSTI)

    Johnson, S. G.; Adamic, M. L.: DiSanto, T.; Warren, A. R.; Cummings, D. G.; Foulkrod, L.; Goff, K. M.

    1999-11-11T23:59:59.000Z

    The ceramic waste form produced from the electrometallurgical treatment of sodium bonded spent fuel from the Experimental Breeder Reactor-II was tested using two immersion tests with separate and distinct purposes. The product consistency test is used to assess the consistency of the waste forms produced and thus is an indicator of a well-controlled process. The toxicity characteristic leaching procedure is used to determine whether a substance is to be considered hazardous by the Environmental Protection Agency. The proposed high level waste repository will not be licensed to receive hazardous waste, thus any waste forms destined to be placed there cannot be of a hazardous nature as defined by the Resource Conservation and Recovery Act. Results are presented from the first four fully radioactive ceramic waste forms produced and from seven ceramic waste forms produced from cold surrogate materials. The fully radioactive waste forms are approximately 2 kg in weight and were produced wit h salt used to treat 100 driver subassemblies of spent fuel.

  14. Recovering Americium and Curium from Mark-42 Target Materials- New Processing Approaches to Enhance Separations and Integrate Waste Stream Disposition - 12228

    SciTech Connect (OSTI)

    Patton, Brad D.; Benker, Dennis; Collins, Emory D.; Mattus, Catherine H.; Robinson, Sharon M.; Wham, Robert M. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2012-07-01T23:59:59.000Z

    Oak Ridge National Laboratory (ORNL) is investigating flowsheets to enhance processing efficiencies and to address waste streams associated with recovery of americium (Am) and curium (Cm) from Mark-42 (Mk-42) target materials stored at ORNL. The objective of this work was to identify the most effective flowsheet with which to process the 104 Mk-42 oxide capsules holding a total of 80 g of plutonium (Pu), 190 g of Cm, 480 g of Am, and 5 kg of lanthanide (Ln) oxides for the recovery and purification of the Am/Cm for future use as feedstock for heavy actinide production. Studies were also conducted to solidify the process flowsheet waste streams for disposal. ORNL is investigating flowsheets to enhance processing efficiencies and address waste streams associated with recovery of Am and Cm from Mk-42 target materials stored at ORNL. A series of small-scale runs are being performed to demonstrate an improved process to recover Am/Cm and to optimize the separations of Ln fission products from the Am/Cm constituents. The first of these runs has been completed using one of the Am/Cm/Ln oxide capsules stored at ORNL. The demonstration run showed promising results with a Ln DF of 40 for the Am/Cm product and an Am/Cm DF of 75 for the Ln product. In addition, the total losses of Am, Cm, and Ln to the waste solvents and raffinates were very low at <0.2%, 0.02%, and 0.04%, respectively. However, the Ln-actinide separation was less than desired. For future Reverse TALSPEAK demonstration runs, several parameters will be adjusted (flow rates, the ratio of scrub to strip stages, etc.) to improve the removal of Ln from the actinides. The next step will also include scale-up of the processing flowsheet to use more concentrated solutions (15 g/L Ln versus 5 g/L) and larger volumes and to recycle the HDEHP solvent. This should improve the overall processing efficiency and further reduce losses to waste streams. Studies have been performed with simulated wastes to develop solidification processes for disposal of the secondary waste streams generated by this flowsheet. Formulations were successfully developed for all the waste simulants. Additional tests with actual waste will be the next step in this effort. Future plans are to process all of the remaining 103 capsules in storage at ORNL. A nine-capsule test is now under way to provide additional information to scale-up the process to a target 20-capsule batch size for future processing runs. (authors)

  15. Savannah River Site - Salt Waste Processing Facility: Briefing on the Salt

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG -Energy Proposed1-E

  16. Process for Converting Waste Glass Fiber into Value-Added Products |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+ Report Presentation:in the U.S. by Consider theDepartment

  17. Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance: A BestPractices Process Heating Technical Brief. Industrial Technologies Program (ITP) (Brochure).

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02Report |toVEHICLEof EnergyPerformance |Waste Heat

  18. Effective Monday, November 23, 2009, the ANSER Center will process all purchase

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract ManagementDiscoveringESnet

  19. SUCCESSES AND EMERGING ISSUES IN SIMULATING THE PROCESSING BEHAVIOR OF LIQUID-PARTICLE NUCLEAR WASTE SLURRIES AT THE SAVANNAH RIVER SITE - 205E

    SciTech Connect (OSTI)

    Koopman, D.; Lambert, D.; Stone, M.

    2009-09-02T23:59:59.000Z

    Slurries of inorganic solids, containing both stable and radioactive elements, were produced during the cold war as by-products of the production of plutonium and enriched uranium and stored in large tanks at the Savannah River Site. Some of this high level waste is being processed into a stable glass waste form today. Waste processing involves various large scale operations such as tank mixing, inter-tank transfers, washing, gravity settling and decanting, chemical adjustment, and vitrification. The rheological properties of waste slurries are of particular interest. Methods for modeling flow curve data and predicting the properties of slurry blends are particularly important during certain operational phases. Several methods have been evaluated to predict the rheological properties of sludge slurry blends from the data on the individual slurries. These have been relatively successful.

  20. Fate and transport processes controlling the migration of hazardous and radioactive materials from the Area 5 Radioactive Waste Management Site (RWMS)

    SciTech Connect (OSTI)

    Estrella, R.

    1994-10-01T23:59:59.000Z

    Desert vadose zones have been considered as suitable environments for the safe and long-term isolation of hazardous wastes. Low precipitation, high evapotranspiration and thick unsaturated alluvial deposits commonly found in deserts make them attractive as waste disposal sites. The fate and transport of any contaminant in the subsurface is ultimately determined by the operating retention and transformation processes in the system and the end result of the interactions among them. Retention (sorption) and transformation are the two major processes that affect the amount of a contaminant present and available for transport. Retention processes do not affect the total amount of a contaminant in the soil system, but rather decrease or eliminate the amount available for transport at a given point in time. Sorption reactions retard the contaminant migration. Permanent binding of solute by the sorbent is also possible. These processes and their interactions are controlled by the nature of the hazardous waste, the properties of the porous media and the geochemical and environmental conditions (temperature, moisture and vegetation). The present study summarizes the available data and investigates the fate and transport processes that govern the migration of contaminants from the Radioactive Waste Management Site (RWMS) in Area 5 of the Nevada Test Site (NTS). While the site is currently used only for low-level radioactive waste disposal, past practices have included burial of material now considered hazardous. Fundamentals of chemical and biological transformation processes are discussed subsequently, followed by a discussion of relevant results.

  1. Humans produce large amounts of waste that must be processed or stored so that it does not contaminate the

    E-Print Network [OSTI]

    Hodgson, Michael E.

    on the Savannah River National Laboratory near Aiken, South Carolina. Introduction Hazardous waste site management

  2. Environmental evaluation of alternatives for long-term management of Defense high-level radioactive wastes at the Idaho Chemical Processing Plant

    SciTech Connect (OSTI)

    Not Available

    1982-09-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) is considering the selection of a strategy for the long-term management of the defense high-level wastes at the Idaho Chemical Processing Plant (ICPP). This report describes the environmental impacts of alternative strategies. These alternative strategies include leaving the calcine in its present form at the Idaho National Engineering Laboratory (INEL), or retrieving and modifying the calcine to a more durable waste form and disposing of it either at the INEL or in an offsite repository. This report addresses only the alternatives for a program to manage the high-level waste generated at the ICPP. 24 figures, 60 tables.

  3. DATA SHARING REPORT CHARACTERIZATION OF THE SURVEILLANCE AND MAINTENANCE PROJECT MISCELLANEOUS PROCESS INVENTORY WASTE ITEMS OAK RIDGE NATIONAL LABORATORY, Oak Ridge TN

    SciTech Connect (OSTI)

    Weaver, Phyllis C

    2013-12-12T23:59:59.000Z

    The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management (EM-OR) requested Oak Ridge Associated Universities (ORAU), working under the Oak Ridge Institute for Science and Education (ORISE) contract, to provide technical and independent waste management planning support under the American Recovery and Reinvestment Act (ARRA). Specifically, DOE EM-OR requested ORAU to plan and implement a sampling and analysis campaign to target certain items associated with URS|CH2M Oak Ridge, LLC (UCOR) surveillance and maintenance (S&M) process inventory waste. Eight populations of historical and reoccurring S&M waste at the Oak Ridge National Laboratory (ORNL) have been identified in the Waste Handling Plan for Surveillance and Maintenance Activities at the Oak Ridge National Laboratory, DOE/OR/01-2565&D2 (WHP) (DOE 2012) for evaluation and processing for final disposal. This waste was generated during processing, surveillance, and maintenance activities associated with the facilities identified in the process knowledge (PK) provided in Appendix A. A list of items for sampling and analysis were generated from a subset of materials identified in the WHP populations (POPs) 4, 5, 6, 7, and 8, plus a small number of items not explicitly addressed by the WHP. Specifically, UCOR S&M project personnel identified 62 miscellaneous waste items that would require some level of evaluation to identify the appropriate pathway for disposal. These items are highly diverse, relative to origin; composition; physical description; contamination level; data requirements; and the presumed treatment, storage, and disposal facility (TSDF). Because of this diversity, ORAU developed a structured approach to address item-specific data requirements necessary for acceptance in a presumed TSDF that includes the Environmental Management Waste Management Facility (EMWMF)—using the approved Waste Lot (WL) 108.1 profile—the Y-12 Sanitary Landfill (SLF) if appropriate; EnergySolutions Clive; and the Nevada National Security Site (NNSS) (ORAU 2013b). Finally, the evaluation of these wastes was more suited to a judgmental sampling approach rather than a statistical design, meaning data were collected for each individual item, thereby providing information for item-byitem disposition decisions. ORAU prepared a sampling and analysis plan (SAP) that outlined data collection strategies, methodologies, and analytical guidelines and requirements necessary for characterizing targeted items (ORAU 2013b). The SAP described an approach to collect samples that allowed evaluation as to whether or not the waste would be eligible for disposal at the EMWMF. If the waste was determined not to be eligible for EMWMF disposal, then there would be adequate information collected that would allow the waste to be profiled for one of the alternate TSDFs listed above.

  4. Using benchmarking to minimize common DOE waste streams. Volume 1, Methodology and liquid photographic waste

    SciTech Connect (OSTI)

    Levin, V.

    1994-04-01T23:59:59.000Z

    Finding innovative ways to reduce waste streams generated at Department of Energy (DOE) sites by 50% by the year 2000 is a challenge for DOE`s waste minimization efforts. This report examines the usefulness of benchmarking as a waste minimization tool, specifically regarding common waste streams at DOE sites. A team of process experts from a variety of sites, a project leader, and benchmarking consultants completed the project with management support provided by the Waste Minimization Division EM-352. Using a 12-step benchmarking process, the team examined current waste minimization processes for liquid photographic waste used at their sites and used telephone and written questionnaires to find ``best-in-class`` industrv partners willing to share information about their best waste minimization techniques and technologies through a site visit. Eastman Kodak Co., and Johnson Space Center/National Aeronautics and Space Administration (NASA) agreed to be partners. The site visits yielded strategies for source reduction, recycle/recovery of components, regeneration/reuse of solutions, and treatment of residuals, as well as best management practices. An additional benefit of the work was the opportunity for DOE process experts to network and exchange ideas with their peers at similar sites.

  5. Grand Junction projects office mixed-waste treatment program, VAC*TRAX mobile treatment unit process hazards analysis

    SciTech Connect (OSTI)

    Bloom, R.R.

    1996-04-01T23:59:59.000Z

    The objective of this report is to demonstrate that a thorough assessment of the risks associated with the operation of the Rust Geotech patented VAC*TRAX mobile treatment unit (MTU) has been performed and documented. The MTU was developed to treat mixed wastes at the US Department of Energy (DOE) Albuquerque Operations Office sites. The MTU uses an indirectly heated, batch vacuum dryer to thermally desorb organic compounds from mixed wastes. This process hazards analysis evaluated 102 potential hazards. The three significant hazards identified involved the inclusion of oxygen in a process that also included an ignition source and fuel. Changes to the design of the MTU were made concurrent with the hazard identification and analysis; all hazards with initial risk rankings of 1 or 2 were reduced to acceptable risk rankings of 3 or 4. The overall risk to any population group from operation of the MTU was determined to be very low; the MTU is classified as a Radiological Facility with low hazards.

  6. Rhenium Solubility in Borosilicate Nuclear Waste Glass: Implications for the Processing and Immobilization of Technetium-99

    SciTech Connect (OSTI)

    McCloy, John S.; Riley, Brian J.; Goel, Ashutosh; Liezers, Martin; Schweiger, Michael J.; Rodriguez, Carmen P.; Hrma, Pavel R.; Kim, Dong-Sang; Lukens, Wayne W.; Kruger, Albert A.

    2012-10-26T23:59:59.000Z

    The immobilization of 99Tc in a suitable host matrix has proved to be an arduous task for the researchers in nuclear waste community around the world. At the Hanford site in Washington State, the total amount of 99Tc in low-activity waste (LAW) is ~1300 kg and the current strategy is to immobilize the 99Tc in borosilicate glass with vitrification. In this context, the present article reports on the solubility/retention of rhenium, a nonradioactive surrogate for 99Tc, in a LAW borosilicate glass. Due to the radioactive nature of technetium, rhenium was chosen as a simulant because of the similarity between their ionic radii and other chemical aspects. The glasses containing Re (0 – 10,000 ppm by mass) were synthesized in vacuum-sealed quartz ampoules in order to minimize the loss of Re by volatilization during melting at 1000 °C. The rhenium was found to predominantly exist as Re (VII) in all the glasses as observed by X-ray absorption near-edge structure (XANES). The solubility of Re in borosilicate glasses was determined to be ~3000 ppm (by mass) with inductively coupled plasma-optical emission spectroscopy (ICP-OES). At higher rhenium concentrations, some additional material was retained in the glasses in the form of crystalline inclusions that were detected by X-ray diffraction (XRD) and laser ablation-ICP mass spectrometry (LA-ICP-MS). The implications of these results on the immobilization of 99Tc from radioactive wastes in borosilicate glasses have been discussed.

  7. Test plan: the Czechowice Oil Refinery bioremediation demonstration of a process waste lagoon

    SciTech Connect (OSTI)

    Altman, D.J.; Lombard, K.H.; Hazen, T.C.

    1997-03-31T23:59:59.000Z

    The remediation strategies that will be applied at the Czechowice Oil Refinery waste lagoon in Czechowice, Poland are designed, managed, and implemented under the direction of the Westinghouse Savannah River Company (WSRC) for the United States Department of Energy (DOE). WSRC will be assisted in the demonstration by The Institute for Ecology of Industrial Areas (IETU). This collaboration between IETU and DOE will provide the basis for international technology transfer of new and innovative remediation technologies that can be applied in Poland and the Eastern European Region as well.

  8. Nuclear waste processing based on FOOF and KrF sub 2

    SciTech Connect (OSTI)

    Kim, K.C.; Blum, T.W.

    1991-01-01T23:59:59.000Z

    A class of oxygen fluoride compounds and krypton difluoride show great promise in recovering and purifying plutonium and other actinides from nuclear waste and residues. Since 1983, a significant effort has been expended in three main areas of research; one area is the characterization of the reactive species and the fluorination reaction chemistry with various actinides. The second area is to develop efficient production methods for the active chemicals. The third area is actually in demonstrating application of these fluorinating agents to actinides recovery and purification. Substantial progress has been made in all three areas and some of the highlights in their research effort is discussed. 11 refs., 2 figs., 2 tabs.

  9. Development and results of experimental testing of electromembrane process for liquid active waste purification

    SciTech Connect (OSTI)

    Martinov, B.V.; Smirnov, V.V.; Tugolukov, B.B.; Belyakov, Y.A. [A.A. Bochvar All Russian Scientific Research, Moscow (Russian Federation). Inst. of Inorganic Materials

    1993-12-31T23:59:59.000Z

    This paper discusses the results of studies on electromembrane purification. The concentration of salts in active wastes arising from decontamination is more than 3--5 g/l. For these investigations a solution was chosen that had arisen from the decontamination of metallic items by a two-bath method using permanganate-alkali in the first stage and nitrogen oxalic acid in the second stage. The total salt content of mixed acid and alkaline solutions was 3.0 g/l, with a pH of 8.5 and total beta-activity of 6 {times} 10{sup {minus}8} Ci/l.

  10. Idaho Site Taps Old World Process to Treat Nuclear Waste | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department ofOralGovernmentStandards

  11. WMA-C - Waste Management Area C Closure Process - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulenceUtilizeRural Public Reading*Official Documents >

  12. Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'s ReplyApplication of Training April 30,WindAssessment of Financial

  13. Nuclear Safety R&D in the Waste Processing Technology Development & Deployment Program

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR - T en Y earEnergy Research andSiteSafety R&D in the

  14. Lab Ahead of Schedule Processing Waste in Large Boxes | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions for DOEtheInspection15Department10PM toON5 LMTrade |TruckEnergy Lab

  15. Record of Decision; Defense Waste Processing Facility at the Savannah River Site

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergy Small TeamNOTDelivery and Energy Reliability (OE): OEEnergyRecord

  16. Savannah River Site Salt Waste Processing Facility Technology Readiness Assessment Report

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSARDevelopmentalEfficiency | DepartmentSavannahDecommissioning

  17. Summary - Salt Waste Processing Facility Design at the Savannah River Site

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium Transferon the Passing of AdmiraltheOil and LessOak Ridge,SRS Co DOE

  18. Evaluation of the Low-Energy Design Process and Energy Performance of the Zion National Park Visitor Center: Preprint

    SciTech Connect (OSTI)

    Long, N.; Torcellini, P.; Pless, S.; Judkoff, R.

    2005-10-01T23:59:59.000Z

    Paper discusses NREL's role in the participation of the design process of the Zion National Park Visitor Center Complex and the results documented from monitoring the energy performance of the building for several years. Paper includes PV system and Trombe wall description and lessons learned in the design, construction, and commissioning of the building.

  19. Crystal-Tolerant Glass Approach For Mitigation Of Crystal Accumulation In Continuous Melters Processing Radioactive Waste

    SciTech Connect (OSTI)

    Kruger, Albert A. [Department of Energy, Office of River Protection, Richland, Washington (United States); Rodriguez, Carmen P. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Lang, Jesse B. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Huckleberry, Adam R. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Matyas, Josef [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Owen, Antoinette T. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

    2012-08-28T23:59:59.000Z

    High-level radioactive waste melters are projected to operate in an inefficient manner as they are subjected to artificial constraints, such as minimum liquidus temperature (T{sub L}) or maximum equilibrium fraction of crystallinity at a given temperature. These constraints substantially limit waste loading, but were imposed to prevent clogging of the melter with spinel crystals [(Fe, Ni, Mn, Zn)(Fe, Cr){sub 2}O{sub 4}]. In the melter, the glass discharge riser is the most likely location for crystal accumulation during idling because of low glass temperatures, stagnant melts, and small diameter. To address this problem, a series of lab-scale crucible tests were performed with specially formulated glasses to simulate accumulation of spinel in the riser. Thicknesses of accumulated layers were incorporated into empirical model of spinel settling. In addition, T{sub L} of glasses was measured and impact of particle agglomeration on accumulation rate was evaluated. Empirical model predicted well the accumulation of single crystals and/or smallscale agglomerates, but, excessive agglomeration observed in high-Ni-Fe glass resulted in an under-prediction of accumulated layers, which gradually worsen over time as an increased number of agglomerates formed. Accumulation rate of ~14.9 +- 1 nm/s determined for this glass will result in ~26 mm thick layer in 20 days of melter idling.

  20. Development of Infrared Welder for Sealing of Polyethylene TRU-Waste Containers

    SciTech Connect (OSTI)

    Milling, R.B.

    1999-06-08T23:59:59.000Z

    Engineers at the Savannah River Technology Center have successfully performed infrared welding of High Density Polyethylene test specimens to prove the feasibility of using the infrared welding process in the HANDSS-55-TRU-Waste Repackaging Module.

  1. Amarillo National Resource Center for Plutonium quarterly technical progress report, August 1--October 31, 1998

    SciTech Connect (OSTI)

    NONE

    1998-11-01T23:59:59.000Z

    This paper describes activities of the Center under the following topical sections: Electronic resource library; Environmental restoration and protection; Health and safety; Waste management; Communication program; Education program; Training; Analytical development; Materials science; Plutonium processing and handling; and Storage.

  2. Work Control Center Operating Procedure page 1 D-NSTX-OP-AD-129 Rev.OO

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    Responsibilities: 7 5.0 Flow Chart of Work Package Processing: 9 7.0 Work Control Center Meetings: 12 7.1 Plan and Operations Division Energy Conversion System!Motor Control Division Environmental Restoration & Waste

  3. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions

    SciTech Connect (OSTI)

    Turner, J.P.; Hasfurther, V.

    1992-05-04T23:59:59.000Z

    The scope of the research program and the continuation is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 [times] 3.0 [times] 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by Rio Blanco Oil Shale Co., Inc. (RBOSC) through a separate cooperative agreement with the University of Wyoming (UW) to carry out this study. Three of the lysimeters were established at the RBOSC Tract C-a in the Piceance Basin of Colorado. Two lysimeters were established in the Environmental Simulation Laboratory (ESL) at UW. The ESL was specifically designed and constructed so that a large range of climatic conditions could be physically applied to the processed oil shale which was filled in the lysimeter cells.

  4. Mineralogical characterization of steel industry hazardous waste and refractory sulfide ores for zinc and gold recovery processing

    SciTech Connect (OSTI)

    Hagni, A.M.; Hagni, R.D. (Univ. of Missouri, Rolla, MO (United States). Geology Geophysics Dept.)

    1994-04-01T23:59:59.000Z

    The steel industry generates dust as a waste product from high temperature electric arc furnaces (EAF), which is a major step in processing scrap metal into steel. The Environmental Protection Agency (EPA) has classified EAF dust as KO61 hazardous waste, due to its lead, cadmium, and chromium content. The dust also contains valuable zinc, averaging 19%. Detailed mineralogical characterization show the zinc is present as crystals of franklinite-magnetite-jacobsite solid solutions in calcium-iron-silicate glass spheres and as zincite mostly as very small individual spheres. Much of the chromium is present in an insoluble form in solid solution in the iron spinels. This microscopic research is a valuable tool in determining treatment processes for the 600,000 tons of dust generated annually in the US. Refractory gold ores, pyrite and arsenopyrite, have been studied to determine additional, cost-effective methods of processing. One technique under investigation involves roasting sulfide mineral particles to hematite to create porosity through which a leach can permeate to recover the gold. Portlandite, Ca(OH)[sub 2], is added to the roast for retention of hazardous sulfur and arsenic. Modern microscopic and spectroscopic techniques, such electron spectroscopy for chemical analysis, cathodoluminescence microscopy, and electron microprobe, have been applied, as well as reflected light and dark field microscopy, and scanning electron microscopy to determine the mineralogy of the sulfur, arsenic, and iron phases, and the extent of porosity, permeability, and oxidation state of the ore particles at various roasting temperatures. It is concluded that mineralogical techniques can be effectively applied to the solution of environmental problems.

  5. Non-Invasive Diagnostics for Measuring Physical Properties and Processes in High Level Wastes

    SciTech Connect (OSTI)

    Robert Powell; David Pfund

    2005-07-17T23:59:59.000Z

    This research demonstrated the usefulness of tomographic techniques for determining the physical properties of slurry suspensions. Of particular interest was the measurement of the viscosity of suspensions in complex liquids and modeling these. We undertook a long rage program that used two techniques, magnetic resonance imaging and ultrasonic pulsed Doppler velocimetry. Our laboratory originally developed both of these for the measurement of viscosity of complex liquids and suspensions. We have shown that the relationship between shear viscosity and shear rate can be determined over a wide range of shear rates from a single measurement. We have also demonstrated these techniques for many non-Newtonian fluids which demonstrate highly shear thinning behavior. This technique was extended to determine the yield stress with systems of interacting particles. To model complex slurries that may be found in wastes applications, we have also used complex slurries that are found in industrial applications

  6. Enterprise Assessments Operational Awareness Record of the Follow-up Review of Engineeing Configuration Management Processes at the Waste Isolation Pilot Plant - June 2015

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010 SNFEnergySession0-02 -Railroad Hazardous gthe Waste Office

  7. SALTSTONE VAULT CLASSIFICATION SAMPLES MODULAR CAUSTIC SIDE SOLVENT EXTRACTION UNIT/ACTINIDE REMOVAL PROCESS WASTE STREAM APRIL 2011

    SciTech Connect (OSTI)

    Eibling, R.

    2011-09-28T23:59:59.000Z

    Savannah River National Laboratory (SRNL) was asked to prepare saltstone from samples of Tank 50H obtained by SRNL on April 5, 2011 (Tank 50H sampling occurred on April 4, 2011) during 2QCY11 to determine the non-hazardous nature of the grout and for additional vault classification analyses. The samples were cured and shipped to Babcock & Wilcox Technical Services Group-Radioisotope and Analytical Chemistry Laboratory (B&W TSG-RACL) to perform the Toxic Characteristic Leaching Procedure (TCLP) and subsequent extract analysis on saltstone samples for the analytes required for the quarterly analysis saltstone sample. In addition to the eight toxic metals - arsenic, barium, cadmium, chromium, mercury, lead, selenium and silver - analytes included the underlying hazardous constituents (UHC) antimony, beryllium, nickel, and thallium which could not be eliminated from analysis by process knowledge. Additional inorganic species determined by B&W TSG-RACL include aluminum, boron, chloride, cobalt, copper, fluoride, iron, lithium, manganese, molybdenum, nitrate/nitrite as Nitrogen, strontium, sulfate, uranium, and zinc and the following radionuclides: gross alpha, gross beta/gamma, 3H, 60Co, 90Sr, 99Tc, 106Ru, 106Rh, 125Sb, 137Cs, 137mBa, 154Eu, 238Pu, 239/240Pu, 241Pu, 241Am, 242Cm, and 243/244Cm. B&W TSG-RACL provided subsamples to GEL Laboratories, LLC for analysis for the VOCs benzene, toluene, and 1-butanol. GEL also determines phenol (total) and the following radionuclides: 147Pm, 226Ra and 228Ra. Preparation of the 2QCY11 saltstone samples for the quarterly analysis and for vault classification purposes and the subsequent TCLP analyses of these samples showed that: (1) The saltstone waste form disposed of in the Saltstone Disposal Facility in 2QCY11 was not characteristically hazardous for toxicity. (2) The concentrations of the eight RCRA metals and UHCs identified as possible in the saltstone waste form were present at levels below the UTS. (3) Most of the inorganic species measured in the leachate do not exceed the MCL, SMCL or TW limits. (4) The inorganic waste species that exceeded the MCL by more than a factor of 10 were nitrate, nitrite and the sum of nitrate and nitrite. (5) Analyses met all quality assurance specifications of US EPA SW-846. (6) The organic species (benzene, toluene, 1-butanol, phenol) were either not detected or were less than reportable for the vault classification samples. (7) The gross alpha and radium isotopes could not be determined to the MCL because of the elevated background which raised the detection limits. (8) Most of the beta/gamma activity was from 137Cs and its daughter 137mBa. (9) The concentration of 137Cs and 90Sr were present in the leachate at concentrations 1/40th and 1/8th respectively than in the 2003 vault classification samples. The saltstone waste form placed in the Saltstone Disposal Facility in 2QCY11 met the SCHWMR R.61-79.261.24(b) RCRA metals requirements for a nonhazardous waste form. The TCLP leachate concentrations for nitrate, nitrite and the sum of nitrate and nitrite were greater than 10x the MCLs in SCDHEC Regulations R.61-107.19, Part I A, which confirms the Saltstone Disposal Facility classification as a Class 3 Landfill. The saltstone waste form placed in the Saltstone Disposal Facility in 2QCY11 met the R.61-79.268.48(a) non wastewater treatment standards.

  8. Numerical simulation of hydrothermal salt separation process and analysis and cost estimating of shipboard liquid waste disposal

    E-Print Network [OSTI]

    Hunt, Andrew Robert

    2007-01-01T23:59:59.000Z

    Due to environmental regulations, waste water disposal for US Navy ships has become a requirement which impacts both operations and the US Navy's budget. In 2006, the cost for waste water disposal Navy-wide was 54 million ...

  9. An evaluation of hydrologic, geotechnical, and chemical behavior of processed oil shale solid waste 2; The use of time domain reflectometry (TDR) for monitoring in-situ volumetric water content in processed oil shale

    SciTech Connect (OSTI)

    Reeves, T.L.; Elgezawi, S.M. (Wyoming Univ., Laramie, WY (USA). Dept. of Civil Engineering); Kaser, T.G. (GIGO Computer and Electronic, Laramie, WY (US))

    1989-01-01T23:59:59.000Z

    This paper describes the use of time domain reflectometry (TDR) for monitoring volumetric water contents in processed oil shale solid waste. TDR measures soil water content via a correlation between the dielectric constant (K) of the 3 phase (soil-water-air) system and the volumetric water content ({theta}{sub v}). An extensive bench top research program has been conducted to evaluate and verify the use of this technique in processed oil shale solid waste. This study utilizes columns of processed oil shale packed to known densities and varying water contents and compares the columetric water content measured via TDR and the volumetric water content measured through gravimetric determination.

  10. Waste Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1DOE AwardsDNitrate Salt Bearing Waste

  11. Central Waste Complex (CWC) Waste Analysis Plan

    SciTech Connect (OSTI)

    ELLEFSON, M.D.

    2000-01-06T23:59:59.000Z

    The purpose of this waste analysis plan (WAP) is to document the waste acceptance process, sampling methodologies, analytical techniques, and overall processes that are undertaken for waste accepted for storage at the Central Waste Complex (CWC), which is located in the 200 West Area of the Hanford Facility, Richland, Washington. Because dangerous waste does not include the source special nuclear and by-product material components of mixed waste, radionuclides are not within the scope of this document. The information on radionuclides is provided only for general knowledge. This document has been revised to meet the interim status waste analysis plan requirements of Washington Administrative Code (WAC) 173 303-300(5). When the final status permit is issued, permit conditions will be incorporated and this document will be revised accordingly.

  12. Radioactive Waste Radioactive Waste

    E-Print Network [OSTI]

    Slatton, Clint

    form · Separate liquid from solid · Radionuclide · Separate all but H3/C14 #12;#12;Radioactive Waste;Radioactive Waste H3/C14 solids Type B (non-incinerable) metal glass hazardous materials #12;#12;Radioactive#12;Radioactive Waste at UF Bldg 831 392-8400 #12;Radioactive Waste · Program is designed to

  13. EA-1862: Oneida Seven Generation Corporation Waste-To-Energy System, Ashwaubenon, Wisconsin

    Broader source: Energy.gov [DOE]

    Oneida’s Energy Recovery Project would construct and operate a solid waste-to-electricity power plant on vacant property within the Bayport Industrial Center in the City of Green Bay, Brown County, Wisconsin. This energy recovery process would involve bringing municipal solid waste into the plant for sizing (shredding), sorting (removing recyclable material), and conveying into one of three pyrolytic gasification systems.

  14. Idaho Solid Waste Webpage | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITCSolid Waste Webpage Abstract This webpage

  15. Review of the Hanford Waste Treatment and Immobilization Project Black-Cell and Hard-to-Reach Pipe Spools Procurement Process and the Office of River Protection Audit of That Process

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, anEnergy nepdg_5251_5500.pdfAnalysis of Downwash fromWaste

  16. Screening study for waste biomass to ethanol production facility using the Amoco process in New York State. Appendices to the final report

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    The final report evaluates the economic feasibility of locating biomass-to-ethanol waste conversion facilities in New York State. Part 1 of the study evaluates 74 potential sites in New York City and identifies two preferred sites on Staten Island, the Proctor and Gamble and the Arthur Kill sites for further consideration. Part 2 evaluates upstate New York and determines that four regions surrounding the urban centers of Albany, Buffalo, Rochester, and Syracuse provide suitable areas from which to select specific sites for further consideration. A conceptual design and economic viability evaluation were developed for a minimum-size facility capable of processing 500 tons per day (tpd) of biomass consisting of wood or paper, or a combination of the two for upstate regions. The facility would use Amoco`s biomass conversion technology and produce 49,000 gallons per day of ethanol and approximately 300 tpd of lignin solid by-product. For New York City, a 1,000-tpd processing facility was also evaluated to examine effects of economies of scale. The reports evaluate the feasibility of building a biomass conversion facility in terms of city and state economic, environmental, and community factors. Given the data obtained to date, including changing costs for feedstock and ethanol, the project is marginally attractive. A facility should be as large as possible and located in a New York State Economic Development Zone to take advantage of economic incentives. The facility should have on-site oxidation capabilities, which will make it more financially viable given the high cost of energy. This appendix to the final report provides supplemental material supporting the evaluations.

  17. Type B Accident Investigation of the April 8, 2003, Electrical Arc Blast at the Foster Wheeler Environmental Corporation TRU Waste Processing Facility, Oak Ridge, Tennessee

    Broader source: Energy.gov [DOE]

    At approximately 0330 hours on April 8, 2003, a phase-to-phase arc blast occurred in the boiler electrical control panel at the Foster Wheeler Environmental Corporation (FWENC) Transuranic (TRU) Waste Processing Facility. The boiler was providing steam for the evaporator and was reportedly operating at about 10% of its capacity.

  18. EIS-0074: Long-Term Management of Defense High-Level Radioactive Wastes Idaho Chemical Processing Plant, Idaho National Engineering Lab, Idaho

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy prepared this statement to analyze the environmental implications of the proposed selection of a strategy for long- term management of the high- level radioactive wastes generated as part of the national defense effort at the Department's Idaho Chemical Processing Plant a t the Idaho National Engineering Laboratory.

  19. Los Alamos Controlled Air Incinerator for radioactive waste. Volume I. Rationale, process, equipment, performance, and recommendations

    SciTech Connect (OSTI)

    Neuls, A.S.; Draper, W.E.; Koenig, R.A.; Newmyer, J.M.; Warner, C.L.

    1982-08-01T23:59:59.000Z

    This two-volume report is a detailed design and operating documentation of the Los Alamos National Laboratory Controlled Air Incinerator (CAI) and is an aid to technology transfer to other Department of Energy contractor sites and the commercial sector. Volume I describes the CAI process, equipment, and performance, and it recommends modifications based on Los Alamos experience. It provides the necessary information for conceptual design and feasibility studies. Volume II provides descriptive engineering information such as drawing, specifications, calculations, and costs. It aids duplication of the process at other facilities.

  20. Demonstration of base catalyzed decomposition process, Navy Public Works Center, Guam, Mariana Islands

    SciTech Connect (OSTI)

    Schmidt, A.J.; Freeman, H.D.; Brown, M.D.; Zacher, A.H.; Neuenschwander, G.N.; Wilcox, W.A.; Gano, S.R. [Pacific Northwest National Lab., Richland, WA (United States)] [Pacific Northwest National Lab., Richland, WA (United States); Kim, B.C.; Gavaskar, A.R. [Battelle Columbus Div., OH (United States)] [Battelle Columbus Div., OH (United States)

    1996-02-01T23:59:59.000Z

    Base Catalyzed Decomposition (BCD) is a chemical dehalogenation process designed for treating soils and other substrate contaminated with polychlorinated biphenyls (PCB), pesticides, dioxins, furans, and other hazardous organic substances. PCBs are heavy organic liquids once widely used in industry as lubricants, heat transfer oils, and transformer dielectric fluids. In 1976, production was banned when PCBs were recognized as carcinogenic substances. It was estimated that significant quantities (one billion tons) of U.S. soils, including areas on U.S. military bases outside the country, were contaminated by PCB leaks and spills, and cleanup activities began. The BCD technology was developed in response to these activities. This report details the evolution of the process, from inception to deployment in Guam, and describes the process and system components provided to the Navy to meet the remediation requirements. The report is divided into several sections to cover the range of development and demonstration activities. Section 2.0 gives an overview of the project history. Section 3.0 describes the process chemistry and remediation steps involved. Section 4.0 provides a detailed description of each component and specific development activities. Section 5.0 details the testing and deployment operations and provides the results of the individual demonstration campaigns. Section 6.0 gives an economic assessment of the process. Section 7.0 presents the conclusions and recommendations form this project. The appendices contain equipment and instrument lists, equipment drawings, and detailed run and analytical data.